Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Area of Trapezium and Polygon Ex 18A

Area of Trapezium $=\frac{1}{2} h(a+b)$

Q1.

$$
\begin{aligned}
\text { Area of the trapezium } & =\text { Area of the rectangle }+ \text { Area of the triangle } \\
& =b h+\frac{1}{2}(a-b) h \\
& =h\left[b+\frac{1}{2}(a-b)\right] \\
& =h\left[\frac{2 b}{2}+\frac{a-b}{2}\right] \\
& =h\left[\frac{2 b+a-b}{2}\right] \\
& =h\left(\frac{a+b}{2}\right) \\
& =\binom{\text { Half the sum of }}{\text { parallel sides }} \times\binom{\text { Perpendicular distance }}{\text { between the parallel sides }}
\end{aligned}
$$

Answer:
Area of a trapezium $=\frac{1}{2} \times($ Sum of parallel sides $) \times($ Distance between them $)$

$$
\begin{aligned}
& =\left\{\frac{1}{2} \times(24+20) \times 15\right\} \mathrm{cm}^{2} \\
& =\left(\frac{1}{2} \times 44 \times 15\right) \mathrm{cm}^{2} \\
& =(22 \times 15) \mathrm{cm}^{2} \\
& =330 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the trapezium is $330 \mathrm{~cm}^{2}$.

Q2.

Answer:
Area of a trapezium $=\frac{1}{2} \times($ Sum of parallel sides $) \times($ Distance between them $)$

$$
\begin{aligned}
& =\left\{\frac{1}{2} \times(38.7+22.3) \times 16\right\} \mathrm{cm}^{2} \\
& =\left(\frac{1}{2} \times 61 \times 16\right) \mathrm{cm}^{2} \\
& =(61 \times 8) \mathrm{cm}^{2} \\
& =488 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the trapezium is $488 \mathrm{~cm}^{2}$.
Q3.
Answer:
Area of a trapezium $=\frac{1}{2} \times($ Sum of parallel sides $) \times($ Distance between them $)$

$$
\begin{aligned}
& =\left\{\frac{1}{2} \times(1+1.4) \times 0.9\right\} \mathrm{m}^{2} \\
& =\left(\frac{1}{2} \times 2.4 \times 0.9\right) \mathrm{m}^{2} \\
& =(1.2 \times 0.9) \mathrm{m}^{2} \\
& =1.08 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, the area of the top surface of the table is $1.08 \mathrm{~m}^{2}$.
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics

Answer:

Let the distance between the parallel sides be x.
Now,
Area of trapezium $=\left\{\frac{1}{2} \times(55+35) \times x\right\} \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 90 \times x\right) \mathrm{cm}^{2} \\
& =45 x \mathrm{~cm}^{2}
\end{aligned}
$$

Area of the trapezium $=1080 \mathrm{~cm}^{2}$ (Given)

$$
\begin{aligned}
& \therefore 45 x=1080 \\
& \Rightarrow x=\frac{1080}{45} \\
& \Rightarrow x=24 \mathrm{~cm}
\end{aligned}
$$

Hence, the distance between the parallel sides is 24 cm .

Q5.
Answer:
Let the length of the required side be $x \mathrm{~cm}$.
Now,
Area of trapezium $=\left\{\frac{1}{2} \times(84+x) \times 26\right\} \mathrm{m}^{2}$

$$
=(1092+13 x) \mathrm{m}^{2}
$$

Area of trapezium $=1586 \mathrm{~m}^{2}$ (Given)

$$
\begin{aligned}
& \therefore 1092+13 x=1586 \\
& \Rightarrow 13 x=(1586-1092) \\
& \Rightarrow 13 x=494 \\
& \Rightarrow x=\frac{494}{13} \\
& \Rightarrow x=38 \mathrm{~m}
\end{aligned}
$$

Hence, the length of the other side is 38 m .
Q6.
Answer:
Let the lengths of the parallel sides of the trapezium be $4 x \mathrm{~cm}$ and $5 x \mathrm{~cm}$, respectively.
Now,
Area of trapezium $=\left\{\frac{1}{2} \times(4 x+5 x) \times 18\right\} \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 9 x \times 18\right) \mathrm{cm}^{2} \\
& =81 x \mathrm{~cm}^{2}
\end{aligned}
$$

Area of trapezium $=405 \mathrm{~cm}^{2}$ (Given)
$\therefore 81 x=405$
$\Rightarrow x=\frac{405}{81}$
$\Rightarrow x=5 \mathrm{~cm}$
Length of one side $=(4 \times 5) \mathrm{cm}=20 \mathrm{~cm}$
Length of the other side $=(5 \times 5) \mathrm{cm}=25 \mathrm{~cm}$

Q7.

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics

Answer:

Let the lengths of the parallel sides be $x \mathrm{~cm}$ and $(x+6) \mathrm{cm}$.
Now,
Area of trapezium $=\left\{\frac{1}{2} \times(x+x+6) \times 9\right\} \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times(2 x+6) \times 9\right) \mathrm{cm}^{2} \\
& =4.5(2 x+6) \mathrm{cm}^{2} \\
& =(9 x+27) \mathrm{cm}^{2}
\end{aligned}
$$

Area of trapezium $=180 \mathrm{~cm}^{2}$ (Given)
$\therefore 9 x+27=180$
$\Rightarrow 9 x=(180-27)$
$\Rightarrow 9 x=153$
$\Rightarrow x=\frac{153}{9}$
$\Rightarrow x=17$
Hence, the lengths of the parallel sides are 17 cm and 23 cm , that is, $(17+6) \mathrm{cm}$. Q8.

Answer :

Let the lengths of the parallel sides be $x \mathrm{~cm}$ and $2 x \mathrm{~cm}$.
Area of trapezium $=\left\{\frac{1}{2} \times(x+2 x) \times 84\right\} \mathrm{m}^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 3 x \times 84\right) \mathrm{m}^{2} \\
& =(42 \times 3 x) \mathrm{m}^{2} \\
& =126 x \mathrm{~m}^{2}
\end{aligned}
$$

Area of the trapezium $=9450 \mathrm{~m}^{2}$ (Given)
$\therefore 126 x=9450$
$\Rightarrow x=\frac{9450}{126}$
$\Rightarrow x=75$
Thus, the length of the parallel sides are 75 m and 150 m , that is, $(2 \times 75) \mathrm{m}$, and the length of the longer side is 150 m .

Q9.

Answer:
Length of the side $\mathrm{AB}=(130-(54+19+42)) \mathrm{m}$
$=15 \mathrm{~m}$
Area of the trapezium - shaped field $=\left\{\frac{1}{2} \times(\mathrm{AD}+\mathrm{BC}) \times \mathrm{AB}\right\}$

$$
\begin{aligned}
& =\left\{\frac{1}{2} \times(42+54) \times 15\right\} \mathrm{m}^{2} \\
& =\left(\frac{1}{2} \times 96 \times 15\right) \mathrm{m}^{2} \\
& =(48 \times 15) \mathrm{m}^{2} \\
& =720 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, the area of the field is $720 \mathrm{~m}^{2}$.

Q10.

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Answer:
$\angle \mathrm{ABC}=90^{\circ}$
From the right $\triangle \mathrm{ABC}$, we have:
$\mathrm{AB}^{2}=\left(\mathrm{AC}^{2}-\mathrm{BC}^{2}\right)$
$\Rightarrow \mathrm{AB}^{2}=\left\{\left(41^{2}\right)-\left(40^{2}\right)\right\}$
$\Rightarrow \mathrm{AB}^{2}=(1681-1600)$
$\Rightarrow \mathrm{AB}^{2}=81$
$\Rightarrow \mathrm{AB}=\sqrt{81}$
$\Rightarrow \mathrm{AB}=9 \mathrm{~cm}$
\therefore Length $\mathrm{AB}=9 \mathrm{~cm}$
Now,
Area of the trapezium $=\left\{\frac{1}{2} \times(\mathrm{AD}+\mathrm{BC}) \times \mathrm{AB}\right\}$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times(16+40) \times 9\right) \mathrm{cm}^{2} \\
& =\left(\frac{1}{2} \times 56 \times 9\right) \mathrm{cm}^{2} \\
& =(28 \times 9) \mathrm{cm}^{2} \\
& =252 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the trapezium is $252 \mathrm{~cm}^{2}$.

Q11.
Answer :

Let $A B C D$ be the given trapezium in which $A B \| D C, A B=20 \mathrm{~cm}, D C=10 \mathrm{~cm}$ and $\mathrm{AD}=\mathrm{BC}=13 \mathrm{~cm}$.
Draw $C L \perp A B$ and $C M \| D A$ meeting $A B$ at L and M, respectively.
Clearly, AMCD is a parallelogram.
Now,
$\mathrm{AM}=\mathrm{DC}=10 \mathrm{~cm}$
$\mathrm{MB}=(\mathrm{AB}-\mathrm{AM})$
$=(20-10) \mathrm{cm}$
$=10 \mathrm{~cm}$
Also,
$\mathrm{CM}=\mathrm{DA}=13 \mathrm{~cm}$
Therefore, $\triangle \mathrm{CMB}$ is an isosceles triangle and CL $\perp \mathrm{MB}$.
L is the midpoint of B.

Downloaded from www.studiestoday.com
RS Aggarwal Solutions Class 8 Mathematics

$$
\begin{aligned}
\Rightarrow \mathrm{ML} & =\mathrm{LB}=\left(\frac{1}{2} \times \mathrm{MB}\right) \\
& =\left(\frac{1}{2} \times 10\right) \mathrm{cm} \\
& =5 \mathrm{~cm}
\end{aligned}
$$

From right Δ CLM, we have :

$$
\begin{aligned}
& \mathrm{CL}^{2}=\left(\mathrm{CM}^{2}-\mathrm{ML}^{2}\right) \mathrm{cm}^{2} \\
& \Rightarrow \mathrm{CL}^{2}=\left\{(13)^{2}-(5)^{2}\right\} \mathrm{cm}^{2} \\
& \Rightarrow \mathrm{CL}^{2}=(109-25) \mathrm{cm}^{2} \\
& \Rightarrow \mathrm{CL}^{2}=144 \mathrm{~cm}^{2} \\
& \Rightarrow \mathrm{CL}=\sqrt{144} \mathrm{~cm} \\
& \Rightarrow \mathrm{CL}=12 \mathrm{~cm} \\
& \therefore \text { Length of } \mathrm{CL}=12 \mathrm{~cm}
\end{aligned}
$$

Area of the trapezium $=\left\{\frac{1}{2} \times(\mathrm{AB}+\mathrm{DC}) \times \mathrm{CL}\right\}$

$$
\begin{aligned}
& =\left\{\frac{1}{2} \times(20+10) \times 12\right\} \mathrm{cm}^{2} \\
& =\left(\frac{1}{2} \times 30 \times 12\right) \mathrm{cm}^{2} \\
& =(15 \times 12) \mathrm{cm}^{2} \\
& =180 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the trapezium is $180 \mathrm{~cm}^{2}$.
Q12
Answer:

Let ABCD be the trapezium in which $\mathrm{AB} \| \mathrm{DC}, \mathrm{AB}=25 \mathrm{~cm}, \mathrm{CD}=11 \mathrm{~cm}, \mathrm{AD}$ $=13 \mathrm{~cm}$ and $\mathrm{BC}=15 \mathrm{~cm}$.
Draw $\mathrm{CL} \perp \mathrm{AB}$ and $\mathrm{CM} \| \mathrm{DA}$ meeting AB at L and M , respectively.
Clearly, AMCD is a parallelogram.
Now,
$\mathrm{MC}=\mathrm{AD}=13 \mathrm{~cm}$
$\mathrm{AM}=\mathrm{DC}=11 \mathrm{~cm}$
$\Rightarrow \mathrm{MB}=(\mathrm{AB}-\mathrm{AM})$

$$
=(25-11) \mathrm{cm}
$$

$$
=14 \mathrm{~cm}
$$

Thus, in \triangle CMB, we have :
$\mathrm{CM}=13 \mathrm{~cm}$
$\mathrm{MB}=14 \mathrm{~cm}$

$$
\mathrm{BC}=15 \mathrm{~cm}
$$

$\therefore \mathrm{s}=\frac{1}{2}(13+14+15) \mathrm{cm}$
$=\frac{1}{2} 42 \mathrm{~cm}$
$=21 \mathrm{~cm}$
$(\mathrm{s}-\mathrm{a})=(21-13) \mathrm{cm}$

$$
=8 \mathrm{~cm}
$$

$(\mathrm{s}-\mathrm{b})=(21-14) \mathrm{cm}$
$=7 \mathrm{~cm}$
$(\mathrm{s}-\mathrm{c})=(21-15) \mathrm{cm}$

$$
=6 \mathrm{~cm}
$$

\therefore Area of $\triangle \mathrm{CMB}=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$

$$
\begin{aligned}
& =\sqrt{21 \times 8 \times 7 \times 6} \mathrm{~cm}^{2} \\
& =84 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \frac{1}{2} \times \mathrm{MB} \times \mathrm{CL}=84 \mathrm{~cm}^{2}$
$\Rightarrow \frac{1}{2} \times 14 \times \mathrm{CL}=84 \mathrm{~cm}^{2}$
$\Rightarrow \mathrm{CL}=\frac{84}{7}$
$\Rightarrow \mathrm{CL}=12 \mathrm{~cm}$

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics
Area of the trapezium $=\left\{\frac{1}{2} \times(\mathrm{AB}+\mathrm{DC}) \times \mathrm{CL}\right\}$

$$
\begin{aligned}
& =\left\{\frac{1}{2} \times(25+11) \times 12\right\} \mathrm{cm}^{2} \\
& =\left(\frac{1}{2} \times 36 \times 12\right) \mathrm{cm}^{2} \\
& =(18 \times 12) \mathrm{cm}^{2} \\
& =216 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the trapezium is $216 \mathrm{~cm}^{2}$.

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Area of Trapezium and Polygon Ex 18B

Area of Trapezium $=\frac{1}{2} h(a+b)$
Area of the trapezium = Area of the rectangle + Area of the triangle

$$
\begin{aligned}
& =b h+\frac{1}{2}(a-b) h \\
& =h\left[b+\frac{1}{2}(a-b)\right] \\
& =h\left[\frac{2 b}{2}+\frac{a-b}{2}\right] \\
& =h\left[\frac{2 b+a-b}{2}\right] \\
& =h\left(\frac{a+b}{2}\right)
\end{aligned}
$$

Q1.
Answer :

$$
=\binom{\text { Half the sum of }}{\text { parallel sides }} \times\binom{\text { Perpendicular distance }}{\text { between the parallel sides }}
$$

Area of quadrilateral $\mathrm{ABCD}=($ Area of $\triangle \mathrm{ADC})+($ Area of $\triangle \mathrm{ACB})$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times \mathrm{AC} \times \mathrm{DM}\right)+\left(\frac{1}{2} \times \mathrm{AC} \times \mathrm{BL}\right) \\
& =\left[\left(\frac{1}{2} \times 24 \times 7\right)+\left(\frac{1}{2} \times 24 \times 8\right)\right] \mathrm{cm}^{2} \\
& =(84+96) \mathrm{cm}^{2} \\
& =180 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the quadrilateral is $180 \mathrm{~cm}^{2}$.
Q2.
Answer :
Area of quadrilateral $\mathrm{ABCD}=($ Area of $\triangle \mathrm{ABD})+($ Area of $\triangle \mathrm{BCD})$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times \mathrm{BD} \times \mathrm{AL}\right)+\left(\frac{1}{2} \times \mathrm{BD} \times \mathrm{CM}\right) \\
& =\left[\left(\frac{1}{2} \times 36 \times 19\right)+\left(\frac{1}{2} \times 36 \times 11\right)\right] \mathrm{m}^{2} \\
& =(342+198) \mathrm{m}^{2} \\
& =540 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, the area of the field is $540 \mathrm{~m}^{2}$.
Q3.
Answer:
Area of pentagon $\mathrm{ABCDE}=($ Area of $\triangle \mathrm{AEN})+($ Area of trapezium EDMN $)$
$+($ Area of $\triangle \mathrm{DMC})+($ Area of $\triangle \mathrm{ACB})$
$=\left(\frac{1}{2} \times \mathrm{AN} \times \mathrm{EN}\right)+\left(\frac{1}{2} \times(\mathrm{EN}+\mathrm{DM}) \times \mathrm{NM}\right)+\left(\frac{1}{2} \times \mathrm{MC} \times \mathrm{DM}\right)+\left(\frac{1}{2} \times \mathrm{AC} \times \mathrm{BL}\right)$
$=\left(\frac{1}{2} \times \mathrm{AN} \times \mathrm{EN}\right)+\left(\frac{1}{2} \times(\mathrm{EN}+\mathrm{DM}) \times(\mathrm{AM}-\mathrm{AN})\right)+\left(\frac{1}{2} \times(\mathrm{AC}-\mathrm{AM}) \times \mathrm{DM}\right)$
$+\left(\frac{1}{2} \times \mathrm{AC} \times \mathrm{BL}\right)$
$=\left[\left(\frac{1}{2} \times 6 \times 9\right)+\left(\frac{1}{2} \times(9+12) \times(14-6)\right)+\left(\frac{1}{2} \times(18-14) \times 12\right)+\left(\frac{1}{2} \times 18 \times 4\right)\right]$
cm^{2}
$=(27+84+24+36) \mathrm{cm}^{2}$
$=171 \mathrm{~cm}^{2}$
Hannen the name of the miven nomtamen io $171 \mathrm{~cm}^{2}$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics

Answer:

Area of hexagon $\mathrm{ABCDEF}=($ Area of $\triangle \mathrm{AFP})+($ Area of trapezium FENP $)$
$+($ Area of $\triangle \mathrm{ALB})$
$=\left(\frac{1}{2} \times \mathrm{AP} \times \mathrm{FP}\right)+\left(\frac{1}{2} \times(\mathrm{FP}+\mathrm{EN}) \times \mathrm{PN}\right)+\left(\frac{1}{2} \times \mathrm{ND} \times \mathrm{EN}\right)+\left(\frac{1}{2} \times \mathrm{MD} \times \mathrm{CM}\right)$
$+\left(\frac{1}{2} \times(\mathrm{CM}+\mathrm{BL}) \times \mathrm{LM}\right)+\left(\frac{1}{2} \times \mathrm{AL} \times \mathrm{BL}\right)$
$=\left(\frac{1}{2} \times \mathrm{AP} \times \mathrm{FP}\right)+\left(\frac{1}{2} \times(\mathrm{FP}+\mathrm{EN}) \times(\mathrm{PL}+\mathrm{LN})\right)+\left(\frac{1}{2} \times(\mathrm{NM}+\mathrm{MD}) \times \mathrm{CM}\right)$
$+\left(\frac{1}{2} \times \mathrm{MD} \times \mathrm{CM}\right)+\left(\frac{1}{2} \times(\mathrm{CM}+\mathrm{BL}) \times(\mathrm{LN}+\mathrm{NM})\right)+\left(\frac{1}{2} \times(\mathrm{AP}+\mathrm{PL}) \times \mathrm{BL}\right)$
$\left[\left(\frac{1}{2} \times 6 \times 8\right)+\left(\frac{1}{2} \times(8+12) \times(2+8)\right)+\left(\frac{1}{2} \times(2+3) \times 12\right)+\left(\frac{1}{2} \times 3 \times 6\right)\right.$
$\left.+\left(\frac{1}{2} \times(6+8) \times(8+2)\right)+\left(\frac{1}{2} \times(6+2) \times 8\right)\right] \mathrm{cm}^{2}$
$=(24+100+30+9+70+32) \mathrm{cm}^{2}$
$=265 \mathrm{~cm}^{2}$
Hence, the area of the hexagon is $265 \mathrm{~cm}^{2}$.
Q5.
Answer:
Area of pentagon $\mathrm{ABCDE}=($ Area of $\triangle \mathrm{ABC})+($ Area of $\triangle \mathrm{ACD})$
$+($ Area of $\triangle \mathrm{ADE})$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times \mathrm{AC} \times \mathrm{BL}\right)+\left(\frac{1}{2} \times \mathrm{AD} \times \mathrm{CM}\right)+\left(\frac{1}{2} \times \mathrm{AD} \times \mathrm{EM}\right) \\
& =\left[\left(\frac{1}{2} \times 10 \times 3\right)+\left(\frac{1}{2} \times 12 \times 7\right)+\left(\frac{1}{2} \times 12 \times 5\right)\right] \mathrm{cm}^{2} \\
& =(15+42+30) \mathrm{cm}^{2} \\
& =87 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the pentagon is $87 \mathrm{~cm}^{2}$.

Q6.

Answer :

Area enclosed by the given figure $=($ Area of trapezium FEDC $)$

+ (Area of square ABCF)

$$
\begin{aligned}
& =\left[\left\{\frac{1}{2} \times(6+20) \times 8\right\}+(20 \times 20)\right] \mathrm{cm}^{2} \\
& =(104+400) \mathrm{cm}^{2} \\
& =504 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area enclosed by the figure is $504 \mathrm{~cm}^{2}$.
Q7.
Answer:
We will find the length of AC.
From the right triangles ABC and HGF, we have :

$$
\begin{aligned}
\mathrm{AC}^{2}= & \mathrm{HF}^{2}=\left\{(5)^{2}-(4)^{2}\right\} \mathrm{cm} \\
& =(25-16) \mathrm{cm} \\
& =9 \mathrm{~cm}
\end{aligned}
$$

$\mathrm{AC}=\mathrm{HF}=\sqrt{9} \mathrm{~cm}$

$$
=3 \mathrm{~cm}
$$

Area of the given figure $\mathrm{ABCDEFGH}=($ Area of rectangle ADEH)
$+($ Area of $\Delta \mathrm{ABC})+($ Area of $\Delta \mathrm{HGF})$

$$
\begin{aligned}
& =(\text { Area of rectangle ADEH })+2(\text { Area of } \triangle \mathrm{ABC}) \\
& =(\mathrm{AD} \times \mathrm{DE})+2(\text { Area of } \triangle \mathrm{ABC}) \\
& =\{(\mathrm{AC}+\mathrm{CD}) \times \mathrm{DE}\}+2\left(\frac{1}{2} \times \mathrm{BC} \times \mathrm{AC}\right) \\
& =\{(3+4) \times 8\}+2\left(\frac{1}{2} \times 4 \times 3\right) \mathrm{cm}^{2} \\
& =(56+12) \mathrm{cm} \\
& =68 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the given figure is $68 \mathrm{~cm}^{2}$
Q8.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics
Answer :
Let $\mathrm{AL}=\mathrm{DM}=\mathrm{x} \mathrm{cm}$
$\mathrm{LM}=\mathrm{BC}=13 \mathrm{~cm}$
$\therefore x+13+x=23$
$\Rightarrow 2 x+13=23$
$\Rightarrow 2 x=(23-13)$
$\Rightarrow 2 x=10$
$\Rightarrow x=5$
$\therefore \mathrm{AL}=5 \mathrm{~cm}$
From the right $\triangle \mathrm{AFL}$, we have : $F L^{2}=A F^{2}-A L^{2}$
$\Rightarrow F L^{2}=\left\{\left(13^{2}\right)-(5)^{2}\right\}$
$\Rightarrow F L^{2}=(169-25)$
$\Rightarrow F L^{2}=144$
$\Rightarrow F L=\sqrt{144}$
$\Rightarrow F L=12 \mathrm{~cm}$
$\therefore \mathrm{FL}=\mathrm{BL}=12 \mathrm{~cm}$
Area of a regular hexagon $=(A$ rea of the trapezium ADEF $)$
Area of a regular hexagon $=($ Area of the trapezium ADEF $)$
$+($ Area of the trapezium ABCD$)$

$$
\begin{aligned}
& =2(\text { Area of trapezium ADEF }) \\
& =2\left\{\frac{1}{2} \times(A D+E F) \times F L\right\} \\
& =2\left\{\frac{1}{2} \times(23+13) \times 12\right\} \mathrm{cm}^{2} \\
& =2\left(\frac{1}{2} \times 36 \times 12\right) \mathrm{cm}^{2} \\
& =432 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the given regular hexagon is $432 \mathrm{~cm}^{2}$.

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics Area of Trapezium and Polygon Ex 18C

Q1.
Answer:
(b) $144 \mathrm{~cm}^{2}$

Area of the trapezium $=\left\{\frac{1}{2} \times(14+18) \times 9\right\} \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 32 \times 9\right) \mathrm{cm}^{2} \\
& =144 \mathrm{~cm}^{2}
\end{aligned}
$$

Q2.
Answer :
(c) 8 cm

Let the distance between the parallel sides be x cm .
Then, area of the trapezium $=\left\{\frac{1}{2} \times(19+13) \times \mathrm{x}\right\} \mathrm{cm}^{2}$

$$
=\left(\frac{1}{2} \times 32 \times x\right) \mathrm{cm}^{2}
$$

$=16 x \mathrm{~cm}^{2}$
But it is given that the area of the trapezium is $128 \mathrm{~cm}^{2}$.
$\therefore 16 x=128$
$\Rightarrow x=\frac{128}{16}$
$\Rightarrow x=8 \mathrm{~cm}$
Q3.

Downloaded from www.studiestoday.com RS Aggarwal Solutions Class 8 Mathematics

Answer:

(a) 45 cm

Let the length of the parallel sides be 3 x cm and 4 x cm , respectively.
Then, area of the trapezium $=\left\{\frac{1}{2} \times(3 x+4 x) \times 12\right\} \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 7 x \times 12\right) \mathrm{cm}^{2} \\
& =42 x \mathrm{~cm}^{2}
\end{aligned}
$$

But it is given that the area of the trapezium is $630 \mathrm{~cm}^{2}$.
$\therefore 42 x=630$
$\Rightarrow x=\frac{630}{42}$
$\Rightarrow x=15 \mathrm{~cm}$
L ength of the parallel sides $=(3 \times 15) \mathrm{cm}=45 \mathrm{~cm}$

$$
(4 \times 15) \mathrm{cm}=60 \mathrm{~cm}
$$

Hence, the shorter of the parallel sides is 45 cm .

Q4.
Answer :
(b) 23 cm

Let the length of the parallel sides be $x \mathrm{~cm}$ and $(x+6) \mathrm{cm}$, respectively.
Then, area of the trapezium $=\left\{\frac{1}{2} \times(x+x+6) \times 9\right\} \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\left\{\frac{1}{2} \times(2 x+6) \times 9\right\} \mathrm{cm}^{2} \\
& =4.5(2 x+6) \mathrm{cm}^{2} \\
& =(9 x+27) \mathrm{cm}^{2}
\end{aligned}
$$

But it is given that the area of the trapezium is $180 \mathrm{~cm}^{2}$.
$\therefore 9 x+27=180$
$\Rightarrow 9 x=(180-27)$
$\Rightarrow 9 x=153$
$\Rightarrow x=\frac{153}{9}$
$\Rightarrow x=17$
Therefore, the length of the parallel sides are 17 cm and $(17+6) \mathrm{cm}$, which is equal to 23 cm .
Hence, the length of the longer parallel side is 23 cm .
Q5.
Answer:
(C) $80 \mathrm{~cm}^{2}$

From the given trapezium, we find :
$D C=A L=7 \mathrm{~cm} \quad[$ since $D A \perp A B$ and $C L \perp A B]$
From the right \triangle CBL, we have :

$$
\begin{aligned}
& C L^{2}=C B^{2}-L B^{2} \\
\Rightarrow & C L^{2}=(10)^{2}-(6)^{2} \\
\Rightarrow & C L^{2}=100-36 \\
\Rightarrow & C L^{2}=64 \\
\Rightarrow & C L=\sqrt{64} \\
\Rightarrow & C L=8 \mathrm{~cm}
\end{aligned}
$$

Area of the trapezium $=\left\{\frac{1}{2} \times(7+13) \times 8\right\} \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 20 \times 8\right) \mathrm{cm}^{2} \\
& =80 \mathrm{~cm}^{2}
\end{aligned}
$$

