Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions Quadrilateralsand Parallelograms

Exercise 9A

Type	Properties
Parallelogram	- Opposite sides are equal and parallel
	- Opposite angles are equal
\square	- Opposite sides are equal and parallel - All angles are right angles $\left(90^{\circ}\right)$
Square \square	- Opposite sides are parallel - All sides are equal - All angles are right angles $\left(90^{\circ}\right)$
	- Opposite sides are parallel - All sides are equal - Opposite angles are equal - Diagonals bisect each other at right angles $\left(90^{\circ}\right)$
Trapezoid	- One pair of opposite sides is parallel
	- Two pairs of adjacent sides are equal - One pair of opposite sides are equal - One diagonal bisects the other - Diagonals intersect at right angle $\left(90^{\circ}\right)$

Question 1:

Let the fourth angle be x.
We know, that sum of the angles of a quadrilateral is 360°

Then,	$56^{\circ}+115^{\circ}+84^{\circ}+x$	$=360^{\circ}$
\Rightarrow	$255^{\circ}+x$	$=360^{\circ}$
\Rightarrow	x	$=360^{\circ}-255^{\circ}=105^{\circ}$
\therefore Thefourth angleis 105°.		

Question 2:
Let the angles of a quadrilateral be $2 x, 4 x, 5 x$ and $7 x$.
We know, that sum of the angles of a quadrilateral is 360°

$$
\begin{array}{lc}
\text { Then, } & 2 x+4 x+5 x+7 x=360^{\circ} \\
\Rightarrow & 18 x=360^{\circ} \\
\Rightarrow & x=\frac{360}{18}=20^{\circ}
\end{array}
$$

\therefore the angles of the quadrilateralare:

$$
\begin{aligned}
& 2 x=2 \times 20=40^{\circ} \\
& 4 x=4 \times 20=80^{\circ} \\
& 5 x=5 \times 20=100^{\circ} \\
& 7 x=7 \times 20=140^{\circ}
\end{aligned}
$$

\therefore the requi red angles are $40^{\circ}, 80^{\circ}, 100^{\circ}$ and 140°.

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Question 3:

Since AB || DC

Since $A B|\mid D C, \angle A$ and $\angle D$ are consecutive interior angles.
Consecutive interior angles sum upto 180°.

So,	$\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$
\Rightarrow	$55^{\circ}+\angle \mathrm{D}=180^{\circ}$
\Rightarrow	$\angle \mathrm{D}=180^{\circ}-55^{\circ}=125^{\circ}$

Also, we know that, sum of the angles of a quadrilateral is 360°
$\Rightarrow \quad \angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\Rightarrow \quad 55^{\circ}+70^{\circ}+\angle \mathrm{C}+125^{\circ}=360^{\circ}$
$\Rightarrow \quad 250^{\circ}+\angle \mathrm{C}=360^{\circ}$
$\Rightarrow \quad \angle \mathrm{C}=360^{\circ}-250^{\circ}=110^{\circ}$
$\therefore \angle \mathrm{C}=110^{\circ}$ and $\angle \mathrm{D}=125^{\circ}$

Question 4:

Given: $\triangle E D C$ is an equilatateral triangle and $A B C D$ is a square

To Prove: $\quad \mathrm{AE}=\mathrm{BE}$
and $\quad \angle \mathrm{DAE}=15^{\circ}$
(i) Proof: Since $\triangle E D C$ is an equilateral triangle,
$\angle E D C=60^{\circ}$ and $\angle E C D=60^{\circ}$
Since $A B C D$ is a square,
$\angle \mathrm{CDA}=90^{\circ}$ and $\angle \mathrm{DCB}=90^{\circ}$
In $\triangle \mathrm{EDA}$

$$
\begin{align*}
\angle \mathrm{EDA} & =\angle \mathrm{EDC}+\angle \mathrm{CDA} \\
& =60^{\circ}+90^{\circ} \\
& =150^{\circ} \tag{1}
\end{align*}
$$

In $\triangle \mathrm{ECB}$

$$
\begin{align*}
\angle \mathrm{ECB} & =\angle \mathrm{ECD}+\angle \mathrm{DCB} \\
& =60^{\circ}+90^{\circ}=150^{\circ} \\
\Rightarrow \quad \angle \mathrm{EDA} & =\angle \mathrm{ECB} \tag{2}
\end{align*}
$$

Thus, in $\triangle E D A$ and $\triangle E C B$

$$
\mathrm{ED}=\mathrm{EC} \quad \text { [sides of equilateral triangle } \triangle \mathrm{EDC} \text {] }
$$

$$
\angle \mathrm{EDA}=\angle \mathrm{ECB} \quad[\text { from }(2)]
$$

$D A=C B \quad$ [sides of square $\square A B C D$]
Thus, by Side-Angle-Side criterion of congruence, we have

$$
\triangle \mathrm{EDA} \cong \triangle \mathrm{ECB} \quad[\mathrm{By} \text { SAS }]
$$

The corresponding parts of the congruent triangles are equal.

$$
\therefore \quad \mathrm{AE}=\mathrm{BE} \quad[\mathrm{C} . \mathrm{P} . \mathrm{C} . \mathrm{T}]
$$

(ii)Now in \triangle EDA, we have

$$
\mathrm{ED}=\mathrm{DA}
$$

$$
\Rightarrow \quad \angle \mathrm{DEA} \quad=\angle \mathrm{DAE}[\text { base angles are equal }]
$$

$$
\text { But } \quad \angle \mathrm{EDA}=150^{\circ} \quad[\text { from (1)] }
$$

So, by angle sum property in $\triangle E D A$

$$
\angle \mathrm{EDA}+\angle \mathrm{DAE}+\angle \mathrm{DEA}=180^{\circ}
$$

$$
\Rightarrow 150^{\circ}+\angle \mathrm{DAE}+\angle \mathrm{DAE}=180^{\circ}
$$

$$
\Rightarrow \quad 2 \angle \mathrm{DAE}=180^{\circ}-150^{\circ}
$$

$$
\Rightarrow \quad 2 \angle \mathrm{DAE}=30^{\circ}
$$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Question 5:
Given: $\mathrm{BM} \perp \mathrm{AC}$ and $\mathrm{DN} \perp \mathrm{AC}$ and $\mathrm{BM}=\mathrm{DN}$

To Prove: AC bisects BD.
We have,
$\angle \mathrm{DON}=\angle \mathrm{MOB} \quad[$ Vertically opposite angles $]$
$\angle \mathrm{DNO}=\angle \mathrm{BMO}=90^{\circ}$
$\mathrm{BM}=\mathrm{DN} \quad$ [Given $]$
$\therefore \triangle \mathrm{DNO} \cong \triangle B M O \quad$ [ByAAS]
$\therefore \mathrm{OD}=\mathrm{OB} \quad$ [C.P.C.T]
So, $A C$ bisects BD.

Question 6:

Given: $A B C D$ is quadrilateral in which $A B=A D$ and $B C=D C$
To Prove: (i) AC bisects $\angle \mathrm{A}$ and $\angle \mathrm{C}$
(ii) $\mathrm{BE}=\mathrm{DE}$
(iii) $\angle \mathrm{ABC}=\angle \mathrm{ADC}$

Proof: In $\triangle A B C$ and $\triangle A D C$, we have

$A B=A D$	[Given]
$B C=D C$	[Given]
$A C=A C$	[Common]

Thus by Side-Side-Side criterion of congruence, $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}$
The corresponding parts of the congruent triangles are equal.

So,	$\angle \mathrm{BAC}=\angle \mathrm{DAC}$	[C.P.C.T]
\Rightarrow	$\angle B A F=\angle D A E$	

It means that $A C$ bisects $\angle B A D$, that is $\angle A$
Also, $\quad \angle B C A=\angle D C A \quad$ [C.P.C.T]
$\Rightarrow \quad \angle \mathrm{BCE}=\angle \mathrm{DCE}$
It means that $A C$ bisects $\angle B C D$, that is $\angle C$
(ii) In $\triangle A B E$ and $\triangle A D E$, we have

$A B$	$=A D$		[given]
$\angle B A E$	$=\angle D A E$		$[$ from (i)]
$A E$	$=A E$		$[$ Common $]$

Thus by Side-Angle-Side criterion of congruence, we have
$\therefore \quad \triangle A B E \cong \angle A D E \quad[\because$ BySAS $]$
So, $\quad B E=D E \quad[$ By c.p.c.t $]$
(iii) \quad Since from equation (1) in subpart (i), we have
$\triangle A B C \cong \triangle A D C$,
Thus, by c.p.c.t, $\angle A B C=\angle A D C$

Question 7:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Given: Asquare $A B C D$ in which $\angle P Q R=90^{\circ}$ and $P B=Q C=D R$
(ii)
$P Q=Q R$
$\angle Q P R=45^{\circ}$

Proof:
(i)Consider the line segement QB :
$\mathrm{QB}=\mathrm{BC}-\mathrm{QC}$

$$
\begin{equation*}
=C D-D R \quad[\because A B C D \text { is a square, so } B C=D C, Q C=D R(\text { given })] \tag{1}
\end{equation*}
$$

$\mathrm{QB}=\mathrm{RC}$
(ii) In $\triangle P B Q$ and $\triangle Q C R$, we have

$$
\begin{aligned}
\mathrm{PB} & =\mathrm{QC} & & {[\text { Given }] } \\
\angle \mathrm{PBQ} & =\angle \mathrm{QCR}=90^{\circ} & & {[\therefore \mathrm{ABCD} \text { is a square }] } \\
\mathrm{QB} & =\mathrm{RC} & & {[\text { from }(1)] }
\end{aligned}
$$

Thus by Side-Angle-Side criterion of congruence, we have

$$
\begin{aligned}
\triangle \mathrm{PBQ} & \cong \triangle \mathrm{QCR} & & {[\text { By SAS }] } \\
\mathrm{PQ} & =\mathrm{QR} & & {[\text { By c.p.c.t }] }
\end{aligned}
$$

(iii) Given that, $\mathrm{PQ}=\mathrm{QR}$
So,in $\triangle P Q R$

$$
\angle \mathrm{QPR}=\angle \mathrm{QRP} \quad \text { isosceles triangle, so base }
$$

angles are equal]
By the angle sum property, in $\triangle P Q R$

$$
\begin{aligned}
\angle \mathrm{QPR}+\angle \mathrm{QRP}+90^{\circ} & =180^{\circ} \\
\Rightarrow \angle \mathrm{QPR}+\angle \mathrm{QPR} & =180^{\circ}-90^{\circ}=90^{\circ} \\
\therefore \quad \angle \mathrm{QPR} & =\frac{90}{2}=45^{\circ} .
\end{aligned}
$$

Question 8:
Given: O is a point within a quadrilateral $A B C D$

ToProve: $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}+\mathrm{OD}>\mathrm{AC}+\mathrm{BD}$
Construction :Join AC and BD
Proof: In $\triangle A C O$,
$\mathrm{OA}+\mathrm{OC}>\mathrm{AC}$
[\because in a tringle, sum of any two sides is greater than the thirdside]
Similarly, In $\triangle B O D$,
$\mathrm{OB}+\mathrm{OD}>\mathrm{BD}$
Addingboth sides of (i) and(ii), weget;
$\mathrm{OA}+\mathrm{OC}+\mathrm{OB}+\mathrm{OD}>\mathrm{AC}+\mathrm{BD}$
(Proved)

Question 9:
Given: $A B C D$ is a quadrilateral and $A C$ is one of its disgonals.

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

ToProve:
(i) $A B+B C+C D+D A>2 A C$
(ii) $A B+B C+C D>D A$
(iii) $A B+B C+C D+D A>A C+B D$

Construction : Join $B D$.
Proof: (i)In $\triangle A B C$,

$$
\begin{equation*}
A B+B C>A C \tag{1}
\end{equation*}
$$

and, in $\triangle A C D$
$A D+C D>A C$
Addingboth sides of (1) and (2), we get :
$A B+B C+C D+D A>2 A C$
(ii) In $\triangle A B C$,

$$
A B+B C>A C
$$

On adding $C D$ to both sides of this in equality, we have, $A B+B C+C D>A C+C D$
Now, in $\triangle A C D$, wehave,

$$
\begin{equation*}
\mathrm{AC}+\mathrm{CD}>\mathrm{DA} \tag{4}
\end{equation*}
$$

From(4) and(5) we get

$$
\begin{equation*}
\mathrm{AB}+\mathrm{BC}+\mathrm{CD}>\mathrm{DA} \tag{5}
\end{equation*}
$$

(iii) In $\triangle A B D$ and $\triangle B D C$, we have

$$
\begin{equation*}
\mathrm{AB}+\mathrm{DA}>\mathrm{BD} \tag{7}
\end{equation*}
$$

and $B C+C D>B D$
On adding(7) and (8), we get
$A B+B C+C D+D A>2 B D$
Adding (9) and (3), we have,
$2(A B+B C+C D+D A)>2 B D+2 A C$
i.e. $A B+B C+C D+D A>B D+A C$
[Dividingboth sidesby 2]

Question 10:
Given: $A B C D$ is a quadrilateral.

ToPr ove: $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
Construction: Join $A C$
Proof: In $\triangle A B C$
$\angle C A B+\angle B+\angle B C A=180^{\circ}$
In $\triangle A C D$,
$\angle \mathrm{DAC}+\angle A C D+\angle D=180^{\circ}$
Addingb oth sides of(i) and(ii) we get

$$
\begin{align*}
& \angle C A B+\angle B+\angle B C A+\angle D A C+\angle A C D+\angle D=180^{\circ}+180^{\circ} \tag{ii}\\
& \Rightarrow \quad \angle C A B+\angle D A C+\angle B+\angle B C A+\angle A C D+\angle D=360^{\circ} \\
& \Rightarrow \quad \angle A+\angle B+\angle C+\angle D=360^{\circ}
\end{align*}
$$

Exercise 9B

Question 1:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

In a parallel ogram, opposite angles are equal.
$\therefore \quad \angle A=\angle C=72^{\circ}$
The sum of all the four angles of a parallelogram is 360°

So,	$\angle A+\angle B+\angle C+\angle D=360^{\circ}$	
\Rightarrow	$72^{\circ}+\angle B+72^{\circ}+\angle D=360^{\circ}$	$[\because \angle A=\angle C]$
\Rightarrow	$\angle \angle B+144^{\circ}=360^{\circ}$	$[\because \angle B=\angle D]$
\Rightarrow	$2 \angle B=360^{\circ}-144^{\circ}=216^{\circ}$	
\Rightarrow	$\angle B=\frac{216}{2}=108^{\circ}$	
\therefore	$\angle B=108^{\circ}, \angle C=72^{\circ}$ and $\angle D=108^{\circ}$.	

Question 2:

$A B C D$ is a parallelogram,
so opposite angles are equal.
$\therefore \quad \angle C=\angle A=80^{\circ}$
As $A D \| B C$ and $B D$ is a transversal.
So, $\quad \angle \mathrm{ADB}=\angle \mathrm{DBC}=60^{\circ}$
[Alternate angles]
In $\triangle A B D$

$$
\begin{array}{rlrl}
& & \angle A+\angle A D B+\angle A B D & =180^{\circ} \\
\Rightarrow & 80^{\circ}+60^{\circ}+\angle A B D & =180^{\circ} \\
\Rightarrow & 140^{\circ}+\angle A B D & =180^{\circ} \\
\Rightarrow & \angle A B D & =180^{\circ}-140^{\circ}=40^{\circ} \\
\therefore & \angle A B C & =\angle A B D+\angle D B C \\
& & =40^{\circ}+60^{\circ}=100^{\circ}
\end{array}
$$

In a parallelogram, opposite angles are equal.

So,	\therefore	$\angle A D C$	$=\angle A B C=\angle 100^{\circ}$
and	$\angle C D B$	$=\angle A D C-\angle A D B$	
		$=100^{\circ}-60^{\circ}=40^{\circ}$	
and	$\angle A D B$	$=60^{\circ}$.	

[^0]
Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$A B C D$ is a parallelogram in which $D A=60^{\circ}$ and bisectors of A and B meetsDCatP.

(i) In a parallelogram, opposite angles are equal.

So, $\quad \angle C=\angle A=60^{\circ}$
In a parallelogram the sum of all the four angles is 360°.
$\Rightarrow \angle A+\angle B+\angle C+\angle D=360^{\circ}$
Now,

$$
\begin{aligned}
\angle \mathrm{B}+\angle \mathrm{D} & =360^{\circ}-(\angle \mathrm{A}+\angle \mathrm{C}) \\
& =360^{\circ}-\left(60^{\circ}+60^{\circ}\right)=240^{\circ}
\end{aligned}
$$

$$
\therefore \quad 2 \angle B=240^{\circ} \quad[\because \angle B=\angle D]
$$

So, $\quad \angle \mathrm{B}=\angle \mathrm{D}=\frac{240^{\circ}}{2}=120^{\circ}$
Since AB || DP and APis a transversal
So, $\quad \angle \mathrm{APD}=\angle \mathrm{PAB}=\frac{60^{\circ}}{2}=30^{\circ}$
[\therefore alternate angles]
Also, $A B \| P C$ and $B P$ is a transversal.

$$
\begin{array}{ll}
\text { So, } & \angle \mathrm{ABP}=\angle \mathrm{CPB} \\
\text { But, } & \angle \mathrm{ABP}=\frac{\angle \mathrm{B}}{2}=\frac{120^{\circ}}{2}=60^{\circ} \\
\therefore & \angle \mathrm{CPB}=60^{\circ} \\
\text { Now, } & \angle \mathrm{APD} \\
\hline & \angle \mathrm{APB}+\angle \mathrm{CPB}=180^{\circ}
\end{array}
$$ [As DPC is a straightline]

$$
\begin{aligned}
30^{\circ}+ & \angle \mathrm{APB}+60^{\circ}=180^{\circ} \\
& \angle \mathrm{APB}=180^{\circ}-30^{\circ}-60^{\circ}=90^{\circ}
\end{aligned}
$$

(ii) Since $\quad \angle A P D=30^{\circ}$ [from (1)]
and $\quad \angle \mathrm{DAP}=\frac{60^{\circ}}{2}=30^{\circ}$
So, $\quad \angle \mathrm{APD}=\angle \mathrm{DAP}$
Now in \triangle APD,

$$
\angle \mathrm{APD}=\angle \mathrm{DAP} \ldots \ldots .(3)
$$

$$
\therefore \quad \mathrm{DP}=\mathrm{AD} \quad \text { [isosceles triangle, }
$$ sides are equal]

As $\quad \angle \mathrm{CPB}=60^{\circ} \quad$ [from (2)]
and $\quad \angle \mathrm{C}=60^{\circ}$
So, $\angle \mathrm{PBC}=180^{\circ}-60^{\circ}-60^{\circ}=60^{\circ}$
Sinceall angles in the $\triangle P C B$ are equal,
it is an equilateral triangle.
$\therefore \quad \mathrm{PB}=\mathrm{PC}=\mathrm{BC}$....(4)
(iii) $\quad \angle \mathrm{DPA}=\angle \mathrm{PAD}, \quad[$ from(3) $]$
$D P=A D \quad$ [isoscele striangle, sides are equal]
$=B C \quad$ [opposite sides are equal]
$=\mathrm{PC} \quad[$ from (4)]
$=\frac{1}{2} D C[\because D P=P C \Rightarrow P$ is the midpoint of $D C]$
$\therefore \quad D C=2 A D$.

Question 4:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $A B C D$ is a parallelogram

```
C
(i) \(\angle \mathrm{AOB}=\angle \mathrm{COD}=105^{\circ}\)
                            [vertical opposite angle]
Now in \(\triangle A O B\), we have
\(\angle \mathrm{OAB}+\angle \mathrm{AOB}+\angle \mathrm{ABO}=180^{\circ}\)
\(\Rightarrow \quad 35^{\circ}+105^{\circ}+\angle A B O=180^{\circ}\)
\(\Rightarrow \quad 140^{\circ}+\angle A B O=180^{\circ}\)
\(\Rightarrow \quad \angle \mathrm{ABO}=180^{\circ}-140^{\circ}=40^{\circ}\).
(ii) Since \(A B \| D C\) and \(B D\) is a transversal
    So, \(\angle \mathrm{ABD}=\angle \mathrm{CDB} \quad\) [alternate angles]
\(\Rightarrow \angle C D O=\angle C D B=\angle A B D=\angle A B O=40^{\circ}\)
\(\therefore \quad \angle O D C=40^{\circ}\)
(iii) As \(A B \| C D\) and \(A C\) is a transversal
    So, \(\angle \mathrm{ACB}=\angle \mathrm{DAC}=40^{\circ}\)
                                    [altemateopposite angles]
(iv) \(\angle C B D=\angle B-\angle A B O\)
But, \(\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}\)
                                    \([\because A B C D\) is a parrellogram]
\(\Rightarrow 2 \angle A+2 \angle B=360^{\circ}\)
\(\Rightarrow 2 \times\left(40^{\circ}+35^{\circ}\right)+2 \angle B=360^{\circ}\)
\(\Rightarrow 150^{\circ}+2 \angle B=360^{\circ}\)
\(\Rightarrow 2 \angle B=360^{\circ}-150^{\circ}=210^{\circ}\)
\(\Rightarrow \angle B=\frac{210^{\circ}}{2}=105^{\circ}\)
and \(\angle C B D=\angle B-\angle A B O\)
    \(=105^{\circ}-40^{\circ}=65^{\circ}\)
\(\angle C B D=65^{\circ}\)
```

Question 5:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

In a parallelogram, the opposite angles are equal.
So, in the parallelogram $A B C D$,

$$
\begin{aligned}
& \angle \mathrm{A}=\angle \mathrm{C} \\
& \angle \mathrm{~B}=\angle \mathrm{D}
\end{aligned}
$$

and
Since

$$
\begin{aligned}
& \angle \mathrm{A}=(2 x+25)^{0} \\
& \angle \mathrm{C}=(2 \mathrm{x}+25)^{0} \\
& \angle \mathrm{~B}=(3 \mathrm{x}-5)^{0} \\
& \angle \mathrm{D}=(3 \mathrm{x}-5)^{0}
\end{aligned}
$$

and

In a parallelogram, the sum of all the four angles is 360°
$\therefore \quad \angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\Rightarrow(2 x+25)+(3 x-5)+(2 x+25)+(3 x-5)=360^{\circ}$
$\Rightarrow \quad 10 x+40=360^{\circ}$
$\Rightarrow \quad 10 \mathrm{x}=360^{\circ}-40^{\circ}=320^{\circ}$
$\Rightarrow \quad \mathrm{x}=\frac{320}{10}=32^{\circ}$
$\therefore \angle A=(2 x+25)=(2 \times 32+25)=89^{\circ}$
$\angle B=(3 x-5)=(3 \times 32-5)=91^{\circ}$
$\angle \mathrm{C}=(2 \mathrm{x}+25)=(2 \times 32+25)=89^{\circ}$
$\angle \mathrm{D}=(3 \mathrm{x}-5)=(3 \times 32-5)=91^{\circ}$
$\therefore \angle \mathrm{A}=\angle \mathrm{C}=89^{\circ}$ and $\angle \mathrm{B}=\angle \mathrm{D}=91^{\circ}$

Question 6:
Lets $A B C D$ be a parallelogram.

$$
\text { Suppose, } \quad \angle A=x^{\circ}
$$

Then, $\angle \mathrm{B}$, which is adjacent angle of A is $\frac{4}{5} \mathrm{x}^{0}$.
In a parallelogram, the opposite angles are equal

$$
\Rightarrow \quad \angle \mathrm{A}=\angle \mathrm{C}=\mathrm{x}^{\circ} \text { and } \angle \mathrm{B}=\angle \mathrm{D}=\frac{4}{5} \mathrm{x}^{\circ}
$$

The sum of all the four angles of a parallelogram is 360°.

$$
\begin{array}{cc}
\Rightarrow & \angle A+\angle B+\angle C+\angle D=360^{\circ} \\
\Rightarrow & x+\frac{4}{5} x+x+\frac{4}{5} x=360^{\circ} \\
\Rightarrow & 2 x+\frac{8}{5} x=360^{\circ} \\
\Rightarrow & \frac{18}{5} x=360^{\circ} \\
\Rightarrow & x=\frac{360 \times 5}{18}=100^{\circ} \\
\therefore & \angle A=x=100^{\circ} \\
& \angle B=\frac{4}{5} x=\frac{4}{5} \times 100=80^{\circ} \\
& \angle C=x=100^{\circ} \\
& \angle D=\frac{4}{5} x=\frac{4}{5} \times 100=80^{\circ}
\end{array}
$$

$$
\therefore \angle \mathrm{A}=\angle \mathrm{C}=100^{\circ} \text { and } \angle \mathrm{B}=\angle \mathrm{D}=80^{\circ} \text {. }
$$

Question 7:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Lets $A B C D$ be the given parallelogram.
If $\angle A$ is smallest angle, then the greater angle
$\Rightarrow \quad \angle B=2 \angle A-30^{\circ}$
In a parallelogram, the opposite angles are equal
$\Rightarrow \quad \angle A=\angle C$ and $\angle B=\angle D=2 \angle A-30^{\circ}$
The sum of all the four angles of a parallelogram is 360°.

$$
\begin{array}{lr}
\Rightarrow & \angle A+\angle B+\angle C+\angle D=360^{\circ} \\
\Rightarrow & \angle A+\left(2 \angle A-30^{\circ}\right)+\angle A+\left(2 \angle A-30^{\circ}\right)=360^{\circ} \\
\Rightarrow & \angle A+2 \angle A-30^{\circ}+\angle A+2 \angle A-30^{\circ}=360^{\circ} \\
\Rightarrow & 6 \angle A-60^{\circ}=360^{\circ} \\
\Rightarrow & 6 \angle A=360^{\circ}+60^{\circ}=420^{\circ} \\
\Rightarrow & \angle A=\frac{420^{\circ}}{6}=70^{\circ} \\
\therefore \angle A=70^{\circ} \Rightarrow \angle C=70^{\circ} \\
\angle B=\left(2 \angle A-30^{\circ}\right)=\left(2 \times 70^{\circ}-30^{\circ}\right)=110^{\circ} \\
\angle D=\angle B=110^{\circ} \\
\therefore \angle A=\angle C=70^{\circ} \text { and } \angle B=\angle D=110^{\circ} .
\end{array}
$$

Question 8:
Perimeter of a parrallelogram $A B C D$

$$
\begin{aligned}
& =A B+B C+C D+D A \\
& =9.5+B C+9.5+B C
\end{aligned}
$$

[$\therefore \mathrm{ABCD}$ is a parrallelogram and its opposite sides are equal i.e. $A B=C D$ and $B C=D A]$
$30=19+2 \mathrm{BC}$
[Perimeter $=30 \mathrm{~cm}($ given $)$]
$\Rightarrow \quad 2 \mathrm{BC}=30-19=11$
$\Rightarrow \quad B C=\frac{11}{2}=5.5 \mathrm{~cm}$
$A B=9.5 \mathrm{~cm}, \mathrm{BC}=5.5 \mathrm{~cm}, \mathrm{CD}=9.5 \mathrm{~cm}, \mathrm{DA}=5.5 \mathrm{~cm}$.

Question 9:
(i) ABCD is a rhombus so its all sides are equal.

In $\triangle A B C$, we have

$$
A B=B C
$$

$\Rightarrow \quad \angle C A B=\angle A C B=x^{\circ}$
As, $\quad \angle C A B+\angle A B C+\angle A C B=180^{\circ}$
$\Rightarrow \quad x+110^{\circ}+x=180^{\circ}$
$\Rightarrow \quad 2 x=180^{\circ}-110^{\circ}=70^{\circ}$
$\Rightarrow \quad x=\frac{70^{\circ}}{2}=35^{\circ}$
$\therefore x=35^{\circ}$ and $y=35^{\circ}$

Downloaded from www.studiestoday.com
RS Aggarwal Class 9 Mathematics Solutions
(ii) Since in a rhombus, all sides are equal

$\begin{array}{rlrl}\text { So in } \triangle A B D, & A B & =A D \\ \Rightarrow & & \angle A B D & =\angle A D B \\ \Rightarrow & & x & =y\end{array}$
Now in $\triangle A B C, \quad A B=B C$
$\Rightarrow \quad \angle C A B=\angle A C B$
$\Rightarrow \quad \angle A C B=40^{\circ}$

$$
\therefore \angle B=180^{\circ}-\angle C A B-\angle A C B
$$

$$
=180^{\circ}-40^{\circ}-40^{\circ}=100^{\circ}
$$

$\Rightarrow \quad \angle D B C=\angle B-x^{0}=100-x^{0}$
But $\quad \angle \mathrm{DBC}=\angle \mathrm{ADB}=\mathrm{y}^{\circ} \quad$ [alternateangle]
$\Rightarrow \quad 100-x^{0}=y^{0}$
$\Rightarrow \quad 100^{\circ}-x^{0}=x^{0} \quad$ [from (1)]
$\Rightarrow \quad 2 x^{\circ}=100$
$\Rightarrow \quad x^{\circ}=\frac{100}{2}=50^{\circ}$
So, $x=50^{\circ}$ and $y=50^{\circ}$.
(iii) Since $A B C D$ is a rhombus

So, $\angle \mathrm{A}=\angle \mathrm{C}$, i.e. $\angle \mathrm{C}=62^{\circ}$
Now in $\triangle B C D$,

$$
\begin{array}{ccc}
& \mathrm{BC}=\mathrm{DC} \\
\Rightarrow & \angle C D B=\angle \mathrm{DBC}=y^{\circ} \\
\text { As, } \angle \mathrm{BDC}+\angle \mathrm{DBC}+\angle \mathrm{BCD}=180^{\circ} \\
\Rightarrow & y+y+62^{\circ}=180^{\circ} \\
\Rightarrow & & 2 y=180^{\circ}-62^{\circ}=118^{\circ} \\
\Rightarrow & y=\frac{118}{2}=59^{\circ}
\end{array}
$$

As diagonals of a rhombus are perpendicular to each other, $\triangle C O D$ is a right triangle and $\angle \mathrm{DOC}=90^{\circ}, \angle \mathrm{ODC}=\mathrm{y}=59^{\circ}$
$\Rightarrow \angle D C O=90^{\circ}-\angle O D C$

$$
=90^{\circ}-59^{\circ}=31^{\circ}
$$

$\therefore \angle \mathrm{DCO}=\mathrm{x}=31^{\circ}$
$\therefore \quad x=31^{\circ}$ and $y=59^{\circ}$

Question 10:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$A B C D$ is a rhombus in which diagonal $A C=24 \mathrm{dm}$ and $B D=18 \mathrm{~cm}$.
We know that in a rhombus, diagonals bisect each
other at right angles.
So in $\triangle \mathrm{AOB}$

$$
\begin{aligned}
& \angle A O B=90^{\circ} \\
& A O=\frac{1}{2} A C=\frac{1}{2} \times 24=12 \mathrm{~cm}
\end{aligned}
$$

and,

$$
\mathrm{BO}=\frac{1}{2} \mathrm{BD}=\frac{1}{2} \times 18=9 \mathrm{~cm}
$$

Now, by Pythagoras Theorem, we have

$$
\begin{aligned}
\mathrm{AB}^{2} & =\mathrm{AO}^{2}+\mathrm{OB}^{2} \\
\mathrm{AB}^{2} & =12^{2}+9^{2} \\
& =144+81=225 \\
\mathrm{AB} & =\sqrt{225}=15 \mathrm{~cm}
\end{aligned}
$$

So the length of each side of the rhombus is 15 cm

Question 11:

Since diagonals of a rhomobus bisect each other at right angles.

```
So, \(\mathrm{AO}=\mathrm{OC}=\frac{1}{2} \mathrm{AC}=\frac{1}{2} \times 16=8 \mathrm{~cm}\)
\(\therefore\) In right \(\triangle A O B\),
            \(A B^{2}=A O^{2}+O B^{2}\)
\(\Rightarrow \quad 10^{2}=8^{2}+O B^{2}\)
\(\Rightarrow \quad O B^{2}=100-64=36\)
\(\Rightarrow \quad \mathrm{OB}=\sqrt{36}=6 \mathrm{~cm}\)
\(\therefore \quad\) Length of the other diagonal \(\mathrm{BD}=2 \times \mathrm{OB}\)
                                    \(=2 \times 6=12 \mathrm{~cm}\).
```


Area of $\triangle A B C=\frac{1}{2} \times A C \times O B$

$$
=\frac{1}{2} \times 16 \times 6=48 \mathrm{~cm}^{2} .
$$

Area of $\triangle A C D=\frac{1}{2} \times A C \times O D$

$$
=\frac{1}{2} \times 16 \times 6=48 \mathrm{~cm}^{2} .
$$

\therefore Area of rhombus $A B C D=($ Area of $\triangle A B C+$ Area of $\triangle A C D)$

$$
=(48+48) \mathrm{cm}^{2}=96 \mathrm{~cm}^{2} .
$$

Question 12:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

We know that diagonals of a rectangle are equal and bisect each other.
So,in $\triangle A O B$

$$
\mathrm{AO}=\mathrm{OB}
$$

$\Rightarrow \quad \angle O A B=\angle O B A \quad$ [base angles are equal]
i.e. $\quad \angle O B A=35^{\circ} \quad\left[\because \angle O A B=35^{\circ}\right.$, given $]$ $\angle A O B=180^{\circ}-35^{\circ}-35^{\circ}=110^{\circ}$
and, $\angle D O C=y^{\circ}=\angle A O B=110^{\circ}$
[Vertically opp. angles]
Consider the right triangle, $\triangle A B C$, right angled at B.
So, $\angle A B C=90^{\circ} \quad[\because A B C D$ is a rectangle $]$
Now, consider the $\triangle O B C$

$$
\text { So, } \quad \begin{aligned}
\angle \mathrm{OBC} & =\mathrm{x}^{\circ}=\angle \mathrm{ABC}-\angle \mathrm{OBA} \\
& =90^{\circ}-35^{\circ} \\
& =55^{\circ}
\end{aligned}
$$

$\therefore x=55^{\circ}$ and $y=110^{\circ}$.
(ii) We know that diagonals of a rectangle
are equal and bisect each other.

So, in $\triangle A O B, O A=O B$
$\Rightarrow \quad \angle O A B=\angle O B A$
Again in $\triangle A O B$,

$$
\angle \mathrm{AOB}+\angle \mathrm{OAB}+\angle \mathrm{OBA}=180^{\circ}
$$

$\Rightarrow \quad 110^{\circ}+\angle \mathrm{OAB}+\angle \mathrm{OBA}=180^{\circ}$
$\Rightarrow \quad 2 \angle O A B=180^{\circ}-110^{\circ}=70^{\circ}$
$\Rightarrow \quad \angle \mathrm{OAB}+\angle \mathrm{OBA}=\frac{70}{2}=35^{\circ}$
Since $A B \| C D$ and $A C$ is a transversal, $\angle D C A$ and $\angle C A B$
are alternate angles, and thus they are equal.
So, $\angle D C A=y^{\circ}=\angle C A B$ and $\angle C A B=35^{\circ}$

$$
\begin{equation*}
\Rightarrow y^{0}=35^{\circ} \tag{1}
\end{equation*}
$$

Now consider the right triangle, $\triangle A B C$

$$
\begin{aligned}
\angle \mathrm{ACB}=\mathrm{x}^{\circ} & =90^{\circ}-\angle C A B \\
& =90^{\circ}-35^{\circ} \quad[\text { from }(1)] \\
& =55^{\circ}
\end{aligned}
$$

$\therefore x=55^{\circ}$ and $y=35^{\circ}$.

[^1]Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Consider the triangle $\triangle A B D$

$$
\begin{array}{ll}
A B=A D & {[\therefore \text { ABCD is a square] }} \\
\text { So, } & \angle A D B=\angle A B D
\end{array} \begin{array}{ll}
\therefore \angle \mathrm{base} \text { angles are equal] } \\
\therefore \angle \mathrm{ADB}+\angle \mathrm{ABD}=90^{\circ} & {\left[\because \angle A=90^{\circ} \text { as } A B C D \text { is a square }\right]} \\
2 \angle A D B=90^{\circ} & \\
\Rightarrow \quad \angle \mathrm{ADB}=\frac{90}{2}=45^{\circ} &
\end{array}
$$

Now in $\triangle O X B$,

$$
\angle \mathrm{XOB}=\angle \mathrm{DOC}=80^{\circ} \quad \text { [vertically opposite angle] }
$$

and $\angle A B D=45^{\circ} \Rightarrow \angle X B D=45^{\circ} \ldots$. (1)
So, exterior $\angle A X O=\angle X O B+\angle X B D$

$$
\begin{aligned}
\mathrm{x}^{0} & =80^{\circ}+45^{\circ} \quad[\text { from }(1)] \\
& =125^{\circ} \\
x^{0} & =125^{\circ}
\end{aligned}
$$

Question 14:
A parallelogram $A B C D$ in which $A L$ and $C M$ are perpendiculars to its diagonal BD

To Prove : (i) $\Delta \mathrm{ALD} \cong \triangle \mathrm{CMB}$
(ii) $\mathrm{AL}=\mathrm{CM}$

Proof: (i) In $\triangle A L D$ and $\triangle C M B$, we have

$$
\begin{array}{rlrl}
\angle \mathrm{ALD} & =\angle \mathrm{CMB}=90^{\circ} & \text { [Given] } \\
\angle \mathrm{ADL} & =\angle \mathrm{CBM} & & {[\mathrm{AD} \| \mathrm{BC}, \mathrm{BD} \text { is a transversal, so }} \\
\mathrm{AD} & =\mathrm{BC} & & \text { alternate angles are equal] } \\
& & {[\text { Opposite sides of a }} \\
& & \text { parallelogram] }
\end{array}
$$

Thus by Angle-Angle-Side criterion of congruence, we have

$$
\therefore \quad \Delta \mathrm{ALD} \cong \triangle \mathrm{CMB} \quad[\mathrm{By} \text { AAS }]
$$

(ii) Since $\triangle A L D \cong \triangle C M B$, the corresponding parts of the congruent triangles are equal.

$$
\therefore \quad \mathrm{AL}=\mathrm{CM} \quad[\text { C.P.C.T. }]
$$

Question 15:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Given: A parallelogram $A B C D$ in which angle

 bi sectors of $\angle A$ and $\angle B$ int er sectat P.

To Prove: $\angle \mathrm{APB}=90^{\circ}$
Pr oof: $\quad \angle \mathrm{PAB}=\frac{1}{2} \angle \mathrm{~A}$
and $\quad \angle \mathrm{PBA}=\frac{1}{2} \angle \mathrm{~B}$
$\therefore A D$ and $B C$ are parallel and $A B$ is a transversal.
So sum of consecutive angles is 180°.
\Rightarrow

$$
\begin{equation*}
\angle A+\angle B=180^{\circ} \tag{1}
\end{equation*}
$$

$\angle \mathrm{PAB}+\angle \mathrm{PBA}=\frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{~B}$
$=\frac{1}{2}(\angle A+\angle B)$
$=\frac{1}{2} \times 180^{\circ} \quad[$ from (1)]
$\angle \mathrm{PAB}+\angle \mathrm{PBA}=90^{\circ}$
Now in $\triangle P A B$,
$\angle \mathrm{PAB}+\angle \mathrm{PBA}+\angle \mathrm{APB}=180^{\circ}$
$\Rightarrow \quad 90^{\circ}+\angle \mathrm{APB}=180^{\circ} \quad$ [from (2)]
$\Rightarrow \quad \angle \mathrm{APB}=180^{\circ}-90^{\circ}=90^{\circ}$
$\therefore \quad \angle \mathrm{APB}=90^{\circ}$

Question 16:

Downloaded from www.studiestoday.com

Given: A parallelogram $A B C D$ in which $A P=\frac{1}{3} A D$ and

To Prove: PAQC is a parallelogram.
Proof : In $\triangle A B Q$ and $\triangle C D P$

$$
A B=C D
$$

[\because opposite sides of a parallelogram]

$$
\angle B=\angle D
$$

and

$$
D P=A D-P A=\frac{2}{3} A D
$$

and, $\mathrm{BQ}=\mathrm{BC}-\mathrm{CQ}=\mathrm{BC}-\frac{1}{3} \mathrm{BC}$

$$
=\frac{2}{3} B C=\frac{2}{3} A D \quad[\because A D=B C]
$$

$$
\therefore \quad B Q=D P
$$

Thus, by Side-Angle-Side criterion of congruence, we have,
So, $\triangle A B Q \cong \triangle C D P \quad[B y$ SAS]
The corresponding parts of the congruent triangles are equal.

$$
\begin{array}{rlr}
& & A Q \\
\text { and } & =C P & {[B y \text { cpct }]} \\
\text { and } & & =\frac{1}{3} A D \\
& C Q & =\frac{1}{3} B C=\frac{1}{3} A D \\
& P A & =C Q
\end{array}
$$

Also, by c.p.c.t, $\angle \mathrm{QAB}=\angle \mathrm{PCD} . \ldots$. (1)
Therefore,

$$
\angle \mathrm{QAP}=\angle \mathrm{A}-\angle \mathrm{QAB}
$$

$$
=\angle C-\angle P C D \quad[\text { since } \angle A=\angle C \text { and from (1) }]
$$

$$
=\angle \mathrm{PCQ} \quad[\text { al ternate interior angles are equal }]
$$

Therefore, AQ and CP are two parallel lines.
So, PAQC is a parallelogram.

Question 17:

Given: A parallelogram $A B C D$, in which diagonals inter sect at O. E and F are the points on $A B$ and $C D$

$$
\text { To Prove: } \quad \mathrm{OE}=\mathrm{OF}
$$

Proof: In $\triangle A O E$ and $\triangle C O F$, we have

$$
\begin{array}{rlrl}
\angle \mathrm{CAE} & =\angle \mathrm{DCA} & & \text { [Alternate angles] } \\
\mathrm{AO} & =\mathrm{CO} & & \text { [diagonals are equal } \\
\text { and, } \quad \angle \mathrm{AOE} & =\angle \mathrm{COF} \quad & & \text { and bisect each other] } \\
\text { [Verically opposite angles] }
\end{array}
$$

Thus by Angle-Side-Angle criterion of congruence, we have,

$$
\therefore \quad \triangle \mathrm{AOE} \cong \triangle \mathrm{COF} \quad[\mathrm{By} \text { ASA }]
$$

The corresponding parts of the congruent triangles are equal.

$$
\therefore \quad \mathrm{OE}=\mathrm{OF} \quad[\mathrm{By} \text { qct] }
$$

Question 18:

Given : $A B C D$ is a parrallelogram in which $A B$ is produced to E such that $B E=A B . D E$ is joined which cuts $B C$ at O.
To Prove : $\mathrm{OB}=\mathrm{OC}$
Proof :In $\triangle O C D$ and $\triangle O B E$, we have,

$\angle D O C$	$=\angle \mathrm{EOB}$	$\quad[$ vertically opposite angles are equal $]$		
$\angle \mathrm{OCD}$	$=\angle \mathrm{OBE}$		$[\mathrm{AB} \\| \mathrm{CD}, \mathrm{BC}$ is a transversal	
		thus, alternate angles are equal $]$		
$D C$	$=B E$		$[\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BE}=\mathrm{AB}]$	

Thus, by Angle-Angle-Side criterion of congruence, we have
$\therefore \quad \triangle O C D \cong \triangle O B E \quad$ [by AAS]
The corresponding parts of the congruent triangles are equal.
$\therefore \quad \mathrm{OC}=\mathrm{OB}$
Hence, ED bisect BC

Question 19:

Given : A parrallelogram $A B C D$ in which E is the mid point of side $B C$. $D E$ and $A B$ when produced meet at F.
To Prove: $\quad A F=2 A B$
Pr oof :In $\triangle D E C$ and $\triangle F E B$

$\angle \mathrm{DEC}$	$=\angle \mathrm{FEB}$		[Vertically opposite angles]
$\angle \mathrm{DCE}$	$=\angle \mathrm{FBE}$		[alternate angles]
CE	$=\mathrm{EB}$		[Given]

Thus by Angle-Angle-Side criterion of congruence, we have
$\triangle D E C \cong \triangle F E B$
[By AAS]
The corresponding parts of the congruent triangles are equal.
$\therefore \quad \mathrm{DC}=\mathrm{FB}$
[By cpct]

So, $A F=A B+B F$
$=A B+D C$
$=A B+A B$
$=2 A B$
$\therefore A F=2 A B$

Question 20:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Given: $A \triangle A B C$ in which through points A, B and C, lines $Q R, Q P$ and $R P$ are drawn parallel to $B C, C A$ and $A B$.

To prove: $\quad B C=\frac{1}{2} Q R$
Pr oof : Since $A R \| B C$ and $A B \| R C$
So, ABCR is a parallelogram Therefore

$$
\begin{equation*}
A R=B C \tag{i}
\end{equation*}
$$

[Given]

Also, $A Q \| B C$ and $Q B \| A C$
So, $A Q B C$ is a parallelogram. Therefore
$Q A=B C$
Adding both side of (i) and (ii), we get

$$
A R+Q A=B C+B C
$$

$\Rightarrow \quad \mathrm{QR}=2 \mathrm{BC}$
$\Rightarrow \quad \mathrm{BC}=\frac{\mathrm{QR}}{2}$
$\therefore \quad \mathrm{BC}=\frac{1}{2} \mathrm{QR}$

Question 21:

Given : $A \triangle A B C$, in which through points A, B and C, lines
$Q R, Q P$ and $R P$ have been drawn parrallel to $B C, A C$ and $A B$ of $\triangle A B C$ respectively.

To Pr ove : Perimeter of $\triangle P Q R=2$ (Perimeter of $\triangle A B C$)
Proof:
Since $A R \| B C$ and $A B \| R C \quad$ [Given]
So, ABCR is a parallelogram Therefore

$$
\begin{equation*}
\mathrm{AR}=\mathrm{BC} \tag{i}
\end{equation*}
$$

Also, $A Q \| B C$ and $Q B \| A C$
So, $A Q B C$ is a parallelogram Therefore

$$
\begin{equation*}
\mathrm{QA}=\mathrm{BC} \tag{ii}
\end{equation*}
$$

Adding both side of (i) and (ii), we get

$$
\begin{aligned}
& \quad \mathrm{AR}+\mathrm{QA}=\mathrm{BC}+\mathrm{BC} \\
\Rightarrow & \mathrm{QR}=2 \mathrm{BC} \\
\Rightarrow & \mathrm{BC}=\frac{\mathrm{QR}}{2} \\
\therefore & B C=\frac{1}{2} \mathrm{QR}
\end{aligned}
$$

Similarly, we can prove $A B=\frac{1}{2} R P$ and $A C=\frac{1}{2} P Q$
So, Perimeter of $\triangle P Q R=P Q+Q R+R P$

$$
\begin{aligned}
& =2 A C+2 B C+2 A B \\
& =2(A C+B C+A B) \\
& =2(\text { Perimeter of } \triangle A B C)
\end{aligned}
$$

Exercise 9C
Question 1:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Given: $A B C D$ is trapezium in which $A B \| D C$ and through
the mid-point E of $A D$ a line drawn parallel to $A B$ which cuts $B C$ at F.

To prove: F is the mid - point of $B C$
Pr oof : Since $A B \| D C$ and $E F \| A B$
So, AB \|EF \|DC

Intercept Theorem: If there are th ree parallel lines and the intercepts made by them on one transversal are equal then the intercept on any other transversal are also equal.

Now AD is a transversal and therefore,
Let us apply Intercepts Theorem.
Thus, the intercepts made by $A B, E F$ and DC
on transversal BC are also equal
$\therefore \quad C F=F B$
$\therefore F$ is mid - Point of $B C$

Question 2:
Given: A parallelogram $A B C D$ in which E and F are the mid points of $A B$ and $C D$. A line segment $G H$ cuts $E F$ at P.

To prove: $\quad \mathrm{GP}=\mathrm{PH}$
Pr oof:AD, EF and BC are three line segments and DC and AB are two transversal.
The intercepts made by the line on transversal $A B$ and $C D$ are equal because,

$$
A E=E B
$$

and $\quad D F=F C$
We need to prove that $F E$ is parallel to AD.
Let us prove by the method of contradiction.
Let us assume that FE is not parallel to AD.
Now, draw FR parallel to AD.
Intercept Theorem: If there are three parallel lines and the intercepts made by them on one transversal are equal then the intercept on any other transversal are also equal.

Thus, by Intercept Theorem, $\mathrm{AR}=\mathrm{RB}$ because

$$
\mathrm{DF}=\mathrm{FC}
$$

But $\quad A E=E B$
[Given]
There cannot be two mid points R and E of $A B$.
Hence our assumption is wrong.
So, $A D\|E F\| B C$
Now, again by Intercept Theorem, we have

$$
\mathrm{GP}=\mathrm{PH}
$$

because GH is transversal and intecept made by $A D, E F$ and BC on GH are equal as $\mathrm{DF}=\mathrm{FC}$.

Given : $A B C D$ is trapezium in which $A B \| D C$
P and Q are the mid - points of $A D$ and $B C, D Q$ is joined and produced and $A B$ is also produced and so that they meet at E. $A C$ cuts PQ at R.

To prove:
(i) $D Q=Q E$
(ii) $P R \| A B$
(iii) $A R=R C$

Proof :
(i) Consider the triangles $\triangle Q C D$ and $\triangle Q B E$

$$
\begin{array}{rlrl}
\angle D Q C & =\angle B Q E & & {[\text { vertically opposite angles }]} \\
C Q & =B Q & {[\because Q \text { is the midpoint of } B C]} \\
\angle Q D C & =\angle Q E B & & {[A E \| D C, B C \text { is a transversal, }}
\end{array}
$$

and thus alternate angles are equal]
Thus, by Angle-Side-Angle criterion of congruence, we have

$$
\triangle Q C D \cong \triangle Q E B \quad[\text { by ASA }]
$$

The corresponding parts of the congruent triangles are equal.
Thus, $\quad \mathrm{DQ}=\mathrm{QE} \quad$ [by c.p.c.t]
(ii) Midpoint Theorem: The line segment joining the midpoints of any two sides of a triangle is parallel to the third side and equal to half of it.
Thus by the midpoint Theorem, $P Q \| A E$.
$A B$ is a part of $A E$ and hence, we have $P Q \| A B$
Since the intercepts made by the lines $A B, P Q$ and $D C$
on $A D$
Since $\quad P Q\|A B\| D C$
So, $P R$ which is part of $P Q$ is also parallel to $A B$
$\therefore \quad P R\|A B\| D C$
(iii)Intercept Theorem: If there are three parallel lines and the intercepts made by them on one transversal are equal then the intercept on any other transversal are also equal. The three lines PR, AB and DC are out by AC and AD.
So, by intercept Theorem, $A R=R C$

Question 4:
Given: $A \triangle A B C$ in which $A D$ is its median and $D E \| A B$

To Pr ove : $B E$ is a median of $\triangle A B C$.
Pr oof :In $\triangle A B C$,

$$
D E \| A B
$$

[Given]
D is the mid - point of $B C$
The line drawn through the midpoint of one side of a triangle, parallel to another side, intersects the third side at its midpoint.
So, by Mid point Theorem , E is the mid - point of AC.
$\therefore B E$ is the median of $\triangle A B C$ drawn through B.

Question 5:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Given : $A \triangle A B C$ in which $A D$ and $B E$ are the medians. $D F$ is drawn parallel to $B E$.

To prove: $\quad C F=\frac{1}{4} \mathrm{AC}$
Proof: In $\triangle C B E$,
D is the mid point of $B C$ and $D F$ is parallel to $B E$.
The line drawn through the midpoint of one side of a triangle, parallel to another side, intersects the third side at its midpoint.

So, by Mid point Theorem F is the mid point of EC.
$\therefore \mathrm{CF}=\frac{1}{2} \mathrm{EC}$
$=\frac{1}{2}\left(\frac{1}{2} \mathrm{AC}\right)[\mathrm{BE}$ is the median through B$]$
$=\frac{1}{4} \mathrm{AC}$.
Thus, $C F=\frac{1}{4} \mathrm{AC}$.

Question 6:
Given: $A B C D$ is a paralleogram in which E is the mid point of DC.

Through D, a line isdrwan parallel to $E B$ meeting $A B$ atF andBC produced at G.
To Prove : (i) $A D=\frac{1}{2} G C$
(ii) $\mathrm{DG}=2 \mathrm{~EB}$

Pr oof: (i) In $\triangle C D G$,
$E B \| D G$ and E is the mid - point of CD.
The line drawn through the midpoint of one side of a triangle, parallel to another side, intersects the third side at its midpoint.
So, by Mid - point Theorem, B is the mid - point of CG.
$\therefore \quad \mathrm{CB}=\mathrm{BG}$
$A s, A B C D$ is a parallelogram,
So, $\quad A D=B C$
$\Rightarrow \quad B G=C B$
$\Rightarrow \quad \mathrm{AD}=\mathrm{BG}=\frac{1}{2} \mathrm{CG}$
(ii) Midpoint Theorem: The line segment joining the midpoints of any two sides of a triangle is parallel to the third side and equal to half of it.
Since E is the mid point of $D C$ and B is the mid point O CG
\therefore By Mid point Theorem, in $\triangle C D G$

$$
\begin{aligned}
& \mathrm{EB}=\frac{1}{2} \mathrm{DG} \\
\Rightarrow \quad & \mathrm{DG}=2 \mathrm{~EB}
\end{aligned}
$$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Question 7:
Given: $A \triangle A B C$ in which D, E and F are the mid points of $B C$, $A C$ and $A B$ respectively.
$D E, E F$ and $F D$ are joined to getfour triangles.

To Prove : Four triangle AFE, BFD,FDE and EDC areCongruent. Proof: Since F, E are mid point of $A B$ and $A C$
So, $E F=\frac{1}{2} B C$ [By Mid point Theorem]

Similarly

$$
\begin{aligned}
& F D=\frac{1}{2} A C \\
& E D=\frac{1}{2} A B
\end{aligned}
$$

and
Now, in $\triangle A F E$ and $\triangle B F D$, we have

$$
\begin{aligned}
& A F=F B \\
& F E=\frac{1}{2} B C=B D \\
& F D=\frac{1}{2} A C=A E
\end{aligned}
$$

Thus by Side-Side-Side criterion of congruence, we have
$\therefore \quad \triangle \mathrm{AFE} \cong \triangle \mathrm{BFD} \quad$ [By SSS]
Again, in $\triangle B F D$ and $\triangle F E D$, we have

$$
\mathrm{FE} \| \mathrm{BC}
$$

i.e. $\quad F E \| B D$ and $A B \| E D$
i.e. $\quad F B \| E D$, by Mid point Theorem.

So, BDEF is a parallelogram.
$\therefore \quad$ FD being a diagonal divides the parallelogram
int o two congruent triangles
$\therefore \quad \triangle \mathrm{BFD} \cong \triangle \mathrm{FDE}$
Similarly we can prove $F E C D$ is a parallelogram
So, $\quad \triangle F E D \cong \triangle E D C$
Thus, all the four triangles
$\triangle B F D, \triangle F D E, \triangle F E D$ and $\triangle E D C$
are congruent to each other.

Question 8:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Given : A triangle $A B C$ in which D, E and F are the mid points of $B C, A C$ and $A B$ respectively.

To prove: $\quad \angle \mathrm{EDF}=\angle \mathrm{A}$

$$
\angle \mathrm{DEF}=\angle \mathrm{B}
$$

and $\quad \angle \mathrm{DFE}=\angle \mathrm{C}$
Proof:
Midpoint Theorem: The line segment joining the midpoints of any two sides of a triangle is parallel to the third side and equal to half of it.
In $\triangle A F E$ and $\triangle D F E$

$$
\begin{array}{ll}
A F=\frac{1}{2} A B=E D & {[B y \text { Mid point Theorem }]} \\
A E=\frac{1}{2} A C=F D & {[B y \text { Mid point Theorem }]} \\
F E=E F & {[\text { Common }]}
\end{array}
$$

Thus by Side-Side-Side criterion of congruence, we have $\triangle \mathrm{AFE} \cong \triangle \mathrm{DFE}$
[By SSS]
The corresponding parts of the congruent triangles are equal.
$\therefore \quad \angle A=\angle F D E$
[C.P.C.T.]

Similarly we can prove that
$\angle \mathrm{B}=\angle \mathrm{DEF}$
and
$\angle C=\angle D F E$.

Question 9:

Given: $A B C D$ is a rectangle and P, Q, R and S are the mid points of $A B, B C, C D$ and $D A$ respectively.

To prove: PQRS is a rhombus.
Construction: Join AC and BD
Proof: In $\triangle A B C$,
P and Q are the mid - points of $A B$ and $B C$.
Midpoint Theorem: The line segment joining the midpoints
of any two sides of a triangle is parallel to the third side and
equal to half of it.
So by Mid - point Theorem,
$P Q \| A C$ and $P Q=\frac{1}{2} A C$
Similarly, from $\triangle A D C$,
$R S \| A C$ and $R S=\frac{1}{2} A C$
$\Rightarrow P Q \| R S$ and $P Q=R S=\frac{1}{2} A C \ldots . .(1)$
Now, in $\triangle B A D$,
P and S are the mid -points of $A B$ and $A D$.
So by Mid - point Theorem, we have
$P S \| B D$ and $P S=\frac{1}{2} D B$
Similarly, from $\triangle B C D$,
$R Q \| B D$ and $R Q=\frac{1}{2} D B$
$\Rightarrow P S \| R Q$ and $P S=R Q=\frac{1}{2} D B$
The diagonals of a rectangle are equal
$\therefore A C=B D$
From (1), (2) and (3) we have
$P Q \| R S$ and $P S \| R Q$ and
$\therefore \quad P Q=Q R=R S=S P$
$\therefore \mathrm{PQRS}$ is a rhombus.

Question 10:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Given: $A B C D$ is a rhombus in which P, Q, R and S are the mid - points of $A B, B C, C D$ and $D A$ respectively.

To Prove :PQRS is a rectangle.
Construction: Join AC and BD.
Proof :
Midpoint Theorem: The line segment joining the midpoints of any two sides of a triangle is parallel to the third side and equal to half of it.
In $\triangle A B C$
P and Q are the mid points of $A B$ and $B C$.
So by Mid point Theorem,
$P Q \| A C$ and $P Q=\frac{1}{2} A C$
Similarly, from $\triangle A D C$,
$R S \| A C$ and $R S=\frac{1}{2} A C$
$\Rightarrow P Q \| R S$ and $P Q=R S=\frac{1}{2} A C$
Now, in $\triangle B A D$,
P and S are the mid - points of $A B$ and $A D$.

So by Mid - point Theorem, we have
$\mathrm{PS} \| \mathrm{BD}$ and $\mathrm{PS}=\frac{1}{2} \mathrm{DB}$
Similarly, from $\triangle B C D$,
$R Q \| B D$ and $R Q=\frac{1}{2} D B$
$\Rightarrow P S \| R Q$ and $P S=R Q=\frac{1}{2} D B$
From (1) and (2), we have
PQRS is a parallelogram as its opposite sides are parallel. We know, that in a rhombus, diagonals inter sects
at right angles.

\therefore	$\angle E O F=90^{\circ}$	
Now,	RQ $\\| D B$	
\Rightarrow	RE $\\|$ FO	
Also,	SR $\\|$ AC	
\Rightarrow	FR\\|OE	

$\therefore \quad$ OERF is a parallelogram
In a parallelogram, opposite angles are equal.
So, $\quad \angle \mathrm{FRE}=\angle \mathrm{EOF}=90^{\circ}$
Thus, PQRS is a parallelogram with $\angle R=90^{\circ}$
Hence, PQRS is a rectangle.

[^2]
Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Given: $A B C D$ is a square in which E, F, G and H are the mid points of $A B, B C, C D$ and $A D$, respectively.
The mid points are joined together.

To prove: EFGH is a square
Construction : Join AC and BD
Proof:
Midpoint Theorem: The line segment joining the midpoints of any two sides of a triangle is parallel to the third side and equal to half of it.
In $\triangle A B C$
E and F are the mid-points and by the
Mid points Theorem, we have
$E F \| A C$ and $E F=\frac{1}{2} A C$
Similarly, in $\triangle A D C$,
H and G are the midpoints and by the
Mid points Theorem, we have
$H G \| A C$ and $H G=\frac{1}{2} A C$
Thus, we have,
$E F \| H G$ and $E F=H G=\frac{1}{2} A C$
In $\triangle B A D$,
H and E are the midpoints and by the
Mid points Theorem, we have,
$\mathrm{HE} \| \mathrm{BD}$ and $\mathrm{HE}=\frac{1}{2} \mathrm{BD}$
In $\triangle B C D$,
G and F are the midpoints and by the
Mid points Theorem, we have,
GF $\| B D$ and $G F=\frac{1}{2} B D$
Thus, we have,
$\mathrm{HE} \| \mathrm{GF}$ and $\mathrm{HE}=\mathrm{GF}=\frac{1}{2} \mathrm{BD}$
The diagonals of a square are equal.
$\Rightarrow A C=B D$
From (1), (2) and (3), we have
GF \|BD and $\mathrm{HE} \| \mathrm{GF}$.
Also, we have $\mathrm{EF}=\mathrm{GF}=\mathrm{GH}=\mathrm{HE}$
So, EFGH is a rhombus
Now, as diagonals of a square are equal
and inter sect at right angles.
So, $\angle D O C=90^{\circ}$
In a parallelogram the sum of adjacent angles is 180°.
So, $\angle \mathrm{DOC}+\angle \mathrm{GKO}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{GKO}=180^{\circ}-90^{\circ}=90^{\circ}$
But $\angle \mathrm{GKO}=\angle \mathrm{EFG} \quad$ [Corresponding angles]
$\therefore \quad \angle \mathrm{EFG}=90^{\circ}$
$\therefore \quad$ EFGH is a square

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Given: A quadrilateral ABCD in which $\mathrm{H}, \mathrm{L}, \mathrm{G}$ and K are the
mid points of $A B, B C, C D$ and $A D$.
Points G and H are joined and K and L are joined.
To prove: GH and KL bisect each other.
Construction : Join KH, BD and GL.
Pr oof: Since K and H are the mid points of $A D$ and $A B$.
So in $\triangle A B D$, by mid point theorem,

$\Rightarrow \quad \mathrm{KH}=\frac{1}{2} \mathrm{BD}$
Similarly, in $\triangle C B D$,

$$
\begin{aligned}
\mathrm{GL} & =\frac{1}{2} \mathrm{BD} \\
\mathrm{KH} & =\mathrm{GL}
\end{aligned}
$$

Now in $\triangle \mathrm{KOH}$ and $\triangle \mathrm{GOL}$, we have $\mathrm{KH}=\mathrm{GL}$
$\angle \mathrm{OKH}=\angle \mathrm{GLO} \quad$ [Alternate angles]
$\angle O H K=\angle O G L \quad$ [Alternate angles]
$\therefore \quad \triangle \mathrm{KOH}=\triangle \mathrm{GOL} \quad$ [SAS]
$\Rightarrow \quad \mathrm{OK}=\mathrm{OL}$ and $\mathrm{OG}=\mathrm{OH}$ [C.P.C.T.]
$\therefore \quad \mathrm{GH}$ and KL bi sect each other.

[^0]: Question 3:

[^1]: Question 13:

[^2]: Question 11:

