Exercise - 11A

1.

Sol:

(i) The given progression $9,15,21,27, \ldots \ldots \ldots \ldots$

Clearly, $15-9=21-15=27-21=6$ (Constant)
Thus, each term differs from its preceding term by 6 . So, the given progression is an AP.
First term $=9$
Common difference $=6$
Next term of the $\mathrm{AP}=27+6=33$
(ii) The given progression $11,6,1,-4$,

Clearly, $6-11=1-6=-4-1=-5$ (Constant)
Thus, each term differs from its preceding term by 6 . So, the given progression is an AP.
First term $=11$
Common difference $=-5$
Next term of the $A P=-4+(-5)=-9$
(iii) The given progression $-1, \frac{-5}{6}, \frac{-2}{3}, \frac{-1}{2}, \ldots \ldots \ldots$.

Clearly, $\frac{-5}{6}-(-1)=\frac{-2}{3}-\left(\frac{-5}{6}\right)=\frac{-1}{2}-\left(\frac{-2}{3}\right)=\frac{1}{6}$ (Constant)
Thus, each term differs from its preceding term by $\frac{1}{6}$. So, the given progression is an AP.
First term $=-1$
Common difference $=\frac{1}{6}$
Next tern of the $A P=\frac{-1}{2}+\frac{1}{6}=\frac{-2}{6}=\frac{-1}{3}$

Downloaded from www.studiestoday.com

(iv) The given progression $\sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots \ldots \ldots$.

This sequence can be written as $\sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2}, 4 \sqrt{2}, \ldots \ldots \ldots$
Clearly, $2 \sqrt{2}-\sqrt{2}=3 \sqrt{2}-2 \sqrt{2}=4 \sqrt{2}-3 \sqrt{2}=\sqrt{2}$ (Constant)
Thus, each term differs from its preceding term by $\sqrt{2}$, So, the given progression is an AP.
First term $=\sqrt{2}$
Common difference $=\sqrt{2}$
Next tern of the $A P=4 \sqrt{2}+\sqrt{2}=5 \sqrt{2}=\sqrt{50}$
(v) This given progression $\sqrt{20}, \sqrt{45}, \sqrt{80}, \sqrt{125}, \ldots \ldots \ldots$.

This sequence can be re-written as $2 \sqrt{5}, 3 \sqrt{5}, 4 \sqrt{5}, 5 \sqrt{5}, \ldots \ldots \ldots .$.
Clearly, $3 \sqrt{5}-2 \sqrt{5}=4 \sqrt{5}-3 \sqrt{5}=5 \sqrt{5}-4 \sqrt{5}=\sqrt{5}$ (Constant)
Thus, each term differs from its preceding term by $\sqrt{5}$. So, the given progression is an AP.
First term $=2 \sqrt{5}=\sqrt{20}$
Common difference $=\sqrt{5}$
Next term of the $A P=5 \sqrt{5}+\sqrt{5}=6 \sqrt{5}=\sqrt{180}$
2.

Sol:

(i) The given $A P$ is $9,13,17,21, \ldots \ldots \ldots$.

First term, $a=9$
Common difference, $d=13-9=4$
$n^{\text {th }}$ term of the AP, $a_{n}=a+(n-1) d=9+(n-1) \times 4$
$\therefore 20$ th term of the AP, $a_{20}=9+(20-1) \times 4=9+76=85$
(ii) The given AP is $20,17,14,11, \ldots \ldots \ldots$.

First term, $a=20$
Common difference, $d=17-20=-3$
$n^{\text {th }}$ term of the AP, $a_{n}=a+(n-1) d=20+(n-1) \times(-3)$

Downloaded from www.studiestoday.com

$\therefore 35$ th term of the AP, $a_{35}=20+(35-1) \times(-3)=20-102=-82$
(iii) The given AP is $\sqrt{2}, \sqrt{18}, \sqrt{50}, \sqrt{98}$,

This can be re-written as $\sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2}, 7 \sqrt{2}, \ldots \ldots \ldots$.....
First term, $a=\sqrt{2}$
Common difference, $d=3 \sqrt{2}-\sqrt{2}=2 \sqrt{2}$
$n^{\text {th }}$ term of the AP, $a_{n}=a+(n-1) d=\sqrt{2}+(n-1) \times 2 \sqrt{2}$
$\therefore 18$ th term of the AP, $a_{18}=\sqrt{2}+(18-1) \times 2 \sqrt{2}=\sqrt{2}+34 \sqrt{2}=35 \sqrt{2}=\sqrt{2450}$
(iv) The given AP is $\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \frac{9}{4}$

First term, $a=\frac{3}{4}$
Common difference, $d=\frac{5}{4}-\frac{3}{4}=\frac{2}{4}=\frac{1}{2}$
$n^{\text {th }}$ term of the AP, $a_{n}=a+(n-1) d=\frac{3}{4}+(n-1) \times\left(\frac{1}{2}\right)$
$\therefore 9^{\text {th }}$ term of the AP, $a_{9}=\frac{3}{4}+(9-1) \times \frac{1}{2}=\frac{3}{4}+4=\frac{19}{4}$
(v) The given AP is $-40,-15,10,35, \ldots \ldots . .$.

First term, $a=-40$
Common difference, $d=-15-(-40)=25$
$n^{\text {th }}$ term of the AP, $a_{n}=a+(n-1) d=-40+(n-1) \times 25$
$\therefore 15$ th term of the AP, $a_{15}=-40+(15-1) \times 25=-40+350=310$
3.

Sol:

The given AP is $6,7 \frac{3}{4}, 9 \frac{1}{2}, 11 \frac{1}{4}, \ldots \ldots \ldots$
First term, $a=6$ and common difference, $d=7 \frac{3}{4}-6 \Rightarrow \frac{31}{4}-6 \Rightarrow \frac{31-24}{4}=\frac{7}{4}$
Now, $T_{37}=a+(37-1) d=a+36 d$
$=6+36 \times \frac{7}{4}=6+63=69$
$\therefore 37^{\text {th }}$ term $=69$
4.

Sol:
The given AP is $5,4 \frac{1}{2}, 4,3 \frac{1}{2}, 3, \ldots \ldots$.
First term $=5$
Common difference $=4 \frac{1}{2}-5 \Rightarrow \frac{9}{2}-5 \Rightarrow \frac{9-10}{2}=-\frac{1}{2}$
$\therefore a=5$ and $d=-\frac{1}{2}$
Now, $T_{25}=a+(25-1) d=a+24 d$
$=5+24 \times\left(-\frac{1}{2}\right)=5-12=-7$
$\therefore 25^{\text {th }}$ term $=-7$
5.

Sol:

(i) $(6 \mathrm{n}-1)$
(ii) $(23-7 n)$
6.

Sol:

$T_{n}=\left(4_{n}-10\right) \quad$ [Given]
$T_{1}=(4 \times 1-10)=-6$
$T_{2}=(4 \times 2-10)=-2$
$T_{3}=(4 \times 3-10)=2$
$T_{4}=(4 \times 4-10)=6$
Clearly, $[-2-(-6)]=[2-(-2)]=[6-2]=4$
(Constant)
So, the terms $-6,-2,2,6, \ldots \ldots$. forms an AP.
Thus we have
(i) First term $=-6$
(ii) Common difference $=4$
(iii) $T_{16}=a+(n-1) d=a+15 d=-6+15 \times 4=54$
7.

Sol:

In the given AP, $a=6$ and $d=(10-6)=4$
Suppose that there are n terms in the given AP.
Then, $T_{n}=174$
$\Rightarrow a+(n-1) d=174$
$\Rightarrow 6+(n-1) \times 4=174$
$\Rightarrow 2+4 n=174$
$\Rightarrow 4 n=172$
$\Rightarrow n=43$
Hence, there are 43 terms in the given AP.
8.

Sol:

In the given AP, $a=41$ and $d=(38-41)=-3$
Suppose that there are n terms in the given AP.
Then $T_{n}=8$
$\Rightarrow a+(n-1) d=8$
$\Rightarrow 41+(n-1) \times(-3)=8$
$\Rightarrow 44-3 n=8$
$\Rightarrow 3 n=36$
$\Rightarrow n=12$
Hence, there are 12 terms in the given AP.
9.

Sol:

The given AP is $18,15 \frac{1}{2}, 13, \ldots . .,-47$.
First term, $a=18$
Common difference, $d=15 \frac{1}{2}-18=\frac{31}{2}-18=\frac{31-36}{2}=-\frac{5}{2}$
Suppose there re n terms in the given AP. Then,
$a_{n}=-47$
$\Rightarrow 18+(n-1) \times\left(-\frac{5}{2}\right)=-47 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-\frac{5}{2}(n-1)=-47-18=-65$
$\Rightarrow n-1=-65 \times\left(-\frac{2}{5}\right)=26$
$\Rightarrow n=26+1=27$
Hence, there are 27 terms in the given AP.
10.

Sol:

In the given AP, first term, $a=3$ and common difference, $a=(8-3)=5$.
Let's its $n^{\text {th }}$ term be 88
Then, $T_{n}=88$
$\Rightarrow a+(n-1) d=88$
$\Rightarrow 3+(n-1) \times 5=88$
$\Rightarrow 5 n-2=88$
$\Rightarrow 5 n=90$
$\Rightarrow n=18$
Hence, the $18^{\text {hh }}$ term of the given AP is 88 .
11.

Sol:

In the given AP, first term, $a=72$ and common difference, $d=(68-72)=-4$.
Let its $n^{\text {th }}$ term be 0 .
Then, $T_{n}=0$
$\Rightarrow a+(n-1) d=0$
$\Rightarrow 72+(n-1) \times(-4)=0$
$\Rightarrow 76-4 n=0$
$\Rightarrow 4 n=76$
$\Rightarrow n=19$
Hence, the $19^{\text {th }}$ term of the given AP is 0 .
12.

Sol:

In the given AP, first term $=\frac{5}{6}$ and common difference, $d=\left(1-\frac{5}{6}=\frac{1}{6}\right)$
Let its $n^{\text {th }}$ term be 3 .
Now, $T_{n}=3$
$\Rightarrow a+(n-1) d=3$
$\Rightarrow \frac{5}{6}+(n-1) \times \frac{1}{6}=3$
$\Rightarrow \frac{2}{3}+\frac{n}{6}=3$
$\Rightarrow \frac{n}{6}=\frac{7}{3}$
$\Rightarrow n=14$
Hence, the $14^{\text {th }}$ term of the given AP is 3 .
13.

Sol:

The given AP is $21,18,15, \ldots \ldots$.
First term, $a=21$
Common difference, $d=18-21=-3$
Suppose $n^{\text {th }}$ term of the given AP is -81 . then,

$$
a_{n}=-81
$$

$$
\Rightarrow 21+(n-1) \times(-3)=-81 \quad\left[a_{n}=a+(n-1) d\right]
$$

$$
\Rightarrow-3(n-1)=-81-21=-102
$$

$\Rightarrow n-1=\frac{102}{3}=34$
$\Rightarrow n=34+1=35$
Hence, the 35 th term of the given $A P$ is -81 .
14.

Sol:

Here, $a=3$ and $d=(8-3)=5$
The $20^{\text {th }}$ term is given by
$T_{20}=a+(20-1) d=a+19 d=3+19 \times 5=98$
\therefore Required term $=(98+55)=153$

Let this be the $n^{\text {th }}$ term.
Then $T_{n}=153$
$\Rightarrow 3+(n-1) \times 5=153$
$\Rightarrow 5 n=155$
$\Rightarrow n=31$
Hence, the $31^{\text {st }}$ term will be 55 more than $20^{\text {th }}$ term.
15.

Sol:

Here, $a=5$ and $d=(15-5)=10$
The $31^{\text {st }}$ term is given by
$T_{31}=a+(31-1) d=a+30 d=5+30 \times 10=305$
\therefore Required term $=(305+130)=435$
Let this be the $n^{\text {th }}$ term.
Then, $T_{n}=435$
$\Rightarrow 5+(n-1) \times 10=435$
$\Rightarrow 10 n=440$
$\Rightarrow n=44$
Hence, the $44^{\text {th }}$ term will be 130 more than its $31^{\text {st }}$ term.
16.

Sol:

In the given AP, let the first term be a and the common difference be d .
Then, $T_{n}=a+(n-1) d$
Now, we have:
$T_{10}=a+(10-1) d$
$\Rightarrow a+9 d=52$
$T_{13}=a+(13-1) d=a+12 d$
$T_{17}=a+(17-1) d=a+16 d$
But, it is given that $T_{17}=20+T_{13}$
i.e., $a+16 d=20+a+12 d$
$\Rightarrow 4 d=20$
$\Rightarrow d=5$
On substituting $d=5$ in (1), we get:
$a+9 \times 5=52$
$\Rightarrow a=7$
Thus, $a=7$ and $d=5$
\therefore The terms of the AP are $7,12,17,22, \ldots$.
17.

Sol:

The given AP is $6,13,20, \ldots \ldots . . ., 216$.
First term, $a=6$
Common difference, $d=13-6=7$
Suppose these are n terms in the given AP. Then,

$$
a_{n}=216
$$

$\Rightarrow 6+(n-1) \times 7=216 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 7(n-1)=216-6=210$
$\Rightarrow n-1=\frac{210}{7}=30$
$\Rightarrow n=30+1=31$
Thus, the given AP contains 31 terms,
\therefore Middle term of the given AP
$=\left(\frac{31+1}{2}\right)$ th term
$=16$ th term
$=6+(16-1) \times 7$
$=6+105$
$=111$
Hence, the middle term of the given AP is 111.
18.

Sol:

The given AP is $10,7,4, \ldots . .,-62$.
First term, $a=10$
Common difference, $d=7-10=-3$
Suppose these are n terms in the given AP. Then,
$a_{n}=-62$
$\Rightarrow 10+(n-1) \times(-3)=-62 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-3(n-1)=-62-10=-72$
$\Rightarrow n-1=\frac{72}{3}=24$
$\Rightarrow n=24+1=25$
Thus, the given AP contains 25 terms.
\therefore Middle term of the given AP
$=\left(\frac{25+1}{2}\right)$ th term
$=13 \mathrm{th}$ term
$=10+(13-1) \times(-3)$
$=10-36$
$=-26$
Hence, the middle term of the given AP is -26 .
19.

Sol:

The given AP is $-\frac{4}{3},-1, \frac{-2}{3}, \ldots . ., 4 \frac{1}{3}$.
First term, $a=-\frac{4}{3}$
Common difference, $d=-1-\left(-\frac{4}{3}\right)=-1+\frac{4}{3}=\frac{1}{3}$
Suppose there are n terms in the given AP. Then,
$a_{n}=4 \frac{1}{3}$
$\Rightarrow-\frac{4}{3}+(n-1) \times\left(\frac{1}{3}\right)=\frac{13}{3} \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow \frac{1}{3}(n-1)=\frac{13}{3}+\frac{4}{3}=\frac{17}{3}$
$\Rightarrow n-1=17$
$\Rightarrow n=17+1=18$
Thus, the given AP contains 18 terms. So, there are two middle terms in the given AP.
The middle terms of the given AP are $\left(\frac{18}{2}\right)$ th terms and $\left(\frac{18}{2}+1\right)$ th term i.e. 9 th term and 10th term.

Downloaded from www.studiestoday.com

\therefore Sum of the middle most terms of the given AP
$=9$ th term $+10^{\text {th }}$ term
$=\left[-\frac{4}{3}+(9-1) \times \frac{1}{3}\right]+\left[-\frac{4}{3}+(10-1) \times \frac{1}{3}\right]$
$=-\frac{4}{3}+\frac{8}{3}-\frac{4}{3}+3$
$=3$
Hence, the sum of the middle most terms of the given AP is 3 .
20.

Sol:

Here, $a=7$ and $d=(10-7)=3, l=184$ and $n=8^{t h}$ form the end.
Now, $\mathrm{n}^{\text {th }}$ term from the end $=[l-(n-1) d]$
$8^{\text {th }}$ term from the end $=[184-(8-1) \times 3]$

$$
=[184-(7 \times 3)]=(184-21)=163
$$

Hence, the $8^{\text {th }}$ term from the end is 163 .
21.

Sol:

Here, $a=7$ and $d=(14-17)=-3, l=(-40)$ and $n=6$
Now, nth term from the end $=[l-(n-1) d]$
$6^{\text {th }}$ term from the end $=[(-40)-(6-1) \times(-3)]$
$=[-40+(5 \times 3)]=(-40+15)=-25$
Hence, the $6^{\text {th }}$ term from the end is -25 .
22.

Sol:

The given AP is $3,7,11,15, \ldots .$. .
Here, $a=3$ and $d=7-3=4$
Let the nth term of the given AP be 184. Then,
$a_{n}=184$
$\Rightarrow 3+(n-1) \times 4=184 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 4 n-1=184$
$\Rightarrow 4 n=185$
$\Rightarrow n=\frac{185}{4}=46 \frac{1}{4}$
But, the number of terms cannot be a fraction.
Hence, 184 is not a term of the given AP.
23.

Sol:

The given AP is $11,8,5,2, \ldots \ldots$
Here, $a=11$ and $d=8-11=-3$
Let the nth term of the given AP be -150 . Then,
$a_{n}=-150$
$\Rightarrow 11+(n-1) \times(-3)=-150 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-3 n+14=-150$
$\Rightarrow-3 n=-164$
$\Rightarrow n=\frac{164}{3}=54 \frac{2}{3}$
But, the number of terms cannot be a fraction.
Hence, -150 is not a term of the given AP.
24.

Sol:

The given AP is $121,117,113, \ldots \ldots$.
Here, $a=121$ and $d=117-121=-4$
Let the nth term of the given AP be the first negative term. Then, $a_{n}<0$
$\Rightarrow 121+(n-1) \times(-4)<0 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 125-4 n<0$
$\Rightarrow-4 n<-125$
$\Rightarrow n>\frac{125}{4}=31 \frac{1}{4}$
$\therefore n=32$
Hence, the $32^{\text {nd }}$ term is the first negative term of the given AP.

Downloaded from www.studiestoday.com

25.

Sol:

The given AP is $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots \ldots$
Here, $a=20$ and $d=19 \frac{1}{4}-20=\frac{77}{4}-20=\frac{77-80}{4}=-\frac{3}{4}$
Let the nth term of the given AP be the first negative term. Then, $a_{n}<0$
$\Rightarrow 20+(n-1) \times\left(-\frac{3}{4}\right)<0 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 20+\frac{3}{4}-\frac{3}{4} n<0$
$\Rightarrow \frac{83}{4}-\frac{3}{4} n<0$
$\Rightarrow-\frac{3}{4} n<-\frac{83}{4}$
$\Rightarrow n>\frac{83}{3}=27 \frac{2}{3}$
$\therefore n=28$
Hence, the $28^{\text {th }}$ term is the first negative term of the given AP.
26.

Sol:

We have
$T_{7}=a+(n-1) d$
$\Rightarrow a+6 d=-4$
$T_{13}=a+(n-1) d$
$\Rightarrow a+12 d=-16$
On solving (1) and (2), we get
$a=8$ and $d=-2$
Thus, first term $=8$ and common difference $=-2$
\therefore The term of the AP are $8,6,4,2, \ldots$.
27.

Sol:

In the given AP, let the first be a and the common difference be d .
Then, $T_{n}=a+(n-1) d$

Now, $T_{4}=a+(4-1) d$
$\Rightarrow a+3 d=0$
$\Rightarrow a=-3 d$
Again, $T_{11}=a+(11-1) d=a+10 d$
$=-3 d+10 d=7 d \quad[U \operatorname{sing}(1)]$
Also, $T_{25}=a+(25-1) d=a+24 d=-3 d+24 d=21 d$
[Using (1)]
i.e., $T_{25}=3 \times 7 d=\left(3 \times T_{11}\right)$

Hence, $25^{\text {th }}$ term is triple its $11^{\text {th }}$ term.
28.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{8}=0 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+(8-1) d=0$
$\Rightarrow a+7 d=0$
$\Rightarrow a=-7 d$
Now,
$\frac{a_{38}}{a_{18}}=\frac{a+(38-1) d}{a+(18-1) d}$
$\Rightarrow \frac{a_{38}}{a_{18}}=\frac{-7 d+37 d}{-7 d+17 d} \quad[$ From $(1)]$
$\Rightarrow \frac{a_{38}}{a_{18}}=\frac{30 d}{10 d}=3$
$\Rightarrow a_{38}=3 \times a_{18}$
Hence, the $38^{\text {th }}$ term of the AP id triple its $18^{\text {th }}$ term.
29.

Sol:

Let a be the first term and d be the common difference of the AP. Then,

$$
a_{4}=11
$$

$\Rightarrow a+(4-1) d=11$ $\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+3 d=11$
Now,
$a_{5}+a_{7}=34$
(Given)

$$
\begin{align*}
& \Rightarrow(a+4 d)+(a+6 d)=34 \\
& \Rightarrow 2 a+10 d=34 \\
& \Rightarrow a+5 d=17 \tag{2}
\end{align*}
$$

From (1) and (2), we get
$11-3 d+5 d=17$
$\Rightarrow 2 d=17-11=6$
$\Rightarrow d=3$
Hence, the common difference of the AP is 3 .
30.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{9}=-32$
$\Rightarrow a+(9-1) d=-32 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+8 d=-32$
Now,

$$
a_{11}+a_{13}=-94
$$

(Given)
$\Rightarrow(a+10 d)+(a+12 d)=-94$
$\Rightarrow 2 a+22 d=-94$
$\Rightarrow a+11 d=-47$
From (1) and (2), we get
$-32-8 d+11 d=-47$
$\Rightarrow 3 d=-47+32=-15$
$\Rightarrow d=-5$
Hence, the common difference of the AP is -5 .
31.

Sol:

Let a be the first term and d be the common difference of the AP. Then,

$$
\begin{align*}
& a_{7}=-1 \\
& \Rightarrow a+(7-1) d=-1 \quad\left[a_{n}=a+(n-1) d\right] \\
& \Rightarrow a+6 d=-1 \tag{1}
\end{align*}
$$

Also,
$a_{16}=17$
$\Rightarrow a+15 d=17$

From (1) and (2), we get
$-1-6 d+15 d=17$
$\Rightarrow 9 d=17+1=18$
$\Rightarrow d=2$
Putting $d=2$ in (1), we get
$a+6 \times 2=-1$
$\Rightarrow a=-1-12=-13$
$\therefore a_{n}=a+(n-1) d$
$=-13+(n-1) \times 2$
$=2 n-15$
Hence, the nth term of the AP is $(2 n-15)$.
32.

Sol:

Let a be the first term and d be the common difference of the AP. Then,

$$
\begin{aligned}
& 4 \times a_{4}=18 \times a_{18} \quad \text { (Given) } \\
& \Rightarrow 4(a+3 d)=18(a+17 d) \\
& \Rightarrow 2(a+3 d)=9(a+17 d) \\
& \Rightarrow 2 a+6 d=9 a+153 d \\
& \Rightarrow 7 a=-147 d \\
& \Rightarrow a=-21 d \\
& \Rightarrow a+21 d=0 \\
& \Rightarrow a+(22-1) d=0 \\
& \Rightarrow a_{22}=0
\end{aligned}
$$

Hence, the $22^{\text {nd }}$ term of the AP is 0 .
33.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$10 \times a_{10}=15 \times a_{15}$ (Given)
$\Rightarrow 10(a+9 d)=15(a+14 d) \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 2(a+9 d)=3(a+14 d)$
$\Rightarrow 2 a+18 d=3 a+42 d$
$\Rightarrow a=-24 d$
$\Rightarrow a+24 d=0$
$\Rightarrow a+(25-1) d=0$
$\Rightarrow a_{25}=0$
Hence, the $25^{\text {th }}$ term of the AP is 0 .
34.

Sol:

Let the common difference of the AP be d.
First term, $a=5$
Now,
$a_{1}+a_{2}+a_{3}+a_{4}=\frac{1}{2}\left(a_{5}+a_{6}+a_{7}+a_{8}\right) \quad$ (Given)
$\Rightarrow a+(a+d)+(a+2 d)+(a+3 d)=\frac{1}{2}[(a+4 d)+(a+5 d)+(a+6 d)+(a+7 d)]$
$\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 4 a+6 d=\frac{1}{2}(4 a+22 d)$
$\Rightarrow 8 a+12 d=4 a+22 d$
$\Rightarrow 22 d-12 d=8 a-4 a$
$\Rightarrow 10 d=4 a$
$\Rightarrow d=\frac{2}{5} a$
$\Rightarrow d=\frac{2}{5} \times 5=2 \quad(a=5)$
Hence, the common difference of the AP is 2 .
35.

Sol:

Let a be the first term and d be the common difference of the AP. Then,

$$
\begin{equation*}
a_{2}+a_{7}=30 \tag{Given}
\end{equation*}
$$

$$
\begin{align*}
& \therefore(a+d)+(a+6 d)=30 \\
& \Rightarrow 2 a+7 d=30 \tag{1}
\end{align*}
$$

$$
\left[a_{n}=a+(n-1) d\right]
$$

Also,

$$
a_{15}=2 a_{8}-1
$$

(Given)

$$
\begin{aligned}
& \Rightarrow a+14 d=2(a+7 d)-1 \\
& \Rightarrow a+14 d=2 a+14 d-1 \\
& \Rightarrow-a=-1 \\
& \Rightarrow a=1
\end{aligned}
$$

Putting $a=1$ in (1), we get
$2 \times 1+7 d=30$
$\Rightarrow 7 d=30-2=28$
$\Rightarrow d=4$
So,
$a_{2}=a+d=1+4=5$
$a_{3}=a+2 d=1+2 \times 4=9$. \qquad
Hence, the AP is $1,5,9,13, \ldots \ldots$.
36.

Sol:

Let the term of the given progressions be t_{n} and T_{n}, respectively.
The first AP is $63,65,67, \ldots$
Let its first term be a and common difference be d.
Then $\mathrm{a}=63$ and $\mathrm{d}=(65-63)=2$
So, its nth term is given by
$t_{n}=a+(n-1) d$
$\Rightarrow 63+(n-1) \times 2$
$\Rightarrow 61+2 n$
The second AP is $3,10,17, \ldots$
Let its first term be A and common difference be D .
Then $\mathrm{A}=3$ and $\mathrm{D}=(10-3)=7$
So, its nth term is given by

$$
\begin{aligned}
& T_{n}=A+(n-1) D \\
& \Rightarrow 3+(n-1) \times 7 \\
& \Rightarrow 7 n-4 \\
& \text { Now, } t_{n}=T_{n} \\
& \Rightarrow 61+2 n=7 n-4 \\
& \Rightarrow 65=5 n \\
& \Rightarrow n=13
\end{aligned}
$$

Hence, the 13 terms of the Al's are the same.
37.

Sol:

Let a be the first term and d be the common difference of the AP. Then, $a_{17}=2 a_{8}+5 \quad$ (Given)
$\therefore a+16 d=2(a+7 d)+5 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+16 d=2 a+14 d+5$
$\Rightarrow a-2 d=-5$
Also,
$a_{11}=43 \quad$ (Given)
$\Rightarrow a+10 d=43$
From (1) and (2), we get
$-5+2 d+10 d=43$
$\Rightarrow 12 d=43+5=48$
$\Rightarrow d=4$
Putting $d=4$ in (1), we get
$a-2 \times 4=-5$
$\Rightarrow a=-5+8=3$
$\therefore a_{n}=a+(n-1) d$
$=3+(n-1) \times 4$
$=4 n-1$
Hence, the nth term of the AP is $(4 n-1)$.
38.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{24}=2 a_{10} \quad$ (Given)
$\Rightarrow a+23 d=2(a+9 d)$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow a+23 d=2 a+18 d$
$\Rightarrow 2 a-a=23 d-18 d$
$\Rightarrow a=5 d$
Now,
$\frac{a_{72}}{a_{15}}=\frac{a+71 d}{a+14 d}$
$\Rightarrow \frac{a_{72}}{a_{15}}=\frac{5 d+71 d}{5 d+14 d}$
[From(1)]
$\Rightarrow \frac{a_{72}}{a_{15}}=\frac{76 d}{19 d}=4$
$\Rightarrow a_{72}=4 \times a_{15}$
Hence, the $72^{\text {nd }}$ term of the AP is 4 times its $15^{\text {th }}$ term.
39.

Sol:

Let a be the first term and d be the common difference of the AP. Then, $a_{19}=3 a_{6} \quad$ (Given)
$\Rightarrow a+18 d=3(a+5 d) \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+18 d=3 a+15 d$
$\Rightarrow 3 a-a=18 d-15 d$
$\Rightarrow 2 a=3 d$
Also,
$a_{9}=19$
(Given)
$\Rightarrow a+8 d=19$
From (1) and (2), we get
$\frac{3 d}{2}+8 d=19$
$\Rightarrow \frac{3 d+16 d}{2}=19$
$\Rightarrow 19 d=38$
$\Rightarrow d=2$
Putting $d=2$ in (1), we get
$2 a=3 \times 2=6$
$\Rightarrow a=3$
So,

$$
\begin{aligned}
& a_{2}=a+d=3+2=5 \\
& a_{3}=a+2 d=3+2 \times 2=7, \ldots \ldots . .
\end{aligned}
$$

Hence, the AP is $3,5,7,9, \ldots \ldots$.
40.

Sol:

In the given AP, let the first be a and the common difference be d .

Then, $T_{n}=a+(n-1) d$
$\Rightarrow T p=a+(p-1) d=q$
$\Rightarrow T_{q}=a+(q-1) d=p$
On subtracting (i) from (ii), we get:
$(q-p) d=(p-q)$
$\Rightarrow d=-1$
Putting $d=-1$ in (i), we get:
$a=(p+q-1)$
Thus, $a=(p+q-1)$ and $d=-1$
Now, $T_{p+q}=a+(p+q-1) d$
$=(p+q-1)+(p+q-1)(-1)$
$=(p+q-1)-(p+q-1)=0$
Hence, the $(p+q)^{\text {th }}$ term is 0 (zero).
41.

Sol:

In the given AP, first term $=a$ and last term $=l$.
Let the common difference be d.
Then, nth term from the beginning is given by
$T_{n}=a+(n-1) d$
Similarly, nth term from the end is given by
$T_{n}=\{l-(n-1) d\}$
Adding (1) and (2), we get
$a+(n-1) d+\{l-(n-1) d\}$
$=a+(n-1) d+l-(n-1) d$
$=a+1$
Hence, the sum of the nth term from the beginning and the nth term from the end $(a+1)$.
42.

Sol:

The two digit numbers divisible by 6 are 12, 18, 24,, 96
Clearly, these number are in AP.
Here, $a=12$ and $d=18-12=6$
Let this AP contains n terms. Then,
$a_{n}=96$
$\Rightarrow 12+(n-1) \times 6=96 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 6 n+6=96$
$\Rightarrow 6 n=96-6=90$
$\Rightarrow n=15$
Hence, these are 15 two-digit numbers divisible by 6 .
43.

Sol:

The two-digit numbers divisible by 3 are 12, 15, 18, ... 99 .
Clearly, these number are in AP.
Here, $a=12$ and $d=15-12=3$
Let this AP contains n terms. Then,
$a_{n}=99$
$\Rightarrow 12+(n-1) \times 3=99 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 3 n+9=99$
$\Rightarrow 3 n=99-9=90$
$\Rightarrow n=30$
Hence, there are 30 two-digit numbers divisible by 3 .
44.

Sol:

The three-digit numbers divisible by 9 are 108, 117, 126,...., 999 .
Clearly, these number are in AP.
Here. $a=108$ and $d=117-108=9$
Let this AP contains n terms. Then.
$a_{n}=999$
$\Rightarrow 108+(n-1) \times 9=999 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 9 n+99=999$
$\Rightarrow 9 n=999-99=900$
$\Rightarrow n=100$
Hence: there are 100 three-digit numbers divisible by 9 .
45.

Sol:

The numbers which are divisible by both 2 and 5 are divisible by 10 also.
Now, the numbers between 101 and 999 which are divisible 10 are 110, 120, 130, .., 990.
Clearly, these number are in AP

Downloaded from www.studiestoday.com

Here, $a=110$ and $d=120-110=10$
Let this AP contains n terms. Then,
$a_{n}=990$
$\Rightarrow 110+(n-1) \times 10=990 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 10 n+100=990$
$\Rightarrow 10 n=990-100=890$
$\Rightarrow n=89$
Hence, there are 89 numbers between 101 and 999 which are divisible by both 2 and 5 .
46.

Sol:

The numbers of rose plants in consecutive rows are $43,41,39, \ldots, 11$.
Difference of rose plants between two consecutive rows $=(41-43)=(39-41)=-2$
[Constant]
So, the given progression is an AP
Here, first term $=43$
Common difference $=-2$
Last term 11
Let n be the last term, then we have:
$T_{n}=a+(n-1) d$
$\Rightarrow 11=43+(n-1)(-2)$
$\Rightarrow 11=45-2 n$
$\Rightarrow 34=2 n$
$\Rightarrow n=17$
Hence, the $17^{\text {th }}$ term is 11 or there are 17 rows in the flower bed.
47.

Sol:

Let the amount of the first prize be ₹a
Since each prize after the first is ₹200 less than the preceding prize, so the amounts of the four prizes are in AP.
Amount of the second prize $=₹(a-200)$
Amount of the third prize $=₹(a-2 \times 200)=(a-400)$
Amount of the fourth prize $=₹(a-3 \times 200)=(a-600)$
Now,

Downloaded from www.studiestoday.com

Total sum of the four prizes $=2,800$
$\therefore ₹ a+₹(a-200)+₹(a-400)+₹(a-600)=₹ 2,800$
$\Rightarrow 4 a-1200=2800$
$\Rightarrow 4 a=2800+1200=4000$
$\Rightarrow a=1000$
\therefore Amount of the first prize $=₹ 1,000$
Amount of the second prize $=₹(1000-200)=₹ 800$
Amount of the third prize $=₹(1000=400)=₹ 600$
Amount of the fourth prize $=₹(1000-600)=₹ 400$
Hence, the value of each of the prizes is ₹ 1,000 , ₹ 800 , ₹ 600 and ₹ 400 .

Exercise - 11B

1.

Sol:

It is given that $(3 k-2),(4 k-6)$ and $(k+2)$ are three consecutive terms of an AP.
$\therefore(4 k-6)-(3 k-2)=(k+2)-(4 k-6)$
$\Rightarrow 4 k-6-3 k+2=k+2-4 k+6$
$\Rightarrow k-4=-3 k+8$
$\Rightarrow k+3 k=8+4$
$\Rightarrow 4 k=12$
$\Rightarrow k=3$
Hence, the value of k is 3 .
2.

Sol:

It is given that $(5 x+2),(4 x-1)$ and $(x+2)$ are in AP.

$$
\begin{aligned}
& \therefore(4 x-1)-(5 x+2)=(x+2)-(4 x-1) \\
& \Rightarrow 4 x-1-5 x-2=x+2-4 x+1 \\
& \Rightarrow-x-3=-3 x+3 \\
& \Rightarrow 3 x-x=3+3 \\
& \Rightarrow 2 x=6 \\
& \Rightarrow x=3
\end{aligned}
$$

Hence, the value of x is 3 .
3.

Sol:

It is given that $(3 y-1),(3 y+5)$ and $(5 y+1)$ are three consecutive terms of an AP.
$\therefore(3 y+5)-(3 y-1)=(5 y+1)-(3 y+5)$
$\Rightarrow 3 y+5-3 y+1=5 y+1-3 y-5$
$\Rightarrow 6=2 y-4$
$\Rightarrow 2 y=6+4=10$
$\Rightarrow y=5$
Hence, the value of y is 5 .
4.

Sol:

Since $(x+2), 2 x$ and $(2 x+3)$ are in AP, we have
$2 x-(x+2)=(2 x+3)-2 x$
$\Rightarrow x-2=3$
$\Rightarrow x=5$
$\therefore x=5$

5.

Sol:

The given numbers are $(a-b)^{2},\left(a^{2}+b^{2}\right)$ and $(a+b)^{2}$.
Now,
$\left(a^{2}+b^{2}\right)-(a-b)^{2}=a^{2}+b^{2}-\left(a^{2}-2 a b+b^{2}\right)=a^{2}+b^{2}-a^{2}+2 a b-b^{2}=2 a b$
$(a+b)^{2}-\left(a^{2}+b^{2}\right)=a^{2}+2 a b+b^{2}-a^{2}-b^{2}=2 a b$
So, $\left(a^{2}+b^{2}\right)-(a-b)^{2}=(a+b)^{2}-\left(a^{2}+b^{2}\right)=2 a b \quad$ (Constant)
Since each term differs from its preceding term by a constant, therefore, the given numbers are in AP.
6.

Sol:

Let the required numbers be $(a-d), a$ and $(a+d)$.
Then $(a-d)+a+(a+d)=15$
$\Rightarrow 3 a=15$
$\Rightarrow a=5$
Also, $(a-d) \cdot a \cdot(a+d)=80$
$\Rightarrow a\left(a^{2}-d^{2}\right)=80$
$\Rightarrow 5\left(25-d^{2}\right)=80$
$\Rightarrow d^{2}=25-16=9$
$\Rightarrow d= \pm 3$
Thus, $a=5$ and $d= \pm 3$
Hence, the required numbers are $(2,5$ and 8$)$ or $(8,5$ and 2$)$.
7.

Sol:

Let the required numbers be $(a-d), a$ and $(a+d)$.
Then $(a-d)+a+(a+d)=3$
$\Rightarrow 3 a=3$
$\Rightarrow a=1$
Also, $(a-d) \cdot a \cdot(a+d)=-35$
$\Rightarrow a\left(a^{2}-d^{2}\right)=-35$
$\Rightarrow 1 .\left(1-d^{2}\right)=-35$
$\Rightarrow d^{2}=36$
$\Rightarrow d= \pm 6$
Thus, $a=1$ and $d= \pm 6$
Hence, the required numbers are $(-5,1$ and 7$)$ or $(7,1$ and -5$)$.
8.

Sol:

Let the required parts of 24 be $(a-d), a$ and $(a+d)$ such that they are in AP.
Then $(a-d)+a+(a+d)=24$
$\Rightarrow 3 a=24$
$\Rightarrow a=8$
Also, $(a-d) \cdot a \cdot(a+d)=440$
$\Rightarrow a\left(a^{2}-d^{2}\right)=440$
$\Rightarrow 8\left(64-d^{2}\right)=440$
$\Rightarrow d^{2}=64-55=9$
$\Rightarrow d= \pm 3$
Thus, $a=8$ and $d= \pm 3$
Hence, the required parts of 24 are $(5,8,11)$ or $(11,8,5)$.
9.

Sol:

Let the required terms be $(a-d), a$ and $(a+d)$.
Then $(a-d)+a+(a+d)=21$
$\Rightarrow 3 a=21$
$\Rightarrow a=7$
Also, $(a-d)^{2}+a^{2}+(a+d)^{2}=165$
$\Rightarrow 3 a^{2}+2 d^{2}=165$
$\Rightarrow\left(3 \times 49+2 d^{2}\right)=165$
$\Rightarrow 2 d^{2}=165-147=18$
$\Rightarrow d^{2}=9$
$\Rightarrow d= \pm 3$
Thus, $a=7$ and $d= \pm 3$
Hence, the required terms are $(4,7,10)$ or $(10,7,4)$.
10.

Sol:

Let the required angles be $(a-15)^{\circ},(a-5)^{\circ},(a+5)^{\circ}$ and $(a+15)^{\circ}$, as the common difference is 10 (given).
Then $(a-15)^{\circ}+(a-5)^{\circ}+(a+5)^{\circ}+(a+15)^{\circ}=360^{\circ}$
$\Rightarrow 4 a=360$
$\Rightarrow a=90$
Hence, the required angles of a quadrilateral are
$(90-15)^{\circ},(90-5)^{\circ},(90+5)^{\circ}$ and $(90+15)^{\circ}$; or $75^{\circ}, 85^{\circ}, 95^{\circ}$ and 105°.
11.

Sol:

$(4,6,8,10)$ or $(10,8,6,4)$
12.

Sol:

Let the four parts in AP be $(a-3 d),(a-d),(a+d)$ and $(a+3 d)$.Then,
$(a-3 d)+(a-d)+(a+d)+(a+3 d)=32$
$\Rightarrow 4 a=32$
$\Rightarrow a=8$
Also,
$(a-3 d)(a+3 d):(a-d)(a+d)=7: 15$
$\Rightarrow \frac{(8-3 d)(8+3 d)}{(8-d)(8+d)}=\frac{7}{15}$
[From (1)]
$\Rightarrow \frac{64-9 d^{2}}{64-d^{2}}=\frac{7}{15}$
$\Rightarrow 15\left(64-9 d^{2}\right)=7\left(64-d^{2}\right)$
$\Rightarrow 960-135 d^{2}=448-7 d^{2}$
$\Rightarrow 135 d^{2}-7 d^{2}=960-448$
$\Rightarrow 128 d^{2}=512$
$\Rightarrow d^{2}=4$
$\Rightarrow d= \pm 2$
When $a=8$ and $d=2$,
$a-3 d=8-3 \times 2=8-6=2$
$a-d=8-2=6$
$a+d=8+2=10$
$a+3 d=8+3 \times 2=8+6=14$
When $a=8$ and $d=-2$,
$a-3 d=8-3 \times(-2)=8+6=14$
$a-d=8-(-2)=8+2=10$
$a+d=8-2=6$
$a+3 d=8+3 \times(-2)=8-6=2$
Hence, the four parts are 2, 6, 10 and 14.
13.

Sol:

Let the first three terms of the AP be $(a-d), a$ and $(a+d)$. Then,
$(a-d)+a+(a+d)=48$
$\Rightarrow 3 a=48$
$\Rightarrow a=16$
Now,
$(a-d) \times a=4(a+d)+12 \quad$ (Given)
$\Rightarrow(16-d) \times 16=4(16+d)+12$
$\Rightarrow 256-16 d=64+4 d+12$
$\Rightarrow 16 d+4 d=256-76$
$\Rightarrow 20 d=180$
$\Rightarrow d=9$
When $a=16$ and $d=9$,
$a-d=16-9=7$
$a+d=16+9=25$
Hence, the first three terms of the AP are 7, 16, and 25.

Exercise - 11C

1.

Sol:

The terms $(3 y-1),(3 y+5)$ and $(5 y+1)$ are in AP.
$\therefore(3 y+5)-(3 y-1)=(5 y+1)-(3 y+5)$
$\Rightarrow 3 y+5-3 y+1=5 y+1-3 y-5$
$\Rightarrow 6=2 y-4$
$\Rightarrow 2 y=10$
$\Rightarrow y=5$
Hence, the value of y is 5 .
2.

Sol:

It is given that $k,(2 k-1)$ and $(2 k+1)$ are the three successive terms of an AP.
$\therefore(2 k-1)-k=(2 k+1)-(2 k-1)$
$\Rightarrow k-1=2$
$\Rightarrow k=3$
Hence, the value of k is 3 .

Downloaded from www.studiestoday.com

3.

Sol:

It is given that $18, a,(b-3)$ are in AP.
$\therefore a-18=(b-3)-a$
$\Rightarrow a+a-b=18-3$
$\Rightarrow 2 a-b=15$
Hence, the required value is 15 .
4.

Sol:

It is given that the numbers $a, 9, b, 25$ from an AP.
So, $\therefore 9-a=b-9=25-b$
$b-9=25-b$
$\Rightarrow 2 b=34$
$\Rightarrow b=17$
Also,
$9-a=b-9$
$\Rightarrow a=18-b$
$\Rightarrow a=18-17$
$\Rightarrow a=1$
Hence, the required values of a and b are 1 and 17, respectively.
5.

Sol:

It is given that the numbers $(2 n-1),(3 n+2)$ and $(6 n-1)$ are in AP.
$\therefore(3 n+2)-(2 n-1)=(6 n-1)-(3 n+2)$
$\Rightarrow 3 n+2-2 n+1=6 n-1-3 n-2$
$\Rightarrow n+3=3 n-3$
$\Rightarrow 2 n=6$
$\Rightarrow n=3$
When, $n=3$
$2 n-1=2 \times 3-1=6-1=5$
$3 n+2=3 \times 3+2=9+2=11$
$6 n-1=6 \times 3-1=18-1=17$
Hence, the required value of n is 3 and the numbers are 5, 11 and 17 .
6.

Sol:

The three digit natural numbers divisible by 7 are $105,112,119, 994$
Clearly, these number are in AP.
Here, $a=105$ and $d=112-105=7$
Let this AP contains n terms. Then,

$$
a_{n}=994
$$

$$
\Rightarrow 105+(n-1) \times 7=994 \quad\left[a_{n}=a+(n-1) d\right]
$$

$$
\Rightarrow 7 n+98=994
$$

$$
\Rightarrow 7 n=994-98=986
$$

$$
\Rightarrow n=128
$$

Hence, there are 128 three digit numbers divisible by 7 .

7.

Sol:

The three-digit natural numbers divisible by 9 are 108, 117, 126 \qquad 999.

Clearly, these number are in AP.
Here. $a=108$ and $d=117-108=9$
Let this AP contains n terms. Then,

$$
\begin{aligned}
& a_{n}=999 \\
& \Rightarrow 108+(n-1) \times 9=999 \\
& \Rightarrow 9 n+99=999 \\
& \Rightarrow 9 n=999-99=900 \\
& \Rightarrow n=100
\end{aligned}
$$

Hence, there are 100 three-digit numbers divisible by 9 .

8.

Sol:

Let S_{m} denotes the sum of first m terms of the AP.

$$
\begin{aligned}
& \therefore S_{m}=2 m^{2}+3 m \\
& \Rightarrow S_{m-1}=2(m-1)^{2}+3(m-1)=2\left(m^{2}-2 m+1\right)+3(m-1)=2 m^{2}-m-1
\end{aligned}
$$

Now,
$m^{\text {th }}$ term of AP, $a_{m}=S_{m}-S_{m-1}$
$\therefore a_{m}=\left(2 m^{2}+3 m\right)-\left(2 m^{2}-m-1\right)=4 m+1$
Putting $m=2$, we get
$a_{2}=4 \times 2+1=9$

Downloaded from www.studiestoday.com

Hence, the second term of the AP is 9 .
9.

Sol:

The given AP is $3 a, 5 a, \ldots$.
Here,
First term, A = a
Common difference, $D=3 a-a=2 a$
\therefore Sum of the n terms, S_{n}
$=\frac{n}{2}[2 \times a+(n-1) \times 2 a] \quad\left\{S_{n}=\frac{n}{2}[2 A+(n-1) D]\right\}$
$=\frac{n}{2}(2 a+2 a n-2 a)$
$=\frac{n}{2} \times 2 a n$
$=a n^{2}$
Hence, the required sum is $a n^{2}$.
10.

Sol:

The given AP is $2,7,12, \ldots, 47$.
Let us re-write the given AP in reverse order i.e. $47,42, . ., 12,7,2$.
Now, the 5th term from the end of the given AP is equal to the 5th term from beginning of the AP 47, 42,.... ,12, 7, 2.
Consider the AP 47, 42,..., 12, 7, 2.
Here, $a=47$ and $d=42-47=-5$
5th term of this AP
$=47+(5-1) \times(-5)$
$=47-20$
$=27$
Hence, the 5th term from the end of the given AP is 27.
11.

Sol:

The given AP is $2,7,12,17, \ldots \ldots \ldots$
Here, $a=2$ and $d=7-2=5$
$\therefore a_{30}-a_{20}$
$=[2+(30-1) \times 5]-[2+(20-1) \times 5] \quad\left[a_{n}=a+(n-1) d\right]$
$=147-97$
$=50$
Hence, the required value is 50 .
12.

Sol:

We have
$T_{n}=(3 n+5)$
Common difference $=T_{2}-T_{1}$
$T_{1}=3 \times 1+5=8$
$T_{2}=3 \times 2+5=11$
$d=11-8-3$
Hence, the common difference is 3 .
13.

Sol:
We have
$T_{n}=(7-4 n)$
Common difference $=T_{2}-T_{1}$
$T_{1}=7-4 \times 1=3$
$T_{2}=7-4 \times 2=-1$
$d=-1-3=-4$
Hence, the common difference is -4 .
14.

Sol:

The given AP is $\sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots \ldots \ldots$.
On simplifying the terms, we get:
$2 \sqrt{2}, 3 \sqrt{2}, 4 \sqrt{2}, \ldots \ldots$.
Here, $a=2 \sqrt{2}$ and $d=(3 \sqrt{2}-2 \sqrt{2})=\sqrt{2}$
\therefore Next term, $T_{4}=a+3 d=2 \sqrt{2}+3 \sqrt{2}=5 \sqrt{2}=\sqrt{50}$

Downloaded from www.studiestoday.com

15.

Sol:

The given AP is $\sqrt{2}, \sqrt{8}, \sqrt{18}$,
On simplifying the terms, we get:
$\sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2}, \ldots \ldots$.
Here, $a=\sqrt{2}$ and $d=(2 \sqrt{2}-\sqrt{2})=\sqrt{2}$
\therefore Next term, $T_{4}=a+3 d=\sqrt{2}+3 \sqrt{2}=4 \sqrt{2}=\sqrt{32}$
16.

Sol:

In the given AP, first term, $a=21$ and common difference, $d=(18-21)=-3$
Let's its $n^{\text {th }}$ term be 0 .
Then, $T_{n}=0$
$\Rightarrow a+(n-1) d=0$
$\Rightarrow 21+(n-1) \times(-3)=0$
$\Rightarrow 24-3 n=0$
$\Rightarrow 3 n=24$
$\Rightarrow n=8$
Hence, the $8^{\text {th }}$ term of the given AP is 0 .
17.

Sol:

The first n natural numbers are $1,2,3,4,5, \ldots \ldots ., \mathrm{n}$
Here, $\mathrm{a}=1$ and $\mathrm{d}=(2-1)=1$
Sum of n terms of an AP is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\left(\frac{n}{2}\right) \times[2 \times 1+(n-1) \times 1]$
$=\left(\frac{n}{2}\right) \times[2+n-1]=\left(\frac{n}{2}\right) \times(n+1)=\frac{n(n+1)}{2}$
18.

Sol:

The first n even natural numbers are $2,4,6,8,10, \ldots, n$.

Here, $a=2$ and $d=(4-2)=2$
Sum of n terms of an AP is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\left(\frac{n}{2}\right) \times[2 \times 2+(n-1) \times 2]$
$=\left(\frac{n}{2}\right) \times[4+2 n-2]=\left(\frac{n}{2}\right) \times(2 n+2)=n(n+1)$
Hence, the required sum is $n(n+1)$.
19.

Sol:

Here, $a=p$ and $d=q$
Now, $T_{n}=a+(n-1) d$
$\Rightarrow T_{n}=p+(n-1) q$
$\therefore T_{10}=p+9 q$
20.

Sol:

If $45, a$ and 2 are three consecutive terms of an AP, then we have:
$a-45=2-a$
$\Rightarrow 2 a=2+45$
$\Rightarrow 2 a=145$
$\Rightarrow a=75$
21.

Sol:

Let $(2 p+1), 13,(5 p-3)$ be three consecutive terms of an AP.
Then $13-(2 p+1)=(5 p-3)-13$
$\Rightarrow 7 p=28$
$\Rightarrow p=4$
\therefore When $p=4,(2 p+1), 13$ and $(5 p-3)$ from three consecutive terms of an AP.
22.

Sol:

Let $(2 p-1), 7$ and $3 p$ be three consecutive terms of an AP.
Then $7-(2 p-1)=3 p-7$
$\Rightarrow 5 p=15$
$\Rightarrow p=3$
\therefore When $p=3,(2 p-1), 7$ and $3 p$ form three consecutive terms of an AP.
23.

Sol:

Let S_{p} denotes the sum of first p terms of the AP.
$\therefore S_{p}=a p^{2}+b p$
$\Rightarrow S_{p-1}=a(p-1)^{2}+b(p-1)$
$=a\left(p^{2}-2 p+1\right)+b(p-1)$
$=a p^{2}-(2 a-b) p+(a-b)$
Now,
$p^{\text {th }}$ term of $A P, a_{p}=S_{p}-S_{p-1}$
$=\left(a p^{2}+b p\right)-\left[a p^{2}-(2 a-b) p+(a-b)\right]$
$=a p^{2}+b p-a p^{2}+(2 a-b) p-(a-b)$
$=2 a p-(a-b)$
Let d be the common difference of the AP.
$\therefore d=a_{p}-a_{p-1}$
$=[2 a p-(a-b)]=[2 a(p-1)-(a-b)]$
$=2 a p-(a-b)-2 a(p-1)+(a-b)$
$=2 a$
Hence, the common difference of the AP is 2 a .
24.

Sol:

Let S_{n} denotes the sum of first n terms of the AP.
$\therefore S_{n}=3 n^{2}+5 n$
$\Rightarrow S_{n-1}=3(n-1)^{2}+5(n-1)$

$$
\begin{aligned}
& =3\left(n^{2}-2 n+1\right)+5(n-1) \\
& =3 n^{2}-n-2
\end{aligned}
$$

Now,
$n^{\text {th }}$ term of $A P, a_{n}=S_{n}-S_{n-1}$
$=\left(3 n^{2}+5 n\right)-\left(3 n^{2}-n-2\right)$
$=6 n+2$
Let d be the common difference of the AP.
$\therefore d=a_{n}-a_{n-1}$
$=(6 n+2)-[6(n-1)+2]$
$=6 n+2-6(n-1)-2$
$=6$
Hence, the common difference of the AP is 6 .
25.

Sol:

Let a be the first term and d be the common difference of the AP. Then,

$$
a_{4}=9
$$

$$
\Rightarrow a+(4-1) d=9
$$

$$
\begin{equation*}
\left[a_{n}=a+(n-1) d\right] \tag{1}
\end{equation*}
$$

$\Rightarrow a+3 d=9$
Now,

$$
\begin{align*}
& a_{6}+a_{13}=40 \\
& \Rightarrow(a+5 d)+(a+12 d)=40 \\
& \Rightarrow 2 a+17 d=40
\end{align*}
$$

From (1) and (2), we get

$$
\begin{aligned}
& 2(9-3 d)+17 d=40 \\
& \Rightarrow 18-6 d+17 d=40 \\
& \Rightarrow 11 d=40-18=22 \\
& \Rightarrow d=2
\end{aligned}
$$

Putting $d=2$ in (1), we get
$a+3 \times 2=9$
$\Rightarrow a=9-6=3$
Hence, the AP is $3,5,7,9,11, \ldots \ldots$

Exercise - 11D

1.

Sol:
(i) The given AP is $2,7,12,17, \ldots \ldots \ldots$.

Here, $a=2$ and $d=7-2=5$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{19}=\frac{19}{2}[2 \times 2+(19-1) \times 5]$
$=\frac{19}{2} \times(4+90)$
$=\frac{19}{2} \times 94$
$=893$
(ii) The given AP is $9,7,5,3, \ldots \ldots \ldots$..

Here, $a=9$ and $d=7-9=-2$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{14}=\frac{14}{2}[2 \times 9+(14-1) \times(-2)]$
$=7 \times(18-26)$
$=7 \times(-8)$
$=-56$
(iii) The given AP is $-37,-33,-29$,

Here, $a=-37$ and $d=-33-(-37)=-33+37=4$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{12}=\frac{12}{2}[2 \times(-37)+(12-1) \times 4]$
$=6 \times(-74+44)$
$=6 \times(-30)$

$$
=-180
$$

(iv) The given AP is $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, \ldots \ldots$

$$
\text { Here, } a=\frac{1}{15} \text { and } d=\frac{1}{12}-\frac{1}{15}=\frac{5-4}{60}=\frac{1}{60}
$$

Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{11}=\frac{11}{2}\left[2 \times\left(\frac{1}{15}\right)+(11-1) \times \frac{1}{60}\right]$
$=\frac{11}{2} \times\left(\frac{2}{15}+\frac{10}{60}\right)$
$=\frac{11}{2} \times\left(\frac{18}{60}\right)$
$=\frac{33}{20}$
(v) The given AP is $0.6,1.7,2.8, \ldots \ldots \ldots$

Here, $a=0.6$ and $d=1.7-0.6=1.1$
Using formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have

$$
\begin{aligned}
& S_{100}=\frac{100}{2}[2 \times 0.6+(100-1) \times 1.1] \\
& =50 \times(1.2+108.9) \\
& =50 \times 110.1 \\
& =5505
\end{aligned}
$$

2.

Sol:
(i) The given arithmetic series is $7+10 \frac{1}{2}+14+\ldots . .+84$.

Here, $a=7, d=10 \frac{1}{2}-7=\frac{21}{2}-7=\frac{21-4}{2}=\frac{7}{2}$ and $l=84$.
Let the given series contains n terms. Then,
$a_{n}=84$
$\Rightarrow 7+(n-1) \times \frac{7}{2}=84 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow \frac{7}{2} n+\frac{7}{2}=84$
$\Rightarrow \frac{7}{2} n=84-\frac{7}{2}=\frac{161}{2}$
$\Rightarrow n=\frac{161}{7}=23$
\therefore Required sum $=\frac{23}{2} \times(7+84) \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=\frac{23}{2} \times 91$
$=\frac{2030}{2}$
$1046 \frac{1}{2}$
(ii) The given arithmetic series is $34+32+30+\ldots \ldots+10$.

Here, $a=34, d=32-34=-2$ and $l=10$.
Let the given series contain n terms. Then,
$a_{n}=10$
$\Rightarrow 34+(n-1) \times(-2)=10 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-2 n+36=10$
$\Rightarrow-2 n=10-36=-26$
$\Rightarrow n=13$
\therefore Required sum $=\frac{13}{2} \times(34+10) \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=\frac{13}{2} \times 44$
$=286$
(iii) The given arithmetic series is $(-5)+(-8)+(-11)+\ldots \ldots .+(-230)$.

Here, $a=-5, d=-8-(-5)=-8+5=-3$ and $l=230$.
Let the given series contain n terms. Then,

$$
\begin{aligned}
& a_{n}=-230 \\
& \Rightarrow-5+(n-1) \times(-3)=-230 \quad\left[a_{n}=a+(n-1) d\right] \\
& \Rightarrow-3 n-2=-230 \\
& \Rightarrow-3 n=-230+2=-228 \\
& \Rightarrow n=76 \\
& \therefore \text { Required sum }=\frac{76}{2} \times[(-5)+(-230)] \quad\left[S_{n}=\frac{n}{2}(a+l)\right] \\
& =\frac{76}{2} \times(-235) \\
& =-8930
\end{aligned}
$$

3.

Sol:

Let a_{n} be the nth term of the AP.
$\therefore a_{n}=5-6 n$
Putting $n=1$, we get
First term, $a=a_{1}=5-6 \times 1=-1$
Putting $n=2$, we get
$a_{2}=5-6 \times 2=-7$
Let d be the common difference of the AP.
$\therefore d=a_{2}-a_{1}=-7-(-1)=-7+1=-6$
Sum of first n tern of the AP, S_{n}

$$
\begin{aligned}
& =\frac{n}{2}[2 \times(-1)+(n-1) \times(-6)] \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\} \\
& =\frac{n}{2}(-2-6 n+6) \\
& =n(2-3 n) \\
& =2 n-3 n^{2}
\end{aligned}
$$

Putting $n=20$, we get
$S_{20}=2 \times 20-3 \times 20^{2}=40-1200=-1160$
4.

Sol:

Let S_{n} denotes the sum of first n terms of the AP.

$$
\begin{aligned}
& \therefore S_{n}=3 n^{2}+6 n \\
& \Rightarrow S_{n-1}=3(n-1)^{2}+6(n-1) \\
& =3\left(n^{2}-2 n+1\right)+6(n-1) \\
& =3 n^{2}-3 \\
& \therefore n^{\text {th }} \text { term of the AP, } a_{n} \\
& =S_{n}-S_{n-1} \\
& =\left(3 n^{2}+6 n\right)-\left(3 n^{2}-3\right) \\
& =6 n+3
\end{aligned}
$$

Putting $n=15$, we get
$a_{15}=6 \times 15+3=90+3=93$
Hence, the $n^{\text {th }}$ term is $(6 n+3)$ and $15^{\text {th }}$ term is 93 .
5.

Sol:

Given: $S_{n}=\left(3 n^{2}-n\right)$
Replacing n by $(n-1)$ in (i), we get:

$$
\begin{aligned}
& S_{n-1}=3(n-1)^{2}-(n-1) \\
& =3\left(n^{2}-2 n+1\right)-n+1 \\
& =3 n^{2}-7 n+4
\end{aligned}
$$

(i) Now, $T_{n}=\left(S_{n}-S_{n-1}\right)$

$$
\begin{align*}
& =\left(3 n^{2}-n\right)-\left(3 n^{2}-7 n+4\right)=6 n-4 \\
& \therefore n^{\text {th }} \text { term, } T_{n}=(6 n-4) \quad \ldots \ldots . .(i i) \tag{ii}
\end{align*}
$$

(ii) Putting $n=1$ in (ii), we get:

$$
T_{1}=(6 \times 1)-4=2
$$

(iii) Putting $n=2$ in (ii), we get:
$T_{2}=(6 \times 2)-4=8$
\therefore Common difference, $d=T_{2}-T_{1}=8-2=6$
6.

Sol:
$S_{n}=\left(\frac{5 n^{2}}{2}+\frac{3 n}{2}\right)=\frac{1}{2}\left(5 n^{2}+3 n\right)$
Replacing n by $(n-1)$ in (i), we get:
$S_{n-1}=\frac{1}{2} \times\left[5(n-1)^{2}+3(n-1)\right]$
$=\frac{1}{2} \times\left[5 n^{2}-10 n+5+3 n-3\right]=\frac{1}{2} \times\left[5 n^{2}-7 n+2\right]$
$\therefore T_{n}=S_{n}-S_{n-1}$
$=\frac{1}{2}\left(5 n^{2}+3 n\right)-\frac{1}{2} \times\left[5 n^{2}-7 n+2\right]$
$=\frac{1}{2}(10 n-2)=5 n-1$
Putting $n=20$ in (ii), we get
$T_{20}=(5 \times 20)-1=99$
Hence, the $20^{\text {th }}$ term is 99 .
7.

Sol:

Let S_{n} denotes the sum of first n terms of the AP.
$\therefore S_{n}=\frac{3 n^{2}}{2}+\frac{5 n}{2}$
$\Rightarrow S_{n-1}=\frac{3(n-1)^{2}}{2}+\frac{5(n-1)}{2}$
$=\frac{3\left(n^{2}-2 n+1\right)}{2}+\frac{5(n-1)}{2}$
$=\frac{3 n^{2}-n-2}{2}$
$\therefore n^{\text {th }}$ term of the AP, a_{n}
$=S_{n}-S_{n-1}$
$=\left(\frac{3 n^{2}+5 n}{2}\right)-\left(\frac{3 n^{2}-n-2}{2}\right)$
$=\frac{6 n+2}{2}$
$=3 n+2$
Putting $n=25$, we get
$a_{25}=3 \times 25+1=75+1=76$
Hence, the nth term is $(3 n+1)$ and $25^{\text {th }}$ term is 76 .
8.

Sol:

Thee given AP is $21,18,15, \ldots \ldots \ldots$
Here, $a=21$ and $d=18-21=-3$
Let the required number of terms be n. Then,
$S_{n}=0$
$\Rightarrow \frac{n}{2}[2 \times 21+(n-1) \times(-3)]=0 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow \frac{n}{2}(42-3 n+3)=0$
$\Rightarrow n(45-3 n)=0$
$\Rightarrow n=0$ or $45-3 n=0$
$\Rightarrow n=0$ or $n=15$
$\therefore n=15$
(Number of terms cannot be zero)
Hence, the required number of terms is 15 .
9.

Sol:

The given AP is $9,17,25, \ldots \ldots$
Here, $a=9$ and $d=17-9=8$
Let the required number of terms be n . Then,
$S_{n}=636$
$\Rightarrow \frac{n}{2}[2 \times 9+(n-1) \times 8]=636 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow \frac{n}{2}(18+8 n-8)=636$
$\Rightarrow \frac{n}{2}(10+8 n)=636$

$$
\begin{array}{rl}
\Rightarrow n & n \\
& (5 n)=636 \\
& \Rightarrow 4 n^{2}+5 n-636=0 \\
& \Rightarrow 4 n^{2}-48 n+53 n-636=0 \\
& \Rightarrow 4 n(n-12)+53(n-12)=0 \\
& \Rightarrow(n-12)(4 n+53)=0 \\
& \Rightarrow n-12=0 \text { or } 4 n+53=0 \\
& \Rightarrow n=12 \text { or } n=-\frac{53}{4}
\end{array}
$$

$\therefore n=12 \quad$ (Number of terms cannot negative)
Hence, the required number of terms is 12 .
10.

Sol:

The given AP is $63,60,57,54, \ldots \ldots \ldots$..
Here, $a=63$ and $d=60-63=-3$
Let the required number of terms be n. Then,

$$
S_{n}=693
$$

$\Rightarrow \frac{n}{2}[2 \times 63+(n-1) \times(-3)]=693$

$$
\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}
$$

$$
\Rightarrow \frac{n}{2}(126-3 n+3)=693
$$

$$
\Rightarrow n(129-3 n)=1386
$$

$$
\Rightarrow 3 n^{2}-129 n+1386=0
$$

$$
\Rightarrow 3 n^{2}-66 n-63 n+1386=0
$$

$$
\Rightarrow 3 n(n-22)-63(n-22)=0
$$

$$
\Rightarrow(n-22)(3 n-63)=0
$$

$$
\Rightarrow n-22=0 \text { or } 3 n-63=0
$$

$$
\Rightarrow n=22 \text { or } n=21
$$

So, the sum of 21 terms as well as that of 22 terms is 693 . This is because the $22^{\text {nd }}$ term of the AP is 0 .
$a_{22}=63+(22-1) \times(-3)=63-63=0$
Hence, the required number of terms is 21 or 22.
11.

Sol:

The given AP is $20,19 \frac{1}{3}, 18 \frac{2}{3}, \ldots \ldots$.
Here, $a=20$ and $d=19 \frac{1}{3}-20=\frac{58}{3}-20=\frac{58-60}{3}=-\frac{2}{3}$
Let the required number of terms be n. Then,

$$
\begin{aligned}
& S_{n}=300 \\
& \Rightarrow \frac{n}{2}\left[2 \times 20+(n-1) \times\left(-\frac{2}{3}\right)\right]=300 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\} \\
& \Rightarrow \frac{n}{2}\left(40-\frac{2}{3} n+\frac{2}{3}\right)=300 \\
& \Rightarrow \frac{n}{2} \times \frac{(122-2 n)}{3}=300 \\
& \Rightarrow 122 n-2 n^{2}=1800 \\
& \Rightarrow 2 n^{2}-122 n+1800=0 \\
& \Rightarrow 2 n^{2}-50 n-72 n+1800=0 \\
& \Rightarrow 2 n(n-25)-72(n-25)=0 \\
& \Rightarrow(n-25)(2 n-72)=0 \\
& \Rightarrow n-25=0 \text { or } 2 n-72=0 \\
& \Rightarrow n=25 \text { or } n=36
\end{aligned}
$$

So, the sum of first 25 terms as well as that of first 36 terms is 300 . This is because the sum of all terms from $26^{\text {th }}$ to $36^{\text {th }}$ is 0 .
12.

Sol:

All odd numbers between 0 and 50 are $1,3,5,7, \ldots \ldots \ldots 49$.
This is an AP in which $a=1, d=(3-1)=2$ and $l=49$.
Let the number of terms be n.
Then, $T_{n}=49$
$\Rightarrow a+(n-1) d=49$
$\Rightarrow 1+(n-1) \times 2=49$
$\Rightarrow 2 n=50$
$\Rightarrow n=25$
\therefore Required sum $=\frac{n}{2}(a+l)$
$=\frac{25}{2}[1+49]=25 \times 25=625$
Hence, the required sum is 625 .
13.

Sol:

Natural numbers between 200 and 400 which are divisible by 7 are 203, $210, \ldots .399$.
This is an AP with $a=203, \mathrm{~d}=7$ and $l=399$.
Suppose there are n terms in the AP. Then,
$a_{n}=399$
$\Rightarrow 203+(n-1) \times 7=399 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 7 n+196=399$
$\Rightarrow 7 n=399-196=203$
$\Rightarrow n=29$
\therefore Required sum $=\frac{29}{2}(203+399)$

$$
\left[S_{n}=\frac{n}{2}(a+l)\right]
$$

$=\frac{29}{2} \times 602$
$=8729$
Hence, the required sum is 8729 .
14.

Sol:

The positive integers divisible by 6 are $6,12,18, \ldots \ldots$
This is an AP with $a=6$ and $d=6$.
Also, $n=40 \quad$ (Given)
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{40}=\frac{40}{2}[2 \times 6+(40-1) \times 6]$
$=20(12+234)$
$=20 \times 246$
$=4920$
Hence, the required sum is 4920 .

Downloaded from www.studiestoday.com

15.

Sol:

The first 15 multiples of 8 are $8,16,24,32, \ldots \ldots$
This is an AP in which $a=8, d=(16-8)=8$ and $n=15$.
Thus, we have:
$l=a+(n-1) d$
$=8+(15-1) 8$
$=120$
\therefore Required sum $=\frac{n}{2}(a+l)$
$=\frac{15}{2}[8+120]=15 \times 64=960$
Hence, the required sum is 960 .
16.

Sol:

The multiples of 9 lying between 300 and 700 are 306, 315, \qquad 693.

This is an AP with $a=306, d=9$ and $l=693$.
Suppose these are n terms in the AP. Then,

$$
a_{n}=693
$$

$\Rightarrow 306+(n-1) \times 9=693$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow 9 n+297=693$
$\Rightarrow 9 n=693-297=396$
$\Rightarrow n=44$
\therefore Required sum $=\frac{44}{2}(306=693)$

$$
\left[S_{n}=\frac{n}{2}(a+l)\right]
$$

$=22 \times 999$
$=21978$
Hence, the required sum is 21978.
17.

Sol:

All three-digit numbers which are divisible by 13 are 104, 117, 130, 143,....... 938.
This is an AP in which $a=104, \mathrm{~d}=(117-104)=13$ and $l=938$
Let the number of terms be n
Then $T_{n}=938$

Downloaded from www.studiestoday.com

$\Rightarrow a+(n-1) d=988$
$\Rightarrow 104+(n-1) \times 13=988$
$\Rightarrow 13 n=897$
$\Rightarrow n=69$
\therefore Required sum $=\frac{n}{2}(a+l)$
$=\frac{69}{2}[104+988]=69 \times 546=37674$
Hence, the required sum is 37674.
18.

Sol:

The first few even natural numbers which are divisible by 5 are 10, 20, 30, 40, ...
This is an AP in which $a=10, d=(20-10)=10$ and $n=100$
The sum of n terms of an AP is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\left(\frac{100}{2}\right) \times[2 \times 10+(100-1) \times 10] \quad[\because a=10, d=10$ and $n=100]$
$=50 \times[20+990]=50 \times 1010=50500$
Hence, the sum of the first hundred even natural numbers which are divisible by 5 is 50500.
19.

Sol:

On simplifying the given series, we get:

$$
\begin{aligned}
& \left(1-\frac{1}{n}\right)+\left(1-\frac{2}{n}\right)+\left(1-\frac{3}{n}\right)+\ldots n \text { terms } \\
& =(1+1+1+\ldots \ldots . n \text { terms })-\left(\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\ldots \ldots . .+\frac{n}{n}\right) \\
& =n-\left(\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\ldots \ldots . .+\frac{n}{n}\right)
\end{aligned}
$$

Here, $\left(\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\ldots \ldots+\frac{n}{n}\right)$ is an AP whose first term is $\frac{1}{n}$ and the common difference
is $\left(\frac{2}{n}-\frac{1}{n}\right)=\frac{1}{n}$.
The sum of terms of an AP is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=n-\left[\frac{n}{2}\left\{2 \times\left(\frac{1}{n}\right)+(n-1) \times\left(\frac{1}{n}\right)\right\}\right]$
$=n-\left[\frac{n}{2}\left[\left(\frac{2}{n}\right)+\left(\frac{n-1}{n}\right)\right]\right]=n-\left\{\frac{n}{2}\left(\frac{n+1}{n}\right)\right\}$
$=n-\left(\frac{n+1}{2}\right)=\frac{n-1}{2}$
20.

Sol:

Let a be the first term and d be the common difference of thee AP. Then,
$S_{5}+S_{7}=167$
$\Rightarrow \frac{5}{2}(2 a+4 d)+\frac{7}{2}(2 a+6 d)=167$

$$
\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}
$$

$\Rightarrow 5 a+10 d+7 a+21 d=167$
$\Rightarrow 12 a+31 d=167$
Also,
$S_{10}=235$
$\Rightarrow \frac{10}{2}(2 a+9 d)=235$
$\Rightarrow 5(2 a+9 d)=235$
$\Rightarrow 2 a+9 d=47$
Multiplying both sides by 6 , we get
$12 a+54 d=282$
Subtracting (1) from (2), we get
$12 a+54 d-12 a-31 d=282-167$
$\Rightarrow 23 d=115$
$\Rightarrow d=5$
Putting $d=5$ in (1), we get
$12 a+31 \times 5=167$
$\Rightarrow 12 a+155=167$
$\Rightarrow 12 a=167-155=12$
$\Rightarrow a=1$
Hence, the AP is $1,6,11,16, \ldots \ldots$.
21.

Sol:

Here, $a=2, l=29$ and $S_{n}=155$
Let d be the common difference of the given AP and n be the total number of terms.
Then, $T_{n}=29$
$\Rightarrow a+(n-1) d=29$
$\Rightarrow 2+(n-1) d=29$
The sum of n terms of an AP is given by
$S_{n}=\frac{n}{2}[a+l]=155$
$\Rightarrow \frac{n}{2}[2+29]=\left(\frac{n}{2}\right) \times 31=155$
$\Rightarrow n=10$
Putting the value of n in (i), we get:
$\Rightarrow 2+9 d=29$
$\Rightarrow 9 d=27$
$\Rightarrow d=3$
Thus, the common difference of the given AP is 3 .
22.

Sol:

Suppose there are n terms in the AP.
Here, $a=-4, l=29$ and $S_{n}=150$
$S_{n}=150$
$\Rightarrow \frac{n}{2}(-4+29)=150$

$$
\left[S_{n}=\frac{n}{2}(a+l)\right]
$$

$\Rightarrow n=\frac{150 \times 2}{25}=12$
Thus, the AP contains 12 terms.
Let d be the common difference of the AP.
$\therefore a_{12}=29$
$\Rightarrow-4+(12-1) \times d=29$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow 11 d=29+4=33$
$\Rightarrow d=3$
Hence, the common difference of the AP is 3 .
23.

Sol:

Suppose there are n terms in the AP.
Here, $a=17, d=9$ and $l=350$
$\therefore a_{n}=350$
$\Rightarrow 17+(n-1) \times 9=350 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 9 n+8=350$
$\Rightarrow 9 n=350-8=342$
$\Rightarrow n=38$
Thus, there are 38 terms in the AP.
$\therefore S_{38}=\frac{28}{2}(17+350) \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=19 \times 367$
$=6973$
Hence, the required sum is 6973 .
24.

Sol:

Suppose there are n term in the AP.
Here, $a=5, l=45$ and $S_{n}=400$
$S_{n}=400$
$\Rightarrow \frac{n}{2}(5+45)=400$

$$
\left[S_{n}=\frac{n}{2}(a+l)\right]
$$

$\Rightarrow \frac{n}{2} \times 50=400$
$\Rightarrow n=\frac{400 \times 2}{50}=16$
Thus, there are 16 terms in the AP.
Let d be the common difference of the AP.
$\therefore a_{16}=45$
$\Rightarrow 5+(16-1) \times d=45 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 15 d=45-5=40$
$\Rightarrow d=\frac{40}{15}=\frac{8}{3}$
Hence, the common difference of the AP is $\frac{8}{3}$.
25.

Sol:

Here, $a=22, T_{n}=-11$ and $S_{n}=66$
Let d be the common difference of the given AP.
Then, $T_{n}=-11$
$\Rightarrow a+(n-1) d d=22+(n-1) d=-11$
$\Rightarrow(n-1) d=-33$
The sum of n terms of an AP is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=66 \quad$ [Substituting the value off $(n-1) d$ from (i)]
$\Rightarrow \frac{n}{2}[2 \times 22+(-33)]=\left(\frac{n}{2}\right) \times 11=66$
$\Rightarrow n=12$
Putting the value of n in (i), we get:
$11 d=-33$
$\Rightarrow d=-3$
Thus, $n=12$ and $d=-3$
26.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{12}=-13$
$\Rightarrow a+11 d=-13$
$\ldots \ldots .(1) \quad\left[a_{n}=a+(n-1) d\right]$
Also,
$S_{4}=24$

$$
\begin{align*}
& \Rightarrow \frac{4}{2}(2 a+3 d)=24 \\
& \Rightarrow 2 a+3 d=12
\end{align*}
$$

Solving (1) and (2), we get
$2(-13-11 d)+3 d=12$
$\Rightarrow-26-22 d+3 d=12$
$\Rightarrow-19 d=12+26=38$
$\Rightarrow d=-2$
Putting $d=-2$ in (1), we get
$a+11 \times(-2)=-13$
$\Rightarrow a=-13+22=9$
\therefore Sum of its first 10 terms, S_{10}
$=\frac{10}{2}[2 \times 9+(10-1) \times(-2)]$
$=5 \times(18-18)$
$=5 \times 0$
$=0$
Hence, the required sum is 0 .
27.

Sol:

Let a be the first term and d be the common difference of the AP.
$\therefore S_{7}=182$
$\Rightarrow \frac{7}{2}(2 a+6 d)=182 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow a+3 d=26$
Also,

$$
\begin{align*}
& a_{4}: a_{17}=1: 5 \\
& \Rightarrow \frac{a+3 d}{a+16 d}=\frac{1}{5} \quad\left[a_{n}=a+(n-1) d\right] \\
& \Rightarrow 5 a+15 d=a+16 d \\
& \Rightarrow d=4 a
\end{align*}
$$

Solving (1) and (2), we get
$a+3 \times 4 a=26$
$\Rightarrow 13 a=26$
$\Rightarrow a=2$
Putting $a=2$ in (2), we get
$d=4 \times 2=8$
Hence, the required AP is $2,10,18,26, \ldots \ldots \ldots$
28.

Sol:

Here, $a=4, d=7$ and $l=81$
Let the nth term be 81 .
Then $T_{n}=81$
$\Rightarrow a+(n-1) d=4+(n-1) 7=81$
$\Rightarrow(n-1) 7=77$
$\Rightarrow(n-1)=11$
$\Rightarrow n=12$
Thus, there are 12 terms in the AP.
The sum of n terms of an AP is given by
$S_{n}=\frac{n}{2}[a+l]$
$\therefore S_{12}=\frac{12}{2}[4+81]=6 \times 85=510$
Thus, the required sum is 510 .
29.

Sol:

Let a be the first term and d be the common difference of the given AP.
Then, we have:
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{7}=\frac{7}{2}[2 a+6 d]=7[a+3 d]$
$S_{17}=\frac{17}{2}[2 a+16 d]=17[a+8 d]$
However, $S_{7}=49$ and $S_{17}=289$
Now, $7(a+3 d)=49$
$\Rightarrow a+3 d=7$
Also, $17[a+8 d]=289$
$\Rightarrow a+8 d=17$
Subtracting (i) from (ii), we get:
$5 d=10$
$\Rightarrow d=2$
Putting $d=2$ in (i), we get
$a+6=7$
$\Rightarrow a=1$
Thus, $a=1$ and $d=2$
\therefore Sum of n terms of AP $=\frac{n}{2}[2 \times 1+(n-1) \times 2]=n[1+(n-1)]=n^{2}$
30.

Sol:

Let a_{1} and a_{2} be the first terms of the two APs.
Here, $a_{1}=8$ and $a_{2}=3$
Suppose d be the common difference of the two Aps
Let S_{50} and $S^{\prime}{ }_{50}=\frac{50}{2}\left[2 a_{1}+(50-1) d\right]-\frac{50}{2}\left[2 a_{2}+(50-1) d\right]$
$=25(2 \times 8 \times 49 d)-25(2 \times 3+49 d)$
$=25 \times(16-6)$
$=250$
Hence, the required difference between the two sums is 250 .
31.

Sol:

Let a be the first term and d be the common difference of the AP. Then,

$$
S_{10}=-150 \quad \text { (Given) }
$$

$$
\Rightarrow \frac{10}{2}(2 a+9 d)=-150
$$

$$
\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}
$$

$$
\Rightarrow 5(2 a+9 d)=-150
$$

$$
\begin{equation*}
\Rightarrow 2 a+9 d=-30 \tag{1}
\end{equation*}
$$

It is given that the sum of its next 10 terms is -550 .

Downloaded from www.studiestoday.com

Now,
$S_{20}=$ Sum of first 20 terms $=$ Sum of first 10 terms + Sum of the next 10 terms $=$
$-150+(-550)=-700$
$\therefore S_{20}=-700$
$\Rightarrow \frac{20}{2}(2 a+19 d)=-700$
$\Rightarrow 10(2 a+19 d)=-700$
$\Rightarrow 2 a+19 d=-70$
Subtracting (1) from (2), we get
$(2 a+19 d)-(2 a+9 d)=-70-(-30)$
$\Rightarrow 10 d=-40$
$\Rightarrow d=-4$
Putting $d=-4$ in (1), we get
$2 a+9 \times(-4)=-30$
$\Rightarrow 2 a=-30+36=6$
$\Rightarrow a=3$
Hence, the required AP is $3,-1,-5,-9$,
32.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{13}=4 \times a_{3} \quad$ (Given)
$\Rightarrow a+12 d=4(a+2 d)$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow a+12 d=4 a+8 d$
$\Rightarrow 3 a=4 d$
Also,
$a_{5}=16$
(Given)
$\Rightarrow a+4 d=16$
Solving (1) and (2), we get
$a+3 a=16$
$\Rightarrow 4 a=16$
$\Rightarrow a=4$
Putting $a=4$ in (1), we get
$4 d=3 \times 4=12$
$\Rightarrow d=3$

Using the formula, $S_{4}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 \times 4+(10-1) \times 3]$
$=5 \times(8+27)$
$=5 \times 35$
$=175$
Hence, the required sum is 175 .
33.

Sol:

Let a be the first term and d be the common difference of the AP. Then, $a_{16}=5 \times a_{3} \quad$ (Given)
$\Rightarrow a+15 d=5(a+2 d) \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+15 d=5 a+10 d$
$\Rightarrow 4 a=5 d$
Also,
$a_{10}=41$
(Given)
$\Rightarrow a+9 d-41$
Solving (1) and (2), we get
$a+9 \times \frac{4 a}{5}=41$
$\Rightarrow \frac{5 a+36 a}{5}=41$
$\Rightarrow \frac{41 a}{5}=41$
$\Rightarrow a=5$
Putting $a=5$ in (1), we get
$5 d=4 \times 5=20$
$\Rightarrow d=4$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{15}=\frac{15}{2}[2 \times 5+(15-1) \times 4]$
$=\frac{15}{2} \times(10+56)$
$=\frac{15}{2} \times 66$
$=495$
Hence, the required sum is 495 .
34.

Sol:

The given AP is $5,12,19, \ldots \ldots$.
Here, $a=5, d=12-5=7$ and $n=50$.
Since there are 50 terms in the AP, so the last term of the AP is a_{50}.
$l=a_{50}=5+(50-1) \times 7$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$=5+343$
$=348$
Thus, the last term of the AP is 348 .
Now,
Sum of the last 15 terms of the AP
$=S_{50}-S_{35}$
$=\frac{50}{2}[2 \times 5+(50-1) \times 7]-\frac{35}{2}[2 \times 5+(35-1) \times 7]$
$\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$=\frac{50}{2} \times(10+343)-\frac{35}{2} \times(10+238)$
$=\frac{50}{2} \times 353-\frac{35}{2} \times 248$
$=\frac{17650-8680}{2}$
$=\frac{8970}{2}$
$=4485$
Hence, the require sum is 4485 .
35.

Sol:
The given AP is $8,10,12, \ldots \ldots$

Here, $a=8, d=10-8=2$ and $n=60$
Since there are 60 terms in the AP, so the last term of the AP is a_{60}.
$l=a_{60}=8+(60-1) \times 2 \quad\left[a_{n}=a+(n-1) d\right]$
$=8+118$
$=126$
Thus, the last term of the AP is 126 .
Now,
Sum of the last 10 terms of the AP
$=S_{60}-S_{50}$
$=\frac{60}{2}[2 \times 8+(60-1) \times 2]-\frac{50}{2}[2 \times 8+(50-1) \times 2]$
$\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$=30 \times(16+118)-25 \times(16+98)$
$=30 \times 134-25 \times 114$
$=4020-2850$
$=1170$
Hence, the required sum is 1170 .
36.

Sol:
Let a be the first and d be the common difference of the AP.
$\therefore a_{4}+a_{8}=24$
(Given)
$\Rightarrow(a+3 d)+(a+7 d)=24$
$\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 2 a+10 d=24$
$\Rightarrow a+5 d=12$
Also,
$\therefore a_{6}+a_{10}=44$
(Given)
$\Rightarrow(a+5 d)+(a+9 d)=44$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow 2 a+14 d=44$
$\Rightarrow a+7 d=22$
Subtracting (1) from (2), we get
$(a+7 d)-(a+5 d)=22-12$
$\Rightarrow 2 d=10$
$\Rightarrow d=5$

Putting $d=5$ in (1), we get
$a+5 \times 5=12$
$\Rightarrow a=12-25=-13$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 \times(-13)+(10-1) \times 5]$
$=5 \times(-26+45)$
$=5 \times 19$
$=95$
Hence, the required sum is 95 .
37.

Sol:

Let S_{m} denotes the sum of the first m terms of the AP. Then,
$S_{m}=4 m^{2}-m$
$\Rightarrow S_{m-1}=4(m-1)^{2}-(m-1)$
$=4\left(m^{2}-2 m+1\right)-(m-1)$
$=4 m^{2}-9 m+5$
Suppose a_{m} denote the $m^{\text {th }}$ term of the AP.
$\therefore a_{m}=S_{m}-S_{m-1}$
$=\left(4 m^{2}-m\right)-\left(4 m^{2}-9 m+5\right)$
$=8 m-5$
Now,
$a_{n}=107$ (Given)
$\Rightarrow 8 n-5=107$
[From (1)]
$\Rightarrow 8 n=107+5=112$
$\Rightarrow n=14$
Thus, the value of n is 14 .
Putting $m=21$ in (1), we get
$a_{21}=8 \times 21-5=168-5=163$
Hence, the $21^{\text {st }}$ term of the AP is 163 .
38.

Sol:

Let S_{q} denote the sum of the first q terms of the AP. Then,
$S_{q}=63 q-3 q^{2}$
$\Rightarrow S_{q-1}=63(q-1)-3(q-1)^{2}$
$=63 q-63-3\left(q^{2}-2 q+1\right)$
$=-3 q^{2}+69 q-66$
Suppose a_{q} denote the $q^{\text {th }}$ term of the AP.
$\therefore a_{q}=S_{q}-S_{q-1}$
$=\left(63 q-3 q^{2}\right)-\left(-3 q^{2}+69 q-66\right)$
$=-6 q+66$
Now,
$a_{p}=-60$ (Given)
$\Rightarrow-6 p+66=-60 \quad[$ From (1)]
$\Rightarrow-6 p=-60-66=-126$
$\Rightarrow p=21$
Thus, the value of p is 21 .
Putting $q=11$ in (1), we get
$a_{11}=-6 \times 11+66=-66+66=0$
Hence, the 11th term of the AP is 0 .
39.

Sol:

The given AP is $-12,-9,-6, \ldots . ., 21$.
Here, $a=-12, d=-9-(-12)=-9+12=3$ and $l=2 l$
Suppose there are n terms in the AP.
$\therefore l=a_{n}=21$
$\Rightarrow-12+(n-1) \times 3=21 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 3 n-15=21$
$\Rightarrow 3 n=21+15=36$
$\Rightarrow n=12$
Thus, there are 12 terms in the AP.

Downloaded from www.studiestoday.com

If 1 is added to each term of the AP, then the new AP so obtained is $-11,-8,-5$, 22.

Here, first term, $A=-11$; last term, $L=22$ and $n=12$
\therefore Sum of the terms of this AP
$=\frac{12}{2}(-11+22)$
$\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=6 \times 11$
$=66$
Hence, the required sum is 66 .
40.

Sol:

Let d be the common difference of the AP.
Here, $a=10$ and $n=14$
Now,
$S_{14}=1505 \quad$ (Given)
$\Rightarrow \frac{14}{2}[2 \times 10+(14-1) \times d]=1505 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow 7(20+13 d)=1505$
$\Rightarrow 20+13 d=215$
$\Rightarrow 13 d=215-20=195$
$\Rightarrow d=15$
$\therefore 25^{\text {th }}$ term of the AP, a_{25}
$=10+(25-1) \times 15$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$=10+360$
$=370$
Hence, the required term is 370 .
41.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$d=a_{3}-a_{2}=18-14=4$
Now,
$a_{2}=14$
(Given)
$\Rightarrow a+d=14$
$\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+4=14$
$\Rightarrow a=14-4=10$

Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{51}=\frac{51}{2}[2 \times 10+(51-1) \times 4]$
$=\frac{51}{2}(20+200)$
$=\frac{51}{2} \times 220$
$=5610$
Hence, the required sum is 5610 .
42.

Sol:

Number of trees planted by the students of each section of class $1=2$
There are two sections of class 1 .
\therefore Number of trees planted by the students of class $1=2 \times 2=4$
Number of trees planted by the students of each section of class $2=4$
There are two sections of class 2 .
\therefore Number of trees planted by the students of class $2=2 \times 4=8$
Similarly,
Number of trees planted by the students of class $3=2 \times 6=12$
So, the number of trees planted by the students of different classes are $4,8,12, \ldots$.
\therefore Total number of trees planted by the students $=4+8+12+\ldots \ldots$ up to 12 terms This series is an arithmetic series.
Here, $a=4, d=8-4=4$ and $n=12$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{12}=\frac{12}{2}[2 \times 4+(12-1) \times 4]$
$=6 \times(8+44)$
$=6 \times 52$
$=312$
Hence, the total number of trees planted by the students is 312.
The values shown in the question are social responsibility and awareness for conserving nature.
43.

Sol:

Distance covered by the competitor to pick and drop the first potato $=2 \times 5 \mathrm{~m}=10 \mathrm{~m}$
Distance covered by the competitor to pick and drop the second potato
$=2 \times(5+3) m=2 \times 8 m=16 \mathrm{~m}$
Distance covered by the competitor to pick and drop the third potato
$=2 \times(5+3+3) m=2 \times 11 \mathrm{~m}=22 \mathrm{~m}$ and so on.
\therefore Total distance covered by the competitor $=10 m+16 m+22 m+\ldots .$. up to 10 terms This is an arithmetic series.
Here, $a=10, d=16-10=6$ and $n=10$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 \times 10+(10-1) \times 6]$
$=5 \times(20+54)$
$=5 \times 74$
$=370$
Hence, the total distance the competitor has to run is 370 m .
44.

Sol:

Distance covered by the gardener to water the first tree and return to the water tank $=10 \mathrm{~m}+10 \mathrm{~m}=20 \mathrm{~m}$
Distance covered by the gardener to water the second tree and return to the water tank
$=15 \mathrm{~m}+15 \mathrm{~m}=30 \mathrm{~m}$
Distance covered by the gardener to water the third tree and return to the water tank $=20 \mathrm{~m}+20 \mathrm{~m}=40 \mathrm{~m}$ and so on.
\therefore Total distance covered by the gardener to water all the trees $=20 m+30 m+40 m+\ldots .$. up to 25 terms
This series is an arithmetic series.
Here, $a=20, d=30-20=10$ and $n=25$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d$, $]$ we get
$S_{25}=\frac{25}{2}[2 \times 20+(25-1) \times 10]$
$=\frac{25}{2}(40+240)$
$=\frac{25}{2}=280$
$=3500$
Hence, the total distance covered by the gardener to water all the trees 3500 m .
45.

Sol:

Let the value of the first prize be a.
Since the value of each prize is 20 less than its preceding prize, so the values of the prizes are in AP with common difference - ₹ 20 .

$$
\Rightarrow \frac{40}{2}[2 a+(40-1) d]=36000
$$

$\therefore d=-₹ \Rightarrow 20(2 a+39 d)=36000$

$$
\begin{equation*}
\Rightarrow 2 a+39 d=1800 \tag{2}
\end{equation*}
$$

Number of cash prizes to be given to the students, $\mathrm{n}=7$
Total sum of the prizes, $S_{7}=₹ 700$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{7}=\frac{7}{2}[2 a+(7-1) \times(-20)]=700$
$\Rightarrow \frac{7}{2}(2 a-120)=700$
$\Rightarrow 7 a-420=700$
$\Rightarrow 7 a=700+420=1120$
$\Rightarrow a=160$
Thus, the value of the first prize is $₹ 160$.
Hence, the value of each prize is ₹ 160 , ₹ 140 , ₹ 120 , ₹ 100 , ₹ 80 , ₹ 60 and ₹ 40 .
46.

Sol:

Let the money saved by the man in the first month be ₹a
It is given that in each month after the first, he saved ₹ 100 more than he did in the preceding month. So, the money saved by the man every month is in AP with common difference ₹100.
$\therefore d=₹ 100$
Number of months, $n=10$
Sum of money saved in 10 months, $S_{10}=₹ 33,000$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 a+(10-1) \times 100]=33000$
$\Rightarrow 5(2 a+900)=33000$
$\Rightarrow 2 a+900=6600$
$\Rightarrow 2 a=6600-900=5700$
$\Rightarrow a=2850$
Hence, the money saved by the man in the first month is ₹ 2,850 .
47.

Sol:

Let the value of the first installment be ₹ a.
Since the monthly installments form an arithmetic series, so let us suppose the man increases the value of each installment by ₹ d every month.
\therefore Common difference of the arithmetic series $=₹ d$
Amount paid in 30 installments $=₹ 36,000-\frac{1}{3} \times ₹ 36,000=₹ 36,000-₹ 12,000=₹ 24,000$
Let S_{n} denote the total amount of money paid in the n installments. Then,
$S_{30}=24,000$
$\Rightarrow \frac{30}{2}[2 a+(30-1) d]=24000$
$\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow 15(2 a+29 d)=24000$
$\Rightarrow 2 a+29 d=1600$
Also,
$S_{40}=₹ 36,000$
$\Rightarrow \frac{40}{2}[2 a+(40-1) d]=36000$
$\Rightarrow 20(2 a+39 d)=36000$
$\Rightarrow 2 a+39 d=1800$
Subtracting (1) from (2), we get
$(2 a+39 d)-(2 a+29 d)=1800-1600$
$\Rightarrow 10 d=200$
$\Rightarrow d=20$
Putting $d=20$ in (1), we get
$2 a+29 \times 20=1600$
$\Rightarrow 2 a+580=1600$
$\Rightarrow 2 a=1600-580=1020$
$\Rightarrow a=510$
Thus, the value of the first installment is ₹ 510 .

Downloaded from www.studiestoday.com

48. Sol:

It is given that the penalty for each succeeding day is 50 more than for the preceding day, so the amount of penalties are in AP with common difference ₹50
Number of days in the delay of the work $=30$
The amount of penalties are ₹ 200 , ₹ 250 , ₹ $300, \ldots$ up to 30 terms.
\therefore Total amount of money paid by the contractor as penalty,
$S_{30}=₹ 200+₹ 250+₹ 300+$ \qquad up to 30 terms
Here, $a=₹ 200, d=₹ 50$ and $n=30$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{30}=\frac{30}{2}[2 \times 200+(30-1) \times 50]$
$=15(400-1450)$
$=15 \times 1850$
$=27750$
Hence, the contractor has to pay ₹ 27,750 as penalty

Exercise - Multiple Choice Questions

1.

Answer: (c) -1
Sol:
The given AP is $\frac{1}{p}, \frac{1-p}{p}, \frac{1-2 p}{2}, \ldots \ldots .$.
\therefore Common difference, $d=\frac{1-p}{p}-\frac{1}{p}=\frac{1-p-1}{p}=\frac{-p}{p}=-1$
2.

Answer: (d) -b
Sol:
The given AP is $\frac{1}{3}, \frac{1-3 b}{3}, \frac{1-6 b}{3}, \ldots \ldots$

Downloaded from www.studiestoday.com

\therefore Common difference, $d=\frac{1-3 b}{3}-\frac{1}{3}=\frac{1-3 b-1}{3}=\frac{-3 b}{3}=-b$
3.

Answer: (d) $\sqrt{112}$

Sol:

The given terms of the AP can be written as $\sqrt{7}, \sqrt{4 \times 7}, \sqrt{9 \times 7}, \ldots \ldots . . . i . e . ~ \sqrt{7}, 2 \sqrt{7}, 3 \sqrt{7}, \ldots \ldots$. \therefore Next term $=4 \sqrt{7}=\sqrt{16 \times 7}=\sqrt{112}$
4.

Answer: (c) 22
Sol:
Here, $a=4, l=28$ and $n=5$
Then, $T_{5}=28$
$\Rightarrow a+(n-1) d=28$
$\Rightarrow 4+(5-1) d=28$
$\Rightarrow 4 d=24$
$\Rightarrow d=6$
Hence, $x_{3}=28-6=22$
5.

Answer: (b) 15
Sol:
nth term of the AP, $a_{n}=2 n+1$ (Given)
\therefore First term, $a_{1}=2 \times 1+1=2+1=3$
Second term, $a_{2}=2 \times 2+1=4+1=5$
Third term, $a_{3}=2 \times 3+1=6+1=7$
\therefore Sum of the first three terms $a_{1}+a_{2}+a_{3}=3+5+7=15$
6.

Sol:

Let S_{n} denotes the sum of first n terms of the AP.

$$
\begin{aligned}
& \therefore S_{n}=3 n^{2}+6 n \\
& \Rightarrow S_{n-1}=3(n-1)^{2}+6(n-1) \\
& =3\left(n^{2}-2 n+1\right)+6(n-1) \\
& =3 n^{2}-3
\end{aligned}
$$

So,
$n^{\text {th }}$ term of the AP, $a_{n}=S_{n}-S_{n-1}$
$=\left(3 n^{2}+6 n\right)-\left(3 n^{2}-3\right)$
$=6 n+3$
Let d be the common difference of the AP.
$\therefore d=a_{n}-a_{n-1}$
$=(6 n+3)-[6(n-1)+3]$
$=6 n+3-6(n-1)-3$
$=6$
Thus, the common difference of the AP is 6 .
7.

Answer: (b) (6 - 2n)
Sol:
Let S_{n} denotes the sum of first n terms of the AP.
$\therefore S_{n}=5 n-n^{2}$
$\Rightarrow S_{n-1}=5(n-1)-(n-1)^{2}$
$=5 n-5-n^{2}+2 n-1$
$=7 n-n^{2}-6$
$\therefore n^{\text {th }}$ term of the AP, $a_{n}=S_{n}-S_{n-1}$
$=\left(5 n-n^{2}\right)-\left(7 n-n^{2}-6\right)$
$=6-2 n$
Thus, the nth term of the AP is $(6-2 n)$.
8.

Answer: (c) ($8 \mathrm{n}-2$)

Sol:

Let S_{n} denotes the sum of first n terms of the AP.
$\therefore S_{n}=4 n^{2}+2 n$
$\Rightarrow S_{n-1}=4(n-1)^{2}+2(n-1)$
$=4\left(n^{2}-2 n+1\right)+2(n-1)$
$=4 n^{2}-6 n+2$
$\therefore n^{\text {th }}$ term of the AP, $a_{n}=S_{n}-S_{n-1}$
$=\left(4 n^{2}+2 n\right)-\left(4 n^{2}-6 n+2\right)$
$=8 n-2$
Thus, the $n^{\text {th }}$ term of thee AP is $(8 n-2)$
9.

Answer: (d) (2n-15)

Sol:

Let a be the first term and d be the common difference of the AP. Then, nth term of the AP, $a_{n}=a+(n-1) d$
Now,
$a_{7}=-1 \quad$ (Given)
$\Rightarrow a+6 d=-1$
Also,
$a_{16}=17 \quad$ (Given)
$\Rightarrow a+15 d=17$
$\Rightarrow a+15 d=17$
Subtracting (1) from (2), we get
$(a+15 d)-(a+6 d)=17-(-1)$
$\Rightarrow 9 d=18$
$\Rightarrow d=2$
Putting $d=2$ in (1), we get
$a+6 \times 2=-1$
$\Rightarrow a=-1-12=-13$
\therefore nth term of the AP, $a_{n}=-13+(n-1) \times 2=2 n-15$

Downloaded from www.studiestoday.com

10.

Answer: (b) -50

Sol:

Let a be the first term of the AP.
Here. $d=-4$

$$
\begin{aligned}
& a_{5}=-3 \\
& \Rightarrow a+(5-1) \times(-4)=-3 \\
& \Rightarrow a-16=-3 \\
& \Rightarrow a=16-3=13
\end{aligned}
$$

Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 \times 13+(10-1) \times(-4)]$
$=5 \times(26-36)$
$=5 \times(-10)$
$=-50$
Thus, the sum of its first 10 terms is -50 .
11.

Answer: (c) 3
Sol:
Let a be the first term and d be the common difference of the AP. Then,

$$
a_{5}=20
$$

$\Rightarrow a+(5-1) d=20$ $\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+4 d=20$
Now,

$$
\begin{align*}
& a_{7}+a_{11}=64 \\
& \Rightarrow(a+6 d)+(a+10 d)=64 \\
& \Rightarrow 2 a+16 d=64 \\
& \Rightarrow a+8 d=32 \tag{2}
\end{align*}
$$

From (1) and (2), we get
$20-4 d+8 d=32$
$\Rightarrow 4 d=32-20=12$
$\Rightarrow d=3$

Thus, the common difference of the AP is 3 .
12.

Answer: (b) 175

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{13}=4 \times a_{3}$
$\Rightarrow a+12 d=4(a+2 d)$
(Given)
$\Rightarrow a+12 d=4 a+8 d$
$\Rightarrow 3 a=4 d$

$$
\left[a_{n}=a+(n-1) d\right]
$$

Also
$a_{5}=16$ (Given)
$\Rightarrow a+4 d=16$
Solving (1) and (2), we get
$a+3 a=16$
$\Rightarrow 4 a=16$
$\Rightarrow a=4$
Putting $a=4$ in (1), we get
$4 d=3 \times 4=12$
$\Rightarrow d=3$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 \times 4+(10-1) \times 3]$
$=5 \times(8+27)$
$=5 \times 35$
$=175$
Thus, the sum of its first 10 terms is 175 .
13.

Answer: (c) 348

Sol:

The given AP is $5,12,19, \ldots \ldots$.
Here, $a=5, d=12-5=7$ and $n=50$

Downloaded from www.studiestoday.com

Since there are 50 terms in the AP, so the last term of the AP is a_{50}.
$a_{50}=5+(50-1) \times 7 \quad\left[a_{n}=a+(n-1) d\right]$
$=5+343$
$=348$
Thus, the last term of the AP is 348 .
14.

Answer: (c) 400
Sol:
The first 20 odd natural numbers are $1,3,5, . ., 39$.
These numbers are in AP.
Here. $\mathrm{a}=1, l=39$ and $\mathrm{n}=20$
\therefore Sum of first 20 odd natural numbers
$=\frac{20}{2}(1+39) \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=10 \times 40$
$=400$
15.

Answer: (c) 4920

Sol:

The positive integers divisible by 6 are $6,12,18, \ldots$.
This is an AP with $a=6$ and $d=6$.
Also, $n=40$ (Given)
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get

$$
S_{40}=\frac{40}{2}[2 \times 6+(40-1) \times 6]
$$

$=20(12+234)$
$=20 \times 246$
$=4920$
Thus, the required sum is 4920
16.

Answer: (b) 30
Sol:

The two-digit numbers divisible by 3 are 12, 15, 18, 99 .
Clearly, these number are in AP.
Here, $a=12$ and $d=15-12=3$
Let this AP contains n terms. Then.
$a_{n}=99$
$\Rightarrow 12+(n-1) \times 3=99 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 3 n+9=99$
$\Rightarrow 3 n=99-9=90$
$\Rightarrow n=30$
Thus, there are 30 two-digit numbers divisible by 3 .
17.

Answer: (d) 100

Sol:

The three-digit numbers divisible by 9 are 108, 117, 126 \qquad 999.

Clearly, these numbers are in AP.
Here, $a=108$ and $d=117-108=9$
Let this AP contains n terms. Then,
$a_{n}=999$
$\Rightarrow 108+(n-1) \times 9=999 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 9 n+99=999$
$\Rightarrow 9 n=999-99=900$
$\Rightarrow n=100$
Thus, there are 100 three-digit numbers divisible by 9 .
18.

Answer: (a) 8
Sol:
Let a be the first term and d be the common difference of the AP. Then.

$$
\begin{aligned}
& a_{18}-a_{14}=32 \\
& \Rightarrow(a+17 d)-(a+13 d)=32 \quad\left[a_{n}=a+(n-1) d\right] \\
& \Rightarrow 4 d=32 \\
& \Rightarrow d=8
\end{aligned}
$$

Thus, the common difference of the AP is 8 .
19.

Answer: (c) 50
Sol:
The given AP is $3,8,13,18 \ldots$
Here, $a=3$ and $d=8-3=5$
$\therefore a_{30}-a_{20}$
$=[3+(30-1) \times 5]-[3+(20-1) \times 5] \quad\left[a_{n}=a+(n-1) d\right]$
$=148-98$
$=50$
Thus, the required value is 50 .
20.

Answer: (b) $9^{\text {th }}$

Sol:

The given AP is $72,63,54, \ldots .$.
Here, $a=72$ and $d=63-72=-9$
Suppose nth term of the given AP is 0 . Then.
$a_{n}=0$
$\Rightarrow 72+(n-1) \times(-9)=0 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-9 n+81=0$
$\Rightarrow n=\frac{81}{9}=9$
Thus, the 9th term of the given AP is 0 .
21.

Answer: (d) $7^{\text {th }}$
Sol:
The given AP is $25,20,15, \ldots \ldots$
Here, $a=25$ and $d=20-25=-5$
Let the nth term of the given AP be the first negative term. Then,
$a_{n}<0$
$\Rightarrow 25+(n-1) \times(-5)<0 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 30-5 n<0$
$\Rightarrow-5 n<-30$
$\Rightarrow n>\frac{30}{5}=6$
$\therefore n=7$
Thus, the 7th term is the first negative term of the given AP.
22.

Answer: (b) $10^{\text {th }}$
Sol:
Here, $a=21$ and $d=(42-21)=21$
Let 210 be the nth term of the given AP.
Then, $T_{n}=210$
$\Rightarrow a+(n-1) d=210$
$\Rightarrow 21+(n-1) \times 21=210$
$\Rightarrow 21 n=210$
$\Rightarrow n=10$
Hence, 210 is the $10^{\text {th }}$ term of the AP.
23.

Answer: (b) 158
Sol:
The given AP is $3,8,13, \ldots, 253$.
Let us re-write the given AP in reverse order i.e. $253,248, . ., 13,8,3$.
Now, the 20th term from the end of the given AP is equal to the 20th term from beginning of the AP 253, 248,., 13, 8, 3.
Consider the AP 253, 248, 13, 8, 3 .
Here, $a=253$ and $d=248-253=-5$
$\therefore 20$ th term of this AP
$=253+(20-1) \times(-5)$
$=253-95$
$=158$
Thus, the 20th term from the end of the given AP is 158 .
24.

Answer: (d) 2139
Sol:

Here, $a=5, d=(13-5)=8$ and $l=181$
Let the number of terms be n.
Then, $T_{n}=181$
$\Rightarrow a+(n-1) d=181$
$\Rightarrow 5+(n-1) \times 8=181$
$\Rightarrow 8 n=184$
$\Rightarrow n=23$
\therefore Required sum $=\frac{n}{2}(a+l)$
$=\frac{23}{2}(5+181)=23 \times 93=2139$
Hence, the required sum is 2139 .
25.

Answer: (b) -320
Sol:
Here, $a=10, d=(6-10)=-4$ and $n=16$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{16}=\frac{16}{2}[2 \times 10+(16-1) \times(-4)]$
$[\because a=10, d=-4$ and $n=16]$
$=8 \times[20-60]=8 \times(-40)=-320$
Hence, the sum of the first 16 terms of the given AP is -320 .
26.

Answer: (c) 14

Sol:

Here, $a=3$ and $d=(7-3)=4$
Let the sum of n terms be 406 .
Then, we have:
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=406$
$\Rightarrow \frac{n}{2}[2 \times 3+(n-1) \times 4]=406$

$$
\begin{aligned}
& \Rightarrow n[3+2 n-2]=406 \\
& \Rightarrow 2 n^{2}-28 n+29 n-406 \\
& \Rightarrow 2 n^{2}+n-406=0 \\
& \Rightarrow 2 n^{2}-28 n+29 n-406=0 \\
& \Rightarrow 2 n(n-14)+29(n-14)=0 \\
& \Rightarrow(2 n+29)(n-14)=0 \\
& \Rightarrow n=14 \quad(\because n \text { can't be a fraction })
\end{aligned}
$$

Hence, 14 terms will make the sum 406.
27.

Answer: (b) 73
Sol:
$T_{2}=a+d=13$
$T_{5}=a+4 d=25$
On subtracting (i) from (ii), we get:
$\Rightarrow 3 d=12$
$\Rightarrow d=4$
On putting the value of d in (i), we get:
$\Rightarrow a+4=13$
$\Rightarrow a=9$
Now, $T_{17}=a+16 d=9+16 \times 4=73$
Hence, the $17^{\text {th }}$ term is 73 .
28.

Answer: (a) 3
Sol:
$T_{10}=a+9 d$
$T_{17}=a+16 d$
Also, $a+16 d=21+T_{10}$
$\Rightarrow a+16 d=21+9 d$
$\Rightarrow 7 d=21$
$\Rightarrow d=3$
Hence, the common difference of the AP is 3 .
29.

Answer: (b) 2
Sol:

$$
\begin{align*}
& T_{8}=a+7 d=17 \tag{i}\\
& T_{14}=a+13 d=29 \tag{ii}
\end{align*}
$$

On subtracting (i) from (ii), we get:
$\Rightarrow 6 d=12$
$\Rightarrow d=12$
Hence, the common difference is 2 .
30.

Answer: (d) 28
Sol:

$$
\begin{aligned}
& T_{7}=a+6 d \\
& \Rightarrow a+6 \times(-4)=4 \\
& \Rightarrow a=4+24=28
\end{aligned}
$$

Hence, the first term us 28.

