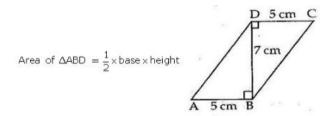


Question 1:



$$= \left(\frac{1}{2} \times 5 \times 7\right) \operatorname{cm}^2 = \frac{35}{2} \operatorname{cm}^2$$

Area of $\triangle \text{CBD} = \left(\frac{1}{2} \times 5 \times 7\right) \operatorname{cm}^2 = \frac{35}{2} \operatorname{cm}^2$

Since the diagonal BD divides ABCD into two triangles of equal area.

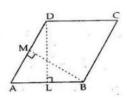
- ... ABCD is a parallelogram.
- ∴ Area of parallelogram = Area of ΔABD+Area of ΔCBD

$$= \left(\frac{35}{2} + \frac{35}{2}\right) \operatorname{cm}^2 = \frac{70}{2} \operatorname{cm}^2$$
$$= 35 \operatorname{cm}^2$$

∴ Area of parallelogram = 35 cm²

Question 2:

Since ABCD is a parallelogram and DL is perpendicular to AB.

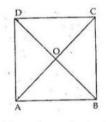


Co	ite eree AR DI
So,	its area = AB × DL
	$=(10 \times 6) \text{ cm}^2$
	$= 60 \text{cm}^2$
Also, in p	oarallelogram ABCD,
	BMLAD
.:. Area c	of parallelogram ABCD = AD × BM
	$60 = AD \times 8 cm$
<i></i>	$AD \times 8 = 60$
⇒	$AD = \frac{60}{8} = 7.5 \text{ cm}$
<i>6</i>	AD = 7.5 cm

Question 3:

⇒

ABCD is a rhombus in which diagonal AC=24 cm and BD = 16 cm. These diagonals intersect at O.



Since diagonals of a rhombus are perpendicular to each other. So, in Δ ACD, OD is its altitude and AC is itsbase.

So, area of
$$\triangle ACD = \frac{1}{2} \times AC \times OD$$

$$= \frac{1}{2} \times 24 \times \frac{BD}{2}$$

$$= \left(\frac{1}{2} \times 24 \times 8\right) \text{ cm}^2 \quad [:BD = 16 \text{ cm}]$$

$$= 96 \text{ cm}^2$$
Area of $\triangle ABC = \frac{1}{2} \times AC \times OB$

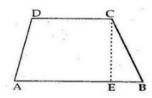
$$= \left(\frac{1}{2} \times 24 \times 8\right) \text{ cm}^2 = 96 \text{ cm}^2$$
Now, area of r hombus = Area of $\triangle ACD$ + Area of $\triangle ABC$

$$= (96 + 96) \text{ cm}^2$$

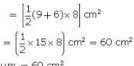
$$= 192 \text{ cm}^2$$

Question 4:

ABCD is a trapezium in which, AB∥CD AB=9 cm and CD=6 cm CE is a perpendicular drawn to AB through C and CE=8 cm

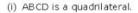


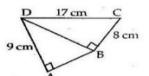
Area of trapezium = $\frac{1}{2}$ (sum of parallel sides)×distancebetween them



∴Area of trapezium = 60 cm²

Question 5:





Now in right angled ∆ DBC, $DB^2 = DC^2 - CB^2$ $= 17^2 - 8^2$ = 289 - 64 = 225 cm² $DB = \sqrt{225} = 15 cm$ So, area of $\Delta DBC = \left(\frac{1}{2} \times 15 \times 8\right) \text{ cm}^2 = 60 \text{ cm}^2$ Again, in right angled ∆DAB, $AB^2 = DB^2 - AD^2$ = 15² - 9² = 225 - 81= 144 cm² $AB = \sqrt{144} = 12 \text{ cm}.$ area of $\Delta DAB = \left(\frac{1}{2} \times 12 \times 9\right) \text{ cm}^2 = 54 \text{ cm}^2$ So, area of quadrilateral ABCD = Area of $\triangle DBC$ + Area of $\triangle DAB$ = (60 + 54) cm² = 114 cm² ... area of quadrilateral ABCD = 114 cm²

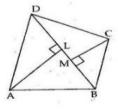
(ii)

S 8 cm R P 8 cm T 8 cm Q RT \perp PQ In right angled \triangle RTQ RT² = RQ² - TQ² = 17² - 8² = 289 - 64 = 225 cm² \therefore RT = $\sqrt{225}$ = 15 cm \therefore Area of trapezium = $\frac{1}{2}$ (sum of parallel sides) x distance between them

$$= \frac{1}{2} \times (PQ + SR) \times RT$$
$$= \frac{1}{2} \times (16 + 8) \times 15$$
$$= \left(\frac{1}{2} \times 24 \times 15\right) \text{ cm}^2 = 180 \text{ cm}^2$$
$$\therefore \text{ area of trapezium} = 180 \text{ cm}^2$$

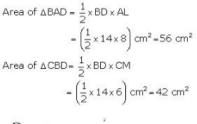
Question 7:

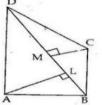
Given: ABCD is a quadrilateral and BD is one of its diagonals. AL \perp BD and CM \perp BD To Prove: area (quad. ABCD) $= \frac{1}{2} \times BD \times (AL + CM)$ Proof:



Area of \triangle BAD = $\frac{1}{2}$ ×BD×AL Area of \triangle CBD = $\frac{1}{2}$ ×BD×CM \therefore Area of quard. ABCD = Area of \triangle ABD + Area of \triangle CBD = $\frac{1}{2}$ ×BD×AL + $\frac{1}{2}$ ×BD×CM \therefore Area of quard. ABCD = $\frac{1}{2}$ ×BD[AL + CM]

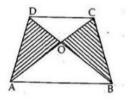
Question 8:





:. area of quad. ABCD = Area of \triangle ABD + Area of \triangle CBD = (56 + 42) cm² = 98 cm²

Question 9:

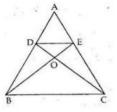


Consider \triangle ADC and \triangle DCB. We find they have the same base CD and lie between two parallel lines DC and AB.

Triangles on the same base and between the same parallels are equal in area.

So ΔC	DA and Δ CDB are equal in area.
÷	$area(\Delta CDA) = area(\Delta CDB)$
Now,	$area(\Delta AOD) = area(\Delta ADC) - area(\Delta OCD)$
and	$area(\Delta BOC) = area(\Delta CDB) - area(\Delta OCD)$
	$= area(\Delta ADC) - area(\Delta OCD)$
⇒	$area(\Delta AOD) = area(\Delta BOC)$

Question 10:



(i) ΔDBE and ΔDCE have the same base DE and lie between parallel lines BC and DE.
So, area (ΔDBE) = area(ΔDCE).....(1)
Adding area(ΔADE) on both sides, we get ar (ΔDBE) + ar(ΔADE) = ar(ΔDCE) + ar(ΔADE)
⇒ ar (ΔABE) = ar (ΔDCE) + ar(ΔADE)
(ii) Since ar(ΔDBE) = ar(ΔDCE) [from (1)]
Subtracting ar (ΔODE) from both sides we get ar(ΔDBE) - ar(ΔODE) = ar(ΔOCE) - ar(ΔODE)
⇒ ar(ΔOBD) = ar(ΔOCE)

Question 11:

Given: A \triangle ABC in which points D and E lie on AB and AC, such that ar(\triangle BCE) = ar(\triangle BCD)

 To Prove:
 DE
 || BC

 Proof
 : As ΔBCE and Δ BCD have same base BC, and are equal in area, they have same altitudes. This means that they lie between two parallel lines.

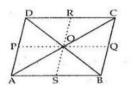
 ∴
 DE
 || BC

Question 12:

Given : A parallelogram ABCD in which O is a point inside it

To Prove: (i) ar($\triangle OAB$)+ ar($\triangle OCD$) = $\frac{1}{2}$ ar($\|$ gm ABCD)

(ii) ar (ΔOAD) + ar $(\Delta OBC) = \frac{1}{2}$ ar (||gm ABCD)



Construction: Through O draw PQ ||AB and RS|| ADProof: (i) Δ AOB and parallelogram ABQP have same

base AB and lie between parallel lines AB and PQ. If a triangle and a parallelogram are on the same base, and between the same parallels, then the area of the triangle is equal to half the area of the parallelogram.

$$ar(\Delta AOB) = \frac{1}{2}ar(\|gm ABQP)$$

Similarly, $ar(\Delta COD) = \frac{1}{2}ar(\|gm PQCD)$
So, $ar(\Delta AOB) + ar(\Delta COD)$
 $= \frac{1}{2}ar(\|gm ABQP) + \frac{1}{2}ar(\|gm PQCD)$
 $= \frac{1}{2}[ar(\|gm ABQP) + ar(\|gm PQCD)]$

$$=\frac{1}{2}$$
 [ar ||gm ABCD]

(ii) △ AOD and || gm ASRD have the same base AD and lie between same parallel lines AD and RS.

So,
$$\operatorname{ar}(\Delta AOD) = \frac{1}{2}\operatorname{ar}(\|\operatorname{gm} ASRD)$$

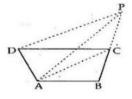
Similarly, $\operatorname{ar}(\Delta BOC) = \frac{1}{2}\operatorname{ar}(\|\operatorname{gm} RSBC)$
 $\therefore \operatorname{ar}(\Delta AOD) + \operatorname{ar}(\Delta BOC) = \frac{1}{2}[\operatorname{ar}(\|\operatorname{gm} ASRD) + \operatorname{ar}(\|\operatorname{gm} RSBC)]$

$$=\frac{1}{2}[ar(\|gmABCD)]$$

Question 13:

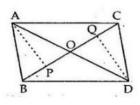
Given: ABCD is a quadrilateral in which through D, a line is drawn parallel to AC which meets BC produced in P.

To Prove : $ar(\Delta ABP) = ar(quad.ABCD)$



Question 14:

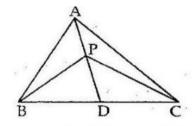
Given: Two triangles, i.e. \triangle ABC and \triangle DBC which have same base BC and points A and D lie on opposite sides of BC and ar(\triangle ABC) = ar(\triangle BDC)



OA = ODTo Prove: Construction: Draw AP⊥BC and DQ⊥BC Proof: We have ar ($\triangle ABC$) = $\frac{1}{2} \times BC \times AP$ and ar $(\Delta BCD) = \frac{1}{2} \times BC \times DQ$ $\frac{1}{2} \times BC \times AP = \frac{1}{2} \times BC \times DQ$ [from (1)] So, AP = DQ......(2) Now, in $\triangle AOP$ and $\triangle QOD$, we have $\angle APO = \angle DQO = 90^{\circ}$ $\angle AOP = \angle DOQ$ [vertically opp. angles] and AP = DQ[from (2)] Thus, by Angle-Angle-Side criterion of congruence, we have $\triangle AOP \cong \triangle QOD$ AAS The corresponding parts of the congruent triangles are equal. OA = OD[C.P.C.T.] .

Question 15:

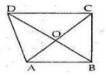
Given: A \bigtriangleup ABC in which AD is the median and P is a point on AD.



To Prove: (i) ar $(\Delta BDP) = ar(\Delta CDP)$ (ii) $ar(\Delta ABP) = ar(\Delta APC)$ Proof :(i) In △ BPC, PD is the median. Since median of a triangle divides the triangle into two triangles of equal areas So, $ar(\Delta BPD) = ar(\Delta CDP).....(1)$ (ii) In △ABC, AD is the median $ar(\Delta ABD) = ar(\Delta ADC)$ So. But, $ar(\Delta BPD) = ar(\Delta CDP)$ [from (1)] Subtracting $ar(\Delta BPD)$ from both the sides of the equation, we have $\therefore ar(\Delta ABD) - ar(\Delta BPD) = ar(\Delta ADC) - ar(\Delta BPD)$ $=ar(\Delta ADC) - ar(\Delta CDP)$ from (1) $ar(\Delta ABP) = ar(\Delta ACP).$ ⇒

Question 16:

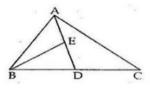
Given : A quadrilateral ABCD in which diagonalsAC and BD intersect at 0 and B0 = 0D



To Prove : $ar(\Delta ABC) = ar(\Delta ADC)$ Proof: Since OB = OD [Given] So, AO is the median of ΔABD \therefore $ar(\Delta AOD) = ar(\Delta AOB)$ (i) As OC is the median of ΔCBD $ar(\Delta DOC) = ar(\Delta BOC)$ (ii) Adding both sides of (i) and (ii), we get $ar(\Delta AOD) + ar(\Delta DOC) = ar(\Delta AOB) + ar(\Delta BOC)$ \therefore $ar(\Delta ADC) = ar(\Delta ABC)$

Question 17:

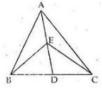
Given : A \triangle ABC in which AD is a median and E is the mid – point of AD



To Prove: $ar(\Delta BED) = \frac{1}{4}ar(\Delta ABC)$ Proof: Since, $ar(\Delta ABD) = ar(\Delta ACD)$ [:: AD is the median] i.e. $ar(\Delta ABD) = \frac{1}{2}ar(\Delta ABC)$ (1) [:: $ar(\Delta ABC) = ar(\Delta ABD) + ar(\Delta ADC)$] Now, as BE is the median of ΔABD $ar(\Delta ABE) = ar(\Delta BED)$ (2) Since $ar(\Delta ABD) = ar(\Delta ABE) + ar(\Delta BED)$ (3) :... $ar(\Delta BED) = ar(\Delta ABE)$ [from (2)] $= \frac{1}{2}ar(\Delta ABD)$ [from (2) and (3)] $= \frac{1}{2}[\frac{1}{2}ar(\Delta ABC)]$ [from (1)] $= \frac{1}{4}ar(\Delta ABC)$

Question 18:

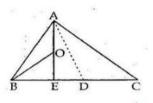
Given: A △ ABC in which E is the mid – point of line segment AD where D is a point on BC.



To Prove: $ar(\Delta BEC) = \frac{1}{2}ar(\Delta ABC)$ Proof: Since BE is the median of ΔABD So, $ar(\Delta BDE) = ar(\Delta ABE)$ \therefore $ar(\Delta BDE) = \frac{1}{2}ar(\Delta ABD)$ (i) As, CE is median of ΔADC So, $ar(\Delta CDE) = \frac{1}{2}ar(\Delta ACD)$ (ii) Adding (i) and (ii), we get $ar(\Delta BDE) + ar(\Delta CDE) = \frac{1}{2}ar(\Delta ABD) + \frac{1}{2}ar(\Delta ACD)$ $ar(\Delta BEC) = \frac{1}{2}[ar(\Delta ABD) + ar(\Delta ACD)]$ $= \frac{1}{2}ar(\Delta ABC).$

Question 19:

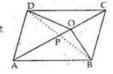
Given : A \triangle ABC in which AD is the median and E is the mid – point of BD. O is the mid – point of AE.



To Prove : $ar(\triangle BOE) = \frac{1}{8}ar(\triangle ABC)$ Proof : Since O is the midpoint of AE. So, BO is the median of △BAE $ar(\Delta BOE) = \frac{1}{2}ar(\Delta ABE) \dots (1)$ Now, E is the mid-point of BD So AE divides △ ABD into two triangles of equal area. $ar(\Delta ABE) = \frac{1}{2}ar(\Delta ABD)....(2)$... As D is the mid point of BC $ar(\Delta ABD) = \frac{1}{2}ar(\Delta ABC)....(3)$ So $ar(\Delta BOE) = \frac{1}{2}ar(\Delta ABE)$ [from (1)] $=\frac{1}{2}\left[\frac{1}{2} \operatorname{ar}(\Delta A BD)\right]$ [from (2)] $=\frac{1}{4} \operatorname{ar} (\Delta A BD)$ $=\frac{1}{4}\times\frac{1}{2}ar(\Delta ABC)$ [from (3)] $=\frac{1}{9} \operatorname{ar} (\Delta ABC)$

Question 20:

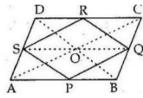
Given: A parallelogram ABCD in which O is any point on the diagonal AC.



To Prove: $ar(\Delta AOB) = ar(\Delta AOD)$. Construction: Join BD which intersects AC at P. Proof: As diagonals of a parallelogram bisect each other, so, OP is the median of ΔODB \therefore $ar(\Delta ODP) = ar(\Delta OBP)$. Also, AP is the median of ΔABD \therefore $ar(\Delta ADP) = ar(\Delta ABP)$ Adding both sides, we get $ar(\Delta ODP) + ar(\Delta ADP) = ar(\Delta OBP) + ar(\Delta ABP)$ \Rightarrow $ar(\Delta AOD) = ar(\Delta AOB)$.

Question 21:

Given: ABCD is a parallelogram and P,Q,R and S are the midpoints of AB,BC, CD and DA respectively.



To Prove: PQRS is a parallelogram and ar (||gmPQRS)

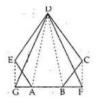
 $=\frac{1}{2} \operatorname{ar}(\|\operatorname{gm} ABCD)$

Construction: Join AC, BD and SQ. Proof: As S and R are the midpoints of AD and CD.So, in △ADC, SR || AC By mid point theorem Also, as P and O are the midpoints of AB and BC.So, in △ABC, PQ AC PQ || AC || SR ... PQ || SR Similarly, we can prove SP || RQ. Thus PQRS is a parallelogram as its opposite sides are parallel since diagonals of a parallelogram bisect each other. So in AABD, O is the midpoint of AC and S is the midpoint of AD. OS || AB By midpoint theorem Similarly in ∆ABC, we can prove that, OQ AB i.e. SQ || AB Thus, ABQS is a parallelogram. $ar(\Delta SPQ) = \frac{1}{2}ar(\|gm ABQS)$ Now,(i) ·∴∆SPQ and ||gm ABQS have the same base and lie between same parallel lines Similarly, we can prove that; $ar(\Delta SRQ) = \frac{1}{2}ar(\|gm SQCD)$ (ii) Adding (i) and (ii) we get $ar(\Delta SPQ) + ar(\Delta SRQ) = \frac{1}{2}[ar(\|gmABQS) + ar(\|gmSQCD)]$

 $\therefore \quad ar(\|gmPQRS) = \frac{1}{2}ar(\|gmABCD)$

Question 22:

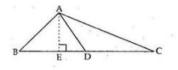
Given: ABCDE is a pentagon. EG, drawn parallel to DA, meets BA produced at G ,and CF, drawn parallel to DB, meets AB produced at F.



To Prove: $ar(Pentagon ABCDE) = ar(\Delta DGF)$ Proof: Triangles on the same base and between the same parallels are equal in area. Since \triangle DGA and \triangle AED have same base AD and lie between parallel lines AD and EG $ar(\Delta DGA) = ar(\Delta AED)....(1)$ Similarly, \triangle DBC and \triangle BFD have same baseDB and lie between parallel lines BD and CF. $ar(\Delta DBF) = ar(\Delta DBC)....(2)$ Adding both the sides of the equations (1) and (2), we have ∴ ar(△DGA) + ar(△DBF) = ar(△AED) + ar(△BCD) Adding $ar(\Delta ABD)$ to both sides, we get, $ar(\Delta DGA) + ar(\Delta DBF) + ar(\Delta ABD)$ $= ar (\Delta AED) + ar (\Delta BCD) + ar (\Delta ABD)$ $ar(\Delta DGA) = ar(pentagon ABCDE)$

Question 23:

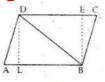
Given : ABC is a triangle in which AD is the median. To Prove: $ar(\Delta ABD) = ar(\Delta ACD)$ Construction: Draw AE \perp BC



Proof:	$ar(\Delta ABD) = \frac{1}{2} \times BD \times AE$
and,	$ar(\Delta ADC) = \frac{1}{2} \times DC \times AE$
Since,	BD = DC [Since D is the median]
So,	ar ($\triangle ABD$) = $\frac{1}{2} \times BD \times AE$
	$=\frac{1}{2}\times DC \times AE = ar(\Delta ADC)$
A.,	$ar(\Delta ABD) = ar(\Delta ACD)$

Question 24:

.....(iv)



Given : ABCD is a parallelogram in which BD is its diagonal. To Prove: $ar(\triangle ABD) = ar(\triangle BCD)$ Construction : Draw DL _ AB and BE _ CD

Proof:	$ar(\Delta ABD) = \frac{1}{2} \times AB \times DL$	(i)
and,	$\operatorname{ar}(\Delta CBD) = \frac{1}{2} \times CD \times BE$	(ii)
Now, sin	ce ABCD is a parallelogram.	
<i>.</i>	AB CD	
and	AB = CD	(iii)

Since distance between two parallel lines is constant, DL = BE Form (i), (ii), (iii), and (iv) we have $ar(\Delta ABD) = \frac{1}{2} \times AB \times DL$ $= \frac{1}{2} \times CD \times BE = ar(\Delta CBD)$

 $ar(\Delta ABD) = ar(\Delta CBD)$

Question 25:

Given : A \triangle ABC in which D is a point on BC such that; $BD = \frac{1}{2}DC$

To Prove:
$$ar(\Delta ABD) = \frac{1}{3}ar(\Delta ABC)$$

Consruction: Draw AE ⊥ BC $ar(\Delta ABD) = \frac{1}{2} \times BD \times AE \dots (1)$ Proof: $ar(\Delta ABC) = \frac{1}{2} \times BC \times AE \dots (2)$ and, Given that $BD = \frac{1}{2}BC$ So, BC = BD + DC = BD + 2BD = 3BD $\therefore BD = \frac{1}{3}BC$(3) From (1), ar $(\triangle ABD) = \frac{1}{2} \times BD \times AE$ $=\frac{1}{2}\times\frac{BC}{3}\times AE$ [from (3)] $\therefore \operatorname{ar}(\Delta ABD) = \frac{1}{3} \times \left(\frac{1}{2} \times BC \times AE\right)$ $=\frac{1}{3}\times ar(\Delta ABC)$ [from (2)] $\therefore \operatorname{ar}(\Delta ABD) = \frac{1}{3} \times \operatorname{ar}(\Delta ABC)$

Question 26:

Given: ABC is a triangle in which D is a point on BC such that:

BD:DC = m:n

To Prove: $ar(\Delta ABD): ar(\Delta ACD)$ = m: n

 $ar(\Delta ABD) = \frac{1}{2} \times BD \times AL$ Proof:

and, $ar(\Delta ADC) = \frac{1}{2} \times DC \times AL$ Now, BD:DC = m:n $BD = DC \times \frac{m}{2}$ $ar(\Delta ABD) = \frac{1}{2} \times BD \times AL$ $=\frac{1}{2} \times (DC \times \frac{m}{n}) \times AL$ $= \frac{m}{n} \times (\frac{1}{2} \times DC \times AL)$ $= \frac{m}{n} \times ar(\Delta ADC)$ $\frac{ar(\Delta ABD)}{ar(\Delta ADC)} = \frac{m}{n}$

$$\Rightarrow$$
 ar($\triangle ABD$) : ar($\triangle ADC$) = m : r