Class 9 Mathematics
 RS Aggarwal Solutions
 Chapter 5 Congruence of Triangles and Inequalities in a Triangle

Exercise 5A

Question 1:

$A B=A C$ implies their opposite angle are equal


```
But \(\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}\) [angles opposite to equal sides]
\(\Rightarrow 70^{\circ}+\angle B+\angle B=180^{\circ}\)
\(\Rightarrow \quad 70^{\circ}+2 \angle \mathrm{~B}=180^{\circ}\)
\(\Rightarrow \quad 2 \angle \mathrm{~B}=180^{\circ}-70^{\circ}\)
\(\Rightarrow \quad 2 \angle \mathrm{~B}=110^{\circ}\)
\(\Rightarrow \quad \angle B=\frac{110^{\circ}}{2}\)
\(\Rightarrow \quad \angle B=\angle C=55^{\circ}\)
```


Question 2:

Consider the isosceles triangle $\triangle A B C$.
Since the vertical angle of $A B C$ is 100°, we have, $\angle A=100^{\circ}$.

StudiesToday

By angle sum property of a triangle, we have,

```
    \angleA +\angleB + \angleC = 180
100}+\angleBC+\angleC=18\mp@subsup{0}{}{\circ
=> 100}
2\angleB = 180 - 100 = 80 
=> }\angle\textrm{B}=\frac{8\mp@subsup{0}{}{\circ}}{2
=> 
```


Question 3:


```
In }\triangleABC,\mathrm{ if }AB=A
=>\triangleABC is an isosceles triangle
=> Base angles are equal
=>\angleB=\angleC
=>\angleC=65
```

Also by angle sum property, we have

```
\angleA + \angleB + \angleC = 180
```


Question 4:

Let $A B C$ be an isosceles triangle in which $A B=A C$.
Then we have $\quad \angle \mathrm{B}=\angle \mathrm{C}$
Let $\angle B=\angle C=x$
Then vertex angle $A=2(x+x)=4 x$
Now, $x+x+4 x=180$

$$
\begin{array}{lc}
\Rightarrow & 6 x=180 \\
\Rightarrow & x=\frac{180}{6}=30
\end{array}
$$

Vertex $\angle A=4 \times 30=120^{\circ}$
And, $\angle \mathrm{B}=\angle \mathrm{C}=30^{\circ}$.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 5:

In a right angled isosceles triangle, the vertex angle is $\angle A=90^{\circ}$ and the other two base angles are equal.
Let x° be the base angle and we have, $\angle B=\angle C=90^{\circ}$.
By angle sum property of a triangle, we have

```
\angleA+\angleB+\angleC=180
900}+\mp@subsup{x}{}{\circ}+\mp@subsup{x}{}{\circ}=18\mp@subsup{0}{}{\circ
=> 90 %}+2\mp@subsup{x}{}{\circ}=18\mp@subsup{0}{}{\circ
#
\mp@subsup{x}{}{\circ}=\frac{9\mp@subsup{0}{}{\circ}}{2}
# }\mp@subsup{x}{}{\circ}=4\mp@subsup{5}{}{\circ
Thus, we have, }\angle\textrm{B}=\angle\textrm{C}=4\mp@subsup{5}{}{\circ
```


Question 6:

Given: $A B C$ is an isosceles triangle in which $A B=A C$ and $B C$
Is produced both ways,
Given: $A B C$ is an isosceles triangle in which $A B=A C$ and $B C$
Is produced both ways,

To Prove: $\angle \mathrm{EBA}=\angle \mathrm{DCA}$
Proof: In $\triangle A B C$ we have,
$A B=A C$
$\Rightarrow \quad \angle B=\angle C$
Now exterior $\angle \mathrm{EBA}=\angle \mathrm{A}+\angle \mathrm{C}=\angle \mathrm{A}+\angle \mathrm{B}$ [$\therefore \angle B=\angle C$]
and exterior $\angle \mathrm{DCA}=\angle \mathrm{A}+\angle \mathrm{B}$
\Rightarrow Exterior $\angle \mathrm{EBA}=$ Exterior $\angle \mathrm{DCA}$.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 7:

Let be an equilateral triangle.
Since it is an equilateral triangle, all the angles are equiangular and the measure of each angle is 60°

The exterior angle of $\angle \mathrm{A}$ is $\angle \mathrm{BAF}$
The exterior angle of $\angle B$ is $\angle A B D$
The exterior angle of $\angle C$ is $\angle A C E$
We can observe that the angles $\angle \mathrm{A}$ and $\angle \mathrm{BAF}, \angle \mathrm{B}$ and $\angle \mathrm{ABD}, \angle \mathrm{C}$ and $\angle \mathrm{ACE}$ and form linear pairs.
Therefore, we have

```
    \angleA + \angleBAF =180
=> 60 
=> }\quad\angle\textrm{BAF}=18\mp@subsup{0}{}{\circ}-6\mp@subsup{0}{}{\circ
=> }\quad\angle\textrm{BAF}=12\mp@subsup{0}{}{\circ
```


Similarly, we have

```
\(\angle \mathrm{B}+\angle \mathrm{ABD}=180^{\circ}\)
\(\Rightarrow 60^{\circ}+\angle \mathrm{ABD}=180^{\circ}\)
\begin{tabular}{ll}
\(\Rightarrow\) & \(\angle A B D\) \\
\(\Rightarrow\) & \\
\(\Rightarrow\) & \\
\hline
\end{tabular}
```

Also, we have

```
\angleC + \angleACE =180
=>60}
=> }\angle\textrm{ACE}=18\mp@subsup{0}{}{\circ}-6\mp@subsup{0}{}{\circ
=> }\quad\angle\textrm{ACE}=12\mp@subsup{0}{}{\circ
```

Thus, we have, $\angle \mathrm{BAF}=120^{\circ}, \angle \mathrm{ABD}=120^{\circ}, \angle \mathrm{ACE}=120^{\circ}$
So, the measure of each exterior angle of an equilateral triangle is 120°. reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 8:

Given: Two lines $A B$ and $C D$ intersect at O and O is the midpoint of $A B$ and $C D$.
$\Rightarrow A O=O B$ and $C O=O D$
To prove: $A C=B D$ and $A C \| B D$
Proof: In $\triangle A O C$ and $\triangle B O D$, we have,

$$
\begin{aligned}
\mathrm{AO} & =O B \quad \text { [Given: } O \text { is the midpoint of } \mathrm{AB}] \\
\angle \mathrm{AOC} & =\angle \mathrm{BOD} \quad \text { [Vertically opposite angles] } \\
C O & =O D \quad \text { [Given: } O \text { is the mipoint of } C D]
\end{aligned}
$$

So, by Side-Angle-Side congruence, we have, $\triangle A O C \cong \triangle B O D$
The corresponding parts of the congruent triangles are equal.
Therefore, we have, $A C=B D$.

Similarly, by c.p.c.t, we have, This implies that alternate angles formed by $A C$ and $B D$ with
$\angle A C O=\angle B D O$ and \quad transversal $C D$ are equal. This means that, $A C \| B D$.
$\angle C A O=\angle D B O \quad$ Thus, $A C=B D$ and $A C \| B D$.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 9:

Given: $P A \perp A B, Q B \perp A B$, and $P A=Q B$
To Prove: $A O=O B$ and $P O=O Q$

Proof: In $\triangle \mathrm{APO}$ and $\triangle \mathrm{BPO}$,

```
\anglePAO}=\angle\textrm{QBO}=9\mp@subsup{0}{}{\circ}\mathrm{ [Given]
            PA = QB [Given]
    \anglePAO = \angleQBO [Since PA \perp AB, and QB \perpAB,PA | QB,
```

 and thus \(P Q\) is a transversal, therefore, alternate
 angles are equal]
 So, by Angle-Side-Angle criterion of congruence, we have

$$
\triangle \mathrm{APO} \cong \triangle \mathrm{BPO}
$$

$\Rightarrow \quad A O=O B$ and $P O=O Q \quad$ [Since corresponding parts of congruent triangles are equal]
Thus, we have
O is the midpoint of $A B$ and $P Q$.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 10:

Given: Line segments $A B$ and $C D$ intersect at O such that $O A$

$$
=O D \text { and } O B=O C \text {. }
$$

To prove: $A C=B D$
Proof: In $\triangle A O C$ and $\triangle B O D$, we have

```
    \(A O=O D \quad\) [Given]
    \(\angle A O C=\angle B O D \quad\) [Vertically opposite angles are equal]
    \(O C=O B \quad\) [Given]
```

So, by Side-Angle-Side criterion of congruence, we have,
$\Rightarrow \triangle A O C \cong \triangle B O D$
$\Rightarrow \quad A C=B D \quad$ [Since the corresponding parts of the congruent triangles are equal]
$\Rightarrow \quad \angle C A O=\angle B D O \quad[b Y C p . . t]$
Thus, we have, $A C=B D$
In case $\angle O D B=\angle O B D$, then $\angle C A O=\angle O B D$ which means
alternate angles made by lines $A C$ and $B D$ with transversal $A B$ are equal and then lines $A C$ and $B D$ will be parallel.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 11:

Given: Two lines I and m are parallel to each other. M is the midpoint of segment $A B$. The line segment $C D$ meets $A B$ at M.

To prove: M is the midpoint of $C D$, that is $C M=M D$
Proof: In $\triangle A M C$ and $\triangle B M D$, we have

```
\(\angle \mathrm{MAC}=\angle \mathrm{MBD}\) [Since I and m are parallel, AB is the
                transversal, and thus, alternate angles are equal]
\(\mathrm{AM}=\mathrm{MB} \quad\) [given]
\(\angle \mathrm{AMC}=\angle \mathrm{BMD}\) [vertically opposite angles are equal]
So, by Angle-Side-Angle criterion of congruence, we have
```


$\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$

Therefore, by corresponding parts of the congruent triangles
are equal, we have, $C M=M D$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 12:

Given: $A B=A C$ and O is an interior point of the triangle such
that $O B=O C$
To prove: $\angle \mathrm{ABO}=\angle \mathrm{ACO}$
Construction: Join AO
Proof: In $\triangle A O B$ and $\triangle A O C$, we have

$A B=A C$	[Given]
$A O=A O$	
$O B=O C$	
[Common]	
[Given]	

So, by Side-Side-Side criterion of congruence, we have,

$$
\triangle \mathrm{ABO} \cong \triangle \mathrm{ACO}
$$

$$
\Rightarrow \angle \mathrm{ABO}=\angle \mathrm{ACO} \quad \text { [by corresponding parts of }
$$ congruent triangles are equal]

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 13:

Given: $A \triangle A B C$ in which;

$$
A B=A C
$$

and, $D E \| B C$
ToProve: $\quad \mathrm{AD}=\mathrm{AE}$
Proof: \quad Since $D E \| B C$ and $A B$ is a transversal.
So, $\quad \angle \mathrm{ADE}=\angle \mathrm{ABC} \quad \ldots$ (i)
[\therefore These are corresponding angles]
Also $D E \| B C$ and $A C$ is a transversal
So, $\quad \angle A E D=\angle A C B$
[\therefore these are corresponding angles]
But, $\quad \mathrm{AB}=\mathrm{AC} \quad$ [Given]
So,
$\angle \mathrm{ABC}=\angle \mathrm{ACB}$
as oppsite angles are also equal in case sides are equal
So from (i), (ii) and (iii) we have

$$
\angle \mathrm{ADE}=\angle \mathrm{AED}
$$

and in $\triangle A D E$, this implies that $A D=A E$. reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 14:

Given: $A X=A Y$
To prove: $\mathrm{CX}=\mathrm{BY}$
Proof: In $\triangle A X C$ and $\triangle A Y B$, we have

$A X$	$=A Y$		[Given]
$\angle A$	$=\angle A$		[Common angle]
$A C$	$=A B$		[Two sides are equal]

So, by Side-Angle-Side cirterion of congruence, we have
$\triangle \mathrm{AXC} \cong \triangle \mathrm{AYB}$
$\Rightarrow \quad X C=Y B \quad$ [Since corresponding parts of congruent
triangles are equal]

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 15:

Given: C is the mid point of a line segment $A B$, and D is point such that,

$\angle \mathrm{DCA}=\angle \mathrm{ECB}$
and

$$
\angle \mathrm{DBC}=\angle \mathrm{EAC}
$$

Toprove: $\quad D C=E C$
Proof: In $\triangle A C E$ and $\triangle D C B$ we have;

$$
\begin{aligned}
\mathrm{AC} & =\mathrm{BC} & & \text { [Given] } \\
\angle \mathrm{EAC} & =\angle \mathrm{DBC} & & {[\text { Given }] }
\end{aligned}
$$

Also, $\angle \mathrm{DCA}=\angle \mathrm{CDB}+\angle \mathrm{DBA}$ because exterior $\angle \mathrm{DCA}$ in $\triangle D C B$ is equal to sum of interior opposite angles.
Again in $\angle A C E$, we have ext. $\angle \mathrm{BCE}=\angle \mathrm{CAE}+\angle \mathrm{AEC}$
But, $\quad \angle \mathrm{DCA}=\angle \mathrm{BCE} \quad$ [Given]
$\Rightarrow \quad \angle \mathrm{CDB}+\angle \mathrm{DBA}=\angle \mathrm{CAE}+\angle \mathrm{AEC}$
$\Rightarrow \quad \angle \mathrm{CDB}=\angle \mathrm{AEC}[\therefore \angle \mathrm{DBA}=\angle \mathrm{CAE}$ (given)
Thus in $\triangle A C E$ and $\triangle D C B$,

$$
\begin{aligned}
& \angle \mathrm{EAC}=\angle \mathrm{DBC} \\
& A C=B C \\
& \text { and, } \quad \angle A E C=\angle C D B
\end{aligned}
$$

Thus by Angle-Side-Angle criterion of congruence, we have

$$
\begin{equation*}
\triangle \mathrm{ACE} \cong \triangle \mathrm{DCB} \tag{ByASA}
\end{equation*}
$$

The corresponding parts of the congruent triangles are equal.
So,
$D C=C E$
[by c.p.c.t]

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 16:

Given: $\mathrm{AB} \perp \mathrm{AC}$ and $\mathrm{DE} \perp \mathrm{FE}$ such that, $A B=D E$ and $B F=C D$
To prove: $\quad \mathrm{AC}=\mathrm{EF}$
Proof: In $\triangle A B C$, we have,

$$
\mathrm{BC}=\mathrm{BF}+\mathrm{FC}
$$

and, in $\triangle D E F$

$$
F D=F C+C D
$$

But,
$\mathrm{BF}=\mathrm{CD} \quad$ [Given]
So,
$B C=B F+F C$
and,
$F D=F C+B F$
\Rightarrow
$B C=F D$
So, in $\triangle A B C$ and $\triangle D E F$, we have,

\[

\]

Thus, by Right angle-Hypotenuse-Side criterion of congruence, we have
$\triangle A B C \cong \triangle D E F$
[By RHS]

The corresponding parts of the congruent triangles are equal.
So,
$A C=E F$
[C.P.C.T]

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 17:

Given: $\quad \mathrm{AB}=\mathrm{BC}$
and,

$$
x^{\circ}=y^{\circ}
$$

To prove: $\quad \mathrm{AE}=\mathrm{CD}$
Proof: In $\triangle A B E$, we have,
Exterior $\angle \mathrm{AEB}=\angle \mathrm{EBA}+\angle \mathrm{BAE}$
$\Rightarrow \quad y^{\circ}=\angle \mathrm{EBA}+\angle \mathrm{BAE}$
Again, in $\triangle B C D$ we have

$$
x^{\circ}=\angle \mathrm{CBA}+\angle \mathrm{BCD}
$$

$$
\text { Since, } \quad x=y \quad[\text { Given }]
$$

So, $\angle \mathrm{EBA}+\angle \mathrm{BAE}=\angle \mathrm{CBA}+\angle \mathrm{BCD}$
$\Rightarrow \quad \angle \mathrm{BAE}=\angle \mathrm{BCD}$
Thus in $\triangle B C D$ and $\triangle B A E$, we have
$\angle \mathrm{B}=\angle \mathrm{B} \quad$ [Common]
$B C=A B \quad[$ Given]
and, $\quad \angle \mathrm{BCD}=\angle \mathrm{BAE} \quad$ [Proved above]
Thus by Angle-Side-Angle criterion of congruence, we have

$$
\triangle B C D \cong \triangle B A E
$$

The corresponding parts of the congruent triangles are equal.
So,
$C D=A E$
[Proved]

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 18:

Given: $A \triangle A B C$ in which $A B=A C$ and
BD and CE are the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ respectively.

To prove: $\quad \mathrm{BD}=\mathrm{CE}$
Proof: In $\triangle A B D$ and $\triangle A C E$

$$
\angle \mathrm{ABD}=\frac{1}{2} \quad \angle \mathrm{~B}
$$

and

$$
\angle \mathrm{ACE}=\frac{1}{2} \angle \mathrm{C}
$$

But $\angle \mathrm{B}=\angle \mathrm{C}$ as $\mathrm{AB}=\mathrm{AC}$ [In Isosceles triangle, base angles are equal]
$\Rightarrow \quad \angle A B D=\angle A C E$

$$
\begin{array}{ll}
\mathrm{AB}=\mathrm{AC} & \text { [Given] } \\
\angle \mathrm{A}=\angle \mathrm{A} & \text { [Common] }
\end{array}
$$

Thus by Angle-Side-Angle criterion of congruence, we have

$$
\triangle \mathrm{ABD} \cong \triangle \mathrm{ACE} \quad[\mathrm{By} \text { ASA }]
$$

The corresponding parts of the congruent triangles are equal.

$$
\mathrm{BD}=\mathrm{CE} \quad[\mathrm{C} . \mathrm{P} . \mathrm{C} . \mathrm{T}]
$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 19:

Given: $A \Delta$ in which D is the mid point of $B C$ and $B L \perp A D$ and $C M \perp A D$.

To Prove: $\quad \mathrm{BL}=\mathrm{CM}$
Proof: In $\triangle B L D$ and $\triangle C M D$

$$
\begin{array}{rlr}
\angle \mathrm{BLD} & =\angle \mathrm{CMD}=90^{\circ} & \text { [Given] } \\
\angle \mathrm{BDL} & =\angle \mathrm{MDC} & \text { [Vertically opposite angles] } \\
\mathrm{BD}=\mathrm{DC} & \text { [Given] } \\
\text { Thus by Angle-Angle-Side criterion of congruence, we have } \\
\triangle \mathrm{BLD} & =\Delta \mathrm{CMD} & {[\text { By AAS] }}
\end{array}
$$

The corresponding parts of the congruent triangles are equal
So,
$B L=C M$
[C.P.C.T] reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 20:

Given: In a $\triangle A B C, D$ is the mid point of
BC and $\mathrm{DL} \perp \mathrm{AB}$ and $\mathrm{DM} \perp \mathrm{AC}$. Also, $\mathrm{DL}=\mathrm{DM}$
To prove: $\quad \mathrm{AB}=\mathrm{AC}$
Proof: In right angled triangles $\triangle B L D$ and $\triangle C M D$

$$
\begin{array}{rlrl}
\angle \mathrm{BLD} & =\angle \mathrm{CMD}=90^{\circ} \\
\text { Hypt. } \mathrm{BD} & =\text { Hypt.CD } & {[\text { Given }]} \\
\mathrm{DL} & =\mathrm{DM} & {[\text { Given }]}
\end{array}
$$

Thus, by Right Angle-Hypotenuse-Side criterion
of congruence, we have

$$
\Delta \mathrm{BLD}=\Delta \mathrm{CMD} \quad[\text { By RHS }]
$$

The corresponding parts of the congruent triangles are equal.
$\therefore \quad \angle A B D=\angle A C D$
[C.P.C.T]

In $\triangle A B C$, we have

$$
\begin{aligned}
\angle \mathrm{ABD} & =\angle \mathrm{ACD} \\
\Rightarrow \quad \mathrm{AB} & =\mathrm{AC}
\end{aligned}
$$

[\therefore sides opposite to equal angles are equal]

Question 21:

Given: $A \triangle A B C$ in which $A B=A C, B O$ and $C O$ are bisec torsof $\angle \mathrm{B}$ and $\angle \mathrm{C}$

To Pr ove: In $\triangle B O C$, we have,

$$
\angle \mathrm{OBC}=\frac{1}{2} \angle \mathrm{~B}
$$

and, $\quad \angle \mathrm{OCB}=\frac{1}{2} \angle \mathrm{C}$
But, $\quad \angle B=\angle C \quad[\therefore A B=A C$ (given) $]$
So, $\quad \angle \mathrm{OBC}=\angle \mathrm{OCB}$
Since base angles are equal, sides are equal
$\Rightarrow \quad \mathrm{OB}=\mathrm{OC}$
....(1)
Since $O B$ and $O C$ are the bisectors of angles,
$\angle \mathrm{B}$ and $\angle \mathrm{C}$ respectively, we have

$$
\begin{align*}
\angle \mathrm{ABO} & =\frac{1}{2} \angle \mathrm{~B} \\
\angle \mathrm{ACO} & =\frac{1}{2} \angle \mathrm{C} \\
\Rightarrow \quad \angle \mathrm{ABO} & =\angle \mathrm{ACO} \tag{2}
\end{align*}
$$

Now, in $\triangle A B O$ and $\triangle A C O$

$$
\begin{array}{ccc}
\mathrm{AB}=\mathrm{AC} & & {[\text { Given }]} \\
\angle \mathrm{ABO}=\angle \mathrm{ACO} & & {[\text { from }(2)]} \\
\mathrm{BO}=\mathrm{OC} & & {[\text { from }(1)]}
\end{array}
$$

Thus, by Side-Angle-Side criterion of congruence, we have

$$
\Delta \mathrm{ABO} \cong \triangle \mathrm{ACO} \quad[\mathrm{By} \text { SAS }]
$$

The corresponding parts of the congruent triangles are equal

$$
\therefore \quad \angle \mathrm{BAO}=\angle \mathrm{CAO} \quad[\mathrm{By} \mathrm{cpct}]
$$

i.e. $A O$ bisects $\angle A$. reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 22:

Given: $P Q R$ is an equilateral triangle and $Q R S T$ is a square.

To Prove: PT =PS
and $\quad \angle \mathrm{PSR}=15^{\circ}$
Proof: Since $\triangle P Q R$ is an equilateral triangle,
$\angle \mathrm{PQR}=60^{\circ}$ and $\angle \mathrm{PRQ}=60^{\circ}$
Since QRTS is a square,
$\angle \mathrm{RQT}=90^{\circ}$ and $\angle \mathrm{QRS}=90^{\circ}$
In $\triangle \mathrm{PQT}$

$$
\begin{aligned}
\angle \mathrm{PQT} & =\angle \mathrm{PQR}+\angle \mathrm{RQT} \\
& =60^{\circ}+90^{\circ} \\
& =150^{\circ}
\end{aligned}
$$ reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

In \triangle PRS

$$
\begin{align*}
\angle \mathrm{PRS} & =\angle \mathrm{PRQ}+\angle \mathrm{QRS} \\
& =60^{\circ}+90^{\circ}=150^{\circ} . \tag{1}
\end{align*}
$$

$\Rightarrow \quad \angle \mathrm{PQT}=\angle \mathrm{PRS}$
Thus, in $\triangle P Q T$ and $\triangle P R S$

$$
\begin{aligned}
\mathrm{PQ} & =\mathrm{PR} & & \text { [sides of equilateral triangle } \triangle \mathrm{PQR} \text {] } \\
\angle \mathrm{PQT} & =\angle \mathrm{PRS} & & {[\text { from (2)] }} \\
\mathrm{QT} & =\mathrm{RS} & & \text { [sides of square } \square \mathrm{QRST}]
\end{aligned}
$$

Thus, by Side-Angle-Side criterion of congruence, we have
$\therefore \quad \triangle \mathrm{PQT} \cong \triangle \mathrm{PRS} \quad[\mathrm{By} \mathrm{SAS}]$
The corresponding parts of the congruent triangles are equal.
$\therefore \quad$ PT $=$ PS
[C.P.C.T]

Now in \triangle PRS, we have

$$
\mathrm{PR}=\mathrm{RS}
$$

$\Rightarrow \quad \angle \mathrm{RPS} \quad=\angle \mathrm{PSR}$
But $\angle \mathrm{PRS}=150^{\circ}$ [from (1)]
So, by angle sum property in \triangle PRS
$\angle \mathrm{PRS}+\angle \mathrm{SPR}+\angle \mathrm{PSR}=180^{\circ}$
$\Rightarrow \quad 150^{\circ}+\angle \mathrm{PSR}+\angle \mathrm{PSR}=180^{\circ}$
$\Rightarrow \quad 2 \angle \mathrm{PSR}=180^{\circ}-150^{\circ}$
$\Rightarrow \quad 2 \angle \mathrm{PSR}=30^{\circ}$
$\Rightarrow \quad \angle \mathrm{PSR}=\frac{30}{2}=15^{\circ}$

Question 23:

Given: $A B C$ is atriangle, right angled at B. ACFG is a a square and BCDE is a square.

To prove: $\quad \mathrm{AD}=\mathrm{EF}$
Proof: Since $B C D E$ is a square,

$$
\begin{equation*}
\angle B C D=90^{\circ} . \tag{1}
\end{equation*}
$$

In $\triangle A C D$,

$$
\begin{align*}
\angle A C D & =\angle A C B+\angle B C D \\
& =\angle A C B+90^{\circ} . \tag{2}
\end{align*}
$$

In $\triangle B C F$,

$$
\angle \mathrm{BCF}=\angle \mathrm{BCA}+\angle \mathrm{ACF}
$$

Since ACFG is a square,

$$
\angle \mathrm{ACF}=90^{\circ}
$$

Thus, we have
$\angle \mathrm{BCF}=\quad \angle \mathrm{BCA}+90^{\circ}$
From (2) and (3), we have
$\angle \mathrm{ACD}=\angle \mathrm{BCF}$
Thus in $\triangle A C D$ and $\triangle B C F$, we have

$$
\mathrm{AC}=\mathrm{CF} \quad[\text { sides of a square }]
$$

$\angle \mathrm{ACD}=\angle \mathrm{BCF} \quad[$ from (4)]
$C D=B C$
[sides of a square]
Thus, by Side-Angle-Side criterion of congruence, we have

$\therefore \quad \triangle A C D \cong \triangle B C F$
 [By SAS]

The corresponding parts of congruent triangles are equal.
So, $\quad A D=B F$
(C.P.C.T)

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 24:

Given: $A B C$ is an isosceles triangle in which $A B=A C$ and $A D$ is the median through A.

To prove: $\angle \mathrm{BAD}=\angle \mathrm{DAC}$
Proof: In $\triangle A B D$ and $\triangle A D C$

$$
\begin{array}{ll}
\mathrm{AB} & =\mathrm{AC} \\
\mathrm{BD}=\mathrm{DC} & \text { [Given] } \\
\mathrm{AD}=\mathrm{AD} & {[\text { Given }]} \\
& {[\text { Common }]}
\end{array}
$$

Thus by Side-Side-Side criterion of congruence, we have

$$
\Delta \mathrm{ABD} \cong \triangle \mathrm{ADC} \quad[\mathrm{By} \text { SSS }]
$$

The corresponding parts of the congruent triangles are equal.
$\therefore \quad \angle B A D=\angle D A C \quad$ (Proved)

Question 25:

Given $A B C D$ is a quadrilateral in which $A B \| D C$
To Prove: (i) $\quad \mathrm{AB}=\mathrm{CQ}$
(ii) $\quad \mathrm{DQ}=\mathrm{DC}+\mathrm{AB}$

Proof: In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{PCQ}$ we have

$$
\begin{aligned}
\angle \mathrm{PAB} & =\angle \mathrm{PQC} & & {[\text { alternate angles }] } \\
\angle \mathrm{APB} & =\angle \mathrm{CPQ} & & {[\text { Vertically opposite angles }] } \\
\mathrm{BP} & =\mathrm{PC} & & {[\text { Given }] }
\end{aligned}
$$

Thus by Angle-Angle-Side criterion of congruence, we have

$$
\Delta \mathrm{ABP} \cong \triangle \mathrm{PCQ}
$$

The corresponding parts of the congruent triangles are equal
$\therefore \quad \mathrm{AB}=\mathrm{CQ}$
Now, $\quad D Q=D C+C Q$
$=D C+A B \quad[$ from (1)]

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 26:

```
Given: OA = OB and OP = OQ
```


To Prove: (i)
$P X=Q X$
(ii)
$A X=B X$
Proof: In $\triangle \mathrm{OAQ}$ and $\triangle \mathrm{OPB}$, we have,

$$
\begin{array}{cc}
\mathrm{OA}=\mathrm{OB} & \text { [Given] } \\
\angle \mathrm{O}=\angle \mathrm{O} & \text { [Common] } \\
\mathrm{OQ}=\mathrm{OP} & \text { [Given] }
\end{array}
$$

Thus by Side-Angle-Side criterion of congruence, we have

$$
\Delta \mathrm{OAQ}=\Delta \mathrm{OPB} \quad[\mathrm{By} \mathrm{SAS}]
$$

The corresponding parts of the congruent triangles are equal.

$$
\begin{equation*}
\therefore \angle \mathrm{OBP}=\angle \mathrm{OAQ} \tag{1}
\end{equation*}
$$

Thus, in $\triangle B X Q$ and $\triangle P X A$, we have

$$
B Q=O B-O Q
$$

and,

$$
P A=O A-O P
$$

But,
$O P=O Q$
and $O A=O B$ [Given]
Therefore, we have, $\mathrm{BQ}=\mathrm{PA}$
Now consider triangles $\triangle \mathrm{BXQ}$ and $\triangle \mathrm{PXA}$.

$$
\begin{aligned}
\angle \mathrm{BXQ} & =\angle \mathrm{PXA} & & {[\text { Vertical opposite angles }] } \\
\angle \mathrm{OBP} & =\angle \mathrm{OAQ} & & {[\text { from (1)] }} \\
\mathrm{BQ} & =\mathrm{PA} & & {[\text { from }(2)] }
\end{aligned}
$$

Thus by Angle-Angle-Side criterion of congruence, we have,

$$
\begin{array}{rlrl}
\therefore & \Delta \mathrm{BXQ} & \cong \Delta \mathrm{PXA} & \\
\mathrm{PX} & =\mathrm{QX} & \text { [C.P.C.T] } \\
& \mathrm{AX} & =\mathrm{BX} & \\
\text { [C.P.C.T] }
\end{array}
$$ reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 27:

Given: $A B C D$ is a sqaure and P is a point inside it such that $P B=P D$

To Prove: CPA is a straight line.
Proof: In $\triangle A P D$ and $\triangle A P B$

$$
\begin{aligned}
\mathrm{DA} & =\mathrm{AB} \\
\mathrm{AP} & =\mathrm{AP} \\
\mathrm{~PB} & =\mathrm{PD}
\end{aligned}
$$

and, $\quad \mathrm{PB}=\mathrm{PD}$
Thus by Side-Side-Side criterion of congruence, we have $\triangle A P D \cong \triangle A P B$
The corresponding parts of the congruent triangles are equal.
$\therefore \quad \angle \mathrm{APD}=\angle \mathrm{APB}$
Now consider the triangles, $\triangle \mathrm{CPD}$ and $\triangle \mathrm{CPB}$.

$$
\begin{array}{ll}
C D=C B & {[\therefore A B C D \text { is a square }]} \\
C P=C P & {[\text { Common }]}
\end{array}
$$

and, $\quad \mathrm{PB}=\mathrm{PD}$
Thus by Side-Side-Side criterion of congruence, we have $\triangle C P D \cong \triangle C P B$
The corresponding parts of the congruent triangles are equal.
Hence we have
$\angle \mathrm{CPD}=\angle \mathrm{CPB}$
Adding both sides of (i) and (ii) we get
$\angle \mathrm{APD}+\angle \mathrm{CPD}=\angle \mathrm{APB}+\angle \mathrm{CPB}$
Angles around the point P add upto 360°,
$\Rightarrow \angle \mathrm{APD}+\angle \mathrm{CPD}+\angle \mathrm{APB}+\angle \mathrm{CPB}=360^{\circ}$
$\Rightarrow \angle \mathrm{APB}+\angle \mathrm{CPB}=360^{\circ}-(\angle \mathrm{APD}+\angle \mathrm{CPD}) \ldots$ (iv)
Substituting (iv) in (iii) we get,

$$
\angle \mathrm{APD}+\angle \mathrm{CPD}=360^{\circ}-(\angle \mathrm{APD}+\angle \mathrm{CPD})
$$

i.e $2(\angle \mathrm{APD}+\angle \mathrm{CPD})=360^{\circ}$
$\angle \mathrm{APD}+\angle \mathrm{CPD}=\frac{360}{2}=180^{\circ}$
This proves that CPA is a straight line.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 28:

$A \triangle A B C$ which is an equilateral triangle and $P Q \| A C$. $A C$ is produced to R such that $C R=B P$

To Prove: $\quad \mathrm{PM}=\mathrm{MC}$
Proof: Let QR intersects PC at M.
Since $\triangle A B C$ is an equilateral triangle,
$\Rightarrow \angle A=\angle A C B=60^{\circ}$
Since $P Q \| A C$ and corresponding angles are equal.
$\Rightarrow \angle \mathrm{BPQ}=\angle \mathrm{ACB}=60^{\circ}$
In $\triangle \mathrm{BPQ}, \angle \mathrm{B}=\angle \mathrm{ACB}=60^{\circ}$
$\Rightarrow \angle \mathrm{BQP}=60^{\circ}$
$\Rightarrow \triangle \mathrm{BPQ}$ is an equilateral triangle
$\Rightarrow P Q=B P=B Q$
Since $B P=C R$, we have,

$$
\begin{equation*}
P Q=C R \tag{1}
\end{equation*}
$$

Consider the triangles $\triangle P M Q$ and $\triangle C M R$.
Since $P Q \| A C$ and $Q R$ is a transversal
So, $\angle \mathrm{PQM}=\angle \mathrm{CRM} \quad$ [alternate angles]

$$
\angle \mathrm{PMQ}=\angle \mathrm{CMR} \quad \text { [vertically opposite angles] }
$$

$$
P Q=C R \quad[\text { from }(1)]
$$

Thus by Angle-Angle-Side criterion of congruence, we have

$$
\Delta \mathrm{PMQ} \cong \Delta \mathrm{CMR} \quad[\mathrm{By} \text { AAS }]
$$

The corresponding parts of the congruent triangles are equal.
So, $\quad \mathrm{PM}=\mathrm{MC}$
[C.P.C.T](proved)

Question 29:

Given: a quarilateral $A B C D$ in which $A B=A D$ and $B C=D C$

To Prove: (i) AC bisects $\angle \mathrm{A}$ and $\angle \mathrm{C}$
(ii) $\mathrm{AC} \perp \mathrm{BD}$ and AC bisects BD

Proof: In $\triangle A B C$ and $\triangle A D C$, we have

$\mathrm{AB}=\mathrm{AD}$	[Given]
$\mathrm{BC}=\mathrm{DC}$	[Given]
$\mathrm{AC}=\mathrm{AC}$	[Common]

Thus by Side-Side-Side criterion of congruence,

$$
\triangle A B C \cong \triangle A D C \quad[B y \text { SSS }]
$$

The corresponding parts of the congruent
triangles are equal.

So,	$\angle \mathrm{BAC}=\angle \mathrm{DAC}$	[C.P.C.T]
\Rightarrow	$\angle \mathrm{BAO}=\angle \mathrm{DAO}$	$\ldots . .(1)$

It means that $A C$ bisects $\angle B A D$, that is $\angle A$
Also, $\quad \angle \mathrm{BCA}=\angle \mathrm{DCA} \quad$ [C.P.C.T]
It means that AC bisects $\angle \mathrm{BCD}$, that is $\angle \mathrm{C}$
(ii)

Now in $\triangle A B O$ and $\triangle A D O$

AB	$=\mathrm{AD}$		$[$ Given]
$\angle \mathrm{BAO}$	$=\angle \mathrm{DAO}$		$[$ from (1)]
AO	$=\mathrm{AO}$		$[$ Common]

Thus, by Side-Angle-Side criterion
of congruence, we have
$\triangle \mathrm{ABO} \cong \triangle \mathrm{ADO}$
[By SAS]
The corresponding parts of the congruent triangles are equal.
$\therefore \quad \angle \mathrm{BOA}=\angle \mathrm{DOA}$
But $\quad \angle \mathrm{BOA}+\angle \mathrm{DOA}=180^{\circ}$
Or $\quad 2 \angle B O A=180^{\circ}$
$\Rightarrow \quad \angle B O A=\frac{180^{\circ}}{2}=90^{\circ}$
Also, as $\quad \triangle A B O \cong \triangle A D O$
So,
$B O=O D$
which means that $A C$ bisects $B D$.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 30:

Given: A triangle ABC in which bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ meet
at I.

Also, we have $\mathrm{IP} \perp \mathrm{BC}, \mathrm{IQ} \perp \mathrm{CA}$ and $\mathrm{IR} \perp \mathrm{AB}$
To Prove: (i) $\quad I P=I Q=I R$
(ii) $\quad \angle \mathrm{IAR}=\angle \mathrm{IAQ}$

Proof:(i) In \triangle BIP and \triangle BIR we have,

$$
\angle \mathrm{PBI}=\angle \mathrm{RBI} \quad[\text { Given }]
$$

$$
\angle \mathrm{IRB}=\angle \mathrm{IPB}=90^{\circ} \quad[\text { Given }]
$$

and, $\quad \mathrm{IB}=\mathrm{IB} \quad$ [Common]
Thus by Angle-Angle-Side criterion of congruence, we have

$$
\Delta B I P \cong \Delta B I R \quad[B y ~ A A S]
$$

The corresponding parts of the congruent triangles are equal.

$$
\begin{array}{lc}
\text { So, } & I P=I R \\
\text { Similarly } & I P=I Q \\
\therefore & I P=I Q=I R
\end{array}
$$

(ii) Now in $\triangle A I R$ and $\triangle A I Q$ we have

$$
\begin{array}{ll}
\mathrm{IR}=\mathrm{IQ} & {[\text { Proved above }]} \\
\mathrm{IA}=\mathrm{IA} & {[\text { Common }]}
\end{array}
$$

and, $\angle \mathrm{IRA}=\angle \mathrm{IQA}=90^{\circ}$
Thus by Side-Angle-Side criterion of congruence, we have
$\therefore \quad \triangle \mathrm{AIR} \cong \triangle \mathrm{AIQ} \quad[\mathrm{By}$ SAS]
The corresponding parts of the
congruent triangles are equal.
So, $\quad \angle \mathrm{IAR}=\angle \mathrm{IAQ} \quad$ [by c.p.c.t]
$\Rightarrow I A$ bisects $\angle A$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 31:

Given: A angle $A O B$ and P is a point in the interior of $\angle A O B$
such that PL=PM. Also PL $=O A$ and $P M=O B$

To Prove: $\quad \angle \mathrm{POL}=\angle \mathrm{POM}$
Proof: In $\triangle O P L$ and $\triangle O P M$, we have

$$
\begin{array}{ccc}
\angle \mathrm{OMP} & =\angle \mathrm{OLP}=90^{\circ} & \\
\mathrm{OP} & =\mathrm{OP} & \text { Given }] \\
\mathrm{PL} & =\mathrm{PM} & \\
& & {[\text { Givenmon }]}
\end{array}
$$

Thus, by Right angle-Hypotenuse-Side criterion of congruence, we have

$$
\Delta \mathrm{OPL} \cong \Delta \mathrm{OPM}
$$

[By R.H.S]
The corresponding parts of the congruent triangles are equal.
$\therefore \quad \angle \mathrm{POL}=\angle \mathrm{POM} \quad$ [C.P.C.T]
$\Rightarrow \mathrm{OP}$ is the bisector of $\angle \mathrm{LOM}=\angle \mathrm{AOB}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 32:

Given M is the mid-point of side $A B$ of a square ABCD and $\mathrm{CM} \perp \mathrm{PQ}$

To Prove : (i) $\quad \mathrm{PA}=\mathrm{BQ}$
(ii) $\mathrm{CP}=\mathrm{AB}+\mathrm{PA}$

Proof: (i) In $\triangle A M P$ and $\triangle B M Q$
$\angle \mathrm{AMP}=\angle \mathrm{BMQ}$ [Vertically opposite angle]
$\angle \mathrm{PAM}=\angle \mathrm{MBQ}=90^{\circ} \quad[\therefore \mathrm{ABCD}$ is a square $]$
and $\quad \mathrm{AM}=\mathrm{MB} \quad$ [Given]
Thus by Angle-Angle-Side criterion of congruence, we have

$$
\begin{equation*}
\triangle \mathrm{AMP} \cong \triangle \mathrm{BMQ} \tag{ByAAS}
\end{equation*}
$$

The corresponding parts of the congruent triangles are equal.

$$
\begin{equation*}
\therefore \quad P A=B Q \text { and } M P=M Q \tag{1}
\end{equation*}
$$

(ii) Now $\triangle P C M$ and $\triangle Q C M$, we have

$$
\mathrm{PM}=\mathrm{QM} \quad[\text { from }(1)]
$$

$$
\angle \mathrm{PMC}=\angle \mathrm{QMC}=90^{\circ} \quad \text { [Given] }
$$

$$
\begin{equation*}
\mathrm{CM}=\mathrm{CM} \tag{Common}
\end{equation*}
$$

Thus by Side-Angle-Side criterion of congruence we have

$$
\triangle \mathrm{PCM} \cong \triangle \mathrm{QCM} \quad[\mathrm{By} \mathrm{SAS}]
$$

The corresponding parts of the congruent triangles are equal.

$$
\begin{array}{llc}
\text { So, } & P C=Q C & {[C . P . C . T]} \\
\Rightarrow & P C=Q B+C B & \tag{C.P.C.T}\\
\Rightarrow & P C=A B+P A & {[\because A B=C B \text { and } P A=Q B]}
\end{array}
$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 33:

Let $A B$ be the breadth of a river. Now take a point M on that bank of the river where point B is situated. Through M draw a perpendicular and take point N on it such that point, A, O and N lie on a straight line where point O is the mid point of BM .


```
Now in \(\triangle A B O\) and \(\triangle N M O\) we have,
    \(\angle O B A=\angle O M N=90^{\circ}\)
        \(O B=O M \quad[\therefore O\) is mid point of \(B M]\)
and \(\angle \mathrm{BOA}=\angle \mathrm{MON} \quad\) [Vertically opposite angles]
```

Thus, by Angle - Side - Angle criterion of
congruence, we have,
$\triangle A B O \cong \triangle N M O$
[By ASA]
The corresponding parts of the
congruent triangles are equal.
$\therefore \quad \mathrm{AB}=\mathrm{NM} \quad[\mathrm{CP.C.T}]$

Thus, we find that MN is the width of the river.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 34

We have $\angle \mathrm{A}=36^{\circ}$ and $\angle \mathrm{B}=64^{\circ}$
By the angle sum property in $\triangle A B C$, we have
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 36^{\circ}+64^{\circ}+\angle C=180^{\circ}$
$\Rightarrow \angle \mathrm{C}=180^{\circ}-100^{\circ}=80^{\circ}$
Therefore, we have
$\angle \mathrm{A}=36^{\circ}, \angle \mathrm{B}=64^{\circ}$ and $\angle \mathrm{C}=80^{\circ}$
$\therefore \angle \mathrm{C}$ is largest and $\angle \mathrm{A}$ is shortest.
Side opposite to $\angle \mathrm{C}$ is longest and hence
$A B$ is longest side.
Side opposite to $\angle \mathrm{A}$ is shortest and hence
$B C$ is shortest side.

Question 35:

In a right angle triangle, greatest angle is $\angle \mathrm{A}=90^{\circ}$.
And hence other angles are less than 90° because sum of the angles of a triangle is 180°.
So, $\angle \mathrm{A}$ is the greatest angle.
Therefore, side BC which is opposite to $\angle \mathrm{A}$ is longest.

Question 36:

In $\triangle A B C$,

$$
\text { So, } \quad \begin{aligned}
\angle A & =\angle B=45^{\circ} \\
\angle C & =180^{\circ}-\angle A-\angle B \\
& =180^{\circ}-45^{\circ}-45^{\circ} \\
& =180^{\circ}-90^{\circ}=90^{\circ}
\end{aligned}
$$

Thus we find that $\angle C$ is the greatest angle of $\triangle A B C$.
So, $A B$ is the longest side which is opposite to $\angle C$.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 37:

In $\triangle A B C$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \quad 70^{\circ}+60^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \quad 130^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{C}=180^{\circ}-130^{\circ}=50^{\circ}$
Now in $\triangle B C D$ we have,

$$
\begin{aligned}
\angle \mathrm{CBD}=\angle \mathrm{DAC}+\angle \mathrm{ACB} \quad[& \because \angle \mathrm{CBD} \text { is the } \\
& \text { exterior angle of } \angle \mathrm{ABC}]
\end{aligned}
$$

$$
=70^{\circ}+50^{\circ}=120^{\circ}
$$

Since $B C=B D \quad$ [Given]
So, $\angle \mathrm{BCD}=\angle \mathrm{BDC}$

$$
\therefore \quad \begin{aligned}
\angle \mathrm{BCD}+\angle \mathrm{BDC} & =180^{\circ}-\angle \mathrm{CBD} \\
& =180^{\circ}-120^{\circ}=60^{\circ}
\end{aligned}
$$

$$
\Rightarrow \quad 2 \angle \mathrm{BCD}=60^{\circ}
$$

$$
\Rightarrow \angle \mathrm{BCD}=\angle \mathrm{BDC}=30^{\circ}
$$

Now in \triangle ACD we have

$$
\angle \mathrm{A}=70^{\circ}, \angle \mathrm{D}=30^{\circ}
$$

and $\angle \mathrm{ACD}=\angle \mathrm{ACB}+\angle \mathrm{BCD}$

$$
=50^{\circ}+30^{\circ}=80^{\circ}
$$

$\therefore \quad \angle A C D$ is the greatest angle.
So the side opposite to $\angle A C D$, that is
$A D$, is the longest side of $\triangle A C D$
\therefore

$$
A D>C D
$$

(ii) Since $\angle \mathrm{BDC}$ is the smallest angle, the side opposite to $\angle B D C$, that is $A C$, is the shortest side of $\triangle A C D$
$\therefore \quad A D>A C$.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 38:

In $\triangle A B C$,

$$
\begin{aligned}
& \angle \mathrm{A}=180^{\circ}-\angle \mathrm{B}-\angle \mathrm{C} \\
&=180^{\circ}-35^{\circ}-65^{\circ} \\
&=180^{\circ}-100^{\circ}=80^{\circ} \\
& \therefore \quad \angle \mathrm{BAX}=\frac{1}{2} \angle \mathrm{~A} \\
&=\frac{1}{2} \times 80^{\circ}=40^{\circ}
\end{aligned}
$$

Now in $\triangle A B X$,

$$
\text { and } \quad \begin{aligned}
\angle \mathrm{B} & =35^{\circ} \\
\angle \mathrm{BAX} & =40^{\circ} \\
\angle \mathrm{BXA} & =180^{\circ}-35^{\circ}-40^{\circ} \\
& =180^{\circ}-75^{\circ}=105^{\circ}
\end{aligned}
$$

So, in $\triangle A B X$,
$\angle \mathrm{B}$ is smallest,so the side opposite to $\angle \mathrm{B}$, that is $A X$, is smallest
So $\quad A X<B X \ldots$ (i)
Now consider $\triangle \mathrm{AXC}$

$$
\begin{aligned}
\angle \mathrm{CAX} & =\frac{1}{2} \times \angle \mathrm{A} \\
& =\frac{1}{2} \times 80^{\circ}=40^{\circ} \\
\angle \mathrm{AXC} & =180^{\circ}-40^{\circ}-65^{\circ} \\
& =180^{\circ}-105^{\circ}-75^{\circ}
\end{aligned}
$$

Therefore, in $\triangle A X C$, we have,
$\angle \mathrm{CAX}=40^{\circ}, \angle \mathrm{C}-65^{\circ}$ and $\angle \mathrm{AXC}-75^{\circ}$
$\therefore \angle C A X$ is smallest in $\triangle A X C$
So the side opposite to $\angle C A X$ is shortest.

$$
\begin{equation*}
\Rightarrow C X \text { is shortest } \tag{ii}
\end{equation*}
$$

$\Rightarrow C X<A X$
From (i) and (ii), we get
$B X>A X>C X$
This is the required descending order.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 39:

Given: $A B C$ is a triangle in which $A D$ is the bisector of $\angle A$.
Proof: (i) In $\triangle A C D$
Exterior $\angle \mathrm{ADB}=\angle \mathrm{DAC}+\angle \mathrm{ACD}$

$$
=\angle B A D+\angle A C D
$$

[$\therefore \angle \mathrm{DAC}=\angle \mathrm{BAD}$ (given)]
$\angle A D B>\angle B A D$
The side opposite to angle $\angle A D B$ is the longest side
in $\triangle A D B$
So, $A B>B D$
(ii) Again in $\triangle A B D$

Exterior $\angle A D C=\angle A B D+\angle B A D$

$$
=\angle \mathrm{ABD}+\angle \mathrm{CAD}
$$

$\angle A D C>\angle C A D$
The side opposite to angle $\angle \mathrm{ADC}$ is the longest side in $\triangle A C D$
So, $\quad A C>D C$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 40:

Given : $A \triangle A B C$ is which $A B=A C$ side $B C$ of $\triangle A B C$ is produced to D.

To prove: $A D>A C$
Proof: In $\triangle A B C$
Ext. $\angle \mathrm{ACD}=\angle \mathrm{B}+\angle \mathrm{BAC}$

$$
\begin{aligned}
& =\angle \mathrm{ACB}+\angle \mathrm{BAC} \quad[\because \angle \mathrm{~B}=\angle \mathrm{C} \text { as } \mathrm{AB}=\mathrm{AC}] \\
& =\angle \mathrm{CAD}+\angle \mathrm{CDA}+\angle \mathrm{BAC} \\
& \quad[\because \text { Ext. } \angle \mathrm{ACB}=\angle \mathrm{CAD}+\angle \mathrm{CDA}]
\end{aligned}
$$

$\Rightarrow \angle \mathrm{ACD}>\angle \mathrm{CDA}$
So the side opposite to $\angle A C D$, is the longest.
$\therefore \quad A D>A C$

Question 41:

Given: $A \triangle A B C$ in which $A C>A B$ and $A D$ is a bisector of $\angle A$

To prove: $\angle A D C>\angle A D B$
Proof : Since $A C>A B$
$\Rightarrow \quad \angle A B C>\angle A C B$
Adding $\frac{1}{2} \angle A$ on both sides of inequality.

$$
\begin{aligned}
& \angle A B C+\frac{1}{2} \angle A>\angle A C B+\frac{1}{2} \angle A \\
\Rightarrow \quad & \angle A B C+\angle B A D>\angle A C B+\angle D A C
\end{aligned}
$$

[$\because A D$ is a bisector of $\angle A$]
\Rightarrow Exterior $\angle A D C>$ Exterior $\angle A D B$
$\angle \mathrm{ADC}>\angle \mathrm{ADB}$.
Copyright © www.studiestoday.com All rıghts reserved. No part ot this publicatıon may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Question 42:

Given: A triangle $P Q R$ and S is a point on $Q R$.

To prove: $P Q+Q R+R P>2 P S$
Proof: Since in a triangle, sum of any two sides is always greater than the third side.
So in $\triangle P Q S$, we have

$$
\begin{equation*}
P Q+Q S>P S \tag{i}
\end{equation*}
$$

Similarly, in \triangle PSR, we have

$$
P R+S R>P S
$$

Adding both sides of (i) and (ii), we get.

$$
P Q+Q S+P R+S R>2 P S
$$

$\Rightarrow P Q+P R+Q S+S R>2 P S$
$\Rightarrow \quad P Q+P R+Q R \quad>2 P S$

Question 43:

Given : A circle with centre O is drawn in which $X Y$ is a diameter and $X Z$ is a chord.
To prove: $X Y>X Z$
Proof : In $\triangle X O Z$, we have,

$$
O X+O Z>X Z
$$

[\therefore sum of any two sides in a triangle is a
greater than its third side]
$\Rightarrow \quad \mathrm{OX}+\mathrm{OY}>\mathrm{XZ}$
[$\because \quad \mathrm{OZ}=\mathrm{OY}$, radius of the circle]
$\therefore \quad X Y>X Z$
$\left[\begin{array}{ll}\because & O X+O Y=X Y]\end{array}\right.$
Copyrıght © www.studıestoday.com All rıghts reserved. No part ot this publicatıon may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

StudiesToday

Question 44:

Given : $A B C$ is a triangle and O is appoint inside it.

To Prove : (i) $\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}$
(ii) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>\mathrm{OA}+\mathrm{OB}+\mathrm{OC}$
(iii) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}>\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$

Proof:
(i) $\ln \triangle A B C$,
$A B+A C>B C \ldots$...(i)
And in , $\triangle \mathrm{OBC}$,
OB+OC > BC(ii)
Subtracting (i) from (i) we get
$(A B+A C)-(O B+O C)>(B C-B C)$
i.e. $\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}$
(ii) $\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}$ [proved in (i)]

Similarly, $\mathrm{AB}+\mathrm{BC}>\mathrm{OA}+\mathrm{OC}$
And $\mathrm{AC}+\mathrm{BC}>\mathrm{OA}+\mathrm{OB}$
Adding both sides of these three inequalities, we get
$(\mathrm{AB}+\mathrm{AC})+(\mathrm{AC}+\mathrm{BC})+(\mathrm{AB}+\mathrm{BC})>\mathrm{OB}+\mathrm{OC}+\mathrm{OA}+\mathrm{OB}+\mathrm{OA}+\mathrm{OC}$
i.e. $2(A B+B C+A C)>2(O A+O B+O C)$

Therefore, we have
$\mathrm{AB}+\mathrm{BC}+\mathrm{AC}>\mathrm{OA}+\mathrm{OB}+\mathrm{OC}$
(iii) $\ln \triangle \mathrm{OAB}$
$\mathrm{OA}+\mathrm{OB}>\mathrm{AB}$
In $\triangle \mathrm{OBC}$,
$\mathrm{OB}+\mathrm{OC}>\mathrm{BC}$
And, in $\triangle \mathrm{OCA}$,
$\mathrm{OC}+\mathrm{OA}>\mathrm{CA}$
Adding (i), (ii) and (iii) we get

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.
$(\mathrm{OA}+\mathrm{OB})+(\mathrm{OB}+\mathrm{OC})+(\mathrm{OC}+\mathrm{OA})>\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
i.e $2(O A+O B+O C)>A B+B C+C A$
$\Rightarrow \mathrm{OA}+\mathrm{OB}+\mathrm{OC}>\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$

Question 45:

Since $A B=3 \mathrm{~cm}$ and $B C=3.5 \mathrm{~cm}$
$\therefore A B+B C=(3+3.5) \mathrm{cm}=6.5 \mathrm{~m}$
And CA=6.5 cm
So $A B+B C=C A$
A triangle can be drawn only when the sum of two sides is greater than the third side.
So, with the given lengths a triangle cannot be drawn.

