Downloaded from www.studiestoday.com

Exercise - 3A

1.

Sol:

On a graph paper, draw a horizontal line $\mathrm{X}^{\prime} \mathrm{OX}$ and a vertical line YOY' representing the x axis and y-axis, respectively.

$$
\text { Graph of } 2 x+3 y=2
$$

$2 x+3 y=2$
$\Rightarrow 3 \mathrm{y}=(2-2 \mathrm{x})$
$\Rightarrow 3 y=2(1-x)$
$\Rightarrow \mathrm{y}=\frac{2(1-x)}{3}$
Putting $\mathrm{x}=1$, we get $\mathrm{y}=0$
Putting $x=-2$, we get $y=2$
Putting $x=4$, we get $y=-2$
Thus, we have the following table for the equation $2 x+3 y=2$

x	1	-2	4
y	0	2	-2

Now, plot the points $\mathrm{A}(1,0), \mathrm{B}(-2,2)$ and $\mathrm{C}(4,-2)$ on the graph paper.
Join AB and AC to get the graph line BC . Extend it on both ways.
Thus, the line $B C$ is the graph of $2 x+3 y=2$.

Graph of $x-2 y=8$
$x-2 y=8$
$\Rightarrow 2 \mathrm{y}=(\mathrm{x}-8)$
$\Rightarrow \mathrm{y}=\frac{x-8}{2}$
Putting $x=2$, we get $y=-3$
Putting $x=4$, we get $y=-2$
Putting $x=0$, we get $y=-4$
Thus, we have the following table for the equation $\mathrm{x}-2 \mathrm{y}=8$.

x	2	4	0
y	-3	-2	-
		4	

Now, plot the points $\mathrm{P}(0,-4)$ and $\mathrm{Q}(2,-3)$. The point $\mathrm{C}(4,-2)$ has already been plotted. Join $P Q$ and QC and extend it on both ways.
Thus, line $P C$ is the graph of $x-2 y=8$.

Downloaded from www.studiestoday.com

The two graph lines intersect at $\mathrm{C}(4,-2)$.
$\therefore \mathrm{x}=4$ and $\mathrm{y}=-2$ are the solutions of the given system of equations.
2.

Sol:

On a graph paper, draw a horizontal line $X^{\prime} O X$ and a vertical line YOY' representing the x axis and y-axis, respectively.

Graph of $3 x+2 y=4$
$3 x+2 y=4$
$\Rightarrow 2 \mathrm{y}=(4-3 \mathrm{x})$
$\Rightarrow \mathrm{y}=\frac{4-3 x}{2}$
Putting $\mathrm{x}=0$, we get $\mathrm{y}=2$
Putting $x=2$, we get $y=-1$
Putting $x=-2$, we get $y=5$
Thus, we have the following table for the equation $3 x+2 y=4$

x	0	2	-2
y	2	-1	5

Now, plot the points $\mathrm{A}(0,2), \mathrm{B}(2,-1)$ and $\mathrm{C}(-2,5)$ on the graph paper.
Join AB and AC to get the graph line BC . Extend it on both ways.
Thus, $B C$ is the graph of $3 x+2 y=4$.
Graph of $2 x-3 y=7$
$2 x-3 y=7$
$\Rightarrow 3 \mathrm{y}=(2 \mathrm{x}-7)$
$\Rightarrow y=\frac{2 x-7}{3}$
Putting $\mathrm{x}=2$, we get $\mathrm{y}=-1$
Putting $x=-1$, we get $y=-3$
Putting $x=5$, we get $y=1$

Downloaded from www.studiestoday.com

Thus, we have the following table for the equation $2 x-3 y=7$.

x	2	-1	5
y	-1	-3	1

Now, plot the points $\mathrm{P}(-1,-3)$ and $\mathrm{Q}(5,1)$. The point $\mathrm{C}(2,-1)$ has already been plotted. Join PB and QB and extend it on both ways.
Thus, line PQ is the graph of $2 x-3 y=7$.

The two graph lines intersect at $\mathrm{B}(2,-1)$.
$\therefore \mathrm{x}=2$ and $\mathrm{y}=-1$ are the solutions of the given system of equations.
3.

Sol:

On a graph paper, draw a horizontal line $\mathrm{X}^{\prime} \mathrm{OX}$ and a vertical line YOY' as the x -axis and y-axis, respectively.

$$
\text { Graph of } 2 x+3 y=8
$$

$2 x+3 y=8$
$\Rightarrow 3 \mathrm{y}=(8-2 \mathrm{x})$
$\Rightarrow \mathrm{y}=\frac{8-2 x}{3}$
Putting $\mathrm{x}=1$, we get $\mathrm{y}=2$.
Putting $x=-5$, we get $\mathrm{y}=6$.
Putting $\mathrm{x}=7$, we get $\mathrm{y}=-2$.
Thus, we have the following table for the equation $2 x+3 y=8$.

x	1	-5	7
y	2	6	-2

Now, plot the points $\mathrm{A}(1,2), \mathrm{B}(5,-6)$ and $\mathrm{C}(7,-2)$ on the graph paper.
Join $A B$ and $A C$ to get the graph line $B C$. Extend it on both ways.
Thus, BC is the graph of $2 \mathrm{x}+3 \mathrm{y}=8$.

Graph of $x-2 y+3=0$
$x-2 y+3=0$
$\Rightarrow 2 \mathrm{y}=(\mathrm{x}+3)$
$\Rightarrow \mathrm{y}=\frac{x+3}{2}$
Putting $\mathrm{x}=1$, we get $\mathrm{y}=2$.
Putting $\mathrm{x}=3$, we get $\mathrm{y}=3$.
Putting $x=-3$, we get $y=0$.
Thus, we have the following table for the equation $x-2 y+3=0$.

x	1	3	-3
y	2	3	0

Now, plot the points $\mathrm{P}(3,3)$ and $\mathrm{Q}(-3,0)$. The point A $(1,2)$ has already been plotted. Join AP and QA and extend it on both ways.
Thus, PQ is the graph of $x-2 y+3=0$.

The two graph lines intersect at $\mathrm{A}(1,2)$.
$\therefore \mathrm{x}=1$ and $\mathrm{y}=2$.
4.

Sol:

On a graph paper, draw a horizontal line $\mathrm{X}^{\prime} \mathrm{OX}$ and a vertical line YOY' as the x -axis and y-axis, respectively.

$$
\text { Graph of } 2 x-5 y+4=0
$$

$2 x-5 y+4=0$
$\Rightarrow 5 \mathrm{y}=(2 \mathrm{x}+4)$
$\Rightarrow \mathrm{y}=\frac{2 x+4}{5}$

Downloaded from www.studiestoday.com

Putting $\mathrm{x}=-2$, we get $\mathrm{y}=0$.
Putting $\mathrm{x}=3$, we get $\mathrm{y}=2$.
Putting $x=8$, we get $\mathrm{y}=4$.
Thus, we have the following table for the equation $2 x-5 y+4=0$.

x	-2	3	8
y	0	2	4

Now, plot the points $\mathrm{A}(-2,0), \mathrm{B}(3,2)$ and $\mathrm{C}(8,4)$ on the graph paper.
Join AB and BC to get the graph line AC . Extend it on both ways.
Thus, $A C$ is the graph of $2 x-5 y+4=0$.

Graph of $2 x+y-8=0$

$2 x+y-8=0$
$\Rightarrow \mathrm{y}=(8-2 \mathrm{x})$
Putting $\mathrm{x}=1$, we get $\mathrm{y}=6$.
Putting $\mathrm{x}=3$, we get $\mathrm{y}=2$.
Putting $\mathrm{x}=2$, we get $\mathrm{y}=4$.
Thus, we have the following table for the equation $2 x+y-8=0$.

x	1	3	2
y	6	2	4

Now, plot the points $\mathrm{P}(1,6)$ and $\mathrm{Q}(2,4)$. The point $\mathrm{B}(3,2)$ has already been plotted. Join PQ and QB and extend it on both ways.
Thus, PB is the graph of $2 \mathrm{x}+\mathrm{y}-8=0$.

The two graph lines intersect at $\mathrm{B}(3,2)$.
$\therefore \mathrm{x}=3$ and $\mathrm{y}=2$
5.

Sol:
The given equations are:
$3 x+2 y=12$

Downloaded from www.studiestoday.com

$5 x-2 y=4$
From (i), write y in terms of x
$\mathrm{y}=\frac{12-3 x}{2}$
Now, substitute different values of x in (iii) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=\frac{12-3 x}{2}=\frac{12-0}{2}=6$
For $\mathrm{x}=2, \mathrm{y}=\frac{12-3 x}{2}=\frac{12-6}{2}=3$
For $\mathrm{x}=4, \mathrm{y}=\frac{\mathbf{1 2 - 3 x}}{2}=\frac{12-\mathbf{1 2}}{2}=0$
Thus, the table for the first equation $(3 x+2 y=12)$ is

x	0	2	4
y	6	3	0

Now, plot the points $A(0,6), B(2,3)$ and $C(4,0)$ on a graph paper and join
A, B and C to get the graph of $3 \mathrm{x}+2 \mathrm{y}=12$.
From (ii), write y in terms of x
$y=\frac{5 x-4}{2}$
Now, substitute different values of x in (iv) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=\frac{5 x-4}{2}=\frac{0-4}{2}=-2$
For $\mathrm{x}=2, \mathrm{y}=\frac{\mathbf{5 x - 4}}{2}=\frac{\mathbf{1 0 - 4}}{2}=3$
For $\mathrm{x}=4, \mathrm{y}=\frac{5 x-4}{2}=\frac{20-4}{2}=8$
Thus, the table for the first equation $(5 x-2 y=4)$ is

x	0	2	4
y	-2	3	8

Now, plot the points $\mathrm{D}(0,-2), \mathrm{E}(2,3)$ and $\mathrm{F}(4,8)$ on the same graph paper and join D, E and F to get the graph of $5 x-2 y=4$.

From the graph it is clear that, the given lines intersect at $(2,3)$.
Hence, the solution of the given system of equations is $(2,3)$.

Downloaded from www.studiestoday.com

6.

Sol:

On a graph paper, draw a horizontal line $\mathrm{X}^{\prime} \mathrm{OX}$ and a vertical line YOY' as the x -axis and y-axis, respectively.

$$
\text { Graph of } 3 x+y+1=0
$$

$3 x+y+1=0$
$\Rightarrow \mathrm{y}=(-3 \mathrm{x}-1)$
Putting $\mathrm{x}=0$, we get $\mathrm{y}=-1$.
Putting $\mathrm{x}=-1$, we get $\mathrm{y}=2$.
Putting $\mathrm{x}=1$, we get $\mathrm{y}=-4$.
Thus, we have the following table for the equation $3 x+y+1=0$.

x	0	-1	1
y	-1	2	-4

Now, plot the points $\mathrm{A}(0,-1), \mathrm{B}(-1,2)$ and $\mathrm{C}(1,-4)$ on the graph paper.
Join AB and AC to get the graph line BC . Extend it on both ways.
Thus, $B C$ is the graph of $3 x+y+1=0$.

$$
\text { Graph of } 2 x-3 y+8=0
$$

$2 \mathrm{x}-3 \mathrm{y}+8=0$
$\Rightarrow 3 y=(2 x+8)$
$\therefore y=\frac{2 x+8}{3}$
Putting $\mathrm{x}=-1$, we get $\mathrm{y}=2$.
Putting $\mathrm{x}=2$, we get $\mathrm{y}=4$.
Putting $x=-4$, we get $y=0$.
Thus, we have the following table for the equation $2 x-3 y+8=0$.

x	-1	2	-4
y	2	4	0

Now, plot the points $\mathrm{P}(2,4)$ and $\mathrm{Q}(-4,0)$. The point $\mathrm{B}(-1,2)$ has already been plotted. Join PB and BQ and extend it on both ways.
Thus, PQ is the graph of $2 \mathrm{x}+\mathrm{y}-8=0$.

Downloaded from www.studiestoday.com

The two graph lines intersect at $\mathrm{B}(-1.2)$.
$\therefore \mathrm{x}=-1$ and $\mathrm{y}=2$
7.

Sol:

From the first equation, write y in terms of x
$\mathrm{y}=-\left(\frac{5+2 x}{3}\right)$
Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=-1, \mathrm{y}=-\frac{5-2}{3}=-1$
For $\mathrm{x}=2, \mathrm{y}=-\frac{5+4}{3}=-3$
For $\mathrm{x}=5, \mathrm{y}=-\frac{\mathbf{5 + 1 0}}{\mathbf{3}}=-5$
Thus, the table for the first equation $(2 x+3 y+5=0)$ is

x	-1	2	5
y	-1	-3	-5

Now, plot the points A $(-1,-1), \mathrm{B}(2,-3)$ and $\mathrm{C}(5,-5)$ on a graph paper and join them to get the graph of $2 x+3 y+5=0$.
From the second equation, write y in terms of x
$y=\frac{3 x-12}{2}$
Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=\frac{\mathbf{0 - 1 2}}{\mathbf{2}}=-6$
For $\mathrm{x}=2, \mathrm{y}=\frac{6-12}{2}=-3$
For $\mathrm{x}=4, \mathrm{y}=\frac{\mathbf{1 2 - 1 2}}{\mathbf{2}}=0$
So, the table for the second equation $(3 x-2 y-12=0)$ is

Downloaded from www.studiestoday.com

x	0	2	4
y	-6	-3	0

Now, plot the points $\mathrm{D}(0,-6), \mathrm{E}(2,-3)$ and $\mathrm{F}(4,0)$ on the same graph paper and join D, E and F to get the graph of $3 x-2 y-12=0$.

From the graph it is clear that, the given lines intersect at $(2,-3)$.
Hence, the solution of the given system of equation is $(2,-3)$.
8.

Sol:

From the first equation, write y in terms of x
$y=\frac{2 x+13}{3}$
Substitute different values of x in (i) to get different values of y
For $x=-5, y=\frac{-\mathbf{1 0}+\mathbf{1 3}}{3}=1$
For $\mathrm{x}=1, \mathrm{y}=\frac{2+\mathbf{1 3}}{3}=5$
For $\mathrm{x}=4, \mathrm{y}=\frac{\mathbf{8 + 1 3}}{\mathbf{3}}=7$
Thus, the table for the first equation $(2 x-3 y+13=0)$ is

x	-5	1	4
y	1	5	7

Now, plot the points $\mathrm{A}(-5,1), \mathrm{B}(1,5)$ and $\mathrm{C}(4,7)$ on a graph paper and join A, B and C to get the graph of $2 \mathrm{x}-3 \mathrm{y}+13=0$.
From the second equation, write y in terms of x
$y=\frac{3 x+12}{2}$
Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=-4, \mathrm{y}=\frac{-\mathbf{1 2 + 1 2}}{2}=0$

Downloaded from www.studiestoday.com

For $x=-2, y=\frac{-6+12}{2}=3$
For $\mathrm{x}=0, \mathrm{y}=\frac{\mathbf{0 + 1 2}}{\mathbf{2}}=6$
So, the table for the second equation $(3 x-2 y+12=0)$ is

x	-4	-2	0
y	0	3	6

Now, plot the points $\mathrm{D}(-4,0), \mathrm{E}(-2,3)$ and $\mathrm{F}(0,6)$ on the same graph paper and join D, E and F to get the graph of $3 \mathrm{x}-2 \mathrm{y}+12=0$.

From the graph, it is clear that, the given lines intersect at $(-2,3)$.
Hence, the solution of the given system of equation is $(-2,3)$.
9.

Sol:

On a graph paper, draw a horizontal line $\mathrm{X}^{\prime} \mathrm{OX}$ and a vertical line YOY' as the x -axis and y-axis, respectively.

$$
\text { Graph of } 2 x+3 y=4
$$

$2 x+3 y=4$
$\Rightarrow 3 \mathrm{y}=(4-2 \mathrm{x})$
$\therefore y=\frac{4-2 x}{3}$
Putting $\mathrm{x}=-1$, we get $\mathrm{y}=2$.
Putting $\mathrm{x}=2$, we get $\mathrm{y}=0$.
Putting $\mathrm{x}=5$, we get $\mathrm{y}=-2$.
Thus, we have the following table for the equation $2 x+3 y=4$.

x	-1	2	5
y	2	0	-2

Now, plot the points A $(-1,2), \mathrm{B}(2,0)$ and $\mathrm{C}(5,-2)$ on the graph paper.
Join AB and BC to get the graph line AC . Extend it on both ways.
Thus, $A C$ is the graph of $2 x+3 y=4$.

Graph of $3 x-y=-5$

$$
\begin{equation*}
3 x-y=-5 \tag{ii}
\end{equation*}
$$

$\Rightarrow y=(3 x+5)$
Putting $x=-1$, we get $\mathrm{y}=2$.
Putting $x=0$, we get $y=5$.
Putting $x=-2$, we get $\mathrm{y}=-1$.
Thus, we have the following table for the equation $3 x-y=-5$.

x	-1	0	-2
y	2	5	-1

Now, plot the points $\mathrm{P}(0,5)$ and $\mathrm{Q}(-2,-1)$. The point $\mathrm{A}(-1,2)$ has already been plotted.
Join PA and QA and extend it on both ways.
Thus, PQ is the graph of $3 x-y=-5$.

The two graph lines intersect at A (-1.2).
$\therefore \mathrm{x}=-1$ and $\mathrm{y}=2$ are the solutions of the given system of equations.
10.

Sol:

On a graph paper, draw a horizontal line $\mathrm{X}^{\prime} \mathrm{OX}$ and a vertical line YOY' as the x -axis and y-axis, respectively.

$$
\text { Graph of } 2 x+3 y=4
$$

$x+2 y+2=0$
$\Rightarrow 2 \mathrm{y}=(-2-\mathrm{x})$
$\therefore \mathrm{y}=\frac{-2-\mathrm{x}}{2}$
Putting $x=-2$, we get $\mathrm{y}=0$.
Putting $\mathrm{x}=0$, we get $\mathrm{y}=-1$.
Putting $\mathrm{x}=2$, we get $\mathrm{y}=-2$.
Thus, we have the following table for the equation $x+2 y+2=0$.

Downloaded from www.studiestoday.com

x	-2	0	2
y	0	-1	-2

Now, plot the points A $(-2,0), \mathrm{B}(0,-1)$ and $\mathrm{C}(2,-2)$ on the graph paper.
Join $A B$ and $B C$ to get the graph line $A C$. Extend it on both ways.
Thus, $A C$ is the graph of $x+2 y+2=0$.

$$
\text { Graph of } 3 x+2 y-2=0
$$

$3 x+2 y-2=0$
$\Rightarrow 2 \mathrm{y}=(2-3 \mathrm{x})$
$\therefore \mathrm{y}=\frac{2-3 \mathrm{x}}{2}$
Putting $\mathrm{x}=0$, we get $\mathrm{y}=1$.
Putting $\mathrm{x}=2$, we get $\mathrm{y}=-2$.
Putting $x=4$, we get $y=-5$.
Thus, we have the following table for the equation $3 x+2 y-2=0$.

x	0	2	4
y	1	-2	-5

Now, plot the points $\mathrm{P}(0,1)$ and $\mathrm{Q}(4,-5)$. The point $\mathrm{C}(2,-2)$ has already been plotted. Join PC and QC and extend it on both ways.
Thus, PQ is the graph of $3 \mathrm{x}+2 \mathrm{y}-2=0$.

The two graph lines intersect at $\mathrm{A}(2,-2)$.
$\therefore \mathrm{x}=2$ and $\mathrm{y}=-2$.
11.

Sol:

From the first equation, write y in terms of x
$y=x+3$
Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=-3, \mathrm{y}=-3+3=0$

Downloaded from www.studiestoday.com

For $\mathrm{x}=-1, \mathrm{y}=-1+3=2$
For $\mathrm{x}=1, \mathrm{y}=1+3=4$
Thus, the table for the first equation $(x-y+3=0)$ is

x	-3	-1	1
y	0	2	4

Now, plot the points $\mathrm{A}(-3,0), \mathrm{B}(-1,2)$ and $\mathrm{C}(1,4)$ on a graph paper and join A, B and C to get the graph of $x-y+3=0$.
From the second equation, write y in terms of x
$y=\frac{4-2 x}{3}$
Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=-4, \mathrm{y}=\frac{4+8}{3}=4$
For $x=-1, y=\frac{4+\mathbf{1 2}}{3}=2$
For $\mathrm{x}=2, \mathrm{y}=\frac{4-4}{3}=0$
So, the table for the second equation $(2 x+3 y-4=0)$ is

x	-4	-1	2
y	4	2	0

Now, plot the points $\mathrm{D}(-4,4), \mathrm{E}(-1,2)$ and $\mathrm{F}(2,0)$ on the same graph paper and join D, E and F to get the graph of $2 x+3 y-4=0$.

From the graph, it is clear that, the given lines intersect at $(-1,2)$.
So, the solution of the given system of equation is $(-1,2)$.
The vertices of the triangle formed by the given lines and the x -axis are $(-3,0),(-1,2)$ and (2, 0).
Now, draw a perpendicular from the intersection point E on the x -axis. So,
$\operatorname{Area}(\triangle \mathrm{EAF})=\frac{1}{2} \times \mathrm{AF} \times \mathrm{EM}$

$$
\begin{aligned}
& =\frac{1}{2} \times 5 \times 2 \\
& =5 \mathrm{sq} . \text { units }
\end{aligned}
$$

Hence, the vertices of the triangle formed by the given lines and the x-axis are $(-3,0),(-1$, $2)$ and $(2,0)$ and its area is 5 sq. units.

Downloaded from www.studiestoday.com

12.

Sol:

From the first equation, write y in terms of x
$y=\frac{2 x+4}{3}$
Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=-2, \mathrm{y}=\frac{-4+4}{3}=0$
For $\mathrm{x}=1, \mathrm{y}=\frac{2+4}{3}=2$
For $\mathrm{x}=4, \mathrm{y}=\frac{8+4}{3}=4$
Thus, the table for the first equation $(2 x-3 y+4=0)$ is

x	-2	1	4
y	0	2	4

Now, plot the points $\mathrm{A}(-2,0), \mathrm{B}(1,2)$ and $\mathrm{C}(4,4)$ on a graph paper and join A, B and C to get the graph of $2 x-3 y+4=0$.
From the second equation, write y in terms of x
$y=\frac{5-x}{2}$
Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=-3, \mathrm{y}=\frac{5+3}{2}=4$
For $\mathrm{x}=1, \mathrm{y}=\frac{\mathbf{5 - 1}}{2}=2$
For $\mathrm{x}=5, \mathrm{y}=\frac{\mathbf{5 - 5}}{\mathbf{2}}=0$
So, the table for the second equation $(x+2 y-5=0)$ is

x	-3	1	5
y	4	2	0

Now, plot the points $\mathrm{D}(-3,4), \mathrm{B}(1,2)$ and $\mathrm{F}(5,0)$ on the same graph paper and join D, E and F to get the graph of $x+2 y-5=0$.

From the graph, it is clear that, the given lines intersect at $(1,2)$.
So, the solution of the given system of equation is $(1,2)$.
From the graph, the vertices of the triangle formed by the given lines and the x -axis are $(-2$, $0),(1,2)$ and $(5,0)$.

Downloaded from www.studiestoday.com

Now, draw a perpendicular from the intersection point B on the x -axis. So,
$\operatorname{Area}(\triangle \mathrm{BAF})=\frac{1}{2} \times \mathrm{AF} \times \mathrm{BM}$
$=\frac{1}{2} \times 7 \times 2$
$=7$ sq. units
Hence, the vertices of the triangle formed by the given lines and the x -axis are $(-2,0),(1,2)$ and $(5,0)$ and the area of the triangle is 7 sq. units.
13.

Sol:

On a graph paper, draw a horizontal line $\mathrm{X}^{\prime} \mathrm{OX}$ and a vertical line YOY' as the x -axis and y-axis, respectively.

$$
\text { Graph of } 4 x-3 y+4=0
$$

$4 \mathrm{x}-3 \mathrm{y}+4=0$
$\Rightarrow 3 y=(4 x+4)$
$\therefore \mathrm{y}=\frac{4 \mathrm{x}+4}{3}$
Putting $\mathrm{x}=-1$, we get $\mathrm{y}=0$.
Putting $\mathrm{x}=2$, we get $\mathrm{y}=4$.
Putting $\mathrm{x}=5$, we get $\mathrm{y}=8$.
Thus, we have the following table for the equation $4 x-3 y+4=0$.

x	-1	2	5
y	0	4	8

Now, plot the points $\mathrm{A}(-1,0), \mathrm{B}(2,4)$ and $\mathrm{C}(5,8)$ on the graph paper.
Join $A B$ and $B C$ to get the graph line $A C$. Extend it on both ways.
Thus, $A C$ is the graph of $4 x-3 y+4=0$.
Graph of $4 x+3 y-20=0$
$4 x+3 y-20=0$
$\Rightarrow 3 y=(-4 x+20)$
$\therefore y=\frac{-4 x+20}{3}$
Putting $\mathrm{x}=2$, we get $\mathrm{y}=4$.
Putting $\mathrm{x}=-1$, we get $\mathrm{y}=8$.
Putting $\mathrm{x}=5$, we get $\mathrm{y}=0$.
Thus, we have the following table for the equation $4 x+3 y-20=0$.

x	2	-1	5
y	4	8	0

Now, plot the points $\mathrm{P}(1,-8)$ and $\mathrm{Q}(5,0)$. The point $\mathrm{B}(2,4)$ has already been plotted. Join PB and QB to get the graph line. Extend it on both ways.

Downloaded from www.studiestoday.com

Then, line PQ is the graph of the equation $4 x+3 y-20=0$.

The two graph lines intersect at $\mathrm{B}(2,4)$.
\therefore The solution of the given system of equations is $\mathrm{x}=2$ and $\mathrm{y}=4$.
Clearly, the vertices of $\triangle \mathrm{ABQ}$ formed by these two lines and the x -axis are $\mathrm{Q}(5,0), \mathrm{B}(2,4)$ and $\mathrm{A}(-1,0)$.
Now, consider $\triangle \mathrm{ABQ}$.
Here, height $=4$ units and base $(A Q)=6$ units
\therefore Area $\triangle \mathrm{ABQ}=\frac{1}{2} \times$ base \times height sq. units

$$
\begin{aligned}
& =\frac{1}{2} \times 6 \times 4 \\
& =12 \text { sq. units. }
\end{aligned}
$$

14.

Sol:

On a graph paper, draw a horizontal line $X^{\prime} O X$ and a vertical line YOY' as the x -axis and y-axis, respectively.

$$
\text { Graph of } x-y+1=0
$$

$x-y+1=0$
$\Rightarrow \mathrm{y}=\mathrm{x}+1$
Putting $\mathrm{x}=-1$, we get $\mathrm{y}=0$.
Putting $\mathrm{x}=1$, we get $\mathrm{y}=2$.
Putting $\mathrm{x}=2$, we get $\mathrm{y}=3$.
Thus, we have the following table for the equation $\mathrm{x}-\mathrm{y}+1=0$.

x	-1	1	2
y	0	2	3

Now, plot the points $\mathrm{A}(-1,0), \mathrm{B}(1,2)$ and $\mathrm{C}(2,3)$ on the graph paper.
Join $A B$ and $B C$ to get the graph line $A C$. Extend it on both ways.

Downloaded from www.studiestoday.com

Thus, AC is the graph of $\mathrm{x}-\mathrm{y}+1=0$.

$$
\text { Graph of } 3 x+2 y-12=0
$$

$3 x+2 y-12=0$
$\Rightarrow 2 y=(-3 x+12)$
$\therefore \mathrm{y}=\frac{-3 \mathrm{x}+12}{2}$
Putting $\mathrm{x}=0$, we get $\mathrm{y}=6$.
Putting $\mathrm{x}=2$, we get $\mathrm{y}=3$.
Putting $x=4$, we get $\mathrm{y}=0$.
Thus, we have the following table for the equation $3 x+2 y-12=0$.

x	0	2	4
y	6	3	0

Now, plot the points $\mathrm{P}(0,6)$ and $\mathrm{Q}(4,0)$. The point $\mathrm{B}(2,3)$ has already been plotted. Join PC and CQ to get the graph line PQ . Extend it on both ways.
Then, PQ is the graph of the equation $3 \mathrm{x}+2 \mathrm{y}-12=0$.

The two graph lines intersect at $\mathrm{C}(2,3)$.
\therefore The solution of the given system of equations is $\mathrm{x}=2$ and $\mathrm{y}=3$.
Clearly, the vertices of $\triangle A C Q$ formed by these two lines and the x-axis are $Q(4,0), C(2,3)$ and $\mathrm{A}(-1,0)$.
Now, consider $\triangle \mathrm{ACQ}$.
Here, height $=3$ units and base $(A Q)=5$ units
\therefore Area $\triangle \mathrm{ACQ}=\frac{1}{2} \times$ base \times height sq. units

$$
=\frac{1}{2} \times 5 \times 3
$$

$$
=7.5 \text { sq. units. }
$$

15.

Sol:
From the first equation, write y in terms of x
$\mathrm{y}=\frac{x+2}{2}$

Downloaded from www.studiestoday.com

Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=-2, \mathrm{y}=\frac{-2+2}{2}=0$
For $\mathrm{x}=2, \mathrm{y}=\frac{2+2}{2}=2$
For $\mathrm{x}=4, \mathrm{y}=\frac{4+2}{2}=3$
Thus, the table for the first equation $(\mathrm{x}-2 \mathrm{y}+2=0)$ is

x	-2	2	4
y	0	2	3

Now, plot the points $\mathrm{A}(-2,0), \mathrm{B}(2,2)$ and $\mathrm{C}(4,3)$ on a graph paper and join A, B and C to get the graph of $\mathrm{x}-2 \mathrm{y}+2=0$.
From the second equation, write y in terms of x
$\mathrm{y}=6-2 \mathrm{x}$
Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=1, \mathrm{y}=6-2=4$
For $\mathrm{x}=3, \mathrm{y}=0$
For $x=4, y=6-8=-2$
So, the table for the second equation $(2 x+y-6=0)$ is

x	1	3	4
y	4	0	-2

Now, plot the points $\mathrm{D}(1,4), \mathrm{E}(3,0)$ and $\mathrm{F}(4,-2)$ on the same graph paper and join D, E and F to get the graph of $2 x+y-6=0$.

From the graph, it is clear that, the given lines intersect at $(2,2)$.
So, the solution of the given system of equation is $(2,2)$.
From the graph, the vertices of the triangle formed by the given lines and the x -axis are $(-2$, $0),(2,2)$ and $(3,0)$.
Now, draw a perpendicular from the intersection point B on the x -axis. So,

$$
\begin{aligned}
\text { Area }(\triangle \mathrm{BAE}) & =\frac{1}{2} \times \mathrm{AE} \times \mathrm{BM} \\
& =\frac{1}{2} \times 5 \times 2 \\
& =5 \text { sq. units }
\end{aligned}
$$

Hence, the vertices of the triangle formed by the given lines and the x -axis are $(-2,0),(2,2)$ and $(3,0)$ and the area of the triangle is 5 sq. units.

Downloaded from www.studiestoday.com

16.

Sol:

From the first equation, write y in terms of x
$y=\frac{2 x+6}{3}$
Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=-3, \mathrm{y}=\frac{-6+6}{3}=0$
For $\mathrm{x}=0, \mathrm{y}=\frac{0+6}{3}=2$
For $\mathrm{x}=3, \mathrm{y}=\frac{6+6}{3}=4$
Thus, the table for the first equation $(2 x-3 y+6=0)$ is

x	-3	0	3
y	0	2	4

Now, plot the points $\mathrm{A}(-3,0), \mathrm{B}(0,2)$ and $\mathrm{C}(3,4)$ on a graph paper and join A, B and C to get the graph of $2 \mathrm{x}-3 \mathrm{y}+6=0$.
From the second equation, write y in terms of x
$\mathrm{y}=\frac{18-2 x}{3}$
Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=\frac{\mathbf{1 8 - 0}}{\mathbf{3}}=6$
For $\mathrm{x}=3, \mathrm{y}=\frac{\mathbf{1 8 - \mathbf { 6 }}}{\mathbf{3}}=4$
For $\mathrm{x}=9, \mathrm{y}=\frac{\mathbf{1 8 - 1 8}}{\mathbf{3}}=0$
So, the table for the second equation $(2 x+3 y-18=0)$ is

x	0	3	9
y	6	4	0

Now, plot the points $\mathrm{D}(0,6), \mathrm{E}(3,4)$ and $\mathrm{F}(9,0)$ on the same graph paper and join D, E and F to get the graph of $2 x+3 y-18=0$.

From the graph, it is clear that, the given lines intersect at $(3,4)$.

Downloaded from www.studiestoday.com

So, the solution of the given system of equation is $(3,4)$.
From the graph, the vertices of the triangle formed by the given lines and the y-axis are $(0,2),(0,6)$ and $(3,4)$.
Now, draw a perpendicular from the intersection point E (or C) on the y -axis. So,
Area $(\triangle \mathrm{EDB})=\frac{1}{2} \times \mathrm{BD} \times \mathrm{EM}$
$=\frac{1}{2} \times 4 \times 3$
$=6$ sq. units
Hence, the vertices of the triangle formed by the given lines and the y-axis are $(0,2),(0,6)$ and $(3,4)$ and the area of the triangle is 6 sq. units.
17.

Sol:

From the first equation, write y in terms of x
$y=4 x-4$
Substitute different values of x in (i) to get different values of y
For $x=0, y=0-4=-4$
For $\mathrm{x}=1, \mathrm{y}=4-4=0$
For $x=2, y=8-4=4$
Thus, the table for the first equation $(4 x-y-4=0)$ is

x	0	1	2
y	-4	0	4

Now, plot the points $\mathrm{A}(0,-4), \mathrm{B}(1,0)$ and $\mathrm{C}(2,4)$ on a graph paper and join A, B and C to get the graph of $4 x-y-4=0$.
From the second equation, write y in terms of x
$\mathrm{y}=\frac{14-3 x}{2}$ (ii) $2 y=14-3 x \quad-3 x=2 y-14$

Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=\frac{\mathbf{1 4 - 0}}{2}=7$
For $\mathrm{x}=4, \mathrm{y}=\frac{\mathbf{1 4 - 1 2}}{2}=1$
For $\mathrm{x}=\frac{14}{3}, \mathrm{y}=\frac{\mathbf{1 4 - 1 4}}{2}=0$
So, the table for the second equation $(3 x+2 y-14=0)$ is

x	0	4	$\frac{14}{3}$
y	7	1	0

Now, plot the points $\mathrm{D}(0,7), \mathrm{E}(4,1)$ and $\mathrm{F}\left(\frac{14}{3}, 0\right)$ on the same graph paper and join D, E and F to get the graph of $3 x+2 y-14=0$.

Downloaded from www.studiestoday.com

From the graph, it is clear that, the given lines intersect at $(2,4)$.
So, the solution of the given system of equation is $(2,4)$.
From the graph, the vertices of the triangle formed by the given lines and the y-axis are 0 , $7),(0,-4)$ and $(2,4)$.
Now, draw a perpendicular from the intersection point C on the y -axis. So,
Area $(\triangle \mathrm{DAB})=\frac{1}{2} \times \mathrm{DA} \times \mathrm{CM}$

$$
=\frac{1}{2} \times 11 \times 2
$$

$$
=11 \text { sq. units }
$$

Hence, the vertices of the triangle formed by the given lines and the y-axis are $(0,7),(0,-4)$ and $(2,4)$ and the area of the triangle is 11 sq. units.
18.

Sol:

From the first equation, write y in terms of x
$y=x-5$
Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=0-5=-5$
For $x=2, y=2-5=-3$
For $x=5, y=5-5=0$
Thus, the table for the first equation $(x-y-5=0)$ is

x	0	2	5
y	-5	-3	0

Now, plot the points $\mathrm{A}(0,-5), \mathrm{B}(2,-3)$ and $\mathrm{C}(5,0)$ on a graph paper and join A, B and C to get the graph of $x-y-5=0$.
From the second equation, write y in terms of x
$\mathrm{y}=\frac{15-3 x}{5}$
Now, substitute different values of x in (ii) to get different values of y

Downloaded from www.studiestoday.com

For $\mathrm{x}=-5, \mathrm{y}=\frac{\mathbf{1 5 + 1 5}}{5}=6$
For $\mathrm{x}=0, \mathrm{y}=\frac{\mathbf{1 5 - \mathbf { 0 }}}{\mathbf{5}}=3$
For $\mathrm{x}=5, \mathrm{y}=\frac{\mathbf{1 5 - 1 5}}{\mathbf{5}}=0$
So, the table for the second equation $(3 x+5 y-15=0)$ is

x	-5	0	5
y	6	3	0

Now, plot the points $\mathrm{D}(-5,6), \mathrm{E}(0,3)$ and $\mathrm{F}(5,0)$ on the same graph paper and join D, E and F to get the graph of $3 x+5 y-15=0$.

From the graph, it is clear that, the given lines intersect at $(5,0)$.
So, the solution of the given system of equation is $(5,0)$.
From the graph, the vertices of the triangle formed by the given lines and the y-axis are 0 , $3),(0,-5)$ and $(5,0)$.
Now, draw a perpendicular from the intersection point C on the y -axis. So,
$\operatorname{Area}(\triangle \mathrm{CEA})=\frac{1}{2} \times \mathrm{EA} \times \mathrm{OC}$

$$
\begin{aligned}
& =\frac{1}{2} \times 8 \times 5 \\
& =20 \text { sq. units }
\end{aligned}
$$

Hence, the vertices of the triangle formed by the given lines and the y-axis are $(0,3),(0,-5)$ and $(5,0)$ and the area of the triangle is 20 sq. units.
19.

Sol:

From the first equation, write y in terms of x
$y=\frac{2 x+4}{5}$
Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=-2, \mathrm{y}=\frac{-4+4}{5}=0$

Downloaded from www.studiestoday.com

For $\mathrm{x}=0, \mathrm{y}=\frac{\mathbf{0 + 4}}{\mathbf{5}}=\frac{4}{5}$
For $\mathrm{x}=3, \mathrm{y}=\frac{\mathbf{6 + 4}}{\mathbf{5}}=2$
Thus, the table for the first equation $(2 x-5 y+4=0)$ is

x	-2	0	3
y	0	$\frac{4}{5}$	2

Now, plot the points $\mathrm{A}(-2,0), \mathrm{B}\left(0, \frac{4}{5}\right)$ and $\mathrm{C}(3,2)$ on a graph paper and join A, B and C to get the graph of $2 x-5 y+4=0$.
From the second equation, write y in terms of x
$\mathrm{y}=8-2 \mathrm{x}$
Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=8-0=8$
For $\mathrm{x}=2, \mathrm{y}=8-4=3$
For $\mathrm{x}=4, \mathrm{y}=8-8=0$
So, the table for the second equation $(2 x-5 y+4=0)$ is

x	0	2	4
y	8	4	0

Now, plot the points $\mathrm{D}(0,8), \mathrm{E}(2,4)$ and $\mathrm{F}(4,0)$ on the same graph paper and join D, E and F to get the graph of $2 x+y-8=0$.

From the graph, it is clear that, the given lines intersect at $(3,2)$.
So, the solution of the given system of equation is $(3,2)$.
The vertices of the triangle formed by the system of equations and y-axis are $(0,8),\left(0, \frac{4}{5}\right)$ and (3, 2).
Draw a perpendicular from point C on the y -axis. So,
Area $(\triangle \mathrm{DBC})=\frac{1}{2} \times \mathrm{DB} \times \mathrm{CM}$

$$
\begin{aligned}
& =\frac{1}{2} \times\left(8-\frac{4}{5}\right) \times 3 \\
& =\frac{54}{5} \text { sq. units }
\end{aligned}
$$

Hence, the vertices of the triangle are $(0,8),\left(0, \frac{\mathbf{4}}{\mathbf{5}}\right)$ and $(3,2)$ and its area is $\frac{\mathbf{5 4}}{\mathbf{5}}$ sq. units.

Downloaded from www.studiestoday.com

20.

Sol:

On a graph paper, draw a horizontal line $\mathrm{X}^{\prime} \mathrm{OX}$ and a vertical line YOY' as the x -axis and y-axis, respectively.

Graph of $5 x-y=7$

$5 x-y=7$
$\Rightarrow y=(5 x-7)$
Putting $\mathrm{x}=0$, we get $\mathrm{y}=-7$.
Putting $\mathrm{x}=1$, we get $\mathrm{y}=-2$.
Putting $\mathrm{x}=2$, we get $\mathrm{y}=3$.
Thus, we have the following table for the equation $5 \mathrm{x}-\mathrm{y}=7$.

x	0	1	2
y	-7	-2	3

Now, plot the points $\mathrm{A}(0,-7), \mathrm{B}(1,-2)$ and $\mathrm{C}(2,3)$ on the graph paper.
Join AB and BC to get the graph line AC . Extend it on both ways.
Thus, AC is the graph of $5 \mathrm{x}-\mathrm{y}=7$.

Graph of $\mathbf{x}-\mathbf{y}+\mathbf{1 = 0}$

$x-y+1=0$
$\Rightarrow y=x+1$
Putting $x=0$, we get $\mathrm{y}=1$.
Putting $\mathrm{x}=1$, we get $\mathrm{y}=2$.
Putting $\mathrm{x}=2$, we get $\mathrm{y}=3$.
Thus, we have the following table for the equation $\mathrm{x}-\mathrm{y}+1=0$.

x	0	1	2
y	1	2	3

Now, plot the points $\mathrm{P}(0,1)$ and $\mathrm{Q}(1,2)$. The point $\mathrm{C}(2,3)$ has already been plotted. Join PQ and QC to get the graph line PC. Extend it on both ways.
Then, PC is the graph of the equation $\mathrm{x}-\mathrm{y}+1=0$.

Downloaded from www.studiestoday.com

The two graph lines intersect at $\mathrm{C}(2,3)$.
\therefore The solution of the given system of equations is $\mathrm{x}=2$ and $\mathrm{y}=3$.
Clearly, the vertices of $\triangle \mathrm{APC}$ formed by these two lines and the y -axis are $\mathrm{P}(0,1), \mathrm{C}(2,3)$ and $\mathrm{A}(0,-7)$.
Now, consider $\triangle \mathrm{APC}$.
Here, height $=2$ units and base $(\mathrm{AP})=8$ units
\therefore Area $\triangle \mathrm{APC}=\frac{1}{2} \times$ base \times height sq. units

$$
\begin{aligned}
& =\frac{1}{2} \times 8 \times 2 \\
& =8 \text { sq. units. }
\end{aligned}
$$

21.

Sol:

From the first equation, write y in terms of x
$\mathrm{y}=\frac{2 x-12}{3}$
Substitute different values of x in (i) to get different values of y

For $\mathrm{x}=0, \mathrm{y}=\frac{\mathbf{0 - 1 2}}{\mathbf{3}}=-4$
For $\mathrm{x}=3, \mathrm{y}=\frac{\mathbf{6 - 1 2}}{\mathbf{3}}=-2$
For $\mathrm{x}=6, \mathrm{y}=\frac{\mathbf{1 2 - 1 2}}{3}=0$
Thus, the table for the first equation $(2 x-3 y=12)$ is

x	0	3	6
y	-4	-2	0

Now, plot the points $\mathrm{A}(0,-4), \mathrm{B}(3,-2)$ and $\mathrm{C}(6,0)$ on a graph paper and join A, B and C to get the graph of $2 \mathrm{x}-3 \mathrm{y}=12$.
From the second equation, write y in terms of x
$y=\frac{6-x}{3}$
Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=\frac{\mathbf{6 - 0}}{\mathbf{3}}=2$
For $\mathrm{x}=3, \mathrm{y}=\frac{6-3}{3}=1$
For $\mathrm{x}=6, \mathrm{y}=\frac{6-6}{3}=0$
So, the table for the second equation $(x+3 y=6)$ is

x	0	3	6
y	2	1	0

Downloaded from www.studiestoday.com

Now, plot the points $\mathrm{D}(0,2), \mathrm{E}(3,1)$ and $\mathrm{F}(6,0)$ on the same graph paper and join D, E and F to get the graph of $x+3 y=6$.

From the graph, it is clear that, the given lines intersect at $(6,0)$.
So, the solution of the given system of equation is $(6,0)$.
The vertices of the triangle formed by the system of equations and y-axis are $(0,2),(6,0)$ and ($0,-4$).

$$
\begin{aligned}
\text { Area }(\triangle \mathrm{DAC}) & =\frac{1}{2} \times \mathrm{DA} \times \mathrm{OC} \\
& =\frac{1}{2} \times 6 \times 6 \\
& =18 \text { sq. units }
\end{aligned}
$$

Hence, the vertices of the triangle are $(0,2),(6,0)$ and $(0,-4)$ and its area is 18 sq. units.
22.

Sol:

From the first equation, write y in terms of x

$$
\begin{equation*}
y=\frac{6-2 x}{3} \tag{i}
\end{equation*}
$$

Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=-3, \mathrm{y}=\frac{6+\mathbf{6}}{3}=4$
For $\mathrm{x}=3, \mathrm{y}=\frac{\mathbf{6 - 6}}{\mathbf{3}}=0$
For $x=6, y=\frac{6-12}{3}=-2$
Thus, the table for the first equation $(2 x+3 y=6)$ is

x	-3	3	6
y	4	0	-2

Now, plot the points $\mathrm{A}(-3,4), \mathrm{B}(3,0)$ and $\mathrm{C}(6,-2)$ on a graph paper and join A, B and C to get the graph of $2 x+3 y=6$.
From the second equation, write y in terms of x
$y=\frac{12-4 x}{6}$
Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=-6, \mathrm{y}=\frac{\mathbf{1 2 + 2 4}}{6}=6$

Downloaded from www.studiestoday.com

For $\mathrm{x}=0, \mathrm{y}=\frac{\mathbf{1 2 - \mathbf { 0 }}}{\mathbf{6}}=2$
For $\mathrm{x}=9, \mathrm{y}=\frac{12-\mathbf{3 6}}{6}=-4$
So, the table for the second equation $(4 x+6 y=12)$ is

x	-6	0	9
y	6	2	-4

Now, plot the points $\mathrm{D}(-6,6), \mathrm{E}(0,2)$ and $\mathrm{F}(9,-4)$ on the same graph paper and join D, E and F to get the graph of $4 x+6 y=12$.

From the graph, it is clear that, the given lines coincidence with each other.
Hence, the solution of the given system of equations has infinitely many solutions.
23.

Sol:

On a graph paper, draw a horizontal line $\mathrm{X}^{\prime} \mathrm{OX}$ and a vertical line YOY' representing the x axis and y-axis, respectively.

$$
\text { Graph of } 3 x-y=5
$$

$3 x-y=5$
$\Rightarrow y=3 x-5$
Putting $\mathrm{x}=1$, we get $\mathrm{y}=-2$
Putting $x=0$, we get $y=-5$
Putting $\mathrm{x}=2$, we get $\mathrm{y}=1$
Thus, we have the following table for the equation $3 x-y=5$

x	1	0	2
y	-2	-5	1

Now, plot the points $\mathrm{A}(1,-2), \mathrm{B}(0,-5)$ and $\mathrm{C}(2,1)$ on the graph paper.
Join $A B$ and $A C$ to get the graph line $B C$. Extend it on both ways.
Thus, the line $B C$ is the graph of $3 x-y=5$.
Graph of $6 x-2 y=10$
$6 x-2 y=10$

Downloaded from www.studiestoday.com

$$
\begin{align*}
& \Rightarrow 2 y=(6 x-10) \\
& \Rightarrow y=\frac{6 x-10}{2} \tag{ii}
\end{align*}
$$

Putting $x=0$, we get $y=-5$
Putting $x=1$, we get $y=-2$
Putting $x=2$, we get $\mathrm{y}=1$
Thus, we have the following table for the equation $6 x-2 y=10$.

x	0	1	2
y	-5	-2	1

These are the same points as obtained for the graph line of equation (i).

It is clear from the graph that these two lines coincide.
Hence, the given system of equations has infinitely many solutions.
24.

Sol:

On a graph paper, draw a horizontal line $\mathrm{X}^{\prime} \mathrm{OX}$ and a vertical line YOY' representing the x axis and y-axis, respectively.

$$
\text { Graph of } 2 x+y=6
$$

$2 x+y=6$
$\Rightarrow y=(6-2 x)$
Putting $x=3$, we get $y=0$
Putting $x=1$, we get $y=4$
Putting $\mathrm{x}=2$, we get $\mathrm{y}=2$
Thus, we have the following table for the equation $2 x+y=6$

x	3	1	2
y	0	4	2

Now, plot the points $\mathrm{A}(3,0), \mathrm{B}(1,4)$ and $\mathrm{C}(2,2)$ on the graph paper.
Join $A C$ and $C B$ to get the graph line $A B$. Extend it on both ways.
Thus, the line $A B$ is the graph of $2 x+y=6$.

Graph of $6 x+3 y=18$
$6 x+3 y=18$
$\Rightarrow 3 y=(18-6 x)$
$\Rightarrow \mathrm{y}=\frac{18-6 x}{3}$
Putting $x=3$, we get $y=0$
Putting $x=1$, we get $y=4$
Putting $x=2$, we get $y=2$
Thus, we have the following table for the equation $6 x+3 y=18$.

x	3	1	2
y	0	4	2

These are the same points as obtained for the graph line of equation (i).

It is clear from the graph that these two lines coincide.
Hence, the given system of equations has an infinite number of solutions.
25.

Sol:

From the first equation, write y in terms of x
$\mathrm{y}=\frac{x-5}{2}$
Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=-5, \mathrm{y}=\frac{-5-5}{2}=-5$
For $\mathrm{x}=1, \mathrm{y}=\frac{\mathbf{1 - 5}}{\mathbf{2}}=-2$
For $\mathrm{x}=3, \mathrm{y}=\frac{\mathbf{3 - 5}}{\mathbf{2}}=-1$
Thus, the table for the first equation $(x-2 y=5)$ is

x	-5	1	3
y	-5	-2	-1

Now, plot the points $\mathrm{A}(-5,-5), \mathrm{B}(1,-2)$ and $\mathrm{C}(3,-1)$ on a graph paper and join A, B and C to get the graph of $x-2 y=5$.
From the second equation, write y in terms of x

Downloaded from www.studiestoday.com

$$
\begin{equation*}
y=\frac{3 x-15}{6} \tag{ii}
\end{equation*}
$$

Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=-3, \mathrm{y}=\frac{-\mathbf{9 - 1 5}}{\mathbf{6}}=-4$
For $\mathrm{x}=-1, \mathrm{y}=\frac{-\mathbf{3}-\mathbf{1 5}}{\mathbf{6}}=-3$
For $\mathrm{x}=5, \mathrm{y}=\frac{\mathbf{1 5 - 1 5}}{\mathbf{6}}=0$
So, the table for the second equation $(3 x-6 y=15)$ is

x	-3	-1	5
y	-4	-3	0

Now, plot the points $D(-3,-4), E(-1,-3)$ and $F(5,0)$ on the same graph paper and join D, E and F to get the graph of $3 x-6 y=15$.

From the graph, it is clear that, the given lines coincide with each other.
Hence, the solution of the given system of equations has infinitely many solutions.
26.

Sol:

From the first equation, write y in terms of x

$$
\begin{equation*}
\mathrm{y}=\frac{x-6}{2} \tag{i}
\end{equation*}
$$

Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=-2, \mathrm{y}=\frac{-2-6}{2}=-4$
For $x=0, y=\frac{\mathbf{0 - 6}}{2}=-3$
For $\mathrm{x}=2, \mathrm{y}=\frac{\mathbf{2 - 6}}{\mathbf{2}}=-2$
Thus, the table for the first equation $(x-2 y=5)$ is

x	-2	0	2
y	-4	-3	-2

Now, plot the points $\mathrm{A}(-2,-4), \mathrm{B}(0,-3)$ and $\mathrm{C}(2,-2)$ on a graph paper and join A, B and C to get the graph of $x-2 y=6$.
From the second equation, write y in terms of x

Downloaded from www.studiestoday.com

$y=\frac{1}{2} x$
Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=-4, \mathrm{y}=\frac{-4}{2}=-2$
For $\mathrm{x}=0, \mathrm{y}=\frac{\mathbf{0}}{\mathbf{2}}=0$
For $x=4, y=\frac{4}{2}=2$
So, the table for the second equation $(3 x-6 y=0)$ is

x	-4	0	4
y	-2	0	2

Now, plot the points $\mathrm{D}(-4,-2), \mathrm{O}(0,0)$ and $\mathrm{E}(4,2)$ on the same graph paper and join D, E and F to get the graph of $3 x-6 y=0$.

From the graph, it is clear that, the given lines do not intersect at all when produced.
Hence, the system of equations has no solution and therefore is inconsistent.
27.

Sol:

On a graph paper, draw a horizontal line $X^{\prime} O X$ and a vertical line YOY' as the x -axis and y-axis, respectively.

$$
\text { Graph of } 2 x+3 y=4
$$

$2 x+3 y=4$
$\Rightarrow 3 y=(-2 x+4)$
Putting $x=2$, we get $y=0$
Putting $x=-1$, we get $y=2$
Putting $x=-4$, we get $y=4$
Thus, we have the following table for the equation $2 \mathrm{x}+3 \mathrm{y}=4$.

x	2	-1	-4
y	0	2	4

Now, plot the points $\mathrm{A}(2,0), \mathrm{B}(-1,2)$ and $\mathrm{C}(-4,4)$ on the graph paper.
Join $A B$ and $B C$ to get the graph line $A C$. Extend it on both ways.
Thus, the line $A C$ is the graph of $2 x+3 y=4$.

Graph of $4 x+6 y=12$
$4 x+6 y=12$

Downloaded from www.studiestoday.com

$$
\begin{align*}
& \Rightarrow 6 y=(-4 x+12) \\
& \Rightarrow y=\frac{-4 x+12}{6} \tag{ii}
\end{align*}
$$

Putting $x=3$, we get $y=0$
Putting $x=0$, we get $y=2$
Putting $x=6$, we get $y=-2$
Thus, we have the following table for the equation $4 x+6 y=12$.

x	3	0	6
y	0	2	-2

Now, on the same graph, plot the points $\mathrm{A}(3,0), \mathrm{B}(0,2)$ and $\mathrm{C}(6,-2)$.
Join PQ and PR to get the graph line QR. Extend it on both ways.
Thus, QR is the graph of the equation $4 \mathrm{x}+6 \mathrm{y}=12$.

It is clear from the graph that these two lines are parallel and do not intersect when produced.
Hence, the given system of equations is inconsistent.
28.

Sol:

From the first equation, write y in terms of x
$y=6-2 x$
Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=6-0=6$
For $x=2, y=6-4=2$
For $x=4, y=6-8=-2$
Thus, the table for the first equation $(2 x+y=6)$ is

x	0	2	4
y	6	2	-2

Now, plot the points $\mathrm{A}(0,6), \mathrm{B}(2,2)$ and $\mathrm{C}(4,-2)$ on a graph paper and join A, B and C to get the graph of $2 x+y=6$.
From the second equation, write y in terms of x
$y=\frac{20-6 x}{3}$

Downloaded from www.studiestoday.com

Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=\frac{\mathbf{2 0 - 0}}{3}=\frac{20}{3}$
For $\mathrm{x}=\frac{10}{3}, \mathrm{y}=\frac{20-20}{3}=0$
For $\mathrm{x}=5, \mathrm{y}=\frac{\mathbf{2 0}-\mathbf{3 0}}{\mathbf{3}}=-\frac{\mathbf{1 0}}{\mathbf{3}}$
So, the table for the second equation $(6 x+3 y=20)$ is

x	0	$\frac{\mathbf{1 0}}{\mathbf{3}}$	5
y	$\frac{\mathbf{2 0}}{\mathbf{3}}$	0	$-\frac{\mathbf{1 0}}{\mathbf{3}}$

Now, plot the points $\mathrm{D}\left(0, \frac{20}{3}\right), \mathrm{O}\left(\frac{10}{3}, 0\right)$ and $\mathrm{E}\left(5,-\frac{10}{3}\right)$ on the same graph paper and join D, E and F to get the graph of $6 x+3 y=20$.

From the graph, it is clear that, the given lines do not intersect at all when produced.
Hence, the system of equations has no solution and therefore is inconsistent.
29.

Sol:

From the first equation, write y in terms of x
$y=2-2 x$
Substitute different values of x in (i) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=2-0=2$
For $\mathrm{x}=1, \mathrm{y}=2-2=0$
For $x=2, y=2-4=-2$
Thus, the table for the first equation $(2 x+y=2)$ is

x	0	1	2
y	2	0	-2

Now, plot the points $\mathrm{A}(0,2), \mathrm{B}(1,0)$ and $\mathrm{C}(2,-2)$ on a graph paper and join A, B and C to get the graph of $2 \mathrm{x}+\mathrm{y}=2$.

Downloaded from www.studiestoday.com

From the second equation, write y in terms of x
$y=6-2 x$
Now, substitute different values of x in (ii) to get different values of y
For $\mathrm{x}=0, \mathrm{y}=6-0=6$
For $\mathrm{x}=1, \mathrm{y}=6-2=4$
For $\mathrm{x}=3, \mathrm{y}=6-6=0$
So, the table for the second equation $(2 x+y=6)$ is

x	0	1	3
y	6	4	0

Now, plot the points $\mathrm{D}(0,6), \mathrm{E}(1,4)$ and $\mathrm{F}(3,0)$ on the same graph paper and join D, E and F to get the graph of $2 x+y=6$.

From the graph, it is clear that, the given lines do not intersect at all when produced. So, these lines are parallel to each other and therefore, the quadrilateral DABF is a trapezium. The vertices of the required trapezium are $\mathrm{D}(0,6), \mathrm{A}(0,2), \mathrm{B}(1,0)$ and $\mathrm{F}(3,0)$.
Now,
$\operatorname{Area}($ Trapezium DABF $)=\operatorname{Area}(\triangle \mathrm{DOF})-\operatorname{Area}(\triangle \mathrm{AOB})$

$$
\begin{aligned}
& =\frac{1}{2} \times 3 \times 6-\frac{1}{2} \times 1 \times 2 \\
& =9-1 \\
& =8 \text { sq. units }
\end{aligned}
$$

Hence, the area of the required trapezium is 8 sq. units.

Exercise - 3B

1.

Sol:

The given system of equation is:
$x+y=3$
$4 x-3 y=26$
On multiplying (i) by 3 , we get:
$3 x+3 y=9 .$.
On adding (ii) and (iii), we get:
$7 \mathrm{x}=35$
$\Rightarrow \mathrm{x}=5$
On substituting the value of $x=5$ in (i), we get:
$5+y=3$
$\Rightarrow y=(3-5)=-2$
Hence, the solution is $x=5$ and $y=-2$
2.

Sol:

The given system of equations is
$\mathrm{x}-\mathrm{y}=3$
$\frac{x}{3}+\frac{y}{2}=6$
From (i), write y in terms of x to get
$y=x-3$
Substituting $y=x-3$ in (ii), we get
$\frac{x}{3}+\frac{x-3}{2}=6$
$\Rightarrow 2 \mathrm{x}+3(\mathrm{x}-3)=36$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{x}-9=36$
$\Rightarrow \mathrm{x}=\frac{45}{5}=9$
Now, substituting $x=9$ in (i), we have
$9-y=3$
$\Rightarrow y=9-3=6$
Hence, $x=9$ and $y=6$.
3.

Sol:

The given system of equation is:
$2 x+3 y=0$
$3 x+4 y=5$
On multiplying (i) by 4 and (ii) by 3 , we get:
$8 x+12 y=0$
$9 x+12 y=15$
On subtracting (iii) from (iv) we get:
$x=15$
On substituting the value of $x=15$ in (i), we get:
$30+3 y=0$
$\Rightarrow 3 y=-30$
$\Rightarrow \mathrm{y}=-10$
Hence, the solution is $\mathrm{x}=15$ and $\mathrm{y}=-10$.
4.

Sol:

The given system of equation is:
$2 \mathrm{x}-3 \mathrm{y}=13$
$7 x-2 y=20$
On multiplying (i) by 2 and (ii) by 3 , we get:
$4 x-6 y=26$
$21 x-6 y=60$
On subtracting (iii) from (iv) we get:
$17 \mathrm{x}=(60-26)=34$
$\Rightarrow x=2$
On substituting the value of $x=2$ in (i), we get:
$4-3 y=13$
$\Rightarrow 3 y=(4-13)=-9$
$\Rightarrow y=-3$
Hence, the solution is $\mathrm{x}=2$ and $\mathrm{y}=-3$.
5.

Sol:

The given system of equation is:
$3 \mathrm{x}-5 \mathrm{y}-19=0$
$-7 x+3 y+1=0$
On multiplying (i) by 3 and (ii) by 5, we get:
$9 x-15 y=57$
$-35 x+15 y=-5$
On subtracting (iii) from (iv) we get:

$$
\begin{aligned}
& -26 x=(57-5)=52 \\
& \Rightarrow x=-2
\end{aligned}
$$

On substituting the value of $x=-2$ in (i), we get:

Downloaded from www.studiestoday.com

$-6-5 y-19=0$
$\Rightarrow 5 y=(-6-19)=-25$
$\Rightarrow \mathrm{y}=-5$
Hence, the solution is $x=-2$ and $y=-5$.
6.

Sol:

The given system of equation is:
$2 \mathrm{x}-\mathrm{y}+3=0$. \qquad
$3 x-7 y+10=0$
From (i), write y in terms of x to get
$y=2 x+3$
Substituting $y=2 x+3$ in (ii), we get
$3 \mathrm{x}-7(2 \mathrm{x}+3)+10=0$
$\Rightarrow 3 \mathrm{x}-14 \mathrm{x}-21+10=0$
$\Rightarrow-7 x=21-10=11$
$\mathrm{x}=-\frac{11}{7}$
Now substituting $x=-\frac{11}{7}$ in (i), we have
$-\frac{22}{7}-y+3=0$
$y=3-\frac{22}{7}=-\frac{1}{7}$
Hence, $\mathrm{x}=-\frac{11}{7}$ and $\mathrm{y}=-\frac{1}{7}$.
7.

Sol:

The given system of equation can be written as:
$9 x-2 y=108$
$3 x+7 y=105$
On multiplying (i) by 7 and (ii) by 2 , we get:
$63 x+6 x=108 \times 7+105 \times 2$
$\Rightarrow 69 \mathrm{x}=966$
$\Rightarrow \mathrm{x}=\frac{966}{69}=14$
Now, substituting $x=14$ in (i), we get:
$9 \times 14-2 y=108$
$\Rightarrow 2 y=126-108$
$\Rightarrow \mathrm{y}=\frac{18}{2}=9$
Hence, $\mathrm{x}=14$ and $\mathrm{y}=9$.
8.

Sol:

The given equations are:
$\frac{x}{3}+\frac{y}{4}=11$
$\Rightarrow 4 \mathrm{x}+3 \mathrm{y}=132$
and $\frac{5 x}{6}-\frac{y}{3}+7=0$
$\Rightarrow 5 \mathrm{x}-2 \mathrm{y}=-42$
On multiplying (i) by 2 and (ii) by 3, we get:
$8 x+6 y=264 \ldots \ldots$..(iii)
$15 x-6 y=-126 \ldots$ (iv)
On adding (iii) and (iv), we get:
$23 \mathrm{x}=138$
$\Rightarrow x=6$
On substituting $x=6$ in (i), we get:
$24+3 y=132$
$\Rightarrow 3 y=(132-24)=108$
$\Rightarrow y=36$
Hence, the solution is $\mathrm{x}=6$ and $\mathrm{y}=36$.
9.

Sol:

The given system of equation is:
$4 x-3 y=8$
$6 x-y=\frac{29}{3}$
On multiplying (ii) by 3 , we get:
$18 x-3 y=29 \ldots$ (iii)
On subtracting (iii) from (i) we get:
$-14 \mathrm{x}=-21$
$\mathrm{x}=\frac{21}{14}=\frac{3}{2}$
Now, substituting the value of $x=\frac{3}{2}$ in (i), we get:
$4 \times \frac{3}{2}-3 y=8$
$\Rightarrow 6-3 y=8$
$\Rightarrow 3 y=6-8=-2$
$y=\frac{-2}{3}$
Hence, the solution $x=\frac{3}{2}$ and $y=\frac{-2}{3}$.
10.

Sol:

The given equations are:
$2 \mathrm{x}-\frac{3 y}{4}=3$
$5 \mathrm{x}=2 \mathrm{y}+7$
On multiplying (i) by 2 and (ii) by $\frac{3}{4}$, we get:
$4 x-\frac{3}{2} y=6$
$\frac{15}{4} \mathrm{x}=\frac{3}{2} \mathrm{y}+\frac{21}{4}$.
On subtracting (iii) and (iv), we get:
$-\frac{1}{4} \mathrm{x}=-\frac{3}{4}$
$\Rightarrow \mathrm{x}=3$
On substituting $x=3$ in (i), we get:
$2 \times 3-\frac{3 y}{4}=3$
$\Rightarrow \frac{3 y}{4}=(6-3)=3$
$\Rightarrow y=\frac{3 \times 4}{3}=4$
Hence, the solution is $x=3$ and $y=4$.

11.

Sol:

The given equations are:
$2 x-5 y=\frac{8}{3} \ldots$. (i)
$3 \mathrm{x}-2 \mathrm{y}=\frac{5}{6}$.
On multiplying (i) by 2 and (ii) by 5, we get:
$4 \mathrm{x}-10 \mathrm{y}=\frac{16}{3}$
$15 x-10 y=\frac{25}{6}$.
On adding (iii) and (iv), we get:
$19 \mathrm{x}=\frac{57}{6}$
$\Rightarrow \mathrm{x}=\frac{57}{6 \times 19}=\frac{3}{6}=\frac{1}{2}$
On substituting $\mathrm{x}=\frac{1}{2}$ in (i), we get:
$2 \times \frac{1}{2}+5 y=\frac{8}{3}$
$\Rightarrow 5 y=\left(\frac{8}{3}-1\right)=\frac{5}{3}$
$\Rightarrow \mathrm{y}=\frac{5}{3 \times 5}=\frac{1}{3}$
Hence, the solution is $\mathrm{x}=\frac{1}{2}$ and $\mathrm{y}=\frac{1}{3}$.
12.

Sol:
The given equations are:
$\frac{7-4 x}{3}=y$
$\Rightarrow 4 \mathrm{x}+3 \mathrm{y}=7$ \qquad
and $2 x+3 y+1=0$
$\Rightarrow 2 x+3 y=-1$
On subtracting (ii) from (i), we get:
$2 \mathrm{x}=8$
$\Rightarrow x=4$
On substituting $x=4$ in (i), we get:
$16 x+3 y=7$
$\Rightarrow 3 y=(7-16)=-9$
$\Rightarrow y=-3$
Hence, the solution is $\mathrm{x}=4$ and $\mathrm{y}=-3$.
13.

Sol:

The given system of equations is
$0.4 x+0.3 y=1.7$
$0.7 x-0.2 y=0.8$

Downloaded from www.studiestoday.com

Multiplying (i) by 0.2 and (ii) by 0.3 and adding them, we get
$0.8 \mathrm{x}+2.1 \mathrm{x}=3.4+2.4$
$\Rightarrow 2.9 \mathrm{x}=5.8$
$\Rightarrow \mathrm{x}=\frac{5.8}{2.9}=2$
Now, substituting $x=2$ in (i), we have
$0.4 \times 2+0.3 y=1.7$
$\Rightarrow 0.3 \mathrm{y}=1.7-0.8$
$\Rightarrow y=\frac{0.9}{0.3}=3$
Hence, $\mathrm{x}=2$ and $\mathrm{y}=3$.
14.

Sol:

The given system of equations is
$0.3 \mathrm{x}+0.5 \mathrm{y}=0.5$
$0.5 x+0.7 y=0.74$
Multiplying (i) by 5 and (ii) by 3 and subtracting (ii) from (i), we get
$2.5 y-2.1 y=2.5-2.2$
$\Rightarrow 0.4 \mathrm{y}=0.28$
$\Rightarrow y=\frac{0.28}{0.4}=0.7$
Now, substituting $y=0.7$ in (i), we have
$0.3 x+0.5 \times 0.7=0.5$
$\Rightarrow 0.3 \mathrm{x}=0.50-0.35=0.15$
$\Rightarrow x=\frac{0.15}{0.3}=0.5$
Hence, $\mathrm{x}=0.5$ and $\mathrm{y}=0.7$.
15.

Sol:

The given equations are:

$$
\begin{align*}
& 7(y+3)-2(x+2)=14 \\
& \Rightarrow 7 y+21-2 x-4=14 \\
& \Rightarrow-2 x+7 y=-3 \ldots \ldots . .(i) \tag{i}\\
& \text { and } 4(y-2)+3(x-3)=2 \\
& \Rightarrow 4 y-8+3 x-9=2
\end{align*}
$$

$\Rightarrow 3 x+4 y=19$
On multiplying (i) by 4 and (ii) by 7 , we get:
$-8 x+28 y=-12 \quad \ldots \ldots$.(iii)
$21 x+28 y=133$
On subtracting (iii) from (iv), we get:
$29 \mathrm{x}=145$
$\Rightarrow \mathrm{x}=5$
On substituting $x=5$ in (i), we get:
$-10+7 y=-3$
$\Rightarrow 7 \mathrm{y}=(-3+10)=7$
$\Rightarrow \mathrm{y}=1$
Hence, the solution is $\mathrm{x}=5$ and $\mathrm{y}=1$.
16.

Sol:

The given equations are:
$6 x+5 y=7 x+3 y+1=2(x+6 y-1)$
$\Rightarrow 6 \mathrm{x}+5 \mathrm{y}=2(\mathrm{x}+6 \mathrm{y}-1)$
$\Rightarrow 6 \mathrm{x}+5 \mathrm{y}=2 \mathrm{x}+12 \mathrm{y}-2$
$\Rightarrow 6 \mathrm{x}-2 \mathrm{x}+5 \mathrm{y}-12 \mathrm{y}=-2$
$\Rightarrow 4 \mathrm{x}-7 \mathrm{y}=-2$
and $7 x+3 y+1=2(x+6 y-1)$
$\Rightarrow 7 \mathrm{x}+3 \mathrm{y}+1=2 \mathrm{x}+12 \mathrm{y}-2$
$\Rightarrow 7 \mathrm{x}-2 \mathrm{x}+3 \mathrm{y}-12 \mathrm{y}=-2-1$
$\Rightarrow 5 x-9 y=-3$
On multiplying (i) by 9 and (ii) by 7 , we get:
$36 x-63 y=-18$
$35 x-63 y=-21$
On subtracting (iv) from (iii), we get:
$x=(-18+21)=3$
On substituting $x=3$ in (i), we get:
$12-7 y=-2$
$\Rightarrow 7 y=(2+12)=14$
$\Rightarrow y=2$
Hence, the solution is $\mathrm{x}=3$ and $\mathrm{y}=2$.
17.

Sol:

The given equations are:
$\frac{x+y-8}{2}=\frac{x+2 y-14}{3}=\frac{3 x+y-12}{11}$
i.e., $\frac{x+y-8}{2}=\frac{3 x+y-12}{11}$

By cross multiplication, we get:
$11 x+11 y-88=6 x+2 y-24$
$\Rightarrow 11 \mathrm{x}-6 \mathrm{x}+11 \mathrm{y}-2 \mathrm{y}=-24+88$
$\Rightarrow 5 \mathrm{x}+9 \mathrm{y}=64$
and $\frac{x+2 y-14}{3}=\frac{3 x+y-12}{11}$
$\Rightarrow 11 \mathrm{x}+22 \mathrm{y}-154=9 \mathrm{x}+3 \mathrm{y}-36$
$\Rightarrow 11 x-9 x+22 y-3 y=-36+154$
$\Rightarrow 2 x+19 y=118$
On multiplying (i) by 19 and (ii) by 9 , we get:
$95 x+171 y=1216$
$18 x+171 y=1062$
On subtracting (iv) from (iii), we get:
$77 \mathrm{x}=154$
$\Rightarrow x=2$
On substituting $x=2$ in (i), we get:
$10+9 y=64$
$\Rightarrow 9 y=(64-10)=54$
$\Rightarrow y=6$
Hence, the solution is $\mathrm{x}=2$ and $\mathrm{y}=6$.
18.

Sol:

The given equations are:
$\frac{5}{x}+6 y=13$
$\frac{3}{x}+4 y=7$
Putting $\frac{1}{x}=u$, we get:

$$
\begin{align*}
& 5 u+6 y=13 \\
& 3 u+4 y=7 \tag{iii}
\end{align*}
$$

On multiplying (iii) by 4 and (iv) by 6 , we get:
$20 u+24 y=52$ \qquad
$18 u+24 y=42$
On subtracting (vi) from (v), we get:
$2 \mathrm{u}=10 \Rightarrow \mathrm{u}=5$
$\Rightarrow \frac{1}{x}=5 \Rightarrow x=\frac{1}{5}$
On substituting $\mathrm{x}=\frac{1}{5}$ in (i), we get:
$\frac{5}{1 / 3}+6 y=13$
$25+6 y=13$
$6 y=(13-25)=-12$
$y=-2$
Hence, the required solution is $\mathrm{x}=\frac{1}{5}$ and $\mathrm{y}=-2$.
19.

Sol:

The given equations are:
$x+\frac{6}{y}=6$
$3 \mathrm{x}-\frac{8}{y}=5$
Putting $\frac{1}{y}=\mathrm{v}$, we get:
$x+6 v=6$ \qquad
$3 x-8 v=5$
On multiplying (iii) by 4 and (iv) by 3 , we get:
$4 x+24 v=24$
$9 x-24 v=15$
On adding (v) from (vi), we get:
$13 \mathrm{x}=39 \Rightarrow \mathrm{x}=3$
On substituting $x=3$ in (i), we get:
$3+\frac{6}{y}=6$
$\Rightarrow \frac{6}{y}=(6-3)=3 \Rightarrow 3 y=6 \Rightarrow y=2$
Hence, the required solution is $x=3$ and $y=2$.
20.

Sol:

The given equations are:
$2 x-\frac{3}{y}=9 \ldots \ldots .$. (i)
$3 \mathrm{x}+\frac{7}{y}=2$
Putting $\frac{1}{y}=\mathrm{v}$, we get:
$2 \mathrm{x}-3 \mathrm{v}=6$
$3 x+7 v=2$
On multiplying (iii) by 7 and (iv) by 3, we get:
$14 x-21 v=63$ \qquad
$9 x+21 v=6$ \qquad
On adding (v) from (vi), we get:
$23 \mathrm{x}=69 \Rightarrow \mathrm{x}=3$
On substituting $x=3$ in (i), we get:
$2 \times 3-\frac{3}{y}=9$
$\Rightarrow 6-\frac{3}{y}=9 \Rightarrow \frac{3}{y}=-3 \Rightarrow \mathrm{y}=-1$
Hence, the required solution is $\mathrm{x}=3$ and $\mathrm{y}=-1$.
21.

Sol:

The given equations are:
$\frac{3}{x}-\frac{1}{y}+9=0$,
$\Rightarrow \frac{3}{x}-\frac{1}{y}=-9$
$\Rightarrow \frac{2}{x}-\frac{3}{y}=5$.
Putting $\frac{1}{x}=u$ and $\frac{1}{y}=v$, we get:
$3 u-v=-9$ \qquad
$2 u+3 v=5$
On multiplying (iii) by 3 , we get:
$9 u-3 v=-27$ \qquad
On adding (iv) and (v), we get:
$11 u=-22 \Rightarrow u=-2$
$\Rightarrow \frac{1}{x}=-2 \Rightarrow x=\frac{-1}{2}$
On substituting $x=\frac{-1}{2}$ in (i), we get:
$\frac{3}{-1 / 2}-\frac{1}{y}=-9$
$\Rightarrow-6-\frac{1}{y}=-9 \Rightarrow \frac{1}{y}=(-6+9)=3$
$\Rightarrow \mathrm{y}=\frac{1}{3}$
Hence, the required solution is $\mathrm{x}=\frac{-1}{2}$ and $\mathrm{y}=\frac{1}{3}$.
22.

Sol:

The given equations are:
$\frac{9}{x}-\frac{4}{y}=8$ \qquad
$\frac{13}{x}+\frac{7}{y}=101$
Putting $\frac{1}{x}=\mathrm{u}$ and $\frac{1}{y}=\mathrm{v}$, we get:
$9 u-4 v=8$ \qquad
$13 u+7 v=101$
On multiplying (iii) by 7 and (iv) by 4 , we get:
$63 u-28 v=56$ \qquad
$52 u+28 v=404$
On adding (v) from (vi), we get:
$115 u=460 \Rightarrow u=4$
$\Rightarrow \frac{1}{x}=4 \Rightarrow x=\frac{1}{4}$
On substituting $\mathrm{x}=\frac{1}{4}$ in (i), we get:
$\frac{9}{1 / 4}-\frac{4}{y}=8$
$\Rightarrow 36-\frac{4}{y}=8 \Rightarrow \frac{4}{y}=(36-8)=28$
$\mathrm{y}=\frac{4}{28}=\frac{1}{7}$
Hence, the required solution is $x=\frac{1}{4}$ and $y=\frac{1}{7}$.
23.

Sol:

The given equations are:
$\frac{5}{x}-\frac{3}{y}=1$ \qquad
$\frac{3}{2 x}+\frac{2}{3 y}=5$

Downloaded from www.studiestoday.com

Putting $\frac{1}{x}=\mathrm{u}$ and $\frac{1}{y}=\mathrm{v}$, we get:
$5 u-3 v=1$
$\Rightarrow \frac{3}{2} u+\frac{2}{3} v=5$
$\Rightarrow \frac{9 u+4 v}{6}=5$
$\Rightarrow 9 u+4 v=30$
On multiplying (iii) by 4 and (iv) by 3 , we get:
$20 u-12 v=4$
$27 u+12 v=90$
On adding (iv) and (v), we get:
$47 u=94 \Rightarrow u=2$
$\Rightarrow \frac{1}{x}=2 \Rightarrow \mathrm{x}=\frac{1}{2}$
On substituting $\mathrm{x}=\frac{1}{2}$ in (i), we get:
$\frac{5}{1 / 2}-\frac{3}{y}=1$
$\Rightarrow 10-\frac{3}{y}=1 \Rightarrow \frac{3}{y}=(10-1)=9$
$\mathrm{y}=\frac{3}{9}=\frac{1}{3}$
Hence, the required solution is $\mathrm{x}=\frac{1}{2}$ and $\mathrm{y}=\frac{1}{3}$.
24.

Sol:

The given equations are:
$\frac{3}{x}+\frac{2}{y}=12$ \qquad
$\frac{2}{x}+\frac{3}{y}=13$
Multiplying (i) by 3 and (ii) by 2 and subtracting (ii) from (i), we get:
$\frac{9}{x}-\frac{4}{x}=36-26$
$\Rightarrow \frac{5}{x}=10$
$\Rightarrow \mathrm{x}=\frac{5}{10}=\frac{1}{2}$
Now, substituting $x=\frac{1}{2}$ in (i), we have
$6+\frac{2}{y}=12$
$\Rightarrow \frac{2}{y}=6$
$\Rightarrow \mathrm{y}=\frac{1}{3}$

Hence, $\mathrm{x}=\frac{1}{2}$ and $\mathrm{y}=\frac{1}{3}$.
25.

Sol:

The given equations are:
$4 x+6 y=3 x y$
$8 x+9 y=5 x y$
From equation (i), we have:
$\frac{4 x+6 y}{x y}=3$
$\Rightarrow \frac{4}{y}+\frac{6}{x}=3$
For equation (ii), we have:
$\frac{8 x+9 y}{x y}=5$
$\Rightarrow \frac{8}{y}+\frac{9}{x}=5$
On substituting $\frac{1}{y}=\mathrm{v}$ and $\frac{1}{x}=\mathrm{u}$, we get:
$4 v+6 u=3$
$8 v+9 u=5$
On multiplying (v) by 9 and (vi) by 6 , we get:
$36 v+54 u=27$ \qquad
$48 v+54 u=30$
On subtracting (vii) from (viii), we get:
$12 \mathrm{v}=3 \Rightarrow \mathrm{v}=\frac{3}{12}=\frac{1}{4}$
$\Rightarrow \frac{1}{y}=\frac{1}{4} \Rightarrow \mathrm{y}=4$
On substituting $y=4$ in (iii), we get:
$\frac{4}{4}+\frac{6}{x}=3$
$\Rightarrow 1+\frac{6}{x}=3 \Rightarrow \frac{6}{x}=(3-1)=2$
$\Rightarrow 2 \mathrm{x}=6 \Rightarrow \mathrm{x}=\frac{6}{2}=3$
Hence, the required solution is $x=3$ and $y=4$.
26.

Sol:

The given equations are:
$x+y=5 x y \ldots .$. (i)
$3 x+2 y=13 x y$

Downloaded from www.studiestoday.com

From equation (i), we have:
$\frac{x+y}{x y}=5$
$\Rightarrow \frac{1}{y}+\frac{1}{x}=5$
For equation (ii), we have:
$\frac{3 x+2 y}{x y}=13$
$\Rightarrow \frac{3}{y}+\frac{2}{x}=13$ \qquad
On substituting $\frac{1}{y}=\mathrm{v}$ and $\frac{1}{x}=\mathrm{u}$, we get:
$v+u=5$ \qquad
$3 v+2 u=13$
On multiplying (v) by 2 , we get:
$2 v+2 u=10$ \qquad
On subtracting (vii) from (vi), we get:
$\mathrm{v}=3$
$\Rightarrow \frac{1}{y}=3 \Rightarrow \mathrm{y}=\frac{1}{3}$
On substituting $y=\frac{1}{3}$ in (iii), we get:
$\frac{1}{1 / 3}+\frac{1}{x}=5$
$\Rightarrow 3+\frac{1}{x}=5 \Rightarrow \frac{1}{x}=2 \Rightarrow \mathrm{x}=\frac{1}{2}$
Hence, the required solution is $\mathrm{x}=\frac{1}{2}$ and $\mathrm{y}=\frac{1}{3}$ or $\mathrm{x}=0$ and $\mathrm{y}=0$.
27.

Sol:

The given equations are
$\frac{5}{x+y}-\frac{2}{x-y}=-1$
$\frac{15}{x+y}-\frac{7}{x-y}=10$
Substituting $\frac{1}{x+y}=\mathrm{u}$ and $\frac{1}{x-y}=\mathrm{v}$ in (i) and (ii), we get
$5 u-2 v=-1$
$15 u+7 v=10$
Multiplying (iii) by 3 and subtracting it from (iv), we get
$7 \mathrm{v}+6 \mathrm{v}=10+3$
$\Rightarrow 13 \mathrm{v}=13$
$\Rightarrow \mathrm{v}=1$
$\Rightarrow \mathrm{x}-\mathrm{y}=1 \quad\left(\because \frac{1}{x-y}=v\right)$
Now, substituting $\mathrm{v}=1$ in (iii), we get
$5 u-2=-1$
$\Rightarrow 5 \mathrm{u}=1$
$\Rightarrow \mathrm{u}=\frac{1}{5}$
$x+y=5$
Adding (v) and (vi), we get
$2 x=6 \Rightarrow x=3$
Substituting $x=3$ in (vi), we have
$3+y=5 \Rightarrow y=5-3=2$
Hence, $x=3$ and $y=2$.
28.

Sol:

The given equations are
$\frac{3}{x+y}+\frac{2}{x-y}=2$
$\frac{9}{x+y}-\frac{4}{x-y}=1$
Substituting $\frac{1}{x+y}=\mathrm{u}$ and $\frac{1}{x-y}=\mathrm{v}$, we get:
$3 u+2 v=2$
$9 u-4 v=1$
On multiplying (iii) by 2 , we get:
$6 u+4 v=4$
On adding (iv) and (v), we get:
$15 u=5$
$\Rightarrow \mathrm{u}=\frac{5}{15}=\frac{1}{3}$
$\Rightarrow \frac{1}{x+y}=\frac{1}{3} \Rightarrow \mathrm{x}+\mathrm{y}=3$
On substituting $\mathrm{u}=\frac{1}{3}$ in (iii), we get
$1+2 \mathrm{v}=2$
$\Rightarrow 2 \mathrm{v}=1$
$\Rightarrow \mathrm{V}=\frac{1}{2}$
$\Rightarrow \frac{1}{x-y}=\frac{1}{2} \Rightarrow \mathrm{x}-\mathrm{y}=2$
On adding (vi) and (vii), we get
$2 x=5$
$\Rightarrow \mathrm{x}=\frac{5}{2}$
On substituting $x=\frac{5}{2}$ in (vi), we have
$\frac{5}{2}+y=3$
$\Rightarrow \mathrm{y}=\left(3-\frac{5}{2}\right)=\frac{1}{2}$
Hence, the required solution is $\mathrm{x}=\frac{5}{2}$ and $\mathrm{y}=\frac{1}{2}$.
29.

Sol:

The given equations are
$\frac{5}{x+1}+\frac{2}{y-1}=\frac{1}{2}$
$\frac{10}{x+1}-\frac{2}{y-1}=\frac{5}{2}$
Substituting $\frac{1}{x+1}=\mathrm{u}$ and $\frac{1}{y-1}=\mathrm{v}$, we get:
$5 \mathrm{u}-2 \mathrm{v}=\frac{1}{2}$
$10 u+2 v=\frac{5}{2}$
On adding (iii) and (iv), we get:
$15 u=3$
$\Rightarrow \mathrm{u}=\frac{3}{15}=\frac{1}{5}$
$\Rightarrow \frac{1}{x+1}=\frac{1}{5} \Rightarrow \mathrm{x}+1=5 \Rightarrow \mathrm{x}=4$
On substituting $u=\frac{1}{5}$ in (iii), we get
$5 \times \frac{1}{5}-2 \mathrm{v}=\frac{1}{2} \Rightarrow 1-2 \mathrm{v}=\frac{1}{2}$
$\Rightarrow 2 \mathrm{v}=\frac{1}{2} \Rightarrow \mathrm{v}=\frac{1}{4}$
$\Rightarrow \frac{1}{y-1}=\frac{1}{4} \Rightarrow \mathrm{y}-1=4 \Rightarrow \mathrm{y}=5$
Hence, the required solution is $x=4$ and $y=5$.
30.

Sol:
The given equations are
$\frac{44}{x+y}+\frac{30}{x-y}=10$
$\frac{55}{x+y}-\frac{40}{x-y}=13$

Putting $\frac{1}{x+y}=\mathrm{u}$ and $\frac{1}{x-y}=\mathrm{v}$, we get:
$44 u+30 v=10$
$55 u+40 v=13$
On multiplying (iii) by 4 and (iv) by 3 , we get:
$176 u+120 v=40$
$165 u+120 v=39$
On subtracting (vi) and (v), we get:
$11 u=1$
$\Rightarrow \mathrm{u}=\frac{1}{11}$
$\Rightarrow \frac{1}{x+y}=\frac{1}{11} \Rightarrow \mathrm{x}+\mathrm{y}=11$
On substituting $\mathrm{u}=\frac{1}{11}$ in (iii), we get:
$4+30 v=10$
$\Rightarrow 30 \mathrm{v}=6$
$\Rightarrow \mathrm{v}=\frac{6}{30}=\frac{1}{5}$
$\Rightarrow \frac{1}{x-y}=\frac{1}{5} \Rightarrow \mathrm{x}-\mathrm{y}=5$
On adding (vii) and (viii), we get
$2 \mathrm{x}=16$
$\Rightarrow x=8$
On substituting $x=8$ in (vii), we get:
$8+y=11$
$\Rightarrow y=11-8=3$
Hence, the required solution is $x=8$ and $y=3$.
31.

Sol:

The given equations are
$\frac{10}{x+y}+\frac{2}{x-y}=4$
$\frac{15}{x+y}-\frac{9}{x-y}=-2$
Substituting $\frac{1}{x+y}=\mathrm{u}$ and $\frac{1}{x-y}=\mathrm{v}$ in (i) and (ii), we get:
$10 u+2 v=4$
$15 u-9 v=-2$
Multiplying (iii) by 9 and (iv) by 2 and adding, we get:
$90 u+30 u=36-4$
$\Rightarrow 120 \mathrm{u}=32$
$\Rightarrow \mathrm{u}=\frac{32}{120}=\frac{4}{15}$
$\Rightarrow \mathrm{x}+\mathrm{y}=\frac{15}{4} \quad\left(\because \frac{1}{x+y}=u\right)$
On substituting $u=\frac{4}{15}$ in (iii), we get:
$10 \times \frac{4}{15}+2 \mathrm{v}=4$
$\frac{8}{3}+2 \mathrm{v}=4$
$\Rightarrow 2 \mathrm{v}=4-\frac{8}{3}=\frac{4}{3}$
$\Rightarrow \mathrm{v}=\frac{2}{3}$
$\Rightarrow \mathrm{x}-\mathrm{y}=\frac{3}{2} \quad\left(\because \frac{1}{x-y}=v\right)$
Adding (v) and (vi), we get
$2 \mathrm{x}=\frac{15}{4}+\frac{3}{2} \Rightarrow 2 \mathrm{x}=\frac{21}{4} \Rightarrow \mathrm{x}=\frac{21}{8}$
Substituting $x=\frac{21}{8}$ in (v), we have
$\frac{21}{8}+\mathrm{y}=\frac{15}{4} \Rightarrow \mathrm{y}=\frac{15}{4}-\frac{21}{8}=\frac{9}{8}$
Hence, $x=\frac{21}{8}$ and $y=\frac{9}{8}$.
32.

Sol:

The given equations are:
$71 x+37 y=253$
$37 x+71 y=287$
On adding (i) and (ii), we get:
$108 x+108 y=540$
$\Rightarrow 108(x+y)=540$
$\Rightarrow(x+y)=5$
On subtracting (ii) from (i), we get:
$34 x-34 y=-34$
$\Rightarrow 34(\mathrm{x}-\mathrm{y})=-34$
$\Rightarrow(\mathrm{x}-\mathrm{y})=-1$
On adding (iii) from (i), we get:
$2 \mathrm{x}=5-1=4$
$\Rightarrow x=2$
On subtracting (iv) from (iii), we get:
$2 \mathrm{y}=5+1=6$
$\Rightarrow y=3$
Hence, the required solution is $\mathrm{x}=2$ and $\mathrm{y}=3$.
33.

Sol:

The given equations are:
$217 x+131 y=913$
$131 \mathrm{x}+217 \mathrm{y}=827$
On adding (i) and (ii), we get:
$348 \mathrm{x}+348 \mathrm{y}=1740$
$\Rightarrow 348(\mathrm{x}+\mathrm{y})=1740$
$\Rightarrow x+y=5$
On subtracting (ii) from (i), we get:
$86 x-86 y=86$
$\Rightarrow 86(\mathrm{x}-\mathrm{y})=86$
$\Rightarrow \mathrm{x}-\mathrm{y}=1$
On adding (iii) from (i), we get:
$2 \mathrm{x}=6$
$\Rightarrow x=3$
On substituting $\mathrm{x}=3$ in (iii), we get:
$3+y=5$
$\Rightarrow \mathrm{y}=5-3=2$
Hence, the required solution is $\mathrm{x}=3$ and $\mathrm{y}=2$.
34.

Sol:

The given equations are:
$23 \mathrm{x}-29 \mathrm{y}=98$
$29 x-23 y=110$
Adding (i) and (ii), we get: 52 x
$-52 \mathrm{y}=208$
$\Rightarrow \mathrm{x}-\mathrm{y}=4$
Subtracting (i) from (ii), we get:
$6 x+6 y=12$
$\Rightarrow \mathrm{x}+\mathrm{y}=2$
Now, adding equation (iii) and (iv), we get:
$2 \mathrm{x}=6$
$\Rightarrow \mathrm{x}=3$
On substituting $x=3$ in (iv), we have:
$3+y=2$
$\Rightarrow y=2-3=-1$
Hence, $\mathrm{x}=3$ and $\mathrm{y}=-1$.
35.

Sol:

The given equations can be written as
$\frac{5}{x}+\frac{2}{y}=6$
$\frac{-5}{x}+\frac{4}{y}=-3$
Adding (i) and (ii), we get
$\frac{6}{y}=3 \Rightarrow \mathrm{y}=2$
Substituting y $=2$ in (i), we have
$\frac{5}{x}+\frac{2}{2}=6 \Rightarrow x=1$
Hence, $x=1$ and $y=2$.
36.

Sol:
The given equations are
$\frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4}$
$\frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=-\frac{1}{8}$
$\frac{1}{3 x+y}-\frac{1}{3 x-y}=-\frac{1}{4} \quad($ Multiplying by 2$)$
Substituting $\frac{1}{3 x+y}=\mathrm{u}$ and $\frac{1}{3 x-y}=\mathrm{v}$ in (i) and (ii), we get:
$u+v=\frac{3}{4}$
$\mathrm{u}-\mathrm{v}=-\frac{1}{4}$
Adding (iii) and (iv), we get:
$2 \mathrm{u}=\frac{1}{2}$
$\Rightarrow \mathrm{u}=\frac{1}{4}$
$\Rightarrow 3 \mathrm{x}+\mathrm{y}=4 \quad\left(\because \frac{1}{3 x+y}=u\right)$
Now, substituting $\mathrm{u}=\frac{1}{4}$ in (iii), we get:
$\frac{1}{4}+\mathrm{v}=\frac{3}{4}$
$\mathrm{v}=\frac{3}{4}-\frac{1}{4}$
$\Rightarrow \mathrm{v}=\frac{1}{2}$
$\Rightarrow 3 \mathrm{x}-\mathrm{y}=2 \quad\left(\because \frac{1}{3 x-y}=v\right)$
Adding (v) and (vi), we get
$6 x=6 \Rightarrow x=1$
Substituting $x=1$ in (v), we have
$3+y=4 \Rightarrow y=1$
Hence, $\mathrm{x}=1$ and $\mathrm{y}=1$.
37.

Sol:

The given equations are
$\frac{1}{2(x+2 y)}+\frac{5}{3(3 x-2 y)}=-\frac{3}{2}$
$\frac{1}{4(x+2 y)}-\frac{3}{5(3 x-2 y)}=\frac{61}{60}$
Putting $\frac{1}{x+2 y}=\mathrm{u}$ and $\frac{1}{3 x-2 y}=\mathrm{v}$, we get:
$\frac{1}{2} \mathrm{u}+\frac{5}{3} \mathrm{v}=-\frac{3}{2}$
$\frac{5}{4} u-\frac{3}{5} v=\frac{61}{60}$
On multiplying (iii) by 6 and (iv) by 20, we get:

$$
\begin{align*}
& 3 u+10 v=-9 \tag{v}\\
& 25 u-12 v=\frac{61}{3}
\end{align*}
$$

On multiplying (v) by 6 and (vi) by 5 , we get

$$
\begin{equation*}
18 u+60 v=-54 \tag{vii}
\end{equation*}
$$

$125 u-60 v=\frac{305}{3}$
On adding(vii) and (viii), we get:
$143 u=\frac{305}{3}-54=\frac{305-162}{3}=\frac{143}{3}$
$\Rightarrow \mathrm{u}=\frac{1}{3}=\frac{1}{x+2 y}$
$\Rightarrow x+2 y=3$
On substituting $u=\frac{1}{3}$ in (v), we get:
$1+10 v=-9$
$\Rightarrow 10 \mathrm{v}=-10$
$\Rightarrow \mathrm{v}=-1$
$\Rightarrow \frac{1}{3 x-2 y}=-1 \Rightarrow 3 x-2 y=-1$
On adding (ix) and (x), we get:
$4 \mathrm{x}=2$
$\Rightarrow \mathrm{x}=\frac{1}{2}$
On substituting $\mathrm{x}=\frac{1}{2}$ in (x), we get:
$\frac{3}{2}-2 y=-1$
$2 \mathrm{y}=\left(\frac{3}{2}+1\right)=\frac{5}{2}$
$y=\frac{5}{4}$
Hence, the required solution is $x=\frac{1}{2}$ and $y=\frac{5}{4}$.
38.

Sol:

The given equations are
$\frac{2}{3 x+2 y}+\frac{3}{3 x-2 y}=\frac{17}{5}$
$\frac{5}{3 x+2 y}+\frac{1}{3 x-2 y}=2$
Substituting $\frac{1}{3 x+2 y}=\mathrm{u}$ and $\frac{1}{3 x-2 y}=\mathrm{v}$, in (i) and (ii), we get:
$2 u+3 v=\frac{17}{5}$
$5 u+v=2$
Multiplying (iv) by 3 and subtracting from (iii), we get:
$2 \mathrm{u}-15 \mathrm{u}=\frac{17}{5}-6$
$\Rightarrow-13 \mathrm{u}=\frac{-13}{5} \Rightarrow \mathrm{u}=\frac{1}{5}$
$\Rightarrow 3 \mathrm{x}+2 \mathrm{y}=5 \quad\left(\because \frac{1}{3 x+2 y}=u\right)$
Now, substituting $u=\frac{1}{5}$ in (iv), we get
$1+\mathrm{v}=2 \Rightarrow \mathrm{v}=1$
$\Rightarrow 3 \mathrm{x}-2 \mathrm{y}=1 \quad\left(\because \frac{1}{3 x-2 y}=v\right)$

Downloaded from www.studiestoday.com

Adding(v) and (vi), we get:
$\Rightarrow 6 x=6 \Rightarrow x=1$
Substituting $x=1$ in (v), we get:
$3+2 y=5 \Rightarrow y=1$
Hence, $\mathrm{x}=1$ and $\mathrm{y}=1$.
39.

Sol:

The given equations can be written as
$\frac{3}{x}+\frac{6}{y}=7$
$\frac{9}{x}+\frac{3}{y}=11$
Multiplying (i) by 3 and subtracting (ii) from it, we get
$\frac{18}{y}-\frac{3}{y}=21-11$
$\Rightarrow \frac{15}{y}=10$
$\Rightarrow \mathrm{y}=\frac{15}{10}=\frac{3}{2}$
Substituting y $=\frac{3}{2}$ in (i), we have
$\frac{3}{x}+\frac{6 \times 2}{3}=7$
$\Rightarrow \frac{3}{x}=7-4=3$
Hence, $x=1$ and $y=\frac{3}{2}$.
40.

Sol:

The given equations are

$$
\begin{align*}
& x+y=a+b \tag{i}\\
& a x-b y=a^{2}-b^{2} \tag{ii}
\end{align*}
$$

Multiplying (i) by b and adding it with (ii), we get
$b x+a x=a b+b^{2}+a^{2}-b^{2}$
$\Rightarrow \mathrm{x}=\frac{a b+a^{2}}{a+b}=\mathrm{a}$
Substituting $x=a$ in (i), we have
$a+y=a+b$
$\Rightarrow \mathrm{y}=\mathrm{b}$
Hence, $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$.

Downloaded from www.studiestoday.com

41.

Sol:

The given equations are:
$\frac{x}{a}+\frac{y}{b}=2$
$\Rightarrow \frac{b x+a y}{a b}=2$ [Taking LCM]
$\Rightarrow \mathrm{bx}+\mathrm{ay}=2 \mathrm{ab}$
Again, $\mathrm{ax}-\mathrm{by}=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
On multiplying (i) by b and (ii) by a, we get:
$b^{2} \mathrm{x}+\mathrm{bay}=2 \mathrm{ab}^{2}$
$a^{2} x-b a y=a\left(a^{2}-b^{2}\right)$
On adding (iii) from (iv), we get:
$\left(b^{2}+a^{2}\right) x=2 a^{2} b+a\left(a^{2}-b^{2}\right)$
$\Rightarrow\left(b^{2}+a^{2}\right) x=2 a b^{2}+a^{3}-a b^{2}$
$\Rightarrow\left(b^{2}+a^{2}\right) x=a b^{2}+a^{3}$
$\Rightarrow\left(\mathrm{b}^{2}+\mathrm{a}^{2}\right) \mathrm{x}=\mathrm{a}\left(\mathrm{b}^{2}+\mathrm{a}^{2}\right)$
$\Rightarrow \mathrm{x}=\frac{a\left(b^{2}+a^{2}\right)}{\left(b^{2}+a^{2}\right)}=\mathrm{a}$
On substituting $x=a$ in (i), we get:
$b a+a y=2 a b$
$\Rightarrow \mathrm{ay}=\mathrm{ab}$
$\Rightarrow \mathrm{y}=\mathrm{b}$
Hence, the solution is $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$.
42.

Sol:

The given equations are
$p x+q y=p-q$
$q x-p y=p+q$
Multiplying (i) by p and (ii) by q and adding them, we get
$\mathrm{p}^{2} \mathrm{x}+\mathrm{q}^{2} \mathrm{x}=\mathrm{p}^{2}-\mathrm{pq}+\mathrm{pq}+\mathrm{q}^{2}$
$\mathrm{x}=\frac{p^{2}+q^{2}}{p^{2}+q^{2}}=1$
Substituting $x=1$ in (i), we have
$p+q y=p-q$
$\Rightarrow q y=-p$
$\Rightarrow \mathrm{y}=-1$
Hence, $\mathrm{x}=1$ and $\mathrm{y}=-1$.
43.

Sol:

The given equations can be written as
$\frac{x}{a}-\frac{y}{b}=0$
$a x+b y=a^{2}+b^{2}$
From (i),
$\mathrm{y}=\frac{b x}{a}$
Substituting y $=\frac{b x}{a}$ in (ii), we get
$\mathrm{ax}+\frac{b \times b x}{a}=\mathrm{a}^{2}+\mathrm{b}^{2}$
$\Rightarrow \mathrm{x}=\frac{\left(a^{2}+b^{2}\right) \times a}{a^{2}+b^{2}}=\mathrm{a}$
Now, substitute $\mathrm{x}=\mathrm{a}$ in (ii) to get
$a^{2}+b y=a^{2}+b^{2}$
$\Rightarrow b y=b^{2}$
$\Rightarrow \mathrm{y}=\mathrm{b}$
Hence, $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$.
44.

Sol:

The given equations are
$6(a x+b y)=3 a+2 b$
$\Rightarrow 6 \mathrm{ax}+6 \mathrm{by}=3 \mathrm{a}+2 \mathrm{~b}$
and $6(b x-a y)=3 b-2 a$
$\Rightarrow 6 \mathrm{bx}-6 \mathrm{ay}=3 \mathrm{~b}-2 \mathrm{a}$
On multiplying (i) by a and (ii) by b, we get
$6 a^{2} x+6 a b y=3 a^{2}+2 a b$
$6 b^{2} x-6 a b y=3 b^{2}-2 a b$
On adding (iii) and (iv), we get
$6\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \mathrm{x}=3\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$
$\mathrm{x}=\frac{3\left(a^{2}+b^{2}\right)}{6\left(a^{2}+b^{2}\right)}=\frac{1}{2}$

Downloaded from www.studiestoday.com

On substituting $\mathrm{x}=\frac{1}{2}$ in (i), we get:
$6 a \times \frac{1}{2}+6 b y=3 a+2 b$
$6 \mathrm{by}=2 \mathrm{~b}$
$\mathrm{y}=\frac{2 b}{6 b}=\frac{1}{3}$
Hence, the required solution is $\mathrm{x}=\frac{1}{2}$ and $\mathrm{y}=\frac{1}{3}$.
45.

Sol:

The given equations are
$a x-b y=a^{2}+b^{2}$
$x+y=2 a$
(ii) From
(ii)
$\mathrm{y}=2 \mathrm{a}-\mathrm{x}$
Substituting $y=2 a-x$ in (i), we get
$a x-b(2 a-x)=a^{2}+b^{2}$
$\Rightarrow \mathrm{ax}-2 \mathrm{ab}+\mathrm{bx}=\mathrm{a}^{2}+\mathrm{b}^{2}$
$\Rightarrow \mathrm{x}=\frac{a^{2}+b^{2}+2 a b}{a+b}=\frac{(a+b)^{2}}{a+b}=\mathrm{a}+\mathrm{b}$
Now, substitute $x=a+b$ in (ii) to get
$a+b+y=2 a$
$\Rightarrow y=a-b$
Hence, $\mathrm{x}=\mathrm{a}+\mathrm{b}$ and $\mathrm{y}=\mathrm{a}-\mathrm{b}$.
46.

Sol:

The given equations are:
$\frac{b x}{a}-\frac{a y}{b}+\mathrm{a}+\mathrm{b}=0$
By taking LCM, we get:
$b^{2} x-a^{2} y=-a^{2} b-b^{2} a$
and $b x-a y+2 a b=0$
$b x-a y=-2 a b$
On multiplying (ii) by a, we get:
$a b x-a^{2} y=-2 a^{2} b$
On subtracting (i) from (iii), we get:
$a b x-b^{2} x=2 a^{2} b+a^{2} b+b^{2} a=-a^{2} b+b^{2} a$
$\Rightarrow \mathrm{x}\left(\mathrm{ab}-\mathrm{b}^{2}\right)=-\mathrm{ab}(\mathrm{a}-\mathrm{b})$
$\Rightarrow \mathrm{x}(\mathrm{a}-\mathrm{b}) \mathrm{b}=-\mathrm{ab}(\mathrm{a}-\mathrm{b})$
$\therefore \mathrm{x}=\frac{-a b(a-b)}{(a-b) b}=-\mathrm{a}$
On substituting $x=-a$ in (i), we get:
$b^{2}(-a)-a^{2} y=-a^{2} b-b^{2} a$
$\Rightarrow-b^{2} a-a^{2} y=-a^{2} b-b^{2} a$
$\Rightarrow-a^{2} y=-a^{2} b$
$\Rightarrow \mathrm{y}=\mathrm{b}$
Hence, the solution is $x=-a$ and $y=b$.
47.

Sol:

The given equations are:
$\frac{b x}{a}+\frac{a y}{b}=\mathrm{a}^{2}+\mathrm{b}^{2}$
By taking LCM, we get:
$\frac{b^{2} x+a^{2} y}{a b}=\mathrm{a}^{2}+\mathrm{b}^{2}$
$\Rightarrow b^{2} x+a^{2} y=(a b) a^{2}+b^{2}$
$\Rightarrow b^{2} x+a^{2} y=a^{3} b+a b^{3}$
Also, $x+y=2 a b$
On multiplying (ii) by a^{2}, we get:
$a^{2} x+a^{2} y=2 a^{3} b$
On subtracting (iii) from (i), we get:
$\left(b^{2}-a^{2}\right) x=a^{3} b+a b^{3}-2 a^{3} b$
$\Rightarrow\left(b^{2}-a^{2}\right) x=-a^{3} b+a b^{3}$
$\Rightarrow\left(b^{2}-a^{2}\right) x=a b\left(b^{2}-a^{2}\right)$
$\Rightarrow\left(b^{2}-a^{2}\right) x=a b\left(b^{2}-a^{2}\right)$
$\therefore \mathrm{x}=\frac{a b\left(b^{2}-a^{2}\right)}{\left(b^{2}-a^{2}\right)}=\mathrm{ab}$
On substituting $x=a b$ in (i), we get:
$b^{2}(a b)+a^{2} y=a^{3} b+a b^{3}$
$\Rightarrow a^{2} y=a^{3} b$
$\Rightarrow \frac{a^{3} b}{a^{2}}=\mathrm{ab}$
Hence, the solution is $x=a b$ and $y=a b$.
48.

Sol:

The given equations are
$x+y=a+b$
$a x-b y=a^{2}-b^{2}$
From (i)
$y=a+b-x$
Substituting $y=a+b-x$ in (ii), we get
$a x-b(a+b-x)=a^{2}-b^{2}$
$\Rightarrow \mathrm{ax}-\mathrm{ab}-\mathrm{b}^{2}+\mathrm{bx}=\mathrm{a}^{2}-\mathrm{b}^{2}$
$\Rightarrow \mathrm{x}=\frac{a^{2}+a b}{a+b}=\mathrm{a}$
Now, substitute $\mathrm{x}=\mathrm{a}$ in (i) to get
$a+y=a+b$
$\Rightarrow y=b$
Hence, $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$.
49.

Sol:

The given equations are

$$
\begin{equation*}
a^{2} x+b^{2} y=c^{2} \tag{i}
\end{equation*}
$$

$b^{2} x+a^{2} y=d^{2}$
Multiplying (i) by a^{2} and (ii) by b^{2} and subtracting, we get
$\mathrm{a}^{4} \mathrm{x}-\mathrm{b}^{4} \mathrm{x}=\mathrm{a}^{2} \mathrm{c}^{2}-\mathrm{b}^{2} \mathrm{~d}^{2}$
$\Rightarrow \mathrm{x}=\frac{a^{2} c^{2}-b^{2} d^{2}}{a^{4}-b^{4}}$
Now, multiplying (i) by b^{2} and (ii) by a^{2} and subtracting, we get
$b^{4} y-a^{4} y=b^{2} c^{2}-a^{2} d^{2}$
$\Rightarrow \mathrm{y}=\frac{b^{2} c^{2}-a^{2} d^{2}}{b^{4}-a^{4}}$
Hence, $\mathrm{x}=\frac{a^{2} c^{2}-b^{2} d^{2}}{a^{4}-b^{4}}$ and $\mathrm{y}=\frac{b^{2} c^{2}-a^{2} d^{2}}{b^{4}-a^{4}}$.
50.

Sol:

The given equations are
$\frac{x}{a}+\frac{y}{b}=\mathrm{a}+\mathrm{b}$
$\frac{x}{a^{2}}+\frac{y}{b^{2}}=2$

Multiplying (i) by b and (ii) by b^{2} and subtracting, we get
$\frac{b x}{a}-\frac{b^{2} x}{a^{2}}=a b+b^{2}-2 b^{2}$
$\Rightarrow \frac{a b-b^{2}}{a^{2}} \mathrm{x}=\mathrm{ab}-\mathrm{b}^{2}$
$\Rightarrow \mathrm{x}=\frac{\left(a b-b^{2}\right) a^{2}}{a b-b^{2}}=\mathrm{a}^{2}$
Now, substituting $\mathrm{x}=\mathrm{a}^{2}$ in (i) we get
$\frac{a^{2}}{a}+\frac{y}{b}=\mathrm{a}+\mathrm{b}$
$\Rightarrow \frac{y}{b}=\mathrm{a}+\mathrm{b}-\mathrm{a}=\mathrm{b}$
$\Rightarrow \mathrm{y}=\mathrm{b}^{2}$
Hence, $x=a^{2}$ and $y=b^{2}$.

Exercise - 3C

1.

Sol:

The given equations are:
$\mathrm{x}+2 \mathrm{y}+1=0$
$2 x-3 y-12=0$
Here $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=1, \mathrm{a}_{2}=2, \mathrm{~b}_{2}=-3$ and $\mathrm{c}_{2}=-12$
By cross multiplication, we have:

$\therefore \frac{x}{[2 \times(-12)-1 \times(-3)]}=\frac{y}{[1 \times 2-1 \times(-12)]}=\frac{1}{[1 \times(-3)-2 \times 2]}$
$\Rightarrow \frac{x}{(-24+3)}=\frac{y}{(2+12)}=\frac{1}{(-3-4)}$
$\Rightarrow \frac{x}{(-21)}=\frac{y}{(14)}=\frac{1}{(-7)}$
$\Rightarrow \mathrm{x}=\frac{-21}{-7}=3, \mathrm{y}=\frac{14}{-7}=-2$
Hence, $x=3$ and $y=-2$ is the required solution.

Sol:
The given equations are:

$$
\begin{equation*}
3 x-2 y+3=0 \tag{i}
\end{equation*}
$$

$4 x+3 y-47=0$
Here $a_{1}=3, b_{1}=-2, c_{1}=3, a_{2}=4, b_{2}=3$ and $c_{2}=-47$
By cross multiplication, we have:

$\therefore \frac{x}{[(-2) \times(-47)-3 \times 3]}=\frac{y}{[3 \times 4-(-47) \times 3]}=\frac{1}{[3 \times 3-(-2) \times 4]}$
$\Rightarrow \frac{x}{(94-9)}=\frac{y}{(12+141)}=\frac{1}{(9+8)}$
$\Rightarrow \frac{x}{(85)}=\frac{y}{(153)}=\frac{1}{(17)}$
$\Rightarrow \mathrm{x}=\frac{85}{17}=5, \mathrm{y}=\frac{153}{17}=9$
Hence, $x=5$ and $y=9$ is the required solution.

3.

Sol:

The given equations are:
$6 x-5 y-16=0$
$7 x-13 y+10=0$
Here $a_{1}=6, b_{1}=-5, c_{1}=-16, a_{2}=7, b_{2}=-13$ and $c_{2}=10$
By cross multiplication, we have:

$$
\begin{aligned}
& \therefore \frac{x}{[(-5) \times 10-(-16) \times(-13)]}=\frac{x}{[(-16) \times 7-10 \times 6]}=\frac{1}{[6 \times(-13)-(-5) \times 7]} \\
& \Rightarrow \frac{x}{(-50-208)}=\frac{y}{(-112-60)}=\frac{1}{(-78+35)} \\
& \Rightarrow \frac{x}{(-258)}=\frac{y}{(-172)}=\frac{1}{(43)} \\
& \Rightarrow \mathrm{x}=\frac{-258}{-43}=6, \mathrm{y}=\frac{-172}{-43}=4
\end{aligned}
$$

Hence, $x=6$ and $y=4$ is the required solution.
4.

Sol:

The given equations are:
$3 x+2 y+25=0$

$$
\begin{equation*}
2 x+y+10=0 \tag{ii}
\end{equation*}
$$

Here $\mathrm{a}_{1}=3, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=25, \mathrm{a}_{2}=2, \mathrm{~b}_{2}=1$ and $\mathrm{c}_{2}=10$
By cross multiplication, we have:

$$
\begin{aligned}
& \therefore \frac{x}{[2 \times 10-25 \times 1]}=\frac{x}{[25 \times 2-10 \times 3]}=\frac{1}{[3 \times 1-2 \times 2]} \\
& \Rightarrow \frac{x}{(20-25)}=\frac{y}{(50-30)}=\frac{1}{(3-4)} \\
& \Rightarrow \frac{x}{(-5)}=\frac{y}{20}=\frac{1}{(-1)} \\
& \Rightarrow \mathrm{x}=\frac{-5}{-1}=5, \mathrm{y}=\frac{20}{(-1)}=-20
\end{aligned}
$$

Hence, $x=5$ and $y=-20$ is the required solution.
5.

Sol:

The given equations may be written as:
$2 x+5 y-1=0$
$2 x+3 y-3=0$
Here $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=5, \mathrm{c}_{1}=-1, \mathrm{a}_{2}=2, \mathrm{~b}_{2}=3$ and $\mathrm{c}_{2}=-3$
By cross multiplication, we have:

$$
\begin{aligned}
& \therefore \frac{x}{[5 \times(-3)-3 \times(-1)]}=\frac{x}{[(-1) \times 2-(-3) \times 2]}=\frac{1}{[2 \times 3-2 \times 5]} \\
& \Rightarrow \frac{x}{(-15+3)}=\frac{y}{(-2+6)}=\frac{1}{(6-10)} \\
& \Rightarrow \frac{x}{-12}=\frac{y}{4}=\frac{1}{-4} \\
& \Rightarrow \mathrm{x}=\frac{-12}{-4}=3, \mathrm{y}=\frac{4}{-4}=-1
\end{aligned}
$$

Hence, $x=3$ and $y=-1$ is the required solution.
6.

Sol:

The given equations may be written as:
$2 \mathrm{x}+\mathrm{y}-35=0$
$3 x+4 y-65=0$
Here $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=1, \mathrm{c}_{1}=-35, \mathrm{a}_{2}=3, \mathrm{~b}_{2}=4$ and $\mathrm{c}_{2}=-65$
By cross multiplication, we have:

$\therefore \frac{x}{[1 \times(-65)-4 \times(-35)]}=\frac{y}{[(-35) \times 3-(-65) \times 2]}=\frac{1}{[2 \times 4-3 \times 1]}$
$\Rightarrow \frac{x}{(-65+140)}=\frac{y}{(-105+130)}=\frac{1}{(8-3)}$
$\Rightarrow \frac{x}{75}=\frac{y}{25}=\frac{1}{5}$
$\Rightarrow \mathrm{x}=\frac{75}{5}=15, \mathrm{y}=\frac{25}{5}=5$
Hence, $x=15$ and $y=5$ is the required solution.

7.

Sol:

The given equations may be written as:

$$
\begin{align*}
& 7 x-2 y-3=0 \tag{i}\\
& 11 x-\frac{3}{2} y-8=0 \tag{ii}
\end{align*}
$$

Here $\mathrm{a}_{1}=7, \mathrm{~b}_{1}=-2, \mathrm{c}_{1}=-3, \mathrm{a}_{2}=11, \mathrm{~b}_{2}=-\frac{3}{2}$ and $\mathrm{c}_{2}=-8$
By cross multiplication, we have:

$\therefore \frac{x}{\left[(-2) \times(-8)-\left(-\frac{3}{2}\right) \times(-3)\right]}=\frac{y}{[(-3) \times 11-(-8) \times 7]}=\frac{1}{\left[7 \times\left(-\frac{3}{2}\right)-11 \times(-2)\right]}$
$\Rightarrow \frac{x}{\left(16-\frac{9}{2}\right)}=\frac{y}{(-33+56)}=\frac{1}{\left(-\frac{21}{2}+22\right)}$
$\Rightarrow \frac{x}{\left(\frac{23}{2}\right)}=\frac{y}{23}=\frac{1}{\left(\frac{23}{2}\right)}$
$\Rightarrow \mathrm{x}=\frac{\frac{23}{2}}{\frac{23}{2}}=1, \mathrm{y}=\frac{23}{\frac{23}{2}}=2$
Hence, $x=1$ and $y=2$ is the required solution.
8.

Sol:

The given equations may be written as:
$\frac{x}{6}+\frac{y}{15}-4=0$
$\frac{x}{3}-\frac{y}{12}-\frac{19}{4}=0$
Here $\mathrm{a}_{1}=\frac{1}{6}, \mathrm{~b}_{1}=\frac{1}{15}, \mathrm{c}_{1}=-4, \mathrm{a}_{2}=\frac{1}{3}, \mathrm{~b}_{2}=-\frac{1}{12}$ and $\mathrm{c}_{2}=-\frac{19}{4}$
By cross multiplication, we have:
$\therefore \frac{x}{\left[\frac{1}{15} \times\left(-\frac{19}{4}\right)-\left(-\frac{1}{12}\right) \times(-4)\right]}=\frac{y}{\left[(-4) \times \frac{1}{3}-\left(\frac{1}{6}\right) \times\left(-\frac{19}{4}\right)\right]}=\frac{1}{\left[\frac{1}{6} \times\left(-\frac{1}{12}\right) \times \frac{1}{3} \times \frac{1}{15}\right]}$
$\Rightarrow \frac{x}{\left(-\frac{19}{60}-\frac{1}{3}\right)}=\frac{y}{\left(-\frac{4}{3}+\frac{19}{34}\right)}=\frac{1}{\left(-\frac{1}{72}-\frac{1}{45}\right)}$
$\Rightarrow \frac{x}{\left(-\frac{39}{60}\right)}=\frac{y}{\left(-\frac{13}{24}\right)}=\frac{1}{\left(-\frac{13}{360}\right)}$
$\Rightarrow \mathrm{x}=\left[\left(-\frac{39}{60}\right) \times\left(-\frac{360}{13}\right)\right]=18, \mathrm{y}=\left[\left(-\frac{13}{24}\right) \times\left(-\frac{360}{13}\right)\right]=15$
Hence, $x=18$ and $y=15$ is the required solution.
9.

Sol:

Taking $\frac{1}{x}=\mathrm{u}$ and $\frac{1}{y}=\mathrm{v}$, the given equations become:
$u+v=7$
$2 u+3 v=17$
The given equations may be written as:
$u+v-7=0$
$2 u+3 v-17=0$
Here, $a_{1}=1, b_{1}=1, c_{1}=-7, a_{2}=2, b_{2}=3$ and $c_{2}=-17$
By cross multiplication, we have:

$\therefore \frac{u}{[1 \times(-17)-3 \times(-7)]}=\frac{v}{[(-7) \times 2-1 \times(-17)]}=\frac{1}{[3-2]}$
$\Rightarrow \frac{u}{(-17+21)}=\frac{v}{(-14+17)}=\frac{1}{(1)}$
$\Rightarrow \frac{u}{4}=\frac{v}{3}=\frac{1}{1}$
$\Rightarrow \mathrm{u}=\frac{4}{1}=4, \mathrm{v}=\frac{3}{1}=3$
$\Rightarrow \frac{1}{x}=4, \frac{1}{y}=3$
$\Rightarrow \mathrm{x}=\frac{1}{4}, \mathrm{y}=\frac{1}{3}$

Hence, $x=\frac{1}{4}$ and $y=\frac{1}{3}$ is the required solution.
10.

Sol:

Taking $\frac{1}{x+y}=\mathrm{u}$ and $\frac{1}{x-y}=\mathrm{v}$, the given equations become:
$5 u-2 v+1=0$
$15 u+7 v-10=0$
Here, $\mathrm{a}_{1}=5, \mathrm{~b}_{1}=-2, \mathrm{c}_{1}=1, \mathrm{a}_{2}=15, \mathrm{~b}_{2}=-7$ and $\mathrm{c}_{2}=-10$
By cross multiplication, we have:

$\therefore \frac{u}{[-2 \times(-10)-1 \times 7]}=\frac{v}{[1 \times 15-(-10) \times 5]}=\frac{1}{[35+30]}$
$\Rightarrow \frac{u}{(20-7)}=\frac{v}{(15+50)}=\frac{1}{65}$
$\Rightarrow \frac{u}{13}=\frac{v}{65}=\frac{1}{65}$
$\Rightarrow \mathrm{u}=\frac{13}{65}=\frac{1}{5}, \mathrm{v}=\frac{65}{65}=1$
$\Rightarrow \frac{1}{x+y}=\frac{1}{5}, \frac{1}{x-y}=1$
So, $(x+y)=5$
and $(x-y)=1$
Again, the above equations (ii) and (iv) may be written as:
$x+y-5=0$
$\mathrm{x}-\mathrm{y}-1=0$
Here, $a_{1}=1, b_{1}=1, c_{1}=-5, a_{2}=1, b_{2}=-1$ and $c_{2}=-1$
By cross multiplication, we have:

$\therefore \frac{x}{[1 \times(-1)-(-5) \times(-1)]}=\frac{y}{[(-5) \times 1-(-1) \times 1]}=\frac{1}{[1 \times(-1)-1 \times 1]}$
$\Rightarrow \frac{x}{(-1-5)}=\frac{y}{(-5+1)}=\frac{1}{(-1-1)}$
$\Rightarrow \frac{x}{-6}=\frac{v}{-4}=\frac{1}{-2}$
$\Rightarrow \mathrm{x}=\frac{-6}{-2}=3, \mathrm{y}=\frac{-4}{-2}=2$
Hence, $x=3$ and $y=2$ is the required solution.
11.

Sol:

The given equations may be written as:
$\frac{a x}{b}-\frac{b y}{a}-(\mathrm{a}+\mathrm{b})=0$
$a x-b y-2 a b=0$
Here, $\mathrm{a}_{1}=\frac{a}{b}, \mathrm{~b}_{1}=\frac{-b}{a}, \mathrm{c}_{1}=-(\mathrm{a}+\mathrm{b}), \mathrm{a}_{2}=\mathrm{a}, \mathrm{b}_{2}=-\mathrm{b}$ and $\mathrm{c}_{2}=-2 \mathrm{ab}$
By cross multiplication, we have:

$$
\begin{aligned}
& \therefore \frac{x}{\left[\left(-\frac{b}{a}\right) \times(-2 a b)-(-b) \times(-(a+b))\right]}=\frac{x}{\left[-(a+b) \times a-(-2 a b) \times \frac{a}{b}\right]}=\frac{y}{\left[\frac{a}{b} \times(-b)-a \times\left(-\frac{b}{a}\right)\right]} \\
& \Rightarrow \frac{x}{\left(2 b^{2}-b(a+b)\right)}=\frac{x}{-a(a+b)+2 a^{2}}=\frac{1}{-a+b} \\
& \Rightarrow \frac{x}{2 b^{2}-a b-b^{2}}=\frac{x}{-a^{2}-a b+2 a^{2}}=\frac{1}{-a+b} \\
& \Rightarrow \frac{x}{b^{2}-a b}=\frac{y}{a^{2}-a b}=\frac{1}{-(a-b)} \\
& \Rightarrow \frac{x}{-b(a-b)}=\frac{y}{a(a-b)}=\frac{1}{-(a-b)} \\
& \Rightarrow \mathrm{x}=\frac{-b(a-b)}{-(a-b)}=\mathrm{b}, \mathrm{y}=\frac{a(a-b)}{-(a-b)}=-\mathrm{a}
\end{aligned}
$$

Hence, $x=b$ and $y=-a$ is the required solution.
12.

Sol:
The given equations may be written as:

$$
\begin{align*}
& 2 a x+3 b y-(a+2 b)=0 \tag{i}\\
& 3 a x+2 b y-(2 a+b)=0
\end{align*}
$$

Here, $\mathrm{a}_{1}=2 \mathrm{a}, \mathrm{b}_{1}=3 \mathrm{~b}, \mathrm{c}_{1}=-(\mathrm{a}+2 \mathrm{~b}), \mathrm{a}_{2}=3 \mathrm{a}, \mathrm{b}_{2}=2 \mathrm{~b}$ and $\mathrm{c}_{2}=-(2 \mathrm{a}+\mathrm{b})$
By cross multiplication, we have:

$$
\begin{aligned}
& \therefore \frac{x}{[3 b \times(-(2 a+b)-2 b \times(-(a+2 b))]}=\frac{x}{[-(a+2 b) \times 3 a-2 a \times(-(2 a+b))]}=\frac{y}{[2 a \times 2 b-3 a \times 3 b]} \\
& \Rightarrow \frac{x}{\left(-6 a b-3 b^{2}+2 a b+4 b^{2}\right)}=\frac{1}{\left(-3 a^{2}-6 a b+4 a^{2}+2 a b\right)}=\frac{1}{4 a b-9 a b}
\end{aligned}
$$

$\Rightarrow \frac{x}{b^{2}-4 a b}=\frac{y}{a^{2}-4 a b}=\frac{1}{-5 a b}$
$\Rightarrow \frac{x}{-b(4 a-b)}=\frac{y}{-a(4 b-a)}=\frac{1}{-5 a b}$
$\Rightarrow \mathrm{x}=\frac{-b(4 a-b)}{-5 a b}=\frac{(4 a-b)}{5 a}, \mathrm{y}=\frac{-a(4 b-a)}{-5 a b}=\frac{(4 b-a)}{5 b}$
Hence, $\mathrm{x}=\frac{(4 a-b)}{5 a}$ and $\mathrm{y}=\frac{(4 b-a)}{5 b}$ is the required solution.
13.

Sol:

Substituting $\frac{1}{x}=\mathrm{u}$ and $\frac{1}{y}=\mathrm{v}$ in the given equations, we get
$a u-b v+0=0$
$a b^{2} u+a^{2} b v-\left(a^{2}+b^{2}\right)=0$
Here, $a_{1}=a, b_{1}=-b, c_{1}=0, a_{2}=b^{2}, b_{2}=a^{2} b$ and $c_{2}=-\left(a^{2}+b^{2}\right)$.
So, by cross-multiplication, we have

$$
\begin{aligned}
& \frac{u}{b_{1} c_{2}-b_{2} c_{1}}=\frac{v}{c_{1} a_{2}-c_{2} a_{1}}=\frac{u}{a_{1} b_{2}-a_{2} b_{1}} \\
& \Rightarrow \frac{1}{(-b)\left[-\left(a^{2}+b^{2}\right)\right]-\left(a^{2} b\right)(0)}=\frac{v}{(0)\left(a b^{2}\right)-\left(-a^{2}-b^{2}\right)(a)}=\frac{v}{(a)\left(a^{2} b\right)-\left(a b^{2}\right)(-b)} \\
& \Rightarrow \frac{u}{b\left(a^{2}+b^{2}\right)}=\frac{1}{a\left(a^{2}+b^{2}\right)}=\frac{1}{a b\left(a^{2}+b^{2}\right)} \\
& \Rightarrow \mathrm{u}=\frac{b\left(a^{2}+b^{2}\right)}{a b\left(a^{2}+b^{2}\right)}, \mathrm{v}=\frac{a\left(a^{2}+b^{2}\right)}{a b\left(a^{2}+b^{2}\right)} \\
& \Rightarrow \mathrm{u}=\frac{1}{a}, \mathrm{v}=\frac{1}{b} \\
& \Rightarrow \frac{1}{x}=\frac{1}{a}, \frac{1}{y}=\frac{1}{b} \\
& \Rightarrow \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{b}
\end{aligned}
$$

Hence, $x=a$ and $y=b$.

> Exercise - 3D
1.

Sol:

The given system of equations is:

Downloaded from www.studiestoday.com

$3 x+5 y=12$
$5 x+3 y=4$
These equations are of the forms:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=3, b_{1}=5, c_{1}=-12$ and $a_{2}=5, b_{2}=3, c_{2}=-4$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, i.e., $\frac{3}{5} \neq \frac{5}{3}$
Hence, the given system of equations has a unique solution.
Again, the given equations are:
$3 x+5 y=12$
$5 x+3 y=4$
On multiplying (i) by 3 and (ii) by 5, we get:
$9 x+15 y=36$
$25 x+15 y=20$
On subtracting (iii) from (iv), we get:
$16 x=-16$
$\Rightarrow x=-1$
On substituting $x=-1$ in (i), we get:
$3(-1)+5 y=12$
$\Rightarrow 5 y=(12+3)=15$
$\Rightarrow y=3$
Hence, $x=-1$ and $y=3$ is the required solution.
2.

Sol:

The given system of equations is:

$$
\begin{align*}
& 2 x-3 y-17=0 \tag{i}\\
& 4 x+y-13=0 \tag{ii}
\end{align*}
$$

The given equations are of the form
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=-3, \mathrm{c}_{1}=-17$ and $\mathrm{a}_{2}=4, \mathrm{~b}_{2}=1, \mathrm{c}_{2}=-13$
Now,
$\frac{a_{1}}{a_{2}}=\frac{2}{4}=\frac{1}{2}$ and $\frac{b_{1}}{b_{2}}=\frac{-3}{1}=-3$
Since, $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, therefore the system of equations has unique solution.
Using cross multiplication method, we have

Downloaded from www.studiestoday.com

$\frac{x}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}$
$\Rightarrow \frac{x}{-3(-13)-1 \times(-17)}=\frac{y}{-17 \times 4-(-13) \times 2}=\frac{1}{2 \times 1-4 \times(-3)}$
$\Rightarrow \frac{x}{39+17}=\frac{y}{-68+26}=\frac{1}{2+12}$
$\Rightarrow \frac{x}{56}=\frac{y}{-42}=\frac{1}{14}$
$\Rightarrow \mathrm{x}=\frac{56}{14}, \mathrm{y}=\frac{-42}{14}$
$\Rightarrow \mathrm{x}=4, \mathrm{y}=-3$
Hence, $x=4$ and $y=-3$.
3.

Also, find the solution of the given system of equations.
Sol:
The given system of equations is:
$\frac{x}{3}+\frac{y}{2}=3$
$\Rightarrow \frac{2 x+3 y}{6}=3$
$2 x+3 y=18$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}-18=0$
and
$x-2 y=2$
$x-2 y-2=0$
These equations are of the forms:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=2, b_{1}=3, c_{1}=-18$ and $a_{2}=1, b_{2}=-2, c_{2}=-2$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, i.e., $\frac{2}{1} \neq \frac{3}{-2}$
Hence, the given system of equations has a unique solution.
Again, the given equations are:

$$
\begin{align*}
& 2 x+3 y-18=0 \tag{iii}\\
& x-2 y-2=0 \tag{iv}
\end{align*}
$$

On multiplying (i) by 2 and (ii) by 3 , we get:

$$
\begin{align*}
& 4 x+6 y-36=0 \\
& 3 x-6 y-6=0 \tag{v}
\end{align*}
$$

On adding (v) from (vi), we get:
$7 \mathrm{x}=42$
$\Rightarrow x=6$
On substituting $x=6$ in (iii), we get:

Downloaded from www.studiestoday.com

$2(6)+3 y=18$
$\Rightarrow 3 y=(18-12)=6$
$\Rightarrow y=2$
Hence, $x=6$ and $y=2$ is the required solution.
4.

Sol:

The given system of equations are
$2 x+3 y-5=0$
$\mathrm{kx}-6 \mathrm{y}-8=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=2, b_{1}=3, c_{1}=-5$ and $a_{2}=k, b_{2}=-6, c_{2}=-8$
Now, for the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{2}{k} \neq \frac{3}{-6}$
$\Rightarrow \mathrm{k} \neq-4$
Hence, $k \neq-4$

5.

Sol:

The given system of equations are
$\mathrm{x}-\mathrm{ky}-2=0$
$3 x+2 y+5=0$
This system of equations is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=-\mathrm{k}, \mathrm{c}_{1}=-2$ and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=2, \mathrm{c}_{2}=5$
Now, for the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{1}{3} \neq \frac{-k}{2}$
$\Rightarrow \mathrm{k} \neq-\frac{2}{3}$
Hence, $\mathrm{k} \neq-\frac{2}{3}$.
6.

Sol:

The given system of equations are
$5 x-7 y-5=0$
$2 \mathrm{x}+\mathrm{ky}-1=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$a_{2} x+b_{2} y+c_{2}=0$
where, $\mathrm{a}_{1}=5, \mathrm{~b}_{1}=-7, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=2, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-1$
Now, for the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{5}{2} \neq \frac{-7}{k}$
$\Rightarrow \mathrm{k} \neq-\frac{14}{5}$
Hence, $\mathrm{k} \neq-\frac{14}{5}$.
7.

Sol:

The given system of equations are
$4 \mathrm{x}+\mathrm{ky}+8=0$
$x+y+1=0$
This system is of the form:
$a_{1} x+b_{1} y+c_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=4, \mathrm{~b}_{1}=\mathrm{k}, \mathrm{c}_{1}=8$ and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=1, \mathrm{c}_{2}=1$
For the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{4}{1} \neq \frac{k}{1}$
$\Rightarrow \mathrm{k} \neq 4$
Hence, $\mathrm{k} \neq 4$.
8.

Sol:

Downloaded from www.studiestoday.com

The given system of equations are
$4 \mathrm{x}-5 \mathrm{y}=\mathrm{k}$
$\Rightarrow 4 \mathrm{x}-5 \mathrm{y}-\mathrm{k}=0$
And, $2 \mathrm{x}-3 \mathrm{y}=12$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}-12=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
Here, $a_{1}=4, b_{1}=-5, c_{1}=-k$ and $a_{2}=2, b_{2}=-3, c_{2}=-12$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
i.e., $\frac{4}{2} \neq \frac{-5}{-3}$
$\Rightarrow 2 \neq \frac{5}{3} \Rightarrow 6 \neq 5$
Thus, for all real values of k, the given system of equations will have a unique solution.
9.

Sol:

The given system of equations:
$k x+3 y=(k-3)$
$\Rightarrow \mathrm{kx}+3 \mathrm{y}-(\mathrm{k}-3)=0$
And, $12 \mathrm{x}+\mathrm{ky}=\mathrm{k}$
$\Rightarrow 12 \mathrm{x}+\mathrm{ky}-\mathrm{k}=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $a_{1}=k, b_{1}=3, c_{1}=-(k-3)$ and $a_{2}=12, b_{2}=k, c_{2}=-k$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
i.e., $\frac{k}{12} \neq \frac{3}{k}$
$\Rightarrow \mathrm{k}^{2} \neq 36 \Rightarrow \mathrm{k} \neq \pm 6$
Thus, for all real values of k, other than ± 6, the given system of equations will have a unique solution.
10.

Sol:

The given system of equations: $2 x-3 y=5$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}-5=0$
$6 x-9 y=15$
$\Rightarrow 6 x-9 y-15=0$
These equations are of the following forms:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
Here, $a_{1}=2, b_{1}=-3, c_{1}=-5$ and $a_{2}=6, b_{2}=-9, c_{2}=-15$
$\therefore \frac{a_{1}}{a_{2}}=\frac{2}{6}=\frac{1}{3}, \frac{b_{1}}{b_{2}}=\frac{-3}{-9}=\frac{1}{3}$ and $\frac{c_{1}}{c_{2}}=\frac{-5}{-15}=\frac{1}{3}$
Thus, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Hence, the given system of equations has an infinite number of solutions.
11.

Sol:

The given system of equations can be written as
$6 x+5 y-11=0$
$\Rightarrow 9 x+\frac{15}{2} y-21=0$
This system is of the form
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $a_{1}=6, b_{1}=5, c_{1}=-11$ and $a_{2}=9, b_{2}=\frac{15}{2}, c_{2}=-21$
Now,
$\frac{a_{1}}{a_{2}}=\frac{6}{9}=\frac{2}{3}$
$\frac{b_{1}}{b_{2}}=\frac{5}{\frac{15}{2}}=\frac{2}{3}$
$\frac{c_{1}}{c_{2}}=\frac{-11}{-21}=\frac{11}{21}$
Thus, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$, therefore the given system has no solution.
12.

Sol:

The given system of equations:
$\mathrm{kx}+2 \mathrm{y}=5$
$\Rightarrow \mathrm{kx}+2 \mathrm{y}-5=0$
$3 x-4 y=10$
$\Rightarrow 3 \mathrm{x}-4 \mathrm{y}-10=0$
These equations are of the forms:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=k, b_{1}=2, c_{1}=-5$ and $a_{2}=3, b_{2}=-4, c_{2}=-10$
(i) For a unique solution, we must have:
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ i.e., $\frac{k}{3} \neq \frac{2}{-4} \Rightarrow \mathrm{k} \neq \frac{-3}{2}$
Thus for all real values of k other than $\frac{-3}{2}$, the given system of equations will have a unique solution.
(ii) For the given system of equations to have no solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{k}{3}=\frac{2}{-4} \neq \frac{-5}{-10}$
$\Rightarrow \frac{k}{3}=\frac{2}{-4}$ and $\frac{k}{3} \neq \frac{1}{2}$
$\Rightarrow \mathrm{k}=\frac{-3}{2}, \mathrm{k} \neq \frac{3}{2}$
Hence, the required value of k is $\frac{-3}{2}$.
13.

Sol:

The given system of equations:

$$
\begin{align*}
& x+2 y=5 \\
& \Rightarrow x+2 y-5=0 \tag{i}\\
& 3 x+k y+15=0
\end{align*}
$$

These equations are of the forms:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=15$
(i) For a unique solution, we must have:
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ i.e., $\frac{1}{3} \neq \frac{2}{k} \Rightarrow \mathrm{k} \neq 6$

Downloaded from www.studiestoday.com

Thus for all real values of k other than 6 , the given system of equations will have a unique solution.
(ii) For the given system of equations to have no solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{1}{3}=\frac{2}{k} \neq \frac{-5}{15}$
$\Rightarrow \frac{1}{3}=\frac{2}{k}$ and $\frac{2}{k} \neq \frac{-5}{15}$
$\Rightarrow \mathrm{k}=6, \mathrm{k} \neq-6$
Hence, the required value of k is 6 .
14.

Sol:

The given system of equations:
$x+2 y=3$
$\Rightarrow x+2 y-3=0$
And, $5 \mathrm{x}+\mathrm{ky}+7=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
where, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-3$ and $\mathrm{a}_{2}=5, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=7$
(i) For a unique solution, we must have:
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ i.e., $\frac{1}{5} \neq \frac{2}{k} \Rightarrow \mathrm{k} \neq 10$
Thus for all real values of k other than 10 , the given system of equations will have a unique solution.
(ii) In order that the given system of equations has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{1}{5} \neq \frac{2}{k} \neq \frac{-3}{7}$
$\Rightarrow \frac{1}{5} \neq \frac{2}{k}$ and $\frac{2}{k} \neq \frac{-3}{7}$
$\Rightarrow \mathrm{k}=10, \mathrm{k} \neq \frac{14}{-3}$
Hence, the required value of k is 10 .
There is no value of k for which the given system of equations has an infinite number of solutions.
15.

Sol:

The given system of equations:
$2 x+3 y=7$,
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}-7=0$
And, $(\mathrm{k}-1) \mathrm{x}+(\mathrm{k}+2) \mathrm{y}=3 \mathrm{k}$
$\Rightarrow(\mathrm{k}-1) \mathrm{x}+(\mathrm{k}+2) \mathrm{y}-3 \mathrm{k}=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-7$ and $\mathrm{a}_{2}=(\mathrm{k}-1), \mathrm{b}_{2}=(\mathrm{k}+2), \mathrm{c}_{2}=-3 \mathrm{k}$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{(k-1)}=\frac{3}{(k+2)}=\frac{-7}{-3 k}$
$\Rightarrow \frac{2}{(k-1)}=\frac{3}{(k+2)}=\frac{7}{3 k}$
Now, we have the following three cases:
Case I:
$\frac{2}{(k-1)}=\frac{3}{k+2}$
$\Rightarrow 2(\mathrm{k}+2)=3(\mathrm{k}-1) \Rightarrow 2 \mathrm{k}+4=3 \mathrm{k}-3 \Rightarrow \mathrm{k}=7$
Case II:
$\frac{3}{(k+2)}=\frac{7}{3 k}$
$\Rightarrow 7(\mathrm{k}+2)=9 \mathrm{k} \Rightarrow 7 \mathrm{k}+14=9 \mathrm{k} \Rightarrow 2 \mathrm{k}=14 \Rightarrow \mathrm{k}=7$
Case III:
$\frac{2}{(k-1)}=\frac{7}{3 k}$
$\Rightarrow 7 \mathrm{k}-7=6 \mathrm{k} \Rightarrow \mathrm{k}=7$
Hence, the given system of equations has an infinite number of solutions when k is equal to 7.
16.

Sol:

The given system of equations:

$$
\begin{align*}
& 2 \mathrm{x}+(\mathrm{k}-2) \mathrm{y}=\mathrm{k} \\
& \Rightarrow 2 \mathrm{x}+(\mathrm{k}-2) \mathrm{y}-\mathrm{k}=0 \tag{i}\\
& \text { And, } 6 \mathrm{x}+(2 \mathrm{k}-1) \mathrm{y}=(2 \mathrm{k}+5) \\
& \Rightarrow 6 \mathrm{x}+(2 \mathrm{k}-1) \mathrm{y}-(2 \mathrm{k}+5)=0 \tag{ii}
\end{align*}
$$

These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2$, $\mathrm{b}_{1}=(\mathrm{k}-2), \mathrm{c}_{1}=-\mathrm{k}$ and $\mathrm{a}_{2}=6, \mathrm{~b}_{2}=(2 \mathrm{k}-1), \mathrm{c}_{2}=-(2 \mathrm{k}+5)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{6}=\frac{(k-2)}{(2 k-1)}=\frac{-k}{-(2 k+5)}$
$\Rightarrow \frac{1}{3}=\frac{(k-2)}{(2 k-1)}=\frac{k}{(2 k+5)}$
Now, we have the following three cases:
Case I:
$\frac{1}{3}=\frac{(k-2)}{(2 k-1)}$
$\Rightarrow(2 \mathrm{k}-1)=3(\mathrm{k}-2)$
$\Rightarrow 2 \mathrm{k}-1=3 \mathrm{k}-6 \Rightarrow \mathrm{k}=5$
Case II:
$\frac{(k-2)}{(2 k-1)}=\frac{k}{(2 k+5)}$
$\Rightarrow(\mathrm{k}-2)(2 \mathrm{k}+5)=\mathrm{k}(2 \mathrm{k}-1)$
$\Rightarrow 2 \mathrm{k}^{2}+5 \mathrm{k}-4 \mathrm{k}-10=2 \mathrm{k}^{2}-\mathrm{k}$
$\Rightarrow \mathrm{k}+\mathrm{k}=10 \Rightarrow 2 \mathrm{k}=10 \Rightarrow \mathrm{k}=5$
Case III:
$\frac{1}{3}=\frac{k}{(2 k+5)}$
$\Rightarrow 2 \mathrm{k}+5=3 \mathrm{k} \Rightarrow \mathrm{k}=5$
Hence, the given system of equations has an infinite number of solutions when k is equal to 5.
17.

Sol:

The given system of equations:
$k x+3 y=(2 k+1)$
$\Rightarrow \mathrm{kx}+3 \mathrm{y}-(2 \mathrm{k}+1)=0$

Downloaded from www.studiestoday.com

And, $2(\mathrm{k}+1) \mathrm{x}+9 \mathrm{y}=(7 \mathrm{k}+1)$
$\Rightarrow 2(\mathrm{k}+1) \mathrm{x}+9 \mathrm{y}-(7 \mathrm{k}+1)=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=3, \mathrm{c}_{1}=-(2 \mathrm{k}+1)$ and $\mathrm{a}_{2}=2(\mathrm{k}+1), \mathrm{b}_{2}=9, \mathrm{c}_{2}=-(7 \mathrm{k}+1)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
i.e., $\frac{k}{2(k+1)}=\frac{3}{9}=\frac{-(2 k+1)}{-(7 k+1)}$
$\Rightarrow \frac{k}{2(k+1)}=\frac{1}{3}=\frac{(2 k+1)}{(7 k+1)}$
Now, we have the following three cases:
Case I:
$\frac{k}{2(k+1)}=\frac{1}{3}$
$\Rightarrow 2(\mathrm{k}+1)=3 \mathrm{k}$
$\Rightarrow 2 \mathrm{k}+2=3 \mathrm{k}$
$\Rightarrow \mathrm{k}=2$
Case II:
$\frac{1}{3}=\frac{(2 k+1)}{(7 k+1)}$
$\Rightarrow(7 \mathrm{k}+1)=6 \mathrm{k}+3$
$\Rightarrow \mathrm{k}=2$
Case III:
$\frac{k}{2(k+1)}=\frac{(2 k+1)}{(7 k+1)}$
$\Rightarrow \mathrm{k}(7 \mathrm{k}+1)=(2 \mathrm{k}+1) \times 2(\mathrm{k}+1)$
$\Rightarrow 7 \mathrm{k}^{2}+\mathrm{k}=(2 \mathrm{k}+1)(2 \mathrm{k}+2)$
$\Rightarrow 7 \mathrm{k}^{2}+\mathrm{k}=4 \mathrm{k}^{2}+4 \mathrm{k}+2 \mathrm{k}+2$
$\Rightarrow 3 \mathrm{k}^{2}-5 \mathrm{k}-2=0$
$\Rightarrow 3 \mathrm{k}^{2}-6 \mathrm{k}+\mathrm{k}-2=0$
$\Rightarrow 3 \mathrm{k}(\mathrm{k}-2)+1(\mathrm{k}-2)=0$
$\Rightarrow(3 \mathrm{k}+1)(\mathrm{k}-2)=0$
$\Rightarrow \mathrm{k}=2$ or $\mathrm{k}=\frac{-1}{3}$
Hence, the given system of equations has an infinite number of solutions when k is equal to 2.
18.

Sol:

The given system of equations:
$5 \mathrm{x}+2 \mathrm{y}=2 \mathrm{k}$
$\Rightarrow 5 \mathrm{x}+2 \mathrm{y}-2 \mathrm{k}=0$
And, $2(\mathrm{k}+1) \mathrm{x}+\mathrm{ky}=(3 \mathrm{k}+4)$
$\Rightarrow 2(\mathrm{k}+1) \mathrm{x}+\mathrm{ky}-(3 \mathrm{k}+4)=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=5, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-2 \mathrm{k}$ and $\mathrm{a}_{2}=2(\mathrm{k}+1), \mathrm{b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-(3 \mathrm{k}+4)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{5}{2(k+1)}=\frac{2}{k}=\frac{-2 k}{-(3 k+4)}$
$\Rightarrow \frac{5}{2(k+1)}=\frac{2}{k}=\frac{2 k}{(3 k+4)}$
Now, we have the following three cases:
Case I:
$\frac{5}{2(k+1)}=\frac{2}{k}$
$\Rightarrow 2 \times 2(\mathrm{k}+1)=5 \mathrm{k}$
$\Rightarrow 4(\mathrm{k}+1)=5 \mathrm{k}$
$\Rightarrow 4 \mathrm{k}+4=5 \mathrm{k}$
$\Rightarrow \mathrm{k}=4$
Case II:
$\frac{2}{k}=\frac{2 k}{(3 k+4)}$
$\Rightarrow 2 \mathrm{k}^{2}=2 \times(3 \mathrm{k}+4)$
$\Rightarrow 2 \mathrm{k}^{2}=6 \mathrm{k}+8 \Rightarrow 2 \mathrm{k}^{2}-6 \mathrm{k}-8=0$
$\Rightarrow 2\left(\mathrm{k}^{2}-3 \mathrm{k}-4\right)=0$
$\Rightarrow \mathrm{k}^{2}-4 \mathrm{k}+\mathrm{k}-4=0$
$\Rightarrow \mathrm{k}(\mathrm{k}-4)+1(\mathrm{k}-4)=0$
$\Rightarrow(\mathrm{k}+1)(\mathrm{k}-4)=0$
$\Rightarrow(\mathrm{k}+1)=0$ or $(\mathrm{k}-4)=0$

Downloaded from www.studiestoday.com

$\Rightarrow \mathrm{k}=-1$ or $\mathrm{k}=4$
Case III:
$\frac{5}{2(k+1)}=\frac{2 k}{(3 k+4)}$
$\Rightarrow 15 \mathrm{k}+20=4 \mathrm{k}^{2}+4 \mathrm{k}$
$\Rightarrow 4 \mathrm{k}^{2}-11 \mathrm{k}-20=0$
$\Rightarrow 4 \mathrm{k}^{2}-16 \mathrm{k}+5 \mathrm{k}-20=0$
$\Rightarrow 4 \mathrm{k}(\mathrm{k}-4)+5(\mathrm{k}-4)=0$
$\Rightarrow(\mathrm{k}-4)(4 \mathrm{k}+5)=0$
$\Rightarrow \mathrm{k}=4$ or $\mathrm{k}=\frac{-5}{4}$
Hence, the given system of equations has an infinite number of solutions when k is equal to 4.
19.

Sol:

The given system of equations:
$(k-1) x-y=5$
$\Rightarrow(\mathrm{k}-1) \mathrm{x}-\mathrm{y}-5=0$
And, $(k+1) x+(1-k) y=(3 k+1)$
$\Rightarrow(\mathrm{k}+1) \mathrm{x}+(1-\mathrm{k}) \mathrm{y}-(3 \mathrm{k}+1)=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=(\mathrm{k}-1), \mathrm{b}_{1}=-1, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=(\mathrm{k}+1), \mathrm{b}_{2}=(1-\mathrm{k}), \mathrm{c}_{2}=-(3 \mathrm{k}+1)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
i.e., $\frac{(\mathrm{k}-1)}{(k+1)}=\frac{-1}{-(k-1)}=\frac{-5}{-(3 k+1)}$
$\Rightarrow \frac{(\mathrm{k}-1)}{(k+1)}=\frac{1}{(k-1)}=\frac{5}{(3 k+1)}$
Now, we have the following three cases:
Case I:
$\frac{(\mathrm{k}-1)}{(k+1)}=\frac{1}{(k-1)}$
$\Rightarrow(\mathrm{k}-1)^{2}=(\mathrm{k}+1)$
$\Rightarrow \mathrm{k}^{2}+1-2 \mathrm{k}=\mathrm{k}+1$
$\Rightarrow \mathrm{k}^{2}-3 \mathrm{k}=0 \Rightarrow \mathrm{k}(\mathrm{k}-3)=0$
$\Rightarrow \mathrm{k}=0$ or $\mathrm{k}=3$
Case II:
$\frac{1}{(k-1)}=\frac{5}{(3 k+1)}$
$\Rightarrow 3 \mathrm{k}+1=5 \mathrm{k}-5$
$\Rightarrow 2 \mathrm{k}=6 \Rightarrow \mathrm{k}=3$
Case III:
$\frac{(\mathrm{k}-1)}{(k+1)}=\frac{5}{(3 k+1)}$
$\Rightarrow(3 \mathrm{k}+1)(\mathrm{k}-1)=5(\mathrm{k}+1)$
$\Rightarrow 3 \mathrm{k}^{2}+\mathrm{k}-3 \mathrm{k}-1=5 \mathrm{k}+5$
$\Rightarrow 3 \mathrm{k}^{2}-2 \mathrm{k}-5 \mathrm{k}-1-5=0$
$\Rightarrow 3 \mathrm{k}^{2}-7 \mathrm{k}-6=0$
$\Rightarrow 3 \mathrm{k}^{2}-9 \mathrm{k}+2 \mathrm{k}-6=0$
$\Rightarrow 3 \mathrm{k}(\mathrm{k}-3)+2(\mathrm{k}-3)=0$
$\Rightarrow(\mathrm{k}-3)(3 \mathrm{k}+2)=0$
$\Rightarrow(\mathrm{k}-3)=0$ or $(3 \mathrm{k}+2)=0$
$\Rightarrow \mathrm{k}=3$ or $\mathrm{k}=\frac{-2}{3}$
Hence, the given system of equations has an infinite number of solutions when k is equal to 3.
20.

Sol:

The given system of equations can be written as
$(k-3) x+3 y-k=0$
$\mathrm{kx}+\mathrm{ky}-12=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=k, b_{1}=3, c_{1}=-k$ and $a_{2}=k, b_{2}=k, c_{2}=-12$
For the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{k-3}{k}=\frac{3}{k}=\frac{-k}{-12}$
$\Rightarrow \mathrm{k}-3=3$ and $\mathrm{k}^{2}=36$
$\Rightarrow \mathrm{k}=6$ and $\mathrm{k}= \pm 6$
$\Rightarrow \mathrm{k}=6$
Hence, $\mathrm{k}=6$.
21.

Sol:

The given system of equations can be written as
$(a-1) x+3 y=2$
$\Rightarrow(\mathrm{a}-1) \mathrm{x}+3 \mathrm{y}-2=0$
and $6 x+(1-2 b) y=6$
$\Rightarrow 6 \mathrm{x}+(1-2 \mathrm{~b}) \mathrm{y}-6=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$a_{2} x+b_{2} y+c_{2}=0$
where, $a_{1}=(a-1), b_{1}=3, c_{1}=-2$ and $a_{2}=6, b_{2}=(1-2 b), c_{2}=-6$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{a-1}{6}=\frac{3}{(1-2 b)}=\frac{-2}{-6}$
$\Rightarrow \frac{a-1}{6}=\frac{3}{(1-2 b)}=\frac{1}{3}$
$\Rightarrow \frac{a-1}{6}=\frac{1}{3}$ and $\frac{3}{(1-2 b)}=\frac{1}{3}$
$\Rightarrow 3 \mathrm{a}-3=6$ and $9=1-2 \mathrm{~b}$
$\Rightarrow 3 \mathrm{a}=9$ and $2 \mathrm{~b}=-8$
$\Rightarrow \mathrm{a}=3$ and $\mathrm{b}=-4$
$\therefore \mathrm{a}=3$ and $\mathrm{b}=-4$
22.

Sol:

The given system of equations can be written as
$(2 a-1) x+3 y=5$
$\Rightarrow(2 a-1) x+3 y-5=0$
and $3 x+(b-1) y=2$
$\Rightarrow 3 \mathrm{x}+(\mathrm{b}-1) \mathrm{y}-2=0$
These equations are of the following form:

Downloaded from www.studiestoday.com

$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=(2 \mathrm{a}-1), \mathrm{b}_{1}=3, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=(\mathrm{b}-1), \mathrm{c}_{2}=-2$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{(2 a-1)}{3}=\frac{3}{(b-1)}=\frac{-5}{-2}$
$\Rightarrow \frac{(2 a-1)}{6}=\frac{3}{(b-1)}=\frac{5}{2}$
$\Rightarrow \frac{(2 a-1)}{6}=\frac{5}{2}$ and $\frac{3}{(b-1)}=\frac{5}{2}$
$\Rightarrow 2(2 \mathrm{a}-1)=15$ and $6=5(\mathrm{~b}-1)$
$\Rightarrow 4 \mathrm{a}-2=15$ and $6=5 \mathrm{~b}-5$
$\Rightarrow 4 \mathrm{a}=17$ and $5 \mathrm{~b}=11$
$\therefore \mathrm{a}=\frac{17}{4}$ and $\mathrm{b}=\frac{11}{5}$
23.

Sol:

The given system of equations can be written as
$2 \mathrm{x}-3 \mathrm{y}=7$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}-7=0$
and $(a+b) x-(a+b-3) y=4 a+b$
$\Rightarrow(\mathrm{a}+\mathrm{b}) \mathrm{x}-(\mathrm{a}+\mathrm{b}-3) \mathrm{y}-4 \mathrm{a}+\mathrm{b}=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
Here, $a_{1}=2, b_{1}=-3, c_{1}=-7$ and $a_{2}=(a+b), b_{2}=-(a+b-3), c_{2}=-(4 a+b)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{a+b}=\frac{-3}{-(a+b-3)}=\frac{-7}{-(4 a+b)}$
$\Rightarrow \frac{2}{a+b}=\frac{3}{(a+b-3)}=\frac{7}{(4 a+b)}$
$\Rightarrow \frac{2}{a+b}=\frac{7}{(4 a+b)}$ and $\frac{3}{(a+b-3)}=\frac{7}{(4 a+b)}$
$\Rightarrow 2(4 \mathrm{a}+\mathrm{b})=7(\mathrm{a}+\mathrm{b})$ and $3(4 \mathrm{a}+\mathrm{b})=7(\mathrm{a}+\mathrm{b}-3)$
$\Rightarrow 8 \mathrm{a}+2 \mathrm{~b}=7 \mathrm{a}+7 \mathrm{~b}$ and $12 \mathrm{a}+3 \mathrm{~b}=7 \mathrm{a}+7 \mathrm{~b}-21$
$\Rightarrow 4 \mathrm{a}=17$ and $5 \mathrm{~b}=11$
$\therefore \mathrm{a}=5 \mathrm{~b}$
and $5 \mathrm{a}=4 \mathrm{~b}-21$
On substituting $\mathrm{a}=5 \mathrm{~b}$ in (iv), we get:

Downloaded from www.studiestoday.com

$25 \mathrm{~b}=4 \mathrm{~b}-21$
$\Rightarrow 21 \mathrm{~b}=-21$
$\Rightarrow \mathrm{b}=-1$
On substituting $\mathrm{b}=-1$ in (iii), we get:
$\mathrm{a}=5(-1)=-5$
$\therefore \mathrm{a}=-5$ and $\mathrm{b}=-1$.
24.

Sol:

The given system of equations can be written as
$2 x+3 y=7$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}-7=0$
and $(a+b+1) x-(a+2 b+2) y=4(a+b)+1$
$(a+b+1) x-(a+2 b+2) y-[4(a+b)+1]=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-7$ and $\mathrm{a}_{2}=(\mathrm{a}+\mathrm{b}+1), \mathrm{b}_{2}=(\mathrm{a}+2 \mathrm{~b}+2), \mathrm{c}_{2}=-[4(\mathrm{a}+\mathrm{b})+1]$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{(a+b+1)}=\frac{3}{(a+2 b+2)}=\frac{-7}{-[4(a+b)+1]}$
$\Rightarrow \frac{2}{(a+b+1)}=\frac{3}{(a+2 b+2)}=\frac{7}{[4(a+b)+1]}$
$\Rightarrow \frac{2}{(a+b+1)}=\frac{3}{(a+2 b+2)}$ and $\frac{3}{(a+2 b+2)}=\frac{7}{[4(a+b)+1]}$
$\Rightarrow 2(\mathrm{a}+2 \mathrm{~b}+2)=3(\mathrm{a}+\mathrm{b}+1)$ and $3[4(\mathrm{a}+\mathrm{b})+1]=7(\mathrm{a}+2 \mathrm{~b}+2)$
$\Rightarrow 2 \mathrm{a}+4 \mathrm{~b}+4=3 \mathrm{a}+3 \mathrm{~b}+3$ and $3(4 \mathrm{a}+4 \mathrm{~b}+1)=7 \mathrm{a}+14 \mathrm{~b}+14$
$\Rightarrow \mathrm{a}-\mathrm{b}-1=0$ and $12 \mathrm{a}+12 \mathrm{~b}+3=7 \mathrm{a}+14 \mathrm{~b}+14$
$\Rightarrow \mathrm{a}-\mathrm{b}=1$ and $5 \mathrm{a}-2 \mathrm{~b}=11$
$\mathrm{a}=(\mathrm{b}+1)$
$5 a-2 b=11$
On substituting $a=(b+1)$ in (iv), we get:
$5(b+1)-2 b=11$
$\Rightarrow 5 \mathrm{~b}+5-2 \mathrm{~b}=11$
$\Rightarrow 3 \mathrm{~b}=6$
$\Rightarrow \mathrm{b}=2$
On substituting $b=2$ in (iii), we get:
$\mathrm{a}=3$

Downloaded from www.studiestoday.com

$\therefore \mathrm{a}=3$ and $\mathrm{b}=2$.
25.

Sol:

The given system of equations can be written as
$2 x+3 y-7=0$
$(a+b) x+(2 a-b) y-21=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=2, b_{1}=3, c_{1}=-7$ and $a_{2}=a+b, b_{2}=2 a-b, c_{2}=-21$
For the given system of linear equations to have an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{2}{a+b}=\frac{3}{2 a-b}=\frac{-7}{-21}$
$\Rightarrow \frac{2}{a+b}=\frac{-7}{-21}=\frac{1}{3}$ and $\frac{3}{2 a-b}=\frac{-7}{-21}=\frac{1}{3}$
$\Rightarrow \mathrm{a}+\mathrm{b}=6$ and $2 \mathrm{a}-\mathrm{b}=9$
Adding $\mathrm{a}+\mathrm{b}=6$ and $2 \mathrm{a}-\mathrm{b}=9$, we get
$3 \mathrm{a}=15 \Rightarrow \mathrm{a}=\frac{15}{3}=3$
Now substituting $\mathrm{a}=5$ in $\mathrm{a}+\mathrm{b}=6$, we have
$5+\mathrm{b}=6 \Rightarrow \mathrm{~b}=6-5=1$
Hence, $\mathrm{a}=5$ and $\mathrm{b}=1$.
26.

Sol:

The given system of equations can be written as
$2 x+3 y-7=0$
$2 \mathrm{ax}+(\mathrm{a}+\mathrm{b}) \mathrm{y}-28=0$
This system is of the form:
$a_{1} x+b_{1} y+c_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-7$ and $\mathrm{a}_{2}=2 \mathrm{a}, \mathrm{b}_{2}=\mathrm{a}+\mathrm{b}, \mathrm{c}_{2}=-28$
For the given system of linear equations to have an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{2}{2 a}=\frac{3}{a+b}=\frac{-7}{-28}$
$\Rightarrow \frac{2}{2 a}=\frac{-7}{-28}=\frac{1}{4}$ and $\frac{3}{a+b}=\frac{-7}{-28}=\frac{1}{4}$
$\Rightarrow \mathrm{a}=4$ and $\mathrm{a}+\mathrm{b}=12$
Substituting $\mathrm{a}=4$ in $\mathrm{a}+\mathrm{b}=12$, we get
$4+\mathrm{b}=12 \Rightarrow \mathrm{~b}=12-4=8$
Hence, $\mathrm{a}=4$ and $\mathrm{b}=8$.
27.

Sol:

The given system of equations:
$8 x+5 y=9$
$8 x+5 y-9=0$
$k x+10 y=15$
$\mathrm{kx}+10 \mathrm{y}-15=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=8, b_{1}=5, c_{1}=-9$ and $a_{2}=k, b_{2}=10, c_{2}=-15$
In order that the given system has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
i.e., $\frac{8}{k}=\frac{5}{10} \neq \frac{-9}{-15}$
i.e., $\frac{8}{k}=\frac{1}{2} \neq \frac{3}{5}$
$\frac{8}{k}=\frac{1}{2}$ and $\frac{8}{k} \neq \frac{3}{5}$
$\Rightarrow \mathrm{k}=16$ and $\mathrm{k} \neq \frac{40}{3}$
Hence, the given system of equations has no solutions when k is equal to 16 .
28.

Sol:

The given system of equations:
$\mathrm{kx}+3 \mathrm{y}=3$
$\mathrm{kx}+3 \mathrm{y}-3=0$
$12 x+k y=6$
$12 x+k y-6=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=3, \mathrm{c}_{1}=-3$ and $\mathrm{a}_{2}=12, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-6$
In order that the given system has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
i.e., $\frac{k}{12}=\frac{3}{k} \neq \frac{-3}{-6}$
$\frac{k}{12}=\frac{3}{k}$ and $\frac{3}{k} \neq \frac{1}{2}$
$\Rightarrow \mathrm{k}^{2}=36$ and $\mathrm{k} \neq 6$
$\Rightarrow \mathrm{k}= \pm 6$ and $\mathrm{k} \neq 6$
Hence, the given system of equations has no solution when k is equal to -6 .
29.

Sol:

The given system of equations:
$3 x-y-5=0$
And, $6 \mathrm{x}-2 \mathrm{y}+\mathrm{k}=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
where, $\mathrm{a}_{1}=3, \mathrm{~b}_{1}=-1, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=6, \mathrm{~b}_{2}=-2, \mathrm{c}_{2}=\mathrm{k}$
In order that the given system has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
i.e., $\frac{3}{6}=\frac{-1}{-2} \neq \frac{-5}{k}$
$\Rightarrow \frac{-1}{-2} \neq \frac{-5}{k} \Rightarrow \mathrm{k} \neq-10$
Hence, equations (i) and (ii) will have no solution if $\mathrm{k} \neq-10$.
30.

Sol:

The given system of equations can be written as
$\mathrm{kx}+3 \mathrm{y}+3-\mathrm{k}=0$
$12 \mathrm{x}+\mathrm{ky}-\mathrm{k}=0$
This system of the form:
$a_{1} x+b_{1} y+c_{1}=0$
$a_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=3, \mathrm{c}_{1}=3-\mathrm{k}$ and $\mathrm{a}_{2}=12, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-\mathrm{k}$

Downloaded from www.studiestoday.com

For the given system of linear equations to have no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{k}{12}=\frac{3}{k} \neq \frac{3-k}{-k}$
$\Rightarrow \frac{k}{12}=\frac{3}{k}$ and $\frac{3}{k} \neq \frac{3-k}{-k}$
$\Rightarrow \mathrm{k}^{2}=36$ and $-3 \neq 3-\mathrm{k}$
$\Rightarrow \mathrm{k}= \pm 6$ and $\mathrm{k} \neq 6$
$\Rightarrow \mathrm{k}=-6$
Hence, $\mathrm{k}=-6$.
31.

Sol:

The given system of equations:
$5 x-3 y=0$
$2 \mathrm{x}+\mathrm{ky}=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
where, $a_{1}=5, b_{1}=-3, c_{1}=0$ and $a_{2}=2, b_{2}=k, c_{2}=0$
For a non-zero solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{5}{2}=\frac{-3}{k}$
$\Rightarrow 5 \mathrm{k}=-6 \Rightarrow \mathrm{k}=\frac{-6}{5}$
Hence, the required value of k is $\frac{-6}{5}$.
Linear equations in two variables - 3E
32.

Sol:

Let the cost of a chair be ₹ x and that of a table be ₹ y, then
$5 x+4 y=5600$
$4 x+3 y=4340$
Multiplying (i) by 3 and (ii) by 4, we get
$15 x-16 x=16800-17360$
$\Rightarrow-\mathrm{x}=-560$

Downloaded from www.studiestoday.com

$\Rightarrow \mathrm{x}=560$
Substituting $x=560$ in (i), we have
$5 \times 560+4 y=5600$
$\Rightarrow 4 y=5600-2800$
$\Rightarrow \mathrm{y}=\frac{2800}{4}=700$
Hence, the cost of a chair and that a table are respectively ₹ 560 and ₹ 700 .
33.

Sol:

Let the cost of a spoon be Rs.x and that of a fork be Rs.y. Then
$23 x+17 y=1770$
$17 x+23 y=1830$
Adding (i) and (ii), we get
$40 x+40 y=3600$
$\Rightarrow x+y=90$
Now, subtracting (ii) from (i), we get
$6 x-6 y=-60$
$\Rightarrow \mathrm{x}-\mathrm{y}=-10$
Adding (iii) and (iv), we get
$2 x=80 \Rightarrow x=40$
Substituting $x=40$ in (iii), we get
$40+\mathrm{y}=90 \Rightarrow \mathrm{y}=50$
Hence, the cost of a spoon that of a fork is Rs. 40 and Rs. 50 respectively.
34.

Sol:

Let x and y be the number of 50-paisa and 25-paisa coins respectively. Then $x+y=50$
$0.5 x+0.25 y=19.50$
Multiplying (ii) by 2 and subtracting it from (i), we get
$0.5 y=50-39$
$\Rightarrow \mathrm{y}=\frac{11}{0.5}=22$
Subtracting y $=22$ in (i), we get
$x+22=50$
$\Rightarrow \mathrm{x}=50-22=28$
Hence, the number of 25-paisa and 50-paisa coins is 22 and 28 respectively.
35.

Sol:

Let the larger number be x and the smaller number be y .
Then, we have:
$x+y=137$
$x-y=43$
On adding (i) and (ii), we get
$2 x=180 \Rightarrow x=90$
On substituting $x=90$ in (i), we get
$90+y=137$
$\Rightarrow \mathrm{y}=(137-90)=47$
Hence, the required numbers are 90 and 47 .
36.

Sol:

Let the first number be x and the second number be y .
Then, we have:
$2 x+3 y=92$
$4 x-7 y=2$
On multiplying (i) by 7 and (ii) by 3 , we get
$14 x+21 y=644$
$12 x-21 y=6$
On adding (iii) and (iv), we get
$26 x=650$
$\Rightarrow x=25$
On substituting $x=25$ in (i), we get
$2 \times 25+3 y=92$
$\Rightarrow 50+3 \mathrm{y}=92$
$\Rightarrow 3 y=(92-50)=42$
$\Rightarrow \mathrm{y}=14$
Hence, the first number is 25 and the second number is 14 .
37.

Sol:

Let the first number be x and the second number be y .
Then, we have:
$3 x+y=142$
$4 x-y=138$
On adding (i) and (ii), we get
$7 \mathrm{x}=280$
$\Rightarrow x=40$
On substituting $x=40$ in (i), we get:
$3 \times 40+y=142$
$\Rightarrow \mathrm{y}=(142-120)=22$
$\Rightarrow y=22$
Hence, the first number is 40 and the second number is 22 .
38.

Sol:

Let the greater number be x and the smaller number be y .
Then, we have:
$25 \mathrm{x}-45=\mathrm{y}$ or $2 \mathrm{x}-\mathrm{y}=45$
$2 y-21=x$ or $-x+2 y=21$
On multiplying (i) by 2 , we get:
$4 x-2 y=90$
On adding (ii) and (iii), we get
$3 x=(90+21)=111$
$\Rightarrow \mathrm{x}=37$

On substituting $x=37$ in (i), we get
$2 \times 37-y=45$
$\Rightarrow 74-\mathrm{y}=45$
$\Rightarrow \mathrm{y}=(74-45)=29$
Hence, the greater number is 37 and the smaller number is 29 .
39.

Sol:

We know:
Dividend $=$ Divisor \times Quotient + Remainder
Let the larger number be x and the smaller be y.

Then, we have:
$3 x=y \times 4+8$ or $3 x-4 y=8$
$5 y=x \times 3+5$ or $-3 x+5 y=5$
On adding (i) and (ii), we get:
$y=(8+5)=13$
On substituting $y=13$ in (i) we get
$3 x-4 \times 13=8$
$\Rightarrow 3 \mathrm{x}=(8+52)=60$
$\Rightarrow \mathrm{x}=20$
Hence, the larger number is 20 and the smaller number is 13 .
40.

Sol:

Let the required numbers be x and y .
Now, we have:
$\frac{x+2}{y+2}=\frac{1}{2}$
By cross multiplication, we get:
$2 x+4=y+2$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=-2$
Again, we have:
$\frac{x-4}{y-4}=\frac{5}{11}$
By cross multiplication, we get:
$11 \mathrm{x}-44=5 \mathrm{y}-20$
$\Rightarrow 11 \mathrm{x}-5 \mathrm{y}=24$
On multiplying (i) by 5 , we get:
$10 x-5 y=-10$
On subtracting (iii) from (ii), we get:
$x=(24+10)=34$
On substituting $x=34$ in (i), we get:
$2 \times 34-y=-2$
$\Rightarrow 68-\mathrm{y}=-2$
$\Rightarrow y=(68+2)=70$
Hence, the required numbers are 34 and 70.
41.

Sol:

Let the larger number be x and the smaller number be y.
Then, we have:
$\mathrm{x}-\mathrm{y}=14$ or $\mathrm{x}=14+\mathrm{y}$
$x^{2}-y^{2}=448$
On substituting $\mathrm{x}=14+\mathrm{y}$ in (ii) we get
$(14+y)^{2}-y^{2}=448$
$\Rightarrow 196+y^{2}+28 y-y^{2}=448$
$\Rightarrow 196+28 y=448$
$\Rightarrow 28 y=(448-196)=252$
$\Rightarrow \mathrm{y}=\frac{252}{28}=9$
On substituting y $=9$ in (i), we get:
$\mathrm{x}=14+9=23$
Hence, the required numbers are 23 and 9 .
42.

Sol:

Let the tens and the units digits of the required number be x and y, respectively.
Required number $=(10 x+y)$
$\mathrm{x}+\mathrm{y}=12$
Number obtained on reversing its digits $=(10 y+x)$
$\therefore(10 y+x)-(10 x+y)=18$
$\Rightarrow 10 \mathrm{y}+\mathrm{x}-10 \mathrm{x}-\mathrm{y}=18$
$\Rightarrow 9 y-9 x=18$
$\Rightarrow \mathrm{y}-\mathrm{x}=2$
On adding (i) and (ii), we get:
$2 \mathrm{y}=14$
$\Rightarrow y=7$
On substituting $y=7$ in (i) we get
$\mathrm{x}+7=12$
$\Rightarrow \mathrm{x}=(12-7)=5$
Number $=(10 x+y)=10 \times 5+7=50+7=57$
Hence, the required number is 57 .
43.

Sol:

Let the tens and the units digits of the required number be x and y, respectively.
Required number $=(10 x+y)$
$10 x+y=7(x+y)$
$10 x+7 y=7 x+7 y$ or $3 x-6 y=0$
Number obtained on reversing its digits $=(10 y+x)$
$(10 \mathrm{x}+\mathrm{y})-27=(10 \mathrm{y}+\mathrm{x})$
$\Rightarrow 10 x-x+y-10 y=27$
$\Rightarrow 9 \mathrm{x}-9 \mathrm{y}=27$
$\Rightarrow 9(\mathrm{x}-\mathrm{y})=27$
$\Rightarrow x-y=3$
On multiplying (ii) by 6 , we get:
$6 x-6 y=18$
On subtracting (i) from (ii), we get:
$3 \mathrm{x}=18$
$\Rightarrow x=6$
On substituting $x=6$ in (i) we get
$3 \times 6-6 y=0$
$\Rightarrow 18-6 y=0$
$\Rightarrow 6 y=18$
$\Rightarrow y=3$
Number $=(10 x+y)=10 \times 6+3=60+3=63$
Hence, the required number is 63 .
44.

Sol:

Let the tens and the units digits of the required number be x and y, respectively.
Required number $=(10 x+y)$
$x+y=15$
Number obtained on reversing its digits $=(10 y+x)$
$\therefore(10 y+x)-(10 x+y)=9$
$\Rightarrow 10 \mathrm{y}+\mathrm{x}-10 \mathrm{x}-\mathrm{y}=9$
$\Rightarrow 9 y-9 x=9$
$\Rightarrow \mathrm{y}-\mathrm{x}=1$
On adding (i) and (ii), we get:
$2 y=16$
$\Rightarrow y=8$
On substituting $y=8$ in (i) we get
$x+8=15$
$\Rightarrow \mathrm{x}=(15-8)=7$
Number $=(10 \mathrm{x}+\mathrm{y})=10 \times 7+8=70+8=78$
Hence, the required number is 78 .
45.

Sol:

Let the tens and the units digits of the required number be x and y, respectively.
Required number $=(10 x+y)$
$10 x+y=4(x+y)+3$
$\Rightarrow 10 \mathrm{x}+\mathrm{y}=4 \mathrm{x}+4 \mathrm{y}+3$
$\Rightarrow 6 x-3 y=3$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=1$
Again, we have:
$10 \mathrm{x}+\mathrm{y}+18=10 \mathrm{y}+\mathrm{x}$
$\Rightarrow 9 x-9 y=-18$
$\Rightarrow x-y=-2$
On subtracting (ii) from (i), we get:
$\mathrm{x}=3$
On substituting $x=3$ in (i) we get
$2 \times 3-y=1$
$\Rightarrow \mathrm{y}=6-1=5$
Required number $=(10 x+y)=10 \times 3+5=30+5=35$
Hence, the required number is 35 .
46.

Sol:

We know:
Dividend $=$ Divisor \times Quotient + Remainder

Let the tens and the units digits of the required number be x and y, respectively.
Required number $=(10 x+y)$
$10 x+y=(x+y) \times 6+0$
$\Rightarrow 10 \mathrm{x}-6 \mathrm{x}+\mathrm{y}-6 \mathrm{y}=0$
$\Rightarrow 4 \mathrm{x}-5 \mathrm{y}=0$
Number obtained on reversing its digits $=(10 y+x)$
$\therefore 10 \mathrm{x}+\mathrm{y}-9=10 \mathrm{y}+\mathrm{x}$
$\Rightarrow 9 x-9 y=9$
$\Rightarrow \mathrm{x}-\mathrm{y}=1$
On multiplying (ii) by 5 , we get:
$5 x-5 y=5$
On subtracting (i) from (iii), we get:
$\mathrm{x}=5$
On substituting $x=5$ in (i) we get
$4 \times 5-5 y=0$
$\Rightarrow 20-5 y=0$
$\Rightarrow \mathrm{y}=4$
\therefore The number $=(10 \mathrm{x}+\mathrm{y})=10 \times 5+4=50+4=54$
Hence, the required number is 54 .
47.

Sol:

Let the tens and the units digits of the required number be x and y, respectively.
Then, we have:
$\mathrm{xy}=35$
Required number $=(10 x+y)$
Number obtained on reversing its digits $=(10 y+x)$
$\therefore(10 \mathrm{x}+\mathrm{y})+18=10 \mathrm{y}+\mathrm{x}$
$\Rightarrow 9 x-9 y=-18$
$\Rightarrow 9(y-x)=18$
$\Rightarrow \mathrm{y}-\mathrm{x}=2$

We know:
$(y+x)^{2}-(y-x)^{2}=4 x y$
$\Rightarrow(y+x)= \pm \sqrt{(y-x)^{2}+4 x y}$
$\Rightarrow(y+x)= \pm \sqrt{4+4 \times 35}= \pm \sqrt{144}= \pm 12$
$\Rightarrow \mathrm{y}+\mathrm{x}=12 \quad \ldots \ldots .$. (iii) $(\because \mathrm{x}$ and y cannot be negative $)$
On adding (ii) and (iii), we get:
$2 y=2+12=14$
$\Rightarrow y=7$
On substituting $y=7$ in (ii) we get
$7-x=2$
$\Rightarrow \mathrm{x}=(7-2)=5$
\therefore The number $=(10 x+y)=10 \times 5+7=50+7=57$
Hence, the required number is 57 .
48.

Sol:

Let the tens and the units digits of the required number be x and y , respectively.
Then, we have:
$\mathrm{xy}=18$
Required number $=(10 \mathrm{x}+\mathrm{y})$
Number obtained on reversing its digits $=(10 y+x)$

$$
\begin{align*}
& \therefore(10 x+y)-63=10 y+x \\
& \Rightarrow 9 x-9 y=63 \\
& \Rightarrow 9(x-y)=63 \\
& \Rightarrow x-y=7 \tag{ii}
\end{align*}
$$

We know:

$$
\begin{aligned}
&(x+y)^{2}-(x-y)^{2}=4 x y \\
& \Rightarrow(x+y)= \pm \sqrt{(x-y)^{2}+4 x y} \\
& \Rightarrow(x+y)= \pm \sqrt{49+4 \times 18} \\
&= \pm \sqrt{49+72} \\
&= \pm \sqrt{121}= \pm 11
\end{aligned}
$$

$$
\Rightarrow \mathrm{x}+\mathrm{y}=11 \quad \ldots \ldots . .(\text { iii })(\because \mathrm{x} \text { and } \mathrm{y} \text { cannot be negative })
$$

On adding (ii) and (iii), we get:

Downloaded from www.studiestoday.com

$2 \mathrm{x}=7+11=18$
$\Rightarrow x=9$
On substituting $x=9$ in (ii) we get
$9-\mathrm{y}=7$
$\Rightarrow y=(9-7)=2$
\therefore Number $=(10 \mathrm{x}+\mathrm{y})=10 \times 9+2=90+2=92$
Hence, the required number is 92 .
49.

Sol:

Let x be the ones digit and y be the tens digit. Then
Two digit number before reversing $=10 y+x$
Two digit number after reversing $=10 \mathrm{x}+\mathrm{y}$
As per the question
$(10 y+x)+(10 x+y)=121$
$\Rightarrow 11 x+11 y=121$
$\Rightarrow \mathrm{x}+\mathrm{y}=11$
Since the digits differ by 3 , so
$x-y=3$
Adding (i) and (ii), we get
$2 x=14 \Rightarrow x=7$
Putting $x=7$ in (i), we get
$7+y=11 \Rightarrow y=4$
Changing the role of x and $y, x=4$ and $y=7$
Hence, the two-digit number is 74 or 47.
50.

Sol:

Let the required fraction be $\frac{x}{y}$.
Then, we have:
$x+y=8$
And, $\frac{x+3}{y+3}=\frac{3}{4}$
$\Rightarrow 4(\mathrm{x}+3)=3(\mathrm{y}+3)$
$\Rightarrow 4 \mathrm{x}+12=3 \mathrm{y}+9$
$\Rightarrow 4 x-3 y=-3$
On multiplying (i) by 3 , we get:
$3 x+3 y=24$
On adding (ii) and (iii), we get:
$7 \mathrm{x}=21$
$\Rightarrow \mathrm{x}=3$
On substituting $x=3$ in (i), we get:
$3+y=8$
$\Rightarrow y=(8-3)=5$
$\therefore \mathrm{x}=3$ and $\mathrm{y}=5$
Hence, the required fraction is $\frac{3}{5}$.
51.

Sol:

Let the required fraction be $\frac{x}{y}$.
Then, we have:
$\frac{x+2}{y}=\frac{1}{2}$
$\Rightarrow 2(\mathrm{x}+2)=\mathrm{y}$
$\Rightarrow 2 \mathrm{x}+4=\mathrm{y}$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=-4$
Again, $\frac{x}{y-1}=\frac{1}{3}$
$\Rightarrow 3 \mathrm{x}=1(\mathrm{y}-1)$
$\Rightarrow 3 x-y=-1$
On subtracting (i) from (ii), we get:
$x=(-1+4)=3$
On substituting $x=3$ in (i), we get:
$2 \times 3-y=-4$
$\Rightarrow 6-\mathrm{y}=-4$
$\Rightarrow y=(6+4)=10$
$\therefore \mathrm{x}=3$ and $\mathrm{y}=10$
Hence, the required fraction is $\frac{3}{10}$.
52.

Sol:

Let the required fraction be $\frac{x}{y}$.
Then, we have:

$$
\begin{align*}
& y=x+11 \\
& \Rightarrow y-x=11 \tag{i}\\
& \text { Again, } \frac{x+8}{y+8}=\frac{3}{4} \\
& \Rightarrow 4(x+8)=3(y+8) \\
& \Rightarrow 4 x+32=3 y+24 \\
& \Rightarrow 4 x-3 y=-8 \tag{ii}
\end{align*}
$$

On multiplying (i) by 4 , we get:
$4 y-4 x=44$
On adding (ii) and (iii), we get:
$y=(-8+44)=36$
On substituting $y=36$ in (i), we get:
$36-\mathrm{x}=11$
$\Rightarrow \mathrm{x}=(36-11)=25$
$\therefore \mathrm{x}=25$ and $\mathrm{y}=36$
Hence, the required fraction is $\frac{25}{36}$.
53.

Sol:

Let the required fraction be $\frac{x}{y}$.
Then, we have:
$\frac{x-1}{y+2}=\frac{1}{2}$
$\Rightarrow 2(\mathrm{x}-1)=1(\mathrm{y}+2)$
$\Rightarrow 2 x-2=y+2$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=4$
Again, $\frac{x-7}{y-2}=\frac{1}{3}$
$\Rightarrow 3(\mathrm{x}-7)=1(\mathrm{y}-2)$
$\Rightarrow 3 \mathrm{x}-21=\mathrm{y}-2$
$\Rightarrow 3 x-y=19$
On subtracting (i) from (ii), we get:
$x=(19-4)=15$
On substituting $x=15$ in (i), we get:
$2 \times 15-y=4$
$\Rightarrow 30-\mathrm{y}=4$
$\Rightarrow \mathrm{y}=26$
$\therefore \mathrm{x}=15$ and $\mathrm{y}=26$
Hence, the required fraction is $\frac{15}{26}$.
54.

Sol:

Let the required fraction be x / y
As per the question
$x+y=4+2 x$
$\Rightarrow \mathrm{y}-\mathrm{x}=4$
After changing the numerator and denominator
New numerator $=\mathrm{x}+3$
New denominator $=y+3$
Therefore
$\frac{x+3}{y+3}=\frac{2}{3}$
$\Rightarrow 3(\mathrm{x}+3)=2(\mathrm{y}+3)$
$\Rightarrow 3 \mathrm{x}+9=2 \mathrm{y}+6$
$\Rightarrow 2 \mathrm{y}-3 \mathrm{x}=3$
Multiplying (i) by 3 and subtracting (ii), we get:
$3 \mathrm{y}-2 \mathrm{y}=12-3$
$\Rightarrow y=9$
Now, putting $\mathrm{y}=9$ in (i), we get:
$9-\mathrm{x}=4 \Rightarrow \mathrm{x}=9-4=5$
Hence, the required fraction is $\frac{5}{9}$.
55.

Sol:

Let the larger number be x and the smaller number be y.
Then, we have:
$x+y=16$
And, $\frac{1}{x}+\frac{1}{y}=\frac{1}{3}$
$\Rightarrow 3(\mathrm{x}+\mathrm{y})=\mathrm{xy}$
$\Rightarrow 3 \times 16=x y \quad$ [Since from (i), we have: $x+y=16$]
$\therefore \mathrm{xy}=48$
We know:
$(x-y)^{2}=(x+y)^{2}-4 x y$
$(x-y)^{2}=(16)^{2}-4 \times 48=256-192=64$
$\therefore(\mathrm{x}-\mathrm{y})= \pm \sqrt{64}= \pm 8$
Since x is larger and y is smaller, we have:
$x-y=8$ \qquad
On adding (i) and (iv), we get:
$2 \mathrm{x}=24$
$\Rightarrow \mathrm{x}=12$
On substituting $x=12$ in (i), we get:
$12+y=16 \Rightarrow y=(16-12)=4$
Hence, the required numbers are 12 and 4 .
56.

Sol:

Let the number of students in classroom A be x
Let the number of students in classroom B be y.
If 10 students are transferred from A to B , then we have:
$x-10=y+10$
$\Rightarrow \mathrm{x}-\mathrm{y}=20$
If 20 students are transferred from B to A, then we have:
$2(y-20)=x+20$
$\Rightarrow 2 \mathrm{y}-40=\mathrm{x}+20$
$\Rightarrow-x+2 y=60$

On adding (i) and (ii), we get:
$y=(20+60)=80$
On substituting $y=80$ in (i), we get:
$x-80=20$
$\Rightarrow \mathrm{x}=(20+80)=100$
Hence, the number of students in classroom A is 100 and the number of students in classroom B is 80 .
57.

Sol:

Let fixed charges be Rs.x and rate per km be Rs.y.
Then as per the question
$x+80 y=1330$
$x+90 y=1490$
Subtracting (i) from (ii), we get
$10 y=160 \Rightarrow y=\underline{160}=16$
10
Now, putting $\mathrm{y}=16$, we have
$\mathrm{x}+80 \times 16=1330$
$\Rightarrow \mathrm{x}=1330-1280=50$

Hence, the fixed charges be Rs. 50 and the rate per km is Rs.16.
58.

Sol:

Let the fixed charges be Rs.x and the cost of food per day be Rs.y.
Then as per the question
$x+25 y=4500$
$x+30 y=5200$
Subtracting (i) from (ii), we get
$5 y=700 \Rightarrow y=\underline{700}=140$
5
Now, putting $\mathrm{y}=140$, we have
$x+25 \times 140=4500$
$\Rightarrow \mathrm{x}=4500-3500=1000$

Hence, the fixed charges be Rs. 1000 and the cost of the food per day is Rs. 140.
59.

Sol:

Let the amounts invested at 10% and 8% be Rs.x and Rs.y respectively.
Then as per the question
$\frac{x \times 10 \times 1}{100}=\frac{y \times 8 \times 1}{100}=1350$
$10 x+8 y=135000$
After the amounts interchanged but the rate being the same, we have
$\frac{x \times 8 \times 1}{100}=\frac{y \times 10 \times 1}{100}=1350-45$
$8 x+10 y=130500$
Adding (i) and (ii) and dividing by 9, we get
$2 x+2 y=29500$
Subtracting (ii) from (i), we get
$2 \mathrm{x}-2 \mathrm{y}=4500$
Now, adding (iii) and (iv), we have
$4 \mathrm{x}=34000$
$\mathrm{x}=\frac{34000}{4}=8500$
Putting $x=8500$ in (iii), we get
$2 \times 8500+2 \mathrm{y}=29500$
$2 \mathrm{y}=29500-17000=12500$
$y=\frac{12500}{2}=6250$
Hence, the amounts invested are Rs. 8,500 at 10% and Rs. 6,250 at 8%.
60.

Sol:

Let the monthly income of A and B are Rs.x and Rs.y respectively.
Then as per the question
$\frac{x}{y}=\frac{5}{4}$
$\Rightarrow \mathrm{y}=\frac{4 x}{5}$
Since each save Rs.9,000, so
Expenditure of A = Rs. $(\mathrm{x}-9000)$
Expenditure of $\mathrm{B}=$ Rs. $(\mathrm{y}-9000)$
The ratio of expenditures of A and B are in the ratio 7:5.
$\therefore \frac{x-9000}{y-9000}=\frac{7}{5}$
$\Rightarrow 7 \mathrm{y}-63000=5 \mathrm{x}-45000$
$\Rightarrow 7 \mathrm{y}-5 \mathrm{x}=18000$
From (i), substitute $\mathrm{y}=\frac{4 x}{5}$ in (ii) to get
$7 \times \frac{4 x}{5}-5 \mathrm{x}=18000$
$\Rightarrow 28 \mathrm{x}-25 \mathrm{x}=90000$
$\Rightarrow 3 \mathrm{x}=90000$
$\Rightarrow \mathrm{x}=30000$
Now, putting $x=30000$, we get
$y=\frac{4 \times 30000}{5}=4 \times 6000=24000$
Hence, the monthly incomes of A and B are Rs. 30,000 and Rs.24,000.
61.

Sol:

Let the cost price of the chair and table be Rs.x and Rs.y respectively.
Then as per the question
Selling price of chair + Selling price of table $=1520$
$\frac{100+25}{100} \times \mathrm{x}+\frac{100+10}{100} \times \mathrm{y}=1520$
$\Rightarrow \frac{125}{100} \mathrm{x}+\frac{110}{100} \mathrm{y}=1520$
$\Rightarrow 25 x+22 y-30400=0$
When the profit on chair and table are 10% and 25% respectively, then
$\frac{100+10}{100} \times \mathrm{x}+\frac{100+25}{100} \times \mathrm{y}=1535$
$\Rightarrow \frac{110}{100} \mathrm{x}+\frac{125}{100} \mathrm{y}=1535$
$\Rightarrow 22 \mathrm{x}+25 \mathrm{y}-30700=0$
Solving (i) and (ii) by cross multiplication, we get
$\frac{x}{(22)(-30700)-(25)(-30400)}=\frac{y}{(-30400)(22)-(-30700)(25)}=\frac{1}{(25)(25)-(22)(22)}$
$\Rightarrow \frac{x}{7600-6754}=\frac{y}{7675-6688}=\frac{100}{3 \times 47}$
$\Rightarrow \frac{x}{846}=\frac{y}{987}=\frac{100}{3 \times 47}$
$\Rightarrow \mathrm{x}=\frac{100 \times 846}{3 \times 47}, \mathrm{y}=\frac{100 \times 987}{3 \times 47}$

Downloaded from www.studiestoday.com

$\Rightarrow x=600, y=700$
Hence, the cost of chair and table are Rs. 600 and Rs. 700 respectively.
62.

Sol:

Let X and Y be the cars starting from points A and B , respectively and let their speeds be x km / h and $\mathrm{y} \mathrm{km} / \mathrm{h}$, respectively.
Then, we have the following cases:
Case I: When the two cars move in the same direction In this case, let the two cars meet at point M.

Distance covered by car X in 7 hours $=7 \mathrm{x} \mathrm{km}$
Distance covered by car Y in 7 hours $=7 \mathrm{ykm}$
$\therefore A M=(7 x) \mathrm{km}$ and $B M=(7 y) \mathrm{km}$
$\Rightarrow(\mathrm{AM}-\mathrm{BM})=\mathrm{AB}$
$\Rightarrow(7 x-7 y)=70$
$\Rightarrow 7(\mathrm{x}-\mathrm{y})=70$
$\Rightarrow(\mathrm{x}-\mathrm{y})=10$
Case II: When the two cars move in opposite directions
In this case, let the two cars meet at point N .
Distance covered by car X in 1 hour $=\mathrm{xkm}$
Distance covered by car Y in 1 hour $=\mathrm{ykm}$
$\therefore \mathrm{AN}=\mathrm{xkm}$ and $\mathrm{BN}=\mathrm{y} \mathrm{km}$
$\Rightarrow \mathrm{AN}+\mathrm{BN}=\mathrm{AB}$
$\Rightarrow x+y=70$
On adding (i) and (ii), we get:
$2 \mathrm{x}=80$
$\Rightarrow \mathrm{x}=40$
On substituting $x=40$ in (i), we get:
$40-\mathrm{y}=10$
$\Rightarrow y=(40-10)=30$
Hence, the speed of car X is $40 \mathrm{~km} / \mathrm{h}$ and the speed of car Y is $30 \mathrm{~km} / \mathrm{h}$.
63.

Sol:

Let the original speed be x kmph and let the time taken to complete the journey be y hours.
\therefore Length of the whole journey $=(x y) \mathrm{km}$
Case I:
When the speed is $(x+5) \mathrm{kmph}$ and the time taken is $(y-3)$ hrs:
Total journey $=(x+5)(y-3) \mathrm{km}$
$\Rightarrow(x+5)(y-3)=x y$
$\Rightarrow x y+5 y-3 x-15=x y$
$\Rightarrow 5 y-3 x=15$
Case II:
When the speed is $(x-4) \mathrm{kmph}$ and the time taken is $(y+3) \mathrm{hrs}$:
Total journey $=(x-4)(y+3) k m$
$\Rightarrow(x-4)(y+3)=x y$
$\Rightarrow x y-4 y+3 x-12=x y$
$\Rightarrow 3 x-4 y=12$
On adding (i) and (ii), we get:
$y=27$
On substituting $y=27$ in (i), we get:
$5 \times 27-3 x=15$
$\Rightarrow 135-3 \mathrm{x}=15$
$\Rightarrow 3 \mathrm{x}=120$
$\Rightarrow \mathrm{x}=40$
\therefore Length of the journey $=(x y) \mathrm{km}=(40 \times 27) \mathrm{km}=1080 \mathrm{~km}$
64.

Sol:

Let the speed of the train and taxi be $x \mathrm{~km} / \mathrm{h}$ and $\mathrm{ykm} / \mathrm{h}$ respectively. Then as per the question
$\frac{3}{x}+\frac{2}{y}=\frac{11}{200}$

When the speeds of the train and taxi are 260 km and 240 km respectively, then
$\frac{260}{x}+\frac{240}{y}=\frac{11}{2}+\frac{6}{60}$
$\Rightarrow \frac{13}{x}+\frac{12}{y}=\frac{28}{100}$
Multiplying (i) by 6 and subtracting (ii) from it, we get
$\frac{18}{x}-\frac{13}{x}=\frac{66}{200}-\frac{28}{100}$
$\Rightarrow \frac{5}{x}=\frac{10}{200} \Rightarrow \mathrm{x}=100$
Putting $\mathrm{x}=100$ in (i), we have
$\frac{3}{100}+\frac{2}{y}=\frac{11}{200}$
$\Rightarrow \frac{2}{y}=\frac{11}{200}-\frac{3}{100}=\frac{1}{40}$
$\Rightarrow \mathrm{y}=80$
Hence, the speed of the train and that of the taxi are $100 \mathrm{~km} / \mathrm{h}$ and $80 \mathrm{~km} / \mathrm{h}$ respectively.
65.

Sol:

Let the speed of the car A and B be $x \mathrm{~km} / \mathrm{h}$ and $\mathrm{y} \mathrm{km} / \mathrm{h}$ respectively. Let $\mathrm{x}>\mathrm{y}$.
Case-1: When they travel in the same direction

From the figure
$\mathrm{AC}-\mathrm{BC}=160$
$\Rightarrow \mathrm{x} \times 8-\mathrm{y} \times 8=160$
$\Rightarrow \mathrm{x}-\mathrm{y}=20$
Case-2: When they travel in opposite direction

From the figure
$\mathrm{AC}+\mathrm{BC}=160$
$\Rightarrow \mathrm{x} \times 2+\mathrm{y} \times 2=160$
$\Rightarrow \mathrm{x}+\mathrm{y}=80$
Adding (i) and (ii), we get
$2 \mathrm{x}=100 \Rightarrow \mathrm{x}=50 \mathrm{~km} / \mathrm{h}$

Downloaded from www.studiestoday.com

Putting $x=50$ in (ii), we have
$50+\mathrm{y}=80 \Rightarrow \mathrm{y}=80-50=30 \mathrm{~km} / \mathrm{h}$
Hence, the speeds of the cars are $50 \mathrm{~km} / \mathrm{h}$ and $30 \mathrm{~km} / \mathrm{h}$.
66.

Sol:

Let the speed of the sailor in still water be $\mathrm{x} \mathrm{km} / \mathrm{h}$ and that of the current $\mathrm{y} \mathrm{km} / \mathrm{h}$.
Speed downstream $=(x+y) k m / h$
Speed upstream $=(x-y) k m / h$
As per the question
$(x+y) \times \frac{40}{60}=8$
$\Rightarrow \mathrm{x}+\mathrm{y}=12$
When the sailor goes upstream, then
$(x-y) \times 1=8$
$x-y=8$
Adding (i) and (ii), we get
$2 \mathrm{x}=20 \Rightarrow \mathrm{x}=10$
Putting $x=10$ in (i), we have
$10+y=12 \Rightarrow y=2$
Hence, the speeds of the sailor in still water and the current are $10 \mathrm{~km} / \mathrm{h}$ and $2 \mathrm{~km} / \mathrm{h}$ respectively.
67.

Sol:

Let the speed of the boat in still water be $\mathrm{xkm} / \mathrm{h}$ and the speed of the stream be $\mathrm{y} \mathrm{km} / \mathrm{h}$.
Then we have
Speed upstream $=(x-y) k m / h r$
Speed downstream $=(x+y) \mathrm{km} / \mathrm{hr}$
Time taken to cover 12 km upstream $=\frac{12}{(x-y)} \mathrm{hrs}$
Time taken to cover 40 km downstream $=\frac{40}{(x+y)} \mathrm{hrs}$
Total time taken $=8 \mathrm{hrs}$
$\therefore \frac{12}{(x-y)}+\frac{40}{(x+y)}=8$
Again, we have:

Time taken to cover 16 km upstream $=\frac{16}{(x-y)} \mathrm{hrs}$
Time taken to cover 32 km downstream $=\frac{32}{(x+y)} \mathrm{hrs}$
Total time taken $=8 \mathrm{hrs}$
$\therefore \frac{16}{(x-y)}+\frac{32}{(x+y)}=8$
Putting $\frac{1}{(x-y)}=\mathrm{u}$ and $\frac{1}{(x+y)}=\mathrm{v}$ in (i) and (ii), we get:
$12 u+40 v=8$
$3 u+10 v=2$
And, $16 u+32 v=8$
$\Rightarrow 2 u+4 v=1$
On multiplying (a) by 4 and (b) by 10, we get:
$12 u+40 v=8$
And, $20 u+40 v=10$
On subtracting (iii) from (iv), we get:
$8 u=2$
$\Rightarrow \mathrm{u}=\frac{2}{8}=\frac{1}{4}$
On substituting $\mathrm{u}=\frac{1}{4}$ in (iii), we get:
$40 \mathrm{v}=5$
$\Rightarrow \mathrm{v}=\frac{5}{40}=\frac{1}{8}$
Now, we have:
$\mathrm{u}=\frac{1}{4}$
$\Rightarrow \frac{1}{(x-y)}=\frac{1}{4} \Rightarrow x-y=4$
$\mathrm{v}=\frac{1}{8}$
$\Rightarrow \frac{1}{(x+y)}=\frac{1}{8} \Rightarrow x+y=8$
On adding (v) and (vi), we get:
$2 \mathrm{x}=12$
$\Rightarrow x=6$
On substituting $x=6$ in (v), we get:
$6-y=4$
$y=(6-4)=2$
\therefore Speed of the boat in still water $=6 \mathrm{~km} / \mathrm{h}$
And, speed of the stream $=2 \mathrm{~km} / \mathrm{h}$
68.

Sol:
Let us suppose that one man alone can finish the work in x days and one boy alone can finish it in y days.
\therefore One man's one day's work $=\frac{1}{x}$
And, one boy's one day's work $=\frac{1}{y}$
2 men and 5 boys can finish the work in 4 days.
$\therefore(2$ men's one day's work $)+(5$ boys' one day's work $)=\frac{1}{4}$
$\Rightarrow \frac{2}{x}+\frac{5}{y}=\frac{1}{4}$
$\Rightarrow 2 u+5 v=\frac{1}{4}$
.......(i) Here, $\frac{1}{x}=\mathrm{u}$ and $\frac{1}{y}=\mathrm{v}$
Again, 3 men and 6 boys can finish the work in 3days.
$\therefore(3$ men's one day's work $)+(6$ boys' one day's work $)=\frac{1}{3}$
$\Rightarrow \frac{3}{x}+\frac{6}{y}=\frac{1}{3}$
$\Rightarrow 3 \mathrm{u}+6 \mathrm{v}=\frac{1}{3} \quad \ldots \ldots$. (ii) Here, $\frac{1}{x}=\mathrm{u}$ and $\frac{1}{y}=\mathrm{v}$
On multiplying (iii) from (iv), we get:
$3 \mathrm{u}=\left(\frac{5}{3}-\frac{6}{4}\right)=\frac{2}{12}=\frac{1}{6}$
$\Rightarrow \mathrm{u}=\frac{1}{6 \times 3}=\frac{1}{18} \Rightarrow \frac{1}{x}=\frac{1}{18} \Rightarrow \mathrm{x}=18$
On substituting $\mathrm{u}=\frac{1}{18}$ in (i), we get:
$2 \times \frac{1}{18}+5 \mathrm{v}=\frac{1}{4} \Rightarrow 5 \mathrm{v}=\left(\frac{1}{4}-\frac{1}{9}\right)=\frac{5}{36}$
$\Rightarrow \mathrm{v}=\left(\frac{5}{36} \times \frac{1}{5}\right)=\frac{1}{36} \Rightarrow \frac{1}{y}=\frac{1}{36} \Rightarrow \mathrm{y}=36$
Hence, one man alone can finish the work is 18days and one boy alone can finish the work in 36 days.
69.

Sol:

Let the length of the room be x meters and he breadth of the room be y meters.
Then, we have:
Area of the room = xy
According to the question, we have:
$x=y+3$
$\Rightarrow \mathrm{x}-\mathrm{y}=3$
And, $(x+3)(y-2)=x y$
$\Rightarrow x y-2 x+3 y-6=x y$
$\Rightarrow 3 y-2 x=6$
On multiplying (i) by 2 , we get:
$2 x-2 y=6$
On adding (ii) and (iii), we get:
$y=(6+6)=12$
On substituting $y=12$ in (i), we get:
$\mathrm{x}-12=3$
$\Rightarrow \mathrm{x}=(3+12)=15$
Hence, the length of the room is 15 meters and its breadth is 12 meters.
70.

Sol:

Let the length and the breadth of the rectangle be x m and y m , respectively.
\therefore Area of the rectangle $=(x y)$ sq. m
Case 1:
When the length is reduced by 5 m and the breadth is increased by 3 m :
New length $=(x-5) \mathrm{m}$
New breadth $=(y+3) m$
\therefore New area $=(x-5)(y+3)$ sq.m
$\therefore x y-(x-5)(y+3)=8$
$\Rightarrow x y-[x y-5 y+3 x-15]=8$
$\Rightarrow x y-x y+5 y-3 x+15=8$
$\Rightarrow 3 x-5 y=7$
Case 2:
When the length is increased by 3 m and the breadth is increased by 2 m :
New length $=(x+3) \mathrm{m}$
New breadth $=(y+2) \mathrm{m}$
\therefore New area $=(x+3)(y+2)$ sq.m
$\Rightarrow(x+3)(y+2)-x y=74$
$\Rightarrow[x y+3 y+2 x+6]-x y=74$
$\Rightarrow 2 x+3 y=68$

On multiplying (i) by 3 and (ii) by 5, we get:
$9 x-15 y=21$
$10 x+15 y=340$
On adding (iii) and (iv), we get:
$19 \mathrm{x}=361$
$\Rightarrow x=19$
On substituting $x=19$ in (iii), we get:
$9 \times 19-15 y=21$
$\Rightarrow 171-15 y=21$
$\Rightarrow 15 y=(171-21)=150$
$\Rightarrow \mathrm{y}=10$
Hence, the length is 19 m and the breadth is 10 m .
71.

Sol:

Let the length and the breadth of the rectangle be $\mathrm{x} m$ and y m , respectively.
Case 1: When length is increased by 3 m and the breadth is decreased by 4 m :
$x y-(x+3)(y-4)=67$
$\Rightarrow x y-x y+4 x-3 y+12=67$
$\Rightarrow 4 \mathrm{x}-3 \mathrm{y}=55$
Case 2 : When length is reduced by 1 m and breadth is increased by 4 m :
$(x-1)(y+4)-x y=89$
$\Rightarrow x y+4 x-y-4-x y=89$
$\Rightarrow 4 x-y=93$
Subtracting (i) and (ii), we get:
$2 \mathrm{y}=38 \Rightarrow \mathrm{y}=19$
On substituting y = 19 in (ii), we have
$4 \mathrm{x}-19=93$
$\Rightarrow 4 \mathrm{x}=93+19=112$
$\Rightarrow \mathrm{x}=28$
Hence, the length $=28 \mathrm{~m}$ and breadth $=19 \mathrm{~m}$.
72.

Sol:

Let the basic first class full fare be Rs.x and the reservation charge be Rs.y.
Case 1: One reservation first class full ticket cost Rs.4, 150
$x+y=4150$
Case 2: One full and one and half reserved first class tickets cost Rs. 6,255

$$
\begin{align*}
& (\mathrm{x}+\mathrm{y})+\left(\frac{1}{2} x+y\right)=6255 \tag{i}\\
& \Rightarrow 3 \mathrm{x}+4 \mathrm{y}=12510 \tag{ii}
\end{align*}
$$

Substituting $y=4150-x$ from (i) in (ii), we get
$3 x+4(4150-x)=12510$
$\Rightarrow 3 \mathrm{x}-4 \mathrm{x}+16600=12510$
$\Rightarrow \mathrm{x}=16600-12510=4090$
Now, putting $x=4090$ in (i), we have
$4090+\mathrm{y}=4150$
$\Rightarrow y=4150-4090=60$
Hence, cost of basic first class full fare $=$ Rs. 4,090 and reservation charge $=$ Rs. 60.
73.

Sol:

Let the present age of the man be x years and that of his son be y years.
After 5 years man's age $=x+5$
After 5 years ago son's age $=\mathrm{y}+5$
As per the question
$\mathrm{x}+5=3(\mathrm{y}+5)$
$\Rightarrow \mathrm{x}-3 \mathrm{y}=10$
5 years ago man's age $=x-5$
5 years ago son's age $=\mathrm{y}-5$
As per the question
$\mathrm{x}-5=7$ ($\mathrm{y}-5$)
$\Rightarrow \mathrm{x}-7 \mathrm{y}=-30$
Subtracting (ii) from (i), we have
$4 y=40 \Rightarrow y=10$
Putting $y=10$ in (i), we get
$\mathrm{x}-3 \times 10=10$
$\Rightarrow \mathrm{x}=10+30=40$

Downloaded from www.studiestoday.com

Hence, man's present age $=40$ years and son's present age $=10$ years.
74.

Sol:

Let the man's present age be x years.
Let his son's present age be y years.
According to the question, we have:
Two years ago:
Age of the man $=$ Five times the age of the son
$\Rightarrow(\mathrm{x}-2)=5(\mathrm{y}-2)$
$\Rightarrow \mathrm{x}-2=5 \mathrm{y}-10$
$\Rightarrow x-5 y=-8$
Two years later:
Age of the man $=$ Three times the age of the son +8
$\Rightarrow(x+2)=3(y+2)+8$
$\Rightarrow x+2=3 y+6+8$
$\Rightarrow \mathrm{x}-3 \mathrm{y}=12$
Subtracting (i) from (ii), we get:
$2 \mathrm{y}=20$
$\Rightarrow y=10$
On substituting $y=10$ in (i), we get:
$x-5 \times 10=-8$
$\Rightarrow \mathrm{x}-50=-8$
$\Rightarrow \mathrm{x}=(-8+50)=42$
Hence, the present age of the man is 42 years and the present age of the son is 10 years.
75.

Sol:

Let the mother's present age be x years.
Let her son's present age be y years.
Then, we have:
$x+2 y=70$
And, $2 x+y=95$

Downloaded from www.studiestoday.com

On multiplying (ii) by 2 , we get:
$4 x+2 y=190$
On subtracting (i) from (iii), we get:
$3 \mathrm{x}=120$
$\Rightarrow x=40$
On substituting $x=40$ in (i), we get:
$40+2 y=70$
$\Rightarrow 2 y=(70-40)=30$
$\Rightarrow \mathrm{y}=15$
Hence, the mother's present age is 40 years and her son's present age is 15 years.
76.

Sol:

Let the woman's present age be x years.
Let her daughter's present age be y years.
Then, we have:
$x=3 y+3$
$\Rightarrow \mathrm{x}-3 \mathrm{y}=3$
After three years, we have:
$(x+3)=2(y+3)+10$
$\Rightarrow x+3=2 y+6+10$
$\Rightarrow \mathrm{x}-2 \mathrm{y}=13$
Subtracting (ii) from (i), we get:
$-y=(3-13)=-10$
$\Rightarrow y=10$
On substituting $y=10$ in (i), we get:
$x-3 \times 10=3$
$\Rightarrow \mathrm{x}-30=3$
$\Rightarrow \mathrm{x}=(3+30)=33$
Hence, the woman's present age is 33 years and her daughter's present age is 10 years.
77.

Sol:

Downloaded from www.studiestoday.com

Let the actual price of the tea and lemon set be Rs.x and Rs.y respectively.
When gain is Rs.7, then
$\frac{y}{100} \times 15-\frac{x}{100} \times 5=7$
$\Rightarrow 3 y-x=140$
When gain is Rs.14, then
$\frac{y}{100} \times 5+\frac{x}{100} \times 10=14$
$\Rightarrow \mathrm{y}+2 \mathrm{x}=280$
Multiplying (i) by 2 and adding with (ii), we have
$7 \mathrm{y}=280+280$
$\Rightarrow y=\frac{560}{7}=80$
Putting $y=80$ in (ii), we get
$80+2 \mathrm{x}=280$
$\Rightarrow \mathrm{x}=\frac{200}{2}=100$
Hence, actual price of the tea set and lemon set are Rs. 100 and Rs. 80 respectively.
78.

Sol:

Let the fixed charge be Rs.x and the charge for each extra day be Rs.y.
In case of Mona, as per the question
$x+4 y=27$
In case of Tanvy, as per the question
$x+2 y=21$
Subtracting (ii) from (i), we get
$2 \mathrm{y}=6 \Rightarrow \mathrm{y}=3$
Now, putting $\mathrm{y}=3$ in (ii), we have
$x+2 \times 3=21$
$\Rightarrow \mathrm{x}=21-6=15$

Hence, the fixed charge be Rs. 15 and the charge for each extra day is Rs.3.
79.

Sol:

Let x litres and y litres be the amount of acids from 50% and 25% acid solutions respectively. As per the question
50% of $x+25 \%$ of $y=40 \%$ of 10
$\Rightarrow 0.50 \mathrm{x}+0.25 \mathrm{y}=4$
$\Rightarrow 2 x+y=16$
Since, the total volume is 10 liters, so
$x+y=10$
Subtracting (ii) from (i), we get
$\mathrm{x}=6$
Now, putting $x=6$ in (ii), we have
$6+y=10 \Rightarrow y=4$
Hence, volume of 50% acid solution $=6$ litres and volume of 25% acid solution $=4$ litres.
80.

Sol:

Let $\mathrm{x} g$ and y g be the weight of 18-carat and 12- carat gold respectively.
As per the given condition
$\frac{18 x}{24}+\frac{12 y}{24}=\frac{120 \times 16}{24}$
$\Rightarrow 3 \mathrm{x}+2 \mathrm{y}=320$
And
$\mathrm{x}+\mathrm{y}=120$
Multiplying (ii) by 2 and subtracting from (i), we get
$\mathrm{x}=320-240=80$
Now, putting $x=80$ in (ii), we have
$80+\mathrm{y}=120 \Rightarrow \mathrm{y}=40$
Hence, the required weight of 18 -carat and 12-carat gold bars are 80 g and 40 g respectively.
81.

Sol:

Let x litres and y litres be respectively the amount of 90% and 97% pure acid solutions.
As per the given condition
$0.90 x+0.97 y=21 \times 0.95$
$\Rightarrow 0.90 x+0.97 y=21 \times 0.95$
And
$x+y=21$
From (ii), substitute $y=21-x$ in (i) to get

$$
\begin{aligned}
& 0.90 x+0.97(21-x)=21 \times 0.95 \\
& \Rightarrow 0.90 x+0.97 \times 21-0.97 x=21 \times 0.95
\end{aligned}
$$

$\Rightarrow 0.07 \mathrm{x}=0.97 \times 21-21 \times 0.95$
$\Rightarrow \mathrm{x}=\frac{21 \times 0.02}{0.07}=6$
Now, putting $x=6$ in (ii), we have
$6+y=21 \Rightarrow y=15$
Hence, the request quantities are 6 litres and 15 litres.
82.

Sol:

Let x and y be the supplementary angles, where $\mathrm{x}>\mathrm{y}$.
As per the given condition
$\mathrm{x}+\mathrm{y}=180^{0}$
And
$x-y=18^{0}$
Adding (i) and (ii), we get
$2 \mathrm{x}=198^{0} \Rightarrow \mathrm{x}=99^{0}$
Now, substituting $x=99^{\circ}$ in (ii), we have
$99^{0}-y=18^{0} \Rightarrow x=99^{0}-18^{0}=81^{0}$
Hence, the required angles are 99° and 81°.
83.

Sol:

$\because \angle C-\angle B=9^{0}$
$\therefore y^{0}-(3 x-2)^{0}=9^{0}$
$\Rightarrow y^{0}-3 x^{0}+2^{0}=9^{0}$
$\Rightarrow y^{0}-3 x^{0}=7^{0}$
The sum of all the angles of a triangle is 180°, therefore
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \mathrm{x}^{0}+(3 \mathrm{x}-2)^{0}+\mathrm{y}^{0}=180^{0}$
$\Rightarrow 4 x^{0}+y^{0}=182^{0}$
Subtracting (i) from (ii), we have
$7 \mathrm{x}^{0}=182^{0}-7^{0}=175^{0}$
$\Rightarrow \mathrm{x}^{0}=25^{0}$
Now, substituting $x^{0}=25^{0}$ in (i), we have
$y^{0}=3 x^{0}+7^{0}=3 \times 25^{0}+7^{0}=82^{0}$
Thus
$\angle \mathrm{A}=\mathrm{x}^{0}=25^{0}$
$\angle \mathrm{B}=(3 \mathrm{x}-2)^{0}=75^{0}-2^{0}=73^{0}$
$\angle C=y^{0}=82^{0}$
Hence, the angles are $25^{\circ}, 73^{\circ}$ and 82°.
84.

Sol:

The opposite angles of cyclic quadrilateral are supplementary, so
$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow(2 \mathrm{x}+4)^{0}+(2 \mathrm{y}+10)^{0}=180^{0}$
$\Rightarrow x+y=83^{0}$
And
$\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow(\mathrm{y}+3)^{0}+(4 \mathrm{x}-5)^{0}=180^{0}$
$\Rightarrow 4 \mathrm{x}+\mathrm{y}=182^{0}$
Subtracting (i) from (ii), we have
$3 \mathrm{x}=99 \Rightarrow \mathrm{x}=33^{0}$
Now, substituting $x=33^{\circ}$ in (i), we have
$33^{0}+y=83^{\circ} \Rightarrow y=83^{0}-33^{\circ}=50^{\circ}$
Therefore

$$
\begin{aligned}
& \angle \mathrm{A}=(2 \mathrm{x}+4)^{0}=(2 \times 33+4)^{0}=70^{0} \\
& \angle \mathrm{~B}=(\mathrm{y}+3)^{0}=(50+3)^{0}=53^{0} \\
& \angle \mathrm{C}=(2 \mathrm{y}+10)^{0}=(2 \times 50+10)^{0}=110^{0} \\
& \angle \mathrm{D}=(4 \mathrm{x}-5)^{0}=(4 \times 33-5)^{0}=132^{0}-5^{0}=127^{0} \\
& \text { Hence, } \angle \mathrm{A}=70^{0}, \angle \mathrm{~B}=53^{0}, \angle \mathrm{C}=110^{0} \text { and } \angle \mathrm{D}=127^{0} .
\end{aligned}
$$

Exercise - 3F

1.

Sol:

The given equations are
$\mathrm{x}+2 \mathrm{y}-8=0$
$2 x+4 y-16=0$
Which is of the form $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, where $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-8, \mathrm{a}_{2}=2, \mathrm{~b}_{2}=4$ and $\mathrm{c}_{2}=-18$

Downloaded from www.studiestoday.com

Now
$\frac{a_{1}}{a_{2}}=\frac{1}{2}$
$\frac{b_{1}}{b_{2}}=\frac{2}{4}=\frac{1}{2}$
$\frac{c_{1}}{c_{2}}=\frac{-8}{-16}=\frac{1}{2}$
$\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=\frac{1}{2}$
Thus, the pair of linear equations are coincident and therefore has infinitely many solutions.
2.

Sol:

The given equations are
$2 x+3 y-7=0$
$(k-1) x+(k+2) y-3 k=0$
Which is of the form $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, where
$\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-7, \mathrm{a}_{2}=\mathrm{k}-1, \mathrm{~b}_{2}=\mathrm{k}+2$ and $\mathrm{c}_{2}=-3 \mathrm{k}$
For the given pair of linear equations to have infinitely many solutions, we must have
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{2}{k-1}=\frac{3}{k+2}=\frac{-7}{-3 k}$
$\Rightarrow \frac{2}{k-1}=\frac{3}{k+2}, \frac{3}{k+2}=\frac{-7}{-3 k}$ and $\frac{2}{k-1}=\frac{-7}{-3 k}$
$\Rightarrow 2(\mathrm{k}+2)=3(\mathrm{k}-1), 9 \mathrm{k}=7 \mathrm{k}+14$ and $6 \mathrm{k}=7 \mathrm{k}-7$
$\Rightarrow \mathrm{k}=7, \mathrm{k}=7$ and $\mathrm{k}=7$
Hence, $\mathrm{k}=7$.
3.

Sol:

The given pair of linear equations are
$10 x+5 y-(k-5)=0$
$20 x+10 y-k=0$
Which is of the form $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, where
$\mathrm{a}_{1}=10, \mathrm{~b}_{1}=5, \mathrm{c}_{1}=-(\mathrm{k}-5), \mathrm{a}_{2}=20, \mathrm{~b}_{2}=10$ and $\mathrm{c}_{2}=-\mathrm{k}$
For the given pair of linear equations to have infinitely many solutions, we must have

Downloaded from www.studiestoday.com

$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{10}{20}=\frac{5}{10}=\frac{-(k-5)}{-k}$
$\Rightarrow \frac{1}{2}=\frac{k-5}{k}$
$\Rightarrow 2 \mathrm{k}-10=\mathrm{k} \Rightarrow \mathrm{k}=10$
Hence, $\mathrm{k}=10$.
4.

Sol:

The given pair of linear equations are
$2 x+3 y-9=0$
$6 \mathrm{x}+(\mathrm{k}-2) \mathrm{y}-(3 \mathrm{k}-2)=0$
Which is of the form $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, where
$\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-9, \mathrm{a}_{2}=6, \mathrm{~b}_{2}=\mathrm{k}-2$ and $\mathrm{c}_{2}=-(3 \mathrm{k}-2)$
For the given pair of linear equations to have infinitely many solutions, we must have
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{2}{6}=\frac{3}{k-2} \neq \frac{-9}{-(3 k-2)}$
$\Rightarrow \frac{2}{6}=\frac{3}{k-2}, \frac{3}{k-2} \neq \frac{-9}{-(3 k-2)}$
$\Rightarrow \mathrm{k}=11, \frac{3}{k-2} \neq \frac{9}{(3 k-2)}$
$\Rightarrow \mathrm{k}=11,3(3 \mathrm{k}-2) \neq 9(\mathrm{k}-2)$
$\Rightarrow \mathrm{k}=11,1 \neq 3$ (true)
Hence, $\mathrm{k}=11$.
5.

Sol:

The given pair of linear equations are
$x+3 y-4=0$
$2 x+6 y-7=0$
Which is of the form $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, where
$\mathrm{a}_{1}=1, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-4, \mathrm{a}_{2}=2, \mathrm{~b}_{2}=6$ and $\mathrm{c}_{2}=-7$
Now
$\frac{a_{1}}{a_{2}}=\frac{1}{2}$
$\frac{b_{1}}{b_{2}}=\frac{3}{6}=\frac{1}{2}$
$\frac{c_{1}}{c_{2}}=\frac{-4}{-7}=\frac{4}{7}$
$\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Thus, the pair of the given linear equations has no solution.
6.

Sol:

The given pair of linear equations are
$3 \mathrm{x}+\mathrm{ky}=0$
$2 x-y=0$
Which is of the form $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, where
$\mathrm{a}_{1}=3, \mathrm{~b}_{1}=\mathrm{k}, \mathrm{c}_{1}=0, \mathrm{a}_{2}=2, \mathrm{~b}_{2}=-1$ and $\mathrm{c}_{2}=0$
For the system to have a unique solution, we must have
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{3}{2} \neq \frac{k}{-1}$
$\Rightarrow \mathrm{k} \neq-\frac{3}{2}$
Hence, $\mathrm{k} \neq-\frac{3}{2}$.
7.

Sol:

Let the numbers be x and y , where $\mathrm{x}>\mathrm{y}$.
Then as per the question
$x-y=5$
$x^{2}-y^{2}=65$
Dividing (ii) by (i), we get
$\frac{x^{2}-y^{2}}{x-y}=\frac{65}{5}$
$\Rightarrow \frac{(x-y)(x+y)}{x-y}=13$
$\Rightarrow \mathrm{x}+\mathrm{y}=13$
Now, adding (i) and (ii), we have
$2 \mathrm{x}=18 \Rightarrow \mathrm{x}=9$
Substituting $x=9$ in (iii), we have
$9+y=13 \Rightarrow y=4$
Hence, the numbers are 9 and 4 .
8.

Sol:

Let the cost of 1 pen and 1 pencil are ₹ x and ₹y respectively.
Then as per the question
$5 x+8 y=120$
$8 x+5 y=153$
Adding (i) and (ii), we get
$13 x+13 y=273$
$\Rightarrow \mathrm{x}+\mathrm{y}=21$
Subtracting (i) from (ii), we get
$3 x-3 y=33$
$\Rightarrow \mathrm{x}-\mathrm{y}=11$
Now, adding (iii) and (iv), we get
$2 \mathrm{x}=32 \Rightarrow \mathrm{x}=16$
Substituting $x=16$ in (iii), we have
$16+y=21 \Rightarrow y=5$
Hence, the cost of 1 pen and 1 pencil are respectively ₹ 16 and ₹5.
9.

Sol:

Let the larger number be x and the smaller number be y .
Then as per the question
$x+y=80$
$x=4 y+5$
$x-4 y=5$
Subtracting (ii) from (i), we get
$5 y=75 \Rightarrow y=15$
Now, putting $y=15$ in (i), we have
$x+15=80 \Rightarrow x=65$
Hence, the numbers are 65 and 15.
10.

Sol:

Let the ones digit and tens digit be x and y respectively.
Then as per the question
$x+y=10$
$(10 y+x)-18=10 x+y$
$x-y=-2$
Adding (i) and (ii), we get
$2 \mathrm{x}=8 \Rightarrow \mathrm{x}=4$
Now, putting $x=4$ in (i), we have
$4+y=10 \Rightarrow y=6$
Hence, the number is 64 .
11.

Sol:

Let the number of stamps of 20 p and 25 p be x and y respectively.
Then as per the question
$\mathrm{x}+\mathrm{y}=47$
$0.20 x+0.25 y=10$
$4 x+5 y=200$
From (i), we get
$y=47-x$
Now, substituting $y=47-x$ in (ii), we have
$4 \mathrm{x}+5(47-\mathrm{x})=200$
$\Rightarrow 4 \mathrm{x}-5 \mathrm{x}+235=200$
$\Rightarrow \mathrm{x}=235-200=35$
Putting $x=35$ in (i), we get
$35+y=47$
$\Rightarrow y=47-35=12$
Hence, the number of 20 p stamps and 25 p stamps are 35 and 12 respectively.
12.

Sol:

Let the number of hens and cow be x and y respectively.
As per the question
$x+y=48$
$2 x+4 y=140$
$x+2 y=70$
Subtracting (i) from (ii), we have

$$
y=22
$$

Hence, the number of cows is 22 .
13.

Sol:

The given pair of equation is
$\frac{2}{x}+\frac{3}{y}=\frac{9}{x y}$
$\frac{4}{x}+\frac{9}{y}=\frac{21}{x y}$
Multiplying (i) and (ii) by xy, we have
$3 x+2 y=9$
$9 x+4 y=21$
Now, multiplying (iii) by 2 and subtracting from (iv), we get
$9 x-6 x=21-18 \Rightarrow x=\frac{3}{3}=1$
Putting $x=1$ in (iii), we have
$3 \times 1+2 y=9 \Rightarrow y=\frac{9-3}{2}=3$
Hence, $\mathrm{x}=1$ and $\mathrm{y}=3$.
14.

Sol:

The given pair of equations is
$\frac{x}{4}+\frac{y}{3}=\frac{5}{12}$
$\frac{x}{2}+y=1$
Multiplying (i) by 12 and (ii) by 4, we have
$3 x+4 y=5$
$2 x+4 y=4$
Now, subtracting (iv) from (iii), we get
$\mathrm{x}=1$
Putting $x=1$ in (iv), we have
$2+4 y=4$
$\Rightarrow 4 y=2$
$\Rightarrow \mathrm{y}=\frac{1}{2}$
$\therefore \mathrm{x}+\mathrm{y}=1+\frac{1}{2}=\frac{3}{2}$
Hence, the value of $x+y$ is $\frac{3}{2}$.
15.

Sol:

The given pair of equations is
$12 x+17 y=53$
$17 x+12 y=63$
Adding (i) and (ii), we get
$29 x+29 y=116$
$\Rightarrow \mathrm{x}+\mathrm{y}=4 \quad$ (Dividing by 4)
Hence, the value of $\mathrm{x}+\mathrm{y}$ is 4 .
16.

Sol:

The given system is

$$
\begin{equation*}
3 x+5 y=0 \tag{i}
\end{equation*}
$$

$\mathrm{kx}+10 \mathrm{y}=0$
This is a homogeneous system of linear differential equation, so it always has a zero solution i.e., $\mathrm{x}=\mathrm{y}=0$.
But to have a non-zero solution, it must have infinitely many solutions.
For this, we have
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{3}{k}=\frac{5}{10}=\frac{1}{2}$
$\Rightarrow \mathrm{k}=6$
Hence, $\mathrm{k}=6$.
17.

Sol:

The given system is
$\mathrm{kx}-\mathrm{y}-2=0$
$6 x-2 y-3=0$
Here, $a_{1}=k, b_{1}=-1, c_{1}=-2, a_{2}=6, b_{2}=-2$ and $c_{2}=-3$
For the system, to have a unique solution, we must have
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{k}{6} \neq \frac{-1}{-2}=\frac{1}{2}$
$\Rightarrow \mathrm{k} \neq 3$
Hence, $\mathrm{k} \neq 3$.
18.

Sol:

The given system is
$2 x+3 y-5=0$
$4 \mathrm{x}+\mathrm{ky}-10=0$
Here, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-5, \mathrm{a}_{2}=4, \mathrm{~b}_{2}=\mathrm{k}$ and $\mathrm{c}_{2}=-10$
For the system, to have an infinite number of solutions, we must have
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{2}{4}=\frac{3}{k}=\frac{-5}{-10}$
$\Rightarrow \frac{1}{2}=\frac{3}{k}=\frac{1}{2}$
$\Rightarrow \mathrm{k}=6$
Hence, $\mathrm{k}=6$.
19.

Sol:

The given system is
$2 x+3 y-1=0$
$4 x+6 y-4=0$
Here, $a_{1}=2, b_{1}=3, c_{1}=-1, a_{2}=4, b_{2}=6$ and $c_{2}=-4$
Now,
$\frac{a_{1}}{a_{2}}=\frac{2}{4}=\frac{1}{2}$
$\frac{b_{1}}{b_{2}}=\frac{3}{6}=\frac{1}{2}$
$\frac{c_{1}}{c_{2}}=\frac{-1}{-4}=\frac{1}{4}$
Thus, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$ and therefore the given system has no solution.
20.

Sol:

The given system is
$x+2 y-3=0$
$5 \mathrm{x}+\mathrm{ky}+7=0$
Here, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-3, \mathrm{a}_{2}=5, \mathrm{~b}_{2}=\mathrm{k}$ and $\mathrm{c}_{2}=7$.
For the system, to be consistent, we must have
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{1}{5}=\frac{2}{k} \neq \frac{-3}{7}$

Downloaded from www.studiestoday.com

$\Rightarrow \frac{1}{5}=\frac{2}{k}$
$\Rightarrow \mathrm{k}=10$
Hence, $\mathrm{k}=10$.
21.

Sol:

The given system of equations is
$\frac{3}{x+y}+\frac{2}{x-y}=2$
$\frac{9}{x+y}-\frac{4}{x-y}=1$
Substituting $\frac{1}{x+y}=\mathrm{u}$ and $\frac{1}{x-y}=\mathrm{v}$ in (i) and (ii), the given equations are changed to
$3 u+2 v=2$
$9 \mathrm{u}-4 \mathrm{v}=1$
Multiplying (i) by 2 and adding it with (ii), we get

$$
15 \mathrm{u}=4+1 \Rightarrow \mathrm{u}=\frac{1}{3}
$$

Multiplying (i) by 3 and subtracting (ii) from it, we get
$6 u+4 v=6-1 \Rightarrow u=\frac{5}{10}=\frac{1}{2}$
Therefore

$$
\begin{align*}
& x+y=3 \tag{v}\\
& x-y=2 \tag{vi}
\end{align*}
$$

Now, adding (v) and (vi) we have
$2 \mathrm{x}=5 \Rightarrow \mathrm{x}=\frac{5}{2}$
Substituting $x=\frac{5}{2}$ in (v), we have
$\frac{5}{2}+y=3 \Rightarrow y=3-\frac{5}{2}=\frac{1}{2}$
Hence, $x=\frac{5}{2}$ and $y=\frac{1}{2}$.

Exercise - MCQ

1.

Answer: (c) $\mathrm{x}=3, \mathrm{y}=2$
Sol:
The given system of equations is
$2 \mathrm{x}+3 \mathrm{y}=12$
$3 x-2 y=5$
Multiplying (i) by 2 and (ii) by 3 and then adding, we get
$4 \mathrm{x}+9 \mathrm{x}=24+15$
$\Rightarrow \mathrm{x}=\frac{39}{13}=3$
Now, putting $x=3$ in (i), we have
$2 \times 3+3 y=12 \Rightarrow y=\frac{12-6}{3}=2$
Thus, $\mathrm{x}=3$ and $\mathrm{y}=2$.
2.

$$
\text { Answer: }(c) x=6, y=4
$$

Sol:
The given system of equations is
$x-y=2$
$x+y=10$
Adding (i) and (ii), we get
$2 x=12 \Rightarrow x=6$
Now, putting $x=6$ in (ii), we have
$6+y=10 \Rightarrow y=10-6=4$
Thus, $x=6$ and $y=4$.
3.

Answer: (a) $x=2, y=3$
Sol:
The given system of equations is
$\frac{2 x}{3}-\frac{y}{2}=-\frac{1}{6}$
$\frac{x}{2}+\frac{2 y}{3}=3$
Multiplying (i) and (ii) by 6 , we get
$4 x-3 y=-1$
$3 x+4 y=18$
Multiplying (iii) by 4 and (iv) by 3 and adding, we get
$16 x+9 x=-4+54$
$\Rightarrow \mathrm{x}=\frac{50}{25}=2$
Now, putting $x=2$ in (iv), we have
$3 \times 2+4 y=18 \Rightarrow y=\frac{18-6}{4}=3$
Thus, $\mathrm{x}=2$ and $\mathrm{y}=3$.
4.

Answer: (d) $\mathrm{x}=\quad, \mathrm{y}=$

Sol:

The given system of equations is
$\frac{1}{x}+\frac{2}{y}=4$
$\frac{3}{y}-\frac{1}{x}=11$
Adding (i) and (ii), we get
$\frac{2}{y}+\frac{3}{y}=15$
$\Rightarrow \frac{5}{y}=15 \Rightarrow \mathrm{y}=\frac{5}{15}=\frac{1}{3}$
Now, putting $\mathrm{y}=\frac{1}{3}$ in (i), we have
$\frac{1}{x}+2 \times 3=4 \Rightarrow \frac{1}{x}=4-6 \Rightarrow x=-\frac{1}{2}$
Thus, $\mathrm{x}=-\frac{1}{2}$ and $\mathrm{y}=\frac{1}{3}$.
5.

Answer: (a) $\mathrm{x}=1, \mathrm{y}=1$
Sol:
Consider $\frac{2 x+y+2}{5}=\frac{3 x-y+1}{3}$ and $\frac{3 x-y+1}{3}=\frac{3 x+2 y+1}{3}$. Now, simplifying these equations, we get
$3(2 \mathrm{x}+\mathrm{y}+2)=5(3 \mathrm{x}-\mathrm{y}+1)$
$\Rightarrow 6 \mathrm{x}+3 \mathrm{y}+6=15 \mathrm{x}-5 \mathrm{y}+5$
$\Rightarrow 9 x-8 y=1$
And
$6(3 x-y+1)=3(3 x+2 y+1)$
$\Rightarrow 18 \mathrm{x}-6 \mathrm{y}+6=9 \mathrm{x}+6 \mathrm{y}+3$
$\Rightarrow 3 x-4 y=-1$
Multiplying (ii) by 2 and subtracting it from (i)
$9 \mathrm{x}-6 \mathrm{x}=1+2 \Rightarrow \mathrm{x}=1$
Now, putting $x=1$ in (ii), we have
$3 \times 1-4 y=-1 \Rightarrow y=\frac{3+1}{4}=1$
Thus, $\mathrm{x}=1, \mathrm{y}=1$.
6.

Answer: (b)

Sol:

The given equations are
$\frac{3}{x+y}+\frac{2}{x-y}=2$
$\frac{9}{x+y}-\frac{4}{x-y}=1$
Substituting $\frac{1}{x+y}=\mathrm{u}$ and $\frac{1}{x-y}=\mathrm{v}$ in (i) and (ii), the new system becomes
$3 u+2 v=2$
$9 \mathrm{u}-4 \mathrm{v}=1$
Now, multiplying (iii) by 2 and adding it with (iv), we get
$6 u+9 u=4+1 \Rightarrow u=\frac{5}{15}=\frac{1}{3}$
Again, multiplying (iii) by 2 and subtracting (iv) from, we get
$6 v+4 v=6-1 \Rightarrow v=\frac{5}{10}=\frac{1}{2}$
Therefore
$x+y=3$
$x-y=2$
Adding (v) and (vi), we get
$2 \mathrm{x}=3+2 \Rightarrow \mathrm{x}=\frac{5}{2}$
Substituting $x=\frac{5}{2}$, in (v), we have
$\frac{5}{2}+y=3 \Rightarrow y=3-\frac{5}{2}=\frac{1}{2}$.
Thus, $\mathrm{x}=\frac{5}{2}$ and $\mathrm{y}=\frac{1}{2}$.
7.

Answer: (c) $x=3, y=4$
Sol:
The given equations are
$4 \mathrm{x}+6 \mathrm{y}=3 \mathrm{xy}$
$8 \mathrm{x}+9 \mathrm{y}=5 \mathrm{xy}$
Dividing (i) and (ii) by xy, we get
$\frac{6}{x}+\frac{4}{y}=3$
$\frac{9}{x}+\frac{8}{y}=5$
Multiplying (iii) by 2 and subtracting (iv) from it, we get
$\frac{12}{x}-\frac{9}{x}=6-5 \Rightarrow \frac{3}{x}=1 \Rightarrow x=3$
Substituting $\mathrm{x}=3$ in (iii), we get
$\frac{6}{3}+\frac{4}{y}=3 \Rightarrow \frac{4}{y}=1 \Rightarrow y=4$
Thus, $\mathrm{x}=3$ and $\mathrm{y}=4$.
8.

Answer: (a) $x=1, y=2$
Sol:
The given system of equations is
$29 \mathrm{x}+37 \mathrm{y}=103$
$37 x+29 y=95$
Adding (i) and (ii), we get
$66 x+66 y=198$
$\Rightarrow \mathrm{x}+\mathrm{y}=3$
\Rightarrow Subtracting (i) from (ii), we get
$8 x-8 y=-8$
$\Rightarrow x-y=-1$
Adding (iii) and (iv), we get
$2 \mathrm{x}=2 \Rightarrow \mathrm{x}=1$
Substituting $x=1$ in (iii), we have
$1+y=3 \Rightarrow y=2$
Thus, $\mathrm{x}=1$ and $\mathrm{y}=2$.
9.

Answer: (c) 0
Sol:
$\because 2^{x+y}=2^{x-y}=\sqrt{8}$
$\therefore \mathrm{x}+\mathrm{y}=\mathrm{x}-\mathrm{y}$
$\Rightarrow \mathrm{y}=0$
10.

Answer: $(b) x=\quad, y=1$

Sol:

The given equations are
$\frac{2}{x}+\frac{3}{y}=6$
$\frac{1}{x}+\frac{1}{2 y}=2$
Multiplying (ii) by 2 and subtracting it from (ii), we get
$\frac{3}{y}-\frac{1}{y}=6-4$
$\Rightarrow \frac{2}{y}=2 \Rightarrow \mathrm{y}=1$
Substituting y $=1$ in (ii), we get
$\frac{1}{x}+\frac{1}{2}=2$
$\Rightarrow \frac{1}{x}=2-\frac{1}{2} \Rightarrow \frac{3}{2}$
$\Rightarrow \mathrm{x}=\frac{2}{3}$.
11.

Answer: (d) $\Rightarrow \mathrm{k} \neq 3$
Sol:
The given equations are
$\mathrm{kx}-\mathrm{y}-2=0$
$6 x-2 y-3=0$
Here, $a_{1}=k, b_{1}=-1, c_{1}=-2, a_{2}=6, b_{2}=-2$ and $c_{2}=-3$.
For the given system to have a unique solution, we must have
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{k}{6} \neq \frac{-1}{-2}$
$\Rightarrow \mathrm{k} \neq 3$
12.

Answer: (b) $k \neq-6$
Sol:
The correct option is (b).
The given system of equations can be written as follows:
$x-2 y-3=0$ and $3 x+k y-1=0$
The given equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$
Here, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=-2, \mathrm{c}_{1}=-3, \mathrm{a}_{2}=3, \mathrm{~b}_{2}=\mathrm{k}$ and $\mathrm{c}_{2}=-1$.
$\therefore \frac{a_{1}}{a_{2}}=\frac{1}{3}, \frac{b_{1}}{b_{2}}=\frac{-2}{k}$ and $\frac{c_{1}}{c_{2}}=\frac{-3}{-1}=3$
These graph lines will intersect at a unique point when we have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \Rightarrow \frac{1}{3} \neq \frac{-2}{k} \Rightarrow \mathrm{k} \neq-6$
Hence, k has all real values other than -6 .
13.

Answer: (a) $\mathrm{k}=10$

Sol:

The correct option is (a).
The given system of equations can be written as follows:
$x+2 y-3=0$ and $5 x+k y+7=0$
The given equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$
Here, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-3, \mathrm{a}_{2}=5, \mathrm{~b}_{2}=\mathrm{k}$ and $\mathrm{c}_{2}=7$.
$\therefore \frac{a_{1}}{a_{2}}=\frac{1}{5}, \frac{b_{1}}{b_{2}}=\frac{2}{k}$ and $\frac{c_{1}}{c_{2}}=\frac{-3}{7}$
For the system of equations to have no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\therefore \frac{1}{5}=\frac{2}{k} \neq \frac{-3}{7} \Rightarrow \mathrm{k}=10$
14.

Answer: (d) $\frac{15}{4}$

Sol:

The given system of equations can be written as follows:
$3 x+2 k y-2=0$ and $2 x+5 y+1=0$
The given equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $\mathrm{a}_{1}=3, \mathrm{~b}_{1}=2 \mathrm{k}, \mathrm{c}_{1}=-2, \mathrm{a}_{2}=2, \mathrm{~b}_{2}=5$ and $\mathrm{c}_{2}=1$
$\therefore \frac{a_{1}}{a_{2}}=\frac{3}{2}, \frac{b_{1}}{b_{2}}=\frac{2 k}{5}$ and $\frac{c_{1}}{c_{2}}=\frac{-2}{1}$
For parallel lines, we have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$

Downloaded from www.studiestoday.com

$\therefore \frac{3}{2}=\frac{2 k}{5} \neq \frac{-2}{1}$
$\Rightarrow \mathrm{k}=\frac{15}{4}$
15.

Answer: (d) all real values except -6

Sol:

The given system of equations can be written as follows:
$\mathrm{kx}-2 \mathrm{y}-3=0$ and $3 \mathrm{x}+\mathrm{y}-5=0$
The given equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $a_{1}=k, b_{1}=-2, c_{1}=-3$ and $\mathrm{a} 2=3, b_{2}=1$ and $c_{2}=$
-5
$\therefore \frac{a_{1}}{a_{2}}=\frac{k}{3}, \frac{b_{1}}{b_{2}}=\frac{-2}{1}$ and $\frac{c_{1}}{c_{2}}=\frac{-3}{-5}=\frac{3}{5}$
Thus, for these graph lines to intersect at a unique point, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{k}{3} \neq \frac{-2}{1} \Rightarrow \mathrm{k} \neq-6$
Hence, the graph lines will intersect at all real values of k except -6 .
16.

Answer: (d) no solution

Sol:

The given system of equations can be written as:
$\mathrm{x}+2 \mathrm{y}+5=0$ and $-3 \mathrm{x}-6 \mathrm{y}+1=0$
The given equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$
Here, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=5, \mathrm{a}_{2}=-3, \mathrm{~b}_{2}=-6$ and $\mathrm{c}_{2}=1$
$\therefore \frac{a_{1}}{a_{2}}=\frac{1}{-3}, \frac{b_{1}}{b_{2}}=\frac{2}{6}=\frac{1}{-3}$ and $\frac{c_{1}}{c_{2}}=\frac{5}{1}$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Hence, the given system has no solution.
17.

Answer: (d) no solution

Downloaded from www.studiestoday.com

Sol:

The given system of equations can be written as:
$2 x+3 y-5=0$ and $4 x+6 y-15=0$
The given equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $a_{1}=2, b_{1}=3, c_{1}=-5, a_{2}=4, b_{2}=6$ and $c_{2}=-15$
$\therefore \frac{a_{1}}{a_{2}}=\frac{2}{4}=\frac{1}{2}, \frac{b_{1}}{b_{2}}=\frac{3}{6}=\frac{1}{2}$ and $\frac{c_{1}}{c_{2}}=\frac{-5}{-15}=\frac{1}{3}$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Hence, the given system has no solution.
18.

Answer: (d) intersecting or coincident

Sol:

If a pair of linear equations is consistent, then the two graph lines either intersect at a point or coincidence.
19.

Answer: (a) parallel

Sol:

If a pair of linear equations in two variables is inconsistent, then no solution exists as they have no common point. And, since there is no common solution, their graph lines do not intersect. Hence, they are parallel.
20.

Answer: (b) 40^{0}

Sol:

Let $\angle A=x^{0}$ and $\angle B=y^{0}$
$\therefore \angle \mathrm{A}=3 \angle \mathrm{~B}=(3 \mathrm{y})^{0}$
Now, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow x+y+3 y=180$
$\Rightarrow x+4 y=180$
Also, $\angle \mathrm{C}=2(\angle \mathrm{~A}+\angle \mathrm{B})$
$\Rightarrow 3 y=2(x+y)$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=0$

Downloaded from www.studiestoday.com

On multiplying (ii) by 4 , we get:
$8 x-4 y=0$
On adding (i) and (iii) we get:
$9 x=180 \Rightarrow x=20$
On substituting $x=20$ in (i), we get:
$20+4 y=180 \Rightarrow 4 y=(180-20)=160 \Rightarrow y=40$
$\therefore \mathrm{x}=20$ and $\mathrm{y}=40$
$\therefore \angle \mathrm{B}=\mathrm{y}^{0}=40^{\circ}$
21.

Answer: (b) 80^{0}

Sol:

The correct option is (b).
In a cyclic quadrilateral ABCD :
$\angle \mathrm{A}=(\mathrm{x}+\mathrm{y}+10)^{0}$
$\angle \mathrm{B}=(\mathrm{y}+20)^{0}$
$\angle \mathrm{C}=(\mathrm{x}+\mathrm{y}-30)^{0}$
$\angle \mathrm{D}=(\mathrm{x}+\mathrm{y})^{0}$
We have:
$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ} \quad$ [Since ABCD is a cyclic quadrilateral]
Now, $\angle \mathrm{A}+\angle \mathrm{C}=(\mathrm{x}+\mathrm{y}+10)^{0}+(\mathrm{x}+\mathrm{y}-30)^{0}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}+2 \mathrm{y}-20=180$
$\Rightarrow \mathrm{x}+\mathrm{y}-10=90$
$\Rightarrow x+y=160$
Also, $\angle \mathrm{B}+\angle \mathrm{D}=(\mathrm{y}+20)^{0}+(\mathrm{x}+\mathrm{y})^{0}=180^{0}$
$\Rightarrow \mathrm{x}+2 \mathrm{y}+20=180$
$\Rightarrow x+2 y=160$
On subtracting (i) from (ii), we get:
$y=(160-100)=60$
On substituting $y=60$ in (i), we get:
$x+60=100 \Rightarrow x=(100-60)=40$
$\therefore \angle B=(y+20)^{0}=(60+20)^{0}=80^{\circ}$
22.

Answer: (d) 40 years
Sol:

Downloaded from www.studiestoday.com

Let the man's present age be x years.
Let his son's present age be y years.
Five years later:
$(x+5)=3(y+5)$
$\Rightarrow x+5=3 y+15$
$\Rightarrow \mathrm{x}-3 \mathrm{y}=10$
Five years ago:
$(x-5)=7(y-5)$
$\Rightarrow \mathrm{x}-5=7 \mathrm{y}-35$
$\Rightarrow x-7 y=-30$
On subtracting (i) from (ii), we get:
$-4 y=-40 \Rightarrow y=10$
On substituting $y=10$ in (i), we get:
$x-3 \times 10=10 \Rightarrow x-30=10 \Rightarrow x=(10+30)=40$ years
Hence, the man's present age is 40 years.
23.

```
Answer: (c)
Sol:
Option (c) is the correct answer.
Clearly, Reason ( R ) is false.
On solving \(x+y=8\) and \(x-y=2\), we get:
\(x=5\) and \(y=3\)
Thus, the given system has a unique solution. So, assertion (A) is
true. \(\therefore\) Assertion (A) is true and Reason (R) is false.
```

24.

Answer: (b) parallel
Sol:

Downloaded from www.studiestoday.com

The given equations are as follows:
$6 x-2 y+9=0$ and $3 x-y+12=0$
They are of the following form:
$a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$
Here, $a_{1}=6, b_{1}=-2, c_{1}=9$ and $a_{2}=3, b_{2}=-1$ and $c_{2}=12$
$\therefore \frac{a_{1}}{a_{2}}=\frac{6}{3}=\frac{2}{1}, \frac{b_{1}}{b_{2}}=\frac{-2}{-1}=\frac{2}{1}$ and $\frac{c_{1}}{c_{2}}=\frac{9}{12}=\frac{3}{4}$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
The given system has no solution.
Hence, the lines are parallel.
25.

Answer:

Sol:
The given equations are as follows:
$2 x+3 y-2=0$ and $x-2 y-8=0$
They are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-2$ and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=-2$ and $\mathrm{c}_{2}=-8$
$\therefore \frac{a_{1}}{a_{2}}=\frac{2}{1}, \frac{b_{1}}{b_{2}}=\frac{3}{-2}$ and $\frac{c_{1}}{c_{2}}=\frac{-2}{-8}=\frac{1}{4}$
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
The given system has a unique solution.
Hence, the lines intersect exactly at one point.
26.

Answer: (a) coincident
Sol:
The correct option is (a).
The given system of equations can be written as follows:
$5 \mathrm{x}-15 \mathrm{y}-8=0$ and $3 \mathrm{x}-9 \mathrm{y}-\frac{24}{5}=0$
The given equations are of the following form:

Downloaded from www.studiestoday.com

$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $\mathrm{a}_{1}=5, \mathrm{~b}_{1}=-15, \mathrm{c}_{1}=-8$ and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=-9$ and $\mathrm{c}_{2}=-\frac{24}{5}$
$\therefore \frac{a_{1}}{a_{2}}=\frac{5}{3}, \frac{b_{1}}{b_{2}}=\frac{-15}{-9}=\frac{5}{3}$ and $\frac{c_{1}}{c_{2}}=-8 \times \frac{5}{-24}=\frac{5}{3}$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
The given system of equations will have an infinite number of solutions.
Hence, the lines are coincident.
27.

Answer: (a) 96
Sol:
Let the tens and the units digits of the required number be x and y, respectively.
Required number $=(10 x+y)$
According to the question, we have:
$x+y=15$
Number obtained on reversing its digits $=(10 y+x)$
$\therefore(10 y+x)=(10 x+y)+9$
$\Rightarrow 10 y+x-10 x-y=9$
$\Rightarrow 9 y-9 x=9$
$\Rightarrow y-x=1$
On adding (i) and (ii), we get:
$2 y=16 \Rightarrow y=8$
On substituting $y=8$ in (i), we get:
$x+8=15 \Rightarrow x=(15-8)=7$
Number $=(10 x+y)=10 \times 7+8=70+8=78$
Hence, the required number is 78 .

Exercise - Formative Assessment

1.

Answer: (a) parallel lines

Sol:

The given system of equations can be written as follows:
$x+2 y-3=0$ and $2 x+4 y+7=0$
The given equations are of the following form:
$a_{1} x+b_{1} x+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$

Downloaded from www.studiestoday.com

Here, $a_{1}=1, b_{1}=2, c_{1}=-3$ and $a_{2}=2, b_{2}=4$ and $c_{2}=7$
$\therefore \frac{a_{1}}{a_{2}}=\frac{1}{2}, \frac{b_{1}}{b_{2}}=\frac{2}{4}=\frac{1}{2}$ and $\frac{c_{1}}{c_{2}}=\frac{-3}{7}$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
So, the given system has no solution.
Hence, the lines are parallel.
2.

Answer: (d) $\mathrm{a}=-5, \mathrm{~b}=-1$

Sol:

The given system of equations can be written as follows:
$2 x-3 y-7=0$ and $(a+b) x-(a+b-3) y-(4 a+b)=0$
The given equations are of the following form:
$a_{1} x+b_{1} x+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$
Here, $a_{1}=2, b_{1}=-3, c_{1}=-7$ and $a_{2}=(a+b), b_{2}=-(a+b-3)$ and $c_{2}=-(4 a+b)$
$\therefore \frac{a_{1}}{a_{2}}=\frac{2}{(a+b)}, \frac{b_{1}}{b_{2}}=\frac{-3}{-(a+b-3)}=\frac{3}{(a+b-3)}$ and $\frac{c_{1}}{c_{2}}=\frac{-7}{-(4 a+b)}=\frac{7}{(4 a+b)}$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\therefore \frac{2}{(a+b)}=\frac{3}{(a+b-3)}=\frac{7}{(4 a+b)}$
Now, we have:
$\frac{2}{(a+b)}=\frac{3}{(a+b-3)} \Rightarrow 2 \mathrm{a}+2 \mathrm{~b}-6=3 \mathrm{a}+3 \mathrm{~b}$
$\Rightarrow \mathrm{a}+\mathrm{b}+6=0$
Again, we have:
$\frac{3}{(a+b-3)}=\frac{7}{(4 a+b)} \Rightarrow 12 \mathrm{a}+3 \mathrm{~b}=7 \mathrm{a}+7 \mathrm{~b}-21$
$\Rightarrow 5 \mathrm{a}-4 \mathrm{~b}+21=0$
On multiplying (i) by 4 , we get:
$4 a+4 b+24=0$
On adding (ii) and (iii), we get:
$9 \mathrm{a}=-45 \Rightarrow \mathrm{a}=-5$
On substituting $a=-5$ in (i), we get:
$-5+b+6=0 \Rightarrow b=-1$
$\therefore \mathrm{a}=-5$ and $\mathrm{b}=-1$.

Downloaded from www.studiestoday.com

3.

Answer: (a) a unique solution
Sol:
The given system of equations can be written as follows:
$2 x+y-5=0$ and $3 x+2 y-8=0$
The given equations are of the following form:
$\mathrm{a}_{1} \mathrm{X}+\mathrm{b}_{1 \mathrm{Y}}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{X}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=1, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=2$ and $\mathrm{c}_{2}=-8$
$\therefore \frac{a_{1}}{a_{2}}=\frac{2}{3}, \frac{b_{1}}{b_{2}}=\frac{1}{2}$ and $\frac{c_{1}}{c_{2}}=\frac{-5}{-8}=\frac{5}{8}$
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
The given system has a unique solution.
Hence, the lines intersect at one point.
4.

Answer: (d) $\frac{1}{x}-\frac{1}{y}=0$

Sol:

Given:

$x=-y$ and $y>0$
Now, we have:
(i) $x^{2} y$

On substituting $\mathrm{x}=-\mathrm{y}$, we get:
$(-y)^{2} y=y^{3}>0(\because y>0)$
This is true.
(ii) $x+y$

On substituting $x=-y$, we get:
$(-y)+y=0$
This is also true.
(iii) xy

On substituting $x=-y$, we get:
$(-y) y=-y^{2}(\because y>0)$
This is again true.
(iv) $\frac{1}{x}-\frac{1}{y}=0$
$\Rightarrow \frac{y-x}{x y}=0$
On substituting $\mathrm{x}=-\mathrm{y}$, we get:
$\frac{y-(-y)}{(-y) y}=0 \Rightarrow \frac{2 y}{-y^{2}}=0 \Rightarrow 2 \mathrm{y}=0 \Rightarrow \mathrm{y}=0$.
5.

Sol:

The given system of equations:
$-x+2 y+2=0$ and $\frac{1}{2} x-\frac{1}{4} y-1=0$
The given equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{x}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $a_{1}=-1, b_{1}=2, c_{1}=2$ and $a_{2}=\frac{1}{2}, b_{2}=-\frac{1}{4}$ and $c_{2}=-1$
$\therefore \frac{a_{1}}{a_{2}}=\frac{-1}{(1 / 2)}=-2, \frac{b_{1}}{b_{2}}=\frac{2}{(-1 / 4)}=-8$ and $\frac{c_{1}}{c_{2}}=\frac{2}{-1}=-2$
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
The given system has a unique solution.
Hence, the lines intersect at one point.
6.

Sol:

The given system of equations can be written as follows:
$\mathrm{kx}+3 \mathrm{y}-(\mathrm{k}-2)=0$ and $12 \mathrm{x}+\mathrm{ky}-\mathrm{k}=0$
The given equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{x}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $\mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=3, \mathrm{c}_{1}=-(\mathrm{k}-2)$ and $\mathrm{a}_{2}=12, \mathrm{~b}_{2}=\mathrm{k}$ and $\mathrm{c}_{2}=-\mathrm{k}$
$\therefore \frac{a_{1}}{a_{2}}=\frac{k}{12}, \frac{b_{1}}{b_{2}}=\frac{3}{k}$ and $\frac{c_{1}}{c_{2}}=\frac{-(k-2)}{-k}=\frac{(k-2)}{k}$
For inconsistency, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{k}{12}=\frac{3}{k} \neq \frac{(k-2)}{k} \Rightarrow \mathrm{k}^{2}=(3 \times 12)=36$
$\Rightarrow \mathrm{k}=\sqrt{36}= \pm 6$
Hence, the pair of equations is inconsistent if $\mathrm{k}= \pm 6$.
7.

Sol:

The given system of equations can be written as follows:
$9 \mathrm{x}-10 \mathrm{y}-21=0$ and $\frac{3 x}{2} \mathrm{x}-\frac{5 y}{3}-\frac{7}{2}=0$
The given equations are of the following form:
$a_{1} x+b_{1} x+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$
Here, $\mathrm{a}_{1}=9, \mathrm{~b}_{1}=-10, \mathrm{c}_{1}=-21$ and $\mathrm{a}_{2}=\frac{3}{2}, \mathrm{~b}_{2}=\frac{-5}{3}$ and $\mathrm{c}_{2}=\frac{-7}{2}$
$\therefore \frac{a_{1}}{a_{2}}=\frac{9}{3 / 2}=6, \frac{b_{1}}{b_{2}}=\frac{-10}{(-5 / 3)}=6$ and $\frac{c_{1}}{c_{2}}=-21 \times \frac{2}{-7}=6$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
This shows that the given system of equations has an infinite number of solutions.
8.

Sol:

The given equations are as follows:

$$
\begin{equation*}
x-2 y=0 \tag{i}
\end{equation*}
$$

$3 x+4 y=20$
On multiplying (i) by 2 , we get:
$2 x-4 y=0$
On adding (ii) and (iii), we get:
$5 x=20 \Rightarrow x=4$
On substituting $x=4$ in (i), we get:
$4-2 y=0 \Rightarrow 4=2 y \Rightarrow y=2$
Hence, the required solution is $x=4$ and $y=2$.

9. Sol:

The given system of equations can be written as follows:
$x-3 y-2=0$ and $-2 x+6 y-5=0$
The given equations are of the following form:
$a_{1} x+b_{1 y}+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$
Here, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=-3, \mathrm{c}_{1}=-2$ and $\mathrm{a}_{2}=-2, \mathrm{~b}_{2}=6$ and $\mathrm{c}_{2}=-5$
$\therefore \frac{a_{1}}{a_{2}}=\frac{1}{-2}=\frac{-1}{2}, \frac{b_{1}}{b_{2}}=\frac{-3}{6}=\frac{-1}{2}$ and $\frac{c_{1}}{c_{2}}=\frac{-2}{-5}=\frac{2}{5}$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Thus, the given system of equations has no solution.
Hence, the paths represented by the equations are parallel.
10.

Sol:

Let the larger number be x and the smaller number be y.
Then, we have:
$x-y=26$
$x=3 y$
On substituting $x=3 y$ in (i), we get:
$3 y-y=26 \Rightarrow 2 y=26 \Rightarrow y=13$
On substituting $y=13$ in (i), we get:
$x-13=26 \Rightarrow x=26+13=39$
Hence, the required numbers are 39 and 13 .
11.

Sol:

The given equations are as follows:
$23 x+29 y=98$
$29 x+23 y=110$
On adding (i) and (ii), we get:
$52 x+52 y=208$
$\Rightarrow x+y=4$
On subtracting (i) from (ii), we get:
$6 x-6 y=12$
$\Rightarrow x-y=2$
On adding (iii) and (iv), we get:
$2 x=6 \Rightarrow x=3$
On substituting $x=3$ in (iii), we get:
$3+y=4$
$\Rightarrow y=4-3=1$
Hence, the required solution is $\mathrm{x}=3$ and $\mathrm{y}=1$.
12.

Sol:

The given equations are as follows:
$6 x+3 y=7 x y$
$3 x+9 y=11 x y$
For equation (i), we have:
$\frac{6 x+3 y}{x y}=7$
$\Rightarrow \frac{6 x}{x y}+\frac{3 y}{x y}=7 \Rightarrow \frac{6}{y}+\frac{3}{x}=7$
For equation (ii), we have:
$\frac{3 x+9 y}{x y}=11$
$\Rightarrow \frac{3 x}{x y}+\frac{9 y}{x y}=11 \Rightarrow \frac{3}{y}+\frac{9}{x}=11$
On substituting $\frac{3}{y}=\mathrm{v}$ and $\frac{1}{x}=\mathrm{u}$ in (iii) and (iv), we get:
$6 v+3 u=7$
$3 v+9 u=11$
On multiplying (v) by 3, we get:
$18 v+9 u=21$
On substituting $y=\frac{3}{2}$ in (iii), we get:
$\frac{6}{(3 / 2)}+\frac{3}{x}=7$
$\Rightarrow 4+\frac{3}{x}=7 \Rightarrow \frac{3}{x}=3 \Rightarrow 3 x=3$
$\Rightarrow \mathrm{x}=1$
Hence, the required solution is $x=1$ and $y=\frac{3}{2}$.
13.

Sol:

The given system of equations can be written as follows:

$$
\begin{align*}
& 3 x+y=1 \\
& \Rightarrow 3 x+y-1=0 \tag{i}\\
& k x+2 y=5 \\
& \Rightarrow k x+2 y-5=0 \tag{ii}
\end{align*}
$$

These equations are of the following form:
$a_{1} x+b_{1} x+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$
Here, $\mathrm{a}_{1}=3, \mathrm{~b}_{1}=1, \mathrm{c}_{1}=-1$ and $\mathrm{a}_{2}=\mathrm{k}, \mathrm{b}_{2}=2$ and $\mathrm{c}_{2}=-5$
(i) For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ i.e. $\frac{3}{k} \neq \frac{1}{2} \Rightarrow \mathrm{k} \neq 6$
Thus, for all real values of k other than 6 , the given system of equations will have a unique solution.
(ii) In order that the given equations have no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\frac{3}{k}=\frac{1}{2} \neq \frac{-1}{-5}$
$\Rightarrow \frac{3}{k}=\frac{1}{2}$ and $\frac{3}{k}=\frac{-1}{-5}$

Downloaded from www.studiestoday.com

$\Rightarrow \mathrm{k}=6, \mathrm{k} \neq 15$
Thus, for $\mathrm{k}=6$, the given system of equations will have no solution.
14.

Sol:

Let $\angle A=x^{0}$ and $\angle B=y^{0}$
Then, $\angle \mathrm{C}=3 \angle \mathrm{~B}=3 \mathrm{y}^{0}$
Now, we have:
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \mathrm{x}+\mathrm{y}+3 \mathrm{y}=180$
$\Rightarrow \mathrm{x}+4 \mathrm{y}=180$
Also, $\angle \mathrm{C}=2(\angle \mathrm{~A}+\angle \mathrm{B})$
$\Rightarrow 3 \mathrm{y}=2(\mathrm{x}+\mathrm{y})$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=0$
On multiplying (ii) by 4 , we get:
$8 x-4 y=0$
On adding (i) and (iii), we get:
$9 x=180 \Rightarrow x=20$
On substituting $x=20$ in (i), we get:
$20+4 y=180 \Rightarrow 4 y=(180-20)=160 \Rightarrow y=40$
$\therefore \mathrm{x}=20$ and $\mathrm{y}=40$
$\therefore \angle \mathrm{A}=20^{\circ}, \angle \mathrm{B}=40^{\circ}, \angle \mathrm{C}=\left(3 \times 40^{\circ}\right)=120^{\circ}$.
15.

Sol:

Let the cost of each pencil be Rs. x and that of each pen be Rs. y.
Then, we have:
$5 x+7 y=195$
$7 x+5 y=153$
Adding (i) and (ii), we get:
$12 x+12 y=348$
$\Rightarrow 12(\mathrm{x}+\mathrm{y})=348$
$\Rightarrow \mathrm{x}+\mathrm{y}=29$
Subtracting (i) from (ii), we get:
$2 x-2 y=-42$

Downloaded from www.studiestoday.com

$\Rightarrow 2(\mathrm{x}-\mathrm{y})=-42$
$\Rightarrow x-y=-21$
On adding (iii) and (iv), we get:
$4+y=29 \Rightarrow y=(29-4)=25$
Hence, the cost of each pencil is Rs. 4 and the cost of each pen is Rs. 25.
16.

Sol:

On a graph paper, draw a horizontal line $\mathrm{X}^{\prime} \mathrm{OX}$ and a vertical line YOY' as the x -axis and the y-axis, respectively.
Graph of $2 x-3 y=1$
$2 x-3 y=1$
$\Rightarrow 3 y=(2 x-1)$
$\therefore \mathrm{y}=\frac{2 x-1}{3}$
Putting $x=-1$, we get:
$y=-1$
Putting $x=2$, we get:
$\mathrm{y}=1$
Putting $\mathrm{x}=5$, we get:
$y=3$
Thus, we have the following table for the equation $2 \mathrm{x}-3 \mathrm{y}=1$.

x	-1	2	5
y	-1	1	3

Now, plots the points $\mathrm{A}(-1,-1), \mathrm{B}(2,1)$ and $\mathrm{C}(5,3)$ on the graph paper.
Join AB and BC to get the graph line AC . Extend it on both the sides.
Thus, the line $A C$ is the graph of $2 x-3 y=1$.
Graph of $4 x-3 y+1=0$
$4 x-3 y+1=0$
$\Rightarrow 3 y=(4 x+1)$
$\therefore \mathrm{y}=\frac{4 x+1}{3}$
Putting $x=-1$, we get:
$y=-1$
Putting $\mathrm{x}=2$, we get:
$y=3$
Putting $x=5$, we get:
$y=7$
Thus, we have the following table for the equation $4 x-3 y+1=0$.

Downloaded from www.studiestoday.com

x	-1	2	5
y	-1	3	7

Now, Plot the points $\mathrm{P}(2,3)$ and $\mathrm{Q}(5,7)$. The point $\mathrm{A}(-1,-1)$ has already been plotted. Join PA and QP to get the graph line AQ. Extend it on both sides.
Thus, the line AQ is the graph of the equation $4 x-3 y+1=0$.

The two lines intersect at $\mathrm{A}(-1 .-1)$.
Thus, $x=-1$ and $y=-1$ is the solution of the given system of equations.
17.

Sol:

Given:
In a cyclic quadrilateral $A B C D$, we have:

$$
\begin{align*}
& \angle \mathrm{A}=(4 \mathrm{x}+20)^{0} \\
& \angle \mathrm{~B}=(3 \mathrm{x}-5)^{0} \\
& \angle \mathrm{C}=4 \mathrm{y}^{0} \\
& \angle \mathrm{D}=(7 \mathrm{y}+5)^{0} \\
& \angle \mathrm{~A}+\angle \mathrm{C}=180^{0} \text { and } \angle \mathrm{B}+\angle \mathrm{D}=180^{0} \\
& \angle \mathrm{~A}+\angle \mathrm{C}=(4 \mathrm{x}+20)^{0}+\left(4 \mathrm{y}^{0}\right)=180^{0} \\
& \Rightarrow 4 \mathrm{x}+4 \mathrm{y}+20=180 \\
& \Rightarrow 4 \mathrm{x}+4 \mathrm{y}=180-20=160 \tag{i}\\
& \Rightarrow \mathrm{x}+\mathrm{y}=40 \\
& \text { Also, } \angle \mathrm{B}+\angle \mathrm{D}=(3 \mathrm{x}-5)^{0}+(7 \mathrm{y}+5)^{0}=180^{0} \tag{ii}\\
& \Rightarrow 3 \mathrm{x}+7 \mathrm{y}=180 \quad \ldots \ldots .(\text { (ii })
\end{align*}
$$

$$
\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ} \text { and } \angle \mathrm{B}+\angle \mathrm{D}=180^{\circ} \quad \text { [Since } \mathrm{ABCD} \text { is a cyclic quadrilateral] Now, }
$$

On multiplying (i) by 3 , we get:
$3 x+3 y=120$
On subtracting (iii) from (ii), we get:
$4 y=60 \Rightarrow y=15$
On substituting $y=15$ in (i), we get:
$x+15=40 \Rightarrow x=(40-15)=25$
Therefore, we have:
$\angle \mathrm{A}=(4 \mathrm{x}+20)^{0}=(4 \times 25+20)^{0}=120^{\circ}$
$\angle \mathrm{B}=(3 \mathrm{x}-5)^{0}=(3 \times 25-5)^{0}=70^{\circ}$
$\angle \mathrm{C}=4 \mathrm{y}^{0}=(4 \times 15)^{0}=60^{0}$
$\angle \mathrm{D}=(7 \mathrm{y}+5)^{0}=(7 \times 15+5)^{0}=(105+5)^{0}=110^{0}$.
18.

Sol:
We have:
$\frac{35}{x+y}+\frac{14}{x-y}=19$ and $\frac{14}{x+y}+\frac{35}{x-y}=37$
Taking $\frac{1}{x+y}=\mathrm{u}$ and $\frac{1}{x-y}=\mathrm{v}$.
$35 u+14 v-19=0$
$14 u+35 v-37=0$
Here, $\mathrm{a}_{1}=35, \mathrm{~b}_{1}=14, \mathrm{c}_{1}=-19$ and $\mathrm{a}_{2}=14, \mathrm{~b}_{2}=35$ and $\mathrm{c}_{2}=-37$
By cross multiplication, we have:

$\therefore \frac{u}{[14 \times(-37)-35 \times(-19)]}=\frac{v}{[(-19) \times 14-(-37) \times(35)]}=\frac{1}{[35 \times 35-14 \times 14]}$
$\Rightarrow \frac{u}{-518+665}=\frac{v}{-266+1295}=\frac{1}{1225-196}$
$\Rightarrow \frac{u}{147}=\frac{v}{1029}=\frac{1}{1029}$
$\Rightarrow u=\frac{147}{1029}=\frac{1}{7}, v=\frac{1029}{1029}=1$
$\Rightarrow \frac{1}{x+y}=\frac{1}{7}, \frac{1}{x-y}=1$
$\therefore(\mathrm{x}+\mathrm{y})=7$
And, $(\mathrm{x}-\mathrm{y})=1$
Again, the equations (iii) and (iv) can be written as follows:
$x+y-7=0$
$x-y-1=0$
...........(v)
$\mathrm{x}-\mathrm{y}-1=0$
Here, $a_{1}=1, b_{1}=1, c_{1}=-7$ and $a_{2}=1, b_{2}=-1$ and $c_{2}=-1$
By cross multiplication, we have:

$\therefore \frac{x}{[1 \times(-1)-(-1) \times(-7)]}=\frac{y}{[(-7) \times 1-(-1) \times 1]}=\frac{1}{[1 \times(-1)-1 \times 1]}$
$\Rightarrow \frac{x}{-1-7}=\frac{y}{-7+1}=\frac{1}{-1-1}$
$\Rightarrow \frac{x}{-8}=\frac{y}{-6}=\frac{1}{-2}$
$\Rightarrow \mathrm{x}=\frac{-8}{-2}=4, \mathrm{y}=\frac{-6}{-2}=3$
Hence, $x=4$ and $y=3$ is the required solution.
19.

Sol:

Let the required fraction be x / y
Then, we have:
$\frac{x+1}{y+1}=\frac{4}{5}$
$\Rightarrow 5(\mathrm{x}+1)=4(\mathrm{y}+1)$
$\Rightarrow 5 x+5=4 y+4$
$\Rightarrow 5 x-4 y=-1$
Again, we have:
$\frac{x-5}{y-5}=\frac{1}{2}$
$\Rightarrow 2(\mathrm{x}-5)=1(\mathrm{y}-5)$
$\Rightarrow 2 \mathrm{x}-10=\mathrm{y}-5$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=5$
On multiplying (ii) by 4 , we get:
$8 x-4 y=20$
On subtracting (i) from (iii), we get:
$3 x=(20-(-1))=20+1=21$
$\Rightarrow 3 \mathrm{x}=21$
$\Rightarrow \mathrm{x}=7$
On substituting $x=7$ in (i), we get
$5 \times 7-4 y=-1$
$\Rightarrow 35-4 y=-1$
$\Rightarrow 4 y=36$
$\Rightarrow y=9$
$\therefore x=7$ and $y=9$
Hence, the required fraction is $\frac{7}{9}$.

Downloaded from www.studiestoday.com

20.

Sol:

The given equations may be written as follows:

$$
\begin{align*}
& \frac{a x}{b}-\frac{b y}{a}-(a+b)=0 \tag{i}\\
& a x-b y-2 a b=0
\end{align*}
$$

Here, $\mathrm{a}_{1}=\frac{a}{b}, \mathrm{~b}_{1}=\frac{-b}{a}, \mathrm{c}_{1}=-(\mathrm{a}+\mathrm{b})$ and $\mathrm{a}_{2}=\mathrm{a}, \mathrm{b}_{2}=-\mathrm{b}$ and $\mathrm{c}_{2}=-2 \mathrm{ab}$
By cross multiplication, we have:

$\therefore \frac{x}{\left(-\frac{b}{a}\right) \times(-2 a b)-(-b) \times(-(a+b))}=\frac{y}{-(a+b) \times a-(-2 a b) \times \frac{a}{b}}=\frac{1}{\frac{a}{b} \times(-b)-a \times\left(-\frac{b}{a}\right)}$
$\Rightarrow \frac{x}{2 b^{2}-b(a+b)}=\frac{y}{-a(a+b)+2 a^{2}}=\frac{1}{-a+b}$
$\Rightarrow \frac{x}{2 b^{2}-a b-b^{2}}=\frac{y}{-a^{2}-a b+2 a^{2}}=\frac{1}{-a+b}$
$\Rightarrow \frac{x}{b^{2}-a b}=\frac{y}{a^{2}-a b}=\frac{1}{-(a-b)}$
$\Rightarrow \frac{x}{-b(a-b)}=\frac{y}{a(a-b)}=\frac{1}{-(a-b)}$
$\Rightarrow \mathrm{x}=\frac{-b(a-b)}{-(a-b)}=\mathrm{b}, \mathrm{y}=\frac{a(a-b)}{-(a-b)}=-\mathrm{a}$
Hence, $x=b$ and $y=-a$ is the required solution.

