Downloaded from www.studiestoday.com

 RS Aggarwal Solutions Class 8 Mathematics Cubes and Cube RootsEx 4A

Q1

Answer:
(i) $(8)^{3}=(8 \times 8 \times 8)=512$.

Thus, the cube of 8 is 512 .
(ii) $(15)^{3}=(15 \times 15 \times 15)=3375$.

Thus, the cube of 15 is 3375 .
(iii) $(21)^{3}=(21 \times 21 \times 21)=9261$.

Thus, the cube of 21 is 9261 .
(iv) $(60)^{3}=(60 \times 60 \times 60)=216000$.

Thus, the cube of 60 is 216000 .
Q2
Answer:
(i) $(1.2)^{3}=(1.2 \times 1.2 \times 1.2)=1.728$

Thus, the cube of 1.2 is 1.728 .
(ii) $(3.5)^{3}=(3.5 \times 3.5 \times 3.5)=42.875$

Thus, the cube of 3.5 is 42.875 .
(iii) $(0.8)^{3}=(0.8 \times 0.8 \times 0.8)=0.512$

Thus, the cube of 0.8 is 0.512 .
(iv) $(0.05)^{3}=(0.05 \times 0.05 \times 0.05)=0.000125$

Thus, the cube of 0.05 is 0.000125 .

Q3
Answer :
(i) $\left(\frac{4}{7}\right)^{3}=\left(\frac{4}{7} \times \frac{4}{7} \times \frac{4}{7}\right)=\left(\frac{64}{343}\right)$

Thus, the cube of $\left(\frac{4}{7}\right)$ is $\left(\frac{64}{343}\right)$.
(ii) $\left(\frac{10}{11}\right)^{3}=\left(\frac{10}{11} \times \frac{10}{11} \times \frac{10}{11}\right)=\left(\frac{1000}{1331}\right)$

Thus, the cube of $\left(\frac{10}{11}\right)$ is $\left(\frac{1000}{1331}\right)$.
(iii) $\left(\frac{1}{15}\right)^{3}=\left(\frac{1}{15} \times \frac{1}{15} \times \frac{1}{15}\right)=\left(\frac{1}{3375}\right)$

Thus, the cube of $\left(\frac{1}{15}\right)$ is $\left(\frac{1}{3375}\right)\left(1 \frac{3}{10}\right)^{3}=\left(\frac{13}{10}\right)^{3}=\left(\frac{13}{10} \times \frac{13}{10} \times \frac{13}{10}\right)=\left(\frac{2197}{1000}\right)$
Thus, the cube of $\left(1 \frac{3}{10}\right)$ is $\left(\frac{2197}{1000}\right)$
Q4

Answer:

(i) 125

Resolving 125 into prime factors:
$125=5 \times 5 \times 5$
Here, one triplet is formed, which is 5^{3}. Hence, 125 can be expressed as the product of the triplets of 5.

Therefore, 125 is a perfect cube.
(ii) 243 is not a perfect cube.
(iii) 343

Resolving 125 into prime factors:
$343=7 \times 7 \times 7$
Here, one triplet is formed, which is 7^{3}. Hence, 343 can be expressed as the product of the triplets of 7.

Therefore, 343 is a perfect cube.
(iv) 256 is not a perfect cube.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

RS Aggarwal Solutions Class 8 Mathematics

 (v) 8000Resolving 8000 into prime factors:
$8000=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5$
Here, three triplets are formed, which are $2^{3}, 2^{3}$ and 5^{3}. Hence, 8000 can be expressed as the product of the triplets of 2,2 and 5 , i.e. $2^{3} \times 2^{3} \times 5^{3}=20^{3}$
Therefore, 8000 is a perfect cube.
(vi) 9261

Resolving 9261 into prime factors:
$9261=3 \times 3 \times 3 \times 7 \times 7 \times 7$
Here, two triplets are formed, which are 3^{3} and 7^{3}. Hence, 9261 can be expressed as the product of the triplets of 3 and 7 , i.e. $3^{3} \times 7^{3}=21^{3}$
Therefore, 9261 is a perfect cube.
(vii) 5324 is not a perfect cube
(viii) 3375

Resolving 3375 into prime factors:
$3375=3 \times 3 \times 3 \times 5 \times 5 \times 5$.
Here, two triplets are formed, which are 3^{3} and 5^{3}. Hence, 3375 can be expressed as the product of
Q5 the triplets of 3 and 5 , i.e. $3^{3} \times 5^{3}=15^{3}$
Therefore, 3375 is a perfect cube.

The cubes of even numbers are always even. Therefore, 216,512 and 1000 are the cubes of even numbers.

```
216=2\times2\times2\times3\times3\times3=2 2 * 3}=\mp@subsup{3}{}{3}=\mp@subsup{6}{}{3
512=2\times2\times2\times2\times2\times2\times2\times2\times2=}=\mp@subsup{2}{}{3}\times\mp@subsup{2}{}{3}\times\mp@subsup{2}{}{3}=\mp@subsup{8}{}{3
```



```
O6
```


Answer :

The cube of an odd number is an odd number. Therefore, 125, 343 and 9261 are the cubes of odd numbers.

```
125=5\times5\times5 = 5
343=7\times7\times7=7 7
9261=3\times3\times3\times7\times7\times7= 3}\mp@subsup{3}{}{3}\times\mp@subsup{7}{}{3}=2\mp@subsup{1}{}{3
Q7
```

Answer:
1323

3	1323

3	441
3	147

3	147
7	49

3	49
7	7
	1

$1323=3 \times 3 \times 3 \times 7 \times 7$.
To make it a perfect cube, it has to be multiplied by 7
Q8

Answer :

2560

2560 can be expressed as the product of prime factors in the following manner:

2	2560
2	1280
2	640
2	320
2	160
2	80
2	40
2	20
2	10
5	5
	1

$2560=2 \times 2 \times 5$

To make this a perfect square, we have to multiply it by 5×5.
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics

Answer :

1600

1600 can be expressed as the product of prime factors in the following manner:

2	1600
2	800
2	400
2	200
2	100
2	50
5	25
5	5
	1

$1600=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5$

Therefore, to make the quotient a perfect cube, we have to divide 1600 by: $5 \times 5=25$

Q10
Answer :

2	8788
2	4394
13	2197
13	169
13	13
	1

8788
8788 can be expressed as the product of prime factors as $2 \times 2 \times 13 \times 13 \times 13$.
Therefore, 8788 should be divided by 4 , i.e. (2×2), so that the quotient is a perfect cube.

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics

Cubes and Cube Roots

Ex 4B

Q1
Answer:
$(25)^{3}$
Here, $a=2$ and $b=5$

Using the formula $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$:
4 $\times 2$
4 8
7

$\therefore(25)^{3}=15625$

Q2
Answer:
$(47)^{3}$
Here, $a=4$ and $b=7$

Using the formula $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$:
16 16 49 49 $\times 4$
64 +39
$\mathbf{1 0 3}$

$\therefore(47)^{3}=103823$
Q3
Answer:
$(68)^{3}$
Here, $a=6$ and $b=8$

Using the formula $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$:
36 $\times 6$
26 64 64 216 +98
$\mathbf{3 1 4}$

$\therefore(68)^{3}=314432$

Q4
Answer:
$(84)^{3}$

Here, $a=8$ and $b=4$

Using the formula $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$:			
64	64	16	16
$\times 8$	$\times 12$	$\times 24$	$\times 4$
512	768	384	
+ 80	+ 39	+ 6	64
592	807	390	

$\therefore(84)^{3}=592704$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Cubes and Cube Roots

Ex 4C

```
Q1
Answer:
\sqrt{3}{64}
By prime factorisation:
64=2\times2\times2\times2\times2\times2
    =(2\times2\times2)\times(2\times2\times2)
    \therefore\sqrt{3}{64}=\sqrt{3}{(2\mp@subsup{)}{}{3}\times(2\mp@subsup{)}{}{3}}=(2\times2)=4
```

Q2
Answer:
$\sqrt[3]{343}$
By prime factorisation:
$343=7 \times 7 \times 7$
$=(7 \times 7 \times 7)$
$\therefore \sqrt[3]{343}=\sqrt[3]{7^{3}}=7$
Q3
Answer:
$\sqrt[3]{729}$
By prime factorisation:

3	729
3	243
3	81
3	27
3	9
3	3
	1

$729=3 \times 3 \times 3 \times 3 \times 3 \times 3$
$=(3 \times 3 \times 3) \times(3 \times 3 \times 3)$
$\therefore \sqrt[3]{729}=(3 \times 3)=9$

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Q4
Answer:
$\sqrt[3]{1728}$
By prime factorisation:

2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

```
\(1728=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3\)
\(=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(3 \times 3 \times 3)=2^{3} \times 2^{3} \times 3^{3}\)
```

$\therefore \sqrt[3]{1728}=(2 \times 2 \times 3)=12$

Q5
Answer :
$\sqrt[3]{9261}$
By prime factorisation:

3	9261
3	3087
3	1029
7	343
7	49
7	7
	1

$$
\begin{aligned}
9261 & =3 \times 3 \times 3 \times 7 \times 7 \times 7 \\
& =(3 \times 3 \times 3) \times(7 \times 7 \times 7)=3^{3} \times 7^{3}
\end{aligned}
$$

$$
\therefore \sqrt[3]{9261}=(3 \times 7)=21
$$

Q6
Answer :

$\therefore \sqrt[3]{4096}=(2 \times 2 \times 2 \times 2)=16$

Q7

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics
Answer:

```
\sqrt{3}{8000}
By prime factorisation:
```



```
\therefore\sqrt{3}{8000}}=(2\times2\times5)=2
```

Q8
Answer:
$\sqrt[3]{3375}$
By prime factorisation:

5	3375
5	675
5	135
3	27
3	9
3	3
	1

$$
\begin{aligned}
3375 & =3 \times 3 \times 3 \times 5 \times 5 \times 5 \\
& =(3 \times 3 \times 3) \times(5 \times 5 \times 5)
\end{aligned}
$$

$$
\therefore \sqrt[3]{3375}=(3 \times 5)=15
$$

Q9
Answer:
$\sqrt[3]{-216}$
By prime factorisation:

$216=2 \times 2 \times 2 \times 3 \times 3 \times 3$
$=(2 \times 2 \times 2) \times(3 \times 3 \times 3)$
$\sqrt[3]{-216}=-(2 \times 3)=-6$
$\therefore \sqrt[3]{-216}=-(\sqrt[3]{216})=-6$

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics

Answer :

$\sqrt[3]{-512}$
By prime factorisation

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

$\sqrt[3]{512}=2 \times 2 \times 2$

$$
=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2)
$$

$\sqrt[3]{-512}=-\sqrt[3]{(2 \times 2 \times 2)}=-8$
$\therefore \sqrt[3]{-512}=-(\sqrt[3]{512})=-8$
Q11
Answer :
$\sqrt[3]{-1331}$
By prime factorisation:
$\sqrt[3]{1331}=\sqrt[3]{11 \times 11 \times 11}$

| 11 | 1331 |
| :--- | :--- | :--- |
| 11 | 121 |

11	121
11	11
	1

$\sqrt[3]{-1331}=-(11 \times 11 \times 11)^{\frac{1}{3}}=-11$
$\therefore \sqrt[3]{-1331}=-(\sqrt[3]{1331})=-11$

Q12
Answer:
$\sqrt[3]{\frac{27}{64}}$
By prime factorisation:

3	27			
3	9			
3	3			
	1	\quad	2	64
:---	:---	:---		
	32			
2	16			
2	8			
2	4			
2	2			
	1			

$\sqrt[3]{\frac{27}{64}}=\frac{\sqrt[3]{27}}{\sqrt[3]{64}}=\frac{\sqrt[3]{(3 \times 3 \times 3)}}{\sqrt[3]{(2 \times 2 \times 2) \times(2 \times 2 \times 2)}}=\frac{\sqrt[3]{(3 \times 3 \times 3)}}{\sqrt[3]{(4 \times 4 \times 4)}}=\frac{3}{4}$
$\therefore \sqrt[3]{\frac{27}{64}}=\frac{3}{4}$

Q13
Answer :
$\sqrt[3]{\frac{125}{216}}$
By prime factorisation:

$\left.$	5	125
5	25	
5	5	
	1	\quad
:---		
2	\right\rvert\, $108 \cdot 1 .$	2
:---		
3		

$\sqrt[3]{\frac{125}{216}}=\frac{\sqrt[3]{5 \times 5 \times 5}}{\sqrt[3]{(2 \times 2 \times 2) \times(3 \times 3 \times 3)}}=\frac{\sqrt[3]{5 \times 5 \times 5}}{\sqrt[3]{(6 \times 6 \times 6)}}=\frac{5}{6}$
$\therefore \sqrt[3]{\frac{125}{216}}=\frac{5}{6}$

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com
RS Aggarwal Solutions Class 8 Mathematics Q14

Answer:

$\sqrt[3]{\frac{-27}{125}}$	
3	27
3	9
3	3
	1

$$
\begin{array}{l|l}
5 & 125 \\
\hline 5 & 25 \\
\hline 5 & 5 \\
\hline & 1
\end{array}
$$

By factorisation:
$\sqrt[3]{\frac{27}{125}}=\sqrt[3]{\frac{3 \times 3 \times 3}{5 \times 5 \times 5}}$
$\therefore \sqrt[3]{\frac{-27}{125}}=\frac{-3}{5}$

Q15
Answer:
$\sqrt[3]{\frac{-64}{343}}$
On factorisation:

2	64
2	32
2	16
2	8
2	4
2	2
	1

$\sqrt[3]{\frac{64}{343}}=\sqrt[3]{\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2}{7 \times 7 \times 7}}$
$\therefore \sqrt[3]{\frac{-64}{343}} \frac{-4}{7}$

Q16
Answer:

```
\sqrt{3}{64\times729}
\sqrt{3}{64\times729}=\sqrt{3}{64}\times\sqrt{3}{729}
    = \sqrt{3}{4\times4\times4}}\times\sqrt{3}{(3\times3\times3)\times(3\times3\times3)
    = \sqrt{3}{4\times4\times4}\times\sqrt{3}{(9\times9\times9)}
\sqrt{3}{64\times729}=(4)\times(9)=36
```

Q17
Answer :

On factorisation:
$\sqrt[3]{\frac{729}{1000}}=\frac{\sqrt[3]{(3 \times 3 \times 3) \times(3 \times 3 \times 3)}}{\sqrt[3]{(2 \times 2 \times 2) \times(5 \times 5 \times 5)}}=\frac{\sqrt[3]{9 \times 9 \times 9}}{\sqrt[3]{10 \times 10 \times 10}}$
$\sqrt[3]{\frac{729}{1000}}=\frac{9}{10}$

Downloaded from www.studiestoday.com
RS Aggarwal Solutions Class 8 Mathematics Answer :

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1
$\sqrt[3]{\frac{512}{343}}=\frac{\sqrt[3]{8 \times 8 \times 8}}{\sqrt[3]{7 \times 7 \times 7}}$	
$\sqrt[3]{\frac{-512}{343}}=\frac{-8}{7}$	

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com
RS Aggarwal Solutions Class 8 Mathematics Cubes and Cube Roots

Ex 4D

Q1
Answer:
(a)

141 is not a perfect cube.
(b)

294 is not a perfect cube
(c) $(\sqrt{ })$

216 is a perfect cube.
$216=(2 \times 2 \times 2) \times(3 \times 3 \times 3)=\left(2^{3}\right) \times\left(3^{3}\right)=6^{3}$
(d)

496 is not a perfect cube.

Q2
Answer:
(a)
$1152=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3=(2)^{3} \times(2)^{3} \times(2 \times 3 \times 3)$.
Hence, 1152 is not a perfect cube.
(b) (\mathfrak{l}
$1331=11 \times 11 \times 11=(11)^{3}$
Hence, 1331 is a perfect cube.
(c)
$2016=2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7=(2)^{3} \times 2 \times 2 \times 3 \times 3 \times 7$
Hence, 2016 is not a perfect cube.
(d)

739 is not a perfect cube
Q3

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics
Answer:
(c) 8
$\sqrt[3]{512}=\sqrt[3]{2 \times 2 \times 2}=\sqrt[3]{(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2)}$ $\sqrt[3]{512}=\sqrt[3]{(2)^{3} \times(2)^{3} \times(2)^{3}}=8$

Hence, the cube root of 512 is 8 .

Q4
Answer:
(c) 20

```
\(\sqrt[3]{125 \times 64}=\sqrt[3]{125} \times \sqrt[3]{64}=\sqrt[3]{5 \times 5 \times 5} \times \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2}\)
\(\sqrt[3]{125 \times 64}=\sqrt[3]{(5)^{3}} \times \sqrt[3]{(2)^{3} \times(2)^{3}}=\sqrt[3]{(5)^{3}} \times \sqrt[3]{(4)^{3}}\)
\(\sqrt[3]{125 \times 64}=5 \times 4=20\)
```

Hence, the cube root of $\sqrt[3]{125 \times 64}$ is 20
Q5
Answer:
(b) $\frac{4}{7}$
$\sqrt[3]{\frac{64}{343}}=\frac{\sqrt[3]{64}}{\sqrt[3]{343}}=\frac{\sqrt[3]{4 \times 4 \times 4}}{\sqrt[3]{7 \times 7 \times 7}}=\frac{\sqrt[3]{(4)}}{\sqrt[3]{(7)^{3}}}$
$\sqrt[3]{\frac{64}{343}}=\frac{4}{7}$
$\therefore \sqrt[3]{\frac{64}{343}}=\frac{4}{7}$
Q6
Answer:
(b) $\frac{-8}{9}$
$\sqrt[3]{\frac{-512}{729}}=\frac{\sqrt[3]{-512}}{\sqrt[3]{729}}=\frac{\sqrt[3]{(-8) \times(-8) \times(-8)}}{\sqrt[3]{9 \times 9 \times 9}}=\frac{\sqrt[3]{(-8)^{3}}}{\sqrt[3]{{ }^{(9)^{3}}}}$
$\sqrt[3]{\frac{-512}{729}}=\frac{-8}{9}$
$\therefore \sqrt[3]{\frac{-512}{729}}=\frac{-8}{9}$

Q7
Answer:
(c) 9

2	648
2	324
2	162
3	81
3	27
3	9
3	3
	1

$648=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3=(2)^{3} \times(3)^{3} \times 3$
Therefore, to get a perfect cube, we need to multiply 648 by 9 , i.e. (3×3).
Q8

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Answer:
(a) 3

2	1536
2	768
2	384
2	192
2	96
2	48
2	24
2	12
2	6
3	1

$1536=2 \times 2 \times 3=(2)^{3} \times(2)^{3} \times(2)^{3} \times 3$ Therefore, to get a perfect cube, we need to divide 1536 by 3 .

Q9

Answer:
(C) $2 \frac{197}{1000}$
$\left(1 \frac{3}{10}\right)^{3}=\left(\frac{13}{10}\right)^{3}=\frac{(13)^{3}}{(10)^{3}}=\frac{(13 \times 13 \times 13)}{(10 \times 10 \times 10)}$
$\left(1 \frac{3}{10}\right)^{3}=\frac{2197}{1000}=2 \frac{197}{1000}$
$\therefore\left(1 \frac{3}{10}\right)^{3}=2 \frac{197}{1000}$

Q10
Answer :
(c) 0.512
$(0.8)^{3}=(0.8) \times(0.8) \times(0.8)=0.512$
$\therefore(0.8)^{3}=0.512$

