Downloaded from www.studiestoday.com

Exercise - 14.1

1.

Sol:

Let AB be the tower standing vertically on the ground and O be the position of the obsrever we now have:

$$
O A=20 \mathrm{~m}, \angle O A B=90^{\circ} \text { and } \angle A O B=60^{\circ}
$$

Let
$A B=h m$

Now, in the right $\triangle O A B$, we have:
$\frac{A B}{O A}-\tan 60^{\circ}=\sqrt{3}$
$\Rightarrow \frac{h}{20}=\sqrt{3}$
$\Rightarrow h=20 \sqrt{3}=(20 \times 1.732)=36.64$
Hence, the height of the pole is 34.64 m .
2.

Sol:

Let OX be the horizontal ground and A be the position of the kite.
Also, let O be the position of the observer and OA be the thread.
Now, draw $A B \perp O X$.
We have:

$$
\angle B O A=60^{\circ}, O A=75 \mathrm{~m} \text { and } \angle O B A=90^{\circ}
$$

Height of the kite from the ground $=A B=75 \mathrm{~m}$
Length of the string $O A=x m$

In the right $\triangle O B A$, we have:
$\frac{A B}{O A}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\Rightarrow \frac{75}{x}=\frac{\sqrt{3}}{2}$
$\Rightarrow x=\frac{75 \times 2}{\sqrt{3}}=\frac{150}{1.732}=86.6 \mathrm{~m}$
Hence, the length of the string is 86.6 m
3.

Sol:

Let CE and AD be the heights of the observer and the chimney, respectively. We have,
$B D=C E=1.5 \mathrm{~m}, B C=D E=30 \mathrm{~m}$ and $\angle A C B=60^{\circ}$
In $\triangle A B C$
$\tan 60^{\circ}=\frac{A B}{B C}$
$\Rightarrow \sqrt{3}=\frac{A D-B D}{30}$
$\Rightarrow A D-1.5=30 \sqrt{3}$
$\Rightarrow A D=30 \sqrt{3}+1.5$
$\Rightarrow A D=30 \times 1.732+1.5$
$\Rightarrow A D=51.96+1.5$

Downloaded from www.studiestoday.com

$\Rightarrow A D=53.46 \mathrm{~m}$
So, the height of the chimney is 53.46 m (approx).
4.

Sol:

Let the height of the tower be AB .
We have.
$A C=5 m, A D=20 \mathrm{~m}$
Let the angle of elevation of the top of the tower (i.e. $\angle A C B)$ from point C be θ.
Then,
the angle of elevation of the top of the tower (i.e. Z ADB) from point D $=\left(90^{\circ}-\theta\right)$
Now, in $\triangle A B C$
$\tan \theta=\frac{A B}{A C}$
$\Rightarrow \tan \theta=\frac{A B}{5}$
Also, in $\triangle A B D$,
$\cot \left(90^{\circ}-\theta\right)=\frac{A D}{A B}$
$\Rightarrow \tan \theta=\frac{20}{A B}$
From (i) and (ii), we get

$$
\begin{aligned}
& \frac{A B}{5}=\frac{20}{A B} \\
& \Rightarrow A B^{2}=100 \\
& \Rightarrow A B=\sqrt{100} \\
& \therefore A B=10 \mathrm{~m}
\end{aligned}
$$

So, the height of the tower is 10 m .
5.

Sol:

Let BC and CD be the heights of the tower and the flagstaff, respectively.
We have,
$A B=120 \mathrm{~m}, \angle B A C=45^{\circ}, \angle B A D=60^{\circ}$
Let $C D=x$
In $\triangle A B C$,
$\tan 45^{\circ}=\frac{B C}{A B}$
$\Rightarrow 1=\frac{B C}{120}$
$\Rightarrow B C=120 \mathrm{~m}$
Now, in $\triangle A B D$,
$\tan 60^{\circ}=\frac{B D}{A B}$
$\Rightarrow \sqrt{3}=\frac{B C+C D}{120}$
$\Rightarrow B C+C D=120 \sqrt{3}$
$\Rightarrow 120+x=120 \sqrt{3}$
$\Rightarrow x=120 \sqrt{3}-120$
$\Rightarrow x=120(\sqrt{3}-1)$
$\Rightarrow x=120(1.732-1)$
$\Rightarrow x=120(0.732)$
$\Rightarrow x=87.84 \approx 87.8 \mathrm{~m}$
So, the height of the flagstaff is 87.8 m .
6.

Sol:

Let BC be the tower and CD be the water tank.
We have,
$A B=40 \mathrm{~m}, \angle B A C=30^{\circ}$ and $\angle B A D=45^{\circ}$
In $\triangle A B D$,
$\tan 45^{\circ}=\frac{B D}{A B}$
$\Rightarrow 1=\frac{B D}{40}$
$\Rightarrow B D=40 \mathrm{~m}$
Now, in $\triangle A B C$,
$\tan 30^{\circ}=\frac{B C}{A B}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{B C}{40}$
$\Rightarrow B C=\frac{40}{\sqrt{3}}$
$\Rightarrow B C=\frac{40}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow B C=\frac{40 \sqrt{3}}{3} m$
(i) The height of the tower, $B C=\frac{40 \sqrt{3}}{3}=\frac{40 \times 1.73}{3}=23.067 \approx 23.1 \mathrm{~m}$
(ii) The depth of the tank, $C D=(B D-B C)=(40-23.1)=16.9 m$
7.

Sol:

Let AB be the tower and BC be the flagstaff, We have,
$B C=6 m, \angle A O B=30^{\circ}$ and $\angle A O C-60^{\circ}$
Let $A B=h$
In $\triangle A O B$,

$$
\begin{align*}
& \tan 30^{\circ}=\frac{A B}{O A} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{O A} \\
& \Rightarrow O A=h \sqrt{3} \tag{i}
\end{align*}
$$

Now, in $\triangle A O C$,

$$
\tan 60^{\circ}=\frac{A C}{O A}
$$

$$
\Rightarrow \sqrt{3}=\frac{A B+B C}{h \sqrt{3}}
$$

[Using (i)]
$\Rightarrow 3 h=h+6$
$\Rightarrow 3 h-h=6$
$\Rightarrow 2 h=6$
$\Rightarrow h=\frac{6}{2}$
$\Rightarrow h=3 m$
So, the height of the tower is 3 m .

Downloaded from www.studiestoday.com

8.

Sol:
Let AC be the pedestal and BC be the statue such that $B C=1.46 \mathrm{~m}$.
We have:
$\angle A D C=45^{\circ}$ and $\angle A D B=60^{\circ}$
Let:
$A C=h m$ and $A D=x m$

In the right $\triangle A D C$, we have:
$\frac{A C}{A D}=\tan 45^{\circ}=1$
$\Rightarrow \frac{h}{x}=1$
$\Rightarrow h=x$
Or,
$x=h$
Now, in the right $\triangle A D B$, we have:
$\frac{A B}{A D}=\tan 60^{\circ}=\sqrt{3}$
$\Rightarrow \frac{h+1.46}{x}=\sqrt{3}$
On putting $x=h$ in the above equation, we get
$\frac{h+1.46}{h}=\sqrt{3}$
$\Rightarrow h+1.46=\sqrt{3} h$
$\Rightarrow h(\sqrt{3}-1)=1.46$
$\Rightarrow h=\frac{1.46}{(\sqrt{3}-1)}=\frac{1.46}{0.73}=2 \mathrm{~m}$
Hence, the height of the pedestal is 2 m .
9.

Sol:
Let AB be the unfinished tower, AC be the raised tower and O be the point of observation We have:
$O A=75 \mathrm{~m}, \angle A O B=30^{\circ}$ and $\angle A O C=60^{\circ}$
Let $A C=H \mathrm{~m}$ such that $B C=(H-h) m$.

In $\triangle A O B$, we have:

$$
\begin{aligned}
& \frac{A B}{O A}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \\
& \Rightarrow \frac{h}{75}=\frac{1}{\sqrt{3}} \\
& \Rightarrow h=\frac{75}{\sqrt{3}} m=\frac{75 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=25 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

In $\triangle A O C$, we have:
$\frac{A C}{O A}=\tan 60^{\circ}=\sqrt{3}$
$\Rightarrow \frac{H}{75}=\sqrt{3}$
$\Rightarrow H=75 \sqrt{3} m$
\therefore Required height $=(H-h)=(75 \sqrt{3}-25 \sqrt{3})=50 \sqrt{3} m=86.6 m$
10.

Sol:

Let OX be the horizontal plane, AD be the tower and CD be the vertical flagpole We have:

$$
A B=9 m, \angle D B A=30^{\circ} \text { and } \angle C B A=60^{\circ}
$$

Let:

$$
A D=h m \text { and } C D=x m
$$

In the right $\triangle A B D$, we have:
$\frac{A D}{A B}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{h}{9}=\frac{1}{\sqrt{3}}$
$\Rightarrow h=\frac{9}{\sqrt{3}}=5.19 \mathrm{~m}$
Now, in the right $\triangle A B C$, we have
$\frac{A C}{B A}=\tan 60^{\circ}=\sqrt{3}$
$\Rightarrow \frac{h+x}{9}=\sqrt{3}$
$\Rightarrow h+x=9 \sqrt{3}$
By putting $h=\frac{9}{\sqrt{3}}$ in the above equation, we get:
$\frac{9}{\sqrt{3}}+x=9 \sqrt{3}$
$\Rightarrow x=9 \sqrt{3}-\frac{9}{\sqrt{3}}$
$\Rightarrow x=\frac{27-9}{\sqrt{3}}=\frac{18}{\sqrt{3}}=\frac{18}{1.73}=10.4$
Thus, we have:
Height of the flagpole $=10.4 \mathrm{~m}$
Height of the tower $=5.19 \mathrm{~m}$
11.

Sol:

Let AB and CD be the equal poles; and BD be the width of the road.
We have,

$$
\angle A O B=60^{\circ} \text { and } \angle C O D=60^{\circ}
$$

In $\triangle A O B$,
$\tan 60^{\circ}=\frac{A B}{B O}$
$\Rightarrow \sqrt{3}=\frac{A B}{B O}$
$\Rightarrow B O=\frac{A B}{\sqrt{3}}$
Also, in $\triangle C O D$,

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{C D}{D O} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{C D}{D O} \\
& \Rightarrow D O=\sqrt{3} C D \\
& \text { As, } B D=80 \\
& \Rightarrow B O+D O=80 \\
& \Rightarrow \frac{A B}{\sqrt{3}}+\sqrt{3} C D=80 \\
& \Rightarrow \frac{A B}{\sqrt{3}}+\sqrt{3} A B=80 \\
& \Rightarrow A B\left(\frac{1}{\sqrt{3}}+\sqrt{3}\right)=80 \\
& \Rightarrow A B\left(\frac{1+3}{\sqrt{3}}\right)=80 \\
& \Rightarrow A B\left(\frac{4}{\sqrt{3}}\right)=80
\end{aligned}
$$

$\Rightarrow A B=\frac{80+\sqrt{3}}{4}$
$\Rightarrow A B=20 \sqrt{3} m$
Also, $B O=\frac{A B}{\sqrt{3}}=\frac{20 \sqrt{3}}{\sqrt{3}}=20 \mathrm{~m}$
So, $D O=80-20=60 \mathrm{~m}$
Hence, the height of each pole is $20 \sqrt{3} \mathrm{~m}$ and point P is at a distance of 20 m from left pole ad 60 m from right pole.
12.

Sol:

Let $C D$ be the tower and A and B be the positions of the two men standing on the opposite sides.

Thus, we have:
$\angle D A C=30^{\circ}, \angle D B C=45^{\circ}$ and $C D=50 \mathrm{~m}$
Let $A B=x m$ and $B C=y m$ such that $A C=(x-y) m$.

In the right $\triangle D B C$, we have:

$$
\begin{aligned}
& \frac{C D}{B C}=\tan 45^{\circ}=1 \\
& \Rightarrow \frac{50}{y}=1 \\
& \Rightarrow y=50 \mathrm{~m}
\end{aligned}
$$

In the right $\triangle A C D$, we have:

$$
\begin{aligned}
& \frac{C D}{A C}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \\
& \Rightarrow \frac{50}{(x-y)}=\frac{1}{\sqrt{3}} \\
& \Rightarrow x-y=50 \sqrt{3}
\end{aligned}
$$

On putting $y=50$ in the above equation, we get:
$x-50=50 \sqrt{3}$
$\Rightarrow x=50+50 \sqrt{3}=50(\sqrt{3}+1)=136.6 \mathrm{~m}$
\therefore Distance between the two men $=A B=x=136.6 \mathrm{~m}$
13.

Sol:

Let PQ be the tower
We have,
$P Q=100 \mathrm{~m}, \angle P Q R=30^{\circ}$ and $\angle P B Q=45^{\circ}$
In $\triangle A P Q$,
$\tan 30^{\circ}=\frac{P Q}{A P}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{100}{A P}$
$\Rightarrow A P=100 \sqrt{3} \mathrm{~m}$
Also, in $\triangle B P Q$,
$\tan 45^{\circ}=\frac{P Q}{B P}$
$\Rightarrow 1=\frac{100}{B P}$
$\Rightarrow B P=100 \mathrm{~m}$
Now, $A B=A P+B P$
$=100 \sqrt{3}+100$
$=100(\sqrt{3}+1)$
$=100 \times(1.73+1)$
$=100 \times 2.73$
$=273 \mathrm{~m}$
So, the distance between the cars is 273 m .
14.

Sol:

Let PQ be the tower.
We have,
$\angle P B Q=60^{\circ}$ and $\angle P A Q=30^{\circ}$
Let $P Q=h, A B=x$ and $B Q=y$
In $\triangle A P Q$,
$\tan 30^{\circ}=\frac{P Q}{A Q}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x+y}$
$\Rightarrow x+y=h \sqrt{3}$
Also, in $\triangle B P Q$,
$\tan 60^{\circ}=\frac{P Q}{B Q}$
$\Rightarrow \sqrt{3}=\frac{h}{y}$
$\Rightarrow h=y \sqrt{3}$
Substituting $h=y \sqrt{3}$ in (i), we get
$x+y=\sqrt{3}(y \sqrt{3})$
$\Rightarrow x+y=3 y$
$\Rightarrow 3 y-y=x$
$\Rightarrow 2 y=x$
$\Rightarrow y=\frac{x}{2}$
As, speed of the car from A to $\mathrm{B}=\frac{A B}{6}=\frac{x}{6}$ units $/ \mathrm{sec}$

So, the time taken to reach the foot of the tower i.e. Q from $\mathrm{B}=\frac{B Q}{\text { speed }}$
$=\frac{y}{\left(\frac{x}{6}\right)}$
$=\frac{\left(\frac{x}{2}\right)}{\left(\frac{x}{6}\right)}$
$=\frac{6}{2}$
$=3 \mathrm{sec}$
So, the time taken to reach the foot of the tower from the given point is 3 seconds.
15.

Sol:

Let $\mathrm{PQ}=\mathrm{h} \mathrm{m}$ be the height of the TV tower and $\mathrm{BQ}=\mathrm{x} \mathrm{m}$ be the width of the canal. We have,
$A B=20 m, \angle P A Q=30^{\circ}, \angle B Q=x$ and $P Q=h$
In $\triangle P B Q$,
$\tan 60^{\circ}=\frac{P Q}{B Q}$
$\Rightarrow \sqrt{3}=\frac{h}{x}$
$\Rightarrow h=x \sqrt{3}$
Again in $\triangle A P Q$,

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{P Q}{A Q} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{A B+B Q} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{x \sqrt{3}}{20+3} \\
& \Rightarrow 3 x=20+x \\
& \Rightarrow 3 x-x=20 \\
& \Rightarrow 2 x=20 \\
& \Rightarrow x=\frac{20}{2} \\
& \Rightarrow x=10 \mathrm{~m}
\end{aligned}
$$

[Using (i)]

Substituting $x=10$ in (i), we get
$h=10 \sqrt{3} m$
So, the height of the TV tower is $10 \sqrt{3} \mathrm{~m}$ and the width of the canal is 10 m .
16.

Sol:

Let AB be thee building and PQ be the tower.
We have,
$P Q=60 \mathrm{~m}, \angle A P B=30^{\circ}, \angle P A Q=60^{\circ}$
In $\triangle A P Q$,
$\tan 60^{\circ}=\frac{P Q}{A P}$
$\Rightarrow \sqrt{3}=\frac{60}{A P}$
$\Rightarrow A P=\frac{60}{\sqrt{3}}$
$\Rightarrow A P=\frac{60 \sqrt{3}}{3}$
$\Rightarrow A P=20 \sqrt{3} \mathrm{~m}$
Now, in $\triangle A B P$,
$\tan 30^{\circ}=\frac{A B}{A P}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{A B}{20 \sqrt{3}}$
$\Rightarrow A B=\frac{20 \sqrt{3}}{\sqrt{3}}$
$\therefore A B=20 \mathrm{~m}$
So, the height of the building is 20 m
17.

Sol:

Let DE be the first tower and $A B$ be the second tower.
Now, $\mathrm{AB}=90 \mathrm{~m}$ and $\mathrm{AD}=60 \mathrm{~m}$ such that $\mathrm{CE}=60 \mathrm{~m}$ and $\angle B E C=30^{\circ}$.
Let $\mathrm{DE}=\mathrm{hm}$ such that $\mathrm{AC}=\mathrm{h} \mathrm{m}$ and $\mathrm{BC}=(90-h) m$.

In the right $\triangle B C E$, we have:
$\frac{B C}{C E}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{(90-h)}{60}=\frac{1}{\sqrt{3}}$
$\Rightarrow(90-h) \sqrt{3}=60$
$\Rightarrow h \sqrt{3}=90 \sqrt{3}-60$
$\Rightarrow h=90-\frac{60}{\sqrt{3}}=90-34.64=55.36 \mathrm{~m}$
\therefore Height of the first tower $=D E=h=55.36 \mathrm{~m}$
18.

Sol:

Let PQ be the chimney and $A B$ be the tower.
We have,

$$
A B=40 \mathrm{~m}, \angle A P B=30^{\circ} \text { and } \angle P A Q=60^{\circ}
$$

In $\triangle A B P$,
$\tan 30^{\circ}=\frac{A B}{A P}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{40}{A P}$
$\Rightarrow A P=40 \sqrt{3} \mathrm{~m}$
Now, in $\triangle A P Q$,
$\tan 60^{\circ}=\frac{P Q}{A P}$
$\Rightarrow \sqrt{3}=\frac{P Q}{40 \sqrt{3}}$
$\therefore P Q=120 \mathrm{~m}$
So, the height of the chimney is 120 m .
Hence, the height of the chimney meets the pollution norms.
In this question, management of air pollution has been shown
19.

Sol:

Downloaded from www.studiestoday.com

Let AB be the $7-\mathrm{m}$ high building and CD be the cable tower,
We have,
$A B=7 \mathrm{~m}, \angle C A E=60^{\circ}, \angle D A E=\angle A D B=45^{\circ}$
Also, $D E=A B=7 \mathrm{~m}$
In $\triangle A B D$,
$\tan 45^{\circ}=\frac{A B}{B D}$
$\Rightarrow 1=\frac{7}{B D}$
$\Rightarrow B D=7 m$
So, $A E=B D=7 m$
Also, in $\triangle A C E$,

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{C E}{A E} \\
& \Rightarrow \sqrt{3}=\frac{C E}{7} \\
& \Rightarrow C E=7 \sqrt{3} m
\end{aligned}
$$

Now, $C D=C E+D E$
$=7 \sqrt{3}+7$
$=7(\sqrt{3}+1) m$
$=7(1.732+1)$
$=7(2.732)$
$=19.124$
$\approx 19.12 \mathrm{~m}$
So, the height of the tower is 19.12 m .
20. Sol:

Let PQ be the tower.
We have,
$A B=20 \mathrm{~m}, \angle P A Q=30^{\circ}$ and $\angle P B Q=60^{\circ}$
Let $B Q=x$ and $P Q=h$
In $\triangle P B Q$,
$\tan 60^{\circ}=\frac{P Q}{B Q}$
$\Rightarrow \sqrt{3}=\frac{h}{x}$
$\Rightarrow h=x \sqrt{3}$
Also, in $\triangle A P Q$,
$\tan 30^{\circ}=\frac{P Q}{A Q}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{A B+B Q}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{x \sqrt{3}}{20+x} \quad[\mathrm{U} \operatorname{sing}(\mathrm{i})]$
$\Rightarrow 20+x=3 x$
$\Rightarrow 3 x-x=20$
$\Rightarrow 2 x=20$
$\Rightarrow x=\frac{20}{2}$
$\Rightarrow x=10 m$
From (i),
$h=10 \sqrt{3}=10 \times 1.732=17.32 \mathrm{~m}$
Also, $A Q=A B+B Q=20+10=30 \mathrm{~m}$
So, the height of the tower is 17.32 m and its distance from the point A is 30 m .
21.

Sol:

Let PQ be the tower
We have,
$A B=10 \mathrm{~m}, \angle M A P=30^{\circ}$ and $\angle P B Q=60^{\circ}$
Also, $M Q=A B=10 \mathrm{~m}$
Let $B Q=x$ and $P Q=h$
So, $A M=B Q=x$ and $P M=P Q-M Q=h-10$
In $\triangle B P Q$,

$$
\begin{align*}
& \tan 60^{\circ}=\frac{P Q}{B Q} \\
& \Rightarrow \sqrt{3}=\frac{h}{x} \\
& \Rightarrow x=\frac{h}{\sqrt{3}} \tag{i}
\end{align*}
$$

Now, in $\triangle A M P$,

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{P M}{A M} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{h-10}{x} \\
& \Rightarrow h \sqrt{3}-10 \sqrt{3}=x \\
& \Rightarrow h \sqrt{3}-10 \sqrt{3}=\frac{h}{\sqrt{3}} \quad \quad \text { [Using (i)] } \\
& \Rightarrow 3 h-30=h \\
& \Rightarrow 3 h-h=30 \\
& \Rightarrow 2 h=30 \\
& \Rightarrow h=\frac{30}{2} \\
& \therefore h=15 \mathrm{~m}
\end{aligned}
$$

So, the height of the tower is 15 m .
22.

Sol:

Let AD be the tower and BC be the cliff.
We have,

$$
B C=60 \sqrt{3}, \angle C D E=45^{\circ} \text { and } \angle B A C=60^{\circ}
$$

Let $A D=h$
$\Rightarrow B E=A D=h$
$\Rightarrow C E=B C-B E=60 \sqrt{3}-h$
In $\triangle C D E$,
$\tan 45^{\circ}=\frac{C E}{D E}$
$\Rightarrow 1=\frac{60 \sqrt{3}-h}{D E}$
$\Rightarrow D E=60 \sqrt{3}-h$
$\Rightarrow A B=D E=60 \sqrt{3}-h$
Now, in $\triangle A B C$,

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{B C}{A B} \\
& \Rightarrow \sqrt{3}=\frac{60 \sqrt{3}}{60 \sqrt{3}-h} \quad \text { [Using (i)] } \\
& \Rightarrow 180-h \sqrt{3}=60 \sqrt{3} \\
& \Rightarrow h \sqrt{3}=180-60 \sqrt{3} \\
& \Rightarrow h=\frac{180-60 \sqrt{3}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& \Rightarrow h=\frac{180 \sqrt{3}-180}{3} \\
& \Rightarrow h=\frac{180(\sqrt{3}-1)}{3}
\end{aligned}
$$

$\therefore h=60(\sqrt{3}-1)$
$=60(1.732-1)$
$=60(0.732)$
Also, $h=43.92 \mathrm{~m}$
So, the height of the tower is 43.92 m .
23.

Sol:
Let $A B$ be the deck of the ship above the water level and $D E$ be the cliff.
Now,
$A B=16 \mathrm{~m}$ such that $C D=16 \mathrm{~m}$ and $\angle B D A=30^{\circ}$ and $\angle E B C=60^{\circ}$
If $A D=x m$ and $D E=h m$, then $C E=(h-16) m$.

In the right $\triangle B A D$, we have
$\frac{A B}{A D}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{16}{x}=\frac{1}{\sqrt{3}}$
$\Rightarrow x=16 \sqrt{3}=27.68 \mathrm{~m}$
In the right $\triangle E B C$, we have:
$\frac{E C}{B C}=\tan 60^{\circ}=\sqrt{3}$
$\Rightarrow \frac{(h-16)}{x}=\sqrt{3}$
$\Rightarrow h-16=x \sqrt{3}$
$\Rightarrow h-16=16 \sqrt{3} \times \sqrt{3}=48 \quad[\because x=16 \sqrt{3}]$
$\Rightarrow h=48+16=64 m$
\therefore Distance of the cliff from the deck of the ship $=A D=x=27.68 m$

Downloaded from www.studiestoday.com

And,
Height of the cliff $=D E=h=64 m$
24.

Sol:

We have

$$
X Y=40 \mathrm{~m}, \angle P X Q=60^{\circ} \text { and } \angle M Y Q=45^{\circ}
$$

Let $P Q=h$
Also, $M P=X Y=40 m, M Q=P Q-M P=h-40$
In $\triangle M Y Q$,

$$
\begin{align*}
& \tan 45^{\circ}=\frac{M Q}{M Y} \\
& \Rightarrow 1=\frac{h-40}{M Y} \\
& \Rightarrow M Y=h-40 \\
& \Rightarrow P X=M Y=h-40 \tag{i}
\end{align*}
$$

Now, in $\triangle M X Q$,
$\tan 60^{\circ}=\frac{P Q}{P X}$
$\Rightarrow \sqrt{3}=\frac{h}{h-40}$
[From (i)]
$\Rightarrow h \sqrt{3}-40 \sqrt{3}=h$
$\Rightarrow h \sqrt{3}-h=40 \sqrt{3}$
$\Rightarrow h(\sqrt{3}-1)=40 \sqrt{3}$
$\Rightarrow h=\frac{40 \sqrt{3}}{(\sqrt{3}-1)}$

$$
\begin{aligned}
& \Rightarrow h=\frac{40 \sqrt{3}}{(\sqrt{3}-1)} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)} \\
& \Rightarrow h=\frac{40 \sqrt{3}(\sqrt{3}+1)}{(3-1)} \\
& \Rightarrow h=\frac{40 \sqrt{3}(\sqrt{3}+1)}{2} \\
& \Rightarrow h=20 \sqrt{3}(\sqrt{3}+1) \\
& \Rightarrow h=60+20 \sqrt{3} \\
& \Rightarrow h=60+20 \times 1.73 \\
& \Rightarrow h=60+34.6 \\
& \therefore h=94.6 m
\end{aligned}
$$

So, the height of the tower PQ is 94.6 m .
25.

Sol:

Let the height of flying of the aero-plane be $\mathrm{PQ}=\mathrm{BC}$ and point A be the point of observation.
We have,
$P Q=B C=2500 \mathrm{~m}, \angle P A Q=45^{\circ}$ and $\angle B A C=30^{\circ}$
In $\triangle P A Q$,
$\tan 45^{\circ}=\frac{P Q}{A Q}$
$\Rightarrow 1=\frac{2500}{A Q}$
$\Rightarrow A Q=2500 \mathrm{~m}$
Also, in $\triangle A B C$,
$\tan 30^{\circ}=\frac{B C}{A C}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{2500}{A C}$
$\Rightarrow A C=2500 \sqrt{3} \mathrm{~m}$
Now, $Q C=A C-A Q$
$=2500 \sqrt{3}-2500$
$=2500(\sqrt{3}-1) m$
$=2500(1.732-1)$
$=2500(0.732)$
$=1830 \mathrm{~m}$
$\Rightarrow P B=Q C=1830 \mathrm{~m}$
So, the speed of the aero-plane $=\frac{P B}{15}$
$=\frac{1830}{15}$
$=122 \mathrm{~m} / \mathrm{s}$
$=122 \times \frac{3600}{1000} \mathrm{~km} / \mathrm{h}$
$=439.2 \mathrm{~km} / \mathrm{h}$
So, the speed of the aero-plane is $122 \mathrm{~m} / \mathrm{s}$ or $439.2 \mathrm{~km} / \mathrm{h}$.
26.

Sol:

Let $A B$ be the tower
We have:
$C D=150 \mathrm{~m}, \angle A C B=30^{\circ}$ and $\angle A D B=60^{\circ}$
Let:
$A B=h m$ and $B D=x m$

In the right $\triangle A B D$, we have:

$$
\begin{aligned}
& \frac{A B}{A D}=\tan 60^{\circ}=\sqrt{3} \\
& \Rightarrow \frac{h}{x}=\sqrt{3} \\
& \Rightarrow x=\frac{h}{\sqrt{3}}
\end{aligned}
$$

Now, in the right $\triangle A C B$, we have:
$\frac{A B}{A C}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{h}{x+150}=\frac{1}{\sqrt{3}}$
$\Rightarrow \sqrt{3} h=x+150$
On putting $x=\frac{h}{\sqrt{3}}$ in the above equation, we get:
$\sqrt{3} h=\frac{h}{\sqrt{3}}+150$
$\Rightarrow 3 h=h+150 \sqrt{3}$
$\Rightarrow 2 h=150 \sqrt{3}$
$\Rightarrow h=\frac{150 \sqrt{3}}{2}=75 \sqrt{3}=75 \times 1.732=129.9 \mathrm{~m}$
Hence, the height of the tower is 129.9 m
27.

Sol:

Let OA be the lighthouse and B and C be the positions of the ship.
Thus, we have:
$O A=100 \mathrm{~m}, \angle O B A=30^{\circ}$ and $\angle O C A=60^{\circ}$

Let

$$
O C=x m \text { and } B C=y m
$$

In the right $\triangle O A C$, we have
$\frac{O A}{O C}=\tan 60^{\circ}=\sqrt{3}$
$\Rightarrow \frac{100}{x}=\sqrt{3}$
$\Rightarrow x=\frac{100}{\sqrt{3}} m$
Now, in the right $\triangle O B A$, we have:
$\frac{O A}{O B}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{100}{x+y}=\frac{1}{\sqrt{3}}$
$\Rightarrow x+y=100 \sqrt{3}$
On putting $x=\frac{100}{\sqrt{3}}$ in the above equation, we get:
$y=100 \sqrt{3}-\frac{100}{\sqrt{3}}=\frac{300-100}{\sqrt{3}}=\frac{200}{\sqrt{3}}=115.47 \mathrm{~m}$
\therefore Distance travelled by the ship during the period of observation $=B=y=115.47 \mathrm{~m}$
28.

Sol:

Let A and B be two points on the banks on the opposite side of the river and P be the point on the bridge at a height of 2.5 m .
Thus, we have:
$D P=2.5, \angle P A D=30^{\circ}$ and $\angle P B D=45^{\circ}$
In the right $\triangle A P D$, we have:

$$
\begin{aligned}
& \frac{D P}{A D}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \\
& \Rightarrow \frac{2.5}{A D}=\frac{1}{\sqrt{3}} \\
& \Rightarrow A D=2.5 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

In the right $\triangle P D B$, we have:

Downloaded from www.studiestoday.com

$$
\begin{aligned}
& \frac{D P}{B D}=\tan 45^{\circ}=1 \\
& \Rightarrow \frac{2.5}{B D}=1 \\
& \Rightarrow B D=2.5 \mathrm{~m}
\end{aligned}
$$

\therefore Width of the river $=A B=(A D+B D)=(2.5 \sqrt{3}+2.5)=6.83 m$
29.

Sol:

Let AB be the tower and C and D be two points such that $A C=4 m$ and $A D=9 \mathrm{~m}$. Let:

$$
A B=h m, \angle B C A=\theta \text { and } \angle B D A=90^{\circ}-\theta
$$

In the right $\triangle B C A$, we have:

$$
\begin{equation*}
\tan \theta=\frac{A B}{A C} \tag{1}
\end{equation*}
$$

$\Rightarrow \tan \theta=\frac{h}{4}$
In the right $\triangle B D A$, we have:
$\tan \left(90^{\circ}-\theta\right)=\frac{A B}{A D}$
$\Rightarrow \cot \theta=\frac{h}{9} \quad\left[\tan \left(90^{\circ}-\theta\right)=\cot \theta\right]$
$\Rightarrow \frac{1}{\tan \theta}=\frac{h}{9}$

$$
\begin{equation*}
\left[\cot \theta=\frac{1}{\tan \theta}\right] \tag{2}
\end{equation*}
$$

Multiplying equations (1) and (2), we get
$\tan \theta \times \frac{1}{\tan \theta}=\frac{h}{4} \times \frac{h}{9}$
$\Rightarrow 1=\frac{h^{2}}{36}$
$\Rightarrow 36=h^{2}$
$\Rightarrow h= \pm 6$
Height of a tower cannot be negative
\therefore Height of the tower $=6 \mathrm{~m}$
30.

Sol:

Let AB and CD be the two opposite walls of the room and the foot of the ladder be fixed at the point O on the ground.
We have,
$A O=C O=6 \mathrm{~m}, \angle A O B=60^{\circ}$ and $\angle C O D=45^{\circ}$
In $\triangle A B O$,
$\cos 60^{\circ}=\frac{B O}{A O}$
$\Rightarrow \frac{1}{2}=\frac{B O}{6}$
$\Rightarrow B O=\frac{6}{2}$
$\Rightarrow B O=3 \mathrm{~m}$
Also, in $\triangle C D O$,
$\cos 45^{\circ}=\frac{D O}{C O}$
$\Rightarrow \frac{1}{\sqrt{2}}=\frac{D O}{6}$
$\Rightarrow D O=\frac{6}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$
$\Rightarrow D O=\frac{6 \sqrt{2}}{2}$
$\Rightarrow D O=3 \sqrt{2} m$
Now, the distance between two walls of the room $=\mathrm{BD}$
$=B O+D O$
$=3+3 \sqrt{2}$
$=3(1+\sqrt{2})$
$=3(1+1.414)$
$=3(2.414)$
$=7.242$
$\approx 7.24 \mathrm{~m}$
So, the distant between two walls of the room is 7.24 m .
31.

Sol:

Let OP be the tower and points A and B be the positions of the cars.
We have,
$A B=100 \mathrm{~m}, \angle O A P=60^{\circ}$ and $\angle O B P=45^{\circ}$
Let $O P=h$
In $\triangle A O P$,
$\tan 60^{\circ}=\frac{O P}{O A}$
$\Rightarrow \sqrt{3}=\frac{h}{O A}$
$\Rightarrow O A=\frac{h}{\sqrt{3}}$
Also, in $\triangle B O P$,
$\tan 45^{\circ}=\frac{O P}{O B}$
$\Rightarrow 1=\frac{h}{O B}$
$\Rightarrow O B=h$
$\Rightarrow O B=h$
Now, $O B-O A=100$
$\Rightarrow h-\frac{h}{\sqrt{3}}=100$
$\Rightarrow \frac{h \sqrt{3}-h}{\sqrt{3}}=100$
$\Rightarrow \frac{h(\sqrt{3}-1)}{\sqrt{3}}=100$
$\Rightarrow h=\frac{100 \sqrt{3}}{(\sqrt{3}-1)} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}$
$\Rightarrow h=\frac{100 \sqrt{3}(\sqrt{3}+1)}{(3-1)}$
$\Rightarrow h=\frac{100(3+\sqrt{3})}{2}$
$\Rightarrow h=50(3+1.732)$
$\Rightarrow h=50(4.732)$
$\therefore h=236.6 \mathrm{~m}$
So, the height of the tower is 236.6 m .
Disclaimer. The answer given in the textbook is incorrect. The same has been rectified above.
32.

Sol:

Let AC be the pole and BD be the ladder

Downloaded from www.studiestoday.com

We have,
$A C=4 m, A B=1 \mathrm{~m}$ and $\angle B D C=60^{\circ}$
And, $B C=A C-A B=4-1=3 m$
In $\triangle B D C$,
$\sin 60^{\circ}=\frac{B C}{B D}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{3}{B D}$
$\Rightarrow B D=\frac{3 \times 2}{\sqrt{3}}$
$\Rightarrow B D=2 \sqrt{3}$
$\Rightarrow B D=2 \times 1.73$
$\therefore B D=3.46 \mathrm{~m}$
So, he should use 3.46 m long ladder to reach the required position.
33.

Sol:

We have,
$A B=60 \mathrm{~m}, \angle A C E=30^{\circ}$ and $\angle A D B=60^{\circ}$
Let $B D=C E=x$ and $C D=B E=y$
$\Rightarrow A E=A B-B E=60-y$
In $\triangle A C E$,

$$
\begin{align*}
& \tan 30^{\circ}=\frac{A E}{C E} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{60-y}{x} \\
& \Rightarrow x=60 \sqrt{3}-y \sqrt{3} \tag{i}
\end{align*}
$$

Also, in $\triangle A B D$,
$\tan 60^{\circ}=\frac{A B}{B D}$
$\Rightarrow \sqrt{3}=\frac{60}{x}$
$\Rightarrow x=\frac{60}{\sqrt{3}}$
$\Rightarrow x=\frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow x=\frac{60-\sqrt{3}}{3}$
$\Rightarrow x=20 \sqrt{3}$
Substituting $x=20 \sqrt{3}$ in (i), we get

$$
\begin{aligned}
& 20 \sqrt{3}=60 \sqrt{3}-y \sqrt{3} \\
& \Rightarrow y \sqrt{3}=60 \sqrt{3}-20 \sqrt{3} \\
& \Rightarrow y \sqrt{3}=40 \sqrt{3} \\
& \Rightarrow y=\frac{40 \sqrt{3}}{\sqrt{3}} \\
& \Rightarrow y=40 \mathrm{~m}
\end{aligned}
$$

(i) The horizontal distance between AB and $\mathrm{CD}=\mathrm{BD}=x$

$$
=20 \sqrt{3}
$$

$=20 \times 1.732$
$=34.64 \mathrm{~m}$
(ii) The height of the lamp post $=C D=y=40 \mathrm{~m}$
(iii) the difference between the heights of the building and the lamp post
$=A B-C D=60-40=20 \mathrm{~m}$

Downloaded from www.studiestoday.com

Exercise - Multiple Choice Question

1.

Sol:

Let AB represents the vertical pole and BC represents the shadow on the ground and θ represents angle of elevation the sun.
In $\triangle A B C$,
$\tan \theta=\frac{A B}{B C}$
$\Rightarrow \tan \theta=\frac{x}{x} \quad$ (As, the height of the pole, $A B=$ the length of the shadow, $B C=x$)
$\Rightarrow \tan \theta=1$
$\Rightarrow \tan \theta=\tan 45^{\circ}$
$\therefore \theta=45^{\circ}$
Hence, the correct answer is option (c).
2.

Sol:

Here, AO be the pole; BO be its shadow and θ be the angle of elevation of the sun.

Let $B O=x$
Then, $A O=x \sqrt{3}$
In $\triangle A O B$,
$\tan \theta=\frac{A O}{B O}$
$\Rightarrow \tan \theta=\frac{x \sqrt{3}}{x}$
$\Rightarrow \tan \theta=\sqrt{3}$
$\Rightarrow \tan \theta=\tan 60^{\circ}$
$\therefore \theta=60^{\circ}$
Hence, the correct answer is option (c).
3.

Ans: (b)

Sol:

Let AB be the pole and BC be its shadow.

Let $A B=h$ and $B C=x$ such that $x=\sqrt{3} h$ (given) and θ be the angle of elevation.
From $\triangle A B C$, we have

$$
\begin{aligned}
& \frac{A B}{B C}=\tan \theta \\
& \Rightarrow \frac{h}{x}=\frac{h}{\sqrt{3} h}=\tan \theta \\
& \Rightarrow \tan \theta=\frac{1}{\sqrt{3}} \\
& \Rightarrow \theta=30^{\circ}
\end{aligned}
$$

Hence, the angle of elevation is 30°.
4. Sol:

Let AB be the pole, BC be its shadow and θ be the sun's elevation. We have,
$A B=12 \mathrm{~m}$ and $B C=4 \sqrt{3} \mathrm{~m}$
In $\triangle A B C$,
$\tan \theta=\frac{A B}{B C}$
$\Rightarrow \tan \theta=\frac{12}{4 \sqrt{3}}$
$\Rightarrow \tan \theta=\frac{3}{\sqrt{3}}$
$\Rightarrow \tan \theta=\frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow \tan \theta=\frac{3 \sqrt{3}}{3}$
$\Rightarrow \tan \theta=\sqrt{3}$
$\Rightarrow \tan \theta=\tan 60^{\circ}$
$\therefore \theta=60^{\circ}$
Hence, the correct answer is option (a).
5.

Sol:

Downloaded from www.studiestoday.com

Let AB be a stick and BC be its shadow, and PQ be the tree and QR be its shadow. We have,
$A B=5 m, B C=2 m, P Q=12.5 \mathrm{~m}$
In $\triangle A B C$,
$\tan \theta=\frac{A B}{B C}$
$\Rightarrow \tan \theta=\frac{5}{2}$
Now, in $\triangle P Q R$,
$\tan \theta=\frac{P Q}{Q R}$
$\Rightarrow \frac{5}{2}=\frac{12.5}{Q R}$
[Using (i)]
$\Rightarrow Q R=\frac{125 \times 2}{5}=\frac{25}{5}$
$\therefore Q R=5 m$
Hence, the correct answer is option (d).
6.

Sol:

Let AB be the wall and AC be the ladder.
We have,
$B C=2 \mathrm{~m}$ and $\angle A C B=60^{\circ}$
In $\triangle A B C$,
$\cos 60^{\circ}=\frac{B C}{A C}$
$\Rightarrow \frac{1}{2}=\frac{2}{A C}$
$\therefore A C=4 m$
Hence, the correct answer is option (d).
7.

Sol:

Let AB be the wall and AC be the ladder
We have,
$A C=15 \mathrm{~m}$ and $\angle B A C=60^{\circ}$
$\cos 60^{\circ}=\frac{A B}{A C}$
$\Rightarrow \frac{1}{2}=\frac{A B}{15}$
$\therefore A B=\frac{15}{2} m$
Hence, the correct answer is option (c).
8.

Sol:

Let AB be the tower and point C be the point of observation on the ground. We have,
$B C=30 \mathrm{~m}$ and $\angle A C B=30^{\circ}$
In $\triangle A B C$,
$\tan 30^{\circ}=\frac{A B}{B C}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{A B}{30}$
$\Rightarrow A B=\frac{30}{\sqrt{3}}$
$\Rightarrow A B=\frac{30}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow A B=\frac{30 \sqrt{3}}{3}$
$\therefore A B=10 \sqrt{3} \mathrm{~m}$
Hence, the correct answer is option (b).
9.

Sol:

Let $A B$ be the tower and point C be the position of the car.
We have,
$A B=150 \mathrm{~m}$ and $\angle A C B=30^{\circ}$
In $\triangle A B C$,
$\tan 30^{\circ}=\frac{A B}{B C}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{150}{B C}$
$\therefore B C=150 \sqrt{3} \mathrm{~m}$
Hence, the correct answer is option (b).
10.

Sol:

Let point A be the position of the kite and AC be its string We have,
$A B=30 \mathrm{~m}$ and $A C=60 \mathrm{~m}$
Let $\angle A C B=\theta$
In $\triangle A B C$,
$\sin \theta=\frac{A B}{A C}$
$\Rightarrow \sin \theta=\frac{30}{60}$
$\Rightarrow \sin \theta=\frac{1}{2}$
$\Rightarrow \sin \theta=\sin 30^{\circ}$
$\therefore \theta=30^{\circ}$
Hence, the correct answer is option (b).
11.

Sol:

Let AB be the cliff and CD be the tower.

Downloaded from www.studiestoday.com

We have,
$A B=20 \mathrm{~m}$
Also, $C E=A B=20 \mathrm{~m}$
Let $\angle A C B=\angle C A E=\angle D A E=\theta$
In $\triangle A B C$,
$\tan \theta=\frac{A B}{B C}$
$\Rightarrow \tan \theta=\frac{20}{B C}$
$\Rightarrow \tan \theta=\frac{20}{A E} \quad(A s, B C=A E)$
$\Rightarrow A E=\frac{20}{\tan \theta}$
Also, in $\triangle A D E$,
$\tan \theta=\frac{D E}{A E}$
$\Rightarrow \tan \theta=\frac{D E}{\left(\frac{20}{\tan \theta}\right)} \quad$ [Using (i)]
$\Rightarrow \tan \theta=\frac{D E \times \tan \theta}{20}$
$\Rightarrow D E=\frac{20 \times \tan \theta}{\tan \theta}$
$\Rightarrow D E=20 \mathrm{~m}$
Now, $C D=D E+C E$
$=20+20$
$\therefore C D=40 \mathrm{~m}$
Hence, the correct answer is option (b).
Disclaimer. The answer given in the textbook is incorrect. The same has been rectified above.
12.

Sol:

Downloaded from www.studiestoday.com

Let AB be the lamp post; CD be the girl and DE be her shadow.
We have,
$C D=1.5 m, A D=3 m, D E=4.5 m$
Let $\angle E=\theta$
In $\triangle C D E$,
$\tan \theta=\frac{C D}{D E}$
$\Rightarrow \tan \theta=\frac{1.5}{4.5}$
$\Rightarrow \tan \theta=\frac{1}{3}$
Now, in $\triangle A B E$,
$\tan \theta=\frac{A B}{A E}$
$\Rightarrow \frac{1}{3}=\frac{A B}{A D+D E} \quad[\operatorname{Using}(\mathrm{i})]$
$\Rightarrow \frac{1}{3}=\frac{A B}{3+4.5}$
$\Rightarrow A B=\frac{7.5}{3}$
$\Rightarrow \therefore A B=2.5 m$
Hence, the correct answer is option (c).
13.

Sol:

Downloaded from www.studiestoday.com

Let $C D=h$ be the height of the tower.
We have,
$A B=2 x, \angle D A C=30^{\circ}$ and $\angle D B C=45^{\circ}$
In $\triangle B C D$,
$\tan 45^{\circ}=\frac{C D}{B C}$
$\Rightarrow 1=\frac{h}{B C}$
$\Rightarrow B C=h$
Now, in $\triangle A C D$,

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{C D}{A C} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{A B+B C} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{2 x+h} \\
& \Rightarrow 2 x+h=h \sqrt{3} \\
& \Rightarrow h \sqrt{3}-h=2 x \\
& \Rightarrow h(\sqrt{3}-1)=2 x
\end{aligned}
$$

$$
\Rightarrow h=\frac{2 x}{(\sqrt{3}-1)} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}
$$

$$
\Rightarrow h=\frac{2 x(\sqrt{3}+1)}{(\sqrt{3}-1)}
$$

$$
\Rightarrow h=\frac{2 x(\sqrt{3}+1)}{2}
$$

$$
\therefore h=x(\sqrt{3}+1) m
$$

Hence, the correct answer is option (d).
14.

Sol:

Let AB be the rod and BC be its shadow; and θ be the angle of elevation of the sun. We have,
$A B: B C=1: \sqrt{3}$
Let $A B=x$
Then, $B C=x \sqrt{3}$
In $\triangle A B C$,
$\tan \theta=\frac{A B}{B C}$
$\Rightarrow \tan \theta=\frac{x}{x \sqrt{3}}$
$\Rightarrow \tan \theta=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan \theta=\tan 30^{\circ}$
$\therefore \theta=30^{\circ}$
Hence, the correct answer is option (a).
15.

Sol:

Let $A B$ be the pole and $B C$ be its shadow.
We have,
$B C=2 \sqrt{3} \mathrm{~m}$ and $\angle A C B=60^{\circ}$

In $\triangle A B C$,
$\tan 60^{\circ}=\frac{A B}{B C}$
$\Rightarrow \sqrt{3}=\frac{A B}{2 \sqrt{3}}$
$\therefore A B=6 m$
Hence, the correct answer is option (b).
16.

Sol:

Let the sun's altitude be θ.
We have,
$A B=20 \mathrm{~m}$ and $B C=20 \sqrt{3} \mathrm{~m}$
In $\triangle A B C$,
$\tan \theta=\frac{A B}{B C}$
$\Rightarrow \tan \theta=\frac{20}{20 \sqrt{3}}$
$\Rightarrow \tan \theta=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan \theta=\tan 30^{\circ}$
$\therefore \theta=30^{\circ}$
Hence, the correct answer is option (a).
17.

Sol:

Downloaded from www.studiestoday.com

Let AB and CD be the two towers such that $A B=x$ and $C D=y$.
We have,
$\angle A E B=30^{\circ}, \angle C E D=60^{\circ}$ and $B E=D E$
In $\triangle A B E$,
$\tan 30^{\circ}=\frac{A B}{B E}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{x}{B E}$
$\Rightarrow B E=x \sqrt{3}$
Also, in $\triangle C D E$,
$\tan 60^{\circ}=\frac{C D}{D E}$
$\Rightarrow \sqrt{3}=\frac{y}{D E}$
$\Rightarrow D E=\frac{y}{\sqrt{3}}$
As, $B E=D E$
$\Rightarrow x \sqrt{3}=\frac{y}{\sqrt{3}}$
$\Rightarrow \frac{x}{y}=\frac{1}{\sqrt{3} \times \sqrt{3}}$
$\Rightarrow \frac{x}{y}=\frac{1}{3}$
$\therefore x: y=1: 3$
Hence, the correct answer is option (c).
18. Ans: (b)

Sol:
Let $A B$ be the tower and O be the point of observation.
Also,
$\angle A O B=30^{\circ}$ and $O B=30 \mathrm{~m}$
Let:

$$
A B=h m
$$

In $\triangle A O B$, we have:
$\frac{A B}{O B}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{h}{30}=\frac{1}{\sqrt{3}}$
$\Rightarrow h=\frac{30}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{30 \sqrt{3}}{3}=10 \sqrt{3} \mathrm{~m}$.
Hence, the height of the tower is $10 \sqrt{3} \mathrm{~m}$.
19.

Ans: (a)
Sol:
Let AB be the string of the kite and AX be the horizontal line.
If $B C \perp A X$, then $A B=100 \mathrm{~m}$ and $\angle B A C=60^{\circ}$
Let:
$B C=h m$

In the right $\triangle A C B$, we have:
$\frac{B C}{A B}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\Rightarrow \frac{h}{100}=\frac{\sqrt{3}}{2}$
$\Rightarrow h=\frac{100 \sqrt{3}}{2}=50 \sqrt{3} \mathrm{~m}$
Hence, the height of the kite is $50 \sqrt{3} \mathrm{~m}$.
20.

Ans: (b)

Sol:

Let: AB be the tower and C and D bee the points of observation on AC .
$\angle A C B=\theta, \angle A D B=90-\theta$ and $A B=h m$
Thus, we have:
$A C=a, A D=b$ and $C D=a-b$

Now, in the right $\triangle A B C$, we have:

$$
\begin{equation*}
\tan \theta=\frac{A B}{A C} \Rightarrow \frac{h}{a}=\tan \theta \tag{i}
\end{equation*}
$$

In the right $\triangle A B D$, we have:

$$
\begin{equation*}
\tan (90-\theta)=\frac{A B}{A D} \Rightarrow \cot \theta=\frac{h}{b} \tag{ii}
\end{equation*}
$$

On multiplying (i) and (ii), we have:
$\tan \theta \times \cot \theta=\frac{h}{a} \times \frac{h}{b}$
$\Rightarrow \frac{h}{a} \times \frac{h}{b}=1 \quad\left[\because \tan \theta=\frac{1}{\cot \theta}\right]$

$$
\begin{aligned}
& \Rightarrow h^{2}=a b \\
& \Rightarrow h=\sqrt{a b} m
\end{aligned}
$$

Hence, the height of the tower is $\sqrt{a b} m$.
21.

Ans: (b)
Sol:
Let $A B$ be the tower and C and D be the points of observation such that $\angle B C D=30^{\circ}, \angle B D A=60^{\circ}, C D=20 \mathrm{~m}$ and $A D=x \mathrm{~m}$.

Now, in $\triangle A D B$, we have:

$$
\begin{aligned}
& \frac{A B}{A D}=\tan 60^{\circ}=\sqrt{3} \\
& \Rightarrow \frac{A B}{x}=\sqrt{3} \\
& \Rightarrow A B=\sqrt{3} x
\end{aligned}
$$

In $\triangle A C B$, we have:
$\frac{A B}{A C}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\frac{A B}{20+x}=\frac{1}{\sqrt{3}} \Rightarrow A B=\frac{20+x}{\sqrt{3}}$
$\therefore \sqrt{3} x=\frac{20+x}{\sqrt{3}}$
$\Rightarrow 3 x=20+x$
$\Rightarrow 2 x=20 \Rightarrow x=10$
\therefore Height of the tower $A B=\sqrt{3} x=10 \sqrt{3} \mathrm{~m}$
22.

Ans: (c)
Sol:
Let $A B C D$ be the rectangle in which $\angle B A C=30^{\circ}$ and $A C=8 \mathrm{~cm}$.

In $\triangle B A C$, we have:
$\frac{A B}{A C}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\Rightarrow \frac{A B}{8}=\frac{\sqrt{3}}{2}$
$\Rightarrow A B=8 \frac{\sqrt{3}}{2}=4 \sqrt{3} m$
Again,
$\frac{B C}{A C}=\sin 30^{\circ}=\frac{1}{2}$
$\Rightarrow \frac{B C}{8}=\frac{1}{2}$
$\Rightarrow B C=\frac{8}{2}=4 \mathrm{~m}$
\therefore Area of the rectangle $=(A B \times B C)=(4 \sqrt{3} \times 4)=16 \sqrt{3} \mathrm{~cm}^{2}$
23.

Ans: (b) $\frac{1}{2}(\sqrt{3}+1) \mathrm{km}$
Sol:
Let $A B$ be the hill making angles of depression at points C and D such that $\angle A D B=45^{\circ}, \angle A C B=30^{\circ}$ and $C D=1 \mathrm{~km}$.
Let:
$A B=h \mathrm{~km}$ and $A D=x \mathrm{~km}$

Downloaded from www.studiestoday.com

In $\triangle A D B$, we have:

$$
\begin{align*}
& \frac{A B}{A D}=\tan 45^{\circ}=1 \\
& \Rightarrow \frac{h}{x}=1 \Rightarrow h=x \tag{i}
\end{align*}
$$

In $\triangle A C B$, we have:
$\frac{A B}{A C}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{h}{x+1}=\frac{1}{\sqrt{3}}$
On putting the value of h taken from (i) in (ii), we get:
$\frac{h}{h+1}=\frac{1}{\sqrt{3}}$
$\Rightarrow \sqrt{3} h=h+1$
$\Rightarrow(\sqrt{3}-1) h=1$
$\Rightarrow h=\frac{1}{(\sqrt{3}-1)}$
On multiplying the numerator and denominator of the above equation by $(\sqrt{3}+1)$, we get:
$h=\frac{1}{(\sqrt{3}-1)} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}=\frac{(\sqrt{3}+1)}{3-1}=\frac{(\sqrt{3}+1)}{2}=\frac{1}{2}(\sqrt{3}+1) \mathrm{km}$
Hence, the height of the hill is $\frac{1}{2}(\sqrt{3}+1) \mathrm{km}$.
24.

Ans: (c)
Sol:
Let $A B$ be the pole and $A C$ and $A D$ be its shadows.
We have:
$\angle A C B=30^{\circ}, \angle A D B=60^{\circ}$ and $A B=15 \mathrm{~m}$

In $\triangle A C B$, we have
$\frac{A C}{A B}=\cot 30^{\circ}=\sqrt{3}$
$\Rightarrow \frac{A C}{15}=\sqrt{3} \Rightarrow A C=15 \sqrt{3} m$
Now, in $\triangle A D B$, we have:
$\frac{A D}{A B}=\cot 60^{\circ}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{A D}{15}=\frac{1}{\sqrt{3}} \Rightarrow A D=\frac{15}{\sqrt{3}}=\frac{15 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{15 \sqrt{3}}{3}=5 \sqrt{3} \mathrm{~m}$.
\therefore Difference between the lengths of the shadows $=A C-A D=15 \sqrt{3}-5 \sqrt{3}=10 \sqrt{3} \mathrm{~m}$
25.

Ans: (b)
Sol:
Let AB be the observer and CD be the tower.

Draw $B E \perp C D$, let $C D=h$ meters. Then,

$$
A B=1.5 \mathrm{~m}, B E=A C=28.5 \mathrm{~m} \text { and } \angle E B D=45^{\circ}
$$

$$
D E=(C D-E C)=(C D-A B)=(h-1.5) m
$$

In right $\triangle B E D$, we have:

$$
\frac{D E}{B E}=\tan 45^{\circ}=1
$$

Downloaded from www.studiestoday.com

$\Rightarrow \frac{(h-1.5)}{28.5}=1$
$\Rightarrow h=1.5=28.5$
$\Rightarrow h=28.5+1.5=30 \mathrm{~m}$
Hence, the height of the tower is 30 m .

