Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

 PolynomialsIf ' \boldsymbol{x} ' is a variable, ' n ' is a positive integer and $\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\mathrm{n}}$ are constants, then a polynomial in variable x is $\mathrm{f}(x)=\boldsymbol{a}_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$

Degree of a Polynomial: The power of the highest degree term

Zero of a Polynomial: A real number α is a zero of a polynomial $f(x)$, iff $f(\alpha)=0$.
Finding the zero of a polynomial $f(x)$ means solving the polynomial equation $f(x)=0$

Polynomial Classification
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { Degree } & \text { Name } & \begin{array}{c}\text { Number of } \\
\text { Terms }\end{array}
$$ \& Name

\hline 0 \& Constant \& \& 1\end{array}\right)\) Monomial | 1 | Linear | 2 | Binomial |
| :---: | :---: | :---: | :---: |
| 2 | Quadratic | 3 | Trinomial |
| 3 | Cubic | 4 | Polynomial of
 4 |
| 4 | Quartic | | |
| 5 | Quintic | | |

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Exercise 2A

Question 1:

(i) It is a polynomial, Degree $=5$.
(ii) It is polynomial, Degree $=3$.
(iii) It is polynomial, Degree $=2$.
(iv) It is not a polynomial.
(v) It is not a polynomial.
(vi) It is polynomial, Degree $=108$.
(vii) It is not a polynomial.
(viii) It is a polynomial, Degree $=2$.
(ix) It is not a polynomial.
(x) It is a polynomial, Degree $=0$.
(xi) It is a polynomial, Degree $=0$.
(xii) It is a polynomial, Degree $=2$.

Question 2:

The degree of a polynomial in one variable is the highest power of the variable.
(i) Degree of $2 x-\sqrt{5}$ is 1 .
(ii) Degree of $3-x+x^{2}-6 x^{3}$ is 3 .
(iii) Degree of 9 is 0 .
(iv) Degree of $8 x^{4}-36 x+5 x^{7}$ is 7 .
(v) Degree of $x^{9}-x^{5}+3 x^{10}+8$ is 10 .

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 (vi) Degree of $2-3 x^{2}$ is 2 .

```
Question 3:
(i) Coefficient of \(x^{3}\) in \(2 x+x^{2}-5 x^{3}+x^{4}\) is -5
(ii) Coefficient of \(x\) in \(\sqrt{3}-2 \sqrt{2} x+4 x^{2}\) is \(-2 \sqrt{2}\)
(iii) Coefficient of \(x^{2}\) in \(\frac{\pi}{3} x^{2}+7 x-3\) is \(\frac{\pi}{3}\)
(iv) Coefficient of \(x^{2}\) in \(3 x-5\) is 0 .
```

Question 4:
(i) $x^{27}-36$
(ii) y^{16}
(iii) $5 x^{3}-8 x+7$

Question 5:
(i) It is a quadratic polynomial.
(ii) It is a cubic polynomial.
(iii) It is a quadratic polynomial.
(iv) It is a linear polynomial.
(v) It is a linear polynomial.
(vi) It is a cubic polynomial.

Exercise 2B
Question 1:
$p(x)=5-4 x+2 x^{2}$
(i) $p(0)=5-4(0)+2(0)^{2}=5$
(ii) $p(3)=5-4(3)+2(3)^{2}$
$=5-12+18$
$=23-12=11$
(iii) $p(-2)=5-4(-2)+2(-2)^{2}$
$=5+8+8=21$

Question 2:
$p(y)=4+3 y-y^{2}+5 y^{3}$
(i) $p(0)=4+3(0)-0^{2}+5(0)^{3}$
$=4+0-0+0=4$
(ii) $p(2)=4+3(2)-2^{2}+5(2)^{3}$
$=4+6-4+40$
$=10-4+40=46$
(iii) $p(-1)=4+3(-1)-(-1)^{2}+5(-1)^{3}$
$=4-3-1-5=-5$

Question 3:
$f(t)=4 t^{2}-3 t+6$
(i) $f(0)=4(0)^{2}-3(0)+6$
$=0-0+6=6$
(ii) $f(4)=4(4)^{2}-3(4)+6$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $=64-12+6=58$

```
(iii) f(-5)=4(-5) 2-3(-5)+6
= 100+15 + 6 = 121
```

Question 4:
(i) $p(x)=0$
$\Rightarrow x-5=0$
$\Rightarrow x=5$
$\Rightarrow 5$ is the zero of the polynomial $p(x)$.
(ii) $q(x)=0$
$\Rightarrow x+4=0$
$\Rightarrow x=-4$
$\Rightarrow-4$ is the zero of the polynomial $q(x)$.
(iii) $p(t)=0$
$\Rightarrow 2 \mathrm{t}-3=0$
$\Rightarrow 2 t=3$
$\Rightarrow \mathrm{t}=\frac{3}{2}$
$\Rightarrow t=\frac{3}{2}$ is the zero of the polynomial $p(t)$.
(iv) $f(x)=0$
$\Rightarrow 3 x+1=0$
$\Rightarrow 3 x=-1$
$\Rightarrow x=\frac{-1}{3}$
$\Rightarrow x=\frac{-1}{3}$ is the zero of the polynomial $f(x)$.
(v) $g(x)=0$
$\Rightarrow 5-4 \mathrm{x}=0$
$\Rightarrow-4 \mathrm{x}=-5$
$\Rightarrow \mathrm{x}=\frac{5}{4}$
$\Rightarrow x=\frac{5}{4}$ is the zero of the polynomial $g(x)$.
(vi) $h(x)=0$
$\Rightarrow 6 x-1=0$
$\Rightarrow 6 x=1$
$\Rightarrow x=\frac{1}{6}$
$\Rightarrow x=\frac{1}{6}$ is the zero of the polynomial $h(x)$.
(vii) $p(x)=0$
$\Rightarrow \mathrm{ax}+\mathrm{b}=0$
$\Rightarrow \mathrm{ax}=-\mathrm{b}$
$\Rightarrow \mathrm{x}=\frac{-b}{a}$
$\Rightarrow \mathrm{x}=\frac{-b}{a}$ is the zero of the polynomial $\mathrm{p}(\mathrm{x})$
(viii) $q(x)=0$
$\Rightarrow 4 \mathrm{x}=0$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions $\Rightarrow x=0$
 $\Rightarrow 0$ is the zero of the polynomial $q(x)$.

(ix) $p(x)=0$
$\Rightarrow a x=0$
$\Rightarrow \mathrm{x}=0$
$\Rightarrow 0$ is the zero of the polynomial $p(x)$.

Question 5:
(i) $p(x)=x-4$

Then, $p(4)=4-4=0$
$\Rightarrow 4$ is a zero of the polynomial $p(x)$.
(ii) $p(x)=x-3$

Then, $p(-3)=-3-3=-6$
$\Rightarrow-3$ is not a zero of the polynomial $p(x)$.
(iii) $p(y)=2 y+1$

$$
\begin{aligned}
& \text { Then, } p\left(-\frac{1}{2}\right)=2\left(\frac{-1}{2}\right)+1=0 \\
& \Rightarrow \frac{-1}{2} \text { is a zero of the polyno }
\end{aligned}
$$

(iv) $p(x)=2-5 x$

Then, $p\left(\frac{2}{5}\right)=2-5\left(\frac{2}{5}\right)=2-2=0$
$\underline{2}$
$\Rightarrow \frac{2}{5}$ is a zero of the polynomial $p(x)$.
(v) $p(x)=(x-1)(x-2)$

Then, $p(1)=(1-1)(1-2)=0-1=0$
$\Rightarrow 1$ is a zero of the polynomial $p(x)$.
Also, $p(2)=(2-1)(2-2)=10=0$
$\Rightarrow 2$ is a zero of the polynomial $p(x)$.
Hence, 1 and 2 are the zeroes of the polynomial $p(x)$.
(vi) $p(x)=x^{2}-3 x$.

Then, $p(0)=0^{2}-3(0)=0$
$p(3)=\left(3^{2}\right)-3(3)=9-9=0$
$\Rightarrow 0$ and 3 are the zeroes of the polynomial $p(x)$.
(vii) $p(x)=x^{2}+x-6$

Then, $p(2)=2^{2}+2-6$
$=4+2-6$
$=6-6=0$
$\Rightarrow 2$ is a zero of the polynomial $p(x)$.
Also, p(-3) $=(-3)^{2}-3-6$
$=9-3-6=0$
$\Rightarrow-3$ is a zero of the polynomial $p(x)$.
Hence, 2 and -3 are the zeroes of the polynomial $p(x)$.

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 Remainder Theorem

> Let $\mathrm{p}(x)$ be a polynomial of degree greater than or equal to one and ' a ' be a real number. If $\mathrm{p}(x)$ is divided by $(x-a)$, then the remainder is equal to $\mathrm{p}(a)$. $\mathrm{p}(x)=(x-a) \mathrm{q}(x)+\mathrm{r}(x)$
Proof:
Divide $\mathrm{p}(x)$ by $(x-\mathrm{a})$, and let $\mathrm{q}(x)$ be the
quotient and $\mathrm{r}(x)$ be the remainder, where
$\mathrm{r}(x)=0$ or degree of $\mathrm{r}(x)<$ degree of $(x-\mathrm{a})$.
But degree of $(x-\mathrm{a})$ is 1 ,
\therefore degree of $\mathrm{r}(x)=0$
Let $\mathrm{r}(x)=\mathrm{r}$, then $\mathrm{p}(x)=(x-a) \mathrm{q}(x)+\mathrm{r}$
Substituting $x=\mathrm{a}$, we have
$\mathrm{p}(a)=(a-a) \mathrm{q}(\boldsymbol{a})+\mathrm{r}$
$\Rightarrow \mathrm{p}(\boldsymbol{a})=0 \times \mathrm{q}(\boldsymbol{a})+\mathrm{r}$
$\Rightarrow \mathrm{p}(\boldsymbol{a})=0+\mathrm{r}$
$\Rightarrow \mathrm{p}(\boldsymbol{a})=\mathrm{r}$
Thus remainder is $\mathrm{p}(\boldsymbol{a})$ when $\mathrm{p}(x)$ is divided
by $(\boldsymbol{x}-\boldsymbol{a})$

To divide: \begin{tabular}{rl}
$\left(8 x^{2}+4 x-2\right) \div(4 x-2)$

\& $2 x+2$

$4 x-2$ \& | $8 x^{2}+4 x+2$ |
| :--- |
| $8 x^{2}-4 x$ |
| $-4+$ | | $8 x-2$ |
| ---: |
| $8 x-4$ |

\hline
\end{tabular}

Using the remainder theorem
$\mathrm{p}(x)=(x-\mathrm{a}) \mathrm{q}(x)+\mathrm{r}(x)$,
$\mathrm{p}(x)=8 x^{2}+4 x-2$ and $x=\frac{2}{4}=\frac{1}{2}$
$\mathrm{p}\left(\frac{1}{2}\right)=8 \times\left(\frac{1}{2}\right)^{2}+4 \times \frac{1}{2}-2$
$=8 \times \frac{1}{4}+2-2$
$=2+0=2$

Question 1:

$f(x)=x^{3}-6 x^{2}+9 x+3$
Now, $x-1=0 \Rightarrow x=1$
By the remainder theorem, we know that when $f(x)$ is divided by $(x-1)$ the remainder is $f(1)$.
Now, $f(1)=1^{3}-6 \times 1^{2}+9 \times 1+3$
$=1-6+9+3$
$=13-6=7$
\therefore The required remainder is 7 .

Question 2:

$f(x)=\left(2 x^{3}-5 x^{2}+9 x-8\right)$
Now, $x-3=0 \Rightarrow x=3$
By the remainder theorem, we know that when $f(x)$ is divided by $(x-3)$ the remainder is $f(3)$.
Now, $f(3)=2 \times 3^{3}-5 \times 3^{2}+9 \times 3-8$
$=54-45+27-8$
$=81-53=28$
\therefore The required remainder is 28 .

Question 3:

$f(x)=\left(3 x^{4}-6 x^{2}-8 x+2\right)$
Now, $x-2=0 \Rightarrow x=2$
By the remainder theorem, we know that when $f(x)$ is divided by $(x-2)$ the remainder is $f(2)$.
Now, $f(2)=3 \times 2^{4}-6 \times 2^{2}-8 \times 2+2$
$=48-24-16+2$
$=50-40=10$
\therefore The required remainder is 10 .

Question 4:

$f(x)=x^{3}-7 x^{2}+6 x+4$
Now, $x-6=0 \Rightarrow x=6$
By the remainder theorem, we know that when $f(x)$ is divide by $(x-6)$ the remainder is f(6)
Now, $f(6)=6^{3}-7 \times 6^{2}+6 \times 6+4$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$=216-252+36+4$
$=256-252=4$
\therefore The required remainder is 4 .

Question 5:

$f(x)=\left(x^{3}-6 x^{2}+13 x+60\right)$
Now, $x+2=0 \Rightarrow x=-2$
By the remainder the theorem, we know that when $f(x)$ is divide by $(x+2)$ the remainder is $f(-2)$.
Now, $f(-2)=(-2)^{3}-6(-2)^{2}+13(-2)+60$
$=-8-24-26+60$
$=-58+60=2$
\therefore The required remainder is 2 .

Question 6:
$f(x)=\left(2 x^{4}+6 x^{3}+2 x^{2}+x-8\right)$
Now, $x+3=0 \Rightarrow x=-3$
By the remainder the theorem, we know that when $f(x)$ is divide by $(x+3)$ the remainder is $f(-3)$.
$f(-3)=2(-3)^{4}+6(-3)^{3}+2(-3)^{2}-3-8$
$=162-162+18-3-8$
$=18-11=7$
\therefore The required remainder is 7 .

Question 7:
$f(x)=\left(4 x^{3}-12 x^{2}+11 x-5\right)$
Now, $2 x-1=0 \Rightarrow x=\frac{1}{2}$
By the remainder theorem, we know that when $f(x)$ is divided by $(2 x-1)$ the remainder
is $f\left(\frac{1}{2}\right)$
Now, $f\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)^{3}-12\left(\frac{1}{2}\right)^{2}+11\left(\frac{1}{2}\right)-5$
$=4 \times \frac{1}{8}-12 \times \frac{1}{4}+\frac{11}{2}-5$
$=\frac{1}{2}-3+\frac{11}{2}-5$
$=\frac{1-6+11-10}{2}$
$=-16+12$
$=\frac{-16+12}{-4}$
$=\frac{-4}{2}=-2$
\therefore The required remainder is -2 .

Question 8:

$f(x)=\left(81 x^{4}+54 x^{3}-9 x^{2}-3 x+2\right)$
Now, $3 x+2=0 \Rightarrow x=\frac{-2}{3}$
By the remainder theorem, we know that when $f(x)$ is divided by $(3 x+2)$ the remainder is $f\left(\frac{-2}{3}\right)$
Now, $f\left(\frac{-2}{3}\right)=81\left(\frac{-2}{3}\right)^{4}+54\left(\frac{-2}{3}\right)^{3}-9\left(\frac{-2}{3}\right)^{2}-3\left(\frac{-2}{3}\right)+2$
$=81 \times \frac{16}{81}+54\left(\frac{-8}{27}\right)-9\left(\frac{4}{9}\right)+2+2$
$=16-16-4+4=0$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 \therefore The required remainder is 0 .

```
Question 9:
f(x) =( ( }\mp@subsup{}{}{3}-a\mp@subsup{x}{}{2}+2x-a
Now, x-a = 0x = =a
By the remainder theorem, we know that when f(x) is divided by (x - a) the remainder is
f(a)
Now,f(a)= a
= a3}-\mp@subsup{a}{}{3}+2a-
= a
\thereforeThe required remainder is a.
```


Question 10:

Let $f(x)=a x^{3}+3 x^{2}-3$
and $g(x)=2 x^{3}-5 x+a$
$\therefore f(4)=a \times 4^{3}+3 \times 4^{2}-3$
$=64 a+48-3$
$=64 a+45$
$g(4)=2 \times 4^{3}-5 \times 4+a$
$=128-20+a$
$=108+a$
It is given that:
$f(4)=g(4)$
$\Rightarrow 64 a+45=108+a$
$\Rightarrow 64 a-a=108-45$
$\Rightarrow 63 \mathrm{a}=63$
$\Rightarrow a=\frac{63}{63}=1$
\therefore The value of a is 1 .

Question 11:

Let $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{4}-2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-\mathrm{ax}+\mathrm{b}\right)$
\therefore From the given information,
$f(1)=1^{4}-2(1)^{3}+3(1)^{2}-a(1)+b=5$
$\Rightarrow 1-2+3-a+b=5$
$\Rightarrow 2-a+b=5 \ldots$...(i)
And,
$f(-1)=(-1)^{4}-2(-1)^{3}+3(-1)^{2}-a(-1)+b=19$
$\Rightarrow 1+2+3+a+b=19$
$\Rightarrow 6+a+b=19$....(ii)
Adding (i) and (ii), we get
$\Rightarrow 8+2 \mathrm{~b}=24$
$\Rightarrow 2 \mathrm{~b}=24-8=16$
$\Rightarrow b=\frac{16}{2}$
Substituting the value of $b=8$ in (i), we get
$2-a+8=5$
$\Rightarrow-a+10=5$
$\Rightarrow-\mathrm{a}=-10+5$
$\Rightarrow-a=-5$
$\Rightarrow a=5$
$\therefore \mathrm{a}=5$ and $\mathrm{b}=8$
$f(x)=x^{4}-2 x^{3}+3 x^{2}-a x+b$
$=x^{4}-2 x^{3}+3 x^{2}-5 x+8$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $\therefore f(2)=(2)^{4}-2(2)^{3}+3(2)^{2}-5(2)+8$

$=16-16+12-10+8$
$=20-10=10$
\therefore The required remainder is 10 .

Exercise 2D

Factor Theorem
Let $p(x)$ be a polynomial of degree greater than or equal to one and ' a ' be a
real number such that $p(a)=0$, then $(x-a)$ is a factor of $p(x)$.
i.e. $(x-a)$ is a factor of $p(x)$, if $p(a)=0$

Proof:

$p(x)$ is a polynomial of degree greater than or equal to one and ' a '	Find if $(x+1)$ and $(2 x-4)$ are factors of $2 x^{3}-9 x^{2}+x+12=p(x)$
is a real number such that $p(a)=0$. To prove : $(x-a)$ is a factor of $p(x)$ Divide $\mathrm{p}(x)$ by $(x-a)$, and let $\mathrm{q}(x)$ be the quotient.	Using Factor theorem: $\text { (i) } \begin{aligned} p(-1) & =2(-1)^{3}-9(-1)^{2}+1(-1)+12 \\ & =-2-9-1+12=0 \end{aligned}$
By Remainder theorem, $\mathrm{p}(x)$ when divided by $(x-a)$ gives remainder $\mathrm{p}(a)$.	$\text { (ii) } \begin{aligned} p\left(\frac{4}{2}\right) & =2(2)^{3}-9(2)^{2}+1(2)+12 \\ & =16-36+2+12=-6 \end{aligned}$
$\therefore \mathrm{p}(x)=(x-a) \mathrm{q}(x)+\mathrm{p}(\boldsymbol{a})$	Since (i) $=0,(x+1)$ is a factor and
$\Rightarrow \mathrm{p}(x)=(x-a) \mathrm{q}(x)[\because p(a)=0]$	(ii) $\neq 0,(2 x-4)$ is not a factor of
$\Rightarrow(x-a)$ is a factor of $\mathrm{p}(x)$	$2 x^{2}-9 x^{2}+x+12$

Question 1:

$f(x)=\left(x^{3}-8\right)$
By the Factor Theorem, $(x-2)$ will be a factor of $f(x)$ if $f(2)=0$.
Here, $f(2)=(2)^{3}-8$
$=8-8=0$
$\therefore(x-2)$ is a factor of $\left(x^{3}-8\right)$.

Question 2:

$f(x)=\left(2 x^{3}+7 x^{2}-24 x-45\right)$
By the Factor Theorem, $(x-3)$ will be a factor of $f(x)$ if $f(3)=0$.
Here, $f(3)=2 \times 3^{3}+7 \times 3^{2}-24 \times 3-45$
$=54+63-72-45$
$=117-117=0$
$\therefore(x-3)$ is a factor of $\left(2 x^{3}+7 x^{2}-24 x-45\right)$.

Question 3:

$f(x)=\left(2 x^{4}+9 x^{3}+6 x^{2}-11 x-6\right)$
By the Factor Theorem, $(x-1)$ will be a factor of $f(x)$ if $f(1)=0$.
Here, $f(1)=2 \times 1^{4}+9 \times 1^{3}+6 \times 1^{2}-11 \times 1-6$
$=2+9+6-11-6$
$=17-17=0$
$\therefore(x-1)$ is factor of $\left(2 x^{4}+9 x^{3}+6 x^{2}-11 x-6\right)$.

Question 4:

$f(x)=\left(x^{4}-x^{2}-12\right)$
By the Factor Theorem, $(x+2)$ will be a factor of $f(x)$ if $f(-2)=0$.
Here, $f(-2)=(-2)^{4}-(-2)^{2}-12$
$=16-4-12$
$=16-16=0$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $\therefore(x+2)$ is a factor of $\left(x^{4}-x^{2}-12\right)$.

Question 5:

$f(x)=2 x^{3}+9 x^{2}-11 x-30$
By the Factor Theorem, $(x+5)$ will be a factor of $f(x)$ if $f(-5)=0$.
Here, $f(-5)=2(-5)^{3}+9(-5)^{2}-11(-5)-30$
$=-250+225+55-30$
$=-280+280=0$
$\therefore(x+5)$ is a factor of $\left(2 x^{3}+9 x^{2}-11 x-30\right)$.

Question 6:

$f(x)=\left(2 x^{4}+x^{3}-8 x^{2}-x+6\right)$
By the Factor Theorem, $(x-a)$ will be a factor of $f(x)$ if $f(a)=0$
Here, $2 x-3=0 \Rightarrow x=\frac{3}{2}$

$$
\begin{aligned}
& \therefore f\left(\frac{3}{2}\right)=2\left(\frac{3}{2}\right)^{4}+\left(\frac{3}{2}\right)^{3}-8\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)+6 \\
& =2 \times \frac{81}{16}+\frac{27}{8}-8 \times \frac{9}{4}-\frac{3}{2}+6 \\
& =\frac{81}{8}+\frac{27}{8}-18-\frac{3}{2}+6 \\
& =\frac{81+27-144-12+48}{8} \\
& =\frac{156-156}{8}=0
\end{aligned}
$$

$\therefore(2 x-3)$ is a factor of $\left(2 x^{4}+x^{3}-8 x^{2}-x+6\right)$.

Question 7:

$f(x)=\left(7 x^{2}-4 \sqrt{2} x-6=0\right)$
By the Factor Theorem, $(x-a)$ will be a factor of $f(x)$ if $f(a)=0$.
Here, $f(\sqrt{2})=7(\sqrt{2})^{2}-4 \sqrt{2} \times \sqrt{2}-6$
$=14-8-6$
$=14-14=0$
$\therefore(x-\sqrt{2})$ is a factor of $(7-4 \sqrt{2} x-6=0)$.

Question 8:

$f(x)=\left(4 \sqrt{2} x^{2}+5 x+\sqrt{2}=0\right)$
By the Factor Theorem, $(x-a)$ will be a factor of $f(x)$ if $f(a)=0$.

$$
f(-\sqrt{2})=2 \sqrt{2}(-\sqrt{2})^{2}+5(-\sqrt{2})+\sqrt{2}
$$

$=2 \sqrt{2} \times 2-5 \sqrt{2}+\sqrt{2}$
$=4 \sqrt{2}-5 \sqrt{2}+\sqrt{2}$
Here,
$\therefore(\mathrm{x}+\sqrt{2})$ is a factor of $\left(4 \sqrt{2} \mathrm{x}^{2}+5 \mathrm{x}+\sqrt{2}=0\right)$.

Question 9:
$f(x)=\left(2 x^{3}+9 x^{2}+x+k\right)$
$x-1=0 \Rightarrow x=1$
$\therefore f(1)=2 \times 1^{3}+9 \times 1^{2}+1+k$
$=2+9+1+k$
$=12+k$
Given that $(x-1)$ is a factor of $f(x)$.
By the Factor Theorem, $(x-a)$ will be a factor of $f(x)$ if $f(a)=0$ and therefore $f(1)=0$.
$\Rightarrow f(1)=12+k=0$
$\Rightarrow \mathrm{k}=-12$.

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 Question 10:

```
    f(x) = (2x 3 - 3x 2-18x+a)
    x-4 = 0 => x=4
    \thereforef(4)=2(4)}\mp@subsup{}{}{3}-3(4\mp@subsup{)}{}{2}-18\times4+
    = 128-48-72+a
    = 128-120+a
    = 8 + a
```

Given that $(x-4)$ is a factor of $f(x)$.
By the Factor Theorem, $(x-a)$ will be a factor of $f(x)$ if $f(a)=0$ and therefore $f(4)=0$.
$\Rightarrow f(4)=8+a=0$
$\Rightarrow a=-8$

Question 11:

$f(x)=x^{4}-x^{3}-11 x^{2}-x+a$
$x+3=0 \Rightarrow x=-3$
$\therefore f(-3)=(-3)^{4}-(-3)^{3}-11(-3)^{2}-(-3)+a$
$=81+27-11 \times 9+3+a$
$=81+27-99+3+a$
$=111-99+a$
$=12+\mathrm{a}$
Given that $f(x)$ is divisible by $(x+3)$, that is ($x+3$) is a factor of $f(x)$.
By the Factor Theorem, $(x-a)$ will be a factor of $f(x)$ if $f(a)=0$ and therefore $f(-3)=0$.
$\Rightarrow f(-3)=12+a=0$
$\Rightarrow \mathrm{a}=-12$.

Question 12:
$f(x)=\left(2 x^{3}+a x^{2}+11 x+a+3\right)$
$2 x-1=0 \Rightarrow x=\frac{1}{2}$
Given that $f(x)$ is exactly divisible by ($2 x-1$), that is $(2 x-1)$ is a factor of $f(x)$.
By the Factor Theorem, ($x-a$) will be a factor of $f(x)$ if $f(a)=0$
and therefore $f\left(\frac{1}{2}\right) \neq 0$.
Therefore, we have

$$
\begin{aligned}
& f\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{3}+a\left(\frac{1}{2}\right)^{2}+11 \times \frac{1}{2}+a+3=0 \\
& \Rightarrow 2 \times \frac{1}{8}+a \times \frac{1}{4}+\frac{11}{2}+a+3=0 \\
& \Rightarrow \frac{1}{4}+\frac{1}{4} a+\frac{11}{2}+a+3=0 \\
& \Rightarrow \frac{1+a+22+4 a+12}{4}=0 \\
& \Rightarrow \frac{5 a+35}{4}=0 \\
& \Rightarrow 5 a+35=0 \\
& \Rightarrow 5 a=-35 \\
& \Rightarrow a=\frac{-35}{5}=-7
\end{aligned}
$$

\therefore The value of $a=-7$.

Question 13:

Let $f(x)=\left(x^{3}-10 x^{2}+a x+b\right)$, then by factor theorem
$(x-1)$ and $(x-2)$ will be factors of $f(x)$ if $f(1)=0$ and $f(2)=0$.
$f(1)=1^{3}-10 \quad 1^{2}+a_{\square} 1+b=0$
$\Rightarrow 1-10+a+b=0$
$\Rightarrow a+b=9 \ldots$...(i)

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 And $f(2)=2^{3}-10 \quad 2^{2}+a \quad 2+b=0$

$\Rightarrow 8-40+2 \mathrm{a}+\mathrm{b}=0$
$\Rightarrow 2 a+b=32$....(ii)
Subtracting (i) from (ii), we get
$a=23$
Substituting the value of $\mathrm{a}=23$ in (i), we get
$\Rightarrow 23+b=9$
$\Rightarrow b=9-23$
$\Rightarrow \mathrm{b}=-14$
$\therefore a=23$ and $b=-14$.

Question 14:

Let $f(x)=\left(x^{4}+a x^{3}-7 x^{2}-8 x+b\right)$
Now, $x+2=0 x=-2$ and $x+3=0 x=-3$
By factor theorem, $(x+2)$ and $(x+3)$ will be factors of $f(x)$ if $f(-2)=0$ and $f(-3)=0$
$\therefore f(-2)=(-2)^{4}+a(-2)^{3}-7(-2)^{2}-8(-2)+b=0$
$\Rightarrow 16-8 a-28+16+b=0$
$\Rightarrow-8 a+b=-4$
$\Rightarrow 8 \mathrm{a}-\mathrm{b}=4$....(i)
And, $f(-3)=(-3)^{4}+a(-3)^{3}-7(-3)^{2}-8(-3)+b=0$
$\Rightarrow 81-27 a-63+24+b=0$
$\Rightarrow-27 a+b=-42$
$\Rightarrow 27 \mathrm{a}-\mathrm{b}=42 \ldots$...ii)
Subtracting (i) from (ii), we get,
$19 a=38$
So, $a=2$
Substituting the value of $\mathrm{a}=2$ in (i), we get
$8(2)-b=4$
$\Rightarrow 16-b=4$
$\Rightarrow-b=-16+4$
$\Rightarrow-b=-12$
$\Rightarrow b=12$
$\therefore a=2$ and $b=12$.

Question 15:

Let $f(x)=x^{3}-3 x^{2}-13 x+15$
Now, $x^{2}+2 x-3=x^{2}+3 x-x-3$
$=x(x+3)-1(x+3)$
$=(x+3)(x-1)$
Thus, $f(x)$ will be exactly divisible by $x^{2}+2 x-3=(x+3)(x-1)$ if $(x+3)$ and $(x-1)$ are both factors of $f(x)$, so by factor theorem, we should have $f(-3)=0$ and $f(1)=0$.
Now, $f(-3)=(-3)^{3}-3(-3)^{2}-13(-3)+15$
$=-27-3 \times 9+39+15$
$=-27-27+39+15$
$=-54+54=0$
And, $f(1)=1^{3}-3 \times 1^{2}-13 \times 1+15$
$=1-3-13+15$
$=16-16=0$
$\therefore f(-3)=0$ and $f(1)=0$
So, $x^{2}+2 x-3$ divides $f(x)$ exactly.

Question 16:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 Let $f(x)=\left(x^{3}+a x^{2}+b x+6\right)$

Now, by remainder theorem, $f(x)$ when divided by $(x-3)$ will leave a remainder as $f(3)$.
So, $f(3)=3^{3}+a \times 3^{2}+b \times 3+6=3$
$\Rightarrow 27+9 a+3 b+6=3$
$\Rightarrow 9 a+3 b+33=3$
$\Rightarrow 9 a+3 b=3-33$
$\Rightarrow 9 a+3 b=-30$
$\Rightarrow 3 a+b=-10$....(i)
Given that $(x-2)$ is a factor of $f(x)$.
By the Factor Theorem, $(x-a)$ will be a factor of $f(x)$ if $f(a)=0$ and therefore $f(2)=0$.
$f(2)=2^{3}+a \times 2^{2}+b \times 2+6=0$
$\Rightarrow 8+4 a+2 b+6=0$
$\Rightarrow 4 a+2 b=-14$
$\Rightarrow 2 a+b=-7$....(ii)
Subtracting (ii) from (i), we get,
$\Rightarrow a=-3$
Substituting the value of $a=-3$ in (i), we get,
$\Rightarrow 3(-3)+b=-10$
$\Rightarrow-9+b=-10$
$\Rightarrow b=-10+9$
$\Rightarrow \mathrm{b}=-1$
$\therefore \mathrm{a}=-3$ and $\mathrm{b}=-1$.

Exercise 2E

1. $(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}=(-\mathrm{a}-\mathrm{b})^{2}$
2. $(a-b)^{2}=a^{2}-2 a b+b^{2}$
3. $(a-b)(a+b)=a^{2}-b^{2}$
4. $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
5. $(a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2 a b-2 b c-2 c a$
6. $(a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b-2 b c+2 c a$
7. $(-a+b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 b c-2 c a$
8. $(a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 b c-2 c a$
9. $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
10. $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
11. $a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$
$=(a+b)\left(a^{2}-a b+b^{2}\right)$
12. $a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)$
$=(a-b)\left(a^{2}+a b+b^{2}\right)$
13. $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
if $a+b+c=0$ then $a^{3}+b^{3}+c^{3}=3 a b c$

Question 1:
$9 x^{2}+12 x y=3 x(3 x+4 y)$

Question 2:
$18 x^{2} y-24 x y z=6 x y(3 x-4 z)$

Question 3:
$27 a^{3} b^{3}-45 a^{4} b^{2}=9 a^{3} b^{2}(3 b-5 a)$

Question 4:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$2 a(x+y)-3 b(x+y)=(x+y)(2 a-3 b)$

Question 5:

```
2x ( }\mp@subsup{p}{}{2}+\mp@subsup{q}{}{2})+4y(\mp@subsup{p}{}{2}+\mp@subsup{q}{}{2}
=(2x+4y)(\mp@subsup{p}{}{2}+\mp@subsup{q}{}{2})
=2(x+2y)(\mp@subsup{p}{}{2}+\mp@subsup{q}{}{2})
```

Question 6:

```
x(a-5)+y(5-a)
=x(a-5)+y(-1)(a-5)
=(x-y)(a-5)
```

Question 7:
$4(a+b)-6(a+b)^{2}$
$=(a+b)[4-6(a+b)]$
$=2(a+b)(2-3 a-3 b)$
$=2(a+b)(2-3 a-3 b)$

Question 8:
$8(3 a-2 b)^{2}-10(3 a-2 b)$
$=(3 a-2 b)[8(3 a-2 b)-10]$
$=(3 a-2 b) 2[4(3 a-2 b)-5]$
$=2(3 a-2 b)(12 a-8 b-5)$

Question 9:

$x(x+y)^{3}-3 x^{2} y(x+y)$
$=x(x+y)\left[(x+y)^{2}-3 x y\right]$
$=x(x+y)\left(x^{2}+y^{2}+2 x y-3 x y\right)$
$=x(x+y)\left(x^{2}+y^{2}-x y\right)$

> Question 10:
> $x^{3}+2 x^{2}+5 x+10$
> $=x^{2}(x+2)+5(x+2)$
> $=\left(x^{2}+5\right)(x+2)$

> Question 11:
> $x^{2}+x y-2 x z-2 y z$
> $=x(x+y)-2 z(x+y)$
> $=(x+y)(x-2 z)$

Question 12:

$a^{3} b-a^{2} b+5 a b-5 b$
$=a^{2} b(a-1)+5 b(a-1)$
$=(a-1)\left(a^{2} b+5 b\right)$
$=(a-1) b\left(a^{2}+5\right)$
$=b(a-1)\left(a^{2}+5\right)$

Question 13:
$8-4 a-2 a^{3}+a^{4}$
$=4(2-a)-a^{3}(2-a)$
$=(2-a)\left(4-a^{3}\right)$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Question 14:
$x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3}$
$=x^{2}(x-2 y)+3 y^{2}(x-2 y)$
$=(x-2 y)\left(x^{2}+3 y^{2}\right)$

Question 15:
$p x+p q-5 q-5 x$
$=p(x+q)-5(q+x)$
$=(x+q)(p-5)$

Question 16:
$x^{2}-x y+y-x$
$=x(x-y)-1(x-y)$
$=(x-y)(x-1)$

Question 17:
$(3 a-1)^{2}-6 a+2$
$=(3 a-1)^{2}-2(3 a-1)$
$=(3 a-1)[(3 a-1)-2]$
$=(3 a-1)(3 a-3)$
$=3(3 a-1)(a-1)$

Question 18:

$(2 x-3)^{2}-8 x+12$
$=(2 x-3)^{2}-4(2 x-3)$
$=(2 x-3)(2 x-3-4)$
$=(2 x-3)(2 x-7)$

Question 19:

$a^{3}+a-3 a^{2}-3$
$=a\left(a^{2}+1\right)-3\left(a^{2}+1\right)$
$=(a-3)\left(a^{2}+1\right)$

Question 20:

$3 a x-6 a y-8 b y+4 b x$
$=3 a(x-2 y)+4 b(x-2 y)$
$=(x-2 y)(3 a+4 b)$

Question 21:

$a b x^{2}+a^{2} x+b^{2} x+a b$
$=a x(b x+a)+b(b x+a)$
$=(b x+a)(a x+b)$

Question 22:
$x^{3}-x^{2}+a x+x-a-1$
$=x^{3}-x^{2}+a x-a+x-1$
$=x^{2}(x-1)+a(x-1)+1(x-1)$
$=(x-1)\left(x^{2}+a+1\right)$

Question 23:
$2 x+4 y-8 x y-1$
$=2 x-1-8 x y+4 y$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $=(2 x-1)-4 y(2 x-1)$

$=(2 x-1)(1-4 y)$

```
Question 24:
\(a b\left(x^{2}+y^{2}\right)-x y\left(a^{2}+b^{2}\right)\)
\(=a b x^{2}+a b y^{2}-a^{2} x y-b^{2} x y\)
\(=a b x^{2}-a^{2} x y+a b y^{2}-b^{2} x y\)
\(=a x(b x-a y)+b y(a y-b x)\)
\(=(b x-a y)(a x-b y)\)
```

Question 25:
$a^{2}+a b(b+1)+b^{3}$
$=a^{2}+a b^{2}+a b+b^{3}$
$=a^{2}+a b+a b^{2}+b^{3}$
$=a(a+b)+b^{2}(a+b)$
$=(a+b)\left(a+b^{2}\right)$

Question 26:
$a^{3}+a b(1-2 a)-2 b^{2}$
$=a^{3}+a b-2 a^{2} b-2 b^{2}$
$=a\left(a^{2}+b\right)-2 b\left(a^{2}+b\right)$
$=\left(a^{2}+b\right)(a-2 b)$

> Question 27:
> $2 a^{2}+b c-2 a b-a c$
> $=2 a^{2}-2 a b-a c+b c$
> $=2 a(a-b)-c(a-b)$
> $=(a-b)(2 a-c)$

Question 28:

$$
\begin{aligned}
& (a x+b y)^{2}+(b x-a y)^{2} \\
& =a^{2} x^{2}+b^{2} y^{2}+2 a b x y+b^{2} x^{2}+a^{2} y^{2}-2 a b x y \\
& =a^{2} x^{2}+b^{2} y^{2}+b^{2} x^{2}+a^{2} y^{2} \\
& =a^{2} x^{2}+b^{2} x^{2}+b^{2} y^{2}+a^{2} y^{2} \\
& =x^{2}\left(a^{2}+b^{2}\right)+y^{2}\left(a^{2}+b^{2}\right) \\
& =\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)
\end{aligned}
$$

> Question 29:
> $a(a+b-c)-b c$
> $=a^{2}+a b-a c-b c$
> $=a(a+b)-c(a+b)$
> $=(a-c)(a+b)$

Question 30:

$a(a-2 b-c)+2 b c$
$=a^{2}-2 a b-a c+2 b c$
$=a(a-2 b)-c(a-2 b)$
$=(a-2 b)(a-c)$

Question 31:

$a^{2} x^{2}+\left(a x^{2}+1\right) x+a$
$=a^{2} x^{2}+a x^{3}+x+a$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $=a x^{2}(a+x)+1(x+a)$

$=\left(a x^{2}+1\right)(a+x)$

Question 32:
$a b\left(x^{2}+1\right)+x\left(a^{2}+b^{2}\right)$
$=a b x^{2}+a b+a^{2} x+b^{2} x$
$=a b x^{2}+a^{2} x+a b+b^{2} x$
$=a x(b x+a)+b(b x+a)$
$=(b x+a)(a x+b)$

Question 33:
$x^{2}-(a+b) x+a b$
$=x^{2}-a x-b x+a b$
$=x(x-a)-b(x-a)$
$=(x-a)(x-b)$

Question 34:
$x^{2}+\frac{1}{x^{2}}-2-3 x+\frac{3}{x}$
$=\left(x-\frac{1}{x}\right)^{2}-3\left(x-\frac{1}{x}\right)$
$=\left(x-\frac{1}{x}\right)\left(x-\frac{1}{x}-3\right)$

Exercise 2F

Question 1:
$25 x^{2}-64 y^{2}$
$=(5 x)^{2}-(8 y)^{2}$
$=(5 x+8 y)(5 x-8 y)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 2:
100-9x ${ }^{2}$
$=(10)^{2}-(3 x)^{2}$
$=(10+3 x)(10-3 x)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 3:
$5 x^{2}-7 y^{2}$
$=(\sqrt{5} x)^{2}-(\sqrt{7} y)^{2}$
$=(\sqrt{5} x+\sqrt{7} y)(\sqrt{5} x-\sqrt{7} y) \quad\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 4:
$(3 x+5 y)^{2}-4 z^{2}$
$=(3 x+5 y)^{2}-(2 z)^{2}$
$=(3 x+5 y+2 z)(3 x+5 y-2 z)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

```
\(=6\left(25-x^{2}\right)\)
\(=6\left(5^{2}-x^{2}\right)\)
\(=6(5+x)(5-x)\)
\(\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]\)
```

Question 6:
$20 x^{2}-45$
$=5\left(4 x^{2}-9\right)$
$=5\left[(2 x)^{2}-(3)^{2}\right]$
$=5(2 x+3)(2 x-3)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 7:
$3 x^{3}-48 x$
$=3 x\left(x^{2}-16\right)$
$=3 x\left[(x)^{2}-(4)^{2}\right]$
$=3 x(x+4)(x-4)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 8:
$2-50 x^{2}$
$=2\left(1-25 x^{2}\right)$
$=2\left[(1)^{2}-(5 x)^{2}\right]$
$=2(1+5 x)(1-5 x)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 9:
$27 a^{2}-48 b^{2}$
$=3\left(9 a^{2}-16 b^{2}\right)$
$=3\left[(3 a)^{2}-(4 b)^{2}\right]$
$=3(3 a+4 b)(3 a-4 b)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 10:
$x-64 x^{3}$
$=x\left(1-64 x^{2}\right)$
$=x\left[(1)^{2}-(8 x)^{2}\right]$
$=x(1+8 x)(1-8 x)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 11:

$8 a b^{2}-18 a^{3}$
$=2 a\left(4 b^{2}-9 a^{2}\right)$
$=2 a\left[(2 b)^{2}-(3 a)^{2}\right]$
$=2 a(2 b+3 a)(2 b-3 a)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 12:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$3 a^{3} b-243 a b^{3}$
$=3 a b\left(a^{2}-81 b^{2}\right)$
$=3 a b\left[(a)^{2}-(9 b)^{2}\right]$
$=3 a b(a+9 b)(a-9 b)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 13:
$(a+b)^{3}-a-b$
$=(a+b)^{3}-(a+b)$
$=(a+b)\left[(a+b)^{2}-1^{2}\right]$
$=(a+b)(a+b+1)(a+b-1)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 14:
$108 a^{2}-3(b-c)^{2}$
$=3\left[\left(36 a^{2}-(b-c)^{2}\right]\right.$
$=3\left[(6 a)^{2}-(b-c)^{2}\right]$
$=3(6 a+b-c)(6 a-b+c)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 15:

$x^{3}-5 x^{2}-x+5$
$=x^{2}(x-5)-1(x-5)$
$=(x-5)\left(x^{2}-1\right)$
$=(x-5)(x+1)(x-1)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 16:
$a^{2}+2 a b+b^{2}-9 c^{2}$
$=(a+b)^{2}-(3 c)^{2}$
$=(a+b+3 c)(a+b-3 c)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 17:
$9-a^{2}+2 a b-b^{2}$
$=9-\left(a^{2}-2 a b+b^{2}\right)$
$=3^{2}-(a-b)^{2}$
$=(3+a-b)(3-a+b)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

> Question 18:
> $a^{2}-4 a c+4 c^{2}-b^{2}$
> $=a^{2}-4 a c+4 c^{2}-b^{2}$
> $=a^{2}-2 a 2 c+(2 c)^{2}-b^{2}$
> $=(a-2 c)^{2}-b^{2}$
> $=(a-2 c+b)(a-2 c-b)$
> $\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Question 19:
$9 a^{2}+3 a-8 b-64 b^{2}$
$=9 a^{2}-64 b^{2}+3 a-8 b$
$=(3 a)^{2}-(8 b)^{2}+(3 a-8 b)$
$=(3 a+8 b)(3 a-8 b)+(3 a-8 b)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$
$=(3 a-8 b)(3 a+8 b+1)$

Question 20:
$x^{2}-y^{2}+6 y-9$
$=x^{2}-\left(y^{2}-6 y+9\right)$
$=x^{2}-\left(y^{2}-2 y 3+3^{2}\right)$
$=x^{2}-(y-3)^{2}$
$=[x+(y-3)][x-(y-3)]$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$
$=(x+y-3)(x-y+3)$

Question 21:
$4 x^{2}-9 y^{2}-2 x-3 y$
$=(2 x)^{2}-(3 y)^{2}-(2 x+3 y)$
$=(2 x+3 y)(2 x-3 y)-(2 x+3 y)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$
$=(2 x+3 y)(2 x-3 y-1)$

Question 22:
$x^{4}-1$
$=\left(x^{2}\right)^{2}-1^{2}$
$=\left(x^{2}+1\right)\left(x^{2}-1\right)\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$
$=\left(x^{2}+1\right)(x+1)(x-1)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Question 23:
$a-b-a^{2}+b^{2}$
$=(a-b)-\left(a^{2}-b^{2}\right)$
$=(a-b)-(a-b)(a+b)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$
$=(a-b)(1-a-b)$

Question 24:
$x^{4}-625$
$=\left(x^{2}\right)^{2}-(25)^{2}$
$=\left(x^{2}+25\right)\left(x^{2}-25\right)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$
$=\left(x^{2}+25\right)\left(x^{2}-5^{2}\right)$
$=\left(x^{2}+25\right)(x+5)(x-5)$
$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Exercise 2G

Question 1:

$x^{2}+11 x+30$
$=x^{2}+6 x+5 x+30$
$=x(x+6)+5(x+6)$
$=(x+6)(x+5)$.

Question 2:
$x^{2}+18 x+32$
$=x^{2}+16 x+2 x+32$
$=x(x+16)+2(x+16)$
$=(x+16)(x+2)$.

Question 3:

$x^{2}+7 x-18$
$=x^{2}+9 x-2 x-18$
$=x(x+9)-2(x+9)$
$=(x+9)(x-2)$.

Question 4:
$x^{2}+5 x-6$
$=x^{2}+6 x-x-6$
$=x(x+6)-1(x+6)$
$=(x+6)(x-1)$.

Question 5:
$y^{2}-4 y+3$
$=y^{2}-3 y-y+3$
$=y(y-3)-1(y-3)$
$=(y-3)(y-1)$.

Question 6:
$x^{2}-21 x+108$
$=x^{2}-12 x-9 x+108$
$=x(x-12)-9(x-12)$
$=(x-12)(x-9)$.

Question 7:
$x^{2}-11 x-80$
$=x^{2}-16 x+5 x-80$
$=x(x-16)+5(x-16)$
$=(x-16)(x+5)$.

Question 8:

$x^{2}-x-156$
$=x^{2}-13 x+12 x-156$
$=x(x-13)+12(x-13)$
$=(x-13)(x+12)$.

Question 9:
$z^{2}-32 z-105$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $=z^{2}-35 z+3 z-105$
 $=z(z-35)+3(z-35)$
 $=(z-35)(z+3)$

Question 10:
$40+3 x-x^{2}$
$=40+8 x-5 x-x^{2}$
$=8(5+x)-x(5+x)$
$=(5+x)(8-x)$.

Question 11:
$6-x-x^{2}$
$=6+2 x-3 x-x^{2}$
$=2(3+x)-x(3+x)$
$=(3+x)(2-x)$.

Question 12:
$7 x^{2}+49 x+84$
$=7\left(x^{2}+7 x+12\right)$
$=7\left[x^{2}+4 x+3 x+12\right]$
$=7[x(x+4)+3(x+4)]$
$=7(x+4)(x+3)$.

Question 13:
$m^{2}+17 m n-84 n^{2}$
$=m^{2}+21 m n-4 m n-84 n^{2}$
$=m(m+21 n)-4 n(m+21 n)$
$=(m+21 n)(m-4 n)$.

Question 14:
$5 x^{2}+16 x+3$
$=5 x^{2}+15 x+x+3$
$=5 x(x+3)+1(x+3)$
$=(5 x+1)(x+3)$.

Question 15:
$6 x^{2}+17 x+12$
$=6 x^{2}+9 x+8 x+12$
$=3 x(2 x+3)+4(2 x+3)$
$=(2 x+3)(3 x+4)$.

Question 16:

$9 x^{2}+18 x+8$
$=9 x^{2}+12 x+6 x+8$
$=3 x(3 x+4)+2(3 x+4)$
$=(3 x+4)(3 x+2)$.

> Question 17:
> $14 x^{2}+9 x+1$
> $=14 x^{2}+7 x+2 x+1$
> $=7 x(2 x+1)+(2 x+1)$
> $=(7 x+1)(2 x+1)$.

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 Question 18:
 $2 x^{2}+3 x-90$
 $=2 x^{2}-12 x+15 x-90$
 $=2 x(x-6)+15(x-6)$
 $=(x-6)(2 x+15)$.

Question 19:
$2 x^{2}+11 x-21$
$=2 x^{2}+14 x-3 x-21$
$=2 x(x+7)-3(x+7)$
$=(x+7)(2 x-3)$.

Question 20:
$3 x^{2}-14 x+8$
$=3 x^{2}-12 x-2 x+8$
$=3 x(x-4)-2(x-4)$
$=(x-4)(3 x-2)$.

Question 21:
$18 x^{2}+3 x-10$
$=18 x^{2}-12 x+15 x-10$
$=6 x(3 x-2)+5(3 x-2)$
$=(6 x+5)(3 x-2)$.

Question 22:
$15 x^{2}+2 x-8$
$=15 x^{2}-10 x+12 x-8$
$=5 x(3 x-2)+4(3 x-2)$
$=(3 x-2)(5 x+4)$.

Question 23:
$6 x^{2}+11 x-10$
$=6 x^{2}+15 x-4 x-10$
$=3 x(2 x+5)-2(2 x+5)$
$=(2 x+5)(3 x-2)$.

Question 24:

$30 x^{2}+7 x-15$
$=30 x^{2}-18 x+25 x-15$
$=6 x(5 x-3)+5(5 x-3)$
$=(5 x-3)(6 x+5)$.

Question 25:
$24 x^{2}-41 x+12$
$=24 x^{2}-32 x-9 x+12$
$=8 x(3 x-4)-3(3 x-4)$
$=(3 x-4)(8 x-3)$.

Question 26:
$2 x^{2}-7 x-15$
$=2 x^{2}-10 x+3 x-15$
$=2 x(x-5)+3(x-5)$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $=(x-5)(2 x+3)$.

```
Question 27:
6x}-5x-2
= 6x + +9x-14x-21
= 3x (2x+3)-7(2x+3)
=(3x-7)(2x+3).
```

Question 28:
$10 x^{2}-9 x-7$
$=10 x^{2}+5 x-14 x-7$
$=5 x(2 x+1)-7(2 x+1)$
$=(2 x+1)(5 x-7)$.

Question 29:
$5 x^{2}-16 x-21$
$=5 x^{2}+5 x-21 x-21$
$=5 x(x+1)-21(x+1)$
$=(x+1)(5 x-21)$.

Question 30:
$2 x^{2}-x-21$
$=2 x^{2}+6 x-7 x-21$
$=2 x(x+3)-7(x+3)$
$=(x+3)(2 x-7)$.

Question 31:

$15 x^{2}-x-28$
$=15 x^{2}+20 x-21 x-28$
$=5 x(3 x+4)-7(3 x+4)$
$=(3 x+4)(5 x-7)$.

> Question 32:
> $8 a^{2}-27 a b+9 b^{2}$
> $=8 a^{2}-24 a b-3 a b+9 b^{2}$
> $=8 a(a-3 b)-3 b(a-3 b)$
> $=(a-3 b)(8 a-3 b)$.

Question 33:
$5 x^{2}+33 x y-14 y^{2}$
$=5 x^{2}+35 x y-2 x y-14 y^{2}$
$=5 x(x+7 y)-2 y(x+7 y)$
$=(x+7 y)(5 x-2 y)$.

Question 34:
$3 x^{3}-x^{2}-10 x$
$=x\left(3 x^{2}-x-10\right)$
$=x\left[3 x^{2}-6 x+5 x-10\right]$
$=x[3 x(x-2)+5(x-2)]$
$=x(x-2)(3 x+5)$.

Question 35:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$$
\begin{aligned}
& \frac{1}{3} x^{2}-2 x-9 \\
& =\frac{1}{3} x^{2}-3 x+x-9 \\
& =x\left(\frac{x}{3}-3\right)+(x-9) \\
& =\frac{x}{3}(x-9)+(x-9) \\
& =(x-9)\left(\frac{x}{3}+1\right) \\
& =(x-9) \frac{(x+3)}{3}=\frac{1}{3}(x-9)(x+3) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Question 36: } \\
& x^{2}-2 x+\frac{7}{16} \\
& =\frac{1}{16}\left(16 x^{2}-32 x+7\right) \\
& =\frac{1}{16}\left(16 x^{2}-4 x-28 x+7\right) \\
& =\frac{1}{16}[4 x(4 x-1)-7(4 x-1)] \\
& =\frac{1}{16}(4 x-1)(4 x-7) .
\end{aligned}
$$

Question 37:
$\sqrt{2} x^{2}+3 x+\sqrt{2}$
$=\sqrt{2} x^{2}+x+2 x+\sqrt{2}$
$=x(\sqrt{2} x+1)+\sqrt{2}(\sqrt{2} x+1)$
$=(\sqrt{2} x+1)(x+\sqrt{2})$.

Question 38:
$\sqrt{5} x^{2}+2 x-3 \sqrt{5}$
$=\sqrt{5} x^{2}+5 x-3 x-3 \sqrt{5}$
$=\sqrt{5} x(x+\sqrt{5})-3(x+\sqrt{5})$
$=(\sqrt{5} x-3)(x+\sqrt{5})$.

$$
\begin{aligned}
& \text { Question 39: } \\
& \begin{array}{l}
2 x^{2}+3 \sqrt{3} x+3 \\
=2 x^{2}+2 \sqrt{3} x+\sqrt{3} x+3 \\
=2 x(x+\sqrt{3})+\sqrt{3}(x+\sqrt{3}) \\
=(x+\sqrt{3})(2 x+\sqrt{3}) .
\end{array}
\end{aligned}
$$

Question 40:

$$
\begin{aligned}
& 2 \sqrt{3} x^{2}+x-5 \sqrt{3} \\
& =2 \sqrt{3} x^{2}+6 x-5 x-5 \sqrt{3} \\
& =2 \sqrt{3} x(x+\sqrt{3})-5(x+\sqrt{3}) \\
& =(x+\sqrt{3})(2 \sqrt{3} x-5) .
\end{aligned}
$$

Question 41:

```
5\sqrt{}{5}\mp@subsup{x}{}{2}+20x+3\sqrt{}{5}
-5 55 5}\mp@subsup{}{}{2}+15x+5x+3\sqrt{}{5
=5x(\sqrt{}{5}x+3)+\sqrt{}{5}(\sqrt{}{5}x+3)
=(\sqrt{}{5}x+3)(5x+\sqrt{}{5})
```

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions $7 \sqrt{2} x^{2}-10 x-4 \sqrt{2}$
$-7 \sqrt{2} x^{2}-14 x+4 x-4 \sqrt{2}$
$=7 \sqrt{2} x(x-\sqrt{2})+4(x-\sqrt{2})$
$=(x-\sqrt{2})(7 \sqrt{2} x+4)$.

Question 43:
$6 \sqrt{3} x^{2}-47 x+5 \sqrt{3}$
$-6 \sqrt{3} x^{2}-45 x-2 x+5 \sqrt{3}$
$=3 \sqrt{3} x(2 x-5 \sqrt{3})-1(2 x-5 \sqrt{3})$
$=(2 x-5 \sqrt{3})(3 \sqrt{3} x-1)$.

Question 44:
$7 x^{2}+2 \sqrt{14} x+2$
$=7 x^{2}+\sqrt{2} \sqrt{7} x+\sqrt{2} \sqrt{7} x+2$
$=\sqrt{7} x(\sqrt{7} x+\sqrt{2})+\sqrt{2}(\sqrt{7} x+\sqrt{2})$
$=(\sqrt{7} x+\sqrt{2})(\sqrt{7} x+\sqrt{2})-(\sqrt{7} x+\sqrt{2})^{2}$.

Question 45:

Let $\mathrm{x}+\mathrm{y}=\mathrm{z}$
Then, $2(x+y)^{2}-9(x+y)-5$
$=2 z^{2}-9 z-5$
$-2 z^{2}-10 z+z-5$
$=2 z(z-5)+1(z-5)$
$=(z-5)(2 z+1)$
Now, replacing z by $(x+y)$, we get
$2(x+y)^{2}-9(x+y)-5$
$-[(x+y)-5][(2(x+y)+1)]$
$=(x+y-5)(2 x+2 y+1)$.

Question 46:

Let $2 \mathrm{a}-\mathrm{b}=\mathrm{c}$
Then, $9(2 a-b)^{2}-4(2 a-b)-13$
$=9 c^{2}-4 c-13$
$=9 c^{2}-13 c+9 c-13$
$=c(9 c-13)+1(9 c-13)$
$=(c+1)(x-13)$
Now, replacing c by $(2 a-b)$, we get
$9(2 a-b)^{2}-4(2 a-b)-13$
$=(2 a-b+1)[9(2 a-b)-13]$
$=(2 a-b+1)(18 a-9 b-13)$

Question 47:

Let $x-2 y=z$
Then, $7(x-2 y)^{2}-25(x-2 y)+12$
$=7 z^{2}-25 z+12$
$=7 z^{2}-21 z-4 z+12$
$=7 z(z-3)-4(z-3)$
$=(z-3)(7 z-4)$
Now replace z by $(x-2 y)$, we get
$7(x-2 y)^{2}-25(x-2 y)+12$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$=(x-2 y-3)[7(x-2 y)-4]$ $=(x-2 y-3)(7 x-14 y-4)$.

Question 48:
Let $x^{2}=y$
Then, $4 x^{4}+7 x^{2}-2$
$=4 y^{2}+7 y-2$
$=4 y^{2}+8 y-y-2$
$=4 y(y+2)-1(y+2)$
$=(y+2)(4 y-1)$
Now replacing y by x^{2}, we get
$4 x^{4}+7 x^{2}-2$
$=\left(x^{2}+2\right)\left(4 x^{2}-1\right)$
$-\left(x^{2}+2\right)(2 x+1)(2 x-1)$.$\quad\left[\because a^{2}-b^{2}=(a-b)(a+b)\right]$

Exercise 2H

1. $(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}=(-\mathrm{a}-\mathrm{b})^{2}$
2. $(a-b)^{2}=a^{2}-2 a b+b^{2}$
3. $(a-b)(a+b)=a^{2}-b^{2}$
4. $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
5. $(a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2 a b-2 b c-2 c a$
6. $(a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b-2 b c+2 c a$
7. $(-a+b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 b c-2 c a$
8. $(a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 b c-2 c a$
9. $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
10. $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
11. $a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$
$=(a+b)\left(a^{2}-a b+b^{2}\right)$
12. $a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)$
$=(a-b)\left(a^{2}+a b+b^{2}\right)$
13. $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
if $a+b+c=0$ then $a^{3}+b^{3}+c^{3}=3 a b c$

Question 1:
We know:
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
(i) $(a+2 b+5 c)^{2}$
$=(a)^{2}+(2 b)^{2}+(5 c)^{2}+2(a)(2 b)+2(2 b)(5 c)+2(5 c)(a)$
$=a^{2}+4 b^{2}+25 c^{2}+4 a b+20 b c+10 a c$
(ii) $(2 a-b+c)^{2}$
$=(2 a)^{2}+(-b)^{2}+(c)^{2}+2(2 a)(-b)+2(-b)(c)+2(c)(2 a)$
$=4 a^{2}+b^{2}+c^{2}-4 a b-2 b c+4 a c$.
(iii) $(a-2 b-3 c)^{2}$
$=(a)^{2}+(-2 b)^{2}+(-3 c)^{2}+2(a)(-2 b)+2(-2 b)(-3 c)+2(-3 c)(a)$
$=a^{2}+4 b^{2}+9 c^{2}-4 a b+12 b c-6 a c$.

Question 2:

We know:
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 (i) $(2 a-5 b-7 c)^{2}$

$=(2 a)^{2}+(-5 b)^{2}+(-7 c)^{2}+2(2 a)(-5 b)+2(-5 b)(-7 c)+2(-7 c)(2 a)$
$=4 a^{2}+25 b^{2}+49 c^{2}-20 a b+70 b c-28 a c$.
(ii) $(-3 a+4 b-5 c)^{2}$
$=(-3 a)^{2}+(4 b)^{2}+(-5 c)^{2}+2(-3 a)(4 b)+2(4 b)(-5 c)+2(-5 c)(-3 a)$
$=9 a^{2}+16 b^{2}+25 c^{2}-24 a b-40 b c+30 a c$.
(iii) $\left(\frac{1}{2} a-\frac{1}{4} b+2\right)^{2}$
$=\left(\frac{1}{2} a\right)^{2}+\left(-\frac{1}{4} b\right)^{2}+(2)^{2}+2\left(\frac{1}{2} a\right)\left(-\frac{1}{4} b\right)+2\left(-\frac{1}{4} b\right)(2)+2(2)\left(\frac{1}{2} a\right)=\frac{a^{2}}{4}+\frac{b^{2}}{16}+4-\frac{a b}{4}-b+2 a$

Question 3:
$4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$
$=(2 x)^{2}+(3 y)^{2}+(-4 z)^{2}+2(2 x)(3 y)+2(3 y)(-4 z)+2(-4 z)(2 x)$
$=(2 x+3 y-4 z)^{2}$

Question 4:
$9 x^{2}+16 y^{2}+4 z^{2}-24 x y+16 y z-12 x z$
$=(-3 x)^{2}+(4 y)^{2}+(2 z)^{2}+2(-3 x)(4 y)+2(4 y)(2 z)+2(2 z)(-3 x)$
$=(-3 x+4 y+2 z)^{2}$.

Question 5:
$25 x^{2}+4 y^{2}+9 z^{2}-20 x y-12 y z+30 x z$
$=(5 x)^{2}+(-2 y)^{2}+(3 z)^{2}+2(5 x)(-2 y)+2(-2 y)(3 z)+2(3 z)(5 x)$
$=(5 x-2 y+3 z)^{2}$

Question 6:

(i) $(99)^{2}$
$=(100-1)^{2}$
$\left[\because(a-b)^{2}=a^{2}-2 a b+b^{2}\right]$
$=(100)^{2}-2(100)(1)+(1)^{2}$
$=10000-200+1$
$=9801$.
(ii) $(998)^{2}$
$=(1000-2)^{2}$
$=(1000)^{2}-2(1000)(2)+(2)^{2}$
$=1000000-4000+4$
$=996004$.
Exercise 21

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

1. $(a+b)^{2}=a^{2}+2 a b+b^{2}=(-a-b)^{2}$
2. $(a-b)^{2}=a^{2}-2 a b+b^{2}$
3. $(a-b)(a+b)=a^{2}-b^{2}$
4. $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
5. $(a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2 a b-2 b c-2 c a$
6. $(a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b-2 b c+2 c a$
7. $(-a+b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 b c-2 c a$
8. $(a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 b c-2 c a$
9. $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
10. $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
11. $a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$
$=(a+b)\left(a^{2}-a b+b^{2}\right)$
12. $a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)$
$=(a-b)\left(a^{2}+a b+b^{2}\right)$
13. $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
if $a+b+c=0$ then $a^{3}+b^{3}+c^{3}=3 a b c$
```
Question 1:
(i) }(3x+2\mp@subsup{)}{}{3
=(3x)}\mp@subsup{)}{}{3}+(2\mp@subsup{)}{}{3}+3\times3x\times2(3x+2
[\because(a+b)}\mp@subsup{}{}{3}=\mp@subsup{a}{}{3}+\mp@subsup{b}{}{3}+3ab(a+b)
=27x}\mp@subsup{}{}{3}+8+18x(3x+2
=27x}\mp@subsup{}{}{3}+8+54\mp@subsup{x}{}{2}+36x
(ii) (3a-2b)}\mp@subsup{}{}{3
=(3a)}\mp@subsup{}{}{3}-(2b\mp@subsup{)}{}{3}-3\times3a\times2b(3a-2b
[\because(a-b)}\mp@subsup{}{}{3}=\mp@subsup{a}{}{3}-\mp@subsup{b}{}{3}-3ab(a-b)
=27a 3-8b 3 - 18ab (3a-2b)
=27 a 3 - 8b 3 - 54a'b b 36ab 2.
(iii)}(\frac{2}{3}x+1\mp@subsup{)}{}{3
-(\frac{2}{3}x\mp@subsup{)}{}{3}+(1\mp@subsup{)}{}{3}+3\times\frac{2}{3}\times\times1(\frac{2}{3}x+1)
    8}[\because\because(a+b\mp@subsup{)}{}{3}=\mp@subsup{a}{}{3}+\mp@subsup{b}{}{3}+3ab(a+b)
    = \frac{8}{27}\mp@subsup{x}{}{3}+1+2x(\frac{2}{3}x+1)
    = 咅秋
```

Question 2:

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$$
\begin{aligned}
& \left(2 x-\frac{2}{x}\right)^{3} \\
& =(2 x)^{3}-\left(\frac{2}{x}\right)^{3}-3 \times 2 x \times \frac{2}{x}\left(2 x-\frac{2}{x}\right) \\
& =8 x^{3}-\frac{8}{x^{3}}-12\left(2 x-\frac{2}{x}\right) \\
& =8 x^{3}-\frac{8}{x^{3}}-24 x+\frac{24}{x} \text {. } \\
& \text { (ii) } \\
& \left(3 a+\frac{1}{4 b}\right)^{3} \\
& =(3 a)^{3}+\left(\frac{1}{4 b}\right)^{3}+3 \times 3 a \times \frac{1}{4 b}\left(3 a+\frac{1}{4 b}\right) \\
& {\left[\because(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)\right]} \\
& =27 a^{3}+\frac{1}{64 b^{3}}+\frac{9 a}{4 b}\left(3 a+\frac{1}{4 b}\right) \\
& =27 a^{3}+\frac{1}{64 b^{3}}+\frac{27 a^{2}}{4 b}+\frac{9 a}{16 b^{2}} \text {. } \\
& \text { (iii) } \\
& \left(\frac{4}{5} x-2\right)^{3} \\
& =\left(\frac{4}{5} x\right)^{3}-(2)^{3}-3 \times \frac{4}{5} x \times 2\left(\frac{4}{5} x-2\right) \\
& \left.64 x^{3}-24 \times(4-b)^{3}=a^{3}-b^{3}-3 a b(a-b)\right] \\
& =\frac{64}{125} x^{3}-8-\frac{24}{5} \times\left(\frac{4}{5} x-2\right) \\
& =\frac{64}{125} x^{3}-8-\frac{96}{25} x^{2}+\frac{48}{5} x \text {. }
\end{aligned}
$$

```
Question 3:
(i) (95)
=(100-5)
=(100)}\mp@subsup{)}{}{3}-(5\mp@subsup{)}{}{3}-3\times100\times5(100-5
= 1000000-125-(1500 95)
= 857375.
(ii) (999)}\mp@subsup{}{}{3
= (1000-1)
=(1000)}\mp@subsup{)}{}{3}-(1\mp@subsup{)}{}{3}-3\times1000\times1(1000-1
= 1000000000-1 - 3000 (1000-1)
= 1000000000-1 - (3000 999)
= 997002999.
```


Exercise 2J

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

1. $(a+b)^{2}=a^{2}+2 a b+b^{2}=(-a-b)^{2}$
2. $(a-b)^{2}=a^{2}-2 a b+b^{2}$
3. $(a-b)(a+b)=a^{2}-b^{2}$
4. $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
5. $(a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2 a b-2 b c-2 c a$
6. $(a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b-2 b c+2 c a$
7. $(-a+b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 b c-2 c a$
8. $(a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 b c-2 c a$
9. $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
10. $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
11. $a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$
$=(a+b)\left(a^{2}-a b+b^{2}\right)$
12. $a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)$
$=(a-b)\left(a^{2}+a b+b^{2}\right)$
13. $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
if $a+b+c=0$ then $a^{3}+b^{3}+c^{3}=3 a b c$

Question 1:
$x^{3}+27$
$=x^{3}+3^{3}$
$=(x+3)\left(x^{2}-3 x+9\right)$
Since $a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$

Question 2:
$8 x^{3}+27 y^{3}$
$=(2 x)^{3}+(3 y)^{3}$
$=(2 x+3 y)\left[(2 x)^{2}-(2 x)(3 y)+(3 y)^{2}\right]$
Since $a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$
$=(2 x+3 y)\left(4 x^{2}-6 x y+9 y^{2}\right)$.

Question 3:
$343+125 b^{3}$
$=(7)^{3}+(5 b)^{3}$
$=(7+5 b)\left[(7)^{2}-(7)(5 b)+(5 b)^{2}\right]$
Since $a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$
$=(7+5 b)\left(49-35 b+25 b^{2}\right)$

Question 4:
$1+64 x^{3}$
$=(1)^{3}+(4 x)^{3}$
$=(1+4 x)\left[(1)^{2}-1(4 x)+(4 x)^{2}\right]$
Since $a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$
$=(1+4 x)\left(1-4 x+16 x^{2}\right)$.

Question 5:
$125 a^{3}+\frac{1}{8}$
We know that
$a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$
Let us rewrite

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions $125 a^{3}+\frac{1}{8}$
$=(5 a)^{3}+\left(\frac{1}{2}\right)^{3}$
$=\left(5 a+\frac{1}{2}\right)\left[(5 a)^{2}-5 a \times \frac{1}{2}+\left(\frac{1}{2}\right)^{2}\right]$
$=\left(5 a+\frac{1}{2}\right)\left(25 a^{2}-\frac{5 a}{2}+\frac{1}{4}\right)$.

Question 6:
$216 x^{3}+\frac{1}{125}$
We know that
$a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$
Let us rewrite
$216 \mathrm{x}^{3}+\frac{1}{125}$
$=(6 x)^{3}+\left(\frac{1}{5}\right)^{3}$
$=\left(6 x+\frac{1}{5}\right)\left[(6 x)^{2}-6 x \times \frac{1}{5}+\left(\frac{1}{5}\right)^{2}\right]$
$=\left(6 x+\frac{1}{5}\right)\left(36 x^{2}-\frac{6 x}{5}+\frac{1}{25}\right)$.

Question 7:
$16 x^{4}+54 x$
$=2 x\left(8 x^{3}+27\right)$
$=2 x\left[(2 x)^{3}+(3)^{3}\right]$
$=2 x(2 x+3)\left[(2 x)^{2}-2 x(3)+3^{2}\right]$
Since $a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$
$=2 x(2 x+3)\left(4 x^{2}-6 x+9\right)$

Question 8:
$7 a^{3}+56 b^{3}$
$=7\left(a^{3}+8 b^{3}\right)$
$=7\left[(a)^{3}+(2 b)^{3}\right]$
$=7(a+2 b)\left[a^{2}-a 2 b+(2 b)^{2}\right]$
Since $a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$
$=7(a+2 b)\left(a^{2}-2 a b+4 b^{2}\right)$.

Question 9:
$x^{5}+x^{2}$
$=x^{2}\left(x^{3}+1\right)$
$=x^{2}(x+1)\left[(x)^{2}-x(1)+(1)^{2}\right]$
Since $a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$
$=x^{2}(x+1)\left(x^{2}-x+1\right)$.

Question 10:
$a^{3}+0.008$
$=(a)^{3}+(0.2)^{3}$
$=(a+0.2)\left[(a)^{2}-a(0.2)+(0.2)^{2}\right]$
since $a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$
$=(a+0.2)\left(a^{2}-0.2 a+0.04\right)$.

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 Question 11:
 $x^{6}+y^{6}$
 $=\left(x^{2}\right)^{3}+\left(y^{2}\right)^{3}$
 $=\left(x^{2}+y^{2}\right)\left[\left(x^{2}\right)^{2}-x^{2}\left(y^{2}\right)+\left(y^{2}\right)^{2}\right]$
 Since $a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$
 $=\left(x^{2}+y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right)$.

Question 12:
$2 a^{3}+16 b^{3}-5 a-10 b$
$=2\left(a^{3}+8 b^{3}\right)-5(a+2 b)$
$=2\left[(a)^{3}+(2 b)^{3}\right]-5(a+2 b)$
$=2(a+2 b)\left[(a)^{2}-a(2 b)+(2 b)^{2}\right]-5(a+2 b)$
Since $a^{3}+b^{3}=(a+b)\left(a^{2}-a \times b+b^{2}\right)$
$=(a+2 b)\left[2\left(a^{2}-2 a b+4 b^{2}\right)-5\right]$

Question 13:
$x^{3}-512$
$=(x)^{3}-(8)^{3}$
$=(x-8)\left[(x)^{2}+x(8)+(8)^{2}\right]$
Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$=(x-8)\left(x^{2}+8 x+64\right)$.

Question 14:
$64 x^{3}-343$
$=(4 \mathrm{x})^{3}-(7)^{3}$
$=(4 x-7)\left[(4 x)^{2}+4 x(7)+(7)^{2}\right]$
Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$=(4 x-7)\left(16 x^{2}+28 x+49\right)$.

Question 15:
$1-27 x^{3}$
$=(1)^{3}-(3 x)^{3}$
$=(1-3 x)\left[(1)^{2}+1(3 x)+(3 x)^{2}\right]$
Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$=(1-3 x)\left(1+3 x+9 x^{2}\right)$.

Question 16:

$1-27 x^{3}$
$=(1)^{3}-(3 x)^{3}$
$=(1-3 x)\left[(1)^{2}+1(3 x)+(3 x)^{2}\right]$
Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$=(1-3 x)\left(1+3 x+9 x^{2}\right)$.

Question 17:

We know that
$a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
Let us rewrite

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$$
\begin{aligned}
& 8 x^{3}-\frac{1}{27 y^{3}} \\
& =(2 x)^{3}-\left(\frac{1}{3 y}\right)^{3} \\
& =\left(2 x-\frac{1}{3 y}\right)\left[(2 x)^{2}+2 x \times \frac{1}{3 y}+\left(\frac{1}{3 y}\right)^{2}\right] \\
& =\left(2 x-\frac{1}{3 y}\right)\left(4 x^{2}+\frac{2 x}{3 y}+\frac{1}{9 y^{2}}\right)
\end{aligned}
$$

Question 18:

$a^{3}-0.064$
$=(a)^{3}-(0.4)^{3}$
$=(a-0.4)\left[(a)^{2}+a(0.4)+(0.4)^{2}\right]$
Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$=(a-0.4)\left(a^{2}+0.4 a+0.16\right)$.

Question 19:
$(a+b)^{3}-8$
$=(a+b)^{3}-(2)^{3}$
$=(a+b-2)\left[(a+b)^{2}+(a+b) 2+(2)^{2}\right]$
Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$=(a+b-2)\left[a^{2}+b^{2}+2 a b+2(a+b)+4\right]$.

Question 20:
$x^{6}-729$
$=\left(x^{2}\right)^{3}-(9)^{3}$
$=\left(x^{2}-9\right)\left[\left(x^{2}\right)^{2}+x^{2} 9+(9)^{2}\right]$
Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$=\left(x^{2}-9\right)\left(x^{4}+9 x^{2}+81\right)$
$=(x+3)(x-3)\left[\left(x^{2}+9\right)^{2}-(3 x)^{2}\right]$
$=(x+3)(x-3)\left(x^{2}+3 x+9\right)\left(x^{2}-3 x+9\right)$.

Question 21:
We know that,
$a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
Therefore,
$(a+b)^{3}-(a-b)^{3}$
$=[a+b-(a-b)]\left[(a+b)^{2}+(a+b)(a-b)+(a-b)^{2}\right]$
$=(a+b-a+b)\left[a^{2}+b^{2}+2 a b+a^{2}-b^{2}+a^{2}+b^{2}-2 a b\right]$
$=2 b\left(3 a^{2}+b^{2}\right)$.

Question 22:
$x-8 x y^{3}$
$=x\left(1-8 y^{3}\right)$
$=x\left[(1)^{3}-(2 y)^{3}\right]$
$=x(1-2 y)\left[(1)^{2}+1(2 y)+(2 y)^{2}\right]$
Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$=x(1-2 y)\left(1+2 y+4 y^{2}\right)$.

Question 23:
$32 x^{4}-500 x$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $=4 x\left(8 x^{3}-125\right)$
 $=4 x\left[(2 x)^{3}-(5)^{3}\right]$
 $=4 x\left[(2 x-5)\left[(2 x)^{2}+2 x(5)+(5)^{2}\right]\right.$
 Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
 $=4 x(2 x-5)\left(4 x^{2}+10 x+25\right)$.

Question 24:

$3 a^{7} b-81 a^{4} b^{4}$
$=3 a^{4} b\left(a^{3}-27 b^{3}\right)$
$=3 a^{4} b\left[(a)^{3}-(3 b)^{3}\right]$
$=3 a^{4} b(a-3 b)\left[(a)^{2}+a(3 b)+(3 b)^{2}\right]$
Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$=3 a^{4} b(a-3 b)\left(a^{2}+3 a b+9 b^{2}\right)$.

Question 25:
We know that
$a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$a^{3}-\frac{1}{a^{3}}-2 a+\frac{2}{a}$
$=a^{3}-\frac{1}{a^{3}}-2\left(a-\frac{1}{a}\right)$
$=\left(a-\frac{1}{a}\right)\left(a^{2}+a \times \frac{1}{a}+\frac{1}{a^{2}}\right)-2\left(a-\frac{1}{a}\right)$
$=\left(a-\frac{1}{a}\right)\left(a^{2}+1+\frac{1}{a^{2}}-2\right)$
$=\left(a-\frac{1}{a}\right)\left(a^{2}+\frac{1}{a^{2}}-1\right)$.

Question 26:

$8 a^{3}-b^{3}-4 a x+2 b x$
$=8 a^{3}-b^{3}-2 x(2 a-b)$
$=(2 a)^{3}-(b)^{3}-2 \times(2 a-b)$
$=(2 a-b)\left[(2 a)^{2}+2 a(b)+(b)^{2}\right]-2 x(2 a-b)$
Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$=(2 a-b)\left(4 a^{2}+2 a b+b^{2}\right)-2 x(2 a-b)$
$=(2 a-b)\left(4 a^{2}+2 a b+b^{2}-2 x\right)$.

Question 27:

$8 a^{3}-b^{3}-4 a x+2 b x$
$=8 a^{3}-b^{3}-2 x(2 a-b)$
$=(2 a)^{3}-(b)^{3}-2 \times(2 a-b)$
$=(2 a-b)\left[(2 a)^{2}+2 a(b)+(b)^{2}\right]-2 x(2 a-b)$
Since $a^{3}-b^{3}=(a-b)\left(a^{2}+a \times b+b^{2}\right)$
$=(2 a-b)\left(4 a^{2}+2 a b+b^{2}\right)-2 x(2 a-b)$
$=(2 a-b)\left(4 a^{2}+2 a b+b^{2}-2 x\right)$.

Exercise 2K

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

1. $(a+b)^{2}=a^{2}+2 a b+b^{2}=(-a-b)^{2}$
2. $(a-b)^{2}=a^{2}-2 a b+b^{2}$
3. $(a-b)(a+b)=a^{2}-b^{2}$
4. $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
5. $(a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2 a b-2 b c-2 c a$
6. $(a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b-2 b c+2 c a$
7. $(-a+b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 b c-2 c a$
8. $(a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 b c-2 c a$
9. $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
10. $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
11. $a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$
$=(a+b)\left(a^{2}-a b+b^{2}\right)$
12. $a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)$
$=(a-b)\left(a^{2}+a b+b^{2}\right)$
13. $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
if $a+b+c=0$ then $a^{3}+b^{3}+c^{3}=3 a b c$

Question 1:

$125 a^{3}+b^{3}+64 c^{3}-60 a b c$
$=(5 a)^{3}+(b)^{3}+(4 c)^{3}-3(5 a)(b)(4 c)$
$=(5 a+b+4 c)\left[(5 a)^{2}+b^{2}+(4 c)^{2}-(5 a)(b)-(b)(4 c)-(5 a)(4 c)\right]$
$\left[\because a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)\right]$
$=(5 a+b+4 c)\left(25 a^{2}+b^{2}+16 c^{2}-5 a b-4 b c-20 a c\right)$.

Question 2:
$a^{3}+8 b^{3}+64 c^{3}-24 a b c$
$=(a)^{3}+(2 b)^{3}+(4 c)^{3}-3 a 2 b 4 c$
$=(a+2 b+4 c)\left[a^{2}+4 b^{2}+16 c^{2}-2 a b-8 b c-4 c a\right)$.

Question 3:
$1+b^{3}+8 c^{3}-6 b c$
$=1+(b)^{3}+(2 c)^{3}-3(b)(2 c)$
$=(1+b+2 c)\left[1+b^{2}+(2 c)^{2}-b-b 2 c-2 c\right]$
$=(1+b+2 c)\left(1+b^{2}+4 c^{2}-b-2 b c-2 c\right)$.

Question 4:

$216+27 b^{3}+8 c^{3}-108 b c$
$=(6)^{3}+(3 b)^{3}+(2 c)^{2}-363 b 2 c$
$=(6+3 b+2 c)\left[(6)^{2}+(3 b)^{2}+(2 c)^{2}-63 b-3 b 2 c-2 c 6\right]$
$=(6+3 b+2 c)\left(36+9 b^{2}+4 c^{2}-18 b-6 b c-12 c\right)$.

Question 5:
$27 a^{3}-b^{3}+8 c^{3}+18 a b c$
$=(3 a)^{3}+(-b)^{3}+(2 c)^{3}+3(3 a)(-b)(2 c)$
$=[3 a+(-b)+2 c]\left[(3 a)^{2}+(-b)^{2}+(2 c)^{2}-3 a(-b)-(-b)(2 c)-(2 c)(3 a)\right]$
$=(3 a-b+2 c)\left(9 a^{2}+b^{2}+4 c^{2}+3 a b+2 b c-6 c a\right)$.

Question 6:
$8 a^{3}+125 b^{3}-64 c^{3}+120 a b c$
$=(2 a)^{3}+(5 b)^{3}+(-4 c)^{3}-3(2 a)(5 b)(-4 c)$
$=(2 a+5 b-4 c)\left[(2 a)^{2}+(5 b)^{2}+(-4 c)^{2}-(2 a)(5 b)-(5 b)(-4 c)-(-4 c)(2 a)\right]$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 $=(2 a+5 b-4 c)\left(4 a^{2}+25 b^{2}+16 c^{2}-10 a b+20 b c+8 c a\right)$.

Question 7:

$8-27 b^{3}-343 c^{3}-126 b c$
$=(2)^{3}+(-3 b)^{3}+(-7 c)^{3}-3(2)(-3 b)(-7 c)$
$=(2-3 b-7 c)\left[(2)^{2}+(-3 b)^{2}+(-7 c)^{2}-(2)(-3 b)-(-3 b)(-7 c)-(-7 c)(2)\right]$
$=(2-3 b-7 c)\left(4+9 b^{2}+49 c^{2}+6 b-21 b c+14 c\right)$.

Question 8:

$125-8 x^{3}-27 y^{3}-90 x y$
$=(5)^{3}+(-2 x)^{3}+(-3 y)^{3}-3(5)(-2 x)(-3 y)$
$=(5-2 x-3 y)\left[(5)^{2}+(-2 x)^{2}+(-3 y)^{2}-(5)(-2 x)-(-2 x)(-3 y)-(-3 y)(5)\right]$
$=(5-2 x-3 y)\left(25+4 x^{2}+9 y^{2}+10 x-6 x y+15 y\right)$.

Question 9:

$$
\begin{aligned}
& 2 \sqrt{2} a^{3}+16 \sqrt{2} b^{3}+c^{3}-12 a b c \\
& =(\sqrt{2} a)^{3}+(2 \sqrt{2} b)^{3}+(c)^{3}-3(\sqrt{2} a)(2 \sqrt{2 b})(c) \\
& =(\sqrt{2} a+2 \sqrt{2 b}+c) \\
& \quad\left((\sqrt{2} a)^{2}+(2 \sqrt{2 b})^{2}+c^{2}-(\sqrt{2} a)(2 \sqrt{2 b})-(2 \sqrt{2 b})(c)-(c)(\sqrt{2} a) \mid\right. \\
& =(\sqrt{2} a+2 \sqrt{2 b}+c)\left(2 a^{2}+8 b^{2}+c^{2}-4 a b-2 \sqrt{2 b c}-\sqrt{2} a c\right) .
\end{aligned}
$$

Question 10:

$x^{3}+y^{3}-12 x y+64$
$=x^{3}+y^{3}+64-12 x y$
$=(x)^{3}+(y)^{3}+(4)^{3}-3(x)(y)(4)$
$=(x+y+4)\left[(x)^{2}+(y)^{2}+(4)^{2}-x \times y-y \times 4-4 \times x\right]$
$=(x+y+4)\left(x^{2}+y^{2}+16-x y-4 y-4 x\right)$.

Question 11:

Putting $(a-b)=x,(b-c)=y$ and $(c-a)=z$, we get,
$(a-b)^{3}+(b-c)^{3}+(c-a)^{3}$
$=x^{3}+y^{3}+z^{3}$, where $(x+y+z)=(a-b)+(b-c)+(c-a)=0$
$=3 x y z\left[\because(x+y+z)=0 \Rightarrow\left(x^{3}+y^{3}+z^{3}\right)=3 x y z\right]$
$=3(a-b)(b-c)(c-a)$.

Question 12:

We have:
$(3 a-2 b)+(2 b-5 c)+(5 c-3 a)=0$
So, $(3 a-2 b)^{3}+(2 b-5 c)^{3}+(5 c-3 a)^{3}$
$=3(3 a-2 b)(2 b-5 c)(5 c-3 a)$.

Question 13:

$a^{3}(b-c)^{3}+b^{3}(c-a)^{3}+c^{3}(a-b)^{3}$
$=[a(b-c)]^{3}+[b(c-a)]^{3}+[c(a-b)]^{3}$
Now, since, $a(b-c)+b(c-a)+c(a-b)$
$=a b-a c+b c-b a+c a-b c=0$
So, $a^{3}(b-c)^{3}+b^{3}(c-a)^{3}+c^{3}(a-b)^{3}$
$=3 a(b-c) b(c-a) c(a-b)$
$=3 a b c(a-b)(b-c)(c-a)$.

Question 14:

$(5 a-7 b)^{3}+(9 c-5 a)^{3}+(7 b-9 c)^{3}$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Since, $(5 a-7 b)+(9 c-5 a)+(7 b-9 c)$
$=5 a-7 b+9 c-5 a+7 b-9 c=0$
So, $(5 a-7 b)^{3}+(9 c-5 a)^{3}+(7 b-9 c)^{3}$
$=3(5 a-7 b)(9 c-5 a)(7 b-9 c)$.

Question 15:

$(x+y-z)\left(x^{2}+y^{2}+z^{2}-x y+y z+z x\right)$
$=[x+y+(-z)]\left[(x)^{2}+(y)^{2}+(-z)^{2}-(x)(y)-(y)(-z)-(-z)(x)\right]$
$=x^{3}+y^{3}-z^{3}+3 x y z$.

Question 16:

$(x-2 y+3)\left(x^{2}+4 y^{2}+2 x y-3 x+6 y+9\right)$
$=[x+(-2 y)+3]\left[(x)^{2}+(-2 y)^{2}+(3)-(x)(-2 y)-(-2 y)(3)-(3)(x)\right]$
$=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=a^{3}+b^{3}+c^{3}-3 a b c$
Where, $x=a,(-2 y)=b$ and $3=c$
$(x-2 y+3)\left(x^{2}+4 y^{2}+2 x y-3 x+6 y+9\right)$
$=(x)^{3}+(-2 y)^{3}+(3)^{2}-3(x)(-2 y)(3)$
$=x^{3}-8 y^{3}+27+18 x y$.

Question 17:

$(x-2 y-z)\left(x^{2}+4 y^{2}+z^{2}+2 x y+z x-2 y z\right)$
$=[x+(-2 y)+(-z)]\left[(x)^{2}+(-2 y)^{2}+(-z)^{2}-(x)(-2 y)-(-2 y)(-z)-(-z)(x)\right]$
$=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=a^{3}+b^{3}+c^{3}-3 a b c$
Where $x=a,(-2 y)=b$ and $(-z)=c$
$(x-2 y-z)\left(x^{2}+4 y^{2}+z^{2}+2 x y+z x-2 y z\right)$
$=(x)^{3}+(-2 y)^{3}+(-z)^{3}-3(x)(-2 y)(-z)$
$=x^{3}-8 y^{3}-z^{3}-6 x y z$.

Question 18:

Given, $x+y+4=0$
We have $\left(x^{3}+y^{3}-12 x y+64\right)$
$=(x)^{3}+(y)^{3}+(4)^{3}-3(x)(y)(4)$
$=0$.
Since, we know $a+b+c=0 \Rightarrow\left(a^{3}+b^{3}+c^{3}\right)=3 a b c$

Question 19:

Given $x=2 y+6$
Or, $x-2 y-6=0$
We have, $\left(x^{3}-8 y^{3}-36 x y-216\right)$
$=\left(x^{3}-8 y^{3}-216-36 x y\right)$
$=(x)^{3}+(-2 y)^{3}+(-6)^{3}-3(x)(-2 y)(-6)$
$=(x-2 y-6)\left[(x)^{2}+(-2 y)^{2}+(-6)^{2}-(x)(-2 y)-(-2 y)(-6)-(-6)(x)\right]$
$=(x-2 y-6)\left(x^{2}+4 y^{2}+36+2 x y-12 y+6 x\right)$
$=0\left(x^{2}+4 y^{2}+36+2 x y-12 y+6 x\right)$
$=0$.

