Concepts of Perimeter and Area Ex 21A

Perimeter

Q1

```
Answer:
```

```
Perimeter of a rectangle = 2 \times (Length + Breadth)
(i) Length = 16.8 cm
   Breadth = 6.2 cm
   Perimeter = 2 \times (Length + Breadth)
            = 2 \times (16.8 + 6.2) = 46 \text{ cm}
(ii) Length = 2 m 25 cm
           =(200+25) cm (1 m = 100 cm)
           = 225 cm
   Breadth = 1 m 50 cm
           = (100+50) cm (1 m = 100 cm)
           = 150 cm
   Perimeter = 2 \times (Length + Breadth)
             = 2 \times (225 + 150) = 750 \text{ cm}
 (iii) Length = 8 m 5 dm
            = (80+5) dm (1 m = 10 dm)
            = 85 dm
     Breadth = 6 m 8 dm
             = (60+8) dm (1 m = 10 dm)
   Perimeter = 2 \times (Length + Breadth)
            = 2 \times (85 + 68) = 306 \text{ dm}
Q2
Length of the field = 62 m
Breadth of the field = 33 m
Perimeter of the field = 2(I + b) units
                   = 2(62 + 33) m = 190 m
Q3 - Cost of fencing per metre = Rs 16
Total cost of fencing = Rs (16×190) = Rs 3040
```

Answer

Q7

Let the length of the rectangle be 5x m. Breadth of the rectangle = 3x m Perimeter of the rectangle = 2(l + b)= 2(5x + 3x) m= (16x) mIt is given that the perimeter of the field is 128 m. 16x = 128 $\Rightarrow x = \frac{128}{16} = 8$ \therefore Length = $(5 \times 8) = 40$ m Breadth = $(3 \times 8) = 24$ m Q4 Answer: Total cost of fencing = Rs 1980 Rate of fencing = Rs 18 per metre Perimeter of the field = $\frac{\text{Total cost}}{\text{Rate}} = \frac{\text{Rs } 1980}{\text{Rs } 18/\text{m}} = \left(\frac{1980}{18}\right) \text{m} = 110 \text{ m}$ Let the length of the field be x metre. Perimeter of the field = 2(x + 23) m $\therefore 2(x+23)=110$ \Rightarrow (x+23)=55x = (55 - 23) = 32Hence, the length of the field is 32 m. 05 Answer: Total cost of fencing = Rs 3300 Rate of fencing = Rs 25/m Perimeter of the field = $\frac{\text{Total cost}}{\text{Rate of fencing}} = \left(\frac{\text{Rs } 3300}{\text{Rs } 25/\text{m}}\right) = \frac{3300}{25} \text{ m} = 132 \text{ m}$ Let the length and the breadth of the rectangular field be 7x and 4x, respectively. Perimeter of the field = 2(7x + 4x) = 22xIt is given that the perimeter of the field is 132 m. $\therefore 22x = 132$ $\Rightarrow x = \frac{132}{22} = 6$ \therefore Length of the field = (7×6) m = 42 m Breadth of the field = (4×6) m = 24 m Q6 Answer: (i) Side of the square = 3.8 cm Perimeter of the square = (4xside) = (4×3.8) = 15.2 cm (ii) Side of the square = 4.6 cm Perimeter of the square = (4×side) $= (4 \times 4.6) = 18.4 \text{ cm}$ (iii) Side of the square = 2 m 5 dm = (20+5) dm (1 m = 10 dm) Perimeter of the square = (4×side) = (4×25) = 100 dm

Q11

Total cost of fencing = Rs 4480 Rate of fencing = Rs 35/m Perimeter of the field = $\frac{\text{Total cost}}{\text{Rate}} = \frac{\text{Rs } 4480}{\text{Rs } 35/\text{m}} = \frac{4480}{35} \text{ m} = 128 \text{ m}$ Let the length of each side of the field be x metres. Perimeter = (4x) metres $\therefore 4x = 128$ $\Rightarrow x = \frac{128}{4} = 32$ Hence, the length of each side of the field is 32 m Answer: Side of the square field = 21m Perimeter of the square field = (4×21) m = 84 mLet the length and the breadth of the rectangular field be 4x and 3x, respectively Perimeter of the rectangular field = 2(4x + 3x) = 14xPerimeter of the rectangular field = Perimeter of the square field 14x = 84 $\Rightarrow x = \frac{84}{14} = 6$ \therefore Length of the rectangular field = (4×6) m = 24 m Breadth of the rectangular field = (3×6) m = 18 m Answer: (i) Sides of the triangle are 7.8 cm, 6.5 cm and 5.9 cm. Perimeter of the triangle = (First side + Second side + Third Side) cm = (7.8 + 6.5 + 5.9) cm= 20.2 cm(ii) In an equilateral triangle, all sides are equal. Length of each side of the triangle = 9.4 cm ... Perimeter of the triangle = (3 × Side) cm $= (3 \times 9.4) \text{ cm}$ = 28.2 cm (iii) Length of two equal sides = 8.5 cm Length of the third side = 7 cm ... Perimeter of the triangle = {(2 × Equal sides) + Third side} cm $= \{(2 \times 8.5) + 7\}$ cm = 24 cm Q10 Answer: (i) Length of each side of the given pentagon = 8 cm :. Perimeter of the pentagon = (5×8) cm (ii) Length of each side of the given octagon = 4.5 cm : Perimeter of the octagon = (8×4.5) cm = 36 cm(iii) Length of each side of the given decagon = 3.6 cm :. Perimeter of the decagon = (10×3.6) cm = 36 cm

Answer: (i) Perimeter of the figure = Sum of all the sides = (27 + 35 + 35 + 45) cm = 142 cm(ii) Perimeter of the figure = Sum of all the sides = (18 + 18 + 18 + 18) cm = 72 cm(iii) Perimeter of the figure = Sum of all the sides = (8 + 16 + 4 + 12 + 12 + 16 + 4) cm = 72 cm

Concepts of Perimeter and Area Ex 21B

01 Answer: (i) Radius, r = 28 cm \therefore Circumference of the circle, $C = 2\pi r$ $=\left(2 imesrac{22}{7} imes28
ight)$ Hence, the circumference of the given circle is 176 cm. (ii) Radius, r = 10.5 cm \therefore Circumference of the circle, $C = 2\pi r$ $=\left(2\times\frac{22}{7}\times10.5\right)$ Hence, the circumference of the given circle is 66 cm. (iii) Radius, r = 3.5 m \therefore Circumference of the circle, $C = 2\pi r$ $=\left(2\times\frac{22}{7}\times3.5\right)$ $=22 \mathrm{m}$ Hence, the circumference of the given circle is 22 m. Q2 Answer: Circumference = $2\pi r$ $(Diameter = 2 \times radius)$ \Rightarrow Circumference = Diameter $\times \pi$ Diameter of the given circle is 14 cm. Circumference of the given circle = $14 \times \pi \Rightarrow \left(14 \times \frac{22}{7}\right) = 44 \text{ cm} C$ ircumference of the given circle is 44 cm. $=\pi(2r)$ Circumference = $2\pi r$ $=\pi \times \operatorname{Diam} eter$ of the circle (d) (Diameter = $2 \times \text{Radius}$) \Rightarrow Circumference = Diameter $\times \pi$ Diameter of the given circle is 35 cm. \Rightarrow Circumference of the given circle = $35 \times \pi \Rightarrow \left(35 \times \frac{22}{7}\right) = 110$ cm Circumference of the given circle is 110 cm. $=\pi\Big(2r\Big)$ Circumference = $2\pi r$ $= \pi \times \text{Diameter of the}$ $\operatorname{circle} \left(d \right) \quad \left(\operatorname{Diameter} = 2 \times Radi \operatorname{us} \right)$ \Rightarrow Circumference = Diameter $\times \pi$ Diameter of the given circle is $10.5\,\mathrm{m}.$ Circumference of the given circle = $10.5 \times \pi \Rightarrow \left(10.5 \times \frac{22}{7}\right) = 33 \text{ m}$ Circumference of the given circle is 33 m. Q3

```
Answer:
 Let the radius of the given circle be r cm.
 Circumference of the circle = 176 cm
 Circumference = 2\pi r
 \therefore 2\pi r = 176
  \Rightarrow r = \frac{176}{2\pi}
 \Rightarrow r = \left(rac{176}{2} 	imes rac{7}{22}
ight)
 The radius of the given circle is 28 cm.
Answer:
Let the radius of the circle be r cm.
 \mathbf{Diameter} = 2 \times R\mathbf{adius} = 2r \ \mathbf{cm}
 Circumference of the wheel = 264 cm
 Circumference of the wheel = 2\pi r
 2\pi r = 264
 \Rightarrow 2r = rac{264}{7}
 \Rightarrow 2r = \left(264 	imes rac{7}{22}
ight)
 \Rightarrow 2r = 84
 Diameter of the given wheel is 84 cm.
Q5
Answer:
Radius of the wheel = \frac{\text{Diameter of the wheel}}{2}
\Rightarrow r = \frac{77}{2} cm
Circumference of the wheel =2\pi~r
 =\left(2\times\frac{22}{7}\times\frac{77}{2}\right)
In 1 revolution the wheel covers a distance equal to its circumference
\therefore Distance covered by the wheel in 1 revolution = 242 cm
 \therefore Distance covered by the wheel in 500 revolution s = (500 \times 242) cm
                                                      = 121000 \text{ cm}
                                                      = 1210 \,\mathrm{m} \, (100 \,\mathrm{cm} = 1 \mathrm{m})
                                                      = 1.21 \text{ km} (1000 \text{ m} = 1 \text{ km})
Q6
Radius of the wheel \left(r\right)=rac{	ext{Diameter of the wheel}}{2}
 r = \frac{70}{2} \text{ cm} = 35 \text{ cm}
 Circumference of the wheel = 2\pi r = \left(2 \times \frac{22}{7} \times 35\right)
 In one revolution, the wheel covers the distance equal to its circumference.
 ∴ 220 cm distance = 1 revolution
 \therefore 1 cm distance =\frac{1}{220} revolution
 \therefore 1 \text{km} \text{ (or } 100000 \text{ cm) distance } = \frac{1 \times 100000}{220} \text{ revolution } \left( \therefore 1 \text{ km} = 100000 \text{ cm} \right)
```

Downloaded from www.studiestoday.com

 $\therefore 1.65 \text{ km distance} = \frac{1.65 \times 100000}{220} \text{ revolutions}$

 $=750 \ \ {\rm revolutions}$ Thus, the wheel will make 750 revolutions to travel 1.65 km.

Concepts of Perimeter and Area

Answer

The figure contains 9 complete squares and 6 half squares.

Area of 1 small square = 1 sq cm

:. Area of the figure = Number of squares \times Area of the square = $\left[\left(9\times1\right)+\left(6\times\frac{1}{2}\right)\right]$ sq. cm = 12 sq cm

Q6

Answer:

The figure contains 16 complete squares

Area of 1 small square = 1 sq cm

∴ Area of the figure = Number of squares × Area of a square =(16×1) sq cm

=16 sq cm

Q7

Answer:

In the given figure, there are 4 complete squares, 8 more than half parts of squares and 4 less than half parts of squares.

We neglect the less than half parts and consider each more than half part of the square as a complete square.

Q8

Answer:

In the given figure, there are 9 complete squares, 5 more than half parts of squares and 7 less than half parts of squares.

We neglect the less than half parts of squares and consider the more than half squares as complete squares.

 \therefore Area of the figure = (9 + 5) sq cm

= 14 sq cm

Concepts of Perimeter and Area Ex 21D

Perimeter

Q1 Answer:

```
(i) Length = 46 cm
Breadth = 25 cm
 Area of the rectangle = (Length ×Breadth) sq units
                      = (46 \times 25) \text{ cm}^2 = 1150 \text{ cm}^2
(ii) Length = 9 m
Breadth = 6 m
 Area of the rectangle = (Length ×Breadth) sq units
                      = (9 \times 6) \text{ m}^2 = 54 \text{ m}^2
(iii) Length = 14.5 m
Breadth = 6.8 m
 Area of the rectangle = (Length \timesBreadth) sq units
                      = (\frac{145}{10} \times \frac{68}{10}) \text{ m}^2 = \frac{9860}{100} \text{ m}^2 = 98.60 \text{ m}^2
(iv) Length = 2 m 5 cm
              = (200+5) cm (1 m = 100 cm)
              =205cm
     Breadth = 60 cm
     Area of the rectangle = (Length ×Breadth) sq units
                           = (205 \times 60) \text{ cm}^2 = 12300 \text{ cm}^2
```

```
Side of the square plot = 14 m
Area of the square plot = (Side)^2 sq units
                           = (14)^2 \text{ m}^2
                            = 196 \text{ m}^2
О3
Answer:
Length of the table = 2 m 25 cm
                   = (2 + 0.25) m (100 cm = 1 m)
                   = 2.25 m
Breadth of the table = 1 m 20 cm
                         = (1 + 0.20) m (100 cm = 1 m)
                         =1 20 m
Area of the table = (Length × Breadth) sq units
                      = (2.25 \times 1.20) \text{ m}^2
                      = \left(\frac{225}{100} \times \frac{120}{100}\right) \text{ m}^2= 2.7 \text{ m}^2
04
Answer:
Length of the carpet = 30 m 75 cm
                    =(30 + 0.75) \text{ cm} (100 \text{ cm} = 1 \text{ m})
                    = 30.75 \text{ m}
Breadth of the carpet = 80 cm
                     = 0.80 \text{ m}
                                        (100 \text{ cm} = 1 \text{ m})
Area of carpet = ( Length × breadth ) sq units
                      = (30.75 \times 0.80) \text{ m}^2
                      =\,\left(\tfrac{3075}{100}\times\tfrac{80}{100}\right)m^2
Cost of 1 m<sup>2</sup> carpet= Rs 150
Cost of 24.6 m<sup>2</sup> carpet = Rs (24.6 \times 150)
                             = Rs 3690
Q5
Answer:
Length of the sheet of paper = 3 m 24 cm = 324 cm
Breadth of the sheet of paper = 1 m 72 cm = 172 cm
Area of the sheet = (Length \times Breadth)
```

 $= (324 \times 172) \text{ cm}^2$ $= 55728 \text{ cm}^2$

Length of the piece of paper required to make 1 envelope = 18 cm Breadth of the piece of paper required to make 1 envelope = 12 cm Area of the piece of paper required to make 1 envelope = (18×12) cm²

No. of envelope s that can be made $=\frac{\text{Area of the sheet}}{\text{Area of the piece of paper required to make 1 envelope}}$ \Rightarrow No. of envelopes that can be made $=\frac{55728}{216}=258$ envelopes

```
Q6
Length of the room = 12.5 m
Breadth of the room = 8 m
Area of the room = (Length×Breadth)
              =(12.5×8) m2 = 100 m2
Side of the square carpet = 8 m
Area of the carpet = (Side)^2
                     = 8^2 \, \text{m}^2
                     = 64 \text{ m}^2
Area of the floor which is not carpeted = Area of the room - Area of the carpet
                                            = (100 - 64) \text{ m}^2
                                             = 36 \text{ m}^2
Q7
 Answer:
Length of the road = 150 m = 15000 cm
 Breadth of the road = 9 m = 900 cm
 Area of the road = (Length × Breadth)
               = 15000 \times 900 \text{ cm}^2
                = 13500000 \text{ cm}^2
Length of the brick = 22.5 cm
Breadth of the brick = 7.5 cm
 Area of one brick = (Length × Breadth)
                     = (22.5 \times 7.5) cm<sup>2</sup>
                     = 168.75 \text{ cm}^2
Number of bricks = \frac{\text{Area of } the \text{ road}}{\text{Area of one brick}} = \frac{13500000}{168.75} = 80000 \text{ bricks}
Q8
Answer:
Length of the room = 13 m
Breadth of the room = 9 m
Area of the room = (13\times9) m<sup>2</sup> = 117 m<sup>2</sup>
Let length of required carpet be x m.
Breadth of the carpet = 75 cm
                  = 0.75 m (100 cm = 1 m)
Area of the carpet = (0.75 \times x) m<sup>2</sup>
               = 0.75 \times m^2
For carpeting the room:
Area covered by the carpet = Area of the room
   ⇒0.75x=117⇒x=1170.75⇒x=117×43⇒x=156 m
So, the length of the carpet is 156 m.
Cost of 1 m carpet = Rs 65
Cost 156 m carpet = Rs (156×65)
                    = Rs 10140
Q9
```

```
Let the length of the rectangular park be 5x.
 : Breadth of the rectangular park = 3x
 Perimeter of the rectangular field = 2(Length + Breadth)
                                      =2(5x + 3x)
                                      = 16x
 It is given that the perimeter of rectangular park is 128 m
 \Rightarrow 16x = 128
  \Rightarrow \mathbf{x} = \frac{128}{16}
  \Rightarrow \mathbf{x} = 8
  Length of the park = (5 \times 8) m
 Breadth of the park = (3 \times 8) m
 Area of the park = (Length \times Breadth) sq units
                   = (40 \times 24) \text{ m}^2
                    = 960 \text{ m}^2
010
Answer:
Side of the square plot = 64 m
Perimeter of the square plot = (4 \times Side) m = (4 \times 64) m = 256 m
Area of the square plot = (Side)^2
= 64^2 \text{ m}^2
= 4096 \text{ m}^2
Let the breadth of the rectangular plot be x m.
Perimeter of the rectangular plot = 2(I+b) m
= 2(70+x) \text{ m}
Perimeter of the rectangular plot = Perimeter of the square plot (Given)
 \Rightarrow 2(70+x)=256
 \Rightarrow 140 + 2x = 256
 \Rightarrow 2x = 256 - 140
 \Rightarrow 2x = 116
 \Rightarrow x = \frac{116}{2} = 58
So, the breadth of the rectangular plot is 58 m.
Area of the rectangular plot = (Length \times Breadth) = (70 \times 58) m^2 = 4060 m^2
Area of the square plot - Area of the rectangular plot
= (4096 - 4060)
```

= **36 m²**

```
Total cost of cultivating the field = Rs 71400
 Rate of cultivating the field = Rs 35/m<sup>2</sup>
 \text{Are}\, a \,\, \text{of the field} = \frac{\text{Total cost of cultivating the field}}{\text{Rate of cultivating}} = \frac{\text{Rs } 71400}{\text{Rs } 35/\text{m}^2} = 2040 \,\, \text{m}^2
Let the length of the field be x m.
 Area of the field = (L \operatorname{ength} \times W \operatorname{idth}) \operatorname{m}^2 = (\mathbf{x} \times 40) \operatorname{m}^2 = 40 \operatorname{x} \operatorname{m}^2
 It is given that the area of the field is 2040 m<sup>2</sup>.
 \Rightarrow 40x = 2040
 \Rightarrow \mathbf{x} = \frac{2040}{40} = 51
 \therefore Length of the field = 51 m
Perimeter of the field = 2(I+b)
= 2(51+40) m
= 182 m
Cost of fencing 1 m of the field = Rs 50
Cost of fencing 182 m of the field = Rs (182×50)
= Rs 9100
Q12
Answer:
Let the width of the rectangle be x cm.
Length of the rectangle = 36 cm
Area of the rectangle = (Length \times Width) = (36 \times x) cm<sup>2</sup>
It is given that the area of the rectangle is 540 cm<sup>2</sup>.
\Rightarrow 36 \times x = 540
 \Rightarrow x = \frac{540}{26}
 \therefore Width of the rectangle = 15 cm
Perimeter of the rectangle = 2(Length + Width) cm
= 2(36 + 15) \text{ cm}
= 102 cm
Q13
Answer:
Length of the wall = 4 m = 400 cm
Breadth of the wall = 3 m = 300 cm
Area of the wall = (400 \times 300) cm<sup>2</sup> = 120000 cm<sup>2</sup>
Length of the tile = 12 cm
Breadth of the tile = 10 cm
Area of one tile = (12 \times 10) cm<sup>2</sup> = (120) cm<sup>2</sup>
Number of tiles required to cover the wall = \frac{\text{Area of the wall}}{\text{Area of one tile}} = \frac{120000}{120} = 1000 tiles
Cost of 1 tile = Rs 22.50
Cost of 1000 tiles = (1000 × 22.50) = Rs 22500
```

Q14

Thus, the total cost of the tiles is Rs 22500

Answer

Let the length of the rectangle be
$$x$$
 cm.
Breadth of the rectangle is 25 cm.
Area of the rectangle = (Length × Breadth) cm²
= $(x \times 25)$ cm²
= $25x$ cm²

It is given that the area of the rectangle is 600 cm².

$$\Rightarrow 25x = 600$$

 $\Rightarrow x = \frac{600}{25} = 24$

So, the length of the rectangle is 24 cm.

Perimeter of the rectangle = 2(Length + Breadth) units

= 2(25 + 24) cm = 98 cm

Q15

Answer:

Area of the square
$$=$$
 $\left\{\frac{1}{2} \times \left(D \operatorname{iagonal}\right)^2\right\}$ sq units $=$ $\left\{\frac{1}{2} \times \left(5\sqrt{2}\right)^2\right\}$ cm² $=$ $\left\{\frac{1}{2} \times \left(5\right)^2 \times \left(\sqrt{2}\right)^2\right\}$ cm² $=$ $\left\{\frac{1}{2} \times 25 \times 2\right\}$ cm² $=$ $\left(\frac{1}{2} \times 50\right)$ cm² $=$ 25 cm²

Q16

Answer:

(i) Area of rectangle ABDC = Length \times Breadth $= AB \times AC \qquad (AC = AE - CE)$ $= (1 \times 8) \mathbf{m}^2$ $= 8 m^2$ Area of rectangle CEFG = Length \times Breadth $= CG \times GF \qquad (CG = GD + CD)$ $= (9 \times 2) \mathbf{m}^2$

 $= 18 \text{ m}^2$

Area of the complete figure = Area of rectangle ABDC + Area of rectangle CEFG = $(8 + 18) \text{ m}^2$ = 26 m^2


```
(ii) Area of rectangle AEDC = Length \times Breadth = ED \times CD
= (12 \times 2)m^2
= 24 \text{ cm}^2
Area of rectangle FJIH = Length \times Breadth = \text{HI} \times \text{IJ}
= (1 \times 9)m^2
= 9 \text{ m}^2
Area of rectangle ABGF = Length \times Breadth = AB \times AF
= (7 \times 1.5)m^2
= 10.5 \text{ m}^2
```

Area of the complete figure = Area of rectangle AEDC + Area of rectangle FJIH + Area of rectangle ABGF

=
$$(24 + 9 + 10.5) \text{ m}^2$$

= 43.5 m^2

(iii) Area of the shaded portion = Area of the complete figure - Area of the unshaded figure

= Area of rectangle ABCD – Area of rectangle GBFE =(CD \times AD) – (GB \times BF) ={(12 \times 9) – (7.5 \times 10)} \mathbf{m}^2 (BF = BC – FC) =(108 – 75) \mathbf{m}^2

 $=33 \text{ m}^2$

Q17

```
(i) Area of square BCDE= (Side)2
                             = (CD)^2
                             = (3)^2 \text{ cm}^2
                             = 9 \text{ cm}^2
    Area of rectangle ABFK = Length × Breadth
                                 = AK×AB
                                                     [(AB = AC - BC)] and (AK = AL + LK)
                                = (5 \times 1) \text{ cm}^2
                                = 5 \text{ cm}^2
    Area of rectangle MLKG = Length × Breadth
                                = ML \times MG
                                = (2 \times 3) \text{ cm}^2
                                = 6 \text{ cm}^2
    Area of rectangle JHGF= Length × Breadth
                                = JH×HG
                                = (2 \times 4) \text{ cm}^2
                                = 8 \text{ cm}^2
     Area of the figure = Area of rectangle ABFK + Area of rectangle MLKG + Area of rectangle JHGF
+ Area of square BCDE
                       = (9 + 5 + 6 + 8) \text{ cm}^2
                       = 28 \text{ cm}^2
           2
 В
                     E
 4
                     3
(ii) Area of rectangle CEFG= Length × Breadth
                                = EF x CE
                                 = (1 \times 5) \text{ cm}^2
                                                      (CE = EA - AC)
                                 = 5 cm^{2}
    Area of rectangle ABDC = Length × Breadth
                                 = AB×BD
                                 = (1 \times 2) \text{ cm}^2
                                 = 2 cm^2
   Area of rectangle HIJG = Length × Breadth
                                = HI × IJ
                                = (1 \times 2) \text{ cm}^2
    Area of the figure = Area of rectangle CEFG + Area of rectangle HIJG + Area of rectangle ABDC
                      = (5+2+2) \text{ cm}^2
                      = 9 \text{ cm}^2
(iii) In the figure, there are 5 squares, each of whose sides are 6 cm in length.
   Area of the figure = 5 \times Area of square
                         = 5 \times (\text{side})^2
                         = 5 \times (6)^2 \text{ cm}^2
                         = 180 \text{ cm}^2
```

Concepts of Perimeter and Area Exercise 21E

Q1

Answer:

(b) 28 cm

Let the length and the breadth of the rectangle be 7x cm and 5x cm, respectively. It is given that the perimeter of the rectangle is 96 cm. Perimeter of the rectangle = 2(7x+5x) cm

$$\Rightarrow 2(7\mathbf{x} + 5\mathbf{x}) = 96$$

$$= 2(12\mathbf{x}) = 96$$

$$= 24\mathbf{x} = 96$$

$$\Rightarrow \mathbf{x} = \frac{96}{24} = 4$$

$$\therefore \text{ Length } = (7 \times 4) \text{cm} = 28 \text{ cm}$$

Q2

Answer:

(d) 126 cm Let length of the rectangle be L cm. Area of the rectangle = 650 cm² Area of the rectangle = (L \times 13) cm² $\Rightarrow \left(L \times 13\right) = 650$ $\Rightarrow L = \frac{650}{13} = 50$ Length of the rectangle is 50 cm

Perimeter of the rectangle = 2(Length + Breadth) cm = 2(50+13) cm = 126 cm

Q3

```
Answer
```

```
(b) Rs 2340
Perimeter of the rectangular field = 2(Length + Breadth)
                     = 2(34 + 18) m = 104 m
Cost of fencing 1 metre = Rs 22.50
Cost of fencing 104 m = Rs (22.50×104) = Rs 2340
04
Answer:
(b) 16 m
Total cost of fencing = Rs 2400
Rate of fencing = Rs 30/m
Perimeter of the rectangular field = \frac{\text{Total cost}}{\text{Rate}} = \frac{\text{Rs } 2400}{\text{Rs } 30/\text{m}} = 80 \text{ m}
Let the breadth of the rectangular field be x m.
Perimeter of the rectangular field = 2(24 + x) m
\Rightarrow 2(24+x)=80
 \Rightarrow 48 + 2x = 80
 \Rightarrow 2x = (80 - 48)
 \Rightarrow 2x = 32
 \Rightarrow x = \frac{32}{2} = 16
 So, the breadth of the rectangular field is 16\,\mathrm{m}.
Q5
Answer:
(c) 17 m
Let the length and the breadth of the rectangle be L m and B m, respectively
Area of the rectangular carpet = (L \times B) m<sup>2</sup>
                    ... (i)
Perimeter of the rectangular carpet = 2(L+B)
\Rightarrow 2(L+B)=46
 \Rightarrow \left(L+B\right)=rac{46}{2}
 \Rightarrow (L+B)=23 ... (ii)
Diagonal of the rectangle = \sqrt{L^2 + B^2} m
                          =\sqrt{(L+B)^2-2LB} m
                                                                       (from equations (i) and (ii))
                           =\sqrt{(23)^2-240} \text{ m}
                          =\sqrt{529-240} \text{ m}
                          =\sqrt{289} \,\mathrm{m}
 = 17 \text{ m}
06
```

```
(a) 48 cm
Let the width, and the length of the rectangle be x cm and 3x cm, respectively
Applying Pythagoras theorem:
 (Diagonal)^2 = (Length)^2 + (Width)^2
 \Rightarrow \left(6\sqrt{10}\right)^2 = \left(3\mathbf{x}\right)^2 + \left(\mathbf{x}\right)^2
 \Rightarrow 360 = 9x^2 + x^2
 \Rightarrow 360 = 10x^2
 \Rightarrow \mathbf{x}^2 = \frac{360}{10}
 \Rightarrow x^2 = 36
 \Rightarrow x = \pm 6
 Since the width cannot be negative, we will neglect -6.
So, width of the rectangle is 6 cm.
Length of the rectangle = (3 \times 6) = 18 cm
Perimeter of the rectangle = 2(Length + Breadth) = 2(18 + 6) = 48 cm
07
Answer:
(b) 2:1
Let the breadth of the plot be b cm.
Let the length of the plot be x cm.
Perimeter of the plot = 3x cm
Perimeter of the plot =2(Length + Breadth)= 2(x + b) cm
\Rightarrow 2 |x+b| = 3x
2x + 2b = 3x
 \Rightarrow 2b = 3x - 2x
 \Rightarrow 2b = x
 \Rightarrow b = \frac{x}{2}
\therefore Ratio of the length and the breadth of the plot =\frac{x}{\left(\frac{x}{2}\right)}=\frac{x}{x}\times 2=\frac{2}{1}
 : Ratio of the length and the breadth of the plot = 2:1
Q8
Answer:
(b) 200 cm<sup>2</sup>
Area of the square = \left\{ \frac{1}{2} \times \left( \mathbf{Diagonal} \right)^2 \right\} sq units
=\left\{\frac{1}{2}\times\left(20\right)^2\right\}\,\mathrm{cm}^2
 =\left\{\frac{1}{2}\times\left(20\right)\times\left(20\right)\right\} cm<sup>2</sup>
 = \left(20 \times 10\right) \text{ cm}^2
 = 200 \text{ cm}^2
Q9
```

```
(c) 20 m
Let one side of the square field be x m.
Total cost of fencing a square field = Rs 2000
Rate of fencing the field = Rs 25/m
Perimeter of the square field = \frac{\text{Total cost of fencing the field}}{\text{Rate of fencing the field}} = \frac{\text{Rs } 2000}{\text{Rs } 25/\text{m}} = \frac{2000}{25} \text{ m} = 80 \text{ m}
Perimeter of the square field = (4 \times side) = 4x \text{ m}
\Rightarrow 4x = 80
\Rightarrow x = \frac{80}{4}
 \Rightarrow x = 20
Each side of the field is 20 m.
Q10
Answer:
Radius = \frac{\text{Diameter}}{2} = \frac{7}{2} cm
Circumference of the circle = 2\pi r = \left(2 \times \frac{22}{7} \times \frac{7}{2}\right) cm
011
Answer:
Circumference of the circle is 88 cm.
Let the radius be r cm.
It is given that the circumference of the circle is (2\pi r) cm.
\Rightarrow 2\pi r = 88
\Rightarrow 2 \times \frac{22}{7} \times r = 88
 \Rightarrow r = \frac{1}{2} \times \frac{7}{22} \times 88
\Rightarrow r = 14
\therefore Radius = 14 cm
Diameter = (2 \times Radius) = (2 \times 14) cm = 28 cm
012
Answer:
Radius of the wheel =\frac{\text{Diameter}}{2}=\frac{70}{2}=35 cm
Circumference of the wheel = 2\pi r = \left(2 \times \frac{22}{7} \times 35\right) cm = 220 cm
The distance covered by the wheel in one revolution is equal to its circumference
Distance covered by the wheel in 1 revolution = 220 \, \mathrm{cm}
: Distance covered by the wheel in 50 revolution = (50 \times 220)cm = 11000 cm
= 110 \text{ m}
```

Downloaded from www.studiestoday.com

Q13

```
(d) 80000
Length of the road = 150 m = 15000 cm
Breadth of the road = 9 m = 900 cm
Area of the road = (Length × Breadth)
= (15000 \times 900) \text{ cm}^2
= 13500000 cm<sup>2</sup>
Length of the brick = 22.5 cm
Breadth of the brick = 7.5 cm
Area of one brick = (Length × Breadth)
= (22.5 \times 7.5) \text{ cm}^2
= 168.75 \text{ cm}^2
Number of bricks = \frac{\text{Area of the road}}{\text{Area of one brick}}
 =\frac{13500000 \text{ cm}^2}{168.75 \text{ cm}^2} =80000 bricks
Q14
Answer:
(b) 24.3 \text{ m}^2
Length of the room = 5 m 40 cm = 5.40 m
Breadth of the room = 4 m 50 cm = 4.50 m
Area of the room = \left(\text{Length} \times \text{Breadth}\right) = \left(5.40 \times 4.50\right) \text{m}^2
 =\left(\frac{540}{100}\times\frac{450}{100}\right)m<sup>2</sup>
 =\left(\frac{27}{5}\times\frac{9}{2}\right)m<sup>2</sup>
 =\frac{243}{10} m<sup>2</sup> = 24.3 m<sup>2</sup>
Q16
Answer:
(b) 64 cm
Side of the square = 16 cm
 Perimeter of the square = (4 × side)
                         = (4 \times 16) \text{ cm}
                          = 64 cm
```