Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Operations On Algebraic Expressions Ex 6A

Q1

Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and adding column-wise, we get:

8ab
-5ab
3ab
-ab
5ab

Q2

Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and adding column-wise, we get:

 $7x \\ -3x \\ 5x \\ -x \\ -2x \\ 6x$

Q3

Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and adding column-wise, we get:

 $\begin{array}{r} 3a - 4b + 4c \\ 2a + 3b - 8c \\ a - 6b + c \end{array}$

6a - 7b - 3c

Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and adding column-wise, we get:

5x - 8y + 2z- 2x - 4y + 3z- x + 6y - z3x - 3y - 2z5x - 9y + 2z

Q5 Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and adding column-wise, we get:

6ax - 2by + 3cz - 11ax + 6by - cz - 2ax - 3by + 10cz - 7ax + by + 12cz

Q6

Answer:

On arranging the terms of the given expressions in the descending powers of $m{x}$ and adding columnwise:

 $\begin{array}{r} 2x^3 - 9x^2 + \ 0x + 8\\ 0x^3 + 3x^2 - 6x - 5\\ 7x^3 + 0x^2 - 10x + 1\\ - 4x^3 - 5x^2 + 2x + 3\\ 5x^3 - 11x^2 - 14x + 7\end{array}$

Q7

Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and adding column-wise:

 $\begin{array}{r} 6p+ \ 4q-r+3\\ -5p+ \ 0q+2r-6\\ -7p+11q+2r-1\\ 0p+ \ 2q-3r+4\\ \hline -6p+17q+0r+0\\ =-6p+17q \end{array}$

Q8

Answer:

On arranging the terms of the given expressions in the descending powers of $m{x}$ and adding columnwise:

 $\frac{4x^2 + 4y^2 - 7xy - 3}{x^2 + 6y^2 - 8xy + 0}$ $\frac{2x^2 - 5y^2 - 2xy + 6}{7x^2 + 5y^2 - 17xy + 3}$

Q9

Answer:

On arranging the terms of the given expressions in the descending powers of $m{x}$ and subtracting:

Q10 Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and subtracting column-wise:

 $6pq \\ -8pq \\ + \\ 14pq$

Q11 Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and subtracting column-wise:

Q12

Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and subtracting column-wise:

Q13 Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and subtracting column-wise:

 $\begin{array}{r} 3a - 4b - c + 6\\ 2a - 5b + 2c - 9\\ - & + & - \\ \hline a + b - 3c + 15 \end{array}$

Q14

Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and subtracting column-wise:

$$\begin{array}{c} p-2q-5r-8\\ -6p+& q+3r+8\\ +& -& -\\ \hline 7p-3q-8r-16\\ \end{array}$$

Q15

Answer:

On arranging the terms of the given expressions in the descending powers of $m{x}$ and subtracting column-wise:

 $\begin{array}{r} 3x^3 - x^2 + 2x - 4\\ x^3 + 3x^2 - 5x + 4\\ - & - & -\\ \hline 2x^3 - 4x^2 + 7x - 8\end{array}$

Q16

Answer:

Arranging the terms of the given expressions in the descending powers of $m{x}$ and subtracting columnwise:

 $\begin{array}{r} 4y^4-2y^3-6y^2-y+5\\5y^4-3y^3+2y^2+y-1\\-&+&-+\\-y^4+y^3-8y^2-2y+6\end{array}$

Q17

Answer:

Writing the terms of the given expressions (in the same order) in the form of rows with like terms below each other and subtracting column-wise:

$$\begin{array}{r} 3p^2-4q^2-5r^2-6\\ 4p^2+5q^2-6r^2+7\\ ------\\ -p^2-9q^2+r^2-13 \end{array}$$

Q18

Answer:

Let the required number be x. $(3a^2 - 6ab - 3b^2 - 1) - x = 4a^2 - 7ab - 4b^2 + 1$ $(3a^2 - 6ab - 3b^2 - 1) - (4a^2 - 7ab - 4b^2 + 1) = x$

 $\begin{array}{r} 3a^2-6ab-3b^2-1\\ 4a^2-7ab-4b^2+1\\ -++-\\ -a^2+ab+b^2-2 \end{array}$

 \therefore Required number = $-a^2 + ab + b^2 - 2$

Q19

Answer:

Sides of the rectangle are l and b. $l = 5x^2 - 3y^2$ $b = x^2 + 2xy$ Perimeter of the rectangle is (2l + 2b).

Perimeter =
$$2\left(5x^2 - 3y^2\right) + 2\left(x^2 + 2xy\right)$$

= $10x^2 - 6y^2 + 2x^2 + 4xy$
 $\frac{10x^2 - 6y^2}{12x^2 - 6y^2 + 4xy}$

Hence, the perimeter of the rectangle is $12x^2 - 6y^2 + 4xy$.

Q20

Answer:

Let $a, \ b \ and \ c$ be the three sides of the triangle.

 \therefore Perimeter of the triangle =(a+b+c)

Given perimeter of the triangle = $6p^2 - 4p + 9$ One side $(a) = p^2 - 2p + 1$ Other side $(b) = 3p^2 - 5p + 3$ Perimeter = (a + b + c) $(6p^2 - 4p + 9) = (p^2 - 2p + 1) + (3p^2 - 5p + 3) + c$ $6p^2 - 4p + 9 - p^2 + 2p - 1 - 3p^2 + 5p - 3 = c$ $(6p^2 - p^2 - 3p^2) + (-4p + 2p + 5p) + (9 - 1 - 3) = c$ $2p^2 + 3p + 5 = c$

Thus, the third side is $2p^2 + 3p + 5$.

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Operations On Algebraic Expressions Ex 6B

Q1

Answer:

By horizontal method: $(5x + 7) \times (3x + 4)$ = 5x(3x + 4) + 7(3x + 4) $= 15x^2 + 20x + 21x + 28$ $= 15x^2 + 41x + 28$

Q2

Answer:

By horizontal method:

$$\begin{aligned} & (4x+9)\times(x-6) \\ &= 4x(x-6)+9(x-6) \\ &= 4x^2-24x+9x-54 \\ &= 4x^2-15x-54 \end{aligned}$$

Q3

Answer:

By horizontal method:

$$\begin{aligned} &(2x+5)\times(4x-3)\\ &=2x(4x-3)+5(4x-3)\\ &=8x^2-6x+20x-15\\ &=8x^2+14x-15 \end{aligned}$$

Answer:

By horizontal method:

 $\begin{aligned} & (3y-8) \times (5y-1) \\ &= 3y(5y-1) - 8(5y-1) \\ &= 15y^2 - 3y - 40y + 8 \\ &= 15y^2 - 43y + 8 \end{aligned}$

Q5

Answer :

By horizontal method:

 $(7x + 2y) \times (x + 4y)$ = 7x (x + 4y) + 2y (x + 4y) = 7x² + 28xy + 2xy + 8y² = 7x² + 30xy + 8y²

Q6

Answer:

By horizontal method:

 $\begin{array}{l} (9x+5y) \times (4x+3y) \\ 9x(4x+3y)+5y(4x+3y) \\ = 36x^2+27xy+20xy+15y^2 \\ = 36x^2+47xy+15y^2 \end{array}$

Q7

Answer:

By horizontal method:

 $egin{aligned} (3m-4n) imes (2m-3n) \ &= 3m(2m-3n) - 4n(2m-3n) \ &= 6m^2 - 9mn - 8mn + 12n^2 \ &= 6m^2 - 17mn + 12n^2 \end{aligned}$

Q8

Answer:

By horizontal method:

$$egin{aligned} & (x^2-a^2) imes (x-a)\ &=x^2\,(x-a)-a^2\,(x-a)\ &=x^3-ax^2-a^2x+a^3\ & ext{i.e}\,(x^3+a^3)-ax(x-a) \end{aligned}$$

Q9

Answer:

By horizontal method:

$$egin{aligned} & (x^2-y^2) imes (x+2y)\ &=x^2 \left(x+2y
ight)-y^2 \left(x+2y
ight)\ &=x^3+2x^2y-xy^2-2y^3\ i.e \left(x^3-2y^3
ight)+xy(2x-y) \end{aligned}$$

Q10

Answer:

By horizontal method:

$$\begin{split} & \left(3p^2+q^2\right)\times\left(2p^2-3q^2\right)\\ &= 3p^2\bigl(2p^2-3q^2\bigr)+q^2\bigl(2p^2-3q^2\bigr)\\ &= 6p^4-9p^2q^2+2p^2q^2-3q^4\\ &i.e6p^4-7p^2q^2-3q^4 \end{split}$$

Q11

Answer:

By horizontal method:

 $egin{aligned} & \left(2x^2-5y^2
ight) imes \left(x^2+3y^2
ight)\ &= 2x^2\left(x^2+3y^2
ight)-5y^2\left(x^2+3y^2
ight)\ &= 2x^4+6x^2y^2-5x^2y^2-15y^4\ &= 2x^4+x^2y^2-15y^4 \end{aligned}$

Q12

Answer:

By horizontal method:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} x^3 - y^3 ig) & imes egin{aligned} x^2 + y^2 ig) &= x^3 egin{aligned} x^2 + y^2 ig) - y^3 egin{aligned} x^2 + y^2 ig) &= x^5 + x^3 y^2 - x^2 y^3 - y^5 \ &= egin{aligned} x^5 - y^5 ig) + x^2 y^2 (x - y) \end{aligned}$$

Q13

Answer:

By horizontal method:

$$\begin{pmatrix} x^4 + y^4 \end{pmatrix} imes \begin{pmatrix} x^2 - y^2 \end{pmatrix}$$

 $= x^4 \begin{pmatrix} x^2 - y^2 \end{pmatrix} + y^4 \begin{pmatrix} x^2 - y^2 \end{pmatrix}$
 $= x^6 - x^4 y^2 + y^4 x^2 - y^6$
 $= \begin{pmatrix} x^6 - y^6 \end{pmatrix} - x^2 y^2 \begin{pmatrix} x^2 - y^2 \end{pmatrix}$

Q14

Answer:

By horizontal method:

$$egin{aligned} \left(x^4+rac{1}{x^4}
ight) imes \left(x+rac{1}{x}
ight)\ &=x^4\left(x+rac{1}{x}
ight)+rac{1}{x^i}\left(x+rac{1}{x}
ight)\ &=x^5+x^3+rac{1}{x^3}+rac{1}{x^5}\ &i.e\ x^3\left(x^2+1
ight)+rac{1}{x^3}\left(1+rac{1}{x^2}
ight) \end{aligned}$$

Q15

Answer:

By horizontal method:

$$\begin{aligned} & \left(x^2 - 3x + 7\right) \times \left(2x + 3\right) \\ &= 2x\left(x^2 - 3x + 7\right) + 3\left(x^2 - 3x + 7\right) \\ &= 2x^3 - 6x^2 + 14x + 3x^2 - 9x + 21 \\ &= 2x^3 - 3x^2 + 5x + 21 \end{aligned}$$

Q16

Answer:

By horizontal method: $(3x^2 + 5x - 9) \times (3x - 5)$ $= 3x(3x^2 + 5x - 9) - 5(3x^2 + 5x - 9)$ $= 9x^3 + 15x^2 - 27x - 15x^2 - 25x + 45$ $= 9x^3 - 52x + 45$

Q17

Answer:

By horizontal method: $(x^2 - xy + y^2) \times (x + y)$ $= x(x^2 - xy + y^2) + y(x^2 - xy + y^2)$ $= x^3 - x^2y + y^2x + x^2y - xy^2 + y^3$ $= x^3 + y^3$

Q18

Answer:

By horizontal method:

$$egin{aligned} & (x^2+xy+y^2) imes (x-y)\ & xig(x^2+xy+y^2)-yig(x^2+xy+y^2)\ & =x^3+x^2y+xy^2-x^2y-xy^2-y^3\ & =x^3-y^3 \end{aligned}$$

Answer:

By horizontal method:

$$egin{aligned} & ig(x^3-2x^2+5ig) imesig(4x-1ig) \ &=4xig(x^3-2x^2+5ig)-1ig(x^3-2x^2+5ig) \ &=4x^4-8x^3+20x-x^3+2x^2-5 \ &=4x^4-9x^3+2x^2+20x-5 \end{aligned}$$

Q20

Answer:

By horizontal method:

 $\begin{array}{l} \left(9x^2-x+15\right)\times \left(x^2-3\right)\\ =x^2 \left(9x^2-x+15\right)-3 \left(9x^2-x+15\right)\\ =9x^4-x^3+15x^2-27x^2+3x-45\\ =9x^4-x^3-12x^2+3x-45 \end{array}$

Q21

Answer:

By horizontal method:

 $(x^2 - 5x + 8) \times (x^2 + 2)$ = $x^2(x^2 - 5x + 8) + 2(x^2 - 5x + 8)$ = $x^4 - 5x^3 + 8x^2 + 2x^2 - 10x + 16$ = $x^4 - 5x^3 + 10x^2 - 10x + 16$

Q22

Answer:

By horizontal method:

 $\begin{aligned} & \left(x^3 - 5x^2 + 3x + 1\right) \times \left(x^2 - 3\right) \\ &= x^2 \left(x^3 - 5x^2 + 3x + 1\right) - 3 \left(x^3 - 5x^2 + 3x + 1\right) \\ &= x^5 - 5x^4 + 3x^3 + x^2 - 3x^3 + 15x^2 - 9x - 3 \\ &= x^5 - 5x^4 + 16x^2 - 9x - 3 \end{aligned}$

Q23

Answer:

By horizontal method:

 $\begin{array}{l} (3x+2y-4)\times(x-y+2)\\ x(3x+2y-4)-y(3x+2y-4)+2(3x+2y-4)\\ =3x^2+2xy-4x-3xy-2y^2+4y+6x+4y-8\\ =3x^2-2y^2-xy+2x+8y-8 \end{array}$

Q24

Answer:

By horizontal method:

 $\begin{aligned} & (x^2 - 5x + 8) \times (x^2 + 2x - 3) \\ &= x^2 (x^2 - 5x + 8) + 2x (x^2 - 5x + 8) - 3 (x^2 - 5x + 8) \\ &= x^4 - 5x^3 + 8x^2 + 2x^3 - 10x^2 + 16x - 3x^2 + 15x - 24 \\ &= x^4 - 3x^3 - 5x^2 + 31x - 24 \end{aligned}$

Q25

Answer:

By horizontal method:

 $\begin{aligned} & (2x^2+3x-7)\times(3x^2-5x+4) \\ &= 2x^2\left(3x^2-5x+4\right)+3x\left(3x^2-5x+4\right)-7\left(3x^2-5x+4\right) \\ &= 6x^4-10x^3+8x^2+9x^3-15x^2+12x-21x^2+35x-28 \\ &= 6x^4-x^3-28x^2+47x-28 \end{aligned}$

Q26

Answer:

By horizontal method:

 $\begin{aligned} & (9x^2 - x + 15) \times (x^2 - x - 1) \\ &= x^2 (9x^2 - x + 15) - x (9x^2 - x + 15) - 1 (9x^2 - x + 15) \\ &= 9x^4 - x^3 + 15x^2 - 9x^3 + x^2 - 15x - 9x^2 + x - 15 \\ &= 9x^4 - 10x^3 + 7x^2 - 14x - 15 \end{aligned}$

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Operations On Algebraic Expressions Ex 6C

Q1 Answer:

(i) $24x^2y^3$ by 3xy

$$rac{24x^3y^3}{3xy}
ightarrow \left(rac{24}{3}
ight) (x^{2-1}) (y^{3-1})
ightarrow 8xy^2.$$

Therefore, the quotient is $8xy^2$.

(ii) 36xyz² by -9xz

$${36xyz^2\over -9xz} \ \Rightarrow \left({36\over -9}
ight)(x^{1-1})(y^{1-0})(z^{2-1}) \ \Rightarrow -4yz$$

Therefore, the quotient is -4yz.

$$\begin{array}{l} \text{(iii)} \\ -72x^2y^2z \, by \, -12xyz \\ \frac{-72x^2y^2z}{-12xyz} \\ \Rightarrow \left(\frac{-72}{-12}\right) (x^{2-1}) (y^{2-1}) (z^{1-1}) \\ \Rightarrow 6xy \end{array}$$

Therefore, the quotient is 6xy.

(iv) -56mnp² by 7mnp

 ${-56mnp^2\over 7mnp} \ \Rightarrow \left({-56\over 7}
ight) \left(m^{1-1}
ight) \left(n^{1-1}
ight) \left(p^{2-1}
ight) \ \Rightarrow -8p$

Therefore, the quotient is -8p.

Q2 Answer:

(i) $5m^3 - 30m^2 + 45m$ by 5m

 $\begin{pmatrix} 5m^3 - 30m^2 + 45m \end{pmatrix} \div 5m$ $\Rightarrow \frac{5m^3}{5m} - \frac{30m^2}{5m} + \frac{45m}{5m}$ $\Rightarrow m^2 - 6m + 9$

Therefore, the quotient is $m^2 - 6m + 9$.

(ii) $8x^2y^2 - 6xy^2 + 10x^2y^3$ by 2xy

$$\begin{pmatrix} 8x^2y^2 - 6xy^2 + 10x^2y^3 \end{pmatrix} \div 2xy \\ \Rightarrow \frac{8x^2y^2}{2xy} - \frac{6xy^2}{2xy} + \frac{10x^2y^3}{2xy} \\ \Rightarrow 4xy - 3y + 5xy^2 \end{cases}$$

(iii) $9x^2y - 6xy + 12xy^2$ by - 3xy

$$\begin{pmatrix} 9x^2y - 6xy + 12xy^2 \end{pmatrix} \div & -3xy \\ \Rightarrow \frac{9x^3y}{-3xy} - \frac{6xy}{-3xy} + \frac{12xy^2}{-3xy} \\ \Rightarrow -3x + 2 - 4y \end{cases}$$

Therefore, the quotient is -3x + 2 - 4y.

(iv) $12x^4 + 8x^3 - 6x^2$ by $-2x^2$

 $(19x^4 \pm 8x^3 - 6x^2) \div -2x^2 (-4x+3^2)$

О3

$$(12x^4 + 8x^3 - 6x^2) \div -2x$$

$$\Rightarrow \frac{12x^4}{-2x^2} + \frac{8x^3}{-2x^2} - \frac{6x^2}{-2x^2}$$

$$\Rightarrow -6x$$

$$(x^2 - 4x + 4) \div (x - 2)$$

Therefore the quotient is $-6x^2 - 4x + 3$.

$$x-2) x^{2}-4x+4 (x-2) x^{2}-2x + 4 (x-2) x^{2}-$$

Therefore, the quotient is (x-2) and the remainder is 0.

04 Answer:

$$x+2) x^{2}-4 (x-2) x^{2} - 4 (x-2) x^{2} - 2x - 4$$

Therefore, the quotient is x-2 and the remainder is 0.

Q5 Answer:

$$(x^2 + 12x + 35)$$
 by $(x + 7)$

Therefore, the quotient is (x+5) and the remainder is 0.

Answer:

Therefore, the quotient is (5x-3) and the remainder is 0.

Therefore, the quotient is (2x-5) and the remainder is 0.

Answer:

$$2x-5 \overbrace{)6x^{2}-31x+47}_{6x^{2}-15x} (3x-8)$$

$$-\frac{-4}{-16x+47}$$

$$-\frac{-16x+47}{-16x+40}$$

$$-\frac{-7}{7}$$

Therefore, the quotient is (3x - 8) and the remainder is 7.

Q9

Answer:

$$2x+3 \underbrace{)2x^{3} + x^{2} - 5x - 2}_{2x^{3} + 3x^{2}} (x^{2} - x - 1)$$

$$\underbrace{- x^{2} - 5x}_{-2x^{2} - 5x} + \underbrace{-2x^{2} - 5x}_{-2x - 3} + \underbrace{-2x - 2}_{-2x - 3} + \underbrace{-2x - 2}_{+ + 1} - \underbrace{-2x - 2}_{-2x - 3} + \underbrace{-2x - 2}_{+ + 1} - \underbrace{-2x - 2}_{-2x - 3} + \underbrace{-2x - 2}_{+ + + 1} - \underbrace{-2x - 2}_{-2x - 3} + \underbrace{-2x - 2$$

Therefore, the quotient is $ig(x^2-x-1ig)$ and the remainder is 1.

Q10

Answer:

$$x+1) \xrightarrow{x^3+1} (x^2-x+1)$$

 $\xrightarrow{-x^3+x^2} (x^2-x+1)$
 $\xrightarrow{-x^2+1} (x^2-x+1)$
 $\xrightarrow{-x^2+x} (x^2-x+1)$

 $\frac{x+1}{0}$

Therefore, the quotient is x^2 -x+1 and the remainder is 0.

Q11 Answer:

$$x^{2} + x + 1) x^{4} - 2x^{3} + 2x^{2} + x + 4 \qquad (x^{2} - 3x + 4) \\ x^{4} + x^{3} + x^{2} \\ - 3x^{3} + x^{2} + x \\ - 3x^{3} - 3x^{2} - 3x \\ + x + x + x \\ - 3x^{3} - 3x^{2} - 3x \\ + x + x + x \\ - 4x^{2} + 4x + 4 \\ - 4x^{2} + 4x + 4 \\ - x + x + 4 \\ - x \\ -$$

Therefore, the quotient is $(x^2 - 3x + 4)$ and remainder is 0.

Q12 Answer:

Therefore, the quotient is (x-1) and the remainder is 0.

Q13

$$\begin{array}{r} x^{2} - 3x + 4 \overline{\smash{\big)}} 5x^{3} - 12x^{2} + 12x + 13} \underbrace{5x + 3}_{-x^{3} - 15x^{2} + 20x} \underbrace{5x + 3}_{-x^{3} - 15x^{2} + 20x} \underbrace{5x^{3} - 15x^{2} + 20x}_{-x^{3} - 15x^{2} - 8x + 13} \underbrace{3x^{2} - 8x + 13}_{-x^{2} - 4x^{2} - 12x^{2} - 4x^{2} - 4x^$$

Therefore, the quotient is (5x+3) and the remainder is (x + 1).

Q14

Answer:

Therefore, the quotient is (x-1) and the remainder is 0.

Q15

Answer:

$$2x^{2} + x - 1 \underbrace{) 8x^{4} + 10x^{3} - 5x^{2} - 4x + 1}_{8x^{4} + 4x^{3} - 4x^{2}} \underbrace{4x^{2} + 3x - 2}_{-\frac{8x^{4} + 4x^{3} - 4x^{2}}{-\frac{-4x^{3} - 4x^{2} - 4x + 1}{-\frac{6x^{3} + 3x^{2} - 3x}{-\frac{-4x^{2} - x + 1}{-\frac{-4x^{2} - x + 1}{-\frac{4x^{2} - 2x + 2}{+\frac{+-\frac{-4x^{2} - 2x + 2}{-\frac{+-\frac{-4x^{2} - 2x + 2}{-\frac{-4x^{2} - 2x - 2}{-\frac{-4x^{2} - 2x^{2} - 2x^{2} - 2x^{2}}}}}$$

Therefore, the quotient is $(4x^2+3x-2)$ and the remainder is (x-1).

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Operations On Algebraic Expressions Ex 6D

1.
$$(a + b)^2 = a^2 + 2ab + b^2 = (-a - b)^2$$

2. $(a - b)^2 = a^2 - 2ab + b^2$
3. $(a - b) (a + b) = a^2 - b^2$
4. $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$
5. $(a + b - c)^2 = a^2 + b^2 + c^2 - 2ab - 2bc - 2ca$
6. $(a - b + c)^2 = a^2 + b^2 + c^2 - 2ab - 2bc + 2ca$
7. $(-a + b + c)^2 = a^2 + b^2 + c^2 - 2ab + 2bc - 2ca$
8. $(a - b - c)^2 = a^2 + b^2 + c^2 - 2ab + 2bc - 2ca$
9. $(a + b)^3 = a^3 + b^3 + 3ab (a + b)$
10. $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$
11. $a^3 + b^3 = (a + b)^3 - 3ab (a - b)$
12. $a^3 - b^3 = (a - b)^3 + 3ab (a - b)$
 $= (a - b) (a^2 + ab + b^2)$
13. $a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$
if $a + b + c = 0$ then $a^3 + b^3 + c^3 = 3abc$

Answer:

(i) We have:

$$egin{aligned} & \left(x+6
ight)\left(x+6
ight) \ &= \left(x+6
ight)^2 \ &= x^2+6^2+2 imes x imes 6 \ &= x^2+36+12x \end{aligned}$$
 [using $ig(a+big)^2 = a^2+b^2+2abig]$

(ii) We have:

$$egin{aligned} & \left(4x+5y
ight)\left(4x+5y
ight)\ &=\left(4x+5y
ight)^2\ &=\left(4x
ight)^2+(5y)^2+2 imes 4x imes 5y\ &=\left(16x^2+25y^2+40xy
ight)\ &=16x^2+25y^2+40xy \end{aligned}$$

(iii) We have:

 $=\left(rac{2}{3}\,x
ight)^2+\left(rac{4}{5}\,y
ight)^2+2 imesrac{2}{3}\,x$

$$\begin{aligned} & \left(7a+9b\right)\left(7a+9b\right) \\ &= \left(7a+9b\right)^2 \\ &= \left(7a\right)^2 + (9b)^2 + 2 \times 7a \times 9b \\ &= 49a^2 + 81b^2 + 126ab \end{aligned} \qquad \left[\text{using } \left(a+b\right)^2 = a^2 + b^2 + 2ab\right] \\ &= 49a^2 + 81b^2 + 126ab \end{aligned}$$
(iv) We have:
$$\left(\frac{2}{3}x + \frac{4}{5}y\right)\left(\frac{2}{3}x + \frac{4}{5}y\right) \\ &= \left(\frac{2}{3}x + \frac{4}{5}y\right)^2 \end{aligned}$$

$$imes rac{4}{5} y \qquad \left[ext{using } \left(a + b
ight)^2 = a^2 + b^2 + 2ab
ight]$$

(v) We have: $(x^2+7)(x^2+7)$ $=(x^{2}+7)^{2}$ $\left[\text{using } (a+b)^2 = a^2 + b^2 + 2ab \right]$ $=(x^2)^2+7^2+2 \times x^2 \times 7$ $= x^4 + 49 + 14x^2$ (vi) We have: $\left(\frac{5}{6}a^2+2\right)\left(\frac{5}{6}a^2+2\right)$ $=\left(rac{5}{6}a^2+2
ight)^2$ $\left[\text{using } \left(a+b
ight)^2 = a^2 + b^2 + 2ab
ight]$ $=\left(\frac{5}{6}a^{2}\right)^{2}+(2)^{2}+2\times\frac{5}{6}a^{2}\times2$ $=\frac{25}{26}a^4+4+\frac{10}{2}a^2$ 02 Answer: (i) We have: (x-4)(x-4) $=\left(x-4\right)^2$ $\left[ext{using } \left(a - b
ight)^2 = a^2 - 2ab + b^2
ight]$ $= x^2 - 2 \times x \times 4 + 4^2$ $=x^2 - 8x + 16$ (ii) We have: (2x-3y)(2x-3y) $=\left(2x-3y\right)^2$ $\left[ext{using } \left(a-b
ight)^2 = a^2 - 2ab + b^2
ight]$ $=(2x)^2-2\times 2x\times 3y+(3y)^2$ $=4x^2-12xy+9y^2$ (iii) We have: $\left(\frac{3}{4}x-\frac{5}{6}y\right)\left(\frac{3}{4}x-\frac{5}{6}y\right)$ $=\left(\frac{3}{4}x-\frac{5}{6}y\right)^{2}$ $=\left(rac{3}{4}x
ight)^2-2 imesrac{3}{4}x imesrac{5}{6}y+\left(rac{5}{6}y
ight)^2\qquad \left[ext{using }\left(a-b
ight)^2=a^2-2ab+b^2
ight]$ $= \frac{9}{16} x^2 - \frac{15}{12} xy + \frac{25}{36} y^2$ (iv) We have: $\left(x-rac{3}{x}
ight)\left(x-rac{3}{x}
ight)$ $=\left(x-\frac{3}{r}\right)^2$ $=(x)^2-2 imes x imes rac{3}{x}+\left(rac{3}{x}
ight)^2 \qquad \qquad \left[ext{using } \left(a-b
ight)^2=a^2-2ab+b^2
ight]$ $=x^2-6+\frac{9}{7^2}$ (v) We have: $\left(\frac{1}{3}x^2-9\right)\left(\frac{1}{3}x^2-9\right)$ $=\left(\frac{1}{3}x^2-9\right)^2$ $\left[ext{using } \left(a - b
ight)^2 = a^2 - 2ab + b^2
ight]$ $= \left(\frac{1}{3} x^2 \right)^2 - 2 imes \frac{1}{3} x^2 imes 9 + (9)^2$ $=\frac{1}{9}x^4-6x^2+81$

(vi) We have:

$$\left(\frac{1}{2}y^2 - \frac{1}{3}y\right) \left(\frac{1}{2}y^2 - \frac{1}{3}y\right) = \left(\frac{1}{2}y^2 - \frac{1}{3}y\right)^2 = \left(\frac{1}{2}y^2\right)^2 - 2 \times \frac{1}{2}y^2 \times \frac{1}{3}y + \left(\frac{1}{3}y\right)^2 \qquad \left[\text{using } \left(a - b\right)^2 = a^2 - 2ab + b^2\right] = \frac{1}{4}y^4 - \frac{1}{3}y^3 + \frac{1}{9}y^2$$

Q3

Answer:

We shall use the identities $(a+b)^2 = a^2 + b^2 + 2ab$ and $(a-b)^2 = a^2 + b^2 - 2ab$.

(i) We have: (8a+3b) $=(8a)^{2}+2\times 8a\times 3b+(3b)^{2}$ $= 64a^2 + 48ab + 9b^2$ (ii)We have: $(7x+2y)^2$ $=(7x)^2+2 imes 7x imes 2y+(2y)^2$ $=49x^2+28xy+4y^2$ (iii) We have : $(5x+11)^2$ $=(5x)^2+2\times 5x\times 11+(11)^2$ $=25x^{2}+110x+121$ (iv) We have: $\left(\frac{a}{2}+\frac{2}{a}\right)^2$ $= \left(\frac{a}{2}\right)^2 + 2 \times \frac{a}{2} \times \frac{2}{a} + \left(\frac{2}{a}\right)^2$ $=\frac{a^2}{4}+2+\frac{4}{a^2}$ (v) We have: $\left(\frac{3x}{4} + \frac{2y}{9}\right)^2$ $= \left(\frac{3x}{4}\right)^2 + 2 \times \frac{3x}{4} \times \frac{2y}{9} + \left(\frac{2y}{9}\right)^2$ $=rac{9x^2}{16}+rac{1}{3}xy+rac{4y^2}{81}$ (vi) We have: $(9x - 10)^2$ $(9x)^2 - 2 \times 9x \times 10 + (10)^2$ $=81x^2 - 180x + 100$

(vii) We have:

$$(x^2y - yz^2)^2$$

 $(x^2y)^2 - 2 \times x^2y \times yz^2 + (yz^2)^2$
 $= x^4y^2 - 2x^2y^2z^2 + y^2z^4$

(viii) We have:

$$\begin{aligned} & \left(\frac{x}{y} - \frac{y}{x}\right)^2 \\ &= \left(\frac{x}{y}\right)^2 - 2 \times \frac{x}{y} \times \frac{y}{x} + \left(\frac{y}{x}\right)^2 \\ &= \frac{x^2}{y^2} - 2 + \frac{y^2}{x^2} \end{aligned}$$

(ix) We have:

$$\left(3m - \frac{4}{5}n\right)^2 = (3m)^2 - 2 \times 3m \times \frac{4}{5}n + \left(\frac{4}{5}n\right)^2 = 9m^2 - \frac{24mn}{5} + \frac{16}{25}n^2$$

Q4

Answer:

(i) We have:

$$ig(x+3)ig(x-3ig) = x^2-9 \qquad \qquad \left[ext{using } ig(a+big)ig(a-big) = a^2-b^2
ight]$$

(ii) We have:

$$ig(2x+5ig)ig(2x-5ig) = 4x^2-25$$
 $ig[using\ ig(a+big)ig(a-big)=a^2-b^2ig]$

(iii) We have:

$$egin{array}{lll} & \left(8+x
ight)\left(8-x
ight) \ & = 64-x^2 & \left[ext{using } \left(a+b
ight)\!\left(a-b
ight)=a^2-b^2
ight] \end{array}$$

(iv) We have:

$$igg(7x+11yigg)igg(7x-11yigg) = 49x^2-121y^2 igg[using igg(a+bigg)igg(a-bigg)=a^2-b^2igg]$$

(v) We have:

$$igg(5x^2+rac{3}{4}\,y^2igg) \Big(5x^2-rac{3}{4}\,y^2igg) \ = 25x^4-rac{9}{16}\,y^4 \qquad \left[ext{using } ig(a+bigg) igg(a-bigg)=a^2-b^2
ight]$$

$$\Big[ext{using } \Big(a+b\Big)\Big(a-b\Big)=a^2-b^2\Big]$$

(vi) We have:

$$egin{pmatrix} \left(rac{4x}{5}-rac{5y}{3}
ight)\!\left(rac{4x}{5}+rac{5y}{3}
ight)\ &=rac{16x^2}{25}-rac{25y^2}{9} & \left[ext{using } \left(a+b
ight)\!\left(a-b
ight)\!=\!a^2-b^2
ight)
ight] \end{aligned}$$

(vii) We have: $\left(x+rac{1}{x}
ight)\left(x-rac{1}{x}
ight)$ $=x^2-rac{1}{x^2}$

$$\left[ext{using } \left(a+b
ight) \left(a-b
ight) =a^{2}-b^{2}
ight]
ight]$$

(viii) We have: $\left(\frac{1}{x} + \frac{1}{y}\right)\left(\frac{1}{x} - \frac{1}{y}\right)$ $= \frac{1}{x^2} - \frac{1}{y^2}$

$$\left[ext{using } \left(a+b
ight) \left(a-b
ight) = a^2 - b^2
ight]$$

(ix) We have: $\Big(2a+rac{3}{b}\Big)\Big(2a-rac{3}{b}\Big)$

 $=4a^2-\frac{9}{b^2}$

$$\Big[ext{using } \Big(a+b\Big)\Big(a-b\Big)=a^2-b^2$$

Q5

Answer:

We shall use the identity $(a+b)^2 = a^2 + b^2 + 2ab$.

(i)
(54)²
=
$$(50+4)^2$$

= $(50)^2 + 2 \times 50 \times 4 + (4)^2$
= $2500 + 400 + 16$
= 2916
(ii)
(82)²
= $(80+2)^2$
= $(80)^2 + 2 \times 80 \times 2 + (2)^2$
= $6400 + 320 + 4$
= 6724
(iii)
(103)²
= $(100)^2 + 2 \times 100 \times 3 + (3)^2$
= $10000 + 600 + 9$
= 10609
(iv)
(704)²
= $(700 + 4)^2$
= $(700)^2 + 2 \times 700 \times 4 + (4)^2$
= 495616
Q6

Answer:

We shall use the identity $(a-b)^2 = a^2 + b^2 - 2ab$.

 $(69)^2$ $=(70-1)^{2}$ $=(70)^2 - 2 \times 70 \times 1 + 1$ =4900 - 140 + 1=4761(ii) $(78)^2$ = $(80-2)^2$ $=(80)^2 - 2 \times 80 \times 2 + 4$ = 6400 - 320 + 4= 6084(iii) $(197)^2$ $=(200-3)^{2}$ $=(200)^2 - 2 \times 200 \times 3 + 9$ =40000 - 1200 + 9= 38809(iv) $(999)^2$ $=(1000-1)^{2}$ $=(1000)^2 - 2 \times 1000 \times 1 + 1$ = 1000000 - 2000 + 1= 998001Q7

Answer:

We shall use the identity $(a-b)(a+b)=a^2-b^2$.

(i) $(82)^2 - (18)^2$ =(82-18)(82+18)=(64)(100)= 6400(ii) $(128)^2 - (72)^2$ =(128-72)(128+72)=(56)(200)= 11200

(iii) 197×203 =(200-3)(200+3) $=(200)^2-(3)^2$ =40000-9= 39991

```
(iv)
198×198-102×102
 = \frac{(198)^2 - (102)^2}{(102)^2}
    (198-102)(198+102)
             06
 ____(96)(300)
 = 300
(V)
(14.7 \times 15.3)
 =(15-0.3)\times(15+0.3)
 =(15)^2-(0.3)^2
 = 225 - 0.09
 = 224.91
(vi)
(8.63)^2 - (1.37)^2
 =(8.63-1.37)(8.63+1.37)
 =(7.26)(10)
 = 72.6
Q8
Answer:
 (9x^2 + 24x + 16)
Given, x = 12
 \Rightarrow (3x)^2 + 2(3x)(4) + (4)^2
 \Rightarrow (3x + 4)^2
 \Rightarrow (3(12) + 4)<sup>2</sup>
 \Rightarrow (36 + 4)<sup>2</sup>
```

Therefore, the value of the expression $(9x^2 + 24x + 16)$, when x = 12, is 1600.

Q9

Q10

Answer:

 \Rightarrow (40)² = 1600

 $(64x^2 + 81y^2 + 144xy)$ Given : x = 11 $y = \frac{4}{3}$ $\Rightarrow (8x + 9y)^2$ $\Rightarrow \left(8\left(11\right) + 9\left(\frac{4}{3}\right)\right)^2$ \Rightarrow (88 + 12)² \Rightarrow (100)²

Therefore, the value of the expression $(64x^2 + 81y^2 + 144xy)$, when x = 11 and $y = \frac{4}{3}$, is 10000.

Downloaded from www.studiestoday.com

 $\Rightarrow (8x)^2 + (9y)^2 + 2(8x)(9y)$ $\Rightarrow 10000$

Answer:

$$\begin{array}{l} \left(36x^2 + 25y^2 - 60xy\right) \\ \Rightarrow x = \frac{2}{3}, \ y = \frac{1}{5} \\ = (6x)^2 + (5y)^2 - 2(6x)(5y) \\ = (6x - 5y)^2 \\ = \left(6\left(\frac{2}{3}\right) - 5\left(\frac{1}{5}\right)\right)^2 \\ = (4 - 1)^2 \\ = (3)^2 \\ \Rightarrow 9 \end{array}$$

Q11 Answer:

$$\begin{pmatrix} i \end{pmatrix} \left(x + \frac{1}{x} \right) = 4$$
Squaring both the sides :
$$\Rightarrow \left(x + \frac{1}{x} \right)^2 = (4)^2$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2} + 2(x) \left(\frac{1}{x} \right) \right) = 16$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2} \right) + 2 = 16$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2} \right) = 16 - 2$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2} \right) = 14$$

Therefore, the value of $x^2 + \frac{1}{x^2}$ is 14.

$$\begin{pmatrix} x^2 + \frac{1}{x^2} \end{pmatrix} = 14$$
Squaring both the sides :
$$\Rightarrow \left(x^4 + \frac{1}{x^4} + 2(x^2) \left(\frac{1}{x^2} \right) \right) = (14)^2$$

$$\Rightarrow \left(x^4 + \frac{1}{x^4} \right) + 2 = 196$$

$$\Rightarrow \left(x^4 + \frac{1}{x^4} \right) = 196 - 2$$

$$\Rightarrow \left(x^4 + \frac{1}{x^4} \right) = 194$$

Therefore, the value of $x^4 + \frac{1}{x^4}$ is 194.

Q12 Answer:

$$\begin{pmatrix} i \end{pmatrix} \left(x - \frac{1}{x} \right) = 5$$

$$\Rightarrow \text{Squaring both the sides :}$$

$$\Rightarrow \left(x - \frac{1}{x} \right)^2 = (5)^2$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2} - 2(x) \left(\frac{1}{x} \right) \right) = 25$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2} \right) - 2 = 25$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2} \right) = 25 + 2$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2} \right) = 27$$

Therefore, the value of $\left(x^2 + \frac{1}{x^2}\right)$ is 27.

 $\left(x^{2} + \frac{1}{x^{2}}\right) = 27$ \Rightarrow Squaring both the sides : $\Rightarrow \left(x^4 + \frac{1}{x^4} - 2\left(x^2\right)\left(\frac{1}{x^2}\right)\right) = (27)^2$ $\Rightarrow \left(x^4 + \frac{1}{x^4}\right) - 2 = 729$ $\Rightarrow \left(x^4 + \frac{1}{r^4}\right) = 729 + 2$ $\Rightarrow \left(x^4 + \frac{1}{r^4}\right) = 731$ Therefore, the value of $\left(x^4 + \frac{1}{x^4}\right)$ is 731. Q13 Answer: $(i) (x+1)(x-1)(x^2+1)$ \Rightarrow $(x^2 - x + x - 1)(x^2 + 1)$ \Rightarrow $(x^2-1)(x^2+1)$ $\Rightarrow \left(x^2\right)^2 - \left(1^2\right)^2$ according to the formula $a^2-b^2 = (a+b)(a-b)$ $\Rightarrow x^4 - 1.$ Therefore, the product of $(x+1)(x-1)(x^2+1)$ is x^4-1 . $(ii) (x-3)(x+3)(x^2+9)$ $\Rightarrow \left((x)^2 - (3)^2
ight) \left(x^2 + 9
ight)$ according to the formula $a^2 - b^2 = (a+b)(a-b)$ \Rightarrow $(x^2-9)(x^2+9)$ $\Rightarrow (x^2)^2 - (9)^2$ according to the formula $a^2 - b^2 = (a+b)(a-b)$ $\Rightarrow x^4 - 81$ Therefore, the product of $(x-3)(x+3)(x^2+9)$ is x^4-81 . (iii) $(3x-2y)(3x+2y)(9x^2+4y^2)$ $\Rightarrow \left((3x)^2 - (2y)^2 \right) \left(9x^2 + 4y^2 \right)$ according to the formula $a^2 - b^2 = (a+b)(a-b)$ $\Rightarrow (9x^2 - 4y^2)(9x^2 + 4y^2)$ $\Rightarrow (9x^2)^2 - (4y^2)^2$ according to the formula $a^2 - b^2 = (a+b)(a-b)$ $\Rightarrow 81x^4 - 16y^4$. Therefore, the product of $(3x - 2y)(3x + 2y)(9x^2 + 4y^2)$ is $81x^4 - 16y^4$. (iv) $(2p+3)(2p-3)(4p^2+9)$ $\Rightarrow \left((2p)^2 - (3)^2\right) \left(4p^2 + 9\right) \quad \left| ext{according to the formula } a^2 - b^2 = (a+b)(a-b) \right|$ \Rightarrow $(4p^2-9)(4p^2+9)$ \Rightarrow $(4p^2)^2 - (9)^2$ according to the formula $a^2 - b^2 = (a+b)(a-b)$ $\Rightarrow 16p^4 - 81.$ Therefore, the product of $(2p+3)(2p-3)(4p^2+9)$ is $16p^4-81$.

Q14

Answer:

 $\begin{array}{l} x+y \ = \ 12 \\ \text{On squaring both the sides :} \\ \Rightarrow (x+y)^2 \ = \ (12)^2 \\ \Rightarrow x^2+y^2+2xy \ = \ 144 \\ \Rightarrow x^2+y^2 \ = \ 144 \ - \ 2xy \\ \text{Given :} \\ xy \ = \ 14 \\ \Rightarrow x^2+y^2 \ = \ 144 \ - \ 2(14) \\ \Rightarrow x^2+y^2 \ = \ 144 \ - \ 28 \\ \Rightarrow x^2+y^2 \ = \ 116 \\ \text{Therefore, the value of } x^2+y^2 \ \text{is 116.} \end{array}$

Q15

Answer:

 $\begin{array}{l} x-y = 7\\ \Rightarrow \text{On squaring both the sides :}\\ \Rightarrow (x-y)^2 = (7)^2\\ \Rightarrow x^2+y^2-2xy = 49\\ \Rightarrow x^2+y^2 = 49+2xy\\ \text{Given :}\\ xy = 9\\ \Rightarrow x^2+y^2 = 49+2(9)\\ \Rightarrow x^2+y^2 = 49+18\\ \Rightarrow x^2+y^2 = 67.\\ \text{Therefore, the value of } x^2+y^2 \text{ is } 67. \end{array}$

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Operations On Algebraic Expressions Ex 6E

Q1 Answer:

(c) (-6a + 17b)

Q2

Answer:

(d) $(3p^2 + 5q - 9r^3 + 7)$

Q3

Answer:

(d) $x^2 + 2x - 15$

$$(x+5)(x-3)$$

 $\Rightarrow (x)(x-3) + (5)(x-3)$
 $\Rightarrow x^2 - 3x + 5x - 15$
 $\Rightarrow x^2 + 2x - 15$
Q4

Answer:

(b) $(6x^2 + 7x - 3)$ (2x + 3)(3x - 1) $\Rightarrow (2x)(3x - 1) + (3)(3x - 1)$ $\Rightarrow 6x^2 - 2x + 9x - 3$ $\Rightarrow 6x^2 + 7x - 3$

Q5

Answer:

(c) $(x^2 + 8x + 16)$

 $\begin{aligned} &(x+4)(x+4)\\ &\Rightarrow (x+4)^2 \qquad \left(\text{according to the formula } (a+b)^2 = a^2 + 2ab + b^2 \right)\\ &\Rightarrow (x^2) + 2(x)(4) + (4)^2\\ &\Rightarrow x^2 + 8x + 16 \end{aligned}$

Q6

Answer :

(d) $(x^2 - 12x + 36)$

(x-6)(x-6) $\Rightarrow (x-6)^2$ (according to the formula $(a-b)^2 = a^2 - 2ab + b^2$) $\Rightarrow (x^2) - 2(x)(6) + (6)^2$ $\Rightarrow x^2 - 12x + 36$

Q7

Answer:

(b) $(4x^2 - 25)$

(2x+5)(2x-5) $\Rightarrow (2x)^2 - (5)^2 \qquad \left(ext{according to the formula } (a+b)(a-b) = a^2 - b^2 \right)$ $\Rightarrow 4x^2 - 25$

Q8

Answer:

(c) -4ab²

Q9

Answer:

(b) (2x + 1)

Q10

Answer:

(a) (x – 2)

$$\begin{array}{c} x-2) \hline x^{2}-4x+4 \\ x^{2}-2x \\ - + \\ \hline -2x+4 \\ -2x+4 \\ + \\ - \\ \hline \times \end{array}$$

Q11

Answer:

(c) (a⁴ - 1)

 $\begin{array}{l} (i) \ (a+1)(a-1)(a^2+1) \\ \Rightarrow \ \left((a)^2 \ -(1)^2\right)(a^2+1) & \left[\text{according to the formula } a^2-b^2 \ = \ (a+b)(a-b) \right] \\ \Rightarrow \ \left(a^2-1\right)(a^2+1) \\ \Rightarrow \ \left(a^2\right)^2 \ -\left(1^2\right)^2 & \left[\text{according to the formula } a^2-b^2 \ = \ (a+b)(a-b) \right] \\ \Rightarrow \ a^4-1 \end{array}$

,

Q12

Answer:

a) $\left(\frac{1}{x^2} - \frac{1}{y^2}\right)$ $\left(\frac{1}{x} + \frac{1}{y}\right)\left(\frac{1}{x} - \frac{1}{y}\right)$ \Rightarrow According to the formula $(a+b)(a-b) = (a)^2 - (b)^2$: $\Rightarrow \left(\frac{1}{x^2} - \frac{1}{y^2}\right)$

Q13

Answer:

(c) 23

$$\begin{pmatrix} x + \frac{1}{x} \end{pmatrix} = 5 \Rightarrow Squaring both the sides : \Rightarrow \left(x + \frac{1}{x} \right)^2 = (5)^2 \Rightarrow \left(x^2 + \frac{1}{x^2} + 2(x) \left(\frac{1}{x} \right) \right) = 25 \Rightarrow \left(x^2 + \frac{1}{x^2} \right) + 2 = 25 \Rightarrow \left(x^2 + \frac{1}{x^2} \right) = 25 - 2 \Rightarrow \left(x^2 + \frac{1}{x^2} \right) = 23$$

Q14

Answer:

(b) 38

 $\begin{pmatrix} x - \frac{1}{x} \end{pmatrix} = 6$ $\Rightarrow Squaring both the sides :$ $\Rightarrow \left(x - \frac{1}{x} \right)^2 = (6)^2$ $\Rightarrow \left(x^2 + \frac{1}{x^2} - 2(x) \left(\frac{1}{x} \right) \right) = 36$ $\Rightarrow \left(x^2 + \frac{1}{x^2} \right) - 2 = 36$ $\Rightarrow \left(x^2 + \frac{1}{x^2} \right) = 36 + 2$ $\Rightarrow \left(x^2 + \frac{1}{x^2} \right) = 38$

[using the identity $(a-b)(a+b)=a^2-b^2$]

[using the identity $(a+b)(a-b) = a^2 - b^2$]

Q15

Answer:

(c) 6400

```
(82)^2 - (18)^2
=(82 + 18)(82 - 18)
=(100)(64)
= 6400
```

Q16 Answer:

(a) 39991

```
(197) \times (203)
\Rightarrow (200-3)(200+3)
\Rightarrow (200)^2 - (3)^2
\Rightarrow 40000 - 9
\Rightarrow 39991
```

```
017
Answer:
```

(b) 116

```
(a+b) = 12
\Rightarrow Squaring both the sides :
\Rightarrow (a+b)^2 = (12)^2
\Rightarrow \left(a^2 + b^2 + 2ab\right) = 144
\Rightarrow \left(a^2+b^2\right) = 144-2ab
\Rightarrow \left(a^2+b^2\right) = 144-2(14)
\Rightarrow \left(a^2+b^2\right) = 144-28
\Rightarrow \left(a^2 + b^2\right) = 116
```

Q18 Answer:

(a) 67

(a-b) = 7 \Rightarrow Squaring both the sides : $\Rightarrow (a-b)^2 = (7)^2$ $\Rightarrow \left(a^2 + b^2 - 2ab\right) = 49$ $\Rightarrow \left(a^2+b^2\right) = 49+2ab$ $\Rightarrow \left(a^2 + b^2\right) = 49 + 2(9)$

 $\Rightarrow \left(a^2+b^2\right) = 49+18$ $\Rightarrow \left(a^2 + b^2\right) = 67$

Q19 Answer:

(c) 625

 $(4x^2 + 20x + 25)$

 $\Rightarrow (2x + 5)^2$ $\Rightarrow (2(10)+5)^2$ $\Rightarrow (20+5)^2$ \Rightarrow (25)²

 $\Rightarrow (2x)^{2} + 2(2x)(5) + (5)^{2}$