Downloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solutior CoordinateGeometry

Exercise 6A
Question 1:
Draw the perpendiculars from the $\mathrm{AF}, \mathrm{BG}, \mathrm{CH}, \mathrm{DI}$ and EJ on the x -axis.
(1) The distance of A from the y-axis $=O F=-6$ units

The distance of A from the x-axis $=A F=5$ units
Hence, the coordinate of A are $(-6,5)$
(2)The distance of B from the y-axis $=O G=5$ units

The distance of B from the x-axis $=B G=4$ units
Hence, the coordinate of B are $(5,4)$
(3)The distance of C from the y -axis $=\mathrm{OH}=-3$ units

The distance of C from the x-axis $=\mathrm{HC}=2$ units
Hence, the coordinate of C are $(-3,2)$
(4)The distance of D from the y -axis $=\mathrm{OI}=2$ units

The distance of D from the x-axis $=I D=-2$ units
Hence, the coordinate of D are $(2,-2)$
(5)The distance of E from the y -axis $=\mathrm{OJ}=-1$ unit

The distance of E from the x-axis $=J E=-4$ units
Hence, the coordinate of E are $(-1,-4)$

Thus, the coordinates of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are respectively, $\mathrm{A}(-6,5), \mathrm{B}(5,4), \mathrm{C}(-3,2), \mathrm{D}(2,-2)$ and $\mathrm{E}(-1,-4)$

Question 2:
Let $X^{\prime} O X$ and $Y^{\prime} O Y$ be the coordinate axes.

Fix the side of the small squares as one units.
(i) Starting from O, take +7 units on the x-axis and then +4 units on the y-axis to obtain the point $P(7,4)$
(ii) Starting from O, take -5 units on the x-axis and then +3 units on the y-axis to obtain the point $Q(-5,3)$
(iii) Starting from 0 , take -6 units on the x-axis and then -3 units on the y-axis to obtain the point $\mathrm{R}(-6,-3)$
(iv) Starting from 0 , take +3 units on the x-axis and then -7 units on the y-axis to obtain the point $S(3,-7)$
(v) Starting from O, take 6 units on the x-axis to obtain the point $A(6,0)$
(vi) Starting from O , take 9 units on the y -axis to obtain the point $\mathrm{B}(0,9)$
(vii) Mark the point O as $\mathrm{O}(0,0)$
(viii) Starting from O, take -3 units on the x-axis and then -3 units on the y-axis to obtain the point C(-3, -3)

These points are shown in the following graph:

Question 3:

(i) $\ln (7,0)$, we have the ordinate $=0$.

Therefore, (7,0) lies on the x-axis
(ii) $\ln (0,-5)$, we have the abscissa $=0$.

Therefore, $(0,-5)$ lies on the y-axis
(iii) In (0,1), we have the abscissa $=0$.

Therefore, $(0,1)$ lies on the y-axis
(iv) $\ln (-4,0)$, we have the ordinate $=0$.

Question 4:

(i) Points of the type $(-,+)$ lie in the second quadrant. Therefore, the point $(-6,5)$ lies in the II quadrant.
(ii) Points of the type $(-,-)$ lie in the third quadrant. Therefore, the point $(-3,-2)$ lies in the III quadrant.
(iii) Points of the type $(+,-)$ lie in the fourth quadrant. Therefore, the point $(2,-9)$ lies in the IV quadrant.

Question 5:

The given equation is $y=x+1$
Putting $x=1$, we get $y=1+1=2$
Putting $x=2$, we get $y=2+1=3$

Thus, we have the following table:

x	1	2
y	2	3

On a graph paper, draw the lines $X^{\prime} O X$ and $Y O Y^{\prime}$ as the x-axis and y-axis respectively. Then, plot points $P(1,2)$ and $Q(2,3)$ on the graph paper. Join $P Q$ and extend it to both sides.
Then, line PQ is the graph of the equation $y=x+1$.

Question 6:
The give equation is $y=3 x+2$
Putting $x=1$, we get $y=(31)+2=5$
Putting $x=2$, we get $y=(32)+2=8$

Downloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solution

x	1	2
y	5	8

On the graph paper, draw the lines $X^{\prime} O X$ and $Y O Y^{\prime}$ as the x-axis and y-axis respectively. Now, plot points $P(1,5)$ and $Q(2,8)$ on the graph paper.
Join PQ and extend it to both sides.
Then, line $P Q$ is the graph of the equation $y=3 x+2$.

Question 7:
The given equation is $y=5 x-3$
Putting $x=0$, we get $y=(5 \times 0)-3=-3$
Putting $x=1$, we get $y=(5 \times 1)-3=2$

Thus, we have following table:

x	0	1
y	-3	2

On a graph paper, draw the lines $X^{\prime} O X$ and $Y O Y^{\prime}$ as the x-axis and y-axis respectively.
Now plot the points $P(0,-3)$ and $Q(1,2)$.
Join PQ and extend it in both the directions.
Then, line $P Q$ is the graph of the equation, $y=5 x-3$.

Downloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solutior

Question 8:
The given equation is $y=3 x$
Putting $x=1$, we get $y=(31)=3$
Putting $x=2$, we get $y=(32)=6$

Thus, we have the following table:

x	1	2
y	3	6

On a graph paper draw the lines $X^{\prime} O X$ and $Y O Y^{\prime}$ as the x-axis and y-axis respectively. Now, plot points $P(1,3)$ and $Q(2,6)$.
Join PQ and extend it in both the directions.
Then, line $P Q$ is the graph of the equation $y=3 x$.

Question 9:
The given equation is $y=-x$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solution

Putting $x=1$, we get $y=-1$
Putting $x=2$, we get $y=-2$

Thus, we have the following table:

On a graph paper, draw the lines $X^{\prime} O X$ and $Y O Y^{\prime}$ as the x-axis and y-axis respectively. Now, plot the points $P(1,-1)$ and $Q(2,-2)$.
Join PQ and extend it in both the directions.
Then, line $P Q$ is the graph of the equation $y=-x$.

