Downloaded from www.studiestoday.com RS Aggarwal Class 7 Mathematics Solutions Simple Interest Exercise 12A

Simple Interest Formula

$$
I=P \times R \times T
$$

Where:
I = the Interest Money created in dollars
$\mathbf{P}=$ the "Principal" starting amount of money
$\mathbf{R}=$ the Interest Rate per year (in decimal form)
$\mathbf{T}=$ the Time the money is Invested, or Borrowed, in Years
$S I=\frac{P \times R \times T}{100} \quad A=P+S I$
$\mathrm{P}=\frac{\mathrm{SI} \times 100}{\mathrm{R} \times \mathrm{T}} \quad \mathrm{R}=\frac{\mathrm{SI} \times 100}{\mathrm{P} \times \mathrm{T}} \quad \mathrm{T}=\frac{\mathrm{SI} \times 100}{\mathrm{P} \times \mathrm{R}}$
where,
SI = Simple Interest $\quad \mathrm{P}=$ Principal $\quad \mathrm{R}=$ Rate $\quad \mathrm{T}=$ Time $\quad \mathrm{A}=$ Amount

Downloaded from www.studiestoday.com RS Aggarwal Class 7 Mathematics Solutions Q1
Answer:
$\mathrm{P}=$ Rs. $6400, \mathrm{R}=6 \%, \mathrm{~T}=2$ years
S.I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{6400 \times 6 \times 2}{100}$
$=$ Rs. 768
Amount $=\mathrm{P}+$ S.I.
$=6400+768$
$=$ Rs. 7168

Q2

Answer:
$\mathrm{P}=\mathrm{Rs} .2650, \mathrm{R}=8 \%, \mathrm{~T}=2 \frac{1}{2}$ years $=\frac{5}{2}$ years
S.I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{2650 \times 8 \times 5}{100 \times 2}$
$=$ Rs. 530
Amount $=$ P + S.I.
$=2650+530$
$=$ Rs. 3180

Q3
Answer:
$\mathrm{P}=\mathrm{Rs} .1500, \mathrm{R}=12 \%, \mathrm{~T}=3+\frac{3}{12}=\frac{13}{4}$ years
$\begin{aligned} \text { S.I. } & =\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{1500 \times 12 \times 13}{100 \times 4} \\ & =\text { Rs. } 585\end{aligned}$
$=$ Rs. 585
Amount $=$ P + S.I.

$$
=1500+585
$$

$=$ Rs .2085
Q4
Answer:
$\mathrm{P}=$ Rs. 9600
$\mathrm{R}=7 \frac{1}{2} \%$
$\mathrm{T}=5$ months $=\frac{5}{12}$ years
S.I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}$
$=\frac{9600 \times 15 \times 5}{100 \times 2 \times 12}$
$=$ Rs. 300
Amount $=$ P + S.I.
$=9600+300$
=Rs. 9900

Downloaded from www.studiestoday.com RS Aggarwal Class 7 Mathematics Solutions Answer :
$\mathrm{P}=$ Rs. $5000, \mathrm{R}=9 \%, \mathrm{~T}=146$ days $=\frac{146}{365}$ years
S .I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{5000 \times 9 \times 146}{100 \times 365}$
$=$ Rs. 180
Amount $=$ P + S .I.
$=5000+180$
$=$ Rs. 5180
Q6
Answer:
$\mathrm{P}=$ Rs. 6400 , S.I. $=$ Rs. $1152, \mathrm{R}=6 \%$
$T=\frac{S . \mathrm{L} \times 100}{\mathrm{P} \times \mathrm{R}}=\frac{1152 \times \pm 00}{640-4 \times 6}$
$=\frac{1152}{384}$
$=3$ years

Q7

Answer :
$\mathrm{P}=$ Rs. 9540 , S.I. $=$ Rs. $1908, \mathrm{R}=8 \%$
$\mathrm{T}=\frac{\mathrm{S} . \mathrm{L} \times 100}{\mathrm{P} \times \mathrm{R}}=\frac{1908 \times 100}{9540 \times 8}$
$=\frac{10}{4}$
$=2 \frac{1}{2}$ years
Q8
Answer:
$\mathrm{P}=$ Rs. $5000, \mathrm{~A}=$ Rs. $6450, \mathrm{R}=12 \%$
S.I. $=\mathrm{A}-\mathrm{P}$
$=6450-5000$
$=$ Rs. 1450
$\mathrm{T}=\frac{\mathrm{S} . \mathrm{I} \times 100}{\mathrm{P} \times \mathrm{R}}=\frac{1450 \times 100}{5000 \times 12}$
$=\frac{29}{12}$
$=2 \frac{5}{12}$
$=2$ years 5 months

Q9
Answer :
$\mathrm{P}=$ Rs. 8250 , S.I. $=$ Rs. $1100, \mathrm{~T}=2$ years
$\mathrm{R}=\frac{\mathrm{S} . \mathrm{L} \times 100}{\mathrm{P} \times \mathrm{T}}=\frac{1100 \times 100}{8250 \times 2}$
$=\frac{1100}{165}=6.67 \%$

Q10

Answer :
$\mathrm{P}=$ Rs. 5200 , S.I. $=$ Rs. $975 \quad\left[\mathrm{~T}=2 \frac{1}{2}\right.$ years $=\frac{5}{2}$ years $]$

$$
\mathrm{R}=\frac{\mathrm{S} . \mathrm{L} \times 100}{\mathrm{P} \times \mathrm{T}}=\frac{975 \times 100 \times 2}{5200 \times 5}
$$

$$
=\frac{195}{26}
$$

$=7.5 \%$

Q11

Downloaded from www.studiestoday.com RS Aggarwal Class 7 Mathematics Solutions

Answer :

$\mathrm{P}=$ Rs. $3560, \mathrm{~A}=$ Rs. $4521.20, \mathrm{~T}=3$ years
S.I. $=\mathrm{A}-\mathrm{P}=4521.20-3560$
$=$ Rs. 961.20
$\mathrm{R}=\frac{\mathrm{S} . \mathrm{I} \times 100}{\mathrm{P} \times \mathrm{T}}=\frac{961.20 \times 100}{3560 \times 3}$
$=\frac{96120 \times 100}{100 \times 3560 \times 3}$
$=9 \%$

Q12

Answer:
$\mathrm{P}=$ Rs $6000, \mathrm{R}=12 \%, \mathrm{~T}=3$ years 8 months $=3 \frac{8}{12}=\frac{44}{12}$ years
S.I. $=\frac{P \times R \times T}{100}=\frac{6000 \times 12 \times 44}{100 \times 12}=$ Rs 2640
$\mathrm{A}=\mathrm{P}+\mathrm{S} . \mathrm{I}$.
$=6000+2640$
$=$ Rs 8640

Q13

Answer:
$\mathrm{P}=\mathrm{Rs} .12600 \quad \mathrm{R}=15 \% \quad \mathrm{~T}=3$ years
S.I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{12600 \times 15 \times 3}{100}$
=Rs. 5670
$\mathrm{A}=$ Rs. $12600+$ Rs. $5670=$ Rs. 18270
Hari had to pay Rs. 18270 to the money lender, but he paid Rs. 7070 and a goat.
\therefore Cost of the goat $=$ Rs. $18270-$ Rs. 7070

$$
=\text { Rs. } 11200
$$

Q14

Answer :
Let the sum be Rs. P.
S.I. $=$ Rs. $829.50, T=3$ years, $R=10 \%$

Now, $\mathrm{P}=\frac{\mathrm{S} . \mathrm{I} \times 100}{\mathrm{R} \times \mathrm{T}}$
$=\frac{829.50 \times 100}{10 \times 3}$
$=\frac{8295}{3}$
$=2765$

Hence, the sum is Rs. 2765.

Q15

Answer:

Let the required sum be Rs. x.
$\mathrm{A}=\mathrm{Rs}$. $3920, \mathrm{R}=7 \frac{1}{2} \%, \mathrm{~T}=3$ years
Now,
Now, S.I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{x \times 15 \times 3}{2 \times 100}=\frac{9 x}{40}$
$\mathrm{A}=\mathrm{P}+\mathrm{S} . \mathrm{I}$.
$=x+\frac{9 x}{40}=\frac{40 x+9 x}{40}=\frac{49 x}{40}$
But the amount is Rs. 3920.
$\Rightarrow>\frac{49 x}{40}=3920$
$\Rightarrow>x=\frac{3920 \times 40}{49}=\frac{156800}{49}=3200$
Hence, the required sum is Rs. 3200.

Downloaded from www.studiestoday.com RS Aggarwal Class 7 Mathematics Solutions

Q16

Answer:

Given: $\mathrm{R}=11 \%, \mathrm{~T}=2$ years 3 months $=2+\frac{3}{12}=\frac{27}{12}$ years
Let the required sum be Rs. \boldsymbol{x}.

$$
\begin{aligned}
& \text { S.I. }=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{x \times 11 \times-27^{9}}{100 \times+2_{4}}=\frac{99 x}{400} \\
& \mathrm{~A}=\mathrm{P}+\text { S.I. } \\
& =x+\frac{99 x}{400}=\frac{400 x+99 x}{400}=\frac{499 x}{400} \\
& \text { But the amount is Rs. } 4491 . \\
& =>\frac{499 x}{400}=4491 \\
& =>x=\frac{4491 \times 400}{499}=\frac{1796400}{499}=3600
\end{aligned}
$$

Hence, the required sum is Rs. 3600 .
\therefore S.I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{3600 \times 11 \times 3}{100}=$ Rs. 1188
\therefore Amount $=$ P + S.I $=3600+1188$

$$
=\text { Rs. } 4788
$$

Q17
Answer :
Let the required sum be Rs. x.
S.I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{x \times 8 \times 2}{100}=\frac{16 x}{100}$
$\mathrm{A}=\mathrm{P}+$ S.I.

$$
=x+\frac{16 x}{100}=\frac{100 x+16 x}{100}=\frac{116 x}{100}
$$

But the amount is Rs. 12122.

$$
\begin{aligned}
& =>\frac{116 x}{100}=12122 \\
& =>x=\frac{12122 \times 100}{116}=10450
\end{aligned}
$$

Now, S.I. $=\frac{P \times R \times T}{100}=\frac{10450 \times-9^{3} \times-2^{8}}{100 \times+2_{4_{1}}}=$ Rs. 2508
$\therefore \mathrm{A}=\mathrm{P}+\mathrm{S} . \mathrm{I}$.
$=$ Rs. $10450+$ Rs. 2508
$=$ Rs. 12958
Q18

$$
\begin{aligned}
& \text { Answer: } \\
& \begin{array}{l}
\mathrm{P}=\text { Rs. } 3600 \quad \mathrm{~A}=\text { Rs. } 4734 \quad \mathrm{~T}=3 \frac{1}{2}=\frac{7}{2} \text { years } \\
\text { S.I. }=\mathrm{A}-\mathrm{P} \\
\quad=4734-3600 \\
\quad=\text { Rs. } 1134
\end{array} \\
& \begin{aligned}
\mathrm{R}=\frac{\mathrm{S} . \mathrm{L} \times 100}{\mathrm{P} \times \mathrm{T}}
\end{aligned} \\
& =\frac{1134 \times 100 \times 2}{3600 \times 7} \\
& =9 \%
\end{aligned}
$$

Downloaded from www.studiestoday.com RS Aggarwal Class 7 Mathematics Solutions Answer:

$$
\begin{aligned}
& \mathrm{P}=\text { Rs. } 640, \mathrm{~A}=\text { Rs. } 768, \mathrm{~T}=2 \text { years } 6 \text { months }=\frac{5}{2} \text { years } \\
& \text { S.I. }=\mathrm{A}-\mathrm{P} \\
& =768-640 \\
& =\text { Rs. } 128 \\
& \mathrm{R}=\frac{\mathrm{S} . \mathrm{L} \times 100}{\mathrm{P} \times \mathrm{T}}=\frac{128 \times 100 \times 2}{640 \times 5}=8 \% \\
& \mathrm{P}=\text { Rs. } 850, \mathrm{R}=8 \%, \mathrm{~T}=3 \text { years } \\
& \therefore \text { S.I. }=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{850 \times 8 \times 3}{100}=\frac{2040}{10}=\text { Rs. } 204 \\
& \therefore \mathrm{~A}=\mathrm{P}+\text { S.I. } \\
& =850+204 \\
& =\text { Rs. } 1054
\end{aligned}
$$

Q20
Answer:
$\mathrm{P}=$ Rs. $5600, \mathrm{~A}=$ Rs. $6720, \mathrm{R}=8 \%$
S.I. $=\mathrm{A}-\mathrm{P}$

$$
=6720-5600
$$

$=$ Rs. 1120
$\mathrm{T}=\frac{\mathrm{S} . \mathrm{L} \times 100}{\mathrm{P} \times \mathrm{R}}$
$=\frac{1120 \times 100}{5600 \times 8}$
$=\frac{1120}{448}$
$=2 \frac{1}{2}$ years

Q21

Answer :

Let the sum be Rs. x.
Amount $=\frac{8 x}{5}$
\therefore S.I. $=\mathrm{A}-\mathrm{P}=\frac{8 x}{5}-x$

$$
=\frac{3 x}{5}
$$

Let the rate be R\%.
S.I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}$
$=>\frac{3 x}{5}=\frac{x \times \mathrm{R} \times \mathrm{F}^{1}}{10 \theta_{20}}$
$=>3 x \times 20=\mathrm{R} \times x \times 5$
$=>\mathrm{R}=\frac{3 \times \mathscr{x} \times-2 \theta^{4}}{\not \boldsymbol{\prime} \times 5}=12$
Hence, the rate of interest is 12%.

Q22

Answer:
Amount in 3 years $=($ Principal + S.I. for 3 years $)=$ Rs. 837
Amount in 2 years $=($ Principal + S.I. for 2 years $)=$ Rs. 783
On subtracting :
S.I. for 1 year $=(837-783)=$ Rs. 54
S.I. for 2 years $=\left(\frac{54}{1} \times 2\right)=$ Rs. 108
\therefore Sum $=$ Amount for 2 years - S.I. for 2 years
$=783-108$
$=$ Rs. 675
$\mathrm{P}=$ Rs. 675 , S.I. $=$ Rs. 108 and $\mathrm{T}=2$ years
$\mathrm{R}=\frac{\mathrm{S} . \mathrm{L} \times 100}{\mathrm{P} \times \mathrm{T}}$
$=\frac{108 \times+00^{* \pi^{2}}}{6-75_{27} \times \mathscr{y}_{1}}$
$=8 \%$

Downloaded from www.studiestoday.com RS Aggarwal Class 7 Mathematics Solutions

Answer:

Amount in 5 years $=($ Principal + S.I. for 5 years $)=$ Rs. 5475
Amount in 3 years $=($ Principal + S.I. for 3 years $)=$ Rs. 4745
On subtracting :
S.I. for 2 years $=(5475-4745)=$ Rs. 730
S.I. for 3 years $=\left(\frac{730}{2} \times 3\right)=$ Rs. 1095
\therefore Sum $=$ Amount for 3 years - S.I. for 3 years
$=4745-1095$
=Rs. 3650
$\mathrm{P}=$ Rs. 3650 , S.I. $=$ Rs. $1095, \mathrm{~T}=3$ years
$\mathrm{R}=\frac{\mathrm{S} . \mathrm{L} \times 100}{\mathrm{P} \times \mathrm{T}}$
$=\frac{1095 \times 100}{3650 \times 3}$
$=10 \%$

Q24

Answer:

Let the first part be Rs. x.
Second part $=(3000-\boldsymbol{x})$
\therefore S.I. on x at 8% per annum for 4 years $=\frac{x \times 8 \times \Psi^{-2^{1}}}{ \pm \theta \theta_{25}}=\frac{8 x}{25}$
S.I. on $(3000-x)$ at 9% per annum $=\frac{(3000-x) \times 9 \times 2^{1}}{4 \theta_{50}}$
$=\frac{27000-9 x}{50}$
$\therefore \frac{8 x}{25}=\frac{27000-9 x}{50}$
$=>8 x=\frac{(27000-9 x) \times-2-5^{1}}{50_{2}}$
$\Rightarrow>16 x=27000-9 x$
$=>16 x+9 x=27000$
$\Rightarrow x=\frac{2700 \theta^{1050}}{25_{1}}=1080$
\therefore First part $=$ Rs. 1080
Second part $=(3000-1080)=$ Rs. 1920

Q25

Answer:
Let the first part be Rs. x.
Second part $=(3600-x)$
\therefore S.I. on x at 9% per annum for 1 years $=\frac{x \times 9 \times 1}{100}=\frac{9 x}{100}$
And, S.I. on $(3600-x)$ at 10% per annum $=\frac{(3600-x) \times 1 \times+母^{1}}{100}=\frac{3600-x}{10}$
$\therefore \frac{9 x}{100}+\frac{3600-x}{10}=333$
$\Rightarrow>\frac{9 x+36000-10 x}{100}=333$
$=>-x+36000=33300$
$=>-x=33300-36000$
$=>-x=-2700$
$\Rightarrow>x=2700$
First part $=$ Rs. 2700
Second part $=(3600-2700)=$ Rs. 900

Answer:
(a) Rs. 125

Principal $=$ Rs. 6250
Simple Interest $=4 \%$ per annum
Time $=6$ months $=\frac{1}{2}$ years
Simple Interest $=\frac{\mathbf{P} \times \mathbf{R} \times T}{100}$
Simple Interest $=\frac{6250 \times 4 \times 1}{100 \times 2}$
Simple Interest $=\frac{250}{2}=$ Rs. 125

Q2

Answer:
(b) Rs 3500

Amount =Rs. 3605
Time $=\frac{219}{365}$ days $=\frac{219}{365}$ days
Rate $=5 \%$ per annum
Amount $=$ Sum $+\frac{\text { Sum } \times \text { RatexTime }}{100}$
Amount $=$ Sum $\left(1+\frac{\text { Rate } \times \text { Time }}{100}\right)$
Sum $=\frac{3605}{1+\frac{5}{100} \times \frac{29}{365}}=\frac{3605 \times 36500}{37595}$
Sum=Rs. 3500

Downloaded from www.studiestoday.com RS Aggarwal Class 7 Mathematics Solutions Answer:
(c) 8%

Let the sum be Rs. x.
Rate of interest $=r \%$
Time $=2 \frac{1}{2}$ years $=\frac{5}{2}$ years
Amount $=\frac{6}{5} \times$ Sum
Rate=?
Amount $=\frac{6}{5} \times$ Sum
Principal + S.I. $=$ Amount
Principal $+\frac{\text { Principal } \times \text { Rate } \times \text { Tïme }}{100}=\frac{6}{5} \times$ Principal
$=>x+\frac{x r \times 5}{100 \times 2}=\frac{6}{5} x$
$=>x\left(1+\frac{5 r}{100 \times 2}\right)=\frac{6}{5} x$
$=>1+\frac{r}{40}=\frac{6}{5}$
$\Rightarrow r=40 \times \frac{1}{5}$
$\Rightarrow r=8$
So, the rate of interest is 8%.
Q4
Answer:
(b) 9 months
4. (b)

Let the time be t years.
Principal $=$ Rs. 8000
Amount = Rs. 8360
Rate $=6 \%$ per annum
Amount $=$ Principal $\left(1+\frac{\text { Rate } \times \text { Time }}{100}\right)$
$\frac{8360}{8000}=1+\frac{6 \times t}{100}$
$\Rightarrow>\frac{8360}{8000}-1=\frac{6 t}{100}$
$\Rightarrow>t=\left(\frac{8360-8000}{8000}\right) \times \frac{100}{6}$
$=\frac{360}{8000} \times \frac{100}{6}$
$=\frac{6}{8} \times 12$ months
$=9 \mathrm{month} \mathrm{s}$
Q5
Answer:
(b) 10%

Let the sum be Rs. x and the rate be $r \%$.
A/Q:
Amount $=2 x$
$\Rightarrow P+S . I .=2 x$
$\Rightarrow P+\frac{P \times R \times T}{100}=2 x$
$=>x\left(1+\frac{r \times 10}{100}\right)=2 x$
$\Rightarrow>\frac{100+10 r}{100}=2$
$=>10 r=200-100$
$\Rightarrow 10 r=100$
$\Rightarrow r=\frac{100}{10}$
$\Rightarrow r=10$
(c) Rs. $\left(\frac{100}{x}\right)$

Simple Interest=Rs. x
Rate $=\boldsymbol{x} \%$ per annum
Time $=x$ years
Simple Interest $=\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100}$
$\Rightarrow \boldsymbol{X}=\frac{\text { Principal } \times \boldsymbol{x} \times \boldsymbol{x}}{100}$
$=>$ Principal $=$ Rs. $\frac{100}{x}$
Q7
Answer:
(b) 8%

Time $=5$ years
Simple interest $=\frac{2}{5} \mathrm{P}$
$\Rightarrow>\frac{\mathrm{P} \times \text { Rate } \times \text { Time }}{100}=\frac{2}{5} \mathrm{P}$
$\Rightarrow>\frac{\text { Rate } \times 5}{100}=\frac{2}{5}$
\Rightarrow Rate $=\frac{2 \times 100}{5 \times 5}$
\Rightarrow Rate $=8 \%$

Q8

Answer:
(c) 22 years
$R 1=12 \%$
$R_{2}=10 \%$
$P_{1}=R s .8000$
$P_{2}=R s .9100$
Let their amount s be equal in T years.

$$
\begin{aligned}
\text { Amount }_{1} & =S . I_{\cdot 1}+P_{1} \\
& =\frac{P_{1} \times R_{1} \times T}{100}+P_{1} \\
& =\frac{8000 \times 12 \times T}{100}+8000 \\
& =960 T+8000
\end{aligned}
$$

$$
\text { Amount }_{2}=S . I_{\cdot 2}+P_{2}
$$

$$
\begin{aligned}
& =\frac{P_{2} \times R_{2} \times T}{100}+P_{2} \\
& =\frac{9100 \times 10 \times T}{100}+9100 \\
& =910 T+9100
\end{aligned}
$$

Amount $_{1}=$ Amount $_{2}$
$\Rightarrow 960 T+8000=910 T+9100$
$\Rightarrow 960 T-910 T=9100-8000$
$\Rightarrow 50 T=1100$
$\Rightarrow T=22$
Hence, after 22 years their amounts will be equal.

Downloaded from www.studiestoday.com RS Aggarwal Class 7 Mathematics Solutions Answer:
(c) Rs. 768

Let the rate be $R \%$.
S.I. $=\mathrm{A}-\mathrm{P}$
$=720-600$
$=$ Rs. 120
T ime $=4$ years
$R=\frac{100 \times S I}{P \times T}$
$R=\frac{100 \times 120}{600 \times 4}$
$=5$
Rate of interest $=5 \%$
Now, $\mathrm{R}=(5+2) \%=7 \%$
S.I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}$
$=\frac{600 \times 7 \times 4}{100}$
$=$ Rs. 168
Amount $=\mathrm{SI}+\mathrm{P}$
$=600+168$
$=$ Rs. 768

Q10

Answer:
(d) $y^{2}=z x$
$y=$ S.I. on $x=\frac{x \times \mathrm{R} \times \mathrm{T}}{100}$
$z=$ S.I. on $y=\frac{y \times \mathrm{R} \times \mathrm{T}}{100}$
Dividing equation (i) by (ii) :

$$
\begin{aligned}
& \Rightarrow \frac{y}{z}=\left(\frac{x \times R \times T}{100} \times \frac{100}{y \times R \times T}\right) \\
& \Rightarrow \frac{y}{z}=\frac{x}{y} \\
& \Rightarrow y^{2}=x z
\end{aligned}
$$

Q11
Answer :
(a) $1 \frac{1}{4}$ years

Rate $=10 \%$ per annum
Simple Interest $=0.125 \times$ Principal
$=>\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100}=0.125 \times$ Principal
$\Rightarrow>\frac{\text { Time }}{10}=0.125$
$=>$ Time $=1.25=1 \frac{1}{4}$ years

Q12

Answer:
(b) Rs 2400

Rate $=3 \frac{3}{4} \%$ per annum
$=\frac{15}{4} \%$ per annum
Time $=2 \frac{1}{3}$ years
$=\frac{7}{3}$ years
S.I. $=\frac{P \times \frac{15}{4} \times \frac{7}{3}}{100}$
$=>\mathrm{P}=\frac{210 \times 100}{\left(\frac{15}{4} \times \frac{7}{3}\right)}$
$=>P=600 \times 4$
$=>\mathrm{P}=$ Rs 2400

