Downloaded from www.studiestoday.com SS Aggarwal Class 9 Mathematics Solution

GeometricalConstructions

Exercise 12A

Question 1:

Steps of Construction:

(i) Draw a line segment $\mathrm{AB}=5 \mathrm{~cm}$
(ii) With A as centre and radius equal to more than half of $A B$, draw two arcs, one above
$A B$ and the other below $A B$.
(iii) With B as a centre and the same radius draw two arcs which cuts the previously
drawn arcs at C and D .
(iv) Join CD , intersecting $A B$ at point P.
$\therefore C D$ is the perpendicular bisector of $A B$ at the point P.

Question 2:

Step of Construction:

(i) Draw a line segment OA.
(ii) AT A, draw $\angle \mathrm{AOE}=90$, using ruler and compass.
(iii) With B as centre and radius more than half of BD , draw an arc.
(iv) With D as centre and same radius draw another arc which cuts the previous arc at F .
(v) Join OF. $\therefore \angle A O F=45$
(vi) Now with centre B and radius more than half of $B C$, draw an arc.
(vii) With centre C and same radius draw another arc which cuts the previously drawn arc at X .
(viii) Join OX. \therefore OX is the bisector of $\angle A O F$.

Downloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solution

Question 3:

Step of Construction:

(i) Draw a line segment OA.
(ii) With O as centre and any suitable radius draw an arc, cutting OA at B .
(iii) With B as centre and the same radius cut the previously drawn arc at C .
(iv) With C as centre and the same radius cut the arc at D .
(v) With C as centre and the radius more than half CD draw an arc.
(vi) With D as centre and the same radius draw another arc which cuts the previous arc at E .
(vii) Join E Now, $\angle A O E=90^{\circ}$
(viii) Now with B as centre and radius more than half of CB draw an arc.
(iv) With C as centre and same radius draw an arc which cuts the previous at F.
(x) Join OF.
(xi) $\therefore F$ is the bisector of right $\angle A O E$.

Question 4:

Step of construction:

(i) Draw a line segment $\mathrm{BC}=5 \mathrm{~cm}$.
(ii) With B as centre and radius equal to BC draw an arc.
(iii) With C as centre and the same radius draw another arc which cuts the previous arc at A.
(iv) Join $A B$ and $A C$.

Then $\triangle A B C$ is the required equilateral triangle.

Downloaded from www.studiestoday.com S Aggarwal Class 9 Mathematics Solution

Steps of Construction:
(i) Draw a line segments $B C=4.7 \mathrm{~cm}$.
(ii) At B draw $\angle \mathrm{XBC}=60^{\circ}$
(iii) AT C draw $\angle \mathrm{YCB}=30^{\circ}$.

Let $X B$ and $Y C$ intersect at A.
$\therefore \triangle A B C$ is the required triangle.

Question 8:
Steps of Construction :
(i) Draw a line of segment $\mathrm{QR}=5 \mathrm{~cm}$ which is the base.
(ii) With centre Q and radius equal to 4.5 cm , draw an arc.
(iii) With centre P and same radius draw another arc which cuts the previous arc at P.
(iv) Join $P Q$ and $P R . \therefore \triangle P Q R$ is the required isosceles triangle.

Question 9:
Steps of Construction :
(i) Draw a line segment $B C=4.8 \mathrm{~cm}$.
(ii) Make $\angle C B X=80^{\circ}$, below the line segment $B C$.
(iii) Make $\angle \mathrm{XBY}=90^{\circ}$.
(iv) Draw the right bisector PQ of BC , intersecting BY at O .
(v) With O as centre and radius OB , draw a circle intersecting $P Q$ at A.
(vi) Join $A B$ and $A C$. $\therefore \triangle A B C$ is the required isosceles triangle in which $A B=A C$.

[^0]
Downloaded from www.studiestoday.com QS Aggarwal Class 9 Mathematics Solution

Steps of construction :
(i) Draw a line segment $\mathrm{BC}=5.3 \mathrm{~cm}$.
(ii) Find the mid-point O of BC .
(iii) With O as a centre and radius OB , draw a semicircle on BC .
(iv) With B as centre and radius equal to 4.5 cm draw an arc cutting the semicircle at A.
(v) Join $A B$ and $A C, \therefore \triangle A B C$ is the required triangle.

Question 11:
Steps of Construction :
(i) Draw any line XY.
(ii) Take any point P on $X Y$ and draw $P Q \perp X Y$.
(iii) Along $P Q$, set off $P A=4.8 \mathrm{~cm}$.
(iv) Through A, draw LM \| XY.
(v) Construct $\angle \mathrm{LAB}=30^{\circ}$ and $\angle \mathrm{MAC}=60^{\circ}$ meeting $X Y$ at B and C respectively.
$\therefore \triangle \mathrm{ABC}$ is the required triangle.

Question 12:

Downloaded from www.studiestoday.com SS Aggarwal Class 9 Mathematics Solution

Steps of Construction :
(i) Draw a line segment $A B=12 \mathrm{~cm}$.
(ii) Draw a ray AX , making an acute angle with AB and drawn in the downward direction.
(iii) From A set off $(3+2+4)=9$ equal distances along $A X$.
(iv) Mark points L, M, N on $A X$ such as that $A L=3$ units, $L M=2$ units and $M N=4$ units.
(v) Join NB.
(vi) Through L and M, draw $L Q|\mid N B$ and $M R| \mid N B$ cutting $A B$ at Q and R respectively.
(vii) With Q as centre and radius AQ, draw an arc.
(viii) With R as centre and radius RB, draw another arc, cutting the previous arc at P.
(ix) Join PQ and PR.
$\therefore \quad \triangle \mathrm{PQR}$ is the required triangle.

Question 13:

Steps of Construction:

(i) $\operatorname{Draw~} \mathrm{BC}=4.5 \mathrm{~cm}$.
(ii) Construct $\angle C B X=60^{\circ}$
(iii) Along BX set off $\mathrm{BP}=8 \mathrm{~cm}$.
(iv) Join CP.
(v) Draw the perpendicular bisector of CP to intersecting BP at A .
(vi) Join $A C . \therefore \triangle A B C$ is the required triangle.

Question 14:

Steps of Construction:

(i) $\mathrm{Draw} \mathrm{BC}=5.2 \mathrm{~cm}$.
(ii) Construct $\angle C B X=30^{\circ}$

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com SS Aggarwal Class 9 Mathematics Solution
(iii) Set off $\mathrm{BP}=3.5 \mathrm{~cm}$.
(iv) Join PC.
(v) Draw the right bisector of PC, meeting BP produced at A.
(vi) Join $A C . \therefore \triangle A B C$ is the required triangle.

Downloaded from www.studiestoday.com

[^0]: Question 10:

