Jownloaded from www.studiestoday.com Aggarwal Class 9 Mathematics Solutio

Volume andSurface Area

Exercise 13A

Name of
the
solid

Cuboid
Cube

Questiởn 1:
(i) length $=12 \mathrm{~cm}$, breadth $=8 \mathrm{~cm}$ and height $=4.5 \mathrm{~cm}$
\therefore Volume 6 f cuboid $=1 \times \mathrm{b} \times \mathrm{h}$
$=(12 \times 8 \times 4.5) \mathrm{cm}^{2}=432 \mathrm{~cm}$
\therefore Lateral surface area of a cuboid $=2(I+b) \times h$
$=[2(12+8) \times 4.5] \mathrm{cm}^{2}$
$=(2 \times 20 \times 4.5) \mathrm{cm}=180 \mathrm{~cm}$
\therefore Total surface area cuboid $=2(\mathrm{lb}+\mathrm{b} \mathrm{h}+\mathrm{l} \mathrm{h})$
${ }^{2}=2(12 \times 8+8 \times 4.5+12 \times 4.5) \mathrm{cm}$
$=2(96+36+54) \mathrm{cm}$
$=(2 \times 186) \mathrm{cm}$
$=372 \mathrm{~cm}$
(ii) Length 26 m , breadth $=14 \mathrm{~m}$ and height $=6.5 \mathrm{~m}$
\therefore \solume of a cuboid $=1 \times \mathrm{b} \times \mathrm{h}$
$=(26 \times 14 \times 6.5) \mathrm{m}$
$=2366 \mathrm{~m} \quad 2$
\therefore Lateral surface area of a cuboid $=2(1+b) \times h$

Jownloaded from www.studiestoday.com 5 Aggarwal Class 9 Mathematics Solutio
 $=520 \mathrm{~m}^{2}$

\therefore Total surface area $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$
$=2(26 \times 14+14 \times 6.5+26 \times 6.5)$
$=2(364+91+169) \mathrm{m}^{2}$
$=(2 \times 624) \mathrm{m} 2=1248 \mathrm{~m}^{2}$.
(iii) Length $=15 \mathrm{~m}$, breadth $=6 \mathrm{~m}$ and height $=5 \mathrm{dm}=0.5 \mathrm{~m}$
\therefore Volume of a cuboid $=1 \times \mathrm{b} \times \mathrm{h}$
$=(15 \times 6 \times 0.5) \mathrm{m} 3=45 \mathrm{~m}^{3}$.
\therefore Lateral surface area $=2(1+\mathrm{b}) \times \mathrm{h}$
$=[2(15+6) \times 0.5] \mathrm{m}^{2}$
$=(2 \times 21 \times 0.5) \mathrm{m} 2=21 \mathrm{~m}^{2}$
\therefore Total surface area $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$
$=2(15 \times 6+6 \times 0.5+15 \times 0.5) \mathrm{m}^{2}$
$=2(90+3+7.5) \mathrm{m}^{2}$
$=(2 \times 100.5) \mathrm{m}^{2}$
$=201 \mathrm{~m}^{2}$
(iv) Length $=24 \mathrm{~m}$, breadth $=25 \mathrm{~cm}=0.25 \mathrm{~m}$, height $=6 \mathrm{~m}$.
\therefore Volume of cuboid $=1 \times \mathrm{b} \times \mathrm{h}$
$=(24 \times 0.25 \times 6) \mathrm{m}^{3}$.
$=36 \mathrm{~m}^{3}$.
\therefore Lateral surface area $=2(1+\mathrm{b}) \times \mathrm{h}$
$=[2(24+0.25) \times 6] \mathrm{m}^{2}$
$=(2 \times 24.25 \times 6) \mathrm{m}^{2}$
$=291 \mathrm{~m}^{2}$.
\therefore Total surface area $=2(1 \mathrm{~b}+\mathrm{bh}+\mathrm{lh})$
$=2(24 \times 0.25+0.25 \times 6+24 \times 6) \mathrm{m}^{2}$
$=2(6+1.5+144) \mathrm{m}^{2}$
$=(2 \times 151.5) \mathrm{m}^{2}$
$=303 \mathrm{~m}^{2}$.
Question 2:
Length of Cistern $=8 \mathrm{~m}$
Breadth of Cistern $=6 \mathrm{~m}$
And Height (depth) of Cistern $=2.5 \mathrm{~m}$
\therefore Capacity of the Cistern $=$ Volume of cistern
\therefore Volume of Cistern $=(1 \times \mathrm{b} \times \mathrm{h})$
$=(8 \times 6 \times 2.5) \mathrm{m}^{3}$
$=120 \mathrm{~m}^{3}$
Area of the iron sheet required $=$ Total surface area of the cistem.
\therefore Total surface area $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$
$=2(8 \times 6+6 \times 2.5+2.5 \times 8) \mathrm{m}^{2}$
$=2(48+15+20) \mathrm{m}^{2}$
$=(2 \times 83) \mathrm{m} 2=166 \mathrm{~m}^{2}$

Jownloaded from www.studiestoday.com Aggarwal Class 9 Mathematics Solutio

Question 3:
Length of a room $=9 \mathrm{~m}$,
Breadth of a room $=8 \mathrm{~m}$
And height of room $=6.5 \mathrm{~m}$
\therefore Area of 4 walls $=$ Lateral surface area
$=2(1+b) \times h$
$=[2(9+8) \times 6.5] \mathrm{m}^{2}$
$=(2 \times 17 \times 6.5) \mathrm{m}^{2}$
$=221 \mathrm{~m}^{2}$
\therefore Area not be whitewashed $=$ (area of 1 door) + (area of 2 windows)
$=(2 \times 1.5) \mathrm{m}^{2}+(2 \times 1.5 \times 1) \mathrm{m}^{2}$
$=3 m^{2}+3 m^{2}=6 m^{2}$
\therefore Area to be whitewashed $=(221-6) \mathrm{m}^{2}=215 \mathrm{~m}^{2}$
\therefore Cost of whitewashing the walls at the rate of Rs. 6.40 per
Square meter $=$ Rs. $(6.40 \times 215)=$ Rs. 1376

Question 4:
Length of plank $=5 \mathrm{~m}=500 \mathrm{~cm}$
Breadth of plank $=25 \mathrm{~m}$
Height of plank $=10 \mathrm{~cm}$
$\therefore \quad$ Volume of plank $=1 \times \mathrm{b} \times \mathrm{h}$
$=(500 \times 25 \times 10) \mathrm{cm}^{3}$
Now,
Length of pit $=20 \mathrm{~m}=2000 \mathrm{~cm}$
Breadth of pit $=6 \mathrm{~m}=600 \mathrm{~cm}$
Height of pit $\quad=80 \mathrm{~cm}$
$\therefore \quad$ Volume of one pit $\quad=(2000 \times 600800) \mathrm{cm}^{3}$
\therefore Number of planks that can be stored $=\frac{\text { Volume of pit }}{\text { Volume of plank }}$

$$
=\frac{(2000 \times 600 \times 80)}{(500 \times 25 \times 10)}=768
$$

Question 5:

Length of wall	$=8 \mathrm{~m}=800 \mathrm{~cm}$	
	Breadth of wall	$=6 \mathrm{~m}=600 \mathrm{~cm}$
Height of wall	$=22.5 \mathrm{~cm}$	
$\therefore \quad$ Volume of wall	$=I \times \mathrm{b} \times \mathrm{h}$	
	$=(800 \times 600 \times 22.5) \mathrm{cm}^{3}$	
	Length of brick	$=25 \mathrm{~cm}$
	Breadth of brick	$=11.25 \mathrm{~cm}$
$\therefore \quad$ Height of brick	$=6 \mathrm{~cm}$	
	Volume of brick	$=(25 \times 11.25 \times 6) \mathrm{cm}^{3}$
		Volume of the wall

$\therefore \quad$ Number of bricks required $=\frac{\text { Volume of the wall }}{\text { Volume of brick }}$

$$
=\frac{(800 \times 600 \times 22.5)}{(25 \times 11.25 \times 6)}=6400
$$

Jownloaded from www.studiestoday.con Aggarwal Class 9 Mathematics Solutio

Question 6:

$$
\begin{aligned}
& \text { Length of wall }=15 \mathrm{~m} \\
& \text { Breadth of wall }=0.3 \mathrm{~m} \\
& \text { Height of wall }=4 \mathrm{~m} \\
& \text { Volume of the wall }=(15 \times 0.3 \times 4) \mathrm{m}^{3}=18 \mathrm{~m}^{3} \\
& \text { Volume of mortar }=\left(\frac{1}{12} \times 18\right)=1.5 \mathrm{~m}^{3} \\
& \text { Volume of wall }=(18-1.5) \mathrm{m}^{3}=16.5=\frac{33}{2} \mathrm{~m}^{3} \\
& \text { Length of brick }=22 \mathrm{~cm} \\
& \begin{aligned}
\text { Breadth of brick } & =12.5 \mathrm{~cm} \\
\text { Height of brick } & =7.5 \mathrm{~cm} \\
\therefore \quad \text { Volume of } 1 \text { brick } & =\left(\frac{22}{100} \times \frac{12.5}{100} \times \frac{7.5}{100}\right) \mathrm{m}^{3} \\
& =\left(\frac{33}{16000}\right) \mathrm{m}^{3} \\
\therefore \text { Number of bricks } & =\frac{\text { Volume of bricks }}{\text { Volume of } 1 \text { brick }} \\
& =\left(\frac{33}{2} \times \frac{16000}{33}\right)=8000
\end{aligned} \\
& \begin{aligned}
2
\end{aligned} \\
& \therefore
\end{aligned}
$$

Question 7:

$$
\text { External length of cistern } \quad=1.35 \mathrm{~m}=135 \mathrm{~cm}
$$

$$
\text { External breadth of cistern }=1.08 \mathrm{~m}=108 \mathrm{~cm}
$$

$$
\text { External height of cistern } \quad=90 \mathrm{~cm}
$$

$$
\therefore \quad \text { External volume of cistern }=(135 \times 108 \times 90) \mathrm{cm}^{3}
$$

$$
=1312200 \mathrm{~cm}^{3}
$$

Internal length of cistern $=(135-2 \times 2.5) \mathrm{cm}$

$$
=(135-5) \mathrm{cm}=130 \mathrm{~cm}
$$

Internal breadth of cistern $=(108-2 \times 2.5) \mathrm{cm}$

$$
=(108-5) \mathrm{cm}=103 \mathrm{~cm}
$$

\therefore

$$
\text { Internal height of cistern } \quad=(90-2.5) \mathrm{cm}=87.5 \mathrm{~cm}
$$

cistern
$=$ Internal volume of

$$
\begin{aligned}
& =(130 \times 103 \times 87.5) \mathrm{cm}^{3} \\
& =1171625 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of the iron used = External volume of the
cistern
cistern
-Internal volume of the

$$
\begin{aligned}
& =(1312200-1171625) \mathrm{cm}^{3} \\
& =140575 \mathrm{~cm}^{3}
\end{aligned}
$$

Question 8:

Jownloaded from www.studiestoday.com 5 Aggarwal Class 9 Mathematics Solutio

Depth of the river $=2 \mathrm{~m}$
Breadth of the river $=45 \mathrm{~m}$

$$
\begin{aligned}
\text { Length of the river } & =3 \mathrm{KM} / \mathrm{h}=\left(\frac{3 \times 1000}{60}\right) \mathrm{m} / \mathrm{min} \\
& =50 \mathrm{~m} / \mathrm{min} .
\end{aligned}
$$

\therefore Volume of water running into the sea per minute $=(50 \times 45 \times 2) \mathrm{m}^{3}$

$$
=4500 \mathrm{~m}^{3}
$$

Question 9:

$$
\begin{aligned}
& \text { Total cost of sheet = Rs. } 1620 \\
& \text { Cost of metal sheet per square meter }=\text { Rs. } 30 \\
& \therefore \quad \text { Area of the sheet required }=\left(\frac{\text { Total cost }}{\text { rate } / \mathrm{m}^{2}}\right) \mathrm{sq} . \mathrm{m} \text {. } \\
& =\left(\frac{1620}{30}\right) \mathrm{sq} \cdot \mathrm{~m}=54 \mathrm{sq} \cdot \mathrm{~m} \text {. } \\
& \text { Length of box }=5 \mathrm{~m} \\
& \text { Breadth of box }=3 \mathrm{~m} \\
& \text { Now, Let the height of the box be } x \text { meters. } \\
& \therefore \text { Area of the sheet }=\text { Total surface area of the box. } \\
& =2(\mathrm{~b}+\mathrm{bh}+/ \mathrm{h}) \\
& 54=2(5 \times 3+3 x x+5 x x) \\
& 54=2(15+3 x+5 x) \\
& 54=2(15+8 x) \\
& \therefore \quad 2(15+8 x)=54 \\
& \Rightarrow \quad 30+16 x=54 \\
& \Rightarrow \quad 16 x=54-30 \\
& \Rightarrow \quad x=\frac{24}{16}=1.5 \mathrm{~m}
\end{aligned}
$$

\therefore The height of the box $=1.5 \mathrm{~m}$.

Question 10:
Length of room $=10 \mathrm{~m}$
Breadth of room $=10 \mathrm{~m}$
Height of room $=5 \mathrm{~m}$
\therefore Length of the longest pole $=$ length of diagonal

$$
\begin{aligned}
& =\sqrt{1^{2}+b^{2}+h^{2}} \\
& =\sqrt{10^{2}+10^{2}+5^{2}} \\
& =\sqrt{100+100+25}=\sqrt{225}=15 \mathrm{~m}
\end{aligned}
$$

\therefore The length of the longest pole that can be put in a room with given

Dimensions $=15 \mathrm{~m}$.

Question 11:

$$
\begin{aligned}
& \text { Length of hall }=20 \mathrm{~m} \\
& \text { Breadth of hall }=16 \mathrm{~m} \\
& \text { Height of hall }=4.5 \mathrm{~m} \\
& \text { Volume of hall }=1 \times \mathrm{b} \times \mathrm{h} \\
&=(20 \times 16 \times 4.5) \mathrm{m}^{3} \\
& \text { Volume of air needed per person }=5 \mathrm{~m}^{3}
\end{aligned}
$$

\therefore Number of persons $=\left(\frac{\text { Volume of the hall }}{\text { Volume of air needed per person }}\right)$

$$
=\left(\frac{20 \times 16 \times 4.5}{5}\right)=288
$$

Jownloaded from www.studiestoday.con 5 Aggarwal Class 9 Mathematics Solutio

Length of classroom $=10 \mathrm{~m}$
Breadth of classroom $=6.4 \mathrm{~m}$
Height of classroom $=5 \mathrm{~m}$
Each student is given $1.6 \mathrm{~m}^{2}$ of the floor area.

$$
\begin{aligned}
\text { Number of students } & =\frac{(\text { area of the room })}{1.6} \\
& =\frac{(10 \times 6.4)}{1.6}=\frac{64}{1.6}=40
\end{aligned}
$$

\therefore Number of students $=40$
\therefore Air required by each student $=\left(\frac{\text { Volume of the room }}{\text { number of students }}\right) \mathrm{m}^{3}$

$$
\begin{aligned}
& =\left(\frac{10 \times 6.4 \times 5}{40}\right) \mathrm{m}^{3}\left(\frac{320}{40}\right) \mathrm{m}^{3} \\
& =8 \mathrm{~m}^{3}
\end{aligned}
$$

\therefore The height of the cuboid $=9 \mathrm{~cm}$

Question 15:

Jownloaded from www.studiestoday.com 5 Aggarwal Class 9 Mathematics Solutio

(a) Each edge of a cube $=9 \mathrm{~m}$

$$
\begin{aligned}
\therefore \quad \text { Volume of a cube } & =a^{3} \\
& =(9)^{3} \mathrm{~m}^{3}=729 \mathrm{~m}^{3}
\end{aligned}
$$

\therefore Lateral surface area of cube $=4 a^{2}$

$$
\begin{aligned}
& =4 \times(9)^{2} \\
& =(4 \times 81) \mathrm{m}^{2} \\
& =324 \mathrm{~m}^{2}
\end{aligned}
$$

\therefore Total surface area of a cube $=6 \mathrm{a}^{2}$

$$
\begin{aligned}
& =6 \times(9)^{2} \\
& =(6 \times 81) \mathrm{m}^{2} \\
& =486 \mathrm{~m}^{2}
\end{aligned}
$$

$\therefore \quad$ Diagonal of cube

$$
=\sqrt{3} \mathrm{a}
$$

$$
=\sqrt{3} \times 9
$$

(b) \therefore

Each edge of a cube $=6.5 \mathrm{~cm}$

$$
\text { Volume of a cube }=a^{3}=(6.5)^{3} \mathrm{~cm}^{3}
$$

$$
=274.625 \mathrm{~cm}^{3}
$$

\therefore Lateral surface area of a cube $=4 a^{2}$

$$
\begin{aligned}
& =4 \times(6.5)^{2} \mathrm{~cm}^{2} \\
& =(4 \times 42.25) \mathrm{cm}^{2} \\
& =169 \mathrm{~cm}^{2}
\end{aligned}
$$

Total surface area of a cube $=6 \mathrm{a}^{2}$
$=6 \times(6.5)^{2} \mathrm{~cm}^{2}$

$$
=(6 \times 42.25) \mathrm{cm}^{2}
$$

$$
=253.5 \mathrm{~m}^{2}
$$

$\therefore \quad$ Diagonal of cube

$$
=\sqrt{3} a
$$

$$
=\sqrt{3} \times 6.5
$$

$$
\begin{aligned}
&=(1.73 \times 6.5) \mathrm{cm} \\
&=11245 \mathrm{~cm}
\end{aligned}
$$

$$
=11.245 \mathrm{~cm} .
$$

Question 16:
Let each side of the cube be a cm.
Then, the total surface area of the cube $=\left(6 a^{2}\right) \mathrm{cm}^{2}$

$$
\begin{array}{ll}
\therefore & 6 \mathrm{a}^{2}=1176 \\
\Rightarrow & \mathrm{a}^{2}=\frac{1176}{6}=196 \\
\Rightarrow & \mathrm{a}=\sqrt{196}=14 \mathrm{~cm}
\end{array}
$$

. Volume of the cube $=a^{3}$

$$
\begin{aligned}
& =(14)^{3}=(14 \times 14 \times 14) \mathrm{cm}^{3} \\
& =2744 \mathrm{~cm}^{3} .
\end{aligned}
$$

Question 17:
Let each side of the cube be a cm
Then, the lateral surface area of the cube $=\left(4 a^{2}\right) \mathrm{cm}^{2}$

$$
\begin{array}{ll}
\therefore & 4 a^{2}=900 \\
\Rightarrow & a^{2}=\frac{900}{4}=225 \\
\therefore & a=\sqrt{225}=15 \mathrm{~cm}
\end{array}
$$

\therefore Volume of the cube $=a^{3}$

$$
\begin{aligned}
& =(15)^{3}=(15 \times 15 \times 15) \mathrm{cm}^{3} \\
& =3375 \mathrm{~cm}^{3} .
\end{aligned}
$$

Question 18:
Volume of the cube $=512 \mathrm{~cm}^{3} \quad$ [Volume $=a^{3}$]
\therefore Each edge of the cube $=\sqrt[3]{512}=8 \mathrm{~cm}$.
\therefore Surface area of cube $=6 a^{2}$

$$
\begin{aligned}
& =6 \times(8)^{2} \mathrm{~cm}^{2} \\
& =(6 \times 64) \mathrm{cm}^{2} \\
& =384 \mathrm{~cm}^{2}
\end{aligned}
$$

Jownloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solutio

Volume of the new cube $=\left[(3)^{3}+(4)^{3}+(5)^{3}\right] \mathrm{cm}$

$$
\begin{aligned}
& =(27+64+125) \mathrm{cm}^{2} \\
& =216 \mathrm{~cm}^{2} \\
b e & =a \mathrm{~cm} \\
\mathrm{a}^{3} & =216 \\
\mathrm{a} & =6 \mathrm{~cm}
\end{aligned}
$$

Now edge of this cube $=a \mathrm{~cm}$ And,

Lateral surface area of the new cube $=4 a^{2} \mathrm{~cm}^{2}$.

$$
\begin{aligned}
& =4 \times(6)^{2} \mathrm{~cm}^{2} \\
& =(4 \times 36) \mathrm{cm}^{2} \\
& =144 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore The lateral surface area of the new cube formed $=144 \mathrm{~cm}^{2}$.

Question 20:

1 hectare $=10000 \mathrm{~m}^{2}$
Area $=2$ hectares $=2 \times 10000 \mathrm{~m}^{2}$
Depth of the ground $=5 \mathrm{~cm}=\frac{5}{100} \mathrm{~m}$
Volume of water $\quad=$ (area \times depth $)$
$=\left(2 \times 10000 \times \frac{5}{100}\right) \mathrm{m}^{3}$
$=1000 \mathrm{~m}^{3}$
\therefore Volume of water that falls $=1000 \mathrm{~m}^{3}$

Exercise 13B

Question 1:
Here, $\mathrm{r}=5 \mathrm{~cm}$ and $\mathrm{h}=21 \mathrm{~cm}$
$\therefore \quad$ Volume of the cylinder $=\left(\Pi r^{2} h\right)$

$$
\begin{aligned}
& =\left(\frac{22}{7} \times 5^{2} \times 21\right) \mathrm{cm}^{3} \\
& =\left(\frac{22}{7} \times 25 \times 21\right) \mathrm{cm}^{3} \\
& =1650 \mathrm{~cm}^{3} .
\end{aligned}
$$

\therefore Curved surface area of a cylinder $=(2 \Pi r h)$

$$
\begin{aligned}
& =2 \times\left(\frac{22}{7} \times 5 \times 21\right) \mathrm{cm}^{2} \\
& =660 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 2:

Jownloaded from www.studiestoday.com 5 Aggarwal Class 9 Mathematics Solutio

$$
\begin{aligned}
& \text { Here, diameter }=28 \mathrm{~cm} \\
& \text { Radius }=\left(\frac{28}{2}\right) \mathrm{cm}=14 \mathrm{~cm} \text { and } \\
& \text { height }=40 \mathrm{~cm} \\
& \therefore \quad \text { Curved surface area }=(2 \Pi r \mathrm{~h}) \\
&=\left(2 \times \frac{22}{7} \times 14 \times 40\right) \mathrm{cm}^{2} \\
&=3520 \mathrm{~cm}^{2} \\
& \therefore \quad \text { Total surface area }=\left(2 \Pi \mathrm{rh}+2 \Pi \mathrm{r}^{2}\right) \\
&=\left(2 \times \frac{22}{7} \times 14 \times 40+2 \times \frac{22}{7} \times 14^{2}\right) \\
&=(3520+1232)=4752 \mathrm{~cm}^{2} \\
& \therefore \text { Volume of the cylinder }=\left(\Pi r^{2} \mathrm{~h}\right) \\
&=\left(\frac{22}{7} \times 14^{2} \times 40\right) \mathrm{cm}^{3} \\
&=\left(\frac{22}{7} \times 14 \times 14 \times 40\right) \mathrm{cm}^{3} \\
&=24640 \mathrm{~cm}^{3} .
\end{aligned}
$$

Question 3:
Here, radius $(r)=10.5 \mathrm{~cm}$ and height $=60 \mathrm{~cm}$.
\therefore Volume of the cylinder $=\left(\Pi r^{2} h\right)$

$$
\begin{aligned}
& =\left(\frac{22}{7} \times 10.5 \times 10.5 \times 60\right) \mathrm{cm}^{3} \\
& =20790 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Weight of the solid cylinder if the material of the
cylinder

$$
\begin{aligned}
\text { Weighs } 5 \mathrm{~g} \text { per } \mathrm{cm}^{3} & =(20790 \times 5)=103950 \mathrm{~g} \\
& =\frac{103950}{1000} \quad[\therefore 1000 \mathrm{~g}=1 \mathrm{~kg}] \\
& =103.95 \mathrm{~kg}
\end{aligned}
$$

Question 4:
Here, curved surface area $=1210 \mathrm{~cm}^{2}$
Diameter $=20 \mathrm{~cm} \Rightarrow$ radius $=\frac{20}{2}=10 \mathrm{~cm}$
\therefore Curved surface area of the cylinder $=2 \Pi r h$

$$
\begin{array}{ll}
\Rightarrow \quad 1210 & =2 \times \frac{22}{7} \times 10 \times \mathrm{h} \\
\Rightarrow & \mathrm{~h}=\left(\frac{1210 \times 7}{2 \times 22 \times 10}\right) \mathrm{cm}=19.25 \mathrm{~cm} \\
& \therefore \quad \text { Height }=19.25 \mathrm{~cm}
\end{array}
$$

\therefore Volume of the cylinder $=\left(\Pi r^{2} h\right)$

$$
\begin{aligned}
& =\left(\frac{22}{7} \times 10^{2} \times 19.25\right) \mathrm{cm}^{3} \\
& =\left(\frac{22}{7} \times 10 \times 10 \times 19.25\right) \mathrm{cm}^{3} \\
& =6050 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\therefore \text { Volume of the cylinder }=6050 \mathrm{~cm}^{3} \text {. }
$$

Jownloaded from www.studiestoday.com 5 Aggarwal Class 9 Mathematics Solutio

Let base radius be r and height be h

$$
\begin{aligned}
& \begin{aligned}
\text { Then, } & 2 \Pi r \mathrm{~h} & =4400 \mathrm{~cm}^{2} \\
\text { And } & 2 \Pi r & =110 \mathrm{~cm}
\end{aligned} \\
& \Rightarrow \quad \frac{2 \Pi \mathrm{rh}}{2 \Pi \mathrm{r}}=\frac{4400}{110} \\
& \Rightarrow \quad \mathrm{~h}=40 \mathrm{~cm} \\
& \therefore \quad 2 \times \frac{22}{7} \times r \times h \times 40=4400 \mathrm{~cm} \text {. } \\
& \Rightarrow \quad r=\left(\frac{4400 \times 7}{44 \times 40}\right) \mathrm{cm}=\frac{35}{2} \mathrm{~cm} \text {. }
\end{aligned}
$$

$\therefore \quad$ Volume of the cylinder $=\Pi r^{2} h$

$$
\begin{aligned}
& =\left(\frac{22}{7} \times \frac{35}{2} \times \frac{35}{2} \times 40\right) \mathrm{cm}^{3} \\
& =38500 \mathrm{~cm}^{3}
\end{aligned}
$$

Question 6:

$$
\begin{aligned}
& \text { Let the radius }(\mathrm{r})=2 \mathrm{xcm} \text { and height }(\mathrm{h})=3 \mathrm{xcm} \\
& \text { Then, Volume of cylinder }=\left(\Pi r^{2} h\right) \\
& \text { Volume }=\left|\frac{22}{7} \times(2 x)^{2} \times 3 x\right| \\
& \text { Volume }=\left[\frac{22}{7} \times 4 x^{2} \times 3 x\right] \\
& \text { Volume }=\frac{22}{7} \times 12 x^{3} \\
& \Rightarrow \quad 1617=\frac{22}{7} \times 12 x^{3} \\
& {\left[\because \text { volume given }=1617 \mathrm{~cm}^{3}\right. \text {] }} \\
& \Rightarrow \quad 12 x^{3}=\frac{1617 \times 7}{22} \\
& \Rightarrow \quad x^{3}=\frac{1617 \times 7}{22 \times 12}=\left(\frac{7}{2}\right)^{3} \\
& \Rightarrow \quad \mathrm{x}=\frac{7}{2} \\
& \therefore \quad \text { radius }=2 x=2 \times \frac{7}{2}=7 \mathrm{~cm} \\
& \text { and height }=3 x=3 \times \frac{7}{2}=\frac{21}{2} \mathrm{~cm} \text {] } \\
& \text { T otal surface area }=2 \Pi r(h+r) \\
& =2 \times \frac{22}{7} \times 7\left(\frac{21}{2}+7\right) \mathrm{cm}^{2} \\
& =44 \times\left(\frac{21+14}{2}\right) \mathrm{cm}^{2} \\
& =(22 \times 35) \mathrm{cm}^{2}=770 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 7:

Jownloaded from www.studiestoday.con 5 Aggarwal Class 9 Mathematics Solutio

Now, curved surface area $=2 \Pi r h=154 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 7 \times \mathrm{h}=154 \mathrm{~cm}^{2} \\
& =\mathrm{h}=\frac{154}{44}=3.5 \mathrm{~cm}
\end{aligned}
$$

Now, $\mathrm{r}=7 \mathrm{~cm}$ and $\mathrm{h}=3.5 \mathrm{~cm}$
Volume of the cylinder $=\left(\Pi r^{2} h\right)$

$$
\begin{aligned}
& =\left(\frac{22}{7} \times 7 \times 7 \times 3.5\right) \mathrm{cm}^{3} \\
& =539 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore The volume of the cylinder $=539 \mathrm{~cm}^{3}$.

Question 8:

Curvedsurface area $=\frac{2}{3} \times($ totalsurfacearea $)$

$$
=\left(\frac{2}{3} \times 231\right) \mathrm{cm}^{2}=154 \mathrm{~cm}^{2}
$$

(Total surface area) - (Curved surfacearea)

$$
=(231-154) \mathrm{cm}^{2}=77 \mathrm{~cm}^{2}
$$

$$
2 \pi^{2}=77 \mathrm{~cm}^{2}
$$

$$
\Rightarrow \quad 2 \times \frac{22}{7} \times r^{2} \quad=77
$$

$$
\Rightarrow \quad r^{2}=\frac{77 \times 7}{44}=\frac{49}{4}
$$

$$
\Rightarrow \quad r \quad=\sqrt{\frac{49}{4}}=\frac{7}{2} \mathrm{~cm}
$$

$$
\text { Now, } \quad 2 \pi \mathrm{rh}=154 \mathrm{~cm}^{2}
$$

$$
\Rightarrow \quad 2 \times \frac{22}{7} \times \frac{7}{2} \times h=154 \mathrm{~cm}^{2}
$$

$$
\Rightarrow \quad h=\frac{154}{22}=7 \mathrm{~cm}
$$

Now, $\mathrm{r}=\frac{7}{2} \mathrm{~cm}$ and $\mathrm{h}=7 \mathrm{~cm}$
Volume of the cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\left(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 7\right) \mathrm{cm}^{3} \\
& =269.5 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of the cylinder $=269.5 \mathrm{~cm}^{3}$

Question 9:

$$
\begin{aligned}
& \text { Curved surface area }=\frac{1}{3} \times(\text { total surface area }) \\
& =\left(\frac{1}{3} \times 462\right) \mathrm{cm}^{2}=154 \mathrm{~cm}^{2} \\
& \text { (Total surface area)- (Curved surface area) } \\
& =(462-154) \mathrm{cm}^{2}=308 \mathrm{~cm}^{2} \\
& \Rightarrow \quad 2 \Pi r^{2}=308 \\
& \Rightarrow \quad 2 \times \frac{22}{7} \times r^{2}=308 \\
& \Rightarrow \quad r^{2}=\frac{308 \times 7}{44}=49 \\
& \Rightarrow \\
& r=\sqrt{49}=7 \mathrm{~cm}
\end{aligned}
$$

Jownloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solutio

```
Here,
                    (r +h)=37 m [\becausegiven }
                            And, total surface area =2\pir(r+h)=1628m2
=> 2\pir\times37=1628\mp@subsup{m}{}{2}
2 <\frac{22}{7}\timesr\times37=1628
m r = = 1628\times7 44\times37}=7
And (r+h) = 37m
# (7+h) = 37
C h = 37-7=30m
Volume = \pir`h
    =(\frac{22}{7}\times7\times7\times30)\mp@subsup{m}{}{3}=4620\mp@subsup{m}{}{3}.
```

Question 10:
Curved surface area $=2 \pi \mathrm{rh}$
Total surface area $=2 \pi r(h+r)$
Since they arein theratio of $1: 2$

\therefore	$\frac{2 \pi r h}{2 \pi r(h+r)}=\frac{1}{2}$	
\Rightarrow	$\frac{\mathrm{h}}{\mathrm{h}+\mathrm{r}}=\frac{1}{2}$	
\Rightarrow	$2 h=h+r$	
\Rightarrow	$2 h-h=r$	
\Rightarrow	$h=r$	
	$2 \pi r(h+r)=616 \mathrm{~cm}^{2}$	
\Rightarrow	$4 \pi \mathrm{r}^{2}=616 \mathrm{~cm}^{2}$	[Puttingh = r]
\Rightarrow	$4 \times \frac{22}{7} \times \mathrm{r}^{2}=616$	
\Rightarrow	$r^{2}=\frac{616 \times 7}{88}=49$	
\Rightarrow	$r=\sqrt{49} \quad=7 \mathrm{~cm}$	
Then, $\mathrm{r}=7 \mathrm{~cm}$ and $\mathrm{h}=7 \mathrm{~cm}$		
$\therefore \quad$ Volume $=\left(\pi r^{2} h\right)$		
$=\left(\frac{22}{7} \times 7 \times 7 \times 7\right) \mathrm{cm}^{3}=1078 \mathrm{~cm}^{3}$		
volume of the cylinder $=1078 \mathrm{~cm}^{3}$.		

Question 11:
$1 \mathrm{~cm}^{3}=1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}$ and $1 \mathrm{~cm}=0.01 \mathrm{~m}$
Therefore,
Volume of the
gold $=0.01 \mathrm{~m} \times 0.01 \mathrm{~m} \times 0.01 \mathrm{~m}=0.000001 \mathrm{~m}^{3} \ldots \ldots$. (1)
Diameter of the wire drawn $=0.1 \mathrm{~mm}$
Radius of the wire drawn $=\frac{0.1}{2} \mathrm{~mm}=0.05 \mathrm{~mm}$
$r=0.00005 \mathrm{~m} \quad \ldots \ldots . .(2)$
Length of the wire $=\mathrm{hm}$
Volume of the wire drawn= Volume of thegold
$\Rightarrow \pi r^{2 h} \quad=0.000001$
$\Rightarrow \pi \times 0.00005 \times 0.00005 \times \mathrm{h}=0.000001$ [from equations (1), (2) and (3)]
$h=\frac{0.000001 \times 7}{0.00005 \times 0.00005 \times 22}$
thelength of the wire is 127.27 m

Question 12:

Jownloaded from www.studiestoday.com Aggarwal Class 9 Mathematics Solutio

Let theradii of the two cylindersbe $2 R$ and $3 R$.
And theirheights be 5 Hand 3 H .
Then, $\frac{V_{1}}{V_{2}}=\frac{\pi \times(2 R)^{2}}{\pi \times(3 R)^{2}} \times \frac{5 H}{\times 3 H}=\frac{\pi \times 4 R^{2}}{\pi \times \text { R }^{2}} \frac{\times 5 H}{\times 3 H}=\frac{20}{27}$
. theratio of their volumes $=20: 27$
Now, $\frac{S_{1}}{S_{2}}=\frac{2 \pi}{2 \pi} \frac{(2 R)}{(3 R)} \frac{(5 H)}{(3 H)}=\frac{10}{9}$
theratio of their curvedsurface $=10: 9$

Question 13:

For the tin having square base,
side $=12 \mathrm{~cm}$ and height $=17.5 \mathrm{~cm}$.
\therefore Volume $=(12 \times 12 \times 17.5) \mathrm{cm}^{3}=2520 \mathrm{~cm}^{3}$
Now, diameter of tin with cylindrical base $=12 \mathrm{~cm}$
\therefore radius $=\left(\frac{12}{2}\right) \mathrm{cm}=6 \mathrm{~cm}$ and height $=17.5 \mathrm{~cm}$
\therefore Volume $=\left(\frac{22}{7} \times 6 \times 6 \times 17.5\right) \mathrm{cm}^{3}=1980 \mathrm{~cm}^{3}$
Tin with squarebasehas more capacity by $(2520-1980) \mathrm{cm}^{3}$
$=540 \mathrm{~cm}^{3}$.

Question 14:
Here, cylind rical bucket has diameter $=28 \mathrm{~cm}$.

\therefore The height of the water level in the $\tan \mathrm{k}=24 \mathrm{~cm}$.

Question 15:

$$
\begin{aligned}
& \text { Internal radius }=\left(\frac{3}{2}\right) \mathrm{cm}=1.5 \mathrm{~cm} \\
& \begin{aligned}
& \text { And, external radius }=(1.5+1) \mathrm{cm}=2.5 \mathrm{~cm} \\
& \text { Volume of castiron }=\left[\pi \times(2.5)^{2} \times 100-\pi \times(1.5)^{2} \times 100\right] \mathrm{cm}^{3} \\
&=\pi \times 100 \times\left[(2.5)^{2}-(1.5)^{2}\right] \mathrm{cm}^{3} \\
&=\frac{22}{7} \times 100 \times[6.25-2.25] \mathrm{cm}^{3} \\
&=\left(\frac{22}{7} \times 100 \times 4\right) \mathrm{cm}^{3} \\
&=\left(\frac{22}{7} \times 100 \times 4 \times \frac{21}{1000}\right) \mathrm{kg} \\
& \therefore \quad[\because 1 \mathrm{~kg}=1000 \mathrm{~g}] \\
&=26.4 \mathrm{~kg} \quad
\end{aligned} \quad \begin{aligned}
\text { Weight }
\end{aligned} \\
& \begin{aligned}
\therefore \quad
\end{aligned} \\
&
\end{aligned}
$$

the weight of the iron pipe $=26.4 \mathrm{~kg}$.

Question 16:

Jownloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solutiol

$$
\begin{aligned}
\text { internal radius } & =\left(\frac{10.4}{2}\right) \mathrm{cm}=5.2 \mathrm{dm} \\
\text { and length } & =25 \mathrm{~cm} \\
\text { and external radius } & =(5.2+0.8) \mathrm{cm}=6 \mathrm{~cm} \\
\text { Required volume } & =\left[\pi \times(6)^{2} \times 25-\pi \times(5.2)^{2} \times 25\right] \mathrm{cm}^{3} \\
& =\pi \times 25\left[(6)^{2}-(5.2)^{2}\right] \mathrm{cm}^{3} \\
& =\frac{22}{7} \times 25[36-27.04] \mathrm{cm}^{3} \\
& =\left(\frac{22}{7} \times 25 \times 8.96\right) \mathrm{cm}^{3} \\
& =704 \mathrm{~cm}^{3}
\end{aligned}
$$

: the volume of the metal $=704 \mathrm{~cm}^{3}$

Question 17:
Length $=7 \mathrm{~cm}=$ (height)
Diameter $=5 \mathrm{~mm} \Rightarrow$ radius $=\left(\frac{5}{2}\right) \mathrm{mm}=2.5 \mathrm{~mm}$

$$
=0.25 \mathrm{~cm}
$$

\therefore Volume of thebarrel $=\pi r^{3}$

$$
\begin{aligned}
& =\left(\frac{22}{7} \times 0.25 \times 0.25 \times 7\right) \mathrm{cm}^{3} \\
& =\frac{11}{8} \mathrm{~cm}^{3}
\end{aligned}
$$

$\frac{11}{8} \mathrm{~cm}^{3}$ is used for writing 330 words.
So, $\left(\frac{1}{5} \times 1000\right) \mathrm{cm}^{3}$ will beusedfor writing

$$
\begin{gathered}
\left(330 \times \frac{8}{11} \times \frac{1}{5} \times 1000\right) \text { words } \\
=48000 \text { words }
\end{gathered}
$$

Question 18:
Weight of the graphite $=\left[\frac{22}{7} \times(0.05)^{2} \times 10 \times 2.1\right] g$

$$
\begin{aligned}
& =\frac{33}{200} g \\
\text { Weight of wood } & =\left[\frac{22}{7} \times 10\left\{(0.35)^{2}-(0.05)^{2}\right\} \times 0.7\right] \\
& =\left[\frac{22}{7} \times 10(0.1225-0.0025) \times 0.7\right] \\
& =\frac{66}{25} g \\
\text { Total weight of thepencil }= & \left(\frac{33}{200}+\frac{66}{25}\right) g \\
& =\left(\frac{33+528}{200}\right) g=\frac{561}{200}=2.805 \mathrm{~g}
\end{aligned}
$$

Weight of the wholepencil $=2.805 \mathrm{~g}$

Exercise 13C

Question 1:

Jownloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solutio

Here, $\mathrm{r}=35 \mathrm{~cm}$ andh $=84 \mathrm{~cm}$
Volume of thecone $=\frac{1}{3} \pi r^{2} h$
$=\left(\frac{1}{3} \times \frac{22}{7} \times 35 \times 35 \times 84\right) \mathrm{cm}^{\prime}$
$=107800 \mathrm{~cm}^{3}$
Curvedsurface area $=\left(\pi r \sqrt{h^{2}+r^{2}}\right) \quad\left[\because 1=\sqrt{h^{2}+r^{2}}\right]$
$=\pi r \sqrt{84^{2}+35^{2}}$
$=\pi r \sqrt{8281}$
$=\frac{22}{7} \times 35 \times 91$
$=10010 \mathrm{~cm}^{2}$
\quad Total surfacearea $=$

I	$=\sqrt{ }(l+r)$
	$=\sqrt{h^{2}+\mathrm{r}^{2}}$
	$=\sqrt{84^{2}+35^{2}}$
	$=\sqrt{7056+1225}=\sqrt{8281}=91 \mathrm{~cm}$

Total surface area $=\frac{22}{7} \times 35(91+35)$

$$
=(22 \times 5 \times 126) \mathrm{cm}^{2}=13860 \mathrm{~cm}^{2}
$$

Question 2:
Here, height $(\mathrm{h})=6 \mathrm{~cm}$ and slant height $(\ell)=10 \mathrm{~cm}$

$$
\operatorname{radius}(r)=\sqrt{\ell^{2}-h^{2}}
$$

$$
=\sqrt{10^{2}-6^{2}}=\sqrt{100-36}
$$

$$
=\sqrt{64}=8 \mathrm{~cm}
$$

$\therefore \quad$ Volume of cone $=\frac{1}{3} \pi r^{2} \mathrm{~h}$

$$
\begin{aligned}
& =\left(\frac{1}{3} \times 3.14 \times 8 \times 8 \times 6\right) \mathrm{cm}^{3} \\
& =401.92 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Curved surface area $=\pi r \ell$

$$
=(3.14 \times 8 \times 10) \mathrm{cm}^{2}
$$

$$
=251.2 \mathrm{~cm}^{2}
$$

Total surface area $=\pi r(\ell+r)$
$=\pi r(10+8)$
$=(3.14 \times 8 \times 18) \mathrm{cm}^{2}$
$=452.16 \mathrm{~cm}^{2}$

Question 3:
Here, Volume $=(100 \pi) \mathrm{cm}^{3}$, height $(\mathrm{h})=12 \mathrm{~cm}$

Question 5:

$$
\begin{aligned}
& \text { Volume of the cone }=\frac{1}{3} \pi r^{2} h \\
& \Rightarrow \quad 100 \pi \quad=\frac{1}{3} \pi \times r^{2} \times 12 \\
& \Rightarrow \quad r^{2} \quad=\frac{100 \pi \times 3}{\pi \times 12} \\
& \Rightarrow \quad r^{2} \quad=25 \\
& \Rightarrow \quad r \quad=\sqrt{25}=5 \mathrm{~cm} \text {. } \\
& \text { Slant height }(\ell)=\sqrt{h^{2}+r^{2}} \\
& =\sqrt{12^{2}+5^{2}} \\
& \ell=\sqrt{144+25}=\sqrt{169}=13 \mathrm{~cm} \\
& \text { Slant height, } \ell=13 \mathrm{~cm} \\
& \text { Curvedsurface area }=\pi r \ell \\
& =\pi \times 5 \times 13 \mathrm{~cm}^{2} \\
& =65 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Jownloaded from www.studiestoday.con Aggarwal Class 9 Mathematics Solutio

Here, curved surface area $=550 \mathrm{~cm}^{2}$ and
slant height $(\ell)=25 \mathrm{~cm}$
\therefore Curved surface area $=\pi r \ell$
$\Rightarrow \quad 550=\frac{22}{7} \times r \times 25$
$\Rightarrow \quad r=\left(\frac{550 \times 7}{22 \times 25}\right) \mathrm{cm}=7 \mathrm{~cm}$
Now, \quad height $(\mathrm{h})=\sqrt{\ell^{2}-\mathrm{r}^{2}}$
$=\sqrt{(25)^{2}-(7)^{2}}$
$=\sqrt{625-49}$
$=\sqrt{576}=24 \mathrm{~cm}$
\therefore heigh t of thecone $=24 \mathrm{~cm}$
Volume of thecone $=\frac{1}{3} \pi r^{2} h$

$$
=\left(\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24\right) \mathrm{cm}^{3}
$$

$$
=1232 \mathrm{~cm}^{3}
$$

\therefore Volume of the cone $=1232 \mathrm{~cm}^{3}$

Question 6:
Here, radius, $\mathrm{r}=35 \mathrm{~cm}$ and slant height, $\ell=37 \mathrm{~cm}$

h	$=\sqrt{\ell^{2}-\mathrm{r}^{2}}$
	$=\sqrt{(37)^{2}-(35)^{2}}$
	$=\sqrt{1369-1225}=\sqrt{144}=12 \mathrm{~cm}$
height(h)	$=12 \mathrm{~cm}$
Volume of the cone	$=\frac{1}{3} \pi^{2} \mathrm{~h}$
	$=\left(\frac{1}{3} \times \frac{22}{7} \times 35 \times 35 \times 12\right) \mathrm{cm}^{3}$
	$=15400 \mathrm{~cm}^{3}$
Volume of the cone	$=15400 \mathrm{~cm}^{3}$

Question 7:
Here, curved surface area $=4070 \mathrm{~cm}^{2}$

$$
\text { Diameter }=70 \mathrm{~cm} \Rightarrow \text { radius }=\left(\frac{70}{2}\right) \mathrm{cm}=35 \mathrm{~cm}
$$

\therefore Curved surface area $=\pi r \ell$

$$
\begin{array}{ll}
\Rightarrow & \\
\left.\begin{array}{ll}
\Rightarrow & 4070
\end{array}\right)=\frac{22}{7} \times 35 \times \ell \\
\Rightarrow & \\
\therefore & \\
& \text { slant height } \\
& =\left(\frac{4070}{110}\right) \mathrm{cm}=37 \mathrm{~cm} .
\end{array}
$$

Question 8:
Here, radius $=7 \mathrm{~m}$ and height $(\mathrm{h})=24 \mathrm{~m}$
\therefore slant height $(\ell)=\sqrt{h^{2}+\mathrm{r}^{2}}$

$$
=\sqrt{(24)^{2}+(7)^{2}}
$$

$$
\ell=\sqrt{576+49}=\sqrt{625}=25 \mathrm{~m}
$$

Now, area of cloth $=\pi r \ell$

$$
=\left(\frac{22}{7} \times 7 \times 25\right) \mathrm{m}^{2}=550 \mathrm{~m}^{2}
$$

\therefore length of doth $=\frac{\text { area of cloth }}{\text { width of cloth }}=\left(\frac{550}{2.5}\right) \mathrm{m}$

$$
=220 \mathrm{~m}
$$

\therefore Length of cloth required to makea conical tent $=220 \mathrm{~m}$

Question 9:

Jownloaded from www.studiestoday.com 5 Aggarwal Class 9 Mathematics Solutio
 Here, height of cone $=3.6 \mathrm{~cm}$ and radius $=1.6 \mathrm{~cm}$

After melting, its radius $=1.2 \mathrm{~cm}$
Volume of original cone $=$ Volume of cone after melting

$$
\begin{aligned}
& \therefore \quad \frac{1}{3} \pi \times 1.6 \times 1.6 \times 3.6=\frac{1}{3} \pi \times 1.2 \times 1.2 \times \mathrm{h} \\
& \Rightarrow \quad \mathrm{~h} \quad=\frac{\frac{1}{3} \pi \times 1.6 \times 1.6 \times 3.6}{\frac{1}{3} \pi \times 1.2 \times 1.2}=6.4 \mathrm{~cm} \\
& \therefore \quad \text { height of new cone }=6.4 \mathrm{~cm}
\end{aligned}
$$

Question 10:
Let their heights be h and $3 h$
And, their radii be 3 r andr.

$$
\begin{array}{ll}
\text { Then, } & \mathrm{V}_{1}=\frac{1}{3} \pi(3 \mathrm{r})^{2} \times \mathrm{h} \\
\text { and, } & \mathrm{V}_{2}=\frac{1}{3} \pi \mathrm{r}^{2} \times 3 \mathrm{~h} \\
\Rightarrow & \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{\frac{1}{3} \pi(3 \mathrm{r})^{2} \times \mathrm{h}}{\frac{1}{3} \pi \mathrm{r}^{2} \times 3 \mathrm{~h}}=\frac{3}{1} \\
\therefore & \mathrm{~V}_{1}: \mathrm{V}_{2}=3: 1
\end{array}
$$

Question 11:
Radius of the cylinder, $\mathrm{R}=\left(\frac{105}{2}\right) \mathrm{m}$ and its height, $\mathrm{H}=3 \mathrm{~m}$

$$
\text { Slant height }(\ell)=53 \mathrm{~m}
$$

$$
\therefore \text { area of canvas }=(2 \pi R H+\pi R \ell)
$$

$$
\begin{aligned}
& =\left[\left(2 \times \frac{22}{7} \times \frac{105}{2} \times 3\right)+\left(\frac{22}{7} \times \frac{105}{2} \times 53\right)\right] \mathrm{m}^{2} \\
& =(990+8745) \mathrm{m}^{2} \\
& =9735 \mathrm{~m}^{2} \\
& =\left(\frac{\text { areaof canvas }}{\text { width of canvas }}\right) \mathrm{m} \\
& =\left(\frac{9735}{5}\right)=1947 \mathrm{~m}
\end{aligned}
$$

length of canvas

Question 12:
Let the radius be r metres and height be h metres.

$$
\begin{aligned}
& \therefore \quad \begin{aligned}
& \text { Area of the base }=(11 \times 4) \mathrm{m}^{2}=44 \mathrm{~m}^{2} \\
& \therefore r^{2}=44 \\
& \Rightarrow \quad r^{2}=\left(44 \times \frac{7}{22}\right)=14 \mathrm{~m} \\
& \Rightarrow \quad r^{2}=14 \mathrm{~m} \\
& \therefore \quad \text { Volume of the cone }=\frac{1}{3} \pi r^{2} \mathrm{~h} \\
& \therefore \quad \text { Volume of the cone }=(11 \times 20) \mathrm{m}^{3}=220 \\
& \Rightarrow \quad 220 \quad=\frac{1}{3} \times \frac{22}{7} \times 14 \times \mathrm{h} \\
& \Rightarrow \quad h \quad=\frac{220 \times 3}{22 \times 2}=15 \mathrm{~m} \\
& \therefore \quad \text { the height of the cone }=15 \mathrm{~m} .
\end{aligned}
\end{aligned}
$$

Jownloaded from www.studiestoday.con 5 Aggarwal Class 9 Mathematics Solutio
 Here, height of the cylindrical

bucket $=32 \mathrm{~m}$ and radius $=18 \mathrm{~cm}$.
Now, let theradius of the heap be R cm
and its slant height be $\ell \mathrm{cm}$
Then,

$$
\begin{aligned}
\pi \times(18)^{2} \times 32 & =\frac{1}{3} \pi \times \mathrm{R}^{2} \times 24 \\
\mathrm{R}^{2} & =\frac{\pi \times 18 \times 18 \times 32 \times 3}{\pi \times 24}=1296
\end{aligned}
$$

$$
\mathrm{R}=\sqrt{1296}=36 \mathrm{~cm} .
$$

\therefore Radius of the heap $=36 \mathrm{~cm}$
Slant height $(\ell)=\sqrt{h^{2}+R^{2}}$

$$
\begin{aligned}
& =\sqrt{(24)^{2}+(36)^{2}} \\
& =\sqrt{576+1296} \\
& =\sqrt{1872}=43.27 \mathrm{~cm}
\end{aligned}
$$

Slant height of the heap $=43.27 \mathrm{~cm}$.

Question 14:
Let the curved surface areas of cylinder and cone be $8 x$ and $5 x$.

$$
\text { Then, } 2 \pi \mathrm{rh}=8 \mathrm{x} \ldots \ldots \text { (i) }
$$

$$
\text { and, } \quad \pi r \sqrt{h^{2}+r^{2}}=5 x \ldots \text {.(ii) }
$$

Squaring both sides of equation (i), we have

$$
\begin{align*}
(2 \pi r h)^{2} & =(8 x)^{2} \\
4 \pi^{2} r^{2} h^{2} & =64 x^{2} \tag{iii}
\end{align*}
$$

From (ii) we have,

$$
\pi r \sqrt{h^{2}+r^{2}}=5 x
$$

Squaring both sides,

$$
\begin{array}{lc}
\Rightarrow & \pi^{2} r^{2}\left(h^{2}+r^{2}\right)=25 x^{2} \ldots . . \text { (iv) } \\
\Rightarrow & \frac{4 \pi^{2} r^{2} h^{2}}{\pi^{2} r^{2}\left(h^{2}+r^{2}\right)}=\frac{64}{25} \quad \text { [Divide(iii) by (iv)] } \\
\Rightarrow & \frac{h^{2}}{\left(h^{2}+r^{2}\right)}=\frac{16}{25} \\
\Rightarrow & 9 h^{2}=16 r^{2} \\
\Rightarrow & \frac{r^{2}}{h^{2}}=\frac{9}{16} \\
\Rightarrow & \frac{r}{h}=\frac{3}{4} \\
\therefore & \text { The ratio of radius and height }=3: 4
\end{array}
$$

Question 15:
Here, height (h) of cylinder $=2.8 \mathrm{~m}=280 \mathrm{~cm}$
and diameter $=20 \mathrm{~cm}$
\Rightarrow radius $=\left(\frac{20}{2}\right)=10 \mathrm{~cm}$
height (H) of thecone $=42 \mathrm{~cm}$
\therefore Volume of the pillar $=\left(\pi r^{2} \mathrm{~h}+\frac{1}{3} \pi r^{2} \mathrm{H}\right) \mathrm{cm}^{3}$
$=\pi \mathrm{r}^{2}\left(\mathrm{~h}+\frac{1}{3} \mathrm{H}\right) \mathrm{cm}^{3}$
$=\frac{22}{7} \times 10 \times 10\left(280+\frac{1}{3} \times 42\right) \mathrm{cm}^{3}$
$=\frac{2200}{7} \times[280+14]$
$=92400 \mathrm{~cm}^{3}$
\therefore Weight of pillar $=\left(\frac{92400 \times 7.5}{1000}\right) \mathrm{kg}=693 \mathrm{~kg}$

Question 16:

Jownloaded from www.studiestoday.con 5 Aggarwal Class 9 Mathematics Solutio

Let the smaller cone have radius $=\mathrm{rcm}$ and height $=\mathrm{hcm}$
And, let the radius of the given original cone be Rcm
Since the two triangles, $\triangle O C D$ and $\triangle O A B$
are similar to each other, we have

$$
\begin{array}{ll}
\text { Then, } & \frac{r}{\mathrm{R}}=\frac{\mathrm{h}}{30} \quad[\because \Delta \mathrm{OCD} \sim \Delta \mathrm{OAB}] \\
\Rightarrow & \mathrm{r}=\frac{\mathrm{Rh}}{30} \ldots \ldots(1)
\end{array}
$$

Given that the volume of the small cone is $\frac{1}{27}$ of the volume of the given cone.

From the figure,
$A C=(O A-O C)$
$=(30-10) \mathrm{cm}=20 \mathrm{~cm}$
\therefore the required height $=20 \mathrm{~cm}$

Question 17:

Here, height(h) $=10 \mathrm{~cm}$ and radius $=6 \mathrm{~cm}$
Volume of the remaining solid $=\left(\pi r^{2} h\right)-\left(\frac{1}{3} \pi r^{2} h\right)$
$=(\pi \times 6 \times 6 \times 10) \mathrm{cm}^{3}-\left(\frac{1}{3} \pi \times 6 \times 6 \times 10\right) \mathrm{cm}^{3}$
$=\frac{2}{3} \pi \times 6 \times 6 \times 10 \mathrm{~cm}^{3}$
$=\left(\frac{2}{3} \times 3.14 \times 360\right) \mathrm{cm}^{3}=753.6 \mathrm{~cm}^{3}$
Volume of the remaining solid $=753.6 \mathrm{~cm}^{3}$

Question 18:
Diameter of the pipe $=5 \mathrm{~mm}=0.5 \mathrm{~cm}$

$$
\text { Radius of the pipe }=\frac{0.5}{2}=0.25 \mathrm{~cm}
$$

$$
\text { Length of the pipe }=10 \text { metres }=1000 \mathrm{~cm}
$$

$$
\text { Volume that flows in } 1 \mathrm{~min}=\left[\pi \times(0.25)^{2} \times 1000\right] \mathrm{cm}^{3}
$$

\therefore Volume of the conical vessel $=\left[\frac{1}{3} \pi \times(20)^{2} \times 24\right] \mathrm{cm}^{3}$

$$
\begin{aligned}
\text { Required time } & =\left[\frac{\frac{1}{3} \pi \times(20)^{2} \times 24}{\pi \times(0.25)^{2} \times 1000}\right] \mathrm{min} \\
& =\left[\frac{\frac{1}{3} \pi \times 400 \times 24}{\pi \times 0.0625 \times 1000}\right] \mathrm{min} \\
& =51.2 \mathrm{~min}
\end{aligned}
$$

$=51 \mathrm{~min} 12 \mathrm{sec}$

$$
\begin{aligned}
& \frac{1}{3} \pi r^{2} h=\frac{1}{27} \times \frac{1}{3} \pi R^{2} \times 30 \quad \text { [given] } \\
& \Rightarrow \quad \frac{1}{3} \pi\left(\frac{\mathrm{hR}}{30}\right)^{2} \mathrm{~h}=\frac{1}{81} \pi \mathrm{R}^{2} \times 30 \text { [from (1)] } \\
& \Rightarrow \quad \frac{1}{3} \pi \frac{h^{3} R^{2}}{900}=\frac{1}{81} \pi R^{2} \times 30 \\
& \Rightarrow \quad \mathrm{~h}^{3}=\frac{1 \times 30 \times 900 \times 3}{81} \\
& \Rightarrow \quad \mathrm{~h}^{3}=1000 \mathrm{~cm}^{3} \\
& \Rightarrow \quad \mathrm{~h}=10 \mathrm{~cm}
\end{aligned}
$$

Jownloaded from www.studiestoday.com Aggarwal Class 9 Mathematics Solutio

Exercise 13D

Question 1:

$$
\begin{aligned}
& \text { (i) } \\
& \text { Radius of sphere }=3.5 \mathrm{~cm} \\
& \therefore \text { Volume of thesphere }=\left(\frac{4}{3} \pi^{3}\right) \\
& =\left(\frac{4}{3} \times \frac{22}{7} \times 3.5 \times 3.5 \times 3.5\right) \mathrm{cm}^{3} \\
& =179.67 \mathrm{~cm}^{3} \\
& \therefore \text { Surfaceareaof thesphere }=\left(4 \pi \pi^{2}\right) \\
& =\left(4 \times \frac{22}{7} \times 3.5 \times 3.5\right) \mathrm{cm}^{2} \\
& =154 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) Radius of the sphere $=4.2 \mathrm{~cm}$

$$
\begin{aligned}
\therefore \quad \text { Volume of the sphere } & =\left(\frac{4}{3} \pi r^{3}\right) \\
& =\left(\frac{4}{3} \times \frac{22}{7} \times 4.2 \times 4.2 \times 4.2\right) \mathrm{cm}^{3} \\
& =310.464 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Surface area of the sphere $=\left(4 \pi r^{2}\right)$

$$
\begin{aligned}
& =\left(4 \times \frac{22}{7} \times 4.2 \times 4.2\right) \mathrm{mm}^{2} \\
& =221.76 \mathrm{~cm}^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { Radius of sphere } & =5 \mathrm{~m} \\
\therefore \text { Volume of the sphere } & =\left(\frac{4}{3} \pi r^{3}\right) \\
& =\left(\frac{4}{3} \times \frac{22}{7} \times 5 \times 5 \times 5\right) \mathrm{m}^{3} \\
& =523.81 \mathrm{~m}^{3}
\end{aligned}
$$

\therefore Surface area of the sphere $=\left(4 \pi r^{2}\right)$

$$
\begin{aligned}
& =\left(4 \times \frac{22}{7} \times 5 \times 5\right) \mathrm{m}^{2} \\
& =314.28 \mathrm{~m}^{2}
\end{aligned}
$$

Jownloaded from www.studiestoday.com 5 Aggarwal Class 9 Mathematics Solutio

Volume of the sphere $=\left(\frac{4}{3} \pi r^{3}\right)$

$$
\begin{array}{lc}
\Rightarrow & 38808=\frac{4}{3} \times \frac{22}{7} \times r^{3} \quad\left[\because \text { Volume }=38808 \mathrm{~cm}^{3}\right] \\
\Rightarrow & r^{3}=\frac{38808 \times 3 \times 7}{88}=9261 \\
\Rightarrow & r=21 \mathrm{~cm}
\end{array}
$$

\therefore Surface area of the sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& =\left(4 \times \frac{22}{7} \times 21 \times 21\right) \mathrm{cm}^{2} \\
& =5544 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 3:
Volume of the sphere $=606.375 \mathrm{~m}^{3}$
Volume of the sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =4 \times \frac{22}{7} \times 5.25 \times 5.25 \mathrm{~m}^{2} \\
& =346.5 \mathrm{~m}^{2}
\end{aligned}
$$

Question 4:
Let the radius of the sphere be r m .

$$
\text { Then,its surface area }=\left(4 \pi r^{2}\right)
$$

$$
\begin{aligned}
& \left(4 \pi r^{2}\right)=394.24 \\
& \quad\left[\text { Surface area }=394.24 \mathrm{~m}^{2}\right]
\end{aligned}
$$

$$
4 \times \frac{22}{7} \times r^{2}=394.24
$$

$$
r^{2}=\left(\frac{394.24 \times 7}{4 \times 22}\right)=31.36
$$

$$
r=\sqrt{31.36}=5.6 \mathrm{~m}
$$

radius of the sphere $=5.6 \mathrm{~m}$
\therefore Volume of the sphere $=\left(\frac{4}{3} \pi r^{3}\right)$

$$
\begin{aligned}
& =\left(\frac{4}{3} \times \frac{22}{7} \times 5.6 \times 5.6 \times 5.6\right) \mathrm{m}^{3} \\
& =735.91 \mathrm{~m}^{3}
\end{aligned}
$$

\therefore Volume of thesphere $=735.91 \mathrm{~m}^{3}$

Question 5:

$$
\begin{aligned}
& \Rightarrow \quad 606.375=\frac{4}{3} \times \frac{22}{7} \times r^{3} \quad[\text { from (1)] } \\
& \Rightarrow \quad \mathrm{r}^{3}=\frac{606.375 \times 3 \times 7}{4 \times 22} \\
& =144.703125 \\
& \Rightarrow \quad r=5.25 \mathrm{~m} \\
& \text { Surface area of the sphere }=4 \pi r^{2}
\end{aligned}
$$

Jownloaded from www.studiestoday.con 5 Aggarwal Class 9 Mathematics Solutio

Surface area of sphere $=\left(4 \pi r^{2}\right)$

$$
\left.\begin{array}{l}
\therefore \quad \begin{array}{rl}
\therefore \quad\left(4 \pi r^{2}\right) & =(576 \pi) \\
\Rightarrow \quad\left[\text { Surfacearea }=576 \pi \mathrm{~cm}^{2}\right]
\end{array} \\
\Rightarrow \quad r
\end{array} \quad=\frac{(576 \pi)}{(4 \pi)}\right)
$$

Question 6:
Outer diameter of spheri cal shell $=12 \mathrm{~cm}$

$$
\text { radius }=6 \mathrm{~cm} \quad\left[\text { radius }=\frac{\mathrm{D}}{2}\right]
$$

Outer diameter of spherical shell $=8 \mathrm{~cm}$

$$
\text { radius }=4 \mathrm{~cm}
$$

$$
\text { Now, Volume of the outer shell }=\left(\frac{4}{3} \pi r^{3}\right)
$$

$$
=\left(\frac{4}{3} \times \frac{22}{7} \times 6 \times 6 \times 6\right) \mathrm{cm}^{3}
$$

$$
=905.15 \mathrm{~cm}^{3}
$$

$$
\therefore \text { Volume of theinner shell }=\left(\frac{4}{3} \pi r^{3}\right)
$$

$$
=\left(\frac{4}{3} \times \frac{22}{7} \times 4 \times 4 \times 4\right) \mathrm{cm}^{3}
$$

$$
=268.20 \mathrm{~cm}^{3}
$$

Volume of metal contained in the shell = (Volume of outer)

- (Volume ofinner)
$=(905.15-268.20) \mathrm{cm}^{3}$
$=636.95 \mathrm{~cm}^{3}$
Outer surfacearea $=4 \pi r^{2}$

$$
\begin{aligned}
& =\left(4 \times \frac{22}{7} \times 6 \times 6\right) \mathrm{cm}^{2} \\
& =452.57 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 7:
Here, diameter of the lead shot $=3 \mathrm{~mm}$

$$
\begin{aligned}
& \text { radius }=\left(\frac{3}{2}\right) \mathrm{mm}=\left(\frac{0.3}{2}\right) \mathrm{cm} \\
& {[1 \mathrm{~mm}=10 \mathrm{~cm}] }
\end{aligned}
$$

Now, number of lead shots $=\frac{\text { Volume of the cuboid }}{\text { Volume of } 1 \text { lead shot }}$

$$
\begin{aligned}
& =\left\{\frac{(12 \times 11 \times 9)}{\frac{4}{3} \times \frac{22}{7} \times\left(\frac{0.3}{2}\right)^{3}}\right\} \\
& =\left\{\frac{(12 \times 11 \times 9)}{\frac{4}{3} \times \frac{22}{7} \times \frac{0.027}{8}}\right\} \\
& =\left\{\frac{12 \times 11 \times 9 \times 3 \times 7 \times 8}{4 \times 22 \times 0.027}\right\}=84000
\end{aligned}
$$

\therefore number of lead shots $=84000$.

Jownloaded from www.studiestoday.con 5 Aggarwal Class 9 Mathematics Solutio

Question 8:
Here, radius of 1 lead ball $=1 \mathrm{~cm}$
and radius of sphere $=8 \mathrm{~cm}$
$\therefore \quad$ Number of lead balls $=\frac{\text { Volume of the sphere }}{\text { Volume of } 1 \text { leadball }}$

$$
\begin{aligned}
& =\frac{\left(\frac{4}{3} \pi \mathrm{R}^{3}\right) \mathrm{cm}^{3}}{\left(\frac{4}{3} \pi \mathrm{r}^{3}\right) \mathrm{cm}^{3}} \\
& =\left\{\frac{\frac{4}{3} \times \frac{22}{7} \times 8^{3}}{\frac{4}{3} \times \frac{22}{7} \times 1^{3}}\right\} \\
& =\left\{\frac{\frac{4}{3} \times \frac{22}{7} \times 512}{\frac{4}{3} \times \frac{22}{7} \times 1}\right\}=512
\end{aligned}
$$

\therefore number of lead balls=512.

Question 9:
Here, radius of sphere $=3 \mathrm{~cm}$
Diameter of spherical ball $=0.6 \mathrm{~cm} \quad\left[\because\right.$ radius $\left.=\frac{\mathrm{D}}{2}\right]$
Radius of spherical ball $=0.3 \mathrm{~cm}$
\therefore Number of balls $=\frac{\text { Volume of the sphere }}{\text { Volume of } 1 \text { small ball }}$

$$
\begin{aligned}
& =\left\{\frac{\frac{4}{3} \times \frac{22}{7} \times 3^{3} \mathrm{~cm}^{3}}{\frac{4}{3} \times \frac{22}{7} \times(0.3)^{3} \mathrm{~cm}^{3}}\right\} \\
& =\left\{\frac{\frac{4}{3} \times \frac{22}{7} \times 27}{\frac{4}{3} \times \frac{22}{7} \times 0.027}\right\}=1000
\end{aligned}
$$

number of small balls obtained $=1000$.

Question 10:
Here, radius of sphere $=10.5 \mathrm{~cm}=\left(\frac{21}{2}\right) \mathrm{cm}$
Radius of sm aller cone $=3.5 \mathrm{~cm}=\left(\frac{7}{2}\right) \mathrm{cm}$ and height $=3 \mathrm{~cm}$
Now number of cones $=\frac{\text { Volume of the sphere }}{\text { Volume of } 1 \text { small cone }}$

$$
\begin{aligned}
& =\frac{\left\{\frac{4}{3} \pi \times\left(\frac{21}{2}\right)^{3} \mathrm{~cm}^{3}\right\}}{\left\{\frac{1}{3} \pi \times\left(\frac{7}{2}\right)^{2} \times 3 \mathrm{~cm}^{3}\right\}} \\
& =\left(\frac{\frac{4}{3} \times \frac{9261}{8}}{\frac{1}{3} \times \frac{49}{4} \times 3}\right)=\frac{\frac{9261}{6}}{\frac{49}{4}} \\
& =\frac{9261}{6} \times \frac{4}{49}=126
\end{aligned}
$$

Number of cones obtained $=126$.

Jownloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solutio
 Diameter of a sphere $=12 \mathrm{~cm}$

$$
\begin{aligned}
\text { radius } & =\frac{\text { Diameter }}{2} \\
& =\frac{12}{2} \\
& =6 \mathrm{~cm}
\end{aligned}
$$

\therefore Volume of the sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{equation*}
=\frac{4}{3} \times \frac{22}{7} \times 6 \times 6 \times 6 \tag{i}
\end{equation*}
$$

Diameter of cylinder $=8 \mathrm{~cm}$

$$
\begin{aligned}
\text { Radius of cylinder } & =\frac{\text { Diameter }}{2} \\
\text { Radius of cylinder } & =\frac{8}{2} \\
\text { Radius of cylinder } & =4 \mathrm{~cm} \\
\text { Height of the cylinder } & =90 \mathrm{~cm}
\end{aligned}
$$

\therefore Volume of the cylinder $=\pi r^{2}$ h

$$
\begin{equation*}
=\frac{22}{7} \times 4 \times 4 \times 90 \tag{ii}
\end{equation*}
$$

Number of spheres $=\frac{\text { Volume of cylinder }}{\text { Volume of sphere }}$
Number of spheres $=\frac{\frac{22}{7} \times 4 \times 4 \times 90 \mathrm{~cm}^{3}}{\frac{4}{3} \times \frac{22}{7} \times 6 \times 6 \times 6 \mathrm{~cm}^{3}}$
Number of spheres $=5$.

Question 12:

$$
\text { Here, Diameter of a sphere }=6 \mathrm{~cm}
$$

$$
\operatorname{radius}(\mathrm{R})=\left(\frac{6}{2}\right) \mathrm{cm}=3 \mathrm{~cm}
$$

Diameter of wire $=2 \mathrm{~mm}$
radius $(r)=1 \mathrm{~mm}=0.1 \mathrm{~cm}$
Let the required length of wire be h cm .
Then,

$$
\begin{aligned}
\pi \times(\mathrm{r})^{2} \times \mathrm{h} & =\frac{4}{3} \times \pi \times(\mathrm{R})^{3} \\
\Rightarrow \quad \pi \times(0.1)^{2} \times \mathrm{h} & =\frac{4}{3} \times \pi \times(3)^{3} \\
\Rightarrow \quad \mathrm{~h} & =\frac{\frac{4}{3} \times \pi \times 27}{\pi \times(0.1)^{2}} \\
& =\left(\frac{4 \times 9}{0.01}\right) \mathrm{cm}=\frac{36}{0.01} \\
& =3600 \mathrm{~cm}=36 \mathrm{~m}
\end{aligned}
$$

the length of the wire $=36 \mathrm{~m}$.

Question 13:

Jownloaded from www.studiestoday.com 5 Aggarwal Class 9 Mathematics Solutio

Here, diameter of sphere $=18 \mathrm{~cm}$

$$
\text { radius of sphere }=\left(\frac{18}{2}\right) \mathrm{cm}=9 \mathrm{~cm}
$$

Length of the wire $=108 \mathrm{~m}=10800 \mathrm{~cm}$
Then,

$$
\begin{array}{ll}
& \frac{4}{3} \pi \times(r)^{3}=\pi \times r^{2} \times 10800 \\
\Rightarrow & \frac{4}{3} \pi \times(9)^{3}=\pi \times r^{2} \times 10800 \\
\Rightarrow & r^{2}=\frac{\frac{4}{3} \times \pi \times 729}{\pi \times 10800} \\
& =\frac{4 \times 243}{10800}=\frac{972}{10800}=\frac{9}{100} \\
\Rightarrow & r=\sqrt{\frac{9}{100}}=\frac{3}{10}=0.3 \\
\therefore & r=0.3 \mathrm{~cm} \\
\text { So, } & \text { Diameter }=(2 \times 0.3) \mathrm{cm}=0.6 \mathrm{~cm} .
\end{array}
$$

Question 14:

Here, diameter of sphere $=15.6 \mathrm{~cm}$

$$
\begin{aligned}
& \therefore \text { Radius of sphere }=\left(\frac{15.6}{2}\right) \mathrm{cm}=7.8 \mathrm{~cm} \\
& \text { and, height of cone }=31.2 \mathrm{~cm} \\
& \text { Then, } \\
& \qquad \begin{array}{r}
\frac{4}{3} \pi \times \mathrm{R}^{3}=\frac{1}{3} \pi \times \mathrm{r}^{2} \times \mathrm{h} \\
\Rightarrow \quad \frac{4}{3} \pi \times(7.8)^{3}=\frac{1}{3} \pi \times r^{2} \times 31.2 \\
\Rightarrow \quad r^{2}=\frac{\frac{4}{3} \times \pi \times(7.8)^{3}}{\frac{1}{3} \times \pi \times 31.2} \\
\Rightarrow \quad r^{2}=\left(\frac{4 \times 474.552}{31.2}\right)=(60.84)=(7.8)^{2} \\
\Rightarrow \quad r=7.8 \mathrm{~cm}
\end{array}
\end{aligned}
$$

\therefore Diameter of cone $=(2 \times 7.8) \mathrm{cm}=15.6 \mathrm{~cm}$.

Question 15:
Here, diameter of sphere $=28 \mathrm{~cm}$

$$
\begin{aligned}
& \therefore \text { radius of sphere }=\left(\frac{28}{2}\right) \mathrm{cm}=14 \mathrm{~cm} \\
& \begin{aligned}
\text { Diameter of cone } & =35 \\
\therefore \text { radius of cone } & =\left(\frac{35}{2}\right) \mathrm{cm}=17.5 \mathrm{~cm} \\
\therefore \frac{4}{3} \times \pi \times \mathrm{R}^{3} & =\frac{1}{3} \pi \times(\mathrm{r})^{2} \times \mathrm{h} \\
\mathrm{~h} & =\frac{\frac{4}{3} \times \pi \times(14)^{3}}{\frac{1}{3} \times \pi \times(17.5)^{2}} \\
& =\left(\frac{4 \times 2744}{306.25}\right) \mathrm{cm} \\
& =\left(\frac{10976}{306.25}\right) \mathrm{cm}=35.84 \mathrm{~cm}
\end{aligned} \\
& \text { Height of the cone }
\end{aligned}=35.84 \mathrm{~cm} .4 .
$$

Jownloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solutio
 Let the radius of the third ball ber cm

Then,

$$
\begin{array}{cc}
& \frac{4}{3} \times \pi \times(3)^{3}=\frac{4}{3} \pi\left(\frac{3}{2}\right)^{3}+\frac{4}{3} \times \pi(2)^{3}+\frac{4}{3} \pi \times(r)^{3} \\
\Rightarrow & \frac{4}{3} \times \pi \times 27=\frac{4}{3} \pi \times \frac{27}{8}+\frac{4}{3} \times \pi \times 8+\frac{4}{3} \pi \times(r)^{3} \\
\Rightarrow & 27=\frac{27}{8}+8+(r)^{3} \\
\Rightarrow & r^{3}=\left\{27-\left(\frac{27}{8}+8\right)\right\} \\
\Rightarrow & r^{3}=\left\{27-\left(\frac{27+64}{8}\right)\right\} \\
\Rightarrow & r^{3}=\left\{27-\frac{91}{8}\right\} \\
\Rightarrow & r^{3}=\left\{\frac{216-91}{8}\right\} \\
\Rightarrow & r^{3}=\frac{125}{8} \Rightarrow \\
\Rightarrow & r=\frac{5}{2}=2.5 \mathrm{~cm}
\end{array}
$$

radius of the third ball $=2.5 \mathrm{~cm}$

Question 17:

Let the radii of two spheres be x and $2 x$ and
their respective surface areas be S_{1} and S_{2}.
Then,

$$
\begin{aligned}
\frac{S_{1}}{S_{2}} & =\frac{4 \pi x^{2}}{4 \pi(2 x)^{2}} \\
& =\frac{x^{2}}{4 x^{2}}=\frac{1}{4}
\end{aligned}
$$

the ratio of their surfaceareas $=1: 4$.

Question 18:

Let the radii of two spheres be r and R
Then,

$$
\begin{aligned}
& \frac{4 \pi r^{2}}{4 \pi R^{2}}=\frac{1}{4} \\
\Rightarrow \quad & \left(\frac{r}{R}\right)^{2}=\left(\frac{1}{2}\right)^{2} \Rightarrow \frac{r}{R}=\frac{1}{2}
\end{aligned}
$$

Let V_{1} and V_{2} be the volumes of the respective
spheres whose radii are r and R

$$
\frac{V_{1}}{V_{2}}=\frac{\frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi R^{3}}=\left(\frac{r}{R}\right)^{3}=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}
$$

\therefore the ratio of their volume $=1: 8$.

Question 19:

Jownloaded from www.studiestoday.con 5 Aggarwal Class 9 Mathematics Solutio

Let the radius of ball be $r a m$ and R be the radius of the cylindrical tub.

Then,

$$
\begin{aligned}
& \frac{4}{3} \times \pi \times(r)^{3}=\pi \times \mathrm{R}^{2} \times \mathrm{h} \\
\Rightarrow \quad & \frac{4}{3} \times \pi \times(r)^{3}=\pi \times(12)^{2} \times 6.75 \\
\Rightarrow \quad & (r)^{3}=\frac{\pi \times 144 \times 6.75}{\frac{4}{3} \times \pi}=\frac{144 \times 6.75}{\frac{4}{3}} \\
& \\
\Rightarrow & r^{3}=\frac{972 \times 3}{4}=\frac{2916}{4}=729 \\
\Rightarrow \quad & r=9 \mathrm{~cm}
\end{aligned}
$$

\therefore the radius of the ball $=9 \mathrm{~cm}$.

Question 20:
Radius of the cylindrical bucket $=15 \mathrm{~cm}$
Height of the cylindrical bucket $=20 \mathrm{~cm}$
Volume of the water in the bucket $=\pi \times 15 \times 15 \times 20 \mathrm{~cm}^{3}$ Radius of spherical ball $=9 \mathrm{~cm}$
Volume of the spherical ball $=\frac{4}{3} \times \pi \times 9 \times 9 \times 9 \mathrm{~cm}^{3}$.
Increase in the water level $=\mathrm{h} \mathrm{cm}$
Volume of the increased water level $=\pi \times 15 \times 15 \times h \mathrm{~cm}^{3} . \ldots$. .(2)
Equating (1) and (2),
we have

$$
\begin{aligned}
\pi \times 15 \times 15 \times h & =\frac{4}{3} \times \pi \times 9 \times 9 \times 9 \\
h & =\frac{\frac{4}{3} \times \pi \times 9 \times 9 \times 9}{\pi \times 15 \times 15} \\
h & =4.32 \mathrm{~cm}
\end{aligned}
$$

Question 21:
Radius of hemisphere $=9 \mathrm{~cm}$
Height of cone $=72 \mathrm{~cm}$
Let the radius of the base of cone be rcm . Then,

$$
\frac{1}{3} \times \pi \times r^{2} \times h=\frac{2}{3} \times \pi \times R^{3}
$$

$$
\Rightarrow \quad \frac{1}{3} \pi \times r^{2} \times 72=\frac{2}{3} \times \pi \times(9)^{3}
$$

$$
\Rightarrow \quad r^{2}=\frac{\frac{2}{3} \times \pi \times 729}{\frac{1}{3} \times \pi \times 72}=\frac{2 \times 729}{72}
$$

$$
r^{2}=\frac{1458}{72}=20.25
$$

$$
\Rightarrow \quad r=4.5 \mathrm{~cm}
$$

the radius of the base of the cone $=4.5 \mathrm{~cm}$.

Question 22:

Jownloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solutio

Here, internal radius of hemisphere bowl $(R)=9 \mathrm{~cm}$
Diameter of botte $=3 \mathrm{~cm}$

$$
\begin{aligned}
\Rightarrow \quad \text { radius }(r) & =\left(\frac{3}{2}\right) \mathrm{cm} \\
\text { and, height of bottle } & =4 \mathrm{~cm} \\
\text { Number of bottles } & =\frac{\text { Volume of the bowl }}{\text { Volume ofeach bottle }} \\
& =\left\{\frac{\frac{2}{3} \pi \times R^{3}}{\pi \times(r)^{2} \times h}\right\} \\
& =\left\{\frac{\frac{2}{3} \pi \times(9)^{3}}{\pi \times\left(\frac{3}{2}\right)^{2} \times 4}\right\} \\
& =\frac{\left\{\frac{2}{3} \times 9 \times 9 \times 9\right\}}{\frac{9}{4} \times 4} \\
& =\frac{2 \times 3 \times 81}{9}=54
\end{aligned}
$$

the number of bottle required=54.

$$
\begin{aligned}
& \text { Question 23: } \\
& \text { Internal radius }(r)=8 \mathrm{~cm} \\
& \begin{aligned}
& \text { External radius }(R)=9 \mathrm{~cm} \\
& \text { Density of metal }=4.5 \mathrm{~g} \mathrm{per} \mathrm{~cm} \\
& \\
& \therefore \quad \text { weight of the shell }=\left[\frac{4}{3} \pi \times\left\{(\mathrm{R})^{3}-(\mathrm{r})^{3}\right\} \times \text { density }\right] \\
&=\left[\frac{4}{3} \times \frac{22}{7} \times\left\{(9)^{3}-(8)^{3}\right\} \times \frac{4.5}{1000}\right] \mathrm{kg} \\
&=\left[\frac{4}{3} \times \frac{22}{7} \times\{729-512\} \times \frac{4.5}{1000}\right] \mathrm{kg} \\
&=\left[\frac{4}{3} \times \frac{22}{7} \times 217 \times \frac{4.5}{1000}\right] \mathrm{kg} \\
&=\left(\frac{85932}{21000}\right) \mathrm{kg}=4.092 \mathrm{~kg}
\end{aligned} \\
& \therefore \quad \text { weight of the shell }
\end{aligned}=4.092 \mathrm{~kg} . \quad . \quad .
$$

