Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions Probability

1. Experiment:

An operation which can produce some well-defined outcomes is called an experiment.
2. Random Experiment:

An experiment in which all possible outcomes are know and the exact output cannot be predicted in advance, is called a random experiment.
Examples:
i. Rolling an unbiased dice.
ii. Tossing a fair coin.
iii. Drawing a card from a pack of well-shuffled cards.
iv. Picking up a ball of certain colour from a bag containing balls of different colours.

Details:
i. When we throw a coin, then either a Head (H) or a Tail (T) appears.
ii. A dice is a solid cube, having 6 faces, marked $1,2,3,4,5,6$ respectively. When we throw a die, the outcome is the number that appears on its upper face.
iii. A pack of cards has 52 cards.

It has 13 cards of each suit, name Spades, Clubs, Hearts and Diamonds.
Cards of spades and clubs are black cards.
Cards of hearts and diamonds are red cards.
There are 4 honours of each unit.
There are Kings, Queens and Jacks. These are all called face cards.

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions
 3. Sample Space:

When we perform an experiment, then the set S of all possible outcomes is called the sample space.
Examples:

1. In tossing a coin, $S=\{H, T\}$
2. If two coins are tossed, the $S=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$.
3. In rolling a dice, we have, $S=\{1,2,3,4,5,6\}$
4. Event:

Any subset of a sample space is called an event.
5. Probability of Occurrence of an Event:

Let S be the sample and let E be an event.
Then, $\mathrm{E} \subseteq \mathrm{S}$.
$\therefore \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}$
6. Results on Probability:
i. $P(S)=1$
ii. $0 \leq P(E) \leq 1$
iii. $P(\phi)=0$
iv. For any events A and B we have : $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
v. If \bar{A} denotes (not-A), then $P(\bar{A})=1-P(A)$.

Exercise 15A

Question 1:
Total numbers of trials $=500$
Numbers of heads $=285$
Numbers of tails $=215$
(i) Let E be the event of getting a head
$\therefore P($ getting ahead $)=P(E)=\frac{\text { numbers of heads coming up }}{\text { totalnumber of trials }}$

$$
=\frac{285}{500}=0.57
$$

(ii) Let F be the event of qettina a tail

$$
\begin{aligned}
\therefore \quad P(\text { getting a tail })=P(F)= & \frac{\text { numbers of tailscomingup }}{\text { totalnumber of trials }} \\
& =\frac{215}{500} \\
= & 0.43
\end{aligned}
$$

Question 2:
Total numbers of trials $=400$
Numbers of times 2 head appears $=112$
Number of times 1 head appears $=160$
Number of times 0 head appears $=128$
In a random toss of two coins, Let $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$, be the events of P (getting 2 heads)
$=P\left(E_{1}\right)=\frac{\text { numbers of times } 2 \text { heads appear }}{\text { totalnumber of trials }}=\frac{112}{400}=0.28$
$P($ qetting 1 head $)=P\left(E_{2}\right)=$
$\frac{\text { numbers of times } 1 \text { head appears }}{\text { total number of trials }}=\frac{160}{400}=0.4$
$P($ qetting 0 head $)=P\left(E_{3}\right)=$
$\frac{\text { numbers of times } 0 \text { head appears }}{\text { total number of trials }}=\frac{128}{400}=0.32$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Question 3:
Total number of trials $=200$
Number of times 3 heads appeared $=39$
Number of times 2 heads appeared $=58$
Number of times 1 head appeared $=67$
Number of times 0 head appeared=36
The random toss of 3 coins, Let E1, E2, E3 and E4 be the events of getting 3 heads, 1 head and 0 head and 2 heads respectively Then;
(i) P (qetting 3 heads) $=\mathrm{P}\left(\mathrm{E}_{1}\right)=$
numbers of times 3 head appeared
total number of trials
$=\frac{39}{200}$
$=0.195$
(ii) $P($ getting 1 head $)=P\left(E_{2}\right)=$
numbers of times 1 head appeared
total number of trials
$=\frac{67}{200}$
$=0.335$
(iii) P (getting Ohead) $=\mathrm{P}\left(\mathrm{E}_{3}\right)=$
numbers of times 0 head appeared
total number of trials
$=\frac{36}{200}$
$=0.18$
(iii) $\quad \mathrm{P}$ (getting 2heads) $=\mathrm{P}\left(\mathrm{E}_{4}\right)=$ numbers of times 2head appeared total number of trials
$=\frac{58}{200}$
$=0.29$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Question 4:

Total number of trials $=300$
In a random throw of a die let E_{1}, E_{2}, E_{3}, and E_{4} be the events of $3,6,5$, and 1 respectively .Then;
(i) $\mathrm{P}($ getting 3$)=\mathrm{P}\left(\mathrm{E}_{1}\right)=$
numbers of times 3 appeared
total number of trials
$=\frac{54}{300}$
$=0.18$
(ii) $\mathrm{P}($ getting 6$)=\mathrm{P}\left(\mathrm{E}_{2}\right)=$
numbers of times 6 appeared
total numberof trials
$=\frac{33}{300}$
$=0.11$
(iii) $\quad P($ getting 5$)=P\left(E_{3}\right)=$
numbers of times 5 appeared
total number of trials
$=\frac{39}{300}$
$=0.13$
(iv) $\quad \mathrm{P}($ getting 1$)=P\left(E_{4}\right)=$
numbers of times 2 head appeared
total number of trials
$=\frac{60}{300}$
$=0.2$

Question 5:
The number of ladies $=200$
Number of ladies who like coffee $=142$
Number of ladies who do not like coffee $=58$
Let $E_{1}=$ event that the selected lady likes coffee.

$$
\mathrm{P}(E 1)=\frac{\text { numbers ofladies who like coffee }}{\text { total number of trials }}=\frac{142}{200}=0.71
$$

Let (E2) = event that the selected lady dislikes coffee. Then
$\mathrm{P}(\mathrm{E} 2)=\frac{\text { numbers of ladies who dislike coffee }}{\text { total number of trials }}=\frac{58}{200}=0.29$

Question 6:
Number of tests in which he gets more than 60\% marks $=2$
Total numbers of tests $=6$
\therefore Required probability

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

$=\underline{\text { numbers of tests in which he gets more than } 60 \% \text { marks }}$
total number of trials
$=\frac{2}{6}=\frac{1}{3}$

Question 7:

```
Total numbers of vehicles = 240
```

Numbers of two wheelers $=84$
\therefore Required probability
$=\frac{\text { numbers of two wheelers }}{\text { totalnumberof vehicles }}$
$=\frac{84}{240}$
$=0.35$

Question 8:
Total phone numbers $=200$
Numbers of phone numbers with unit digit $5=24$
\therefore Required probability
$=\frac{\text { numbers of phone numbers with units digits } 5}{\text { totalnumberof numbers }}$
$=\frac{24}{200}$
$=0.12$
Numbers of phone numbers with units digit $8=16$
\therefore Required probability
$=\underline{\text { numbers of phone numbers with units digits } 8}$

> totalnumberof phonenumbers
$=\frac{16}{200}$
$=0.08$

Question 9:
Total number of students $=40$
(i)Numbers of students having blood groupO $=14$
\therefore Required probability
$=\frac{\text { numbers of students having blood group } \mathrm{O}}{\text { totalnumberof students }}=\frac{14}{40}=0.35$
(ii) Numbers of students having blood group $A B=6$
\therefore Required probability
$=\frac{\text { numbers of students having blood group } \mathrm{AB}}{\text { totalnumberof students }}=\frac{6}{40}=0.15$

Question 10:
Total numbers of students $=30$
Numbers of students who lie in the interval $21-30=6$
\therefore Required probability
$=\frac{\text { numbers of students in the interval }}{\text { totalnumberof students }}=\frac{6}{30}=0.2$

Downloaded from www.studiestoday.com RS Aggarwal Class 9 Mathematics Solutions

Total number of patients $=360$
(i)P (getting a patient of age 30 years or more but less than 40 years $)=\frac{60}{360}=\frac{1}{6}$
(ii)P (gettıng a patient of aqe 50 vears or more but less than 70 years)
$=\left(\frac{50+30}{360}\right)=\frac{80}{360}=\frac{2}{9}$
(iii) P (getting a patient of age less than 10 years) $=\frac{0}{360}=0$
(iv) P (getting a patient of age 10 years or more) $=\frac{360}{360}=1$

