Exercise - 4A

1.

Sol:

(i) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we get:
$\frac{A D}{D B}=\frac{A E}{E C}$
$\because \mathrm{AD}=3.6 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}, \mathrm{AE}=4.5 \mathrm{~cm}$
$\therefore \mathrm{DB}=10-3.6=6.4 \mathrm{~cm}$
Or, $\frac{3.6}{6.4}=\frac{4.5}{E C}$
Or, $\mathrm{EC}=\frac{6.4 \times 4.5}{3.6}$
Or, $\mathrm{EC}=8 \mathrm{~cm}$
Thus, $\mathrm{AC}=\mathrm{AE}+\mathrm{EC}$

$$
=4.5+8=12.5 \mathrm{~cm}
$$

(ii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' Theorem, we get :
$\frac{A D}{D B}=\frac{A E}{E C}$
Adding 1 to both sides, we get :
$\frac{A D}{D B}+1=\frac{A E}{E C}+1$
$\Rightarrow \frac{A B}{D B}=\frac{A C}{E C}$
$\Rightarrow \frac{13.3}{D B}=\frac{11.9}{5.1}$
$\Rightarrow \mathrm{DB}=\frac{13.3 \times 5.1}{11.9}=5.7 \mathrm{~cm}$
Therefore, $\mathrm{AD}=\mathrm{AB}-\mathrm{DB}=13.5-5.7=7.6 \mathrm{~cm}$
(iii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we get :
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{4}{7}=\frac{A E}{E C}$
Adding 1 to both the sides, we get :
$\frac{11}{7}=\frac{A C}{E C}$
$\Rightarrow \mathrm{EC}=\frac{6.6 \times 7}{11}=4.2 \mathrm{~cm}$
Therefore,
$\mathrm{AE}=\mathrm{AC}-\mathrm{EC}=6.6-4.2=2.4 \mathrm{~cm}$
(iv) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we get:
$\frac{A D}{A B}=\frac{A E}{A C}$
$\Rightarrow \frac{8}{15}=\frac{A E}{A E+E C}$
$\Rightarrow \frac{8}{15}=\frac{A E}{A E+3.5}$
$\Rightarrow 8 \mathrm{AE}+28=15 \mathrm{AE}$
$\Rightarrow 7 \mathrm{AE}=28$
$\Rightarrow \mathrm{AE}=4 \mathrm{~cm}$
2.

Sol:

(i) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we have :
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{x}{x-2}=\frac{x+2}{x-1}$
$\Rightarrow \mathrm{X}(\mathrm{x}-1)=(\mathrm{x}-2)(\mathrm{x}+2)$
$\Rightarrow x^{2}-\mathrm{x}=x^{2}-4$
$\Rightarrow \mathrm{x}=4 \mathrm{~cm}$
(ii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we have :
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{4}{x-4}=\frac{8}{3 x-19}$
$\Rightarrow 4(3 \mathrm{x}-19)=8(\mathrm{x}-4)$
$\Rightarrow 12 \mathrm{x}-76=8 \mathrm{x}-32$
$\Rightarrow 4 \mathrm{x}=44$
$\Rightarrow \mathrm{x}=11 \mathrm{~cm}$
(iii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we have :
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{7 x-4}{3 x+4}=\frac{5 x-2}{3 x}$
$\Rightarrow 3 \mathrm{x}(7 \mathrm{x}-4)=(5 \mathrm{x}-2)(3 \mathrm{x}+4)$
$\Rightarrow 21 x^{2}-12 \mathrm{x}=15 x^{2}+14 \mathrm{x}-8$
$\Rightarrow 6 x^{2}-26 \mathrm{x}+8=0$
$\Rightarrow(x-4)(6 x-2)=0$
$\Rightarrow \mathrm{x}=4, \frac{1}{3}$
$\because \mathrm{x} \neq \frac{1}{3}$ (as if $\mathrm{x}=\frac{1}{3}$ then $A E$ will become negative)
$\therefore \mathrm{x}=4 \mathrm{~cm}$
3.

Sol:

(i) We have:
$\frac{A D}{D E}=\frac{5.7}{9.5}=0.6 \mathrm{~cm}$
$\frac{A E}{E C}=\frac{4.8}{8}=0.6 \mathrm{~cm}$
Hence, $\frac{A D}{D B}=\frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that $\mathrm{DE} \| \mathrm{BC}$.
(ii) We have:
$\mathrm{AB}=11.7 \mathrm{~cm}, \mathrm{DB}=6.5 \mathrm{~cm}$
Therefore,
$\mathrm{AD}=11.7-6.5=5.2 \mathrm{~cm}$
Similarly,
$\mathrm{AC}=11.2 \mathrm{~cm}, \mathrm{AE}=4.2 \mathrm{~cm}$
Therefore,
$\mathrm{EC}=11.2-4.2=7 \mathrm{~cm}$
Now,
$\frac{A D}{D B}=\frac{5.2}{6.5}=\frac{4}{5}$
$\frac{A E}{E C}=\frac{4.2}{7}$
Thus, $\frac{A D}{D B} \neq \frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that DE is not parallel to BC.
(iii) We have:
$\mathrm{AB}=10.8 \mathrm{~cm}, \mathrm{AD}=6.3 \mathrm{~cm}$
Therefore,
$\mathrm{DB}=10.8-6.3=4.5 \mathrm{~cm}$
Similarly,
$\mathrm{AC}=9.6 \mathrm{~cm}, \mathrm{EC}=4 \mathrm{~cm}$
Therefore,
$\mathrm{AE}=9.6-4=5.6 \mathrm{~cm}$
Now,
$\frac{A D}{D B}=\frac{6.3}{4.5}=\frac{7}{5}$
$\frac{A E}{E C}=\frac{5.6}{4}=\frac{7}{5}$
$\Rightarrow \frac{A D}{D B}=\frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that DE || BC.
(iv) We have :
$\mathrm{AD}=7.2 \mathrm{~cm}, \mathrm{AB}=12 \mathrm{~cm}$
Therefore,
$\mathrm{DB}=12-7.2=4.8 \mathrm{~cm}$
Similarly,
$\mathrm{AE}=6.4 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}$
Therefore,
$\mathrm{EC}=10-6.4=3.6 \mathrm{~cm}$
Now,
$\frac{A D}{D B}=\frac{7.2}{4.8}=\frac{3}{2}$
$\frac{A E}{E C}=\frac{6.4}{3.6}=\frac{16}{9}$
This, $\frac{A D}{D B} \neq \frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that DE is not parallel to BC.
4.

Sol:

(i) It is give that AD bisects $\angle \mathrm{A}$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
$\Rightarrow \frac{5.6}{D C}=\frac{6.4}{8}$
$\Rightarrow \mathrm{DC}=\frac{8 \times 5.6}{6.4}=7 \mathrm{~cm}$

Downloaded from www.studiestoday.com

(ii) It is given that AD bisects $\angle A$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
Let BD be xcm .
Therefore, $\mathrm{DC}=(6-\mathrm{x}) \mathrm{cm}$
$\Rightarrow \frac{x}{6-x}=\frac{10}{14}$
$\Rightarrow 14 \mathrm{x}=60-10 \mathrm{x}$
$\Rightarrow 24 \mathrm{x}=60$
$\Rightarrow \mathrm{x}=2.5 \mathrm{~cm}$
Thus, $\mathrm{BD}=2.5 \mathrm{~cm}$
$\mathrm{DC}=6-2.5=3.5 \mathrm{~cm}$
(iii) It is given that AD bisector $\angle A$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
$\mathrm{BD}=3.2 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$
Therefore, $\mathrm{DC}=6-3.2=2.8 \mathrm{~cm}$
$\Rightarrow \frac{3.2}{2.8}=\frac{5.6}{A C}$
$\Rightarrow \mathrm{AC}=\frac{5.6 \times 2.8}{3.2}=4.9 \mathrm{~cm}$
(iv) It is given that AD bisects $\angle A$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
$\Rightarrow \frac{B D}{3}=\frac{5.6}{4}$
$\Rightarrow \mathrm{BD}=\frac{5.6 \times 3}{4}$
$\Rightarrow B D=4.2 \mathrm{~cm}$
Hence, $\mathrm{BC}=3+4.2=7.2 \mathrm{~cm}$
5.

Sol:
(i) Given: ABCD is a parallelogram

To prove:
(i) $\frac{D M}{M N}=\frac{D C}{B N}$
(ii) $\frac{D N}{D M}=\frac{A N}{D C}$

Proof: In Δ DMC and Δ NMB
$\angle \mathrm{DMC}=\angle \mathrm{NMB} \quad$ (Vertically opposite angle)
$\angle \mathrm{DCM}=\angle \mathrm{NBM} \quad$ (Alternate angles)
By AAA- Similarity
$\Delta \mathrm{DMC} \sim \Delta \mathrm{NMB}$
$\therefore \frac{D M}{M N}=\frac{D C}{B N}$
NOW, $\frac{M N}{D M}=\frac{B N}{D C}$
Adding 1 to both sides, we get
$\frac{M N}{D M}+1=\frac{B N}{D C}+1$
$\Rightarrow \frac{M N+D M}{D M}=\frac{B N+D C}{D C}$
$\Longrightarrow \frac{M N+D M}{D M}=\frac{B N+A B}{D C}[\because \mathrm{ABCD}$ is a parallelogram $]$
$\Rightarrow \frac{D N}{D M}=\frac{A N}{D C}$
6.

Sol:

(i)

Let the trapezium be ABCD with E and F as the mid Points of AD and BC , Respectively Produce AD and BC to Meet at P .

In $\triangle \mathrm{PAB}, \mathrm{DC} \| \mathrm{AB}$.
Applying Thales' theorem, we get
$\frac{P D}{D A}=\frac{P C}{C B}$
Now, E and F are the midpoints of AD and BC , respectively.
$\Rightarrow \frac{P D}{2 D E}=\frac{P C}{2 C F}$
$\Rightarrow \frac{P D}{D E}=\frac{P C}{C F}$

Applying the converse of Thales' theorem in $\triangle \mathrm{PEF}$, we get that DC Hence, EF || AB.
Thus. EF is parallel to both AB and DC.
This completes the proof.
7.

Sol:

In trapezium $\mathrm{ABCD}, \mathrm{AB} \| \mathrm{CD}$ and the diagonals AC and BD intersect at O .
Therefore,
$\frac{A O}{O C}=\frac{B O}{O D}$
$\Rightarrow \frac{5 x-7}{2 x+1}=\frac{7 x-5}{7 x+1}$
$\Rightarrow(5 \mathrm{x}-7)(7 \mathrm{x}+1)=(7 \mathrm{x}-5)(2 \mathrm{x}+1)$
$\Rightarrow 35 x^{2}+5 \mathrm{x}-49 \mathrm{x}-7=14 x^{2}-10 \mathrm{x}+7 \mathrm{x}-5$
$\Rightarrow 21 x^{2}-41 \mathrm{x}-2=0$
$\Rightarrow 21 x^{2}-42 \mathrm{x}+\mathrm{x}-2=0$
$\Rightarrow 21 \mathrm{x}(\mathrm{x}-2)+1(\mathrm{x}-2)=0$
$\Rightarrow(\mathrm{x}-2)(21 \mathrm{x}+1)=0$
$\Rightarrow x=2,-\frac{1}{21}$
$\because \mathrm{x} \neq-\frac{1}{21}$
$\therefore \mathrm{x}=2$
8.

Sol:

In $\triangle \mathrm{ABC}, \angle \mathrm{B}=\angle C$
$\therefore \mathrm{AB}=\mathrm{AC}$ (Sides opposite to equal angle are equal)
Subtracting BM from both sides, we get
$\mathrm{AB}-\mathrm{BM}=\mathrm{AC}-\mathrm{BM}$
$\Rightarrow A B-B M=A C-C N \quad(\because B M=C N)$
$\Rightarrow A M=A N$
$\therefore \angle \mathrm{AMN}=\angle \mathrm{ANM}$ (Angles opposite to equal sides are equal)
Now, in $\triangle \mathrm{ABC}$,

$$
\begin{equation*}
\angle A+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \tag{1}
\end{equation*}
$$

(Angle Sum Property of triangle)
Again In In $\triangle \mathrm{AMN}$,

$$
\begin{equation*}
\angle \mathrm{A}+\angle \mathrm{AMN}+\angle \mathrm{ANM}=180^{\circ} \tag{2}
\end{equation*}
$$

(Angle Sum Property of triangle)
From (1) and (2), we get
$\angle \mathrm{B}+\angle \mathrm{C}=\angle \mathrm{AMN}+\angle \mathrm{ANM}$
$\Rightarrow 2 \angle B=2 \angle \mathrm{AMN}$
$\Rightarrow \angle B=\angle \mathrm{AMN}$
Since, $\angle B$ and $\angle A M N$ are corresponding angles.
$\therefore \mathrm{MN} \| \mathrm{BC}$.
9.

Sol:

In $\Delta \mathrm{CAB}, \mathrm{PQ} \| \mathrm{AB}$.
Applying Thales' theorem, we get:
$\frac{C P}{P B}=\frac{C Q}{Q A}$
Similarly, applying Thales theorem in $\triangle B D C$, Where PR $\| \mathrm{DM}$ we get:
$\frac{C P}{P B}=\frac{C R}{R D}$
Hence, from (1) and (2), we have :
$\frac{C Q}{Q A}=\frac{C R}{R D}$
Applying the converse of Thales' theorem, we conclude that $\mathrm{QR} \| \mathrm{AD}$ in $\triangle \mathrm{ADC}$.
This completes the proof.

Downloaded from www.studiestoday.com

10.

Sol:

It is give that BC is bisected at D .

$\therefore \mathrm{BD}=\mathrm{DC}$
It is also given that $\mathrm{OD}=\mathrm{OX}$
The diagonals OX and BC of quadrilateral BOCX bisect each other.
Therefore, BOCX is a parallelogram.
$\therefore \mathrm{BO} \| \mathrm{CX}$ and $\mathrm{BX} \| \mathrm{CO}$
$\mathrm{BX} \| \mathrm{CF}$ and $\mathrm{CX} \| \mathrm{BE}$
$\mathrm{BX} \| \mathrm{OF}$ and $\mathrm{CX} \| \mathrm{OE}$
Applying Thales' theorem in $\triangle \mathrm{ABX}$, we get:
$\frac{A O}{A X}=\frac{A F}{A B}$
Also, in \triangle ACX, CX $\|$ OE.
Therefore by Thales' theorem, we get:
$\frac{A O}{A X}=\frac{A E}{A C}$
From (1) and (2), we have:
$\frac{A O}{A X}=\frac{A E}{A C}$
Applying the converse of Theorem in $\Delta \mathrm{ABC}, \mathrm{EF} \| \mathrm{CB}$.
This completes the proof.
11.

Sol:

We know that the diagonals of a parallelogram bisect each other.
Therefore,
$\mathrm{CS}=1 / 2 \mathrm{AC}$
Also, it is given that $\mathrm{CQ}=1 / 4 \mathrm{AC}$
Dividing equation (ii) by (i), we get:
$\frac{C Q}{C S}=\frac{\frac{1}{4} A C}{\frac{1}{2} A C}$
Or, $\mathrm{CQ}=\frac{1}{2} C S$
Hence, Q is the midpoint of CS.

Downloaded from www.studiestoday.com

Therefore, according to midpoint theorem in $\triangle \mathrm{CSD}$
PQ \| DS
If $\mathrm{PQ} \| \mathrm{DS}$, we can say that $\mathrm{QR} \| \mathrm{SB}$
In $\Delta \mathrm{CSB}, \mathrm{Q}$ is midpoint of CS and $\mathrm{QR} \| \mathrm{SB}$.
Applying converse of midpoint theorem, we conclude that R is the midpoint of CB . This completes the proof.
12.

Sol:

Given:
$\mathrm{AD}=\mathrm{AE}$
$\mathrm{AB}=\mathrm{AC}$
Subtracting AD from both sides, we get:
$\Rightarrow \mathrm{AB}-\mathrm{AD}=\mathrm{AC}-\mathrm{AD}$
$\Rightarrow \mathrm{AB}-\mathrm{AD}=\mathrm{AC}-\mathrm{AE}($ Since, $\mathrm{AD}=\mathrm{AE})$
$\Rightarrow \mathrm{BD}=\mathrm{EC}$
Dividing equation (i) by equation (iii), we get:
$\frac{A D}{D B}=\frac{A E}{E C}$
Applying the converse of Thales' theorem, $\mathrm{DE} \| \mathrm{BC}$
$\Rightarrow \angle \mathrm{DEC}+\angle \mathrm{ECB}=180^{\circ}$ (Sum of interior angles on the same side of a Transversal Line is 0^{0}.)
$\Rightarrow \angle \mathrm{DEC}+\angle \mathrm{CBD}=180^{\circ}$ (Since, $\mathrm{AB}=\mathrm{AC} \Rightarrow \angle \mathrm{B}=\angle \mathrm{C}$)
Hence, quadrilateral BCED is cyclic.
Therefore, B,C,E and D are concylic points.
13.

Sol:

In triangle $B Q O, B R$ bisects angle B.
Applying angle bisector theorem, we get:

$\frac{Q R}{P R}=\frac{B Q}{B P}$
$\Rightarrow \mathrm{BP} \times \mathrm{QR}=\mathrm{BQ} \times \mathrm{PR}$
This completes the proof.

Exercise - 4B

1.

(i)

(ii)

(iii)

(iv)

(v)

Sol:

(i)

We have:
$\angle \mathrm{BAC}=\angle \mathrm{PQR}=50^{\circ}$
$\angle \mathrm{ABC}=\angle \mathrm{QPR}=60^{\circ}$
$\angle \mathrm{ACB}=\angle \mathrm{PRQ}=70^{\circ}$
Therefore, by AAA similarity theorem, $\triangle \mathrm{ABC}-\mathrm{QPR}$
(ii)

We have:
$\frac{A B}{D F}=\frac{3}{6}=\frac{1}{2}$ and $\frac{B C}{D E}=\frac{4.5}{9}=\frac{1}{2}$
But, $\angle \mathrm{ABC} \neq \angle \mathrm{EDF}$ (Included angles are not equal)
Thus, this triangles are not similar.
(iii)

We have:
$\frac{C A}{Q R}=\frac{8}{6}=\frac{4}{3}$ and $\frac{C B}{P Q}=\frac{6}{4.5}=\frac{4}{3}$
$\Rightarrow \frac{C A}{Q R}=\frac{C B}{P Q}$
Also, $\angle \mathrm{ACB}=\angle \mathrm{PQR}=80^{\circ}$
Therefore, by SAS similarity theorem, $\triangle \mathrm{ACB}-\triangle \mathrm{RQP}$.
(iv)

We have
$\frac{D E}{Q R}=\frac{2.5}{5}=\frac{1}{2}$
$\frac{E F}{P Q}=\frac{2}{4}=\frac{1}{2}$
$\frac{D F}{P R}=\frac{3}{6}=\frac{1}{2}$
$\Rightarrow \frac{D E}{Q R}=\frac{E F}{P Q}=\frac{D F}{P R}$
Therefore, by SSS similarity theorem, Δ FED- Δ PQR
(v)

In $\triangle \mathrm{ABC}$
$\angle \mathrm{A}+\angle B+\angle C=180^{\circ}$ (Angle Sum Property)
$\Rightarrow 80^{\circ}+\angle B+70^{\circ}=180^{\circ}$
$\Rightarrow \angle B=30^{\circ}$
$\angle A=\angle M$ and $\angle B=\angle N$
Therefore, by AA similarity, \triangle ABC $-\triangle$ MNR
2.

Sol:

(i)

It is given that DB is a straight line.
Therefore,

$\angle D O C+\angle C O B=180^{\circ}$
$\angle D O C=180^{\circ}-115^{\circ}=65^{\circ}$
(ii)

In \triangle DOC, we have:
$\angle O D C+\angle D C O+\angle D O C=180^{\circ}$
Therefore,
$70^{\circ}+\angle D C O+65^{\circ}=180^{0}$
$\Rightarrow \angle D C O=180-70-65=45^{\circ}$
(iii)

It is given that $\Delta \mathrm{ODC}-\Delta \mathrm{OBA}$
Therefore,
$\angle O A B=\angle O C D=45^{\circ}$
(iv)

Again, \triangle ODC- Δ OBA
Therefore,
$\angle O B A=\angle O D C=70^{\circ}$
3.

Sol:

(i) Let OA be X cm .
$\because \Delta$ OAB - Δ OCD
$\therefore \frac{O A}{O C}=\frac{A B}{C D}$
$\Rightarrow \frac{x}{3.5}=\frac{8}{5}$
$\Rightarrow x=\frac{8 \times 3.5}{5}=5.6$
Hence, $\mathrm{OA}=5.6 \mathrm{~cm}$
(ii) Let OD be Y cm
$\because \Delta$ OAB $-\Delta$ OCD
$\therefore \frac{A B}{C D}=\frac{O B}{O D}$
$\Rightarrow \frac{8}{5}=\frac{6.4}{y}$
$\Rightarrow y=\frac{6.4 \times 5}{8}=4$
Hence, DO $=4 \mathrm{~cm}$
4.

Sol:

Given :
$\angle A D E=\angle A B C$ and $\angle A=\angle A$
Let DE be X cm
Therefore, by AA similarity theorem, $\Delta \mathrm{ADE}-\Delta \mathrm{ABC}$
$\Rightarrow \frac{A D}{A B}=\frac{D E}{B C}$
$\Rightarrow \frac{3.8}{3.6+2.1}=\frac{x}{4.2}$
$\Rightarrow x=\frac{3.8 \times 4.2}{5.7}=2.8$
Hence, DE $=2.8 \mathrm{~cm}$
5.

Sol:

It is given that triangles ABC and PQR are similar.
Therefore,
$\frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle P Q R)}=\frac{A B}{P Q}$
$\Rightarrow \frac{32}{24}=\frac{A B}{12}$

Downloaded from www.studiestoday.com

$\Rightarrow A B=\frac{32 \times 12}{24}=16 \mathrm{~cm}$
6.

Sol:

It is given that $\Delta \mathrm{ABC}-\Delta \mathrm{DEF}$.
Therefore, their corresponding sides will be proportional.
Also, the ratio of the perimeters of similar triangles is same as the ratio of their corresponding sides.
$\Rightarrow \frac{\text { Perimeter of } \triangle A B C}{\text { Perimeter of } \triangle D E F}=\frac{B C}{E F}$
Let the perimeter of $\triangle \mathrm{ABC}$ be X cm
Therefore,
$\frac{x}{25}=\frac{9.1}{6.5}$
$\Rightarrow x=\frac{9.1 \times 25}{6.5}=35$
Thus, the perimeter of $\triangle \mathrm{ABC}$ is 35 cm .
7.

Sol:

In $\triangle \mathrm{BDA}$ and $\triangle \mathrm{BAC}$, we have :

$$
\begin{aligned}
& \angle B D A=\angle B A C=90^{\circ} \\
& \angle D B A=\angle C B A \quad \text { (Common) }
\end{aligned}
$$

Therefore, by AA similarity theorem, $\Delta \mathrm{BDA}-\triangle \mathrm{BAC}$

$$
\begin{aligned}
& \Rightarrow \frac{A D}{A C}=\frac{A B}{B C} \\
& \Rightarrow \frac{A D}{0.75}=\frac{1}{1.25} \\
& \Rightarrow \mathrm{AD}=\frac{0.75}{1.25} \\
& =0.6 \mathrm{~m} \text { or } 60 \mathrm{~cm}
\end{aligned}
$$

8.

Sol:

It is given that ABC is a right angled triangle and BD is the altitude drawn from the right angle to the hypotenuse.
In $\triangle \mathrm{BDC}$ and $\triangle \mathrm{ABC}$, we have :
$\angle A B C=\angle B B C=90^{\circ}$ (given)
$\angle C=\angle C$ (common)

Downloaded from www.studiestoday.com

By AA similarity theorem, we get :
Δ BDC- $\triangle \mathrm{ABC}$
$\frac{A B}{B D}=\frac{B C}{D C}$
$\Rightarrow \frac{5.7}{3.8}=\frac{B C}{5.4}$
$\Rightarrow B C=\frac{5.7}{3.8} \times 5.4$
$=8.1$
Hence, $\mathrm{BC}=8.1 \mathrm{~cm}$
9.

Sol:

It is given that ABC is a right angled triangle
and BD is the altitude drawn from the right angle to the hypotenuse.

In $\triangle \mathrm{DBA}$ and $\triangle \mathrm{DCB}$, we have :
$\angle B D A=\angle C D B$
$\angle D B A=\angle D C B=90^{\circ}$
Therefore, by AA similarity theorem, we get :
$\triangle \mathrm{DBA}-\Delta \mathrm{DCB}$
$\Rightarrow \frac{B D}{C D}=\frac{A D}{B D}$
$\Rightarrow C D=\frac{B D^{2}}{A D}$
$\mathrm{CD}=\frac{8 \times 8}{4}=16 \mathrm{~cm}$
10.

Sol:

We have :

$$
\begin{aligned}
& \frac{A P}{A B}=\frac{2}{6}=\frac{1}{3} \text { and } \frac{A Q}{A C}=\frac{3}{9}=\frac{1}{3} \\
& \Rightarrow \frac{A P}{A B}=\frac{A Q}{A C}
\end{aligned}
$$

In $\triangle \mathrm{APQ}$ and $\Delta \mathrm{ABC}$, we have:
$\frac{A P}{A B}=\frac{A Q}{A C}$
$\angle A=\angle A$
Therefore, by AA similarity theorem, we get:
$\Delta \mathrm{APQ}-\Delta \mathrm{ABC}$
Hence, $\frac{P Q}{B C}=\frac{A Q}{A C}=\frac{1}{3}$
$\Rightarrow \frac{P Q}{B C}=\frac{1}{3}$
$\Rightarrow \mathrm{BC}=3 \mathrm{PQ}$

Downloaded from www.studiestoday.com

This completes the proof.
11.

Sol:

We have:
$\angle A F D=\angle E F B \quad$ (Vertically Opposite angles)
$\because \mathrm{DA}|\mid \mathrm{BC}$
$\therefore \angle D A F=\angle B E F \quad$ (Alternate angles)
$\triangle \mathrm{DAF} \sim \triangle \mathrm{BEF} \quad$ (AA similarity theorem)
$\Rightarrow \frac{A F}{E F}=\frac{F D}{F B}$
Or, $\mathrm{AF} \times \mathrm{FB}=\mathrm{FD} \times \mathrm{EF}$
This completes the proof.
12.

Sol:

In $\triangle \mathrm{BED}$ and $\triangle \mathrm{ACB}$, we have:

$$
\begin{aligned}
& \angle B E D=\angle A C B=90^{\circ} \\
& \because \angle B+\angle C=180^{\circ} \\
& \therefore \mathrm{BD} \| \mathrm{AC} \\
& \angle E B D=\angle C A B \text { (Alternate angles) }
\end{aligned}
$$

Therefore, by AA similarity theorem, we get :
$\triangle \mathrm{BED} \sim \triangle \mathrm{ACB}$
$\Rightarrow \frac{B E}{A C}=\frac{D E}{B C}$
$\Rightarrow \frac{B E}{D E}=\frac{A C}{B C}$
This completes the proof.
13.

Sol:

Let AB be the vertical stick and BC be its shadow.
Given:
$\mathrm{AB}=7.5 \mathrm{~m}, \mathrm{BC}=5 \mathrm{~m}$

Let $P Q$ be the tower and QR be its shadow.
Given:
$\mathrm{QR}=24 \mathrm{~m}$
Let the length of PQ be x m .
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, we have:
$\angle A B C=\angle P Q R=90^{\circ}$
$\angle A C B=\angle P R Q$ (Angular elevation of the Sun at the same time)
Therefore, by AA similarity theorem, we get :
$\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$
$\Rightarrow \frac{A B}{B C}=\frac{P Q}{Q R}$
$\Rightarrow \frac{7.5}{5}=\frac{x}{24}$
$x=\frac{7.5}{5} \times 24=36 \mathrm{~cm}$
Therefore, $\mathrm{PQ}=36 \mathrm{~m}$
Hence, the height of the tower is 36 m .
14.

Sol:

Disclaimer: It should be $\triangle \mathrm{APC} \sim \triangle \mathrm{BCQ}$ $\triangle B C Q$

It is given that $\triangle \mathrm{ABC}$ is an isosceles
triangle. Therefore,

$$
\begin{aligned}
& \mathrm{CA}=\mathrm{CB} \\
& \Rightarrow \angle C A B=\angle C B A \\
& \Rightarrow 180^{\circ}-\angle C A B=180^{\circ}-\angle C B A \\
& \Rightarrow \angle C A P=\angle C B Q
\end{aligned}
$$

Also,
$\mathrm{AP} \times \mathrm{BQ}=A C^{2}$
$\Rightarrow \frac{A P}{A C}=\frac{A C}{B Q}$
$\Rightarrow \frac{A P}{A C}=\frac{B C}{B Q}(\because A C=B C)$
Thus, by SAS similarity theorem, we get
$\triangle \mathrm{APC} \sim \triangle \mathrm{BCQ}$
This completes the proof.
15.

Sol:

We have :

$\frac{A C}{B D}=\frac{C B}{C E}$
$\Rightarrow \frac{A C}{C B}=\frac{B D}{C E}$
$\Rightarrow \frac{A C}{C B}=\frac{C D}{C E} \quad($ Since,$B D=D C$ as $\angle 1=\angle 2)$
Also, $\angle 1=\angle 2$
i.e, $\angle D B C=\angle A C B$

Therefore, by SAS similarity theorem, we get :
Δ ACB - \triangle DCE
16.

Sol:

In $\triangle \mathrm{ABC}, \mathrm{P}$ and Q are mid points of AB and AC respectively.
So, $\mathrm{PQ} \| \mathrm{BC}$, and $\mathrm{PQ}=\frac{1}{2} B C$
Similarly, in $\triangle \mathrm{ADC}$,
Now, in $\triangle \mathrm{BCD}, \mathrm{SR}=\frac{1}{2} B C$
Similarly, in $\triangle \mathrm{ABD}, \mathrm{PS}=\frac{1}{2} A D=\frac{1}{2} B C$
Using (1), (2), (3), and (4).
$\mathrm{PQ}=\mathrm{QR}=\mathrm{SR}=\mathrm{PS}$
Since, all sides are equal
Hence, PQRS is a rhombus.

Downloaded from www.studiestoday.com

17.

Sol:

Given : AB and CD are two chords
To Prove:
(a) $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$
(b) $\mathrm{PA} \cdot \mathrm{PB}=\mathrm{PC} \cdot \mathrm{PD}$

Proof: In $\triangle \mathrm{PAC}$ and $\triangle \mathrm{PDB}$
$\angle A P C=\angle D P B$ (Vertically Opposite angles)
$\angle C A P=\angle B D P$ (Angles in the same segment are equal)
by $A A$ similarity criterion $\triangle P A C \sim P D B$
When two triangles are similar, then the ratios of lengths of their corresponding sides are proportional.
$\therefore \frac{P A}{P D}=\frac{P C}{P B}$
$\Rightarrow \mathrm{PA} . \mathrm{PB}=\mathrm{PC} . \mathrm{PD}$
18.

Sol:

Given : AB and CD are two chords
To Prove:
(a) $\Delta \mathrm{PAC}-\Delta \mathrm{PDB}$
(b) PA. $\mathrm{PB}=\mathrm{PC} \cdot \mathrm{PD}$

Proof: $\angle A B D+\angle A C D=180^{\circ}$
...(1) (Opposite angles of a cyclic quadrilateral are supplementary)
$\angle P C A+\angle A C D=180^{\circ}$
(Linear Pair Angles)
Using (1) and (2), we get
$\angle A B D=\angle P C A$
$\angle A=\angle A$
(Common)

By AA similarity-criterion \triangle PAC $-\triangle$ PDB
When two triangles are similar, then the rations of the lengths of their corresponding sides are proportional.
$\therefore \frac{P A}{P D}=\frac{P C}{P B}$
$\Rightarrow \mathrm{PA} . \mathrm{PB}=\mathrm{PC} . \mathrm{PD}$
19.

Sol:

We know that if a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then the triangles on the both sides of the perpendicular are similar to the whole triangle and also to each other.
(a) Now using the same property in In $\triangle \mathrm{BDC}$, we get
$\triangle \mathrm{CQD} \sim \triangle \mathrm{DQB}$
$\frac{C Q}{D Q}=\frac{D Q}{Q B}$
$\Rightarrow D Q^{2}=Q B . C Q$
Now. Since all the angles in quadrilateral BQDP are right angles.
Hence, BQDP is a rectangle.
So, $\mathrm{QB}=\mathrm{DP}$ and $\mathrm{DQ}=\mathrm{PB}$
$\therefore D Q^{2}=D P . C Q$
(b)

Similarly, $\triangle \mathrm{APD} \sim \triangle \mathrm{DPB}$
$\frac{A P}{D P}=\frac{P D}{P B}$
$\Rightarrow D P^{2}=A P . P B$
$\Rightarrow D P^{2}=A P \cdot D Q \quad[\because D Q=P B]$

Exercise - 4C

1.

Sol:

It is given that $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$.
Therefore, ratio of the areas of these triangles will be equal to the ration of squares of their corresponding sides.

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{B C^{2}}{E F^{2}} \\
& \quad \text { Let } B C \text { be X cm. } \\
& \quad \Rightarrow \frac{64}{121}=\frac{x^{2}}{(15.4)^{2}} \\
& \quad \Rightarrow x^{2}=\frac{64 \times 15.4 \times 15.4}{121} \\
& \quad \Rightarrow x=\sqrt{\frac{(64 \times 15.4 \times 15.4)}{121}} \\
& \quad=\frac{8 \times 15.4}{11}
\end{aligned}
$$

$=11.2$
Hence, $\mathrm{BC}=11.2 \mathrm{~cm}$
2.

Sol:

It is given that $\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$
Therefore, the ration of the areas of triangles will be equal to the ratio of squares of their corresponding sides.

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C^{2}}{Q R^{2}} \\
& \Rightarrow \frac{9}{16}=\frac{4^{2}}{Q R^{2}} \\
& \Rightarrow Q R^{2}=\frac{4.5 \times 4.5 \times 16}{9} \\
& \Rightarrow Q R=\sqrt{\frac{(4.5 \times 4.5 \times 16)}{9}} \\
& =\frac{4.5 \times 4}{3} \\
& =6 \mathrm{~cm} \\
& \text { Hence, } \mathrm{QR}=6 \mathrm{~cm}
\end{aligned}
$$

3.

Sol:

Given : $\operatorname{ar}(\triangle A B C)=4 \operatorname{ar}(\triangle P Q R)$
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{4}{1}$
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C^{2}}{Q R^{2}}$
$\therefore \frac{B C^{2}}{Q R^{2}}=\frac{4}{1}$
$\Rightarrow Q R^{2}=\frac{12^{2}}{4}$
$\Rightarrow Q R^{2}=36$
$\Rightarrow Q R=6 \mathrm{~cm}$
Hence, $\mathrm{QR}=6 \mathrm{~cm}$

4.

Sol:

It is given that the triangles are similar.
Therefore, the ratio of the areas of these triangles will be equal to the ratio of squares of their corresponding sides.
Let the longest side of smaller triangle be X cm .
$\frac{\operatorname{ar}(\text { Larger triangle })}{\text { ar }(\text { Smaller triangle })}=\frac{(\text { Longest side of larger traingle })^{2}}{(\text { Longest side of smaller traingle })^{2}}$
$\Rightarrow \frac{169}{121}=\frac{26^{2}}{x^{2}}$
$\Rightarrow x=\sqrt{\frac{26 \times 26 \times 121}{169}}$
$=22$
Hence, the longest side of the smaller triangle is 22 cm .
5.

Sol:

It is given that $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$.
Therefore, the ration of the areas of these triangles will be equal to the ratio of squares of their corresponding sides.
Also, the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.

Let the altitude of $\triangle \mathrm{ABC}$ be AP , drawn from A to BC to meet BC at P and the altitude of $\triangle \mathrm{DEF}$ be DQ , drawn from D to meet EF at Q .
Then,
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A P^{2}}{D Q^{2}}$
$\Rightarrow \frac{100}{49}=\frac{5^{2}}{D Q^{2}}$
$\Rightarrow \frac{100}{49}=\frac{25}{D Q^{2}}$
$\Rightarrow D Q^{2}=\frac{49 \times 25}{100}$
$\Rightarrow D Q=\sqrt{\frac{49 \times 25}{100}}$
$\Rightarrow D Q=3.5 \mathrm{~cm}$
Hence, the altitude of $\triangle \mathrm{DEF}$ is 3.5 cm
6.

Sol:

Let the two triangles be ABC and DEF with altitudes AP and DQ, respectively.

It is given that $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$.
We know that the ration of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{(A P)^{2}}{(D Q)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(D E F)}=\frac{6^{2}}{9^{2}}$
$=\frac{36}{81}$
$=\frac{4}{9}$
Hence, the ratio of their areas is $4: 9$
7.

Sol:

It is given that the triangles are similar.
Therefore, the areas of these triangles will be equal to the ratio of squares of their corresponding sides.

Downloaded from www.studiestoday.com

Also, the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.
Let the two triangles be ABC and DEF with altitudes AP and DQ , respectively.

$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A P^{2}}{D Q^{2}}$
$\Rightarrow \frac{81}{49}=\frac{6.3^{2}}{D Q}$
$\Rightarrow D Q^{2}=\frac{49}{81} \times 6.3^{2}$
$\Rightarrow D Q^{2}=\sqrt{\frac{49}{81} \times 6.3 \times 6.3}$
Hence, the altitude of the other triangle is 4.9 cm .
8.

Sol:

Let the two triangles be ABC and PQR with medians AM and PN , respectively.

Therefore, the ratio of areas of two similar triangles will be equal to the ratio of squares of their corresponding medians.
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A M^{2}}{P N^{2}}$
$\Rightarrow \frac{64}{100}=\frac{5.6^{2}}{P N^{2}}$
$\Rightarrow P N^{2}=\frac{64}{100} \times 5.6^{2}$
$\Rightarrow P N^{2}=\sqrt{\frac{100}{64} \times 5.6 \times 5.6}$
$=7 \mathrm{~cm}$
Hence, the median of the larger triangle is 7 cm .
9.

Sol:

We have :

$$
\frac{A P}{A B}=\frac{1}{1+3}=\frac{1}{4} \text { and } \frac{A Q}{A C}=\frac{1.5}{1.5+4.5}=\frac{1.5}{6}=\frac{1}{4}
$$

$\Rightarrow \frac{A P}{A B}=\frac{A Q}{A C}$
Also, $\angle A=\angle A$
By SAS similarity, we can conclude that $\triangle \mathrm{APQ}-\triangle \mathrm{ABC}$.
$\frac{\operatorname{ar}(\triangle A P Q)}{\operatorname{ar}(\triangle A B C)}=\frac{A P^{2}}{A B^{2}}=\frac{1^{2}}{4^{2}}=\frac{1}{16}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A P Q)}{\operatorname{ar}(\triangle A B C)}=\frac{1}{16}$
$\Rightarrow \operatorname{ar}(\triangle A P Q)=\frac{1}{16} \times \operatorname{ar}(\triangle A B C)$
Hence proved.
10.

Sol:

It is given that $\mathrm{DE} \| \mathrm{BC}$
$\begin{aligned} \therefore & \angle A D E=\angle A B C \text { (Corresponding angles) } \\ & \angle A E D=\angle A C B \text { (Corresponding angles) }\end{aligned}$

By AA similarity, we can conclude that $\triangle \mathrm{ADE} \sim \Delta \mathrm{ABC}$
$\therefore \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A B C)}=\frac{D E^{2}}{B C^{2}}$
$\Rightarrow \frac{15}{\operatorname{ar}(\triangle A B C)}=\frac{3^{2}}{6^{2}}$
$\Rightarrow \operatorname{ar}(\triangle A B C)=\frac{15 \times 36}{9}$
$=60 \mathrm{~cm}^{2}$
Hence, area of triangle ABC is $60 \mathrm{~cm}^{2}$
11.

Sol:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$, we have:

$$
\begin{aligned}
& \angle B A C=\angle A D C=90^{\circ} \\
& \angle A C B=\angle A C D(\text { common })
\end{aligned}
$$

By AA similarity, we can conclude that $\triangle \mathrm{BAC} \sim \triangle \mathrm{ADC}$.
Hence, the ratio of the areas of these triangles is equal to the ratio of squares of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle B A C)}{\operatorname{ar}(\triangle A D C)}=\frac{B C^{2}}{A C^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle B A C)}{\operatorname{ar}(\triangle A D C)}=\frac{13^{2}}{5^{2}}$
$=\frac{169}{25}$
Hence, the ratio of areas of both the triangles is $169: 25$
12.

Sol:

It is given that $\mathrm{DE} \| \mathrm{BC}$.
$\therefore \angle A D E=\angle A B C$ (Corresponding angles)
$\angle A E D=\angle A C B$ (Corresponding angles)

Applying AA similarity theorem, we can conclude that $\triangle \mathrm{ADE} \sim \Delta \mathrm{ABC}$.
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(A D E)}=\frac{B C^{2}}{D E^{2}}$
Subtracting 1 from both sides, we get:
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle A D E)}-1=\frac{5^{2}}{3^{2}}-1$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)-\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A D E)}=\frac{25-9}{9}$
$\Longrightarrow \frac{\operatorname{ar}(B C E D)}{\operatorname{ar}(\triangle A D E)}=\frac{16}{9}$
Or, $\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(B C E D)}=\frac{9}{16}$
13.

Sol:

It is given that D and E are midpoints of AB and AC .
Applying midpoint theorem, we can conclude that $\mathrm{DE} \| \mathrm{BC}$.
Hence, by B.P.T., we get :
$\frac{A D}{A B}=\frac{A E}{A C}$
Also, $\angle A=\angle A$
Applying SAS similarity theorem, we can conclude that $\triangle \mathrm{ADE} \sim \Delta \mathrm{ABC}$.
Therefore, the ration of areas of these triangles will be equal to the ratio of squares of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A B C)}=\frac{D E^{2}}{B C^{2}}$

Downloaded from www.studiestoday.com

$=\frac{\left(\frac{1}{2} B C\right)^{2}}{B C^{2}}$
$=\frac{1}{4}$

Exercise - 4D

1.

Sol:

For the given triangle to be right-angled, the sum of the two sides must be equal to the square of the third side.
Here, let the three sides of the triangle be a, b and c .
(i)

$$
\mathrm{a}=9 \mathrm{~cm}, \mathrm{~b}=16 \mathrm{~cm} \text { and } \mathrm{c}=18 \mathrm{~cm}
$$

Then,

$$
\begin{aligned}
& a^{2}+b^{2}=9^{2}+16^{2} \\
& =81+256 \\
& =337 \\
& c^{2}=19^{2} \\
& =361 \\
& a^{2}+b^{2} \neq c^{2}
\end{aligned}
$$

Thus, the given triangle is not right-angled.
(ii)
$\mathrm{A}=7 \mathrm{~cm}, \mathrm{~b}=24 \mathrm{~cm}$ and $\mathrm{c}=25 \mathrm{~cm}$
Then,

$$
\begin{aligned}
& a^{2}+b^{2}=7^{2}+24^{2} \\
& =49+576 \\
& =625 \\
& c^{2}=25^{2} \\
& =625 \\
& a^{2}+b^{2}=c^{2}
\end{aligned}
$$

Thus, the given triangle is a right-angled.
(iii)
$\mathrm{A}=1.4 \mathrm{~cm}, \mathrm{~b}=4.8 \mathrm{~cm}$ and $\mathrm{c}=5 \mathrm{~cm}$
Then,
$a^{2}+b^{2}=(1.4)^{2}+(4.8)^{2}$
$=1.96+23.04$
$=25$

$$
\begin{aligned}
& c^{2}=5^{2} \\
& =25 \\
& a^{2}+b^{2}=c^{2}
\end{aligned}
$$

Thus, the given triangle is right-angled.
(iv) $\mathrm{A}=1.6 \mathrm{~cm}, \mathrm{~b}=3.8 \mathrm{~cm}$ and $\mathrm{c}=4 \mathrm{~cm}$

Then
$a^{2}+b^{2}=(1.6)^{2}+(3.8)^{2}$
$=2.56+14.44$
$=16$
$a^{2}+b^{2} \neq c^{2}$
Thus, the given triangle is not right-angled.
(v)
$\mathrm{P}=(\mathrm{a}-1) \mathrm{cm}, \mathrm{q}=2 \sqrt{\mathrm{a}} \mathrm{cm}$ and $r=(a+1) \mathrm{cm}$
Then,

$$
\begin{aligned}
p^{2}+q^{2} & =(a-1)^{2}+(2 \sqrt{a})^{2} \\
& =a^{2}+1-2 a+4 a \\
& =a^{2}+1+2 a \\
& =(a+1)^{2} \\
r^{2}= & (a+1)^{2} \\
p^{2}+q^{2} & =r^{2}
\end{aligned}
$$

Thus, the given triangle is right-angled.
2.

Sol:

Let the man starts from point A and goes 80 m due east to B.
Then, from B , he goes 150 m due north to c .

We need to find AC.
In right- angled triangle ABC , we have:

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \\
& A C=\sqrt{80^{2}+150^{2}} \\
& =\sqrt{6400+22500} \\
& =\sqrt{28900} \\
& =170 \mathrm{~m}
\end{aligned}
$$

Downloaded from www.studiestoday.com

Hence, the man is 170 m away from the starting point.
3.

Sol:

Let the man starts from point D and goes 10 m due south at E . He then goes 24 m due west at F .
In right $\triangle \mathrm{DEF}$, we have:
$\mathrm{DE}=10 \mathrm{~m}, \mathrm{EF}=24 \mathrm{~m}$

$D F^{2}=E F^{2}+D E^{2}$
$D F=\sqrt{10^{2}+24^{2}}$
$=\sqrt{100+576}$
$=\sqrt{676}$
$=26 \mathrm{~m}$
Hence, the man is 26 m away from the starting point.

4.

Sol:

Let AB and AC be the ladder and height of the building.
It is given that :
$\mathrm{AB}=13 \mathrm{~m}$ and $\mathrm{AC}=12 \mathrm{~m}$
We need to find distance of the foot of the ladder from the building, i.e, BC. In right-angled triangle ABC , we have:

$$
\begin{aligned}
& \text { AB } \\
& \Rightarrow B C=A C^{2}+B C^{2} \\
& =\sqrt{123^{2}-12^{2}} \\
& =\sqrt{169-144} \\
& =\sqrt{25} \\
& =5 \mathrm{~m}
\end{aligned}
$$

Hence, the distance of the foot ladder from the building is 5 m

Sol:

Let the height of the window from the ground and the distance of the foot of the ladder from the wall be AB and BC , respectively.
We have :
$\mathrm{AB}=20 \mathrm{~m}$ and $\mathrm{BC}=15 \mathrm{~m}$
Applying Pythagoras theorem in right-angled ABC , we get:

$A C^{2}=A B^{2}+B C^{2}$
$\Rightarrow A C=\sqrt{20^{2}+15^{2}}$
$=\sqrt{400+225}$
$=\sqrt{625}$
$=25 \mathrm{~m}$
Hence, the length of the ladder is 25 m .
6.

Sol:

Let the two poles be DE and AB and the distance between their bases be BE .
We have:
$\mathrm{DE}=9 \mathrm{~m}, \mathrm{AB}=14 \mathrm{~m}$ and $\mathrm{BE}=12 \mathrm{~m}$
Draw a line parallel to BE from D , meeting AB at C .
Then, $\mathrm{DC}=12 \mathrm{~m}$ and $\mathrm{AC}=5 \mathrm{~m}$
We need to find AD , the distance between their tops.

Applying Pythagoras theorem in right-angled ACD, we have:
$A D^{2}=A C^{2}+D C^{2}$
$A D^{2}=5^{2}+12^{2}=25+144=169$
$A D=\sqrt{169}=13 \mathrm{~m}$

Downloaded from www.studiestoday.com

Hence, the distance between the tops to the two poles is 13 m .
7.

Sol:

Let AB be a guy wire attached to a pole BC of height 18 m . Now, to keep the wire taut let it to be fixed at A.
Now, In right triangle ABC
By using Pythagoras theorem, we have
$A B^{2}=B C^{2}+C A^{2}$
$\Rightarrow 24^{2}=18^{2}+C A^{2}$
$\Rightarrow C A^{2}=576-324$
$\Rightarrow C A^{2}=252$
$\Rightarrow C A=6 \sqrt{7} \mathrm{~m}$
Hence, the stake should be driven $6 \sqrt{7} \mathrm{~m}$ far from the base of the pole.

8.

Sol:

Applying Pythagoras theorem in right-angled triangle POR, we have:

$$
\begin{aligned}
& P R^{2}=P O^{2}+O R^{2} \\
\Rightarrow & P R^{2}=6^{2}+8^{2}=36+64=100 \\
\Rightarrow & P R=\sqrt{100}=10 \mathrm{~cm}
\end{aligned}
$$

$\mathrm{IN} \triangle \mathrm{PQR}$,

$$
P Q^{2}+P R^{2}=24^{2}+10^{2}=576+100=676
$$

And $Q R^{2}=26^{2}=676$
$\therefore P Q^{2}+P R^{2}=Q R^{2}$
Therefore, by applying Pythagoras theorem, we can say that $\triangle \mathrm{PQR}$ is right-angled at P .
9.

Sol:

It is given that $\Delta \mathrm{ABC}$ is an isosceles triangle.
Also, $\mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}$

Downloaded from www.studiestoday.com

Suppose the altitude from A on BC meets BC at D. Therefore, D is the midpoint of BC.
$\mathrm{AD}=5 \mathrm{~cm}$
$\triangle A D B$ and $\triangle A D C$ are right-angled triangles.
Applying Pythagoras theorem, we have;

$A B^{2}=A D^{2}+B D^{2}$
$B D^{2}=A B^{2}-A D^{2}=13^{2}-5^{2}$
$B D^{2}=169-25=144$
$B D=\sqrt{144}=12$
Hence,
$\mathrm{BC}=2(\mathrm{BD})=2 \times 12=24 \mathrm{~cm}$
10.

Sol:

In isosceles $\triangle \mathrm{ABC}$, we have:
$\mathrm{AB}=\mathrm{AC}=2 \mathrm{a}$ units and $\mathrm{BC}=\mathrm{a}$ units
Let AD be the altitude drawn from A that meets BC at D .
Then, D is the midpoint of BC .
$\mathrm{BD}=\mathrm{BC}=\frac{a}{2}$ units
Applying Pythagoras theorem in right-angled $\triangle \mathrm{ABD}$, we have:

11.

Sol:

Downloaded from www.studiestoday.com

Let AD, BE and CF be the altitudes of $\triangle \mathrm{ABC}$ meeting BC, AC and AB at D, E and F , respectively.
Then, D, E and F are the midpoint of BC, AC and AB , respectively.
In right-angled $\triangle \mathrm{ABD}$, we have:
$\mathrm{AB}=2 \mathrm{a}$ and $\mathrm{BD}=\mathrm{a}$
Applying Pythagoras theorem, we get:
$A B^{2}=A D^{2}+B D^{2}$
$A D^{2}=A B^{2}-B D^{2}=(2 a)^{2}-a^{2}$
$A D^{2}=4 a^{2}-a^{2}=3 a^{2}$
$A D=\sqrt{3} a$ units
Similarly,
$\mathrm{BE}=a \sqrt{3}$ units and $C F=a \sqrt{3}$ units
12.

Sol:

Let ABC be the equilateral triangle with AD as an altitude from A meeting BC at D . Then, D will be the midpoint of BC .
Applying Pythagoras theorem in right-angled triangle ABD, we get:

$A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow A D^{2}=12^{2}-6^{2}\left(\because B D=\frac{1}{2} B C=6\right)$
$\Rightarrow A D^{2}=144-36=108$
$\Rightarrow A D=\sqrt{108}=6 \sqrt{3} \mathrm{~cm}$.
Hence, the height of the given triangle is $6 \sqrt{3} \mathrm{~cm}$.

Downloaded from www.studiestoday.com

13.

Sol:

Let ABCD be the rectangle with diagonals AC and BD meeting at O .
According to the question:
$\mathrm{AB}=\mathrm{CD}=30 \mathrm{~cm}$ and $\mathrm{BC}=\mathrm{AD}=16 \mathrm{~cm}$

Applying Pythagoras theorem in right-angled triangle ABC , we get:

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2}=30^{2}+16^{2}=900+256=1156 \\
& A C=\sqrt{1156}=34 \mathrm{~cm}
\end{aligned}
$$

Diagonals of a rectangle are equal.
Therefore, $\mathrm{AC}=\mathrm{BD}=34 \mathrm{~cm}$

14.

Sol:

Let ABCD be the rhombus with diagonals $(\mathrm{AC}=24 \mathrm{~cm}$ and $\mathrm{BD}=10 \mathrm{~cm})$ meeting at O .
We know that the diagonals of a rhombus bisect each other at angles.
Applying Pythagoras theorem in right-angled AOB , we get:

$$
\begin{aligned}
& A B^{2}=A O^{2}+B O^{2}=12^{2}+5^{2} \\
& A B^{2}=144+25=169 \\
& A B=\sqrt{169}=13 \mathrm{~cm}
\end{aligned}
$$

Hence, the length of each side of the rhombus is 13 cm .
15.

Sol:

In right-angled triangle AED, applying Pythagoras theorem, we have:
$A B^{2}=A E^{2}+E D^{2}$
In right-angled triangle AED, applying Pythagoras theorem, we have:

Therefore,

$$
\begin{align*}
A B^{2} & =A D^{2}-E D^{2}+E B^{2}(\text { from }(i) \text { and }(i i)) \tag{ii}\\
A B^{2} & =A D^{2}-E D^{2}+(B D-D E)^{2} \\
& =A D^{2}-E D^{2}+\left(\frac{1}{2} B C-D E\right)^{2} \\
& =A D^{2}-D E^{2}+\frac{1}{4} B C^{2}+D E^{2}-B C . D E \\
& =A D^{2}+\frac{1}{4} B C^{2}-B C . D E
\end{align*}
$$

This completes the proof.
16.

Sol:
Given: $\angle A C B=90^{\circ}$ and $C D \perp A B$
To Prove; $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$
Proof: \quad In $\triangle \mathrm{ACB}$ and $\triangle \mathrm{CDB}$
$\angle A C B=\angle C D B=90^{\circ}$ (Given)
$\angle A B C=\angle C B D$ (Common)
By AA similarity-criterion $\triangle \mathrm{ACB} \sim \Delta \mathrm{CDB}$
When two triangles are similar, then the ratios of the lengths of their corresponding sides are proportional.
$\therefore \frac{B C}{B D}=\frac{A B}{B C}$
$\Rightarrow B C^{2}=B D . A B$
In $\triangle \mathrm{ACB}$ and $\triangle \mathrm{ADC}$

$$
\angle A C B=\angle A D C=90^{\circ} \text { (Given) }
$$

$\angle C A B=\angle D A C$ (Common)
By AA similarity-criterion $\triangle \mathrm{ACB} \sim \triangle \mathrm{ADC}$

Downloaded from www.studiestoday.com

When two triangles are similar, then the ratios of their corresponding sides are proportional.
$\therefore \frac{A C}{A D}=\frac{A B}{A C}$
$\Rightarrow A C^{2}=\mathrm{AD} . \mathrm{AB}$
Dividing (2) by (1), we get

$$
\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}
$$

17.

Sol:

(i)

In right-angled triangle AEC, applying Pythagoras theorem, we have:
$A C^{2}=A E^{2}+E C^{2}$
$\Rightarrow b^{2}=h^{2}+\left(x+\frac{a}{2}\right)^{2}=h^{2}+x^{2}+\frac{a^{2}}{4}+a x \ldots$
In right - angled triangle AED, we have:
$A D^{2}=A E^{2}+E D^{2}$
$\Rightarrow p^{2}=h^{2}+x^{2}$..
Therefore,
from (i) and (ii),
$b^{2}=p^{2}+a x+\frac{a^{2}}{x}$
(ii)

In right-angled triangle $A E B$, applying Pythagoras, we have:
$A B^{2}=A E^{2}+E B^{2}$
$\Rightarrow c^{2}=h^{2}+\left(\frac{a}{2}-x\right)^{2}\left(\because B D=\frac{a}{2}\right.$ and $\left.B E=B D-x\right)$
$\Rightarrow c^{2}=h^{2}+x^{2}-\frac{a^{2}}{4}\left(\because h^{2}+x^{2}=p^{2}\right)$
$\Rightarrow c^{2}=p^{2}-a x+\frac{a^{2}}{x}$
(iii)

Adding (i) and (ii), we get:

$$
\begin{aligned}
\Rightarrow b^{2}+c^{2} & =p^{2}+a x+\frac{a^{2}}{4}+p^{2}-a x+\frac{a^{2}}{4} \\
& =2 p^{2}+a x-a x+\frac{a^{2}+a^{2}}{4}
\end{aligned}
$$

$$
=2 p^{2}+\frac{a^{2}}{2}
$$

(iv)

Subtracting (ii) from (i), we get:

$$
\begin{aligned}
b^{2}-c^{2} & =p^{2}+a x+\frac{a^{2}}{4}-\left(p^{2}-a x+\frac{a^{2}}{4}\right) \\
& =p^{2}-p^{2}+a x+a x+\frac{a^{2}}{4}-\frac{a^{2}}{4} \\
& =2 \mathrm{ax}
\end{aligned}
$$

18.

Sol:

Draw $\mathrm{AE} \perp \mathrm{BC}$, meeting BC at D .
Applying Pythagoras theorem in right-angled triangle AED, we get:

Since, ABC is an isosceles triangle and AE is the altitude and we know that the altitude is also the median of the isosceles triangle.
So, $\mathrm{BE}=\mathrm{CE}$
And $\mathrm{DE}+\mathrm{CE}=\mathrm{DE}+\mathrm{BE}=\mathrm{BD}$

$$
A D^{2}=A E^{2}+D E^{2}
$$

$$
\begin{equation*}
\Rightarrow A E^{2}=A D^{2}-D E^{2} \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{ACE}$,

$$
\begin{align*}
& A C^{2}=A E^{2}+E C^{2} \\
& \Rightarrow A E^{2}=A C^{2}-E C^{2} \tag{ii}
\end{align*}
$$

Using (i) and (ii),

$$
\begin{aligned}
\Rightarrow A D^{2}-D E^{2}= & A C^{2}-E C^{2} \\
\Rightarrow A D^{2}-A C^{2}= & D E^{2}-E C^{2} \\
& =(\mathrm{DE}+\mathrm{CE})(\mathrm{DE}-\mathrm{CE}) \\
& =(\mathrm{DE}+\mathrm{BE}) \mathrm{CD} \\
& =\mathrm{BD} \cdot \mathrm{CD}
\end{aligned}
$$

19.

Sol:
We have, ABC as an isosceles triangle, right angled at B .
Now, $\mathrm{AB}=\mathrm{BC}$
Applying Pythagoras theorem in right-angled triangle ABC , we get:
$A C^{2}=A B^{2}+B C^{2}=2 A B^{2}(\because A B=A C) \ldots(i)$
$\because \triangle \mathrm{ACD} \sim \Delta \mathrm{ABE}$
We know that ratio of areas of 2 similar triangles is equal to squares of the ratio of their corresponding sides.
$\therefore \frac{\operatorname{ar}(\triangle A B E)}{\operatorname{ar}(\triangle A C D)}=\frac{A B^{2}}{A C^{2}}=\frac{A B^{2}}{2 A B^{2}}[$ from $(i)]$
$=\frac{1}{2}=1: 2$
20.

Sol:

Let A be the first aeroplane flied due north at a speed of $1000 \mathrm{~km} / \mathrm{hr}$ and B be the second aeroplane flied due west at a speed of $1200 \mathrm{~km} / \mathrm{hr}$
Distance covered by plane A in $1 \frac{1}{2}$ hours $=1000 \times \frac{3}{2}=1500 \mathrm{~km}$
Distance covered by plane B in $1 \frac{1}{2}$ hours $=1200 \times \frac{3}{2}=1800 \mathrm{~km}$
Now, In right triangle ABC
By using Pythagoras theorem, we have

$$
A B^{2}=B C^{2}+C A^{2}
$$

$=(1800)^{2}+(1500)^{2}$
$=3240000+2250000$
$=5490000$
$\therefore A B^{2}=5490000$
$\Rightarrow \mathrm{AB}=300 \sqrt{61} \mathrm{~m}$
Hence, the distance between two planes after $1 \frac{1}{2}$ hours is $300 \sqrt{61} \mathrm{~m}$
21.

Sol:

(a) In right triangle ALD

Using Pythagoras theorem, we have
$A C^{2}=A L^{2}+L C^{2}$
$=A D^{2}-D L^{2}+(D L+D C)^{2} \quad[\operatorname{Using}(1)]$
$=A D^{2}-D L^{2}+\left(D L+\frac{B C}{2}\right)^{2} \quad[\because \mathrm{AD}$ is a median $]$
$=A D^{2}-D L^{2}+D L^{2}+\left(\frac{B C}{2}\right)^{2}+B C \cdot D L$
$\therefore A C^{2}=A D^{2}+B C . D L+\left(\frac{B C}{2}\right)^{2}$
(b) In right triangle ALD

Using Pythagoras theorem, we have
$A L^{2}=A D^{2}-D L^{2}$
Again, In right triangle ABL
Using Pythagoras theorem, we have

$$
\begin{aligned}
& A B^{2}=A L^{2}+L B^{2} \\
= & A D^{2}-D L^{2}+L B^{2} \quad[U \operatorname{sing}(3)] \\
= & A D^{2}-D L^{2}+(B D-D L)^{2} \\
= & A D^{2} D L^{2}+\left(\frac{1}{2} B C-D L\right)^{2} \\
= & A D^{2}-D L^{2}+\left(\frac{B C}{2}\right)^{2}-B C \cdot D L+D L^{2}
\end{aligned}
$$

$$
\begin{equation*}
\therefore A B^{2}=A D^{2}-B C \cdot D L+\left(\frac{B C}{2}\right)^{2} \tag{4}
\end{equation*}
$$

(c) Adding (2) and (4), we get,

$$
\begin{aligned}
& =A C^{2}+A B^{2}=A D^{2}+B C \cdot D L+\left(\frac{B C}{2}\right)^{2}+A D^{2}-B C \cdot D L+\left(\frac{B C}{2}\right)^{2} \\
& =2 A D^{2}+\frac{B C^{2}}{4}+\frac{B C^{2}}{4} \\
& =2 A D^{2}+\frac{1}{2} B C^{2}
\end{aligned}
$$

22.

Sol:

Naman pulls in the string at the rate of 5 cm per second.
Hence, after 12 seconds the length of the string he will pulled is given by
$12 \times 5=60 \mathrm{~cm}$ or 0.6 m
Now, in $\triangle \mathrm{BMC}$
By using Pythagoras theorem, we have

$$
B C^{2}=C M^{2}+M B^{2}
$$

$=(2.4)^{2}+(1.8)^{2}$
$=9$
$\therefore \mathrm{BC}=3 \mathrm{~m}$
Now, $\mathrm{BC}^{\prime}=\mathrm{BC}-0.6$
= $3-0.6$
$=2.4 \mathrm{~m}$
Now, In $\triangle B^{\prime}$ ' M
By using Pythagoras theorem, we have $C^{\prime} M^{2}=B C^{\prime 2}-M B^{2}$
$=(2.4)^{2}-(1.8)^{2}$
$=2.52$
$\therefore \mathrm{C}^{\prime} \mathrm{M}=1.6 \mathrm{~m}$
The horizontal distance of the fly from him after 12 seconds is given by
$\mathrm{C}^{\prime} \mathrm{A}=\mathrm{C}^{\prime} \mathrm{M}+\mathrm{MA}$
$=1.6+1.2$
$=2.8 \mathrm{~m}$

Exercise - 4E

1.

Sol:

The two triangles are similar if and only if

1. The corresponding sides are in proportion.
2. The corresponding angles are equal.
3.

Sol:

If a line is draw parallel to one side of a triangle intersect the other two sides, then it divides the other two sides in the same ratio.
3.

Sol:

If a line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.
4.

Sol:

The line segment connecting the midpoints of two sides of a triangle is parallel to the third side and is equal to one half of the third side.
5.

Sol:

If the corresponding angles of two triangles are equal, then their corresponding sides are proportional and hence the triangles are similar.
6.

Sol:

If two angles are correspondingly equal to the two angles of another triangle, then the two triangles are similar.

Sol:

If the corresponding sides of two triangles are proportional then their corresponding angles are equal, and hence the two triangles are similar.
8.

Sol:

If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional then the two triangles are similar.

9.

Sol:

The square of the hypotenuse is equal to the sum of the squares of the other two sides. Here, the hypotenuse is the longest side and it's always opposite the right angle.
10.

Sol:

If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.

11.

Sol:

By using mid theorem i.e., the segment joining two sides of a triangle at the midpoints of those sides is parallel to the third side and is half the length of the third side.
$\therefore \mathrm{DF} \| \mathrm{BC}$
And $D F=\frac{1}{2} B C$
$\Rightarrow \mathrm{DF}=\mathrm{BE}$
Since, the opposite sides of the quadrilateral are parallel and equal.
Hence, BDFE is a parallelogram
Similarly, DFCE is a parallelogram.
Now, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFD}$

$$
\angle A B C=\angle E F D \quad \text { (Opposite angles of a parallelogram) }
$$

$$
\angle B C A=\angle E D F \quad \text { (Opposite angles of a parallelogram) }
$$

Downloaded from www.studiestoday.com

By AA similarity criterion, $\triangle \mathrm{ABC} \sim \triangle \mathrm{EFD}$
If two triangles are similar, then the ratio of their areas is equal to the squares of their corresponding sides.
$\therefore \frac{\operatorname{area}(\triangle D E F)}{\operatorname{area}(\triangle A B C)}=\left(\frac{D F}{B C}\right)^{2}=\left(\frac{D F}{2 D F}\right)^{2}=\frac{1}{4}$
Hence, the ratio of the areas of $\triangle \mathrm{DEF}$ and $\triangle \mathrm{ABC}$ is $1: 4$.
12.

Sol:

Now, In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$

$$
\begin{aligned}
& \angle A=\angle P=70^{0} \quad \text { (Given) } \\
& \frac{A B}{P Q}=\frac{A C}{P R}\left[\because \frac{3}{4.5}=\frac{6}{9} \Rightarrow \frac{1}{1.5}=\frac{1}{1.5}\right]
\end{aligned}
$$

By SAS similarity criterion, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
13.

Sol:

When two triangles are similar, then the ratios of the lengths of their corresponding sides are equal.
Here, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{A B}{D E}=\frac{B C}{E F}$
$\Rightarrow \frac{A B}{2 A B}=\frac{6}{E F}$
$\Rightarrow \mathrm{EF}=12 \mathrm{~cm}$
14.

Sol:

In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$
$\angle A D E=\angle A B C \quad$ (Corresponding angles in $D E \| B C$)
 $\angle A E D=\angle A C B \quad$ (Corresponding angles in $D E \| B C$
By AA similarity criterion, $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
If two triangles are similar, then the ratio of their corresponding sides are proportional
$\therefore \frac{A D}{A B}=\frac{A E}{A C}$
$\Rightarrow \frac{A D}{A D+D B}=\frac{A E}{A E+E C}$
$\Rightarrow \frac{x}{x+3 x+4}=\frac{x+3}{x+3+3 x+19}$
$\Rightarrow \frac{x}{4 x+4}=\frac{x+3}{x+3+3 x+19}$
$\Rightarrow \frac{x}{2 x+2}=\frac{x+3}{2 x+11}$

Downloaded from www.studiestoday.com

$\Rightarrow 2 x^{2}+11 x=2 x^{2}+2 x+6 x+6$
$\Rightarrow 3 \mathrm{x}=6$
$\Rightarrow \mathrm{x}=2$
Hence, the value of x is 2 .
15.

Sol:

Let $A B$ be A ladder and B is the window at 8 m above the ground C.
Now, In right triangle $A B C$
By using Pythagoras theorem, we have
$A B^{2}=B C^{2}+C A^{2}$
$\Rightarrow 10^{2}=8^{2}+C A^{2}$
$\Rightarrow C A^{2}=100-64$
$\Rightarrow C A^{2}=36$
$\Rightarrow C A=6 \mathrm{~m}$
Hence, the distance of the foot of the ladder from the base of the wall is 6 m .
16.

Sol:

We know that the altitude of an equilateral triangle bisects the side on which it stands and forms right angled triangles with the remaining sides.
Suppose ABC is an equilateral triangle having $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2 \mathrm{a}$.
Suppose AD is the altitude drawn from the vertex A to the side BC.
So, it will bisects the side BC

$$
\therefore \mathrm{DC}=\mathrm{a}
$$

Now, In right triangle ADC
By using Pythagoras theorem, we have

$$
\begin{aligned}
& A C^{2}=C D^{2}+D A^{2} \\
& \Rightarrow(2 a)^{2}=a^{2}+D A^{2}
\end{aligned}
$$

$\Rightarrow D A^{2}=4 a^{2}-a^{2}$
$\Rightarrow D A^{2}=3 a^{2}$
$\Rightarrow \mathrm{DA}=\sqrt{3} a$
Hence, the length of the altitude of an equilateral triangle of side 2 a cm is $\sqrt{3} a \mathrm{~cm}$
17.

Sol:

We have $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$
If two triangles are similar then the ratio of their areas is equal to the ratio of the squares of their corresponding sides.
$\therefore \frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle D E F)}=\left(\frac{B C}{E F}\right)^{2}$
$\Rightarrow \frac{64}{169}=\left(\frac{B C}{E F}\right)^{2}$
$\Rightarrow\left(\frac{8}{13}\right)^{2}=\left(\frac{4}{E F}\right)^{2}$
$\Rightarrow \frac{8}{13}=\frac{4}{E F}$
$\Rightarrow \mathrm{EF}=6.5 \mathrm{~cm}$
18.

Sol:

In $\triangle \mathrm{AOB}$ and COD

$$
\begin{aligned}
& \angle A B O=\angle C D O \quad(\text { Alternte angles in } A B \| C D) \\
& \angle A O B=\angle C O D \quad(\text { Vertically opposite angles) }
\end{aligned}
$$

By AA similarity criterion, $\triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$
If two triangles are similar, then the ratio of their areas is equal to the ratio of the squares of their corresponding sides.
$\therefore \frac{\operatorname{area}(\triangle A O B)}{\operatorname{area}(\triangle C O D)}=\left(\frac{A B}{C D}\right)^{2}$
$\Rightarrow \frac{84}{\operatorname{area}(\triangle C O D)}=\left(\frac{2 C D}{C D}\right)^{2}$
$\Rightarrow \operatorname{area}(\triangle C O D)=12 \mathrm{~cm}^{2}$
19.

Sol:

Downloaded from www.studiestoday.com

If two triangles are similar, then the ratio of their areas is equal to the squares of their corresponding sides.

$$
\begin{aligned}
& \therefore \frac{\text { area of smaller triangle }}{\text { area of lager triangle }}=\left(\frac{\text { Side of smaller triangle }}{\text { Side of larger triangle }}\right)^{2} \\
& \Rightarrow \frac{48}{\text { area of larger triangle }}=\left(\frac{2}{3}\right)^{2} \\
& \Rightarrow \text { area of larger triangle }=108 \mathrm{~cm}^{2}
\end{aligned}
$$

Sol:

We know that the altitude of an equilateral triangle bisects the side on which it stands and forms right angled triangles with the remaining sides.
Suppose ABC is an equilateral triangle having $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=\mathrm{a}$.
Suppose AD is the altitude drawn from the vertex A to the side BC.
So, It will bisects the side BC
$\therefore D C=\frac{1}{2} a$
Now, In right triangle ADC
By using Pythagoras theorem, we have

$$
\begin{aligned}
& A C^{2}=C D^{2}+D A^{2} \\
& \Rightarrow a^{2}-\left(\frac{1}{2} a\right)^{2}+D A^{2} \\
& \Rightarrow D A^{2}=a^{2}-\frac{1}{4} a^{2} \\
& \Rightarrow D A^{2}=\frac{3}{4} a^{2} \\
& \Rightarrow D A=\frac{\sqrt{3}}{2} a \\
& \text { Now, area }(\triangle A B C)=\frac{1}{2} \times B C \times A D \\
& =\frac{1}{2} \times a \times \frac{\sqrt{3}}{2} a \\
& =\frac{\sqrt{3}}{4} a^{2}
\end{aligned}
$$

21.

Sol:

Downloaded from www.studiestoday.com

Suppose ABCD is a rhombus.
We know that the diagonals of a rhombus perpendicularly bisect each other.
$\therefore \angle A O B=90^{\circ}, A O=12 \mathrm{~cm}$ and $B O=5 \mathrm{~cm}$
Now, In right triangle AOB
By using Pythagoras theorem we have
$A B^{2}=A O^{2}+B O^{2}$
$=12^{2}+5^{2}$
$=144+25$
$=169$
$\therefore A B^{2}=169$
$\Rightarrow A B=13 \mathrm{~cm}$
Since, all the sides of a rhombus are equal.
Hence, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=13 \mathrm{~cm}$
22.

Sol:

If two triangles are similar then the corresponding angles of the two triangles are equal.
Here, \triangle DEF $\sim \Delta$ GHK
$\therefore \angle E=\angle H=57^{\circ}$
Now, In \triangle DEF
$\angle D+\angle E+\angle F=180^{\circ} \quad$ (Angle sum property of triangle)
$\Rightarrow \angle F=180^{\circ}-48^{\circ}-57^{\circ}=75^{\circ}$
23.

Sol:

We have
$\mathrm{AM}: \mathrm{MB}=1: 2$
$\Rightarrow \frac{M B}{A M}=\frac{2}{1}$

Adding 1 to both sides, we get
$\Rightarrow \frac{M B}{A M}+1=\frac{2}{1}+1$
$\Rightarrow \frac{M B+A M}{A M}=\frac{2+1}{1}$
$\Rightarrow \frac{A B}{A M}=\frac{3}{1}$
Now, In $\triangle \mathrm{AMN}$ and $\triangle \mathrm{ABC}$
$\angle A M N=\angle A B C \quad$ (Corresponding angles in $M N \| B C$)
$\angle A N M=\angle A C B \quad$ (Corresponding angles in $M N \| B C$)
By AA similarity criterion, $\triangle \mathrm{AMN} \sim \Delta \mathrm{ABC}$
If two triangles are similar, then the ratio of their areas is equal to the ratio of the squares of their corresponding sides.
$\therefore \frac{\operatorname{area}(\triangle A M N)}{\operatorname{area}(\triangle A B C)}=\left(\frac{A M}{A B}\right)^{2}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
24.

Sol:

When two triangles are similar, then the ratios of the lengths of their corresponding sides are proportional.
Here, $\Delta \mathrm{BMP} \sim \Delta \mathrm{CNR}$
$\therefore \frac{B M}{C N}=\frac{B P}{C R}=\frac{M P}{N R}$
Now, $\frac{B M}{C N}=\frac{M P}{N R} \quad[U \operatorname{sing}$ (1)]
$\Rightarrow C N=\frac{B M \times N R}{M P}=\frac{9 \times 9}{6}=13.5 \mathrm{~cm}$
Again, $\frac{B M}{C N}=\frac{B P}{C R}=[U \operatorname{sing}$ (1)]
$\Rightarrow C R=\frac{B P \times C N}{B M}=\frac{5 \times 13.5}{9}=7.5 \mathrm{~cm}$
Perimeter of $\Delta \mathrm{CNR}=\mathrm{CN}+\mathrm{NR}+\mathrm{CR}=13.5+9+7.5=30 \mathrm{~cm}$
25.

Sol:

Downloaded from www.studiestoday.com

We know that the altitude drawn from the vertex opposite to the non-equal side bisects the non-equal side.
Suppose ABC is an isosceles triangle having equal sides AB and BC .
So, the altitude drawn from the vertex will bisect the opposite side.
Now, In right triangle ABD
By using Pythagoras theorem, we have
$A B^{2}=B D^{2}+D A^{2}$
$\Rightarrow 25^{2}=7^{2}+D A^{2}$
$\Rightarrow D A^{2}=625-49$
$\Rightarrow D A^{2}=576$
$\Rightarrow D A=24 \mathrm{~cm}$
26.

Sol:

In right triangle SOW
By using Pythagoras theorem, we have
$O W^{2}=W S^{2}+S O^{2}$
$=35^{2}+12^{2}$
$=1225+144$
$=1369$
$\therefore O W^{2}=1369$
$\Rightarrow O W=37 \mathrm{~m}$
Hence, the man is 37 m away from the starting point.
27.

Sol:

Let $\mathrm{DC}=\mathrm{X}$
$\therefore \mathrm{BD}=\mathrm{a}-\mathrm{X}$

By using angle bisector there in $\triangle \mathrm{ABC}$, we have
$\frac{A B}{A C}=\frac{B D}{D C}$
$\Rightarrow \frac{c}{b}=\frac{a-x}{x}$
$\Rightarrow c x=a b-b x$
$\Rightarrow x(b+c)=a b$
$\Rightarrow x=\frac{a b}{(b+c)}$
Now, $a-x=a-\frac{a b}{b+c}$
$=\frac{a b+a c-a b}{b+c}$
$=\frac{a c}{a+b}$
28.

Sol:

In $\triangle \mathrm{AMN}$ and $\triangle \mathrm{ABC}$

$$
\left.\angle A M N=\angle A B C=76^{\circ} \quad \text { (Given }\right)
$$

$\angle A=\angle A$ (Common)
By AA similarity criterion, $\triangle \mathrm{AMN} \sim \triangle \mathrm{ABC}$
If two triangles are similar, then the ratio of their corresponding sides are proportional
$\therefore \frac{A M}{A B}=\frac{M N}{B C}$
$\Rightarrow \frac{A M}{A M+M B}=\frac{M N}{B C}$
$\Rightarrow \frac{a}{a+b}=\frac{M N}{c}$
$\Rightarrow M N=\frac{a c}{a+b}$
29.

Sol:

Downloaded from www.studiestoday.com

Suppose ABCD is a rhombus.
We know that the diagonals of a rhombus perpendicularly bisect each other.
$\therefore \angle A O B=90^{\circ}, A O=20 \mathrm{~cm}$ and $B O=21 \mathrm{~cm}$
Now, In right triangle AOB
By using Pythagoras theorem we have
$A B^{2}=A O^{2}+O B^{2}$
$=20^{2}+21^{2}$
$=400+441$
$=841$
$\therefore A B^{2}=841$
$\Rightarrow \mathrm{AB}=29 \mathrm{~cm}$
Since, all the sides of a rhombus are equal.
Hence, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=29 \mathrm{~cm}$
30.

Sol:

(i)

Two rectangles are similar if their corresponding sides are proportional.
(ii) True

Two circles of any radii are similar to each other.
(iii)false

If two triangles are similar, their corresponding angles are equal and their corresponding sides are proportional.
(iv) True

Suppose ABC is a triangle and M, N are

Downloaded from www.studiestoday.com

Construction: DE is expanded to F such that $\mathrm{EF}=\mathrm{DE}$
To proof $=\mathrm{DE}=\frac{1}{2} B C$
Proof: In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{CEF}$
$\mathrm{AE}=\mathrm{EC} \quad(\mathrm{E}$ is the mid point of AC$)$
$\mathrm{DE}=\mathrm{EF} \quad$ (By construction)
$\mathrm{AED}=\mathrm{CEF} \quad$ (Vertically Opposite angle)
By SAS criterion, $\triangle \mathrm{ADE} \sim=\triangle \mathrm{CEF}$
$\mathrm{CF}=\mathrm{AD} \quad$ (CPCT)
$\Rightarrow \mathrm{BD}=\mathrm{CF}$
$\angle A D E=\angle E F C \quad(C P C T)$
Since, $\angle A D E$ and $\angle E F C$ are alternate angle
Hence, $\mathrm{AD} \| \mathrm{CF}$ and $\mathrm{BD} \| \mathrm{CF}$
When two sides of a quadrilateral are parallel, then it is a parallelogram
$\therefore \mathrm{DF}=\mathrm{BC}$ and $\mathrm{BD} \| \mathrm{CF}$
$\therefore \mathrm{BDFC}$ is a parallelogram
Hence, $\mathrm{DF}=\mathrm{BC}$
$\Rightarrow \mathrm{DE}+\mathrm{EF}=\mathrm{BC}$
$\Rightarrow D E=\frac{1}{2} B C$
(v) False

In $\triangle \mathrm{ABC}, \mathrm{AB}=6 \mathrm{~cm}, \angle A=45^{\circ}$ and $A C=8 \mathrm{~cm}$ and in $\triangle D E F, D F=9 \mathrm{~cm}, \angle D=$ 45° and $D E=12 \mathrm{~cm}$, then $\triangle A B C \sim \triangle D E F$.
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
(vi) False

The polygon formed by joining the mid points of the sides of a quadrilateral is a parallelogram.
(vii) True

Downloaded from www.studiestoday.com

Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$
To prove $=\frac{\operatorname{Ar}(\triangle A B C)}{\operatorname{Ar}(\triangle D E F)}=\left(\frac{A P}{D Q}\right)^{2}$
Proof: in $\triangle \mathrm{ABP}$ and $\triangle \mathrm{DEQ}$

$$
\begin{array}{ll}
\angle B A P=\angle E D Q & (A s \angle A=\angle D, \text { so their Half is also equal }) \\
\angle B=\angle E & (\angle A B C \sim \triangle D E F)
\end{array}
$$

By AA criterion, $\triangle \mathrm{ABP}$ and $\triangle \mathrm{DEQ}$
$\frac{A B}{D E}=\frac{A P}{D Q}$
Since, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{\operatorname{Ar}(\triangle A B C)}{\operatorname{Ar}(\triangle D E F)}=\left(\frac{A B}{D E}\right)^{2}$
$\Rightarrow \frac{A r(\triangle A B C)}{A r(\triangle D E F)}=\left(\frac{A P}{D Q}\right)^{2} \quad[U \operatorname{sing}$ (1)]
(viii)

Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$
To Prove $=\frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{A P}{D Q}$
Proof: In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{DEQ}$

$$
\angle B=\angle E \quad(\therefore \triangle A B C \sim \triangle D E F)
$$

$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{A B}{D E}=\frac{B C}{E F}$
$\Rightarrow \frac{A B}{D E}=\frac{2 B P}{2 E Q}$
$\Rightarrow \frac{A B}{D E}=\frac{B P}{E Q}$
By SAS criterion, $\triangle \mathrm{ABP} \sim \triangle \mathrm{DEQ}$
$\frac{A B}{D E}=\frac{A P}{D Q}$
Since, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{A B}{D E}$
$\Rightarrow \frac{\operatorname{Perimeter}(\triangle A B C)}{\operatorname{Perimeter}(\triangle D E F)}=\frac{A P}{D Q} \quad[U \operatorname{sing}$ (1)]
(ix) True

Suppose $A B C D$ is a rectangle with O is any point inside it.
Construction: $O A^{2}+O C^{2}=O B^{2}+O D^{2}$
Proof:

$$
O A^{2}+O C^{2}=\left(A S^{2}+O S^{2}\right)+\left(O Q^{2}+Q C^{2}\right) \quad[\text { Using Pythagoras theorem in right }
$$

triangle AOP and COQ]
$=\left(B Q^{2}+O S^{2}\right)+\left(O Q^{2}+D S^{2}\right)$
$=\left(B Q^{2}+O Q^{2}\right)+\left(O S^{2}+D S^{2}\right) \quad[$ Using Pythagoras theorem in right triangle BOQ
and DOS]
$=O B^{2}+O D^{2}$
Hence, LHS = RHS
(x) True

Suppose ABCD is a rhombus having AC and BD its diagonals.
Since, the diagonals of a rhombus perpendicular bisect each other.
Hence, AOC is a right angle triangle
In right triangle AOC
By using Pythagoras theorem, we have

$$
A B^{2}=\left(\frac{A C}{2}\right)^{2}+\left(\frac{B D}{2}\right)^{2}
$$

[\because Diagonals of a rhombus perpendicularly bisect each other]
$\Rightarrow A B^{2}=\frac{A C^{2}}{4}+\frac{B D^{2}}{4}$
$\Rightarrow 4 A B^{2}=A C^{2}+B D^{2}$
$\Rightarrow A B^{2}+A B^{2}+A B^{2}+A B^{2}=A C^{2}+B D^{2}$
$\Rightarrow A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}[\because$ All sides of a rhombus are equal $]$

Downloaded from www.studiestoday.com

Exercise - MCQ

1.

Sol:

(c) 26 m

Suppose, the man starts from point A and goes 24 m due west to point B. From here, he goes 10 m due north and stops at C .
In right triangle ABC , we have:
$\mathrm{AB}=24 \mathrm{~m}, \mathrm{BC}=10 \mathrm{~m}$
Applying Pythagoras theorem, we get:
$A C^{2}=A B^{2}+B C^{2}=24^{2}+10^{2}$
$A C^{2}=576+100=676$
$A C=\sqrt{676}=26$
2.

Sol:

(b) 10 m

Let AB and DE be the two poles.
According to the question:
$\mathrm{AB}=13 \mathrm{~m}$
$\mathrm{DE}=7 \mathrm{~m}$
Distance between their bottoms $=\mathrm{BE}=8 \mathrm{~m}$
Draw a perpendicular $D C$ to $A B$ from D, meeting $A B$ at C. We get:
$\mathrm{DC}=8 \mathrm{~m}, \mathrm{AC}=6 \mathrm{~m}$

Applying, Pythagoras theorem in right-angled triangle $A C D$, we have

$$
\begin{aligned}
A D^{2} & =D C^{2}+A C^{2} \\
& =8^{2}+6^{2}=64+36=100 \\
A D & =\sqrt{100}=10 M
\end{aligned}
$$

3.

Sol:

Let AB and AC be the vertical stick and its shadow, respectively.
According to the question:
$\mathrm{AB}=1.8 \mathrm{~m}$
$\mathrm{AC}=45 \mathrm{~cm}=0.45 \mathrm{~m}$
Again, let DE and DF be the pole and its shadow, respectively.
According to the question:
$\mathrm{DE}=6 \mathrm{~m}$
$\mathrm{DF}=$?
Now, in right-angled triangles ABC and DEF , we have:
$\angle B A C=\angle E D F=90^{\circ}$
$\angle A C B=\angle D F E \quad$ (Angular elevation of the Sun at the same time)
Therefore, by AA similarity theorem, we get:
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$
$\Rightarrow \frac{A B}{A C}=\frac{D E}{D F}$
$\Rightarrow \frac{1.8}{0.45}=\frac{6}{D F}$
$\Rightarrow D F=\frac{6 \times 0.45}{1.8}=1.5 \mathrm{~m}$
4.

Sol:
(d)

Let AB and AC be the vertical pole and its shadow, respectively.
According to the question:
$\mathrm{AB}=6 \mathrm{~m}$
$\mathrm{AC}=3.6 \mathrm{~m}$
Again, let DE and DF be the tower and its shadow.
According to the question:
DF $=18 \mathrm{~m}$
$\mathrm{DE}=$?
Now, in right -angled triangles ABC and DEF , we have:
$\angle B A C=\angle E D F=90^{\circ}$
$\angle A B C=\angle D F E=\quad$ (Angular elevation of the sun at the same time)
Therefore, by AA similarity theorem, we get:

$$
\begin{aligned}
& \Delta \mathrm{ABC}-\triangle \mathrm{DEF} \\
& \Rightarrow \frac{A B}{A C}=\frac{D E}{D F} \\
& \Rightarrow \frac{6}{3.6}=\frac{D E}{18} \\
& \Rightarrow D E=\frac{6 \times 18}{3.6}=30 \mathrm{~m}
\end{aligned}
$$

5.

Sol:

Suppose DE is a 5 m long stick and BC is a 12.5 m high tree.
Suppose DA and BA are the shadows of DE and BC respectively.
Now, In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$
$\angle A B C=\angle A D E=90^{\circ}$

Downloaded from www.studiestoday.com

$\angle A=\angle A$ (Common)
By AA- similarity criterion
$\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$
If two triangles are similar, then the ratio of their corresponding sides are equal.
$\therefore \frac{A B}{A D}=\frac{B C}{D E}$
$\Rightarrow \frac{A B}{2}=\frac{12.5}{5}$
$\Rightarrow \mathrm{AB}=5 \mathrm{~cm}$
Hence, the correct answer is option (d).
6.

Sol:

(a) 7 m

Let the ladder BC reaches the building at C .
Let the height of building where the ladder reaches be AC.
According to the question:
$\mathrm{BC}=25 \mathrm{~m}$
$\mathrm{AC}=24 \mathrm{~m}$
In right-angled triangle $C A B$, we apply Pythagoras theorem to find the value of $A B$.
$B C^{2}=A C^{2}+A B^{2}$
$\Rightarrow A B^{2}=B C^{2}-A C^{2}=25^{2}-24^{2}$
$\Rightarrow A B^{2}=625-576=49$
$\Rightarrow A B=\sqrt{49}=7 \mathrm{~m}$
7.

Sol:
Now, In right triangle MOP
By using Pythagoras theorem, we have

$$
\begin{aligned}
& M P^{2}=P O^{2}+O M^{2} \\
& =12^{2}+16^{2} \\
& =144+256 \\
& =400 \\
& \therefore M P^{2}=400 \\
& \Rightarrow M O=20 \mathrm{~cm}
\end{aligned}
$$

Now, In right triangle MPN
By using Pythagoras theorem, we have

$$
P N^{2}=N M^{2}+M P^{2}
$$

$=21^{2}+20^{2}$
$=441+400$
$=841$
$\therefore M P^{2}=841$
$\Rightarrow \mathrm{MP}=29 \mathrm{~cm}$
Hence, the correct answer is option (b).
8.

Sol:

(b) $15 \mathrm{~cm}, 20 \mathrm{~cm}$

It is given that length of hypotenuse is 25 cm .
Let the other two sides be x cm and $(\mathrm{x}-5) \mathrm{cm}$.
Applying Pythagoras theorem, we get:

$$
\begin{aligned}
& 25^{2}=x^{2}+(x-5)^{2} \\
& \Rightarrow 625=x^{2}+x^{2}+25-10 x \\
& \Rightarrow 2 x^{2}-10 x-600=0 \\
& \Rightarrow x^{2}-5 x-300=0 \\
& \Rightarrow x^{2}-20 x+15 x-300=0 \\
& \Rightarrow x(x-20)+15(x-20)=0 \\
& \Rightarrow(\mathrm{x}-20)(\mathrm{x}+15)=0 \\
& \Rightarrow x-20=0 \text { or } x+15=0 \\
& \Rightarrow x=20 \text { or } x=-15
\end{aligned}
$$

Side of a triangle cannot be negative.
Therefore, $\mathrm{x}=20 \mathrm{~cm}$
Now,
$\mathrm{x}-5=20-5=15 \mathrm{~cm}$
9.

Sol:

(b) $6 \sqrt{3} \mathrm{~cm}$

Let ABC be the equilateral triangle with AD as its altitude from A .
In right-angled triangle ABD , we have

$$
\begin{aligned}
A B^{2} & =A D^{2}+B D^{2} \\
A D^{2} & =A B^{2}-B D^{2} \\
& =12^{2}-6^{2} \\
& =144-36=108 \\
\mathrm{AD} & =\sqrt{108}=6 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

10.

Sol:
(d) 24 cm

In triangle ABC , let the altitude from A on BC meets BC at D .
We have:
$\mathrm{AD}=5 \mathrm{~cm}, \mathrm{AB}=13 \mathrm{~cm}$ and D is the midpoint of BC .
Applying Pythagoras theorem in right-angled triangle ABD , we get:
$A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow B D^{2}=A B^{2}-A D^{2}$
$\Rightarrow B D^{2}=13^{2}-5^{2}$
$\Rightarrow B D^{2}=169-25$
$\Rightarrow B D^{2}=144$
$\Rightarrow B D=\sqrt{144}=12 \mathrm{~cm}$
Therefore, $\mathrm{BC}=2 \mathrm{BD}=24 \mathrm{~cm}$
11.

Sol:

(a) $3: 4$

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$, we have:
$\angle B A D=\angle C A D$
Now,
$\frac{B D}{D C}=\frac{A B}{A C}=\frac{6}{8}=\frac{3}{4}$
$\mathrm{BD}: \mathrm{DC}=3: 4$
12.

Sol:

(d) 7.5 cm

It is given that AD bisects angle A

Therefore, applying angle bisector theorem, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
$\Rightarrow \frac{4}{5}=\frac{6}{x}$
$\Rightarrow x=\frac{5 \times 6}{4}=7.5$
Hence, $\mathrm{AC}=7.5 \mathrm{~cm}$
13.

Sol:
By using angle bisector in $\triangle \mathrm{ABC}$, we have

$$
\frac{A B}{A C}=\frac{B D}{D C}
$$

$\Rightarrow \frac{10}{14}=\frac{6-x}{x}$

Downloaded from www.studiestoday.com

$\Rightarrow 10 \mathrm{x}=84-14 \mathrm{x}$
$\Rightarrow 24 \mathrm{x}=84$
$\Rightarrow \mathrm{x}=3.5$
Hence, the correct answer is option (b).
14.

Sol:

(b) Isosceles

In an isosceles triangle, the perpendicular from the vertex to the base bisects the base.
15.

Sol:

(c) $3 A B^{2}=4 A D^{2}$

Applying Pythagoras theorem in right-angled triangles ABD and ADC , we get:
$A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow A B^{2}=\left(\frac{1}{2} A B\right)^{2}+A D^{2} \quad\left(\because \triangle A B C\right.$ is equilateral and $\left.A D=\frac{1}{2} A B\right)$
$\Rightarrow A B^{2}=\frac{1}{4} A B^{2}+A D^{2}$
$\Rightarrow A B^{2}-\frac{1}{4} A B^{2}=A D^{2}$
$\Rightarrow \frac{3}{4} A B^{2}=A D^{2}$
$\Rightarrow 3 A B^{2}=4 A D^{2}$
16.

Sol:

(c) 16 cm

Let ABCD be the rhombus with diagonals AC and BD intersecting each other at O . Also, diagonals of a rhombus bisect each other at right angles.

Downloaded from www.studiestoday.com

If $\mathrm{AC}=12 \mathrm{~cm}, \mathrm{AO}=6 \mathrm{~cm}$
Applying Pythagoras theorem in right-angled triangle AOB. We get:

$$
\begin{aligned}
& A B^{2}=A O^{2}+B O^{2} \\
& \Rightarrow B O^{2}=A B^{2}-A O^{2} \\
& \Rightarrow B O^{2}=10^{2}-6^{2}=100-36=64 \\
& \Rightarrow B O=\sqrt{64}=8 \\
& \Rightarrow B D=2 \times B O=2 \times 8=16 \mathrm{~cm}
\end{aligned}
$$

Hence, the length of the second diagonal BD is 16 cm .
17.

Sol:

(b) 13 cm

Let ABCD be the rhombus with diagonals AC and BD intersecting each other at O .
We have:
$\mathrm{AC}=24 \mathrm{~cm}$ and $\mathrm{BD}=10 \mathrm{~cm}$
We know that diagonals of a rhombus bisect each other at right angles.
Therefore applying Pythagoras theorem in right-angled triangle AOB, we get:

$$
\begin{aligned}
& A B^{2}=A O^{2}+B O^{2}=12^{2}+5^{2} \\
& \quad=144+25=169 \\
& A B=\sqrt{169}=13
\end{aligned}
$$

Hence, the length of each side of the rhombus is 13 cm .
18.

Sol:

(b) trapezium

Diagonals of a trapezium divide each other proportionally.
19.

Sol:

Downloaded from www.studiestoday.com

(a) A parallelogram

The line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.
20.

Sol:

(c) isosceles

Let $A D$ be the angle bisector of angle A in triangle $A B C$.
Applying angle bisector theorem, we get:
$\frac{A B}{A C}=\frac{B D}{D C}$
It is given that AD bisects BC .
Therefore, $\mathrm{BD}=\mathrm{DC}$
$\Rightarrow \frac{A B}{A C}=1$
$\Rightarrow \mathrm{AB}=\mathrm{AC}$
Therefore, the triangle is isosceles.
21.

Sol:
(a) 2

We know that the diagonals of a trapezium are proportional.
Therefore $\frac{O A}{O C}=\frac{O B}{O D}$
$\Rightarrow \frac{3 x-1}{5 x-3}=\frac{2 x+1}{6 x-5}$
$\Rightarrow(3 \mathrm{X}-1)(6 \mathrm{X}-5)=(2 \mathrm{X}+1)(5 \mathrm{X}-3)$
$\Rightarrow 18 X^{2}-15 X-6 X+5=10 X^{2}-6 X+5 X-3$
$\Rightarrow 18 X^{2}-21 X+5=10 X^{2}-X-3$
$\Rightarrow 18 X^{2}-21 X+5-10 X^{2}+X+3=0$
$\Rightarrow 8 X^{2}-20 X+8=0$
$\Rightarrow 4\left(2 X^{2}-5 X+2\right)=0$
$\Rightarrow 2 X^{2}-5 X+2=0$
$\Rightarrow 2 X^{2}-4 X-X+2=0$
$\Rightarrow 2 X(X-2)-1(X-2)=0$
$\Rightarrow(X-2)(2 X-1)=0$
\Rightarrow Either $x-2=0$ or $2 x-1=0$
\Rightarrow Either $x=2$ or $x=\frac{1}{2}$
When $x=\frac{1}{2}, 6 x-5=-2<0$, which is not possible.
Therefore, $\mathrm{x}=2$
22.

Sol:

(a) 30^{0}

We have:
$\frac{A B}{A C}=\frac{B D}{D C}$

Applying angle bisector theorem, we can conclude that AD bisects $\angle A$.
In $\triangle \mathrm{ABC}$,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A=180-\angle B-\angle C$
$\Rightarrow \angle A=180-70-50=60^{\circ}$
$\because \angle B A D=\angle C A D=\frac{1}{2} \angle B A C$
$\therefore \angle B A D=\frac{1}{2} \times 60=30^{\circ}$
23.

Sol:

(b) 6 cm

It is given that $\mathrm{DE} \| \mathrm{BC}$.
Applying basic proportionality theorem, we have:

$\frac{A D}{B D}=\frac{A E}{E C}$
$\Rightarrow \frac{2.4}{B D}=\frac{3.2}{4.8}$

Downloaded from www.studiestoday.com

$\Rightarrow B D=\frac{2.4 \times 4.8}{3.2}=3.6 \mathrm{~cm}$
Therefore, $\mathrm{AB}=\mathrm{AD}+\mathrm{BD}=2.4+3.6=6 \mathrm{~cm}$
24.

Sol:

(b) 4 cm

It is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying basic proportionality theorem, we get:
$\frac{A D}{A B}=\frac{A E}{A C}$
$\Rightarrow \frac{4.5}{7.2}=\frac{A E}{6.4}$
$\Rightarrow A E=\frac{4.5 \times 6.4}{7.2}=4 \mathrm{~cm}$
25.

Sol:

(c) $\mathrm{x}=4$

It is given $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem. We get:

$$
\begin{aligned}
& \frac{A D}{B D}=\frac{A E}{E C} \\
& \Rightarrow \frac{7 x-4}{3 x+4}=\frac{5 x-2}{3 x} \\
& \Rightarrow 3 x(7 x-4)=(5 x-2)(3 x+4) \\
& \Rightarrow 21 x^{2}-12 x=15 x^{2}+20 x-6 x-8 \\
& \Rightarrow 21 x^{2}-12 x=15 x^{2}+14 x-8 \\
& \Rightarrow 6 x^{2}-26 x+8=0 \\
& \Rightarrow 2\left(3 x^{2}-13 x+4\right)=0 \\
& \Rightarrow 3 x^{2}-13 x+4=0 \\
& \Rightarrow 3 x^{2}-12 x-x+4=0 \\
& \Rightarrow 3 x(x-4)-1(x-4)=0 \\
& \Rightarrow(x-4)(3 x-1)=0 \\
& \Rightarrow x-4=0 \text { or } 3 x-1=0 \\
& \Rightarrow x-4 \text { or } x=\frac{1}{3} \\
& \text { If } x=\frac{1}{3}, 7 x-4=-\frac{5}{3}<0 \text {; it is not possible. } \\
& \text { Therefore, } \mathrm{x}=4
\end{aligned}
$$

26.

Sol:

(d) 2.1 cm

It is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we get:
$\frac{A D}{D B}=\frac{A E}{E C}$
Let AE be xcm .
Therefore, EC $=(5.6-x) \mathrm{cm}$
$\Rightarrow \frac{3}{5}=\frac{x}{5.6-x}$
$\Rightarrow 3(5.6-x)=5 x$
$\Rightarrow 16.8-3 x=5 x$
$\Rightarrow 8 x=16.8$
$\Rightarrow \mathrm{x}=2.1 \mathrm{~cm}$
27.

Sol:

(b) 5.4 cm
$\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$
Therefore,
$\frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{B C}{E F}$
$\Rightarrow \frac{30}{18}=\frac{9}{E F}$
$\Rightarrow E F=\frac{9 \times 18}{30}=5.4 \mathrm{~cm}$
28.

Sol:
(a) 35 cm
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{A B}{D E}$
$\Rightarrow \frac{\operatorname{Perimeter}(\triangle A B C)}{25}=\frac{9.1}{6.5}$
\Rightarrow Perimeter $(\triangle A B C)=\frac{9.1 \times 25}{6.5}=35 \mathrm{~cm}$
29.

Sol:

(d) 30 cm

Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=9+6+7.5=22.5 \mathrm{~cm}$
$\because \triangle \mathrm{DEF} \sim \triangle \mathrm{ABC}$
$\therefore \frac{\text { Perimeter } \triangle(A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{B C}{E F}$
$\Rightarrow \frac{22.5}{\text { Perimeter }(\triangle D E F)}=\frac{6}{8}$
$\operatorname{Perimeter}(\triangle \mathrm{DEF})=\frac{22.5 \times 8}{6}=30 \mathrm{~cm}$
30.

Sol:

Give: ABC and BDE are two equilateral triangles
Since, D is the midpoint of BC and BDE is also an equilateral triangle.
Hence, E is also the midpoint of $A B$.
Now, D and E are the midpoint of $B C$ and $A B$.
In a triangle, the line segment that joins midpoint of the two sides of a triangle is parallel to the third side and is half of it.
$D E \| C A$ and $D E=\frac{1}{2} C A$
Now, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EBD}$

$$
\angle B E D=\angle B A C \quad \text { (Corresponding angles) }
$$

$\angle B=\angle B \quad$ (Common)
By AA-similarity criterion
$\triangle \mathrm{ABC} \sim \triangle \mathrm{EBD}$
If two triangles are similar, then the ratio of their areas is equal to the ratio of the squares of their corresponding sides.
$\therefore \frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle D B E)}=\left(\frac{A C}{E D}\right)^{2}=\left(\frac{2 E D}{E D}\right)^{2}=\frac{4}{1}$
Hence, the correct answer is option (d).
31.

Sol:

(b) $\mathrm{DE}=12 \mathrm{~cm}, \angle F=100^{\circ}$

Downloaded from www.studiestoday.com

Disclaimer: In the question, it should be $\triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$ instead of $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$. In triangle ABC ,
$\angle A+\angle B+\angle C=180^{\circ}$
$\therefore \angle B=180-30-50=100^{\circ}$
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$
$\therefore \angle D=\angle A=30^{\circ}$
$\angle F=\angle B=100^{\circ}$
And $\angle E=\angle C=50^{\circ}$
Also,
$\frac{A B}{D F}=\frac{A C}{D E} \Rightarrow \frac{5}{7.5}=\frac{8}{D E}$
$\Rightarrow D E=\frac{8 \times 7.5}{5}=12 \mathrm{~cm}$
32.

Sol:

(c) $\mathrm{BD} \cdot \mathrm{CD}=A D^{2}$

In $\triangle \mathrm{BDA}$ and $\triangle \mathrm{ADC}$, we have:

$$
\begin{aligned}
\angle B D A & =\angle A D C=90^{\circ} \\
\angle A B D & =90^{\circ}-\angle D A B \\
& =90^{\circ}-\left(90^{\circ}-\angle D A C\right) \\
& =90^{\circ}-90^{\circ}+\angle D A C \\
& =\angle D A C
\end{aligned}
$$

Applying AA similarity, we conclude that $\triangle B D A-\triangle A D C$.
$\Rightarrow \frac{B D}{A D}=\frac{A D}{C D}$
$\Rightarrow A D^{2}=B D . C D$
33.

Sol:

$$
\begin{aligned}
& A B=6 \sqrt{3} \mathrm{~cm} \\
& \Rightarrow A B^{2}=108 \mathrm{~cm}^{2} \\
& \mathrm{AC}=12 \mathrm{~cm} \\
& \Rightarrow A C^{2}=144 \mathrm{~cm}^{2}
\end{aligned}
$$

Downloaded from www.studiestoday.com

$\mathrm{BC}=6 \mathrm{~cm}$
$\Rightarrow B C^{2}=36 \mathrm{~cm}$
$\therefore A C^{2}=A B^{2}+B C^{2}$
Since, the square of the longest side is equal to the sum of two sides, so $\triangle \mathrm{ABC}$ is a right angled triangle.
\therefore The angle opposite to $\angle 90^{\circ}$
Hence, the correct answer is option (c)
34.

Sol:

(c) $\angle B=\angle D$

Disclaimer: In the question, the ratio should be $\frac{A B}{D E}=\frac{B C}{F D}=\frac{A C}{E F}$.
We can write it as:
$\frac{A B}{E D}=\frac{B C}{D F}=\frac{A C}{F E}$
Therefore, $\triangle \mathrm{ABC}$ - EDF
Hence, the corresponding angles, i.e., $\angle B$ and $\angle D$, will be equal.
i.e.,$\angle B=\angle D$
35.

Sol:

(b) $\frac{D E}{P Q}=\frac{E F}{R P}$

In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$, we have:
$\angle D=\angle Q$ and $\angle R=\angle E$
Applying AA similarity theorem, we conclude that $\triangle \mathrm{DEF} \sim \Delta \mathrm{QRP}$.
Hence, $\frac{D E}{Q R}=\frac{D F}{Q P}=\frac{E F}{P R}$
36.

Sol:

(c) $\mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{EF}$ $\triangle \mathrm{ABC} \sim \Delta \mathrm{EDF}$

Therefore,

$$
\begin{aligned}
& \frac{A B}{D E}=\frac{A C}{E F}=\frac{B C}{D F} \\
& \Rightarrow \mathrm{BC} . \mathrm{DE} \neq \mathrm{AB} . \mathrm{EF}
\end{aligned}
$$

37.

Sol:

(b) similar but not congruent

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, we have:
$\angle B=\angle E$ and $\angle F=\angle C$
Applying AA similarity theorem, we conclude that $\triangle \mathrm{ABC}-\triangle \mathrm{DEF}$.
Also,
$\mathrm{AB}=3 \mathrm{DE}$
$\Rightarrow \mathrm{AB} \neq \mathrm{DE}$
Therefore, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are not congruent.
38.

Sol:

(a) $\triangle \mathrm{PQR} \sim \triangle \mathrm{CAB}$

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, we have:
$\frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$
$\Rightarrow \triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}$
We can also write it as $\triangle \mathrm{PQR} \sim \triangle \mathrm{CAB}$.
39.

Sol:

(d) 100^{0}

In $\triangle \mathrm{APB}$ and $\triangle \mathrm{DPC}$, we have:

$\angle A P B=\angle D P C=50^{\circ}$
$\frac{A P}{B P}=\frac{6}{3}=2$
$\frac{D P}{C P}=\frac{5}{2.5}=2$
Hence, $\frac{A P}{B P}=\frac{D P}{C P}$
Applying SAS theorem, we conclude that \triangle APB- \triangle DPC.
$\therefore \angle P B A=\angle P C D$
In $\triangle \mathrm{DPC}$, we have:
$\angle C D P+\angle C P D+\angle P C D=180^{\circ}$
$\Rightarrow \angle P C D=180^{\circ}-\angle C D P-\angle C P D$
$\Rightarrow \angle P C D=180^{0}-30^{0}-50^{0}$
$\Rightarrow \angle P C D=100^{\circ}$
Therefore, $\angle P B A=100^{\circ}$
40.

Sol:

If two triangles are similar, then the ratio of their areas is equal to the ratio of the squares of their corresponding sides.
$\therefore \frac{\text { area of first triangle }}{\text { area of second triangle }}=\left(\frac{\text { Side of first triangle }}{\text { Side of second triangle }}\right)^{2}=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}$
Hence, the correct answer is option (d).
41.

Sol:

(d) $9: 4$

It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ and $\frac{B C}{Q R}=\frac{2}{3}$
Therefore,

$$
\frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle A B C)}=\frac{Q R^{2}}{B C^{2}}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}
$$

42.

Sol:

(b) $4: 1$

In $\triangle \mathrm{ABC}, \mathrm{D}$ is the midpoint of AB and E is the midpoint of AC .

Therefore, by midpoint theorem,
Also, by Basic Proportionality Theorem,

Downloaded from www.studiestoday.com

$\frac{A D}{D B}=\frac{A E}{E C}$
Also,
$\mathrm{AB}=\mathrm{AC}=\mathrm{BC}(\because \triangle \mathrm{ABC}$ is an equilateral triangle $)$
So, $\frac{A D}{D B}=\frac{A E}{E C}=1$
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$, we have:
$\angle A=\angle A$
$\frac{A D}{A B}=\frac{A E}{A C}=\frac{1}{2}$
$\therefore \triangle \mathrm{ABC}-\triangle \mathrm{ADE}$ (SAS criterion)
$\therefore \operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle A D E)=(A B)^{2}:(A D)^{2}$
$\Rightarrow \operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle A D E)=2^{2}: 1^{2}$
$\Rightarrow \operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle A D E)=4: 1$
43.

Sol:

(b) $25: 49$

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, we have :
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D E}=\frac{5}{7}$
Therefore, by SSS criterion, we conclude that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A B^{2}}{D E^{2}}=\left(\frac{5}{7}\right)^{2}=\frac{25}{49}=25: 49$
44.

Sol:

(b) 6:7
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
Also,
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A B^{2}}{D E^{2}}$
$\Rightarrow \frac{36}{49}=\frac{A B^{2}}{D E^{2}}$
$\Rightarrow \frac{6}{7}=\frac{A B}{D E}$
$\Longrightarrow \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=\frac{6}{7} \quad($ from $(i))$
Thus, the ratio of corresponding sides is $6: 7$.
45.

Sol:

(c) $5: 6$

Let x and y be the corresponding heights of the two triangles.
It is given that the corresponding angles of the triangles are equal.
Therefore, the triangles are similar. (By AA criterion)
Hence,

$$
\begin{aligned}
& \frac{\operatorname{ar}\left(\Delta_{1}\right)}{\operatorname{ar}\left(\Delta_{2}\right)}=\frac{25}{36}=\frac{x^{2}}{y^{2}} \\
& \Rightarrow \frac{x^{2}}{y^{2}}=\frac{25}{36} \\
& \Rightarrow \frac{x^{2}}{y^{2}}=\sqrt{\frac{25}{36}}=\frac{5}{6}=5: 6
\end{aligned}
$$

46.

Sol:

(b) similar to the original triangle

The line segments joining the midpoint of the sides of a triangle form four triangles, each of which is similar to the original triangle.
47.

Sol:

(b) 10 cm
$\because \triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}$
$\therefore \frac{A B}{Q R}=\frac{B C}{P R}$
Now,
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle Q R P)}=\frac{9}{4}$
$\Rightarrow\left(\frac{A B}{Q R}\right)^{2}=\frac{9}{4}$
$\Rightarrow \frac{A B}{Q R}=\frac{B C}{P R}=\frac{3}{2}$
Hence, $3 P R=2 B C=2 \times 15=30$
$\mathrm{PR}=10 \mathrm{~cm}$
48.

Sol:

(c) isosceles and similar

In $\triangle \mathrm{AOC}$ and $\triangle \mathrm{ODB}$, we have:
$\angle A O C=\angle D O B$ (Vertically opposite angles)
and $\angle O A C=\angle O D B$ (Angles in the same segment)
Therefore, by $A A$ similarity theorem, we conclude that $\triangle A O C-\triangle D O B$.
$\Rightarrow \frac{O C}{O B}=\frac{O A}{O D}=\frac{A C}{B D}$
Now, OB = OD
$\Rightarrow \frac{O C}{O A}=\frac{O B}{O D}=1$
$\Rightarrow \mathrm{OC}=\mathrm{OA}$
Hence, $\triangle \mathrm{OAC}$ and $\triangle \mathrm{ODB}$ are isosceles and similar.
49.

Sol:

(d) 90^{0}

Given:
$\mathrm{AC}=\mathrm{BC}$
$A B^{2}=2 A C^{2}=A C^{2}+A C^{2}=A C^{2}+B C^{2}$
Applying Pythagoras theorem, we conclude that $\triangle \mathrm{ABC}$ is right angled at C .
Or, $\angle C=90^{\circ}$

Downloaded from www.studiestoday.com

50.

Sol:

(b) right-angled

We have:
$A B^{2}+B C^{2}=16^{2}+12^{2}=256+144=400$
and, $A C^{2}=20^{2}=400$
$\therefore A B^{2}+B C^{2}=A C^{2}$
Hence, $\triangle \mathrm{ABC}$ is a right-angled triangle.
51.

Sol:
(c)Two triangles are similar if their corresponding sides are proportional.

According to the statement:
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
if $\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$
52.

Sol:
(b) The ratio of the areas of two similar triangles is equal to the ratio of their corresponding sides.
Because the ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
53.

Sol:

(a) -(s)

Let AE be X.
Therefore, $\mathrm{EC}=5.6-\mathrm{X}$
It is given that $\mathrm{DE} \| \mathrm{BC}$.
Therefore, by B.P.T.,we get:
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{3}{5}=\frac{x}{5.6-x}$
$\Rightarrow 3(5.6-x)=5 x$
$\Rightarrow 16.8-3 x=5 x$
$\Rightarrow 8 x=16.8$
$\Rightarrow x=2.1 \mathrm{~cm}$
(b) $-(\mathrm{q})$
$\because \triangle \mathrm{ABC}-\triangle \mathrm{DEF}$
$\therefore \frac{A B}{D E}=\frac{B C}{E F}$
$\Rightarrow \frac{3}{2}=\frac{6}{E F}$
$E F=\frac{6 \times 2}{3}=4 \mathrm{~cm}$
(c) $-(\mathrm{p})$
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C^{2}}{Q R^{2}}$
$\Rightarrow \frac{9}{16}=\frac{4.5^{2}}{Q R^{2}} \Rightarrow Q R=\sqrt{\frac{4.5 \times 4.5 \times 16}{9}}=\frac{4.5 \times 4}{3}=6 \mathrm{~cm}$
(d) $-(\mathrm{r})$
$\because \mathrm{AB}|\mid \mathrm{CD}$
$\therefore \frac{O A}{O B}=\frac{O C}{O D}$ (Thales'theorem)
$\Rightarrow \frac{2 x+4}{9 x-21}=\frac{2 x-1}{3}$
$3(2 x+4)=(2 x-1(9 x-21))$
$\Rightarrow 6 x+12=18 x^{2}-42 x-9 x+21$
$\Rightarrow 18 x^{2}-57 x+9=0$
$\Rightarrow 6 x^{2}-19 x+3=0$
$\Rightarrow 6 x^{2}-18 x-x+3=0$
$\Rightarrow(6 \mathrm{x}-1)(\mathrm{x}-3)=0$
$\Rightarrow x=3$ or $x=-\frac{1}{6}$
But $x=-\frac{1}{6}$ makes $(2 x-1)<0$, which is not possible.
Therefore, $\mathrm{x}=3$
54.

Sol:

(a) $-(\mathrm{r})$

Let the man starts from A and goes 10 m due east at B and then 20 m due north at C . Then, in right-angled triangle ABC , we have:

$$
A B^{2}+B C^{2}=A C^{2}
$$

$$
\Rightarrow A C=\sqrt{10^{2}+20^{2}}=\sqrt{100+200}=10 \sqrt{3}
$$

Hence, the man is $10 \sqrt{3}$ m away from the staring point.

(b) $-(\mathrm{q})$

Let the triangle be ABC with altitude AD .
In right-angled triangle $A B C$, we have:
$A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow A D^{2}=10^{2}-5^{2}\left(\because B D=\frac{1}{2} B C\right)$
$\Rightarrow A D=\sqrt{100-25}=\sqrt{75}=5 \sqrt{3} \mathrm{~cm}$

(c) $-(\mathrm{p})$

Area of an equilateral triangle with side $\mathrm{a}=\frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4} \times 10^{2}=\sqrt{3} \times 5 \times 5$

$$
=25 \sqrt{3} \mathrm{~cm}^{2}
$$

(d) - (s)

Let the rectangle be ABCD with diagonals AC and BD .
In right-angled triangle ABC , we have:

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2}=8^{2}+6^{2}=64+36 \\
& \Rightarrow A C=\sqrt{100}=10 \mathrm{~m}
\end{aligned}
$$

Exercise - Formative Assessment

1.

Sol:

(b) 7.5 cm
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{A B}{D E}$
$\Rightarrow \frac{32}{24}=\frac{10}{D E}$
$\Rightarrow D E=\frac{10 \times 24}{32}=7.5 \mathrm{~cm}$
2.

Sol:

(a) 5.6 cm
$\because \mathrm{DE} \| \mathrm{BC}$
$\therefore \frac{A D}{A B}=\frac{A E}{A C}=\frac{D E}{B C} \quad$ (Thales'theorem)
$\Rightarrow \frac{3.5}{A B}=\frac{5}{8}$
$\Rightarrow A B=\frac{3.5 \times 8}{5}=5.6 \mathrm{~cm}$
3.

Sol:

(b) 13 m

Let the poles be and CD
It is given that:
$\mathrm{AB}=6 \mathrm{~m}$ and $\mathrm{CD}=11 \mathrm{~m}$
Let AC be 12 m
Draw a perpendicular farm Bon $C D$, meeting $C D$ at E

Then,
$\mathrm{BE}=12 \mathrm{~m}$
We have to find BD.
Applying Pythagoras theorem in right-angled triangle BED, we have:
$B D^{2}=B E^{2}+E D^{2}$
$=12^{2}+5^{2}(\because E D=C D-C E=11-6)$
$=144+25=169$
BD $=13 \mathrm{~m}$
4.

Sol:

(c)

We know that the ratio of areas of similar triangles is equal to the ratio of squares of their corresponding altitudes.
Let f be the altitude of the other triangle.
Therefore,
$\frac{25}{36}=\frac{(3.5)^{2}}{h^{2}}$
$\Rightarrow h^{2}=\frac{(3.5)^{2} \times 36}{25}$
$\Rightarrow h^{2}=17.64$
$\Rightarrow h=4.2 \mathrm{~cm}$
5.

Sol:
$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{A B}{D E}=\frac{B C}{E F}$
$\Rightarrow \frac{1}{2}=\frac{6}{E F}$
$\Rightarrow E F=12 \mathrm{~cm}$
6.

Sol:

$\because \mathrm{DE} \| \mathrm{BC}$
$\therefore \frac{A D}{D B}=\frac{A E}{E C} \quad$ (Basic proportinality theorem)

$\frac{x}{3 x+4}=\frac{x+3}{3 x+19}$
$\Rightarrow x(3 x+19)=(x+3)(3 x+4)$
$\Rightarrow 3 x^{2}+19 x=3 x^{2}+4 x+9 x+12$

Downloaded from www.studiestoday.com

$\Rightarrow 19 x-13 x=12$
$\Rightarrow 6 \mathrm{x}=12$
$\Rightarrow x=2$
7.

Sol:

Let the ladder be AB and BC be the height of the window from the ground.

We have:
AB 10 m and $\mathrm{BC}=8 \mathrm{~m}$
Applying theorem in right-angled triangle ACB , we have:
$A B^{2}=A C^{2}+B C^{2}$
$\Rightarrow A C^{2}=A B^{2}-B C^{2}=10^{2}-8^{2}=100-64=36$
$\Rightarrow A C=6 \mathrm{~m}$
Hence, the ladder is 6 m away from the base of the wall.
8.

Sol:

Let the triangle be ABC with AD as its altitude. Then, D is the midpoint of BC . In right-angled triangle ABD , we have:

$$
\begin{aligned}
& A B^{2}=A D^{2}+D B^{2} \\
& \Rightarrow A D^{2}=A B^{2}-D B^{2}=4 a^{2}-a^{2} \quad\left(\because B D=\frac{1}{2} B C\right) \\
& \quad=3 a^{2} \\
& A D=\sqrt{3} a
\end{aligned}
$$

Hence, the length of the altitude of an equilateral triangle of side 2 a cm is $\sqrt{3 a} \mathrm{~cm}$.
9.

Sol:

Downloaded from www.studiestoday.com

$\because \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{B C^{2}}{E F^{2}}$
$\Rightarrow \frac{64}{169}=\frac{4^{2}}{E F^{2}}$
$\Rightarrow E F^{2}=\frac{16 \times 169}{64}$
$\Rightarrow E F=\frac{4 \times 13}{8}=6.5 \mathrm{~cm}$
10.

Sol:

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$, we have:

$\angle A O B=\angle C O D$ (Vertically opposite angles)
$\angle O A B=\angle O C D$ (Alternate angles as $A B \| C D$)
Applying AA similarity criterion, we get :
\triangle AOB - \triangle COD
$\therefore \frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{A B^{2}}{C D^{2}}$
$\Rightarrow \frac{84}{\operatorname{ar}(\triangle C O D)}=\left(\frac{A B}{C D}\right)^{2}$
$\Rightarrow \frac{84}{\operatorname{ar}(\triangle C O D)}=\left(\frac{2 C D}{C D}\right)^{2}$
$\Rightarrow \operatorname{ar}(\triangle C O D)=\frac{84}{4}=21 \mathrm{~cm}^{2}$
11.

Sol:

It is given that the triangles are similar.
Therefore, the ratio of areas of similar triangles will be equal to the ratio of squares of their corresponding sides.
$\therefore \frac{48}{\text { Area of larger triangle }}=\frac{2^{2}}{3^{2}}$
$\Rightarrow \frac{48}{\text { Area of larger triangle }}=\frac{4}{9}$
\Rightarrow Area of larger triangle $=\frac{48 \times 9}{4}=108 \mathrm{~cm}^{2}$
12.

Sol:

LM || CB and LN || CD
Therefore, applying Thales' theorem, we have:
$\frac{A B}{A M}=\frac{A C}{A L}$ and $\frac{A D}{A N}=\frac{A C}{A L}$
$\Rightarrow \frac{A B}{A M}=\frac{A D}{A N}$

$\therefore \frac{A M}{A B}=\frac{A N}{A D}$
This completes the proof.
13.

Sol:

Let the triangle be $A B C$ with $A D$ as the bisector of $\angle A$ which meets $B C$ at D.
We have to prove:

$$
\frac{B D}{D C}=\frac{A B}{A C}
$$

Draw CE $\| \mathrm{DA}$, meeting BA produced at E .
CE || DA
Therefore,
$\angle 2=\angle 3 \quad$ (Alternate angles)
and $\angle 1=\angle 4 \quad$ (Corresponding angles)
But,
$\angle 1=\angle 2$
Therefore,
$\angle 3=\angle 4$
$\Rightarrow \mathrm{AE}=\mathrm{AC}$
In $\triangle \mathrm{BCE}, \mathrm{DA} \| \mathrm{CE}$.
Applying Thales' theorem, we gave:
$\frac{B D}{D C}=\frac{A B}{A E}$

Downloaded from www.studiestoday.com

$\Rightarrow \frac{B D}{D C}=\frac{A B}{A C}$
This completes the proof.
14.

Sol:

Let ABC be the equilateral triangle with each side equal to a .
Let AD be the altitude from A , meeting BC at D .
Therefore, D is the midpoint of BC .
Let AD be h.
Applying Pythagoras theorem in right-angled ABD , we have:
$A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow a^{2}=h^{2}+\left(\frac{a}{2}\right)^{2}$
$\Rightarrow h^{2}=a^{2}-\frac{a^{2}}{4}=\frac{3}{4} a^{2}$
$\Rightarrow h=\frac{\sqrt{3}}{2} a$
Therefore,
Area of triangle $A B C=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times a \times \frac{\sqrt{3}}{2} a$
This completes the proof.
15.

Sol:

Let ABCD be the rhombus with diagonals AC and BD intersecting each other at O .
We know that the diagonals of a rhombus bisect each other at right angles.
\therefore If $\mathrm{AC}-24 \mathrm{~cm}$ and $\mathrm{BD}=10 \mathrm{~cm}, \mathrm{AO}=12 \mathrm{~cm}$ and $\mathrm{BO}=5 \mathrm{~cm}$
Applying Pythagoras theorem in right-angled triangle AOB, we get:
$A B^{2}=A O^{2}+B O^{2}=12^{2}+5^{2}=144+25=169$
$\mathrm{AB}=13 \mathrm{~cm}$
Hence, the length of each side of the given rhombus is 13 cm .
16.

Sol:

Let the two triangles be $A B C$ and $P Q R$.
We have:
$\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$,
Here,
$\mathrm{BC}=\mathrm{a}, \mathrm{AC}=\mathrm{b}$ and $\mathrm{AB}=\mathrm{c}$
$P Q=r, P R=q$ and $Q R=p$
We have to prove:
$\frac{a}{p}=\frac{b}{q}=\frac{c}{r}=\frac{a+b+c}{p+q+r}$
$\Delta \mathrm{ABC} \sim \triangle \mathrm{PQR}$; therefore, their corresponding sides will be proportional.
$\Rightarrow \frac{a}{p}=\frac{b}{q}=\frac{c}{r}=k \quad$ (say)
$\Rightarrow a=k p, b=k q$ and $c=k r$
$\therefore \frac{\text { Premieter of } \triangle A B C}{\text { Perimeter of } \triangle P Q R}=\frac{a+b+c}{p+q+r}=\frac{k p+k q+k r}{p+q+r}=k$
From (i)and (ii), we get:
$\frac{a}{p}=\frac{b}{q}=\frac{c}{r}=\frac{a+b+c}{p+q+r}=\frac{\text { Perimeter of } \triangle A B C}{\text { Perimeter of } \triangle P Q R}$
This completes the proof.
17.

Sol:

Construction : Draw $A X \perp C O$ and $D Y \perp B O$.
As,
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\frac{1}{2} \times A X \times B C}{\frac{1}{2} \times D Y \times B C}$

Downloaded from www.studiestoday.com

$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A X}{D Y} \ldots(i)$
In $\triangle A B C$ and $\triangle D B C, \angle A X Y=\angle D Y O=90^{\circ}$ (BY constructin) $\angle A O X=$
$\angle D O Y$ (Vertically opposite anges) $\therefore \triangle A X O \sim \triangle D Y O$ (BY AA criterion) $\therefore \frac{A X}{D Y}$
$=\frac{A O}{D O}$ (Thales'stheorem) ... (ii)From (i)and (ii), we have $: \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}$
$=\frac{A X}{D Y}=\frac{A O}{D O}$ or, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$
This completes the proof.
18.

Sol:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BXY}$, we have:
$\angle B=\angle B$

$\angle B X Y=\angle B A C \quad$ (Corresponding angles)
Thus, $\triangle A B C-\triangle B X Y$ (AA criterion)
$\therefore \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B X Y)}=\frac{A B^{2}}{B X^{2}}=\frac{A B^{2}}{(A B-A X)^{2}}$
Also, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B X Y)}=\frac{2}{1}\{\therefore \operatorname{ar}(\triangle B X Y)=\operatorname{ar}($ trapezium $A X Y V)\} \ldots$ (ii)
From (i) and (ii), we have:
$\frac{A B^{2}}{(A B-A X)^{2}}=\frac{2}{1}$
$\Rightarrow \frac{A B}{(A B-A X)}=\sqrt{2}$
$\Rightarrow \frac{(A B-A X)}{A B}=\frac{1}{\sqrt{2}}$
$\Rightarrow 1-\frac{A X}{A B}=\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{A X}{A B}=1-\frac{1}{\sqrt{2}}=\frac{\sqrt{2-1}}{\sqrt{2}}=\frac{(2-\sqrt{2)}}{2}$
19.

Sol:

Applying Pythagoras theorem in right-angled triangle ADC, we get:

Downloaded from www.studiestoday.com

$$
\begin{gather*}
A C^{2}=A D^{2}+D C^{2} \\
\Rightarrow A C^{2}-D C^{2}=A D^{2} \\
\Rightarrow A D^{2}=A C^{2}-D B^{2} \tag{1}
\end{gather*}
$$

Applying Pythagoras theorem in right-angled triangle ADB, we get:
$A B^{2}=A D^{2}+D B^{2}$
$\Rightarrow A B^{2}-D B^{2}=A D^{2}$
$\Rightarrow A D^{2}=A B^{2}-D B^{2}$
From equation (1)and (2), we have:
$A C^{2}-D C^{2}=A B^{2}-D B^{2}$
$\Rightarrow A C^{2}=A B^{2}+D C^{2}-D B^{2}$
$\Rightarrow A C^{2}=A B^{2}+(D B+B C)^{2}-D B^{2} \quad(\because D B+B C=D C)$
$\Rightarrow A C^{2}=A B^{2}+D B^{2}+B C^{2}+2 D B \cdot B C-D B^{2}$
$\Rightarrow A C^{2}=A B^{2}+B C^{2}+2 B C \cdot B D$
This completes the proof.
20.

Sol:

In $\Delta \mathrm{PAC}$ and $\triangle \mathrm{QBC}$, we have:

$$
\begin{array}{ll}
\angle A=\angle B & \text { (Both angles are } \left.90^{\circ}\right) \\
\angle P=\angle Q & \text { (Corresponding angles) }
\end{array}
$$

And
$\angle C=\angle C \quad$ (common angles)
Therefore, $\triangle P A C \sim \triangle Q B C$
$\frac{A P}{B Q}=\frac{A C}{B C}$
$\Rightarrow \frac{x}{2}=\frac{a+b}{b}$
$\Rightarrow a+b=\frac{a y}{z}$
In $\Delta \mathrm{RCA}$ and $\triangle \mathrm{QBA}$, we have:
$\angle C=\angle B \quad$ (Both angles are $\left.90^{\circ}\right)$
$\angle R=\angle Q \quad$ (Corresponding angles)
And
$\angle A=\angle A \quad$ (common angles)
Therefore, $\triangle R C A \sim \triangle Q B A$
$\frac{R C}{B Q}=\frac{A C}{A B}$
$\Rightarrow \frac{y}{z}=\frac{a+b}{a}$
$\Rightarrow a+b=\frac{a y}{z}$
From equation (1) and (2), we have:
$\frac{b x}{z}=\frac{a y}{z}$
$\Rightarrow \mathrm{bx}=\mathrm{ay}$
$\Rightarrow \frac{a}{b}=\frac{x}{y}$
Also,
$\frac{x}{z}=\frac{a+b}{b}$
$\Rightarrow \frac{x}{z}=\frac{a}{b}+1$
Using the value of $\frac{a}{b}$ from equation (3), we have:
$\Rightarrow \frac{x}{z}=\frac{x}{y}+1$
Dividing both sides by x, we get:
$\frac{1}{z}=\frac{1}{y}+\frac{1}{x}$
$\therefore \frac{1}{x}+\frac{1}{y}=\frac{1}{z}$
This completes the proof.

