Exercise - 2A

1.

Sol:
$x^{2}+7 x+12=0$
$\Rightarrow \mathrm{x}^{2}+4 \mathrm{x}+3 \mathrm{x}+12=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+4)+3(\mathrm{x}+4)=0$
$\Rightarrow(\mathrm{x}+4)(\mathrm{x}+3)=0$
$\Rightarrow(x+4)=0$ or $(x+3)=0$
$\Rightarrow \mathrm{x}=-4$ or $\mathrm{x}=-3$
Sum of zeroes $=-4+(-3)=\frac{-7}{1}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=(-4)(-3)=\frac{12}{1}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
2.

Sol:

$\mathrm{x}^{2}-2 \mathrm{x}-8=0$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+2 \mathrm{x}-8=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-4)+2(\mathrm{x}-4)=0$
$\Rightarrow(\mathrm{x}-4)(\mathrm{x}+2)=0$
$\Rightarrow(\mathrm{x}-4)=0$ or $(\mathrm{x}+2)=0$
$\Rightarrow \mathrm{x}=4$ or $\mathrm{x}=-2$
Sum of zeroes $=4+(-2)=2=\frac{2}{1}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=(4)(-2)=\frac{-8}{1}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
3.

Sol:

We have:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+3 \mathrm{x}-10 \\
& =\mathrm{x}^{2}+5 \mathrm{x}-2 \mathrm{x}-10 \\
& = \\
& =\mathrm{x}(\mathrm{x}+5)-2(\mathrm{x}+5) \\
& \quad=(\mathrm{x}-2)(\mathrm{x}+5) \\
& \therefore \mathrm{f}(\mathrm{x})=0 \Rightarrow(\mathrm{x}-2)(\mathrm{x}+5)=0 \\
& \quad \Rightarrow \mathrm{x}-2=0 \text { or } \mathrm{x}+5=0 \\
& \Rightarrow
\end{aligned}
$$

So, the zeroes of $f(x)$ are 2 and -5 .

Sum of zeroes $=2+(-5)=-3=\frac{-3}{1}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=2 \times(-5)=-10=\frac{-10}{1}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
4.

Sol:

We have:

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =4 \mathrm{x}^{2}-4 \mathrm{x}-3 \\
& =4 \mathrm{x}^{2}-(6 \mathrm{x}-2 \mathrm{x})-3 \\
& =4 \mathrm{x}^{2}-6 \mathrm{x}+2 \mathrm{x}-3 \\
& =2 \mathrm{x}(2 \mathrm{x}-3)+1(2 \mathrm{x}-3) \\
& =(2 \mathrm{x}+1)(2 \mathrm{x}-3) \\
\therefore \mathrm{f}(\mathrm{x}) & =0 \Rightarrow(2 \mathrm{x}+1)(2 \mathrm{x}-3)=0 \\
& \Rightarrow 2 \mathrm{x}+1=0 \text { or } 2 \mathrm{x}-3=0 \\
& \Rightarrow \mathrm{x}=\frac{-1}{2} \text { or } \mathrm{x}=\frac{3}{2}
\end{aligned}
$$

So, the zeroes of $f(x)$ are $\frac{-1}{2}$ and $\frac{3}{2}$.
Sum of zeroes $=\left(\frac{-1}{2}\right)+\left(\frac{3}{2}\right)=\frac{-1+3}{2}=\frac{2}{2}=1=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=\left(\frac{-1}{2}\right) \times\left(\frac{3}{2}\right)=\frac{-3}{4}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
5.

Sol:

We have:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=5 \mathrm{x}^{2}-4-8 \mathrm{x} \\
&=5 \mathrm{x}^{2}-8 \mathrm{x}-4 \\
&=5 \mathrm{x}^{2}-(10 \mathrm{x}-2 \mathrm{x})-4 \\
&=5 \mathrm{x}^{2}-10 \mathrm{x}+2 \mathrm{x}-4 \\
&=5 \mathrm{x}(\mathrm{x}-2)+2(\mathrm{x}-2) \\
&=(5 \mathrm{x}+2)(\mathrm{x}-2) \\
& \therefore \mathrm{f}(\mathrm{x})=0 \Rightarrow(5 \mathrm{x}+2)(\mathrm{x}-2)=0 \\
& \Rightarrow 5 \mathrm{x}+2=0 \text { or } \mathrm{x}-2=0 \\
& \quad \Rightarrow \mathrm{x}=\frac{-2}{5} \text { or } \mathrm{x}=2
\end{aligned}
$$

So, the zeroes of $f(x)$ are $\frac{-2}{5}$ and 2 .
Sum of zeroes $=\left(\frac{-2}{5}\right)+2=\frac{-2+10}{5}=\frac{8}{5}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=\left(\frac{-2}{5}\right) \times 2=\frac{-4}{5}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
6.

Sol:

$$
\begin{aligned}
& 2 \sqrt{3} x^{2}-5 x+\sqrt{3} \\
& \quad \Rightarrow 2 \sqrt{3} x^{2}-2 x-3 x+\sqrt{3} \\
& \quad \Rightarrow 2 x(\sqrt{3} x-1)-\sqrt{3}(\sqrt{3} x-1)=0 \\
& \Rightarrow(\sqrt{3} x-1) \text { or }(2 x-\sqrt{3})=0 \\
& \quad \Rightarrow(\sqrt{3} x-1)=0 \text { or }(2 x-\sqrt{3})=0 \\
& \Rightarrow x=\frac{1}{\sqrt{3}} \text { or } x=\frac{\sqrt{3}}{2} \\
& \Rightarrow x=\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \text { or } x=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Sum of zeroes $=\frac{\sqrt{3}}{3}+\frac{\sqrt{3}}{2}=\frac{5 \sqrt{3}}{6}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=\frac{\sqrt{3}}{3} \times \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{6}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
7.

Sol:

$$
\begin{aligned}
f(x)= & 2 x^{2}-11 x+15 \\
= & 2 x^{2}-(6 x+5 x)+15 \\
= & 2 x^{2}-6 x-5 x+15 \\
= & 2 x(x-3)-5(x-3) \\
& =(2 x-5)(x-3) \\
\therefore f(x) & =0 \Rightarrow(2 x-5)(x-3)=0 \\
& \Rightarrow 2 x-5=0 \text { or } x-3=0 \\
& \Rightarrow x=\frac{5}{2} \text { or } x=3
\end{aligned}
$$

So, the zeroes of $f(x)$ are $\frac{5}{2}$ and 3 .
Sum of zeroes $=\frac{5}{2}+3=\frac{5+6}{2}=\frac{11}{2}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=\frac{5}{2} \times 3=\frac{-15}{2}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
8.

Sol:

$$
\begin{aligned}
& 4 x^{2}-4 x+1=0 \\
& \Rightarrow(2 x)^{2}-2(2 x)(1)+(1)^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow(2 \mathrm{x}-1)^{2}=0 \quad\left[\because \mathrm{a}^{2}-2 \mathrm{ab}+\mathrm{b}^{2}=(\mathrm{a}-\mathrm{b})^{2}\right] \\
& \Rightarrow(2 \mathrm{x}-1)^{2}=0 \\
& \Rightarrow \mathrm{x}=\frac{1}{2} \text { or } \mathrm{x}=\frac{1}{2}
\end{aligned}
$$

Sum of zeroes $=\frac{1}{2}+\frac{1}{2}=1=\frac{1}{1}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
9.

Sol:

We have:

$$
f(x)=x^{2}-5
$$

It can be written as $x^{2}+0 x-5$.

$$
\begin{aligned}
& =\left(x^{2}-(\sqrt{5})^{2}\right) \\
& =(x+\sqrt{5})(x-\sqrt{5}) \\
& \therefore f(x)=0 \Rightarrow(x+\sqrt{5})(x-\sqrt{5})=0 \\
& \quad \Rightarrow x+\sqrt{5}=0 \text { or } x-\sqrt{5}=0 \\
& \quad \Rightarrow x=-\sqrt{5} \text { or } x=\sqrt{5}
\end{aligned}
$$

So, the zeroes of $\mathrm{f}(\mathrm{x})$ are $-\sqrt{5}$ and $\sqrt{5}$.
Here, the coefficient of x is 0 and the coefficient of x^{2} is 1 .
Sum of zeroes $=-\sqrt{5}+\sqrt{5}=\frac{0}{1}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=-\sqrt{5} \times \sqrt{5}=\frac{-5}{1}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
10.

Sol:

We have:

$$
f(x)=8 x^{2}-4
$$

It can be written as $8 x^{2}+0 x-4$

$$
\begin{aligned}
& =4\left\{(\sqrt{2} x)^{2}-(1)^{2}\right\} \\
& =4(\sqrt{2} x+1)(\sqrt{2} x-1) \\
& \therefore f(x)=0 \Rightarrow(\sqrt{2} x+1)(\sqrt{2} x-1)=0 \\
& \quad \Rightarrow(\sqrt{2} x+1)=0 \text { or } \sqrt{2} x-1=0 \\
& \quad \Rightarrow x=\frac{-1}{\sqrt{2}} \text { or } \mathrm{x}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

So, the zeroes of $f(x)$ are $\frac{-1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$
Here the coefficient of x is 0 and the coefficient of x^{2} is $\sqrt{2}$
Sum of zeroes $=\frac{-1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{-1+1}{\sqrt{2}}=\frac{0}{\sqrt{2}}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=\frac{-1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}=\frac{-1 \times 4}{2 \times 4}=\frac{-4}{8}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
11.

Sol:

We have,

$$
\mathrm{f}(\mathrm{u})=5 \mathrm{u}^{2}+10 \mathrm{u}
$$

It can be written as $5 u(u+2)$

$$
\begin{aligned}
\therefore \mathrm{f}(\mathrm{u})=0 & \Rightarrow 5 \mathrm{u}=0 \text { or } \mathrm{u}+2=0 \\
& \Rightarrow \mathrm{u}=0 \text { or } \mathrm{u}=-2
\end{aligned}
$$

So, the zeroes of $f(u)$ are -2 and 0 .
Sum of the zeroes $=-2+0=-2=\frac{-2 \times 5}{1 \times 5}=\frac{-10}{5}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } u^{2}\right)}$
Product of zeroes $=-2 \times 0=0=\frac{0 \times 5}{1 \times 5}=\frac{-0}{5}=\frac{\text { constant term }}{\left(\text { coefficient of } u^{2}\right)}$
12.

Sol:

$$
\begin{aligned}
& 3 \mathrm{x}^{2}-\mathrm{x}-4=0 \\
& \Rightarrow 3 \mathrm{x}^{2}-4 \mathrm{x}+3 \mathrm{x}-4=0 \\
& \Rightarrow \mathrm{x}(3 \mathrm{x}-4)+1(3 \mathrm{x}-4)=0 \\
& \Rightarrow(3 \mathrm{x}-4)(\mathrm{x}+1)=0 \\
& \Rightarrow(3 \mathrm{x}-4) \text { or }(\mathrm{x}+1)=0 \\
& \Rightarrow \mathrm{x}=\frac{4}{3} \text { or } \mathrm{x}=-1
\end{aligned}
$$

Sum of zeroes $=\frac{4}{3}+(-1)=\frac{1}{3}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=\frac{4}{3} \times(-1)=\frac{-4}{3}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
13.

Sol:

Let $\alpha=2$ and $\beta=-6$
Sum of the zeroes, $(\alpha+\beta)=2+(-6)=-4$

Product of the zeroes, $\alpha \beta=2 \times(-6)=-12$
\therefore Required polynomial $=\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta=\mathrm{x}^{2}-(-4) \mathrm{x}-12$

$$
=x^{2}+4 x-12
$$

Sum of the zeroes $=-4=\frac{-4}{1}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=-12=\frac{-12}{1}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
14.

Sol:

Let $\alpha=\frac{2}{3}$ and $\beta=\frac{-1}{4}$.
Sum of the zeroes $=(\alpha+\beta)=\frac{2}{3}+\left(\frac{-1}{4}\right)=\frac{8-3}{12}=\frac{5}{12}$

$$
1
$$

Product of the zeroes, $\alpha \beta=\frac{2}{3} \times\left(\frac{-1}{4}\right)=\frac{-2}{12}=\frac{-1}{6}$
6
\therefore Required polynomial $=\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta=\mathrm{x}^{2}-\frac{5}{12} \mathrm{x}+\left(\frac{-1}{6}\right)$

$$
=x^{2}-\frac{5}{12} x-\frac{1}{6}
$$

Sum of the zeroes $=\frac{5}{12}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
Product of zeroes $=\frac{-1}{6}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
15.

Sol:

Let α and β be the zeroes of the required polynomial $\mathrm{f}(\mathrm{x})$.
Then $(\alpha+\beta)=8$ and $\alpha \beta=12$
$\therefore f(x)=x^{2}-(\alpha+\beta) x+\alpha \beta$
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-8 \mathrm{x}+12$
Hence, required polynomial $f(x)=x^{2}-8 x+12$

$$
\begin{aligned}
\therefore f(x)=0 & \Rightarrow x^{2}-8 x+12=0 \\
& \Rightarrow x^{2}-(6 x+2 x)+12=0 \\
\Rightarrow & x^{2}-6 x-2 x+12=0 \\
\Rightarrow & x(x-6)-2(x-6)=0 \\
& \Rightarrow(x-2)(x-6)=0 \\
& \Rightarrow(x-2)=0 \text { or }(x-6)=0
\end{aligned}
$$

$$
\Rightarrow x=2 \text { or } x=6
$$

So, the zeroes of $f(x)$ are 2 and 6 .
16.

Sol:

Let α and β be the zeroes of the required polynomial $\mathrm{f}(\mathrm{x})$.
Then $(\alpha+\beta)=0$ and $\alpha \beta=-1$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-0 \mathrm{x}+(-1)$
$\Rightarrow f(x)=x^{2}-1$
Hence, required polynomial $f(x)=x^{2}-1$.

$$
\begin{aligned}
\therefore f(x)=0 & \Rightarrow x^{2}-1=0 \\
& \Rightarrow(x+1)(x-1)=0 \\
& \Rightarrow(x+1)=0 \text { or }(x-1)=0 \\
& \Rightarrow x=-1 \text { or } x=1
\end{aligned}
$$

So, the zeroes of $f(x)$ are -1 and 1 .
17.

Sol:

Let α and β be the zeroes of the required polynomial $\mathrm{f}(\mathrm{x})$.
Then $(\alpha+\beta)=\frac{5}{2}$ and $\alpha \beta=1$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$
$\Rightarrow f(x)=x^{2}-\frac{5}{2} x+1$
$\Rightarrow \mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}-5 \mathrm{x}+2$
Hence, the required polynomial is $f(x)=2 x^{2}-5 x+2$

$$
\begin{aligned}
\therefore \mathrm{f}(\mathrm{x})=0 & \Rightarrow 2 \mathrm{x}^{2}-5 \mathrm{x}+2=0 \\
& \Rightarrow 2 \mathrm{x}^{2}-(4 \mathrm{x}+\mathrm{x})+2=0 \\
& \Rightarrow 2 \mathrm{x}^{2}-4 \mathrm{x}-\mathrm{x}+2=0 \\
& \Rightarrow 2 \mathrm{x}(\mathrm{x}-2)-1(\mathrm{x}-2)=0 \\
& \Rightarrow(2 \mathrm{x}-1)(\mathrm{x}-2)=0 \\
& \Rightarrow(2 \mathrm{x}-1)=0 \text { or }(\mathrm{x}-2)=0
\end{aligned}
$$

$$
\Rightarrow \mathrm{x}=\frac{1}{2} \text { or } \mathrm{x}=2
$$

So, the zeros of $f(x)$ are $\frac{1}{2}$ and 2 .
18.

Sol:

We can find the quadratic equation if we know the sum of the roots and product of the roots by using the formula
$x^{2}-($ Sum of the roots $) x+$ Product of roots $=0$
$\Rightarrow \mathrm{x}^{2}-\sqrt{2} \mathrm{x}+\frac{1}{3}=0$
$\Rightarrow 3 \mathrm{x}^{2}-3 \sqrt{2} \mathrm{x}+1=0$
19.

Sol:

Given: $\mathrm{ax}^{2}+7 \mathrm{x}+\mathrm{b}=0$
Since, $x=\frac{2}{3}$ is the root of the above quadratic equation
Hence, it will satisfy the above equation.
Therefore, we will get

$$
\begin{align*}
& \mathrm{a}\left(\frac{2}{3}\right)^{2}+7\left(\frac{2}{3}\right)+\mathrm{b}=0 \\
& \Rightarrow \frac{4}{9} \mathrm{a}+\frac{14}{3}+\mathrm{b}=0 \\
& \Rightarrow 4 \mathrm{a}+42+9 \mathrm{~b}=0 \\
& \Rightarrow 4 \mathrm{a}+9 \mathrm{~b}=-42 \tag{1}
\end{align*}
$$

Since, $x=-3$ is the root of the above quadratic equation
Hence, It will satisfy the above equation.
Therefore, we will get

$$
\begin{align*}
& a(-3)^{2}+7(-3)+b=0 \\
& \Rightarrow 9 a-21+b=0 \\
& \Rightarrow 9 a+b=21 \tag{2}
\end{align*}
$$

From (1) and (2), we get $\mathrm{a}=3, \mathrm{~b}=-6$
20.

Sol:

Given: $(x+a)$ is a factor of $2 x 2+2 a x+5 x+10$

So, we have
$x+a=0$
$\Rightarrow \mathrm{x}=-\mathrm{a}$
Now, it will satisfy the above polynomial.
Therefore, we will get
$2(-\mathrm{a})^{2}+2 \mathrm{a}(-\mathrm{a})+5(-\mathrm{a})+10=0$
$\Rightarrow 2 \mathrm{a}^{2}-2 \mathrm{a}^{2}-5 \mathrm{a}+10=0$
$\Rightarrow-5 \mathrm{a}=-10$
$\Rightarrow \mathrm{a}=2$
21.

Sol:

Given: $x=\frac{2}{3}$ is one of the zero of $3 x^{3}+16 x^{2}+15 x-18$
Now, we have
$\mathrm{x}=\frac{2}{3}$
$\Rightarrow \mathrm{x}-\frac{2}{3}=0$
Now, we divide $3 x^{3}+16 x^{2}+15 x-18$ by $x-\frac{2}{3}$ to find the quotient

$$
\begin{array}{r}
x-\frac{2}{3} \begin{array}{l}
3 x^{2}+18 x+27 \\
\begin{array}{l}
3 x^{3}+16 x^{2}+15 x-18 \\
3 x^{3}-2 x^{2}
\end{array} \\
\frac{-\quad+}{} \begin{array}{l}
18 x^{2}+15 x \\
18 x^{2}-12 x
\end{array} \\
\frac{-\quad+}{27 x-18} \\
\frac{27 x-18}{}+
\end{array}
\end{array}
$$

So, the quotient is $3 x^{2}+18 x+27$
Now,
$3 x^{2}+18 x+27=0$
$\Rightarrow 3 \mathrm{x}^{2}+9 \mathrm{x}+9 \mathrm{x}+27=0$
$\Rightarrow 3 \mathrm{x}(\mathrm{x}+3)+9(\mathrm{x}+3)=0$

$$
\begin{aligned}
& \Rightarrow(x+3)(3 x+9)=0 \\
& \Rightarrow(x+3)=0 \text { or }(3 x+9)=0 \\
& \Rightarrow x=-3 \text { or } x=-3
\end{aligned}
$$

Exercise - 2B

1.

Sol:

The given polynomial is $\mathrm{p}(\mathrm{x})=\left(\mathrm{x}^{3}-2 \mathrm{x}^{2}-5 \mathrm{x}+6\right)$
$\therefore \mathrm{p}(3)=\left(3^{3}-2 \times 3^{2}-5 \times 3+6\right)=(27-18-15+6)=0$
$\mathrm{p}(-2)=\left[\left(-2^{3}\right)-2 \times(-2)^{2}-5 \times(-2)+6\right]=(-8-8+10+6)=0$
$p(1)=\left(1^{3}-2 \times 1^{2}-5 \times 1+6\right)=(1-2-5+6)=0$
$\therefore 3,-2$ and 1 are the zeroes of $\mathrm{p}(\mathrm{x})$,
Let $\alpha=3, \beta=-2$ and $\gamma=1$. Then we have:
$(\alpha+\beta+\gamma)=(3-2+1)=2=\frac{-\left(\text { coefficient of } x^{2}\right)}{\left(\text { coefficient of } x^{3}\right)}$
$(\alpha \beta+\beta \gamma+\gamma \alpha)=(-6-2+3)=\frac{-5}{1}=\frac{\text { coefficient of } x}{\text { coefficient of } x^{3}}$
$\alpha \beta \gamma=\{3 \times(-2) \times 1\}=\frac{-6}{1}=\frac{-(\text { constant term })}{\left(\text { coefficient of } x^{3}\right)}$
2.

Sol:

$\mathrm{p}(\mathrm{x})=\left(3 \mathrm{x}^{3}-10 \mathrm{x}^{2}-27 \mathrm{x}+10\right)$
$\mathrm{p}(5)=\left(3 \times 5^{3}-10 \times 5^{2}-27 \times 5+10\right)=(375-250-135+10)=0$
$\mathrm{p}(-2)=\left[3 \times\left(-2^{3}\right)-10 \times\left(-2^{2}\right)-27 \times(-2)+10\right]=(-24-40+54+10)=0$
$\mathrm{p}\left(\frac{1}{3}\right)=\left\{3 \times\left(\frac{1}{3}\right)^{3}-10 \times\left(\frac{1}{3}\right)^{2}-27 \times \frac{1}{3}+10\right\}=\left(3 \times \frac{1}{27}-10 \times \frac{1}{9}-9+10\right)$
$=\left(\frac{1}{9}-\frac{10}{9}+1\right)=\left(\frac{1-10-9}{9}\right)=\left(\frac{0}{9}\right)=0$
$\therefore 5,-2$ and $\frac{1}{3}$ are the zeroes of $\mathrm{p}(\mathrm{x})$.
Let $\alpha=5, \beta=-2$ and $\gamma=\frac{1}{3}$. Then we have:
$(\alpha+\beta+\gamma)=\left(5-2+\frac{1}{3}\right)=\frac{10}{3}=\frac{-\left(\text { coefficient of } x^{2}\right)}{\left(\text { coefficient of } x^{3}\right)}$
$(\alpha \beta+\beta \gamma+\gamma \alpha)=\left(-10-\frac{2}{3}+\frac{5}{3}\right)=\frac{-27}{3}=\frac{\text { coefficient of } x}{\text { coefficient of } x^{3}}$
$\alpha \beta \gamma=\left\{5 \times(-2) \times \frac{1}{3}\right\}=\frac{-10}{3}=\frac{-(\text { constant term })}{\left(\text { coefficient of } x^{3}\right)}$
3.

Sol:

If the zeroes of the cubic polynomial are a, b and c then the cubic polynomial can be found as
$x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-a b c$
Let $\mathrm{a}=2, \mathrm{~b}=-3$ and $\mathrm{c}=4$
Substituting the values in 1 , we get
$x^{3}-(2-3+4) x^{2}+(-6-12+8) x-(-24)$
$\Rightarrow \mathrm{x}^{3}-3 \mathrm{x}^{2}-10 \mathrm{x}+24$
4.

Sol:

If the zeroes of the cubic polynomial are a, b and c then the cubic polynomial can be found as
$x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-a b c$
Let $\mathrm{a}=\frac{1}{2}, \mathrm{~b}=1$ and $\mathrm{c}=-3$
Substituting the values in (1), we get
$\mathrm{x}^{3}-\left(\frac{1}{2}+1-3\right) \mathrm{x}^{2}+\left(\frac{1}{2}-3-\frac{3}{2}\right) \mathrm{x}-\left(\frac{-3}{2}\right)$
$\Rightarrow \mathrm{x}^{3}-\left(\frac{-3}{2}\right) \mathrm{x}^{2}-4 \mathrm{x}+\frac{3}{2}$
$\Rightarrow 2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-8 \mathrm{x}+3$
5.

Sol:

We know the sum, sum of the product of the zeroes taken two at a time and the product of the zeroes of a cubic polynomial then the cubic polynomial can be found as
$x^{3}-($ sum of the zeroes $) x^{2}+($ sum of the product of the zeroes taking two at a time $) x-$ product of zeroes
Therefore, the required polynomial is
$x^{3}-5 x^{2}-2 x+24$
6.

Sol:

Quotient $\mathrm{q}(\mathrm{x})=\mathrm{x}-3$
Remainder $\mathrm{r}(\mathrm{x})=7 \mathrm{x}-9$
7.

$$
\begin{aligned}
& \text { Sol: } \\
& x^{2}-x+1 \\
& \int \frac{x^{2}+x-3}{x^{4}+0 x^{3}-3 x^{2}+4 x+5} \begin{array}{l}
x^{4}-x^{3}+x^{2}
\end{array} \\
& \frac{-+\quad-}{x^{3}-4 x^{2}+4 x+5} \\
& \mathrm{x}^{3}-\mathrm{x}^{2}+\mathrm{x} \\
& \frac{-+-}{-3 x^{2}+3 x+5} \\
& -3 x^{2}+3 x-3 \\
& \begin{array}{c}
+\quad-\quad+ \\
\hline
\end{array}
\end{aligned}
$$

Quotient $\mathrm{q}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}-3$
Remainder $\mathrm{r}(\mathrm{x})=8$
8.

Sol:

We can write
$f(x)$ as $x^{4}+0 x^{3}+0 x^{2}-5 x+6$ and $g(x)$ as $-x^{2}+2$
$-x^{2}+2 \begin{array}{r}\begin{array}{l}-x^{2}-2 \\ x^{4}+0 x^{3}+0 x^{2}-5 x+6 \\ x^{4} \\ -2 x^{2}\end{array} \\ -\frac{+}{2 x^{2}-5 x+6} \\ \\ -\begin{array}{l}2 x^{2} \quad-4 \\ -\quad+5 x+10\end{array} \\ \hline\end{array}$
Quotient $\mathrm{q}(\mathrm{x})=-\mathrm{x}^{2}-2$
Remainder $\mathrm{r}(\mathrm{x})=-5 \mathrm{x}+10$
9.

Sol:
Let $f(x)=2 x^{4}+3 x^{3}-2 x^{2}-9 x-12$ and $g(x)$ as $x^{2}-3$

$$
2 x^{2}+3 x+4
$$

$$
\begin{gathered}
x^{2}-3 \quad \begin{array}{l}
2 x^{4}+3 x^{3}-2 x^{2}-9 x-12 \\
2 x^{4}-6 x^{2} \\
-\quad+
\end{array} \\
\frac{3 x^{3}+4 x^{2}-9 x-12}{3 x^{3}-9 x}+ \\
\frac{+4 x^{2}-12}{4 x^{2}-12} \\
\frac{-\quad+}{x}
\end{gathered}
$$

Quotient $\mathrm{q}(\mathrm{x})=2 \mathrm{x}^{2}+3 \mathrm{x}+4$
Remainder $r(x)=0$
Since, the remainder is 0 .
Hence, $x^{2}-3$ is a factor of $2 x^{4}+3 x^{3}-2 x^{2}-9 x-12$
10.

Sol:

By using division rule, we have
Dividend $=$ Quotient \times Divisor + Remainder
$\therefore 3 x^{3}+x^{2}+2 x+5=(3 x-5) g(x)+9 x+10$
$\Rightarrow 3 \mathrm{x}^{3}+\mathrm{x}^{2}+2 \mathrm{x}+5-9 \mathrm{x}-10=(3 \mathrm{x}-5) \mathrm{g}(\mathrm{x})$
$\Rightarrow 3 \mathrm{x}^{3}+\mathrm{x}^{2}-7 \mathrm{x}-5=(3 \mathrm{x}-5) \mathrm{g}(\mathrm{x})$
$\Rightarrow \mathrm{g}(\mathrm{x})=\frac{3 x^{3}+x^{2}-7 x-5}{3 x-5}$
$3 x-5 \quad \frac{x^{2}+2 x+1}{\begin{array}{l}3 x^{3}+x^{2}-7 x-5 \\ 3 x^{3}-5 x^{2}\end{array}}$
$\frac{-\quad+}{6 x^{2}-7 x-5}$ $6 x^{2}-10 x$
$-+\frac{+}{3 x-5}$
$3 x-5$

$-\quad+$

$\therefore g(x)=x^{2}+2 x+1$

Downloaded from www.studiestoday.com
11.

Sol:

We can write $f(x)$ as $-6 x^{3}+x^{2}+20 x+8$ and $g(x)$ as $-3 x^{2}+5 x+2$

$$
\begin{gathered}
-3 x^{2}+5 x+2 \quad \begin{array}{l}
x^{2}+2 x+1 \\
\\
\\
\\
\begin{array}{l}
-6 x^{3}+x^{2}+20 x+8 \\
-6 x^{3}+10 x^{2}+4 x \\
+-\quad- \\
-9 x^{2}+16 x+8 \\
-9 x^{2}+15 x+6 \\
+\quad-\quad- \\
\hline
\end{array} \\
\hline
\end{array} \\
\hline
\end{gathered}
$$

Quotient $=2 \mathrm{x}+3$
Remainder $=x+2$
By using division rule, we have
Dividend $=$ Quotient \times Divisor + Remainder
$\therefore-6 x^{3}+x^{2}+20 x+8=\left(-3 x^{2}+5 x+2\right)(2 x+3)+x+2$
$\Rightarrow-6 x^{3}+x^{2}+20 x+8=-6 x^{3}+10 x^{2}+4 x-9 x^{2}+15 x+6+x+2$
$\Rightarrow-6 x^{3}+x^{2}+20 x+8=-6 x^{3}+x^{2}+20 x+8$
12.

Sol:

Let $f(x)=x^{3}+2 x^{2}-11 x-12$
Since -1 is a zero of $f(x),(x+1)$ is a factor of $f(x)$.
On dividing $f(x)$ by $(x+1)$, we get

$$
\begin{gathered}
\begin{array}{l}
\mathrm{x}+1 \\
\begin{array}{l}
\mathrm{x}^{3}+2 \mathrm{x}^{2}-11 \mathrm{x}-12\left(\mathrm{x}^{2}+\mathrm{x}+12\right. \\
\mathrm{x}^{3}+\mathrm{x}^{2}
\end{array} \\
\frac{--}{\mathrm{x}^{2}-11 \mathrm{x}-12} \\
\mathrm{x}^{2}+\mathrm{x}
\end{array} \\
\frac{-\frac{-}{-12 \mathrm{x}-12}}{} \\
\frac{\begin{array}{l}
-12 \mathrm{x}-12
\end{array}}{\frac{\mathrm{X}}{}}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}-11 \mathrm{x}-12 \\
& =(\mathrm{x}+1)\left(\mathrm{x}^{2}+\mathrm{x}-12\right) \\
& =(\mathrm{x}+1)\left\{\mathrm{x}^{2}+4 \mathrm{x}-3 \mathrm{x}-12\right\} \\
& =(\mathrm{x}+1)\{\mathrm{x}(\mathrm{x}+4)-3(\mathrm{x}+4)\} \\
& =(\mathrm{x}+1)(\mathrm{x}-3)(\mathrm{x}+4) \\
& \therefore \mathrm{f}(\mathrm{x})=0 \Rightarrow(\mathrm{x}+1)(\mathrm{x}-3)(\mathrm{x}+4)=0 \\
& \quad \Rightarrow(\mathrm{x}+1)=0 \text { or }(\mathrm{x}-3)=0 \text { or }(\mathrm{x}+4)=0 \\
& \quad \Rightarrow \mathrm{x}=-1 \text { or } \mathrm{x}=3 \text { or } \mathrm{x}=-4
\end{aligned}
$$

Thus, all the zeroes are $-1,3$ and -4 .
13.

Sol:

Let $f(x)=x^{3}-4 x^{2}-7 x+10$
Since 1 and -2 are the zeroes of $f(x)$, it follows that each one of $(x-1)$ and $(x+2)$ is a factor of $f(x)$.
Consequently, $(x-1)(x+2)=\left(x^{2}+x-2\right)$ is a factor of $f(x)$.
On dividing $f(x)$ by $\left(x^{2}+x-2\right)$, we get:

$$
\begin{aligned}
& x ^ { 2 } + x - 2 \longdiv { \begin{array} { l }
{ x ^ { 3 } - 4 x ^ { 2 } - 7 x + 1 0 } \\
{ x ^ { 3 } + x ^ { 2 } - 2 x }
\end{array} \quad (x - 5 } \\
& \frac{-\quad+}{-5 x^{2}-5 x+10} \\
& -5 \mathrm{x}^{2}-5 \mathrm{x}+10 \\
& \frac{+\quad+-}{X} \\
& f(x)=0 \Rightarrow\left(x^{2}+x-2\right)(x-5)=0 \\
& \Rightarrow(\mathrm{x}-1)(\mathrm{x}+2)(\mathrm{x}-5)=0 \\
& \Rightarrow \mathrm{x}=1 \text { or } \mathrm{x}=-2 \text { or } \mathrm{x}=5
\end{aligned}
$$

Hence, the third zero is 5 .
14.

Sol:

Let $x^{4}+x^{3}-11 x^{2}-9 x+18$
Since 3 and -3 are the zeroes of $f(x)$, it follows that each one of $(x+3)$ and $(x-3)$ is a factor of $f(x)$.
Consequently, $(x-3)(x+3)=\left(x^{2}-9\right)$ is a factor of $f(x)$.
On dividing $f(x)$ by $\left(x^{2}-9\right)$, we get:

$$
\begin{aligned}
& x^{2}-9 \xlongequal[x^{4}+x^{3}-11 x^{2}-9 x+18]{x^{4}-9 x^{2}}\left[\mathrm{x}^{2}+x-2\right. \\
& \frac{-}{x^{3}-2 x^{2}-9 x+18} \\
& \mathrm{x}^{3} \quad-9 \mathrm{x} \\
& -\frac{+}{-2 x^{2}+18} \\
& -2 x^{2}+18 \\
& \xrightarrow{+\quad-}
\end{aligned}
$$

$$
\begin{aligned}
f(x)=0 & \Rightarrow\left(x^{2}+x-2\right)\left(x^{2}-9\right)=0 \\
& \Rightarrow\left(x^{2}+2 x-x-2\right)(x-3)(x+3) \\
& \Rightarrow(x-1)(x+2)(x-3)(x+3)=0 \\
& \Rightarrow x=1 \text { or } x=-2 \text { or } x=3 \text { or } x=-3
\end{aligned}
$$

Hence, all the zeroes are $1,-2,3$ and -3 .
15.

Sol:

Let $f(x)=x^{4}+x^{3}-34 x^{2}-4 x+120$
Since 2 and -2 are the zeroes of $f(x)$, it follows that each one of $(x-2)$ and $(x+2)$ is a factor of $f(x)$.
Consequently, $(x-2)(x+2)=\left(x^{2}-4\right)$ is a factor of $f(x)$.
On dividing $f(x)$ by $\left(x^{2}-4\right)$, we get:

$$
\begin{gathered}
\begin{array}{c}
x^{2}-4 \quad \begin{array}{l}
x^{4}+x^{3}-34 x^{2}-4 x+120 \\
x^{4}-4 x^{2}
\end{array} \\
\frac{x^{2}+x-2}{x^{3}-30 x^{2}-4 x+120} \\
\frac{x^{3} \quad-4 x}{-30 x^{2}+120}+ \\
\frac{-30 x^{2}+120}{+-}
\end{array} \\
\frac{x}{+}
\end{gathered}
$$

$\mathrm{f}(\mathrm{x})=0$
$\Rightarrow\left(\mathrm{x}^{2}+\mathrm{x}-30\right)\left(\mathrm{x}^{2}-4\right)=0$
$\Rightarrow\left(\mathrm{x}^{2}+6 \mathrm{x}-5 \mathrm{x}-30\right)(\mathrm{x}-2)(\mathrm{x}+2)$
$\Rightarrow[\mathrm{x}(\mathrm{x}+6)-5(\mathrm{x}+6)](\mathrm{x}-2)(\mathrm{x}+2)$
$\Rightarrow(x-5)(x+6)(x-2)(x+2)=0$
$\Rightarrow \mathrm{x}=5$ or $\mathrm{x}=-6$ or $\mathrm{x}=2$ or $\mathrm{x}=-2$
Hence, all the zeroes are 2, $-2,5$ and -6 .
16.

Sol:

Let $f(x)=x^{4}+x^{3}-23 x^{2}-3 x+60$
Since $\sqrt{3}$ and $-\sqrt{3}$ are the zeroes of $f(x)$, it follows that each one of $(x-\sqrt{3})$ and $(x+\sqrt{3})$ is a factor of $f(x)$.
Consequently, $(x-\sqrt{3})(x+\sqrt{3})=\left(x^{2}-3\right)$ is a factor of $f(x)$.
On dividing $f(x)$ by ($x^{2}-3$), we get:

$$
\begin{aligned}
& x ^ { 2 } - 3 \longdiv { x ^ { 4 } + x ^ { 3 } - 2 3 x ^ { 2 } - 3 x + 6 0 } \begin{array} { l }
{ x ^ { 4 } - 3 x ^ { 2 } }
\end{array} \mathrm { x } ^ { 2 } + x - 2 0 \\
& \begin{array}{l}
-\quad+ \\
\frac{x^{3}-20 x^{2}-3 x+60}{x^{3}} \quad-3 x
\end{array} \\
& -\frac{+}{-20 x^{2}+60}+ \\
& +\frac{-}{x}
\end{aligned}
$$

$\mathrm{f}(\mathrm{x})=0$
$\Rightarrow\left(\mathrm{x}^{2}+\mathrm{x}-20\right)\left(\mathrm{x}^{2}-3\right)=0$
$\Rightarrow\left(\mathrm{x}^{2}+5 \mathrm{x}-4 \mathrm{x}-20\right)\left(\mathrm{x}^{2}-3\right)$
$\Rightarrow[\mathrm{x}(\mathrm{x}+5)-4(\mathrm{x}+5)]\left(\mathrm{x}^{2}-3\right)$
$\Rightarrow(\mathrm{x}-4)(\mathrm{x}+5)(\mathrm{x}-\sqrt{3})(\mathrm{x}+\sqrt{3})=0$
$\Rightarrow \mathrm{x}=4$ or $\mathrm{x}=-5$ or $\mathrm{x}=\sqrt{3}$ or $\mathrm{x}=-\sqrt{3}$
Hence, all the zeroes are $\sqrt{3},-\sqrt{3}, 4$ and -5 .

Downloaded from www.studiestoday.com

17.

Sol:

The given polynomial is $f(x)=2 x^{4}-3 x^{3}-5 x^{2}+9 x-3$
Since $\sqrt{3}$ and $-\sqrt{3}$ are the zeroes of $f(x)$, it follows that each one of $(x-\sqrt{3})$ and $(x+\sqrt{3})$ is a factor of $f(x)$.
Consequently, $(x-\sqrt{3})(x+\sqrt{3})=\left(x^{2}-3\right)$ is a factor of $f(x)$.
On dividing $f(x)$ by $\left(x^{2}-3\right)$, we get:

$$
\begin{gathered}
x^{2}-3 \begin{array}{l}
2 x^{4}-3 x^{3}-5 x^{2}+9 x-3 \\
2 x^{4}-6 x^{2}
\end{array} \\
\frac{-}{-3 x^{3}+x^{2}+9 x-3}+2 x^{2}-3 x+1 \\
+\frac{-3 x^{3}+9 x}{+\frac{x^{2}-3}{}} \\
\frac{x^{2}-3}{\frac{-}{x}}
\end{gathered}
$$

$\mathrm{f}(\mathrm{x})=0$
$\Rightarrow 2 \mathrm{x}^{4}-3 \mathrm{x}^{3}-5 \mathrm{x}^{2}+9 \mathrm{x}-3=0$
$\Rightarrow\left(\mathrm{x}^{2}-3\right)\left(2 \mathrm{x}^{2}-3 \mathrm{x}+1\right)=0$
$\Rightarrow\left(\mathrm{x}^{2}-3\right)\left(2 \mathrm{x}^{2}-2 \mathrm{x}-\mathrm{x}+1\right)=0$
$\Rightarrow(x-\sqrt{3})(x+\sqrt{3})(2 x-1)(x-1)=0$
$\Rightarrow x=\sqrt{3}$ or $x=-\sqrt{3}$ or $x=\frac{1}{2}$ or $x=1$
Hence, all the zeroes are $\sqrt{3},-\sqrt{3}, \frac{1}{2}$ and 1 .
18.

Sol:

The given polynomial is $f(x)=x^{4}+4 x^{3}-2 x^{2}-20 x-15$.
Since $(x-\sqrt{5})$ and $(x+\sqrt{5})$ are the zeroes of $f(x)$ it follows that each one of $(x-\sqrt{5})$ and (x $+\sqrt{5})$ is a factor of $f(x)$.
Consequently, $(x-\sqrt{5})(x+\sqrt{5})=\left(x^{2}-5\right)$ is a factor of $f(x)$.
On dividing $f(x)$ by $\left(x^{2}-5\right)$, we get:

Downloaded from www.studiestoday.com

$$
\begin{gathered}
x^{2}-5 \begin{array}{l}
\mathrm{x}^{4}+4 \mathrm{x}^{3}-2 \mathrm{x}^{2}-20 \mathrm{x}-15\left(2 x^{2}-3 \mathrm{x}+1\right. \\
\mathrm{x}^{4} \quad-5 \mathrm{x}^{2}
\end{array} \\
\frac{-\quad+}{4 \mathrm{x}^{3}+3 \mathrm{x}^{2}-20 \mathrm{x}-15} \\
4 \mathrm{x}^{3} \quad-20 \mathrm{x} \\
-\frac{+}{3 x^{2}-15} \\
\frac{3 x^{2}-15}{+\quad+} \\
\frac{\mathrm{x}}{}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=0 \\
& \Rightarrow \mathrm{x}^{4}+4 \mathrm{x}^{3}-7 \mathrm{x}^{2}-20 \mathrm{x}-15=0 \\
& \Rightarrow\left(\mathrm{x}^{2}-5\right)\left(\mathrm{x}^{2}+4 \mathrm{x}+3\right)=0 \\
& \Rightarrow(\mathrm{x}-\sqrt{5})(\mathrm{x}+\sqrt{5})(\mathrm{x}+1)(\mathrm{x}+3)=0 \\
& \Rightarrow \mathrm{x}=\sqrt{5} \text { or } \mathrm{x}=-\sqrt{5} \text { or } \mathrm{x}=-1 \text { or } \mathrm{x}=-3
\end{aligned}
$$

Hence, all the zeroes are $\sqrt{5},-\sqrt{5},-1$ and -3 .
19.

Sol:

The given polynomial is $f(x)=2 x^{4}-11 x^{3}+7 x^{2}+13 x-7$.
Since $(3+\sqrt{2})$ and $(3-\sqrt{2})$ are the zeroes of $f(x)$ it follows that each one of $(x+3+\sqrt{2})$ and $(x+3-\sqrt{2})$ is a factor of $f(x)$.
Consequently, $[(x-(3+\sqrt{2})][(x-(3-\sqrt{2})]=[(x-3)-\sqrt{2}][(x-3)+\sqrt{2}]$ $=\left[(x-3)^{2}-2\right]=x^{2}-6 x+7$, which is a factor of $f(x)$.

On dividing $f(x)$ by $\left(x^{2}-6 x+7\right)$, we get:

$$
\begin{gathered}
x^{2}-6 x+7 \begin{array}{l}
2 x^{4}-11 x^{3}+7 x^{2}+13 x-7\left(2 x^{2}+x-1\right. \\
2 x^{4}-12 x^{3}+14 x^{2}
\end{array} \\
\frac{+\quad-}{x^{3}-7 x^{2}+13 x-7} \\
\frac{x^{3}-6 x^{2}+7 x}{-\quad+\quad-} \\
-x^{2}+6 x-7 \\
-x^{2}+6 x-7
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=0 \\
& \Rightarrow 2 \mathrm{x}^{4}-11 \mathrm{x}^{3}+7 \mathrm{x}^{2}+13 \mathrm{x}-7=0 \\
& \Rightarrow\left(\mathrm{x}^{2}-6 \mathrm{x}+7\right)\left(2 \mathrm{x}^{2}+\mathrm{x}-7\right)=0 \\
& \Rightarrow(\mathrm{x}+3+\sqrt{2})(\mathrm{x}+3-\sqrt{2})(2 \mathrm{x}-1)(\mathrm{x}+1)=0 \\
& \Rightarrow \mathrm{x}=-3-\sqrt{2} \text { or } \mathrm{x}=-3+\sqrt{2} \text { or } \mathrm{x}=\frac{1}{2} \text { or } \mathrm{x}=-1
\end{aligned}
$$

Hence, all the zeroes are $(-3-\sqrt{2}),(-3+\sqrt{2}), \frac{1}{2}$ and -1 .

Exercise - 2C

1.

Sol:

Let the other zeroes of $x^{2}-4 x+1$ be a.
By using the relationship between the zeroes of the quadratic polynomial.
We have, sum of zeroes $=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$
$\therefore 2+\sqrt{3}+a=\frac{-(-4)}{1}$
$\Rightarrow \mathrm{a}=2-\sqrt{3}$
Hence, the other zeroes of $x^{2}-4 x+1$ is $2-\sqrt{3}$.
2.

Sol:

$f(x)=x^{2}+x-p(p+1)$
By adding and subtracting $p x$, we get
$f(x)=x^{2}+p x+x-p x-p(p+1)$
$=x^{2}+(p+1) x-p x-p(p+1)$
$=x[x+(p+1)]-p[x+(p+1)]$
$=[\mathrm{x}+(\mathrm{p}+1)](\mathrm{x}-\mathrm{p})$
$\mathrm{f}(\mathrm{x})=0$
$\Rightarrow[\mathrm{x}+(\mathrm{p}+1)](\mathrm{x}-\mathrm{p})=0$
$\Rightarrow[\mathrm{x}+(\mathrm{p}+1)]=0$ or $(\mathrm{x}-\mathrm{p})=0$
$\Rightarrow \mathrm{x}=-(\mathrm{p}+1)$ or $\mathrm{x}=\mathrm{p}$
So, the zeroes of $f(x)$ are $-(p+1)$ and p.
3.

Sol:

$f(x)=x^{2}-3 x-m(m+3)$
By adding and subtracting $m x$, we get
$f(x)=x^{2}-m x-3 x+m x-m(m+3)$
$=x[x-(m+3)]+m[x-(m+3)]$
$=[\mathrm{x}-(\mathrm{m}+3)](\mathrm{x}+\mathrm{m})$
$f(x)=0 \Rightarrow[x-(m+3)](x+m)=0$
$\Rightarrow[\mathrm{x}-(\mathrm{m}+3)]=0$ or $(\mathrm{x}+\mathrm{m})=0$
$\Rightarrow \mathrm{x}=\mathrm{m}+3$ or $\mathrm{x}=-\mathrm{m}$
So, the zeroes of $f(x)$ are -m and +3 .
4.

Sol:

If the zeroes of the quadratic polynomial are α and β then the quadratic polynomial can be found as $\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$
Substituting the values in (1), we get
$x^{2}-6 x+4$
5.

Sol:

Given: $x=2$ is one zero of the quadratic polynomial $k x^{2}+3 x+k$
Therefore, it will satisfy the above polynomial.
Now, we have
$\mathrm{k}(2)^{2}+3(2)+\mathrm{k}=0$
$\Rightarrow 4 \mathrm{k}+6+\mathrm{k}=0$
$\Rightarrow 5 \mathrm{k}+6=0$
$\Rightarrow \mathrm{k}=-\frac{6}{5}$

6.

Sol:

Given: $x=3$ is one zero of the polynomial $2 x^{2}+x+k$
Therefore, it will satisfy the above polynomial.
Now, we have
$2(3)^{2}+3+k=0$
$\Rightarrow 21+\mathrm{k}=0$
$\Rightarrow \mathrm{k}=-21$
7.

Sol:

Given: $x=-4$ is one zero of the polynomial $x^{2}-x-(2 k+2)$
Therefore, it will satisfy the above polynomial.
Now, we have
$(-4)^{2}-(-4)-(2 k+2)=0$
$\Rightarrow 16+4-2 \mathrm{k}-2=0$
$\Rightarrow 2 \mathrm{k}=-18$
$\Rightarrow \mathrm{k}=9$
8.

Sol:

Given: $x=1$ is one zero of the polynomial $a^{2}-3(a-1) x-1$
Therefore, it will satisfy the above polynomial.
Now, we have
$a(1)^{2}-(a-1) 1-1=0$
$\Rightarrow \mathrm{a}-3 \mathrm{a}+3-1=0$
$\Rightarrow-2 \mathrm{a}=-2$
$\Rightarrow \mathrm{a}=1$
9.

Sol:

Given: $x=-2$ is one zero of the polynomial $3 x^{2}+4 x+2 k$
Therefore, it will satisfy the above polynomial.
Now, we have
$3(-2)^{2}+4(-2) 1+2 \mathrm{k}=0$
$\Rightarrow 12-8+2 \mathrm{k}=0$
$\Rightarrow \mathrm{k}=-2$
10.

Sol:

$f(x)=x^{2}-x-6$
$=x^{2}-3 x+2 x-6$
$=x(x-3)+2(x-3)$
$=(x-3)(x+2)$
$\mathrm{f}(\mathrm{x})=0 \Rightarrow(\mathrm{x}-3)(\mathrm{x}+2)=0$

Downloaded from www.studiestoday.com

$\Rightarrow(x-3)=0$ or $(x+2)=0$
$\Rightarrow \mathrm{x}=3$ or $\mathrm{x}=-2$
So, the zeroes of $f(x)$ are 3 and -2 .
11.

Sol:

By using the relationship between the zeroes of the quadratic polynomial.
We have
Sum of zeroes $=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$
$\Rightarrow 1=\frac{-(-3)}{k}$
$\Rightarrow \mathrm{k}=3$
12.

Sol:

By using the relationship between the zeroes of he quadratic polynomial.
We have
Product of zeroes $=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$
$\Rightarrow 3=\frac{k}{1}$
$\Rightarrow \mathrm{k}=3$
13.

Sol:

Given: $(x+a)$ is a factor of $2 x^{2}+2 a x+5 x+10$
We have
$\mathrm{x}+\mathrm{a}=0$
$\Rightarrow \mathrm{x}=-\mathrm{a}$
Since, $(x+a)$ is a factor of $2 x^{2}+2 a x+5 x+10$
Hence, It will satisfy the above polynomial
$\therefore 2(-a)^{2}+2 \mathrm{a}(-\mathrm{a})+5(-\mathrm{a})+10=0$
$\Rightarrow-5 \mathrm{a}+10=0$
$\Rightarrow \mathrm{a}=2$
14.

Sol:

By using the relationship between the zeroes of the quadratic polynomial.
We have

Sum of zeroes $=\frac{-\left(\text { coefficient of } x^{2}\right)}{\text { coefficient of } x^{3}}$
$\Rightarrow \mathrm{a}-\mathrm{b}+\mathrm{a}+\mathrm{a}+\mathrm{b}=\frac{-(-6)}{2}$
$\Rightarrow 3 \mathrm{a}=3$
$\Rightarrow \mathrm{a}=1$
15.

Sol:

Equating $x^{2}-x$ to 0 to find the zeroes, we will get
$x(x-1)=0$
$\Rightarrow \mathrm{x}=0$ or $\mathrm{x}-1=0$
$\Rightarrow \mathrm{x}=0$ or $\mathrm{x}=1$
Since, $x^{3}+x^{2}-a x+b$ is divisible by $x^{2}-x$.
Hence, the zeroes of $x^{2}-x$ will satisfy $x^{3}+x^{2}-a x+b$
$\therefore(0)^{3}+0^{2}-\mathrm{a}(0)+\mathrm{b}=0$
$\Rightarrow \mathrm{b}=0$
And
$(1)^{3}+1^{2}-\mathrm{a}(1)+0=0 \quad[\because \mathrm{~b}=0]$
$\Rightarrow \mathrm{a}=2$
16.

Sol:

By using the relationship between the zeroes of he quadratic polynomial.
We have
Sum of zeroes $=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$
$\therefore \alpha+\beta=\frac{-7}{2}$ and $\alpha \beta=\frac{5}{2}$
Now, $\alpha+\beta+\alpha \beta=\frac{-7}{2}+\frac{5}{2}=-1$
17.

Sol:

"If $f(x)$ and $g(x)$ are two polynomials such that degree of $f(x)$ is greater than degree of $g(x)$ where $g(x) \neq 0$, there exists unique polynomials $q(x)$ and $r(x)$ such that

$$
f(x)=g(x) \times q(x)+r(x)
$$

where $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$.

Downloaded from www.studiestoday.com

18.

Sol:

We can find the quadratic polynomial if we know the sum of the roots and product of the roots by using the formula
$x^{2}-($ sum of the zeroes $) x+$ product of zeroes
$\Rightarrow \mathrm{x}^{2}-\left(-\frac{1}{2}\right) \mathrm{x}+(-3)$
$\Rightarrow x^{2}+\frac{1}{2} \mathrm{x}-3$
Hence, the required polynomial is $x^{2}+\frac{1}{2} x-3$.
19.

Sol:

To find the zeroes of the quadratic polynomial we will equate $f(x)$ to 0
$\therefore \mathrm{f}(\mathrm{x})=0$
$\Rightarrow 6 x^{2}-3=0$
$\Rightarrow 3\left(2 x^{2}-1\right)=0$
$\Rightarrow 2 \mathrm{x}^{2}-1=0$
$\Rightarrow 2 \mathrm{x}^{2}=1$
$\Rightarrow \mathrm{x}^{2}=\frac{1}{2}$
$\Rightarrow \mathrm{x}= \pm \frac{1}{\sqrt{2}}$
Hence, the zeroes of the quadratic polynomial $f(x)=6 x^{2}-3$ are $\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}$.
20.

Sol:

To find the zeroes of the quadratic polynomial we will equate $f(x)$ to 0
$\therefore \mathrm{f}(\mathrm{x})=0$
$\Rightarrow 4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}=0$
$\Rightarrow 4 \sqrt{3} x^{2}+8 x-3 x-2 \sqrt{3}=0$
$\Rightarrow 4 \mathrm{x}(\sqrt{3} \mathrm{x}+2)-\sqrt{3}(\sqrt{3} \mathrm{x}+2)=0$
$\Rightarrow(\sqrt{3} \mathrm{x}+2)=0$ or $(4 \mathrm{x}-\sqrt{3})=0$
$\Rightarrow x=-\frac{2}{\sqrt{3}}$ or $x=\frac{\sqrt{3}}{4}$
Hence, the zeroes of the quadratic polynomial $f(x)=4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$ are $-\frac{2}{\sqrt{3}}$ or $\frac{\sqrt{3}}{4}$
21.

Sol:

By using the relationship between the zeroes of the quadratic polynomial.
We have
Sum of zeroes $=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$
$\therefore \alpha+\beta=\frac{-(-5)}{1}$ and $\alpha \beta=\frac{k}{1}$
$\Rightarrow \alpha+\beta=5$ and $\alpha \beta=\frac{k}{1}$
Solving $\alpha-\beta=1$ and $\alpha+\beta=5$, we will get
$\alpha=3$ and $\beta=2$
Substituting these values in $\alpha \beta=\frac{k}{1}$, we will get
$\mathrm{k}=6$
22.

Sol:

By using the relationship between the zeroes of the quadratic polynomial.
We have
Sum of zeroes $=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$
$\therefore \alpha+\beta=\frac{-1}{6}$ and $\alpha \beta=-\frac{1}{3}$
Now, $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$
$=\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta-2 \alpha \beta}{\alpha \beta}$

$$
=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}
$$

$$
=\frac{\left(\frac{-1}{6}\right)^{2}-2\left(-\frac{1}{3}\right)}{-\frac{1}{3}}
$$

$$
=\frac{\frac{1}{36}+\frac{2}{3}}{-\frac{1}{3}}
$$

$$
=-\frac{25}{12}
$$

23.

Sol:

By using the relationship between the zeroes of he quadratic polynomial.
We have

Sum of zeroes $=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$
$\therefore \alpha+\beta=\frac{-(-7)}{5}$ and $\alpha \beta=\frac{1}{5}$
$\Rightarrow \alpha+\beta=\frac{7}{5}$ and $\alpha \beta=\frac{1}{5}$
Now, $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}$

$$
\begin{aligned}
& =\frac{\frac{7}{5}}{\frac{1}{5}} \\
& =7
\end{aligned}
$$

24.

Sol:

By using the relationship between the zeroes of the quadratic polynomial.
We have
Sum of zeroes $=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$
$\therefore \alpha+\beta=\frac{-1}{1}$ and $\alpha \beta=\frac{-2}{1}$
$\Rightarrow \alpha+\beta=-1$ and $\alpha \beta=-2$
Now, $\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)^{2}=\left(\frac{\beta-\alpha}{\alpha \beta}\right)^{2}$
$=\frac{(\alpha+\beta)^{2}-4 \alpha \beta}{(\alpha \beta)^{2}} \quad\left[\because(\beta-\alpha)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta\right]$
$=\frac{(-1)^{2}-4(-2)}{(-2)^{2}} \quad[\because \alpha+\beta=-1$ and $\alpha \beta=-2]$
$=\frac{(-1)^{2}-4(-2)}{4}$
$=\frac{9}{4}$
$\because\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)^{2}=\frac{9}{4}$
$\Rightarrow \frac{1}{\alpha}-\frac{1}{\beta}= \pm \frac{3}{2}$
25.

Sol:

By using the relationship between the zeroes of he quadratic polynomial.
We have, Sum of zeroes $=\frac{-\left(\text { coefficient of } x^{2}\right)}{\text { coefficient of } x^{3}}$
$\therefore \mathrm{a}-\mathrm{b}+\mathrm{a}+\mathrm{a}+\mathrm{b}=\frac{-(-3)}{1}$
$\Rightarrow 3 \mathrm{a}=3$

$$
\Rightarrow a=1
$$

Now, Product of zeroes $=\frac{-(\text { constant term })}{\text { coefficient of } x^{3}}$
$\therefore(a-b)(a)(a+b)=\frac{-1}{1}$
$\Rightarrow(1-b)(1)(1+b)=-1 \quad[\because a=1]$
$\Rightarrow 1-\mathrm{b}^{2}=-1$
$\Rightarrow \mathrm{b}^{2}=2$
$\Rightarrow \mathrm{b}= \pm \sqrt{2}$

Exercise - MCQ

1.

Sol:
(d) none of these

A polynomial in x of degree n is an expression of the form $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots+$ $a_{n} X^{n}$, where $a_{n} \neq 0$.
2.

Sol:

(d) $x+\frac{3}{x}$ is not a polynomial.

It is because in the second term, the degree of x is -1 and an expression with a negative degree is not a polynomial.
3.

Sol:

(c) $3,-1$

Let $f(x)=x^{2}-2 x-3=0$

$$
\begin{aligned}
& =x^{2}-3 x+x-3=0 \\
& =x(x-3)+1(x-3)=0 \\
& =(x-3)(x+1)=0 \\
& \Rightarrow x=3 \text { or } x=-1
\end{aligned}
$$

4.

Sol:

(b) $3 \sqrt{2},-2 \sqrt{2}$

$$
\text { Let } \begin{aligned}
f(x) & =x^{2}-\sqrt{2} x-12=0 \\
& \Rightarrow x^{2}-3 \sqrt{2} x+2 \sqrt{2} x-12=0 \\
& \Rightarrow x(x-3 \sqrt{2})+2 \sqrt{2}(x-3 \sqrt{2})=0 \\
& \Rightarrow(x-3 \sqrt{2})(x+2 \sqrt{2})=0 \\
& \Rightarrow x=3 \sqrt{2} \text { or } x=-2 \sqrt{2}
\end{aligned}
$$

5.

Sol:

(c) $-\frac{3}{\sqrt{2}}, \frac{\sqrt{2}}{4}$

Let $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{2}+5 \sqrt{2} \mathrm{x}-3=0$
$\Rightarrow 4 \mathrm{x}^{2}+6 \sqrt{2} \mathrm{x}-\sqrt{2} \mathrm{x}-3=0$
$\Rightarrow 2 \sqrt{2} \mathrm{x}(\sqrt{2} \mathrm{x}+3)-1(\sqrt{2} \mathrm{x}+3)=0$
$\Rightarrow(\sqrt{2} \mathrm{x}+3)(2 \sqrt{2} \mathrm{x}-1)=0$
$\Rightarrow x=-\frac{3}{\sqrt{2}}$ or $x=\frac{1}{2 \sqrt{2}}$
$\Rightarrow x=-\frac{3}{\sqrt{2}}$ or $x=\frac{1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{4}$
6.

Sol:
(b) $\frac{-3}{2}, \frac{4}{3}$

Let $f(x)=x^{2}+\frac{1}{6} x-2=0$
$\Rightarrow 6 x^{2}+x-12=0$
$\Rightarrow 6 x^{2}+9 x-8 x-12=0$
$\Rightarrow 3 x(2 x+3)-4(2 x+3)=0$
$\Rightarrow(2 x+3)(3 x-4)=0$
$\therefore x=\frac{-3}{2}$ or $x=\frac{4}{3}$
7.

Sol:
(a) $\frac{2}{3}, \frac{-1}{7}$

Let $\mathrm{f}(\mathrm{x})=7 \mathrm{x}^{2}-\frac{11}{3} \mathrm{x}-\frac{2}{3}=0$
$\Rightarrow 21 \mathrm{x}^{2}-11 \mathrm{x}-2=0$
$\Rightarrow 21 \mathrm{x}^{2}-14 \mathrm{x}+3 \mathrm{x}-2=0$
$\Rightarrow 7 \mathrm{x}(3 \mathrm{x}-2)+1(3 \mathrm{x}-2)=0$
$\Rightarrow(3 \mathrm{x}-2)(7 \mathrm{x}+1)=0$
$\Rightarrow \mathrm{x}=\frac{2}{3}$ or $\mathrm{x}=\frac{-1}{7}$
8.

Sol:
(c) $x^{2}-3 x-10$

Given: Sum of zeroes, $\alpha+\beta=3$
Also, product of zeroes, $\alpha \beta=-10$
\therefore Required polynomial $=\mathrm{x}^{2}-(\alpha+\beta)+\alpha \beta=\mathrm{x}^{2}-3 \mathrm{x}-10$
9.

Sol:

(c) $x^{2}-2 x-15$

Here, the zeroes are 5 and -3 .
Let $\alpha=5$ and $\beta=-3$
So, sum of the zeroes, $\alpha+\beta=5+(-3)=2$
Also, product of the zeroes, $\alpha \beta=5 \times(-3)=-15$
The polynomial will be $\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$
\therefore The required polynomial is $\mathrm{x}^{2}-2 \mathrm{x}-15$.
10.

Sol:

Downloaded from www.studiestoday.com

(d) $\mathrm{x}^{2}-\frac{1}{10} \mathrm{x}-\frac{3}{10}$

Here, the zeroes are $\frac{3}{5}$ and $\frac{-1}{2}$
Let $\alpha=\frac{3}{5}$ and $\beta=\frac{-1}{2}$
So, sum of the zeroes, $\alpha+\beta=\frac{3}{5}+\left(\frac{-1}{2}\right)=\frac{1}{10}$
Also, product of the zeroes, $\alpha \beta=\frac{3}{5} \times\left(\frac{-1}{2}\right)=\frac{-3}{10}$
The polynomial will be $\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$.
\therefore The required polynomial is $\mathrm{x}^{2}-\frac{1}{10} \mathrm{x}-\frac{3}{10}$.
11.

Sol:

(b) both negative

Let α and β be the zeroes of $\mathrm{x}^{2}+88 \mathrm{x}+125$.
Then $\alpha+\beta=-88$ and $\alpha \times \beta=125$
This can only happen when both the zeroes are negative.
12.

Sol:

(b) -5

Given: α and β be the zeroes of $\mathrm{x}^{2}+5 \mathrm{x}+8$.
If $\alpha+\beta$ is the sum of the roots and $\alpha \beta$ is the product, then the required polynomial will be $\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$.
13.

Sol:

(c) $\frac{-9}{2}$

Given: α and β be the zeroes of $2 x^{2}+5 \mathrm{x}-9$.
If $\alpha+\beta$ are the zeroes, then $\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$ is the required polynomial.
The polynomial will be $\mathrm{x}^{2}-\frac{5}{2} \mathrm{x}-\frac{9}{2}$.
$\therefore \alpha \beta=\frac{-9}{2}$
14.

Sol:
(d) $\frac{-6}{5}$

Since 2 is a zero of $k x^{2}+3 x+k$, we have:
$\mathrm{k} \times(2)^{2}+3(2)+\mathrm{k}=0$
$\Rightarrow 4 \mathrm{k}+\mathrm{k}+6=0$
$\Rightarrow 5 \mathrm{k}=-6$
$\Rightarrow \mathrm{k}=\frac{-6}{5}$
15.

Sol:
(b) $\frac{5}{4}$

Since -4 is a zero of $(k-1) x^{2}+k x+1$, we have:
$(k-1) \times(-4)^{2}+k \times(-4)+1=0$
$\Rightarrow 16 \mathrm{k}-16-4 \mathrm{k}+1=0$
$\Rightarrow 12 \mathrm{k}-15=0$
5
$\Rightarrow \mathrm{k}=\frac{-15}{12}$
4
$\Rightarrow \mathrm{k}=\frac{5}{4}$
16.

Sol:

(c) $\mathrm{a}=-2, \mathrm{~b}=-6$

Given: -2 and 3 are the zeroes of $x^{2}+(a+1) x+b$.
Now, $(-2)^{2}+(a+1) \times(-2)+b=0 \Rightarrow 4-2 a-2+b=0$
$\Rightarrow \mathrm{b}-2 \mathrm{a}=-2$
Also, $3^{2}+(a+1) \times 3+b=0 \Rightarrow 9+3 a+3+b=0$
$\Rightarrow \mathrm{b}+3 \mathrm{a}=-12$

On subtracting (1) from (2), we get $\mathrm{a}=-2$
$\therefore \mathrm{b}=-2-4=-6 \quad$ [From (1)]
17.

Sol:
(a) $\mathrm{k}=3$

Let α and $\frac{1}{\alpha}$ be the zeroes of $3 x^{2}-8 x+k$.
Then the product of zeroes $=\frac{k}{3}$
$\Rightarrow \alpha \times \frac{1}{\alpha}=\frac{k}{3}$
$\Rightarrow 1=\frac{k}{3}$
$\Rightarrow \mathrm{k}=3$
18.

Sol:
(d) $\frac{-2}{3}$

Let α and β be the zeroes of $\mathrm{kx}^{2}+2 \mathrm{x}+3 \mathrm{k}$.
Then $\alpha+\beta=\frac{-2}{k}$ and $\alpha \beta=3$
$\Rightarrow \alpha+\beta=\alpha \beta$
$\Rightarrow \frac{-2}{k}=3$
$\Rightarrow \mathrm{k}=\frac{-2}{3}$
19.

Sol:

(b) -3

Since α and β be the zeroes of $x^{2}+6 x+2$, we have:
$\alpha+\beta=-6$ and $\alpha \beta=2$
$\therefore\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)=\left(\frac{\alpha+\beta}{\alpha \beta}\right)=\frac{-6}{2}=-3$
20.

Sol:

(a) -1

It is given that α, β and γ are the zeroes of $\mathrm{x}^{3}-6 \mathrm{x}^{2}-\mathrm{x}+30$.
$\therefore(\alpha \beta+\beta \gamma+\gamma \alpha)=\frac{\text { co-efficient of } x}{\text { co-efficient of } x^{3}}=\frac{-1}{1}=-1$
21.

Sol:

(a) -3

Since, α, β and γ are the zeroes of $2 \mathrm{x}^{3}+\mathrm{x}^{2}-13 \mathrm{x}+6$, we have:
$\alpha \beta \gamma=\frac{-(\text { constant term })}{\text { co-efficient of } x^{3}}=\frac{-6}{2}=-3$
22.

Sol:

(c) $\mathrm{x}^{3}-3 \mathrm{x}^{2}-10 \mathrm{x}+24$

Given: α, β and γ are the zeroes of polynomial $\mathrm{p}(\mathrm{x})$.
Also, $(\alpha+\beta+\gamma)=3,(\alpha \beta+\beta \gamma+\gamma \alpha)=-10$ and $\alpha \beta \gamma=-24$

$$
\begin{aligned}
\therefore \mathrm{p}(\mathrm{x}) & =\mathrm{x}^{3}-(\alpha+\beta+\gamma) \mathrm{x}^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) \mathrm{x}-\alpha \beta \gamma \\
& =\mathrm{x}^{3}-3 \mathrm{x}^{2}-10 \mathrm{x}+24
\end{aligned}
$$

23.

Sol:

(a) $\frac{-b}{a}$

Let $\alpha, 0$ and 0 be the zeroes of $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}=0$
Then the sum of zeroes $=\frac{-b}{a}$
$\Rightarrow \alpha+0+0=\frac{-b}{a}$
$\Rightarrow \alpha=\frac{-b}{a}$
Hence, the third zero is $\frac{-b}{a}$.
24.

Sol:

(b) $\frac{c}{a}$

Let α, β and 0 be the zeroes of $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$.
Then, sum of the products of zeroes taking two at a time is given by
$(\alpha \beta+\beta \times 0+\alpha \times 0)=\frac{c}{a}$
$\Rightarrow \alpha \beta=\frac{c}{a}$
\therefore The product of the other two zeroes is $\frac{c}{a}$.
25.

Sol:
(c) $1-\mathrm{a}+\mathrm{b}$

Since -1 is a zero of $x^{3}+a x^{2}+b x+c$, we have:
$(-1)^{3}+\mathrm{a} \times(-1)^{2}+\mathrm{b} \times(-1)+\mathrm{c}=0$
$\Rightarrow \mathrm{a}-\mathrm{b}+\mathrm{c}+1=0$
$\Rightarrow \mathrm{c}=1-\mathrm{a}+\mathrm{b}$
Also, product of all zeroes is given by
$\alpha \beta \times(-1)=-\mathrm{c}$
$\Rightarrow \alpha \beta=\mathrm{c}$
$\Rightarrow \alpha \beta=1-\mathrm{a}+\mathrm{b}$
26.

Sol:

(d) 2

Since α and β are the zeroes of $2 \mathrm{x}^{2}+5 \mathrm{x}+\mathrm{k}$, we have:
$\alpha+\beta=\frac{-5}{2}$ and $\alpha \beta=\frac{k}{2}$
Also, it is given that $\alpha^{2}+\beta^{2}+\alpha \beta=\frac{21}{4}$.
$\Rightarrow(\alpha+\beta)^{2}-\alpha \beta=\frac{21}{4}$

$$
\begin{aligned}
& \Rightarrow\left(\frac{-5}{2}\right)^{2}-\frac{k}{2}=\frac{21}{4} \\
& \Rightarrow \frac{25}{4}-\frac{k}{2}=\frac{21}{4} \\
& \Rightarrow \frac{k}{2}=\frac{25}{4}-\frac{21}{4}=\frac{4}{4}=1 \\
& \Rightarrow \mathrm{k}=2
\end{aligned}
$$

27.

Sol:
(c) either $\mathrm{r}(\mathrm{x})=0$ or $\operatorname{deg} \mathrm{r}(\mathrm{x})<\operatorname{deg} \mathrm{g}(\mathrm{x})$

By division algorithm on polynomials, either $\mathrm{r}(\mathrm{x})=0$ or $\operatorname{deg} \mathrm{r}(\mathrm{x})<\operatorname{deg} \mathrm{g}(\mathrm{x})$.
28.

Sol:
(d) $5 x^{2}$ is a monomial.
$5 x^{2}$ consists of one term only. So, it is a monomial.

Exercise - Formative Assesment

1.

Sol:

(c) $3,-1$

Here, $p(x)=x^{2}-2 x-3$
Let $x^{2}-2 x-3=0$
$\Rightarrow \mathrm{x}^{2}-(3-1) \mathrm{x}-3=0$
$\Rightarrow \mathrm{x}^{2}-3 \mathrm{x}+\mathrm{x}-3=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-3)+1(\mathrm{x}-3)=0$
$\Rightarrow(\mathrm{x}-3)(\mathrm{x}+1)=0$
$\Rightarrow \mathrm{x}=3,-1$
2.

Sol:

(a) -1

Here, $p(x)=x^{3}-6 x^{2}-x+3$
Comparing the given polynomial with $\mathrm{x}^{3}-(\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}) \mathrm{x}^{2}+(\boldsymbol{\alpha} \boldsymbol{\beta}+\boldsymbol{\beta} \boldsymbol{\gamma}+\gamma \boldsymbol{\alpha}) \mathrm{x}-\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma}$, we get: $(\boldsymbol{\alpha} \boldsymbol{\beta}+\boldsymbol{\beta} \boldsymbol{\gamma}+\boldsymbol{\gamma} \boldsymbol{\alpha})=-1$
3.

Sol:

(c) $\frac{2}{3}$

Here, $p(x)=x^{2}-2 x+3 k$
Comparing the given polynomial with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, we get:
$\mathrm{a}=1, \mathrm{~b}=-2$ and $\mathrm{c}=3 \mathrm{k}$
It is given that $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are the roots of the polynomial.
$\therefore \alpha+\beta=\frac{-b}{a}$
$\Rightarrow \alpha+\beta=-\left(\frac{-2}{1}\right)$
$\Rightarrow \boldsymbol{\alpha}+\boldsymbol{\beta}=2$
Also, $\boldsymbol{\alpha} \boldsymbol{\beta}=\frac{\boldsymbol{c}}{\boldsymbol{a}}$
$\Rightarrow \alpha \beta=\frac{3 k}{1}$
$\Rightarrow \boldsymbol{\alpha} \boldsymbol{\beta}=3 \mathrm{k}$
Now, $\boldsymbol{\alpha}+\boldsymbol{\beta}=\boldsymbol{\alpha} \boldsymbol{\beta}$
$\Rightarrow 2=3 \mathrm{k} \quad$ [Using (i) and (ii)]
$\Rightarrow \mathrm{k}=\frac{2}{3}$
4.

Sol:

(c) $\frac{\mathbf{5}}{\mathbf{2}}$

Let the zeroes of the polynomial be $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha}+4$
Here, $p(x)=4 x^{2}-8 k x+9$
Comparing the given polynomial with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, we get:
$\mathrm{a}=4, \mathrm{~b}=-8 \mathrm{k}$ and $\mathrm{c}=9$

Now, sum of the roots $=\frac{\boldsymbol{b}}{\boldsymbol{a}}$
$\Rightarrow \boldsymbol{\alpha}+\boldsymbol{\alpha}+4=\frac{-(-8)}{4}$
$\Rightarrow 2 \boldsymbol{\alpha}+4=2 \mathrm{k}$
$\Rightarrow \boldsymbol{\alpha}+2=\mathrm{k}$
$\Rightarrow \boldsymbol{\alpha}=(\mathrm{k}-2)$
Also, product of the roots, $\boldsymbol{\alpha} \boldsymbol{\beta}=\frac{\boldsymbol{c}}{\boldsymbol{a}}$
$\Rightarrow \boldsymbol{\alpha}(\alpha+4)=\frac{9}{4}$
$\Rightarrow(\mathrm{k}-2)(\mathrm{k}-2+4)=\frac{9}{4}$
$\Rightarrow(\mathrm{k}-2)(\mathrm{k}+2)=\frac{9}{4}$
$\Rightarrow \mathrm{k}^{2}-4=\frac{9}{4}$
$\Rightarrow 4 \mathrm{k}^{2}-16=9$
$\Rightarrow 4 \mathrm{k}^{2}=25$
$\Rightarrow \mathrm{k}^{2}=\frac{25}{4}$
$\Rightarrow \mathrm{k}=\frac{5}{2} \quad(\because \mathrm{k}>0)$
5.

Sol:

Here, $p(x)=x^{2}+2 x-195$
Let $\mathrm{p}(\mathrm{x})=0$
$\Rightarrow \mathrm{x}^{2}+(15-13) \mathrm{x}-195=0$
$\Rightarrow x^{2}+15 x-13 x-195=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+15)-13(\mathrm{x}+15)=0$
$\Rightarrow(\mathrm{x}+15)(\mathrm{x}-13)=0$
$\Rightarrow \mathrm{x}=-15,13$
Hence, the zeroes are -15 and 13 .
6.

Sol:

$(a+9) x^{2}-13 x+6 a=0$
Here, $\mathrm{A}=\left(\mathrm{a}^{2}+9\right), \mathrm{B}=13$ and $\mathrm{C}=6 \mathrm{a}$
Let $\boldsymbol{\alpha}$ and $\frac{\mathbf{1}}{\boldsymbol{\alpha}}$ be the two zeroes.
Then, product of the zeroes $=\frac{\boldsymbol{C}}{\boldsymbol{A}}$
$\Rightarrow \alpha \cdot \frac{1}{\alpha}=\frac{6 a}{a^{2}+9}$
$\Rightarrow 1=\frac{6 a}{a^{2}+9}$

Downloaded from www.studiestoday.com

$\Rightarrow \mathrm{a}^{2}+9=6 \mathrm{a}$
$\Rightarrow a^{2}-6 a+9=0$
$\Rightarrow \mathrm{a}^{2}-2 \times \mathrm{a} \times 3+3^{2}=0$
$\Rightarrow(a-3)^{2}=0$
$\Rightarrow \mathrm{a}-3=0$
$\Rightarrow a=3$
7.

Sol:

It is given that the two roots of the polynomial are 2 and -5 .
Let $\boldsymbol{\alpha}=2$ and $\boldsymbol{\beta}=-5$
Now, the sum of the zeroes, $\boldsymbol{\alpha}+\boldsymbol{\beta}=2+(-5)=-3$
Product of the zeroes, $\boldsymbol{\alpha} \boldsymbol{\beta}=2 \times(-5)=-15$
\therefore Required polynomial $=\mathrm{x}^{2}-(\boldsymbol{\alpha}+\boldsymbol{\beta}) \mathrm{x}+\boldsymbol{\alpha} \boldsymbol{\beta}$
$=x^{2}-(-3) x+10$
$=x^{2}+3 x-10$
8.

Sol:

The given polynomial $=x^{3}-3 x^{2}+x+1$ and its roots are $(a-b)$, a and $(a+b)$. Comparing the given polynomial with $\mathrm{Ax}^{3}+\mathrm{Bx}^{2}+\mathrm{Cx}+\mathrm{D}$, we have:
$\mathrm{A}=1, \mathrm{~B}=-3, \mathrm{C}=1$ and $\mathrm{D}=1$
Now, $(\mathrm{a}-\mathrm{b})+\mathrm{a}+(\mathrm{a}+\mathrm{b})=\frac{-B}{A}$
$\Rightarrow 3 \mathrm{a}=-\frac{-3}{1}$
$\Rightarrow \mathrm{a}=1$
Also, $(\mathrm{a}-\mathrm{b}) \times \mathrm{a} \times(\mathrm{a}+\mathrm{b})=\frac{-\boldsymbol{D}}{\boldsymbol{A}}$
$\Rightarrow \mathrm{a}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)=\frac{-1}{1}$
$\Rightarrow 1\left(1^{2}-\mathrm{b}^{2}\right)=-1$
$\Rightarrow 1-\mathrm{b}^{2}=-1$
$\Rightarrow b^{2}=2$
$\Rightarrow \mathrm{b}= \pm \sqrt{2}$
$\therefore \mathrm{a}=1$ and $\mathrm{b}= \pm \sqrt{2}$
9.

Sol:

Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+4 \mathrm{x}^{2}-3 \mathrm{x}-18$
Now, $p(2)=2^{3}+4 \times 2^{2}-3 \times 2-18=0$

Downloaded from www.studiestoday.com

$\therefore 2$ is a zero of $\mathrm{p}(\mathrm{x})$.
10.

Sol:

Given:
Sum of the zeroes $=-5$
Product of the zeroes $=6$
\therefore Required polynomial $=\mathrm{x}^{2}-($ sum of the zeroes $) \mathrm{x}+$ product of the zeroes
$=x^{2}-(-5) x+6$
$=x^{2}+5 x+6$
11.

Sol:

Let $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ are the zeroes of the required polynomial.
Then we have:

$$
\begin{aligned}
& \boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}
\end{aligned}=3+5+(-2)=6, ~ \begin{aligned}
& \boldsymbol{\alpha} \boldsymbol{\beta}+\boldsymbol{\beta} \boldsymbol{\gamma}+\gamma \boldsymbol{\alpha}=3 \times 5+5 \times(-2)+(-2) \times 3=-1 \\
& \text { and } \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma}=3 \times 5 \times-2=-30 \\
& \text { Now, } \mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}^{2}(\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma})+\mathrm{x}(\boldsymbol{\alpha} \boldsymbol{\beta}+\boldsymbol{\beta} \boldsymbol{\gamma}+\boldsymbol{\gamma} \boldsymbol{\alpha})-\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \\
&=\mathrm{x}^{3}-\mathrm{x}^{2} \times 6+\mathrm{x} \times(-1)-(-30) \\
&=\mathrm{x}^{3}-6 \mathrm{x}^{2}-\mathrm{x}+30
\end{aligned}
$$

So, the required polynomial is $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-6 \mathrm{x}^{2}-\mathrm{x}+30$.
12.

Sol:

Given: $p(x)=x^{3}+3 x^{2}-5 x+4$
Now, $p(2)=2^{3}+3\left(2^{2}\right)-5(2)+4$

$$
\begin{aligned}
& =8+12-10+4 \\
& =14
\end{aligned}
$$

13.

Sol:

Given: $f(x)=x^{3}+4 x^{2}+x-6$
Now, $f(-2)=(-2)^{3}+4(-2)^{2}+(-2)-6$

$$
\begin{aligned}
& =-8+16-2-6 \\
& =0
\end{aligned}
$$

$\therefore(\mathrm{x}+2)$ is a factor of $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+4 \mathrm{x}^{2}+\mathrm{x}-6$.
14.

Sol:

Given: $p(x)=6 x^{3}+3 x^{2}-5 x+1$

$$
=6 x^{3}-(-3) x^{2}+(-5) x-1
$$

Comparing the polynomial with $\mathrm{x}^{3}-\mathrm{x}^{2}(\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma})+\mathrm{x}(\boldsymbol{\alpha} \boldsymbol{\beta}+\boldsymbol{\beta} \boldsymbol{\gamma}+\boldsymbol{\gamma} \boldsymbol{\alpha})-\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma}$, we get:
$\boldsymbol{\alpha} \boldsymbol{\beta}+\boldsymbol{\beta} \boldsymbol{\gamma}+\boldsymbol{\gamma} \boldsymbol{\alpha}=-5$
and $\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma}=-1$
$\therefore\left(\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\right)$
$=\left(\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}\right)$
$=\left(\frac{-5}{-1}\right)$
$=5$
15.

Sol:

Given: $\mathrm{x}^{2}-5 \mathrm{x}+\mathrm{k}$
The co-efficients are $\mathrm{a}=1, \mathrm{~b}=-5$ and $\mathrm{c}=\mathrm{k}$.
$\therefore \boldsymbol{\alpha}+\boldsymbol{\beta}=\frac{-\boldsymbol{b}}{\boldsymbol{a}}$
$\Rightarrow \alpha+\beta=\frac{(-5)}{1}$
$\Rightarrow \boldsymbol{\alpha}+\boldsymbol{\beta}=5$
Also, $\boldsymbol{\alpha}-\boldsymbol{\beta}=1$
From (1) and (2), we get:
$2 \boldsymbol{\alpha}=6$
$\Rightarrow \boldsymbol{\alpha}=3$
Putting the value of $\boldsymbol{\alpha}$ in (1), we get $\boldsymbol{\beta}=2$.
Now, $\boldsymbol{\alpha} \boldsymbol{\beta}=\frac{\boldsymbol{c}}{\boldsymbol{a}}$
$\Rightarrow 3 \times 2=\frac{k}{1}$
$\therefore \mathrm{k}=6$
16.

Sol:

Let $\mathrm{t}=\mathrm{x}^{2}$
So, $f(t)=t^{2}+4 t+6$
Now, to find the zeroes, we will equate $f(t)=0$
$\Rightarrow \mathrm{t}^{2}+4 \mathrm{t}+6=0$

Now, $t=\frac{-4 \pm \sqrt{16-24}}{2}$

$$
=\frac{-4 \pm \sqrt{-8}}{2}
$$

$$
=-2 \pm \sqrt{-2}
$$

i.e., $x^{2}=-2 \pm \sqrt{-2}$
$\Rightarrow \mathrm{x}=\sqrt{-2 \pm \sqrt{-2}}$, which is not a real number.
The zeroes of a polynomial should be real numbers.
\therefore The given $\mathrm{f}(\mathrm{x})$ has no zeroes.
17.

Sol:

$p(x)=x^{3}-6 x^{2}+11 x-6$ and its factor, $x+3$
Let us divide $\mathrm{p}(\mathrm{x})$ by $(\mathrm{x}-3)$.
Here, $x^{3}-6 x^{2}+11 x-6=(x-3)\left(x^{2}-3 x+2\right)$

$$
\begin{aligned}
& =(x-3)\left[\left(x^{2}-(2+1) x+2\right]\right. \\
& =(x-3)\left(x^{2}-2 x-x+2\right) \\
& =(x-3)[x(x-2)-1(x-2)] \\
& =(x-3)(x-1)(x-2)
\end{aligned}
$$

\therefore The other two zeroes are 1 and 2 .
18.

Sol:

Given: $p(x)=2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$ and the two zeroes, $\sqrt{2}$ and $-\sqrt{2}$
So, the polynomial is $(x+\sqrt{2})(x-\sqrt{2})=x^{2}-2$.
Let us divide $p(x)$ by $\left(x^{2}-2\right)$
Here, $2 \mathrm{x}^{4}-3 \mathrm{x}^{3}-3 \mathrm{x}^{2}+6 \mathrm{x}-2=\left(\mathrm{x}^{2}-2\right)\left(2 \mathrm{x}^{2}-3 \mathrm{x}+1\right)$

$$
\begin{aligned}
& =\left(x^{2}-2\right)\left[\left(2 x^{2}-(2+1) x+1\right]\right. \\
& =\left(x^{2}-2\right)\left(2 x^{2}-2 x-x+1\right) \\
& =\left(x^{2}-2\right)[(2 x(x-1)-1(x-1)] \\
& =\left(x^{2}-2\right)(2 x-1)(x-1)
\end{aligned}
$$

The other two zeroes are $\frac{1}{2}$ and 1 .
19.

Sol:

Given: $p(x)=3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
Dividing $\mathrm{p}(\mathrm{x})$ by $\left(\mathrm{x}^{2}+3 \mathrm{x}+1\right)$, we have:

$$
\begin{gathered}
x^{2}+3 x+1 \begin{array}{l}
3 x^{4}+5 x^{3}-7 x^{2}+2 x+2 \\
3 x^{4}+9 x^{3}+3 x^{2} \\
-\quad-
\end{array} \\
\begin{array}{c}
-4 x^{3}-10 x^{2}+2 x+2 \\
-4 x^{3}-12 x^{2}-4 x \\
+\quad+\quad+ \\
+2 x^{2}+6 x+2 \\
2 x^{2}+6 x+2
\end{array} \\
\frac{-\quad-\quad-}{x}
\end{gathered}
$$

\therefore The quotient is $3 \mathrm{x}^{2}-4 \mathrm{x}+2$
20.

Sol:
Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{kx}+3$
Now, $\mathrm{p}(3)=(3)^{3}+2(3)^{2}+3 \mathrm{k}+3$

$$
\begin{gathered}
=27+18+3 \mathrm{k}+3 \\
=48+3 \mathrm{k}
\end{gathered}
$$

It is given that the reminder is 21

$$
\therefore 3 \mathrm{k}+48=21
$$

$\Rightarrow 3 \mathrm{k}=-27$
$\Rightarrow \mathrm{k}=-9$

