Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions Angles, Linesand Triangles

Exercise 4A

Question 1:
(i) Angle: Two rays having a common end point form an angle.
(ii) Interior of an angle: The interior of $\angle A O B$ is the set of all points in its plane, which lie on the same side of $O A$ as B and also on same side of $O B$ as A.
(iii) Obtuse angle: An angle whose measure is more than 90° but less than 180°, is called an obtuse angle.
(iv) Reflex angle: An angle whose measure is more than 180° but less than 360° is called a reflex angle.
(v) Complementary angles: Two angles are said to be complementary, if the sum of their measures is 900 .
(vi) Supplementary angles: Two angles are said to be supplementary, if the sum of their measures is 180°.

Question 2:
$\angle A=36^{\circ} 27^{\prime} 46^{\prime \prime}$ and $\angle B=28^{\circ} 43^{\prime} 39^{\prime \prime}$
\therefore Their sum $=\left(36^{\circ} 27^{\prime} 46^{\prime \prime}\right)+\left(28^{\circ} 43^{\prime} 39^{\prime \prime}\right)$
Deg Min Sec

36°	27^{\prime}	$46^{\prime \prime}$
$+28^{\circ}$	43^{\prime}	$39^{\prime \prime}$

Therefore, the sum $\angle A+\angle B=65^{\circ} 11^{\prime} 25^{\prime \prime}$

Question 3:
Let $\angle A=36^{\circ}$ and $\angle B=24^{\circ} 28^{\prime} 30^{\prime \prime}$
Their difference $=36^{\circ}-24^{\circ} 28^{\prime} 30^{\prime \prime}$

$\left[1^{\circ}=60^{\prime} ; 1^{\prime}=60^{\prime \prime}\right]$

Thus the difference between two angles is $\angle A-\angle B=11^{\circ} 31^{\prime} 30^{\prime \prime}$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

```
Question 4:
(i) Complement of 58' =90' 58员 = 32'
(ii) Complement of 16 =90-16 = 74 
    2 2
(iii)}\overline{3}\mathrm{ of a right angle = 产 }\times9\mp@subsup{0}{}{\circ}=6\mp@subsup{0}{}{\circ
Complement of 60' =90'-60' = 30'
(iv) }\mp@subsup{1}{}{\circ}=6\mp@subsup{0}{}{\prime
=>90}=8\mp@subsup{9}{}{\circ}6\mp@subsup{0}{}{\prime
    Deg Min
        89\mp@subsup{0}{}{\circ}
Complement of 46 30' =90'-46 30'=43' 30'
(v) }9\mp@subsup{0}{}{\circ}=8\mp@subsup{9}{}{\circ}5\mp@subsup{9}{}{\prime}60\prime
```



```
Complement of \(52^{\circ} 43^{\prime} 20^{\prime \prime}=90^{\circ}-52^{\circ} 43^{\prime} 20^{\prime \prime}\)
= \(37^{\circ} 16^{\prime} 40^{\prime \prime}\)
(vi) \(90^{\circ}=89^{\circ} 59^{\prime} 60^{\prime \prime}\)
\begin{tabular}{rrr} 
Deg & Min & Sec \\
\(89^{\circ}\) & \(59^{\prime}\) & \(60^{\prime \prime}\) \\
\(90^{\circ}\) & \(9^{\prime}\) & \(9^{\prime \prime}\) \\
\(-68^{\circ}\) & \(35^{\prime}\) & \(45^{\prime \prime}\) \\
\hline \(21^{\circ}\) & \(24^{\prime}\) & \(15^{\prime \prime}\) \\
\hline
\end{tabular}
\(\therefore\) Complement of ( \(68^{\circ} 35^{\prime} 45^{\prime \prime}\) )
\(=90^{\circ}-\left(68^{\circ} 35^{\prime} 45^{\prime \prime}\right)\)
\(=89^{\circ} 59^{\prime} 60^{\prime \prime}-\left(68^{\circ} 35^{\prime} 45^{\prime \prime}\right)\)
\(=21^{\circ} 24^{\prime} 15^{\prime \prime}\)
```


Question 5:

```
(i) Supplement of \(63^{\circ}=180^{\circ}-63^{\circ}=117^{\circ}\)
(ii) Supplement of \(138^{\circ}=180^{\circ}-138^{\circ}=42^{\circ}\)
(iii) \(\frac{3}{5}\) of a right angle \(=\frac{3}{5} \times 90^{\circ}=54^{\circ}\)
\(\therefore\) Supplement of \(54^{\circ}=180^{\circ}-54^{\circ}=126^{\circ}\)
(iv) \(1^{\circ}=60^{\prime}\)
\(\Rightarrow 180^{\circ}=179^{\circ} 60^{\prime}\)
```

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Deg	Min
179°	60^{\prime}
-180°	8^{\prime}
-75°	36^{\prime}
104°	24

Supplement of $75^{\circ} 36^{\prime}=$
(v) $1^{\circ}=60^{\prime}, 1^{\prime}=60^{\prime \prime}$
$\Rightarrow 180^{\circ}=179^{\circ} 59^{\prime} 60^{\prime \prime}$
Deg

179°	Min	Sec
$-\frac{189^{\circ}}{}$	69^{\prime}	$60^{\prime \prime}$
-124°	20^{\prime}	$40^{\prime \prime}$
55°	39^{\prime}	$20^{\prime \prime}$

Supplement of $124^{\circ} 20^{\prime} 40^{\prime \prime}=180^{\circ}-124^{\circ} 20^{\prime} 40^{\prime \prime}$
$=55^{\circ} 39^{\prime} 20^{\prime \prime}$
(vi) $1^{\circ}=60^{\prime}, 1^{\prime}=60^{\prime \prime}$
$\Rightarrow 180^{\circ}=179^{\circ} 59^{\prime} 60^{\prime \prime}$

Deg	Min	Sec
179°	59^{\prime}	$60^{\prime \prime}$
180°	$夕^{\prime \prime}$	$0^{\prime \prime}$
$-\frac{108^{\circ}}{}$	48^{\prime}	$32^{\prime \prime}$
71°	11^{\prime}	$28^{\prime \prime}$

\therefore Supplement of $108^{\circ} 48^{\prime} 32^{\prime \prime}=180^{\circ}-108^{\circ} 48^{\prime} 32^{\prime \prime}$
$=71^{\circ} 11^{\prime} 28^{\prime \prime}$.

Question 6:
(i) Let the required angle be x°

Then, its complement $=90^{\circ}-x^{\circ}$
$\begin{array}{cc}\therefore & x^{\circ}=90^{\circ}-x^{\circ} \\ \Rightarrow & \times+\times=90 \\ \Rightarrow & 2 \times=90 \\ \Rightarrow & \times=\frac{90}{2}=45\end{array}$
\therefore The measure of an angle which is equal to its complement is 45°.
(ii) Let the required angle be x°

Then, its supplement $=180^{\circ}-x^{\circ}$
$\begin{aligned} \therefore & x^{\circ} & =180^{\circ}-x^{\circ} \\ \Rightarrow & x \times & =180 \\ \Rightarrow & 2 x & =180 \\ \Rightarrow & x & =\frac{180}{2}=90\end{aligned}$
\therefore The measure of an angle which is equal to its supplement is 90°.

Question 7:
Let the required angle be x°
Then its complement is $90^{\circ}-x^{\circ}$

```
\(\Rightarrow \quad x^{\circ}=\left(90^{\circ}-x^{\circ}\right)+36^{\circ}\)
\(\Rightarrow \quad x^{\circ}+x^{\circ}=90^{\circ}+36^{\circ}\)
\(\Rightarrow \quad 2 x^{\circ}=126^{\circ}\)
\(\Rightarrow \quad x=\frac{126}{2}=63\)
```

\therefore The measure of an angle which is 36° more than its complement is 63°.

Question 8:

Let the required angle be x°
Then its supplement is $180^{\circ}-x^{\circ}$

```
\(\Rightarrow \quad x^{\circ}=\left(180^{\circ}-x^{\circ}\right)-25^{\circ}\)
\(\Rightarrow \quad x^{\circ}+x^{\circ}=180^{\circ}-25^{\circ}\)
\(\begin{array}{ll}\Rightarrow & 2 X=155 \\ \Rightarrow & x\end{array}\)
```


Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

\therefore The measure of an angle which is 25° less than its supplement is

$77 \frac{1}{2}^{\circ}=77.5^{\circ}$.

Question 9:
Let the required angle be x°
Then, its complement $=90^{\circ}-x^{\circ}$

```
\(\Rightarrow \quad x^{\circ}=4\left(90^{\circ}-x^{\circ}\right)\)
\(\begin{array}{ll}\Rightarrow & x^{\circ}=360^{\circ}-4 x^{\circ} \\ \Rightarrow & 5 x=360\end{array}\)
\(\Rightarrow \quad x=\frac{360}{5}=72\)
```

\therefore The required angle is 72°.

Question 10:
Let the required angle be x^{0}
Then, its supplement is $180^{\circ}-x^{\circ}$
\Rightarrow

$$
\begin{aligned}
x^{0} & =5\left(180^{\circ}-x^{0}\right) \\
x^{0} & =900^{\circ}-5 x^{\circ} \\
x+5 x & =900 \\
6 x & =900 \\
x & =\frac{900}{6}=150 .
\end{aligned}
$$

\therefore The required angle is 150°.

Question 11:
Let the required angle be x°
Then, its complement is $90^{\circ}-x^{\circ}$ and its supplement is $180^{\circ}-x^{\circ}$
That is we have,
$180^{\circ}-x^{\circ}=4\left(90^{\circ}-x^{\circ}\right)$
$180^{\circ}-x^{\circ}=360^{\circ}-4 x^{\circ}$
$4 x^{\circ}-x^{\circ}=360^{\circ}-180^{\circ}$
$3 x=180$
$x=\frac{180}{3}=60^{\circ}$
\therefore The required angle is 60°.

Question 12:
Let the required angle be x°
Then, its complement is $90^{\circ}-x^{\circ}$ and its supplement is $180^{\circ}-x^{\circ}$

\therefore	$90^{\circ}-x^{\circ}=\frac{1}{3}\left(180^{\circ}-x^{\circ}\right)$
\Rightarrow	$90-x=60-\frac{1}{3} x$
\Rightarrow	$x-\frac{1}{3} x=90-60$
\Rightarrow	$\frac{2}{3} x=30$
\Rightarrow	$x=\frac{30 \times 3}{2}=45$

\therefore The required angle is 45°.

Question 13:
Let the two required angles be x° and $180^{\circ}-x^{\circ}$.
Then,
$\frac{x^{\circ}}{180^{\circ}-x^{\circ}}=\frac{3}{2}$
$\Rightarrow 2 \mathrm{x}=3(180-\mathrm{x})$
$\Rightarrow 2 x=540-3 x$
$\Rightarrow 3 x+2 x=540$
$\Rightarrow 5 \mathrm{x}=540$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $\Rightarrow x=108$

Thus, the required angles are 108° and $180^{\circ}-x^{\circ}=180^{\circ}-108^{\circ}=72^{\circ}$.

Question 14:
Let the two required angles be x° and $90^{\circ}-x^{\circ}$.
Then
$\frac{x^{\circ}}{90^{\circ}-x^{\circ}}=\frac{4}{5}$
$\Rightarrow 5 \mathrm{x}=4(90-\mathrm{x})$
$\Rightarrow 5 \mathrm{x}=360-4 \mathrm{x}$
$\Rightarrow 5 x+4 x=360$
$\Rightarrow 9 x=360$
$\Rightarrow x=\frac{360}{9}=40$
Thus, the required angles are 40° and $90^{\circ}-x^{\circ}=90^{\circ}-40^{\circ}=50^{\circ}$.

Question 15:
Let the required angle be x°.
Then, its complementary and supplementary angles are $\left(90^{\circ}-x\right)$ and $\left(180^{\circ}-x\right)$
respectively.
Then, $7\left(90^{\circ}-x\right)=3\left(180^{\circ}-x\right)-10^{\circ}$
$\Rightarrow 630^{\circ}-7 x=540^{\circ}-3 x-10^{\circ}$
$\Rightarrow 7 x-3 x=630^{\circ}-530^{\circ}$
$\Rightarrow 4 \mathrm{x}=100^{\circ}$
$\Rightarrow x=25^{\circ}$
Thus, the required angle is 25°.

Exercise 4B

Question 1:

Since $\angle B O C$ and $\angle C O A$ form a linear pair of angles, we have
$\angle B O C+\angle C O A=180^{\circ}$
$\Rightarrow x^{\circ}+62^{\circ}=180^{\circ}$
$\Rightarrow x=180-62$
$\therefore \mathrm{x}=118^{\circ}$

Question 2:
Since, $\angle B O D$ and $\angle D O A$ form a linear pair.
$\angle B O D+\angle D O A=180^{\circ}$
$\therefore \angle B O D+\angle D O C+\angle C O A=180^{\circ}$
$\Rightarrow(x+20)^{\circ}+55^{\circ}+(3 x-5)^{\circ}=180^{\circ}$
$\Rightarrow x+20+55+3 x-5=180$
$\Rightarrow 4 x+70=180$
$\Rightarrow 4 \mathrm{x}=180-70=110$
$\Rightarrow x=\frac{110}{4}=27.5$
$\therefore \angle A O C=(3 \times 27.5-5)^{\circ}=82.5-5=77.5^{\circ}$
And, $\angle B O D=(x+20)^{\circ}=27.5^{\circ}+20^{\circ}=47.5^{\circ}$.
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Question 3:
Since $\angle B O D$ and $\angle D O A$ from a linear pair of angles.
$\Rightarrow \angle B O D+\angle D O A=180^{\circ}$
$\Rightarrow \angle B O D+\angle D O C+\angle C O A=180^{\circ}$
$\Rightarrow x^{\circ}+(2 x-19)^{\circ}+(3 x+7)^{\circ}=180^{\circ}$
$\Rightarrow 6 x-12=180$
$\Rightarrow 6 x=180+12=192$
$\Rightarrow x=\frac{192}{6}=32$
$\Rightarrow \mathrm{x}=32$
$\Rightarrow \angle A O C=(3 x+7)^{\circ}=(332+7)^{\circ}=103^{\circ}$
$\Rightarrow \angle C O D=(2 x-19)^{\circ}=(232-19)^{\circ}=45^{\circ}$
and $\angle B O D=x^{0}=32^{\circ}$

Question 4:
$x: y: z=5: 4: 6$
The sum of their ratios $=5+4+6=15$
But $x+y+z=180^{\circ}$
[Since, XOY is a straight line]
So, if the total sum of the measures is 15 , then the measure of x is 5 .
If the sum of angles is 180°, then, measure of $x=\frac{5}{15} \times 180=60$
And, if the total sum of the measures is 15 , then the measure of y is 4 .
If the sum of the angles is 180°, then, measure of $y=\frac{4}{15} \times 180=48$
And $\angle z=180^{\circ}-\angle x-\angle y$
$=180^{\circ}-60^{\circ}-48^{\circ}$
$=180^{\circ}-108^{\circ}=72^{\circ}$
$\therefore x=60, y=48$ and $z=72$.

Question 5:
AOB will be a straight line, if two adjacent angles form a linear pair.
$\therefore \angle B O C+\angle A O C=180^{\circ}$
$\Rightarrow(4 \mathrm{x}-36)^{\circ}+(3 \mathrm{x}+20)^{\circ}=180^{\circ}$
$\Rightarrow 4 x-36+3 x+20=180$
$\Rightarrow 7 x-16=180^{\circ}$
$\Rightarrow 7 \mathrm{x}=180+16=196$
$\Rightarrow x=\frac{196}{7}=28$
\therefore The value of $\mathrm{x}=28$.

Question 6:

Since $\angle A O C$ and $\angle A O D$ form a linear pair.
$\therefore \angle A O C+\angle A O D=180^{\circ}$
$\Rightarrow 50^{\circ}+\angle A O D=180^{\circ}$
$\Rightarrow \angle A O D=180^{\circ}-50^{\circ}=130^{\circ}$
$\angle A O D$ and $\angle B O C$ are vertically opposite angles.
$\angle A O D=\angle B O C$
$\Rightarrow \angle B O C=130^{\circ}$
$\angle B O D$ and $\angle A O C$ are vertically opposite angles.
$\therefore \angle B O D=\angle A O C$
$\Rightarrow \angle B O D=50^{\circ}$

Question 7:
Since $\angle C O E$ and $\angle D O F$ are vertically opposite angles, we have,
$\angle C O E=\angle D O F$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $\Rightarrow \angle z=50^{\circ}$

Also $\angle B O D$ and $\angle C O A$ are vertically opposite angles.
So, $\angle \mathrm{BOD}=\angle \mathrm{COA}$
$\Rightarrow \angle t=90^{\circ}$
As $\angle C O A$ and $\angle A O D$ form a linear pair,
$\angle C O A+\angle A O D=180^{\circ}$
$\Rightarrow \angle C O A+\angle A O F+\angle F O D=180^{\circ}\left[\angle t=90^{\circ}\right]$
$\Rightarrow t+x+50^{\circ}=180^{\circ}$
$\Rightarrow 90^{\circ}+x^{\circ}+50^{\circ}=180^{\circ}$
$\Rightarrow x+140=180$
$\Rightarrow x=180-140=40$
Since $\angle E O B$ and $\angle A O F$ are vertically opposite angles
So, $\angle E O B=\angle A O F$
$\Rightarrow y=x=40$
Thus, $x=40=y=40, z=50$ and $t=90$

Question 8:
Since $\angle C O E$ and $\angle E O D$ form a linear pair of angles.
$\Rightarrow \angle C O E+\angle E O D=180^{\circ}$
$\Rightarrow \angle C O E+\angle E O A+\angle A O D=180^{\circ}$
$\Rightarrow 5 \mathrm{x}+\angle \mathrm{EOA}+2 \mathrm{x}=180$
$\Rightarrow 5 \mathrm{x}+\angle \mathrm{BOF}+2 \mathrm{x}=180$
$[\therefore \angle E O A$ and $B O F$ are vertically opposite angles so, $\angle E O A=\angle B O F]$
$\Rightarrow 5 \mathrm{x}+3 \mathrm{x}+2 \mathrm{x}=180$
$\Rightarrow 10 x=180$
$\Rightarrow x=18$
Now $\angle A O D=2 x^{\circ}=2 \times 18^{\circ}=36^{\circ}$
$\angle C O E=5 x^{\circ}=5 \times 18^{\circ}=90^{\circ}$
and, $\angle E O A=\angle B O F=3 x^{\circ}=3 \times 18^{\circ}=54^{\circ}$

Question 9:
Let the two adjacent angles be $5 x$ and $4 x$.
Now, since these angles form a linear pair.
So, $5 x+4 x=180^{\circ}$
$\Rightarrow 9 x=180^{\circ}$
$\Rightarrow x=\frac{180}{9}=20$
\therefore The required angles are $5 x=5 x=520^{\circ}=100^{\circ}$
and $4 x=4 \times 20^{\circ}=80^{\circ}$

Question 10:
Let two straight lines $A B$ and $C D$ intersect at O and let $\angle A O C=90^{\circ}$.

Now, $\angle A O C=\angle B O D$ [Vertically opposite angles]
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $\Rightarrow \angle B O D=90^{\circ}$

Also, as $\angle A O C$ and $\angle A O D$ form a linear pair.
$\Rightarrow 90^{\circ}+\angle A O D=180^{\circ}$
$\Rightarrow \angle A O D=180^{\circ}-90^{\circ}=90^{\circ}$
Since, $\angle B O C=\angle A O D$ [Verticallty opposite angles]
$\Rightarrow \angle B O C=90^{\circ}$
Thus, each of the remaining angles is 90°.

Question 11:
Since, $\angle A O D$ and $\angle B O C$ are vertically opposite angles.
$\therefore \angle A O D=\angle B O C$
Now, $\angle A O D+\angle B O C=280^{\circ}$ [Given]
$\Rightarrow \angle A O D+\angle A O D=280^{\circ}$
$\Rightarrow 2 \angle A O D=280^{\circ}$
$\Rightarrow \angle A O D=\frac{280}{2}=140^{\circ}$
$\Rightarrow \angle B O C=\angle A O D=140^{\circ}$
As, $\angle A O C$ and $\angle A O D$ form a linear pair.
So, $\angle A O C+\angle A O D=180^{\circ}$
$\Rightarrow \angle A O C+140^{\circ}=180^{\circ}$
$\Rightarrow \angle A O C=180^{\circ}-140^{\circ}=40^{\circ}$
Since, $\angle A O C$ and $\angle B O D$ are vertically opposite angles.
$\therefore \angle A O C=\angle B O D$
$\Rightarrow \angle B O D=40^{\circ}$
$\therefore \angle B O C=140^{\circ}, \angle A O C=40^{\circ}, \angle A O D=140^{\circ}$ and $\angle B O D=40^{\circ}$.

Question 12:
Since $\angle C O B$ and $\angle B O D$ form a linear pair
So, $\angle C O B+\angle B O D=180^{\circ}$
$\Rightarrow \angle B O D=180^{\circ}-\angle C O B(1)$
Also, as $\angle C O A$ and $\angle A O D$ form a linear pair.
So, $\angle C O A+\angle A O D=180^{\circ}$
$\Rightarrow \angle A O D=180^{\circ}-\angle C O A$
$\Rightarrow \angle A O D=180^{\circ}-\angle C O B . . .$. (2)
[Since, $O C$ is the bisector of $\angle A O B, \angle B O C=\angle A O C$]
From (1) and (2), we get,
$\angle A O D=\angle B O D$ (Proved)

Question 13:

Let $Q S$ be a perpendicular to $A B$.
Now, $\angle P Q S=\angle S Q R$
Because angle of incident = angle of reflection
$\Rightarrow \angle P Q S=\angle S Q R=\frac{112}{2}=56^{\circ}$
Since QS is perpendicular to $A B, \angle P Q A$ and $\angle P Q S$ are complementary angles.
Thus, $\angle P Q A+\angle P Q S=90^{\circ}$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
$\Rightarrow \angle P Q A+56^{\circ}=90^{\circ}$
$\Rightarrow \angle P Q A=90^{\circ}-56^{\circ}=34^{\circ}$

Question 14:
Given: $A B$ and $C D$ are two lines which are intersecting at O. $O E$ is a ray bisecting the $\angle B O D$. OF is a ray opposite to ray $O E$.

To Prove: $\angle A O F=\angle C O F$
Proof : Since $\overrightarrow{O E}$ and $\overrightarrow{O F}$ are two opposite rays, $\overrightarrow{E F}$ is a straight line passing through O .
$\therefore \angle A O F=\angle B O E$
and $\angle C O F=\angle D O E$
[Vertically opposite angles]
But $\angle B O E=\angle D O E$ (Given)
$\therefore \angle A O F=\angle C O F$
Hence, proved.

Question 15:
Given: $\overrightarrow{C F}$ is the bisector of $\angle \mathrm{BCD}$ and $\overrightarrow{C E}$ is the bisector of $\angle A C D$.
To Prove: $\angle E C F=90^{\circ}$
Proof: Since $\angle A C D$ and $\angle B C D$ forms a linear pair.
$\angle A C D+\angle B C D=180^{\circ}$

$\angle \mathrm{ACE}+\angle \mathrm{ECD}+\angle \mathrm{DCF}+\angle \mathrm{FCB}=180^{\circ}$
$\angle E C D+\angle E C D+\angle D C F+\angle D C F=180^{\circ}$
because $\angle A C E=\angle E C D$
and $\angle D C F=\angle F C B$
$2(\angle E C D)+2(\angle C D F)=180^{\circ}$
$2(\angle E C D+\angle D C F)=180^{\circ}$
$\angle E C D+\angle D C F=\frac{180}{2}=90^{\circ}$
$\angle E C F=90^{\circ}$ (Proved)

Exercise 4C

Question 1:
Since $A B$ and $C D$ are given to be parallel lines and t is a transversal.
So, $\angle 5=\angle 1=70^{\circ}$ [Corresponding angles are equal]
$\angle 3=\angle 1=70^{\circ}$ [Vertically opp. Angles]
$\angle 3+\angle 6=180^{\circ}$ [Co-interior angles on same side]
$\therefore \angle 6=180^{\circ}-\angle 3$
$=180^{\circ}-70^{\circ}=110^{\circ}$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $\angle 6=\angle 8$ [Vertically opp. Angles]

$\Rightarrow \angle 8=110^{\circ}$
$\Rightarrow \angle 4+\angle 5=180^{\circ}$ [Co-interior angles on same side]
$\angle 4=180^{\circ}-70^{\circ}=110^{\circ}$
$\angle 2=\angle 4=110^{\circ}$ [Vertically opposite angles]
$\angle 5=\angle 7$ [Vertically opposite angles]
So, $\angle 7=70^{\circ}$
$\therefore \angle 2=110^{\circ}, \angle 3=70^{\circ}, \angle 4=110^{\circ}, \angle 5=70^{\circ}, \angle 6=110^{\circ}, \angle 7=70^{\circ}$ and $\angle 8=110^{\circ}$.

Question 2:
Since $\angle 2: \angle 1=5: 4$.
Let $\angle 2$ and $\angle 1$ be 5 x and 4 x respectively.
Now, $\angle 2+\angle 1=180^{\circ}$, because $\angle 2$ and $\angle 1$ form a linear pair.
So, $5 \mathrm{x}+4 \mathrm{x}=180^{\circ}$
$\Rightarrow 9 x=180^{\circ}$
$\Rightarrow x=20^{\circ}$
$\therefore \angle 1=4 \mathrm{x}=4 \times 20^{\circ}=80^{\circ}$
And $\angle 2=5 \mathrm{x}=5 \times 20^{\circ}=100^{\circ}$
$\angle 3=\angle 1=80^{\circ}$ [Vertically opposite angles]
And $\angle 4=\angle 2=100^{\circ}$ [Vertically opposite angles]
$\angle 1=\angle 5$ and $\angle 2=\angle 6$ [Corresponding angles]
So, $\angle 5=80^{\circ}$ and $\angle 6=100^{\circ}$
$\angle 8=\angle 6=100^{\circ}$ [Vertically opposite angles]
And $\angle 7=\angle 5=80^{\circ}$ [Vertically opposite angles]
Thus, $\angle 1=80^{\circ}, \angle 2=100^{\circ}, \angle 3=\angle 80^{\circ}, \angle 4=100^{\circ}, \angle 5=80^{\circ}, \angle 6=100^{\circ}, \angle 7=80^{\circ}$ and $\angle 8=100^{\circ}$.

Question 3:
Given: $A B|\mid C D$ and $A D| \mid B C$
To Prove: $\angle A D C=\angle A B C$
Proof: Since $A B \| C D$ and $A D$ is a transversal. So sum of consecutive interior angles is
180°.
$\Rightarrow \angle B A D+\angle A D C=180^{\circ} \ldots .$. (i)
Also, $A D \| B C$ and $A B$ is transversal.
So, $\angle B A D+\angle A B C=180^{\circ}$....(ii)
From (i) and (ii) we get:
$\angle B A D+\angle A D C=\angle B A D+\angle A B C$
$\Rightarrow \angle A D C=\angle A B C$ (Proved)

Question 4:
(i) Through E draw EG \| CD. Now since EG\|CD and ED is a transversal.

So, $\angle \mathrm{GED}=\angle \mathrm{EDC}=65^{\circ}$ [Alternate interior angles]
Since EG \| CD and $A B \| C D$,
$E G \| A B$ and $E B$ is transversal.
So, $\angle B E G=\angle A B E=35^{\circ}$ [Alternate interior angles]
So, $\angle \mathrm{DEB}=\mathrm{x}^{\circ}$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $\Rightarrow \angle B E G+\angle G E D=35^{\circ}+65^{\circ}=100^{\circ}$.

Hence, $x=100$.
(ii) Through O draw OF\|CD.

Now since OF || CD and OD is transversal.
$\angle C D O+\angle F O D=180^{\circ}$
[sum of consecutive interior angles is 180°]
$\Rightarrow 25^{\circ}+\angle F O D=180^{\circ}$
$\Rightarrow \angle F O D=180^{\circ}-25^{\circ}=155^{\circ}$
As OF || CD and AB || CD [Given]
Thus, $O F \| A B$ and $O B$ is a transversal.
So, $\angle \mathrm{ABO}+\angle \mathrm{FOB}=180^{\circ}$ [sum of consecutive interior angles is 180°]
$\Rightarrow 55^{\circ}+\angle F O B=180^{\circ}$
$\Rightarrow \angle F O B=180^{\circ}-55^{\circ}=125^{\circ}$
Now, $x^{\circ}=\angle F O B+\angle F O D=125^{\circ}+155^{\circ}=280^{\circ}$.
Hence, $x=280$.
(iii) Through E, draw EF \| CD.

Now since EF || CD and EC is transversal.
$\angle F E C+\angle E C D=180^{\circ}$
[sum of consecutive interior angles is 180°]
$\Rightarrow \angle F E C+124^{\circ}=180^{\circ}$
$\Rightarrow \angle F E C=180^{\circ}-124^{\circ}=56^{\circ}$
Since EF \| CD and AB \|CD
So, $E F \| A B$ and $A E$ is a trasveral.
So, $\angle B A E+\angle F E A=180^{\circ}$
[sum of consecutive interior angles is 180°]
$\therefore 116^{\circ}+\angle F E A=180^{\circ}$
$\Rightarrow \angle F E A=180^{\circ}-116^{\circ}=64^{\circ}$
Thus, $x^{\circ}=\angle F E A+\angle F E C$
$=64^{\circ}+56^{\circ}=120^{\circ}$.
Hence, $x=120$.

Question 5:

Since $A B \| C D$ and $B C$ is a transversal.
So, $\angle A B C=\angle B C D \quad$ [atternate interior angles]
$\Rightarrow 70^{\circ}=x^{0}+\angle E C D$....(i)
Now, CD || EF and CE is transversal.
So, $\angle E C D+\angle C E F=180^{\circ} \quad$ [sum of consecutive interior angles is 180°]
$\therefore \angle E C D+130^{\circ}=180^{\circ}$
$\Rightarrow \angle E C D=180^{\circ}-130^{\circ}=50^{\circ}$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Putting $\angle E C D=50^{\circ}$ in (i) we get,
$70^{\circ}=x^{\circ}+50^{\circ}$
$\Rightarrow \mathrm{x}=70-50=20$

Question 6:
Through C draw FG || AE

Now, since CG || $B E$ and $C E$ is a transversal.
So, $\angle G C E=\angle C E A=20^{\circ} \quad$ [Alternate angles]
$\therefore \angle D C G=130^{\circ}-\angle G C E$
$=130^{\circ}-20^{\circ}=110^{\circ}$
Also, we have $A B \| C D$ and $F G$ is a transversal.
So, $\angle \mathrm{BFC}=\angle \mathrm{DCG}=110^{\circ} \quad$ [Corresponding angles]
As, $F G \| A E, A F$ is a transversal.
$\angle B F G=\angle F A E$
[Corresponding angles]
$\therefore x^{0}=\angle F A E=110^{\circ}$.
Hence, $x=110$

Question 7:

Given: AB || CD
To Prove: $\angle B A E-\angle D C E=\angle A E C$

Construction: Through E draw EF \|AB
Proof : Since $E F \| A B, A E$ is a transversal.
So, $\angle B A E+\angle A E F=180^{\circ}$....(i)
[sum of consecutive interior angles is 180°]
As EF || AB and AB || CD [Given]
So, $E F \| C D$ and $E C$ is a transversal.
So, $\angle F E C+\angle D C E=180^{\circ}$....(ii)
[sum of consecutive interior angles is 180°]
From (i) and (ii) we get,
$\angle B A E+\angle A E F=\angle F E C+\angle D C E$
$\Rightarrow \angle B A E-\angle D C E=\angle F E C-\angle A E F=\angle A E C[$ Proved $]$

Question 8:

Since $A B \| C D$ and $B C$ is a transversal.
So, $\angle B C D=\angle A B C=x^{\circ} \quad$ [Alternate angles]
As $B C \| E D$ and $C D$ is a transversal.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
$\angle B C D+\angle E D C=180^{\circ}$
$\Rightarrow \angle B C D+75^{\circ}=180^{\circ}$
$\Rightarrow \angle B C D=180^{\circ}-75^{\circ}=105^{\circ}$
$\angle A B C=105^{\circ} \quad[$ since $\angle B C D=\angle A B C]$
$\therefore x^{\circ}=\angle A B C=105^{\circ}$
Hence, $x=105$.

Question 9:
Through F, draw KH \| AB \| CD

Now, KF \| CD and FG is a transversal.
$\Rightarrow \angle K F G=\angle F G D=r^{\circ} \ldots .$. (i)
[alternate angles]
Again $A E \| K F$, and $E F$ is a transversal.
So, $\angle A E F+\angle K F E=180^{\circ}$
$\angle K F E=180^{\circ}-p^{\circ} \ldots .$. (ii)
Adding (i) and (ii) we get,
$\angle K F G+\angle K F E=180-p+r$
$\Rightarrow \angle E F G=180-p+r$
$\Rightarrow q=180-p+r$
i.e., $p+q-r=180$

Question 10:

Since $A B \| P Q$ and $E F$ is a transversal.
So, $\angle C E B=\angle E F Q \quad$ [Corresponding angles]
$\Rightarrow \angle \mathrm{EFQ}=75^{\circ}$
$\Rightarrow \angle E F G+\angle G F Q=75^{\circ}$
$\Rightarrow 25^{\circ}+y^{\circ}=75^{\circ}$
$\Rightarrow y=75-25=50$
Also, $\angle \mathrm{BEF}+\angle \mathrm{EFQ}=180^{\circ}$ [sum of consecutive interior angles is 180°]
$\angle B E F=180^{\circ}-\angle E F Q$
$=180^{\circ}-75^{\circ}$
$\angle B E F=105^{\circ}$
$\therefore \angle F E G+\angle G E B=\angle B E F=105^{\circ}$
$\Rightarrow \angle F E G=105^{\circ}-\angle G E B=105^{\circ}-20^{\circ}=85^{\circ}$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 In $\triangle E F G$ we have,

$x^{\circ}+25^{\circ}+\angle F E G=180^{\circ}$
$\Rightarrow x^{\circ}+25^{\circ}+85^{\circ}=180^{\circ}$
$\begin{aligned} \Rightarrow & x^{\circ}+110^{\circ} & =180^{\circ} \\ \Rightarrow & x^{\circ} & =180^{\circ}-110^{\circ}\end{aligned}$
$\begin{array}{ll}\Rightarrow & x^{\circ}=180^{\circ} \\ \Rightarrow & x^{\circ}=70^{\circ}\end{array}$
Hence, $x=70$.

Question 11:
Since $A B|\mid C D$ and $A C$ is a transversal.
So, $\angle \mathrm{BAC}+\angle A C D=180^{\circ}$ [sum of consecutive interior angles is 180°]
$\Rightarrow \angle A C D=180^{\circ}-\angle B A C$
$=180^{\circ}-75^{\circ}=105^{\circ}$
$\Rightarrow \angle E C F=\angle A C D \quad$ [Vertically opposite angles]
$\angle E C F=105^{\circ}$
Now in $\triangle C E F$,
$\angle E C F+\angle C E F+\angle E F C=180^{\circ}$
$\Rightarrow 105^{\circ}+x^{0}+30^{\circ}=180^{\circ}$
$\Rightarrow x=180-30-105=45$
Hence, $x=45$.

Question 12:
Since $A B \| C D$ and $P Q$ a transversal.
So, $\angle P E F=\angle E G H$ [Corresponding angles]
$\Rightarrow \angle E G H=85^{\circ}$
$\angle E G H$ and $\angle Q G H$ form a linear pair.
So, $\angle E G H+\angle Q G H=180^{\circ}$
$\Rightarrow \angle Q G H=180^{\circ}-85^{\circ}=95^{\circ}$
Similarly, $\angle G H Q+115^{\circ}=180^{\circ}$
$\Rightarrow \angle G H Q=180^{\circ}-115^{\circ}=65^{\circ}$
In $\triangle G H Q$, we have,
$x^{0}+65^{\circ}+95^{\circ}=180^{\circ}$
$\Rightarrow x=180-65-95=180-160$
$\therefore \mathrm{x}=20$

Question 13:

Since $A B \| C D$ and $B C$ is a transversal.
So, $\angle A B C=\angle B C D$
$\Rightarrow \mathrm{x}=35$
Also, $A B \| C D$ and $A D$ is a transversal.
So, $\angle \mathrm{BAD}=\angle \mathrm{ADC}$
$\Rightarrow z=75$
In $\triangle \mathrm{ABO}$, we have,
$\angle A O B+\angle B A O+\angle B O A=180^{\circ}$
$\Rightarrow x^{0}+75^{\circ}+y^{\circ}=180^{\circ}$
$\Rightarrow 35+75+y=180$
$\Rightarrow y=180-110=70$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$\therefore x=35, y=70$ and $z=75$.

Question 14:

Since $A B \| C D$ and $P Q$ is a transversal.
So, $y=75 \quad$ [Alternate angle]
Since $P Q$ is a transversal and $A B \| C D, s o x+A P Q=180^{\circ}$
[Sum of consecutive interior angles]
$\Rightarrow x^{\circ}=180^{\circ}-\mathrm{APQ}$
$\Rightarrow \mathrm{x}=180-75=105$
Also, $A B \| C D$ and $P R$ is a transversal.
So, $\angle A P R=\angle P R D \quad$ [Alternate angle]
$\Rightarrow \angle \mathrm{APQ}+\angle \mathrm{QPR}=\angle \mathrm{PRD}[$ Since $\angle \mathrm{APR}=\angle \mathrm{APQ}+\angle \mathrm{QPR}]$
$\Rightarrow 75^{\circ}+z^{\circ}=125^{\circ}$
$\Rightarrow z=125-75=50$
$\therefore x=105, y=75$ and $z=50$.

Question 15:
$\angle P R Q=x^{\circ}=60^{\circ} \quad$ [vertically opposite angles]
Since $E F \| G H$, and $R Q$ is a transversal.
So, $\angle x=\angle y \quad$ [Alternate angles]
$\Rightarrow \mathrm{y}=60$
$A B \| C D$ and $P R$ is a transversal.
So, $\angle P R D=\angle A P R \quad$ [Alternate angles]
$\Rightarrow \angle P R Q+\angle Q R D=\angle A P R[$ since $\angle P R D=\angle P R Q+\angle Q R D]$
$\Rightarrow x+\angle Q R D=110^{\circ}$
$\Rightarrow \angle Q R D=110^{\circ}-60^{\circ}=50^{\circ}$
In $\triangle Q R S$, we have,
$\angle Q R D+t^{\circ}+y^{\circ}=180^{\circ}$
$\Rightarrow 50+t+60=180$
$\Rightarrow t=180-110=70$
Since, $A B \| C D$ and $G H$ is a transversal
So, $z^{\circ}=t^{\circ}=70^{\circ}$ [Alternate angles]
$\therefore x=60, y=60, z=70$ and $t=70$

Question 16:
(i) Lines I and m will be parallel if $3 x-20=2 x+10$
[Since, if corresponding angles are equal, lines are parallel]
$\Rightarrow 3 \mathrm{x}-2 \mathrm{x}=10+20$
$\Rightarrow x=30$
(ii) Lines will be parallel if $(3 x+5)^{\circ}+4 x^{\circ}=180^{\circ}$
[if sum of pairs of consecutive interior angles is 180°, the lines are parallel]
So, $(3 x+5)+4 x=180$
$\Rightarrow 3 x+5+4 x=180$
$\Rightarrow 7 x=180-5=175$
$\Rightarrow x=\frac{175}{7}=25$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Question 17:
Given: Two lines m and n are perpendicular to a given line I.

To Prove: m || n
Proof: Since $m \perp 1$
So, $\angle 1=90^{\circ}$
Again, since $\mathrm{n} \perp$ ।
$\angle 2=90^{\circ}$
$\therefore \angle 1=\angle 2=90^{\circ}$
But $\angle 1$ and $\angle 2$ are the corresponding angles made by the transversal I with lines m and n and they are proved to be equal.
Thus, m || n.

Exercise 4D

Question 1:

Since, sum of the angles of a triangle is 180°
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A+76^{\circ}+48^{\circ}=180^{\circ}$
$\Rightarrow \angle A=180^{\circ}-124^{\circ}=56^{\circ}$
$\therefore \angle A=56^{\circ}$

Question 2:
Let the measures of the angles of a triangle are $(2 x)^{\circ},(3 x)^{0}$ and $(4 x)^{0}$.
Then, $2 x+3 x+4 x=180 \quad$ [sum of the angles of a triangle is 180°]
$\Rightarrow 9 x=180$
$\Rightarrow x=\frac{180}{9}=20$
\therefore The measures of the required angles are:
$2 x=(2 \times 20)^{\circ}=40^{\circ}$
$3 x=(3 \times 20)^{\circ}=60^{\circ}$
$4 \mathrm{x}=(4 \times 20)^{\circ}=80^{\circ}$

Question 3:
Let $3 \angle A=4 \angle B=6 \angle C=x$ (say)
Then, $3 \angle A=x$
$\Rightarrow \angle \mathrm{A}=\frac{x}{3}$
$4 \angle B=x$
$\Rightarrow \angle \mathrm{B}=\frac{x}{4}$
and $6 \angle C=x$
$\Rightarrow \angle C=\frac{x}{6}$
As $\angle A+\angle B+\angle C=180^{\circ}$

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$$
\begin{aligned}
& \Rightarrow \quad \frac{x}{3}+\frac{x}{4}+\frac{x}{6}=180 \\
& \left.\Rightarrow \quad \begin{array}{rl}
4 x+3 x^{2}+2 x \\
\Rightarrow & =180 \\
\Rightarrow & 9 x
\end{array}\right)=180 \times 12 \\
& \Rightarrow \\
& \therefore \angle A=\frac{x}{3}=\frac{240}{3}=80^{\circ} \\
& \Rightarrow \\
& \angle B=\frac{x}{4}=\frac{240}{4}=60^{\circ} \\
& \angle C=\frac{x}{6}=\frac{240}{6}=40^{\circ}
\end{aligned}
$$

$$
\Rightarrow \quad x=\frac{180 \times 12}{9}=240
$$

Question 4:
$\angle A+\angle B=108^{\circ}$ [Given]
But as $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ are the angles of a triangle,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 108^{\circ}+\angle C=180^{\circ}$
$\Rightarrow C=180^{\circ}-108^{\circ}=72^{\circ}$
Also, $\angle \mathrm{B}+\angle \mathrm{C}=130^{\circ}$ [Given]
$\Rightarrow \angle \mathrm{B}+72^{\circ}=130^{\circ}$
$\Rightarrow \angle B=130^{\circ}-72^{\circ}=58^{\circ}$
Now as, $\angle A+\angle B=108^{\circ}$
$\Rightarrow \angle A+58^{\circ}=108^{\circ}$
$\Rightarrow \angle A=108^{\circ}-58^{\circ}=50^{\circ}$
$\therefore \angle A=50^{\circ}, \angle B=58^{\circ}$ and $\angle C=72^{\circ}$.

Question 5:
Since. $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ are the angles of a triangle .
So, $\angle A+\angle B+\angle C=180^{\circ}$
Now, $\angle A+\angle B=125^{\circ}$ [Given]
$\therefore 125^{\circ}+\angle C=180^{\circ}$
$\Rightarrow \angle C=180^{\circ}-125^{\circ}=55^{\circ}$
Also, $\angle A+\angle C=113^{\circ}$ [Given]
$\Rightarrow \angle A+55^{\circ}=113^{\circ}$
$\Rightarrow \angle A=113^{\circ}-55^{\circ}=58^{\circ}$
Now as $\angle A+\angle B=125^{\circ}$
$\Rightarrow 58^{\circ}+\angle B=125^{\circ}$
$\Rightarrow \angle B=125^{\circ}-58^{\circ}=67^{\circ}$
$\therefore \angle A=58^{\circ}, \angle B=67^{\circ}$ and $\angle C=55^{\circ}$.

Question 6:
Since, $\angle \mathrm{P}, \angle \mathrm{Q}$ and $\angle \mathrm{R}$ are the angles of a triangle.
So, $\angle P+\angle Q+\angle R=180^{\circ} \ldots$. (i)
Now, $\angle P-\angle Q=42^{\circ}$ [Given]
$\Rightarrow \angle P=42^{\circ}+\angle Q \ldots$...ii)
and $\angle \mathrm{Q}-\angle \mathrm{R}=21^{\circ}$ [Given]
$\Rightarrow \angle R=\angle Q-21^{\circ}$....(iii)
Substituting the value of $\angle P$ and $\angle R$ from (ii) and (iii) in (i), we get,
$\Rightarrow 42^{\circ}+\angle Q+\angle Q+\angle Q-21^{\circ}=180^{\circ}$
$\Rightarrow 3 \angle Q+21^{\circ}=180^{\circ}$
$\Rightarrow 3 \angle Q=180^{\circ}-21^{\circ}=159^{\circ}$
$\angle Q=\frac{159}{3}=53^{\circ}$

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $\therefore \angle P=42^{\circ}+\angle Q$

$=42^{\circ}+53^{\circ}=95^{\circ}$
$\angle R=\angle Q-21^{\circ}$
$=53^{\circ}-21^{\circ}=32^{\circ}$
$\therefore \angle P=95^{\circ}, \angle Q=53^{\circ}$ and $\angle \mathrm{R}=32^{\circ}$.

Question 7:
Given that the sum of the angles A and B of a $A B C$ is 116°, i.e., $\angle A+\angle B=116^{\circ}$.
Since, $\angle A+\angle B+\angle C=180^{\circ}$
So, $116^{\circ}+\angle C=180^{\circ}$
$\Rightarrow \angle C=180^{\circ}-116^{\circ}=64^{\circ}$
Also, it is given that:
$\angle A-\angle B=24^{\circ}$
$\Rightarrow \angle A=24^{\circ}+\angle B$
Putting, $\angle A=24^{\circ}+\angle B$ in $\angle A+\angle B=116^{\circ}$, we get,
$\Rightarrow 24^{\circ}+\angle B+\angle B=116^{\circ}$
$\Rightarrow 2 \angle B+24^{\circ}=116^{\circ}$
$\Rightarrow 2 \angle B=116^{\circ}-24^{\circ}=92^{\circ}$
$\angle B=\frac{92}{2}=46^{\circ}$
Therefore, $\angle A=24^{\circ}+46^{\circ}=70^{\circ}$
$\therefore \angle A=70^{\circ}, \angle B=46^{\circ}$ and $\angle C=64^{\circ}$.

Question 8:
Let the two equal angles, A and B , of the triangle be x^{O} each.
We know,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow x^{\circ}+x^{\circ}+\angle C=180^{\circ}$
$\Rightarrow 2 x^{\circ}+\angle C=180^{\circ} \ldots .$. (i)
Also, it is given that,
$\angle C=x^{0}+18^{\circ} \ldots$...ii)
Substituting $\angle C$ from (ii) in (i), we get,
$\Rightarrow 2 x^{\circ}+x^{\circ}+18^{\circ}=180^{\circ}$
$\Rightarrow 3 x^{\circ}=180^{\circ}-18^{\circ}=162^{\circ}$
$x=\frac{162}{3}=54^{\circ}$
Thus, the required angles of the triangle are $54^{\circ}, 54^{\circ}$ and $x^{\circ}+18^{\circ}=54^{\circ}+18^{\circ}=72^{\circ}$.

Question 9:
Let $\angle C$ be the smallest angle of $A B C$.
Then, $\angle A=2 \angle C$ and $B=3 \angle C$
Also, $\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 2 \angle C+3 \angle C+\angle C=180^{\circ}$
$\Rightarrow 6 \angle C=180^{\circ}$
$\Rightarrow \angle C=30^{\circ}$
So, $\angle A=2 \angle C=2\left(30^{\circ}\right)=60^{\circ}$
$\angle B=3 \angle C=3\left(30^{\circ}\right)=90^{\circ}$
\therefore The required angles of the triangle are $60^{\circ}, 90^{\circ}, 30^{\circ}$.

Question 10:
Let $A B C$ be a right angled triangle and $\angle C=90^{\circ}$
Since, $\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A+\angle B=180^{\circ}-\angle C=180^{\circ}-90^{\circ}=90^{\circ}$
Suppose $\angle A=53^{\circ}$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 Then, $53^{\circ}+\angle B=90^{\circ}$

$\Rightarrow \angle B=90^{\circ}-53^{\circ}=37^{\circ}$
\therefore The required angles are $53^{\circ}, 37^{\circ}$ and 90°.

Question 11:
Let $A B C$ be a triangle.
Given, $\angle A+\angle B=\angle C$
We know, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle C+\angle C=180^{\circ}$
$\Rightarrow 2 \angle C=180^{\circ}$
$\Rightarrow \angle C=\frac{180}{2}=90^{\circ}$
So, we find that $A B C$ is a right triangle, right angled at C.

Question 12:
Given : $\triangle \mathrm{ABC}$ in which $\angle A=90^{\circ}, \mathrm{AL} \perp B C$
To Prove: $\angle B A L=\angle A C B$
Proof:
In right triangle $\triangle \mathrm{ABC}$,
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{BAC}+\angle \mathrm{ACB}=180^{\circ}$
$\Rightarrow \angle A B C+90^{\circ}+\angle A C B=180^{\circ}$
$\Rightarrow \angle A B C+\angle A C B=180^{\circ}-90^{\circ}$
$\therefore \angle \mathrm{ABC}+\angle \mathrm{ACB}=90^{\circ}$
$\Rightarrow \angle A C B=90^{\circ}-\angle A B C$
Similarly since $\triangle \mathrm{ABL}$ is a right triangle, we find that,
$\angle B A L=90^{\circ}-\angle A B C$
Thus from (1) and (2), we have
$\therefore \angle \mathrm{BAL}=\angle \mathrm{ACB}$ (Proved)

Question 13:
Let ABC be a triangle.
So, $\angle A<\angle B+\angle C$
Adding A to both sides of the inequality,
$\Rightarrow 2 \angle A<\angle A+\angle B+\angle C$
$\Rightarrow 2 \angle A<180^{\circ} \quad\left[\right.$ Since $\left.\angle A+\angle B+\angle C=180^{\circ}\right]$
$\Rightarrow \angle A<\frac{180}{2}=90^{\circ}$
Similarly, $\angle B<\angle A+\angle C$
$\Rightarrow \angle \mathrm{B}<90^{\circ}$
and $\angle C<\angle A+\angle B$
$\Rightarrow \angle C<90^{\circ}$
$\triangle \mathrm{ABC}$ is an acute angled triangle.

Question 14:
Let $A B C$ be a triangle and $\angle B>\angle A+\angle C$
Since, $\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A+\angle C=180^{\circ}-\angle B$
Therefore, we get
$\angle B>180^{\circ}-\angle B$
Adding $\angle \mathrm{B}$ on both sides of the inequality, we get,
$\Rightarrow \angle B+\angle B>180^{\circ}-\angle B+\angle B$
$\Rightarrow 2 \angle B>180^{\circ}$
$\Rightarrow \angle B>\frac{180}{2}=90^{\circ}$
i.e., $\angle \mathrm{B}>90^{\circ}$ which means $\angle \mathrm{B}$ is an obtuse angle.

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $\triangle A B C$ is an obtuse angled triangle.

```
Question 15:
Since }\angleACB\mathrm{ and }\angleACD form a linear pair
So, }\angleACB+\angleACD=180'
# LACB + 128员 = 180
=>\angleACB=180
Also,}\angleABC+\angleACB+\angleBAC=18\mp@subsup{0}{}{\circ
#43}+5\mp@subsup{2}{}{\circ}+\angleBAC=18\mp@subsup{0}{}{\circ
```



```
=>\angleBAC = 180}-9\mp@subsup{0}{}{\circ}=8\mp@subsup{5}{}{\circ
\therefore\angleACB=52员 and }\angle\textrm{BAC}=8\mp@subsup{5}{}{\circ}\mathrm{ .
```

Question 16:
As $\angle D B A$ and $\angle A B C$ form a linear pair.
So, $\angle D B A+\angle A B C=180^{\circ}$
$\Rightarrow 106^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow \angle A B C=180^{\circ}-106^{\circ}=74^{\circ}$
Also, $\angle A C B$ and $\angle A C E$ form a linear pair.
So, $\angle A C B+\angle A C E=180^{\circ}$
$\Rightarrow \angle A C B+118^{\circ}=180^{\circ}$
$\Rightarrow \angle A C B=180^{\circ}-118^{\circ}=62^{\circ}$
In $\angle A B C$, we have,
$\angle A B C+\angle A C B+\angle B A C=180^{\circ}$
$74^{\circ}+62^{\circ}+\angle B A C=180^{\circ}$
$\Rightarrow 136^{\circ}+\angle B A C=180^{\circ}$
$\Rightarrow \angle B A C=180^{\circ}-136^{\circ}=44^{\circ}$
\therefore In triangle $A B C, \angle A=44^{\circ}, \angle B=74^{\circ}$ and $\angle C=62^{\circ}$

Question 17:
(i) $\angle E A B+\angle B A C=180^{\circ}$ [Linear pair angles]

$110^{\circ}+\angle B A C=180^{\circ}$
$\Rightarrow \angle B A C=180^{\circ}-110^{\circ}=70^{\circ}$
Again, $\angle B C A+\angle A C D=180^{\circ}$ [Linear pair angles]
$\Rightarrow \angle B C A+120^{\circ}=180^{\circ}$
$\Rightarrow \angle B C A=180^{\circ}-120^{\circ}=60^{\circ}$
Now, in $\triangle A B C$,
$\angle A B C+\angle B A C+\angle A C B=180^{\circ}$
$x^{\circ}+70^{\circ}+60^{\circ}=180^{\circ}$
$\Rightarrow x+130^{\circ}=180^{\circ}$
$\Rightarrow x=180^{\circ}-130^{\circ}=50^{\circ}$
$\therefore \mathrm{x}=50$
(ii)

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

In $\triangle A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 30^{\circ}+40^{\circ}+\angle C=180^{\circ}$
$\Rightarrow 70^{\circ}+\angle C=180^{\circ}$
$\Rightarrow \angle C=180^{\circ}-70^{\circ}=110^{\circ}$
Now $\angle B C A+\angle A C D=180^{\circ}$ [Linear pair]
$\Rightarrow 110^{\circ}+\angle A C D=180^{\circ}$
$\Rightarrow \angle A C D=180^{\circ}-110^{\circ}=70^{\circ}$
In $\triangle E C D$,
$\Rightarrow \angle E C D+\angle C D E+\angle C E D=180^{\circ}$
$\Rightarrow 70^{\circ}+50^{\circ}+\angle C E D=180^{\circ}$
$\Rightarrow 120^{\circ}+\angle C E D=180^{\circ}$
$\angle C E D=180^{\circ}-120^{\circ}=60^{\circ}$
Since $\angle A E D$ and $\angle C E D$ from a linear pair
So, $\angle A E D+\angle C E D=180^{\circ}$
$\Rightarrow x^{\circ}+60^{\circ}=180^{\circ}$
$\Rightarrow x^{\circ}=180^{\circ}-60^{\circ}=120^{\circ}$
$\therefore \mathrm{x}=120$
(iii)

$\angle E A F=\angle B A C$ [Vertically opposite angles]
$\Rightarrow \angle B A C=60^{\circ}$
In $\triangle A B C$, exterior $\angle A C D$ is equal to the sum of two opposite interior angles.
So, $\angle A C D=\angle B A C+\angle A B C$
$\Rightarrow 115^{\circ}=60^{\circ}+x^{\circ}$
$\Rightarrow x^{\circ}=115^{\circ}-60^{\circ}=55^{\circ}$
$\therefore \mathrm{x}=55$
(iv)

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

[^0](v)

In $\triangle A E F$,
Exterior $\angle B E D=\angle E A F+\angle E F A$
$\Rightarrow 100^{\circ}=40^{\circ}+\angle E F A$
$\Rightarrow \angle E F A=100^{\circ}-40^{\circ}=60^{\circ}$
Also, $\angle C F D=\angle E F A$ [Vertically Opposite angles]
$\Rightarrow \angle C F D=60^{\circ}$
Now in \triangle FCD,
Exterior $\angle B C F=\angle C F D+\angle C D F$
$\Rightarrow 90^{\circ}=60^{\circ}+x^{\circ}$
$\Rightarrow x^{\circ}=90^{\circ}-60^{\circ}=30^{\circ}$
$\therefore \mathrm{x}=30$
(vi)

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

In $\triangle \mathrm{ABE}$, we have,
$\angle A+\angle B+\angle E=180^{\circ}$
$\Rightarrow 75^{\circ}+65^{\circ}+\angle E=180^{\circ}$
$\Rightarrow 140^{\circ}+\angle E=180^{\circ}$
$\Rightarrow \angle E=180^{\circ}-140^{\circ}=40^{\circ}$
Now, $\angle C E D=\angle A E B$ [Vertically opposite angles]
$\Rightarrow \angle C E D=40^{\circ}$
Now, in $\triangle C E D$, we have,
$\angle C+\angle E+\angle D=180^{\circ}$
$\Rightarrow 110^{\circ}+40^{\circ}+x^{\circ}=180^{\circ}$
$\Rightarrow 150^{\circ}+x^{\circ}=180^{\circ}$
$\Rightarrow x^{\circ}=180^{\circ}-150^{\circ}=30^{\circ}$
$\therefore \mathrm{x}=30$

Question 18:
Produce $C D$ to cut $A B$ at E.

Now, in $\triangle B D E$, we have,
Exterior $\angle C D B=\angle C E B+\angle D B E$
$\Rightarrow x^{\circ}=\angle C E B+45^{\circ}$
In \triangle AEC, we have,
Exterior $\angle C E B=\angle C A B+\angle A C E$
$=55^{\circ}+30^{\circ}=85^{\circ}$
Putting $\angle C E B=85^{\circ}$ in (i), we get,
$x^{\circ}=85^{\circ}+45^{\circ}=130^{\circ}$
$\therefore \mathrm{x}=130$

Question 19:
The angle $\angle B A C$ is divided by $A D$ in the ratio $1: 3$.
Let $\angle B A D$ and $\angle D A C$ be y and $3 y$, respectively.
As BAE is a straight line,
$\angle B A C+\angle C A E=180^{\circ} \quad[$ linear pair $]$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

```
\(\Rightarrow \angle B A D+\angle D A C+\angle C A E=180^{\circ}\)
\(\Rightarrow y+3 y+108^{\circ}=180^{\circ}\)
\(\Rightarrow 4 y=180^{\circ}-108^{\circ}=72^{\circ}\)
\(\Rightarrow y=\frac{72}{4}=18^{\circ}\)
Now, in \(\triangle A B C\),
\(\angle A B C+\angle B C A+\angle B A C=180^{\circ}\)
\(y+x+4 y=180^{\circ}\)
[Since, \(\angle A B C=\angle B A D\) (given \(A D=D B\) ) and \(\angle B A C=y+3 y=4 y\) ]
\(\Rightarrow 5 y+x=180\)
\(\Rightarrow 5 \times 18+x=180\)
\(\Rightarrow 90+x=180\)
\(\therefore x=180-90=90\)
```

Question 20:
Given : $A \triangle A B C$ in which $B C, C A$ and $A B$ are produced to D, E and F respectively.
To prove : Exterior $\angle D C A+$ Exterior $\angle B A E+$ Exterior $\angle F B D=360^{\circ}$
Proof: Exterior $\angle D C A=\angle A+\angle B$....(i)
Exterior $\angle F A E=\angle B+\angle C$....(ii)
Exterior $\angle F B D=\angle A+\angle C$....(iii)
Adding (i), (ii) and (iii), we get,
Ext. $\angle D C A+$ Ext. $\angle F A E+$ Ext. $\angle F B D$
$=\angle A+\angle B+\angle B+\angle C+\angle A+\angle C$
$=2 \angle A+2 \angle B+2 \angle C$
$=2(\angle A+\angle B+\angle C)$
$=2 \times 180^{\circ}$
[Since, in triangle the sum of all three angle is 180°]
= 360°
Hence, proved.

Question 21:
In $\triangle A C E$, we have,
$\angle A+\angle C+\angle E=180^{\circ} \ldots .$. (i)
In $\triangle B D F$, we have,
$\angle B+\angle D+\angle F=180^{\circ} \ldots .$. (ii)
Adding both sides of (i) and (ii), we get,
$\angle A+\angle C+\angle E+\angle B+\angle D+\angle F=180^{\circ}+180^{\circ}$
$\Rightarrow \angle A+\angle B+\angle C+\angle D+\angle E+\angle F=360^{\circ}$.

Question 22:
Given : In $\triangle A B C$, bisectors of $\angle B$ and $\angle C$ meet at O and $\angle A=70^{\circ}$
In $\triangle B O C$, we have,

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$$
\begin{aligned}
& \Rightarrow \angle \mathrm{BOC}+\frac{1}{2} \angle \mathrm{~B}+\frac{1}{2} \angle \mathrm{C}=180^{\circ} \\
& \Rightarrow \angle \mathrm{BOC}=180^{\circ}-\frac{1}{2} \angle \mathrm{~B}-\frac{1}{2} \angle \mathrm{C} \\
& =180^{\circ}-\frac{1}{2}(\angle \mathrm{~B}+\angle \mathrm{C}) \\
& =180^{\circ}-\frac{1}{2}\left[180^{\circ}-\angle \mathrm{A}\right] \\
& {\left[\because \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}\right]} \\
& =180^{\circ}-\frac{1}{2}\left[180^{\circ}-70^{\circ}\right] \\
& =180^{\circ}-\frac{1}{2} \times 110^{\circ} \\
& \angle B O C+\angle O B C+\angle O C B=180^{\circ} \\
& =180^{\circ}-55^{\circ}=125^{\circ} \\
& \therefore \angle B O C=125^{\circ} .
\end{aligned}
$$

Question 23:

We have a $\triangle A B C$ whose sides $A B$ and $A C$ have been procued to D and $E . A=40^{\circ}$ and bisectors of $\angle C B D$ and $\angle B C E$ meet at O.
In $\triangle \mathrm{ABC}$, we have,
Exterior $\angle C B D=C+40^{\circ}$

$$
\Rightarrow
$$

$$
\begin{aligned}
\angle C B O & =\frac{1}{2} \text { Ext. } \angle C B D \\
& =\frac{1}{2}\left(\angle C+40^{\circ}\right) \\
& =\frac{1}{2} \angle C+20^{\circ}
\end{aligned}
$$

And exterior $\angle B C E=B+40^{\circ}$
\Rightarrow

$$
\begin{aligned}
\angle B C O & =\frac{1}{2} \text { Ext. } \angle B C E \\
& =\frac{1}{2}\left(\angle B+40^{\circ}\right) \\
& =\frac{1}{2} \angle B+20^{\circ}
\end{aligned}
$$

Now, in $\triangle B C O$, we have,

$$
\begin{aligned}
& \angle B O C=180^{\circ}-\angle C B O-\angle B C O \\
& =180^{\circ}-\frac{1}{2} \angle C-20^{\circ}-\frac{1}{2} \angle B-20^{\circ} \\
& =180^{\circ}-\frac{1}{2} \angle C-\frac{1}{2} \angle B-20^{\circ}-20^{\circ} \\
& =180^{\circ}-\frac{1}{2}(\angle B+\angle C)-40^{\circ} \\
& =140^{\circ}-\frac{1}{2}(\angle B+\angle C) \\
& =140^{\circ}-\frac{1}{2}\left[180^{\circ}-\angle A\right] \\
& =140^{\circ}-90^{\circ}+\frac{1}{2} \angle A \\
& =50^{\circ}+\frac{1}{2} \angle A \\
& =50^{\circ}+\frac{1}{2} \times 40^{\circ} \\
& =50^{\circ}+20^{\circ} \\
& =70^{\circ}
\end{aligned}
$$

Thus, $\angle B O C=70^{\circ}$

Question 24:
In the given $\triangle A B C$, we have,
$\angle A: \angle B: \angle C=3: 2: 1$
Let $\angle A=3 x, \angle B=2 x, \angle C=x$. Then,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 3 x+2 x+x=180^{\circ}$
$\Rightarrow 6 x=180^{\circ}$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
$\Rightarrow x=30^{\circ}$
$\angle A=3 x=330^{\circ}=90^{\circ}$
$\angle B=2 x=230^{\circ}=60^{\circ}$
and, $\angle C=x=30^{\circ}$
Now, in $\triangle A B C$, we have,
Ext $\angle A C E=\angle A+\angle B=90^{\circ}+60^{\circ}=150^{\circ}$
$\angle A C D+\angle E C D=150^{\circ}$
$\Rightarrow \angle E C D=150^{\circ}-\angle A C D$
$\Rightarrow \angle E C D=150^{\circ}-90^{\circ} \quad\left[\right.$ since $\left., \mathrm{AD} \perp \mathrm{CD}, \angle \mathrm{ACD}=90^{\circ}\right]$
$\Rightarrow \angle E C D=60^{\circ}$

Question 25:
In $\triangle \mathrm{ABC}, \mathrm{AN}$ is the bisector of $\angle \mathrm{A}$ and $\mathrm{AM} \perp \mathrm{BC}$.
Now in $\triangle A B C$ we have;
$\angle A=180^{\circ}-\angle B-\angle C$
$\Rightarrow \angle A=180^{\circ}-65^{\circ}-30^{\circ}$
$=180^{\circ}-95^{\circ}$
$=85^{\circ}$
Now, in $\triangle \mathrm{ANC}$ we have;
Ext. $\angle \mathrm{MNA}=\angle \mathrm{NAC}+30^{\circ}$
$=\frac{1}{2} \angle A+30^{\circ}$
$=\frac{85^{\circ}}{2}+30^{\circ}$
$=\frac{85^{\circ}+60^{\circ}}{2}$
$=\frac{145^{2}}{2}$
Therefore, $\angle M N A=\frac{145^{\circ}}{2}$
${ }^{\operatorname{In}} \triangle$ MAN. we have;
$\angle \mathrm{MAN}=180^{\circ}-\angle \mathrm{AMN}-\angle \mathrm{MNA}$
$=180^{\circ}-90^{\circ}-\angle M N A\left[\right.$ since $\left.A M \perp B C, \angle A M N=90^{\circ}\right]$
$=90^{\circ}-\frac{145^{\circ}}{2} \quad$ [since $\angle M N A=\frac{145^{\circ}}{2}$]
$=\frac{180^{\circ}-145^{\circ}}{2}$
$=\frac{35^{\circ}}{2}$
$=17.5^{\circ}$
Thus, $\angle \mathrm{MAN}=$

Question 26:
(i) False (ii) True (iii) False (iv) False (v) True (vi) True.

[^0]: Since $A B \| C D$ and $A D$ is a transversal.
 So, $\angle \mathrm{BAD}=\angle \mathrm{ADC}$
 $\Rightarrow \angle A D C=60^{\circ}$
 In $\angle E C D$, we have,
 $\angle E+\angle C+\angle D=180^{\circ}$
 $\Rightarrow x^{\circ}+45^{\circ}+60^{\circ}=180^{\circ}$
 $\Rightarrow x^{0}+105^{\circ}=180^{\circ}$
 $\Rightarrow x^{\circ}=180^{\circ}-105^{\circ}=75^{\circ}$
 $\therefore \mathrm{x}=75$

