Concepts of Perimeter and Area

Ex 21A

Perimeter

Q1

Answer:

Perimeter of a rectangle $=2 \times($ Length + Breadth $)$
(i) Length $=16.8 \mathrm{~cm}$

Breadth $=6.2 \mathrm{~cm}$
Perimeter $=2 \times($ Length + Breadth $)$
$=2 \times(16.8+6.2)=46 \mathrm{~cm}$
(ii) Length $=2 \mathrm{~m} 25 \mathrm{~cm}$ $=(200+25) \mathrm{cm} \quad(1 \mathrm{~m}=100 \mathrm{~cm})$
$=225 \mathrm{~cm}$
Breadth $=1 \mathrm{~m} 50 \mathrm{~cm}$

$$
=(100+50) \mathrm{cm} \quad(1 \mathrm{~m}=100 \mathrm{~cm})
$$

$$
=150 \mathrm{~cm}
$$

Perimeter $=2 \times($ Length + Breadth $)$
$=2 \times(225+150)=750 \mathrm{~cm}$
(iii) Length $=8 \mathrm{~m} 5 \mathrm{dm}$
$=(80+5) \mathrm{dm} \quad(1 \mathrm{~m}=10 \mathrm{dm})$
$=85 \mathrm{dm}$
Breadth $=6 \mathrm{~m} 8 \mathrm{dm}$
$=(60+8) \mathrm{dm} \quad(1 \mathrm{~m}=10 \mathrm{dm})$
$=68 \mathrm{dm}$
Perimeter $=2 \times($ Length + Breadth $)$
$=2 \times(85+68)=306 \mathrm{dm}$
Q2
Answer:
Length of the field $=62 \mathrm{~m}$
Breadth of the field $=33 \mathrm{~m}$
Perimeter of the field $=2(1+b)$ units
Q3 $\quad=2(62+33) \mathrm{m}=190 \mathrm{~m}$
Cost of fencing per metre $=$ Rs 16
Total cost of fencing $=$ Rs $(16 \times 190)=$ Rs 3040

Downloaded from www.studiestoday.com

 RS Aggarwal Solutions for Class 6 MathematicsAnswer:
Let the length of the rectangle be $5 \times \mathrm{m}$.
Breadth of the rectangle $=3 \times \mathrm{m}$
Perimeter of the rectangle $=2(l+b)$
$=2(5 x+3 x) m$
$=(16 x) \mathrm{m}$
It is given that the perimeter of the field is 128 m .
$\therefore 16 x=128$
$\Rightarrow x=\frac{128}{16}=8$
\therefore Length $=(5 \times 8)=40 \mathrm{~m}$
Breadth $=(3 \times 8)=24 \mathrm{~m}$

Q4
Answer:
Total cost of fencing = Rs 1980
Rate of fencing = Rs 18 per metre
Perimeter of the field $=\frac{\text { Total cost }}{\text { Rate }}=\frac{\mathrm{Rs} 1980}{\mathrm{Rs} 18 / \mathrm{m}}=\left(\frac{1980}{18}\right) \mathrm{m}=110 \mathrm{~m}$

Let the length of the field be x metre.
Perimeter of the field $=2(x+23) \mathrm{m}$
$\therefore 2(x+23)=110$
$\Rightarrow(x+23)=55$
$x=(55-23)=32$
Hence, the length of the field is 32 m .
Q5
Answer:
Total cost of fencing = Rs 3300
Rate of fencing = Rs $25 / \mathrm{m}$
Perimeter of the field $=\frac{\text { Total cost }}{\text { Rate of fencing }}=\left(\frac{\text { Rs } 3300}{\text { Rs } 25 / \mathrm{m}}\right)=\frac{3300}{25} \mathrm{~m}=132 \mathrm{~m}$

Let the length and the breadth of the rectangular field be $7 x$ and $4 x$, respectively.
Perimeter of the field $=2(7 x+4 x)=22 x$

It is given that the perimeter of the field is 132 m .
$\therefore 22 \mathrm{x}=132$
$\Rightarrow \mathrm{x}=\frac{132}{22}=6$
\therefore Length of the field $=(7 \times 6) \mathrm{m}=42 \mathrm{~m}$
Breadth of the field $=(4 \times 6) \mathrm{m}=24 \mathrm{~m}$

Q6
Answer:
(i) Side of the square $=3.8 \mathrm{~cm}$

Perimeter of the square $=(4 \times$ side $)$

$$
=(4 \times 3.8)=15.2 \mathrm{~cm}
$$

(ii) Side of the square $=4.6 \mathrm{~cm}$

Perimeter of the square $=(4 \times$ side $)$

$$
=(4 \times 4.6)=18.4 \mathrm{~cm}
$$

(iii) Side of the square $=2 \mathrm{~m} 5 \mathrm{dm}$
$=(20+5) \mathrm{dm} \quad(1 \mathrm{~m}=10 \mathrm{dm})$
$=25 \mathrm{dm}$
Perimeter of the square $=(4 \times$ side $)$

$$
=(4 \times 25)=100 \mathrm{dm}
$$

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics

Answer :
Total cost of fencing $=$ Rs 4480
Rate of fencing = Rs $35 / \mathrm{m}$
Perimeter of the field $=\frac{\text { Total cost }}{\text { Rate }}=\frac{\mathrm{Rs} 4480}{\mathrm{Rs} \mathrm{35} / \mathrm{m}}=\frac{4480}{35} \mathrm{~m}=128 \mathrm{~m}$

Let the length of each side of the field be x metres
Perimeter $=(4 x)$ metres
$\therefore 4 x=128$
$\Rightarrow x=\frac{128}{4}=32$

Hence, the length of each side of the field is 32 m .

Q8

Answer:

Side of the square field $=21 \mathrm{~m}$
Perimeter of the square field $=(4 \times 21) \mathrm{m}$

Let the length and the breadth of the rectangular field be $4 x$ and $3 x$, respectively.
Perimeter of the rectangular field $=2(4 x+3 x)=14 x$

Perimeter of the rectangular field = Perimeter of the square field
$\therefore 14 x=84$
$\Rightarrow x=\frac{84}{14}=6$
\therefore Length of the rectangular field $=(4 \times 6) \mathrm{m}=24 \mathrm{~m}$
Breadth of the rectangular field $=(3 \times 6) \mathrm{m}=18 \mathrm{~m}$

Q9
Answer:
(i) Sides of the triangle are $7.8 \mathrm{~cm}, 6.5 \mathrm{~cm}$ and 5.9 cm

Perimeter of the triangle $=($ First side + Second side + Third Side $) \mathrm{cm}$
$=(7.8+6.5+5.9) \mathrm{cm}$
$=20.2 \mathrm{~cm}$
(ii) In an equilateral triangle, all sides are equal.

Length of each side of the triangle $=9.4 \mathrm{~cm}$
\therefore Perimeter of the triangle $=(3 \times$ Side $) \mathrm{cm}$

$$
=(3 \times 9.4) \mathrm{cm}
$$

$=28.2 \mathrm{~cm}$
(iii) Length of two equal sides $=8.5 \mathrm{~cm}$

Length of the third side $=7 \mathrm{~cm}$
\therefore Perimeter of the triangle $=\{(2 \times$ Equal sides $)+$ Third side $\} \mathrm{cm}$
$=\{(2 \times 8.5)+7\} \mathrm{cm}$
$=24 \mathrm{~cm}$
Q10

Answer:

(i) Length of each side of the given pentagon $=8 \mathrm{~cm}$
\therefore Perimeter of the pentagon $=(5 \times 8) \mathrm{cm}$
$=40 \mathrm{~cm}$
(ii) Length of each side of the given octagon $=4.5 \mathrm{~cm}$
\therefore Perimeter of the octagon $=(8 \times 4.5) \mathrm{cm}$
(iii) Length of each side of the given decagon $=3.6 \mathrm{~cm}$
\therefore Perimeter of the decagon $=(10 \times 3.6) \mathrm{cm}$
$=36 \mathrm{~cm}$

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics
(i) Perimeter of the figure $=$ Sum of all the sides
$=(27+35+35+45) \mathrm{cm}$
$=142 \mathrm{~cm}$
(ii) Perimeter of the figure $=$ Sum of all the sides
$=(18+18+18+18) \mathrm{cm}$
$=72 \mathrm{~cm}$
(iii) Perimeter of the figure $=$ Sum of all the sides
$=(8+16+4+12+12+16+4) \mathrm{cm}$
$=72 \mathrm{~cm}$

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics Concepts of Perimeter and Area
 Ex 21B

Q1
Answer :
(i) Radius, $r=28 \mathrm{~cm}$
\therefore Circumference of the circle, $\mathrm{C}=2 \pi r$
$=\left(2 \times \frac{22}{7} \times 28\right)$
$=176 \mathrm{~cm}$
Hence, the circumference of the given circle is 176 cm .
(ii) Radius, $r=10.5 \mathrm{~cm}$
\therefore Circumference of the circle, $\mathrm{C}=2 \pi r$
$=\left(2 \times \frac{22}{7} \times 10.5\right)$
$=66 \mathrm{~cm}$
Hence, the circumference of the given circle is 66 cm .
(iii) Radius, $r=3.5 \mathrm{~m}$
\therefore Circumference of the circle, $\mathrm{C}=2 \pi r$
$=\left(2 \times \frac{22}{7} \times 3.5\right)$
$=22 \mathrm{~m}$
Hence, the circumference of the given circle is 22 m .

Q2

Answer :
(i)

Circumference $=2 \pi r \quad=\pi(2 r) \quad=\pi \times$ Diameter of the circle $(d) \quad($ Diameter $=2 \times$ radius $)$
\Rightarrow Circumference $=$ Diameter $\times \pi D$ iameter of the given circle is 14 cm .
Circumference of the given circle $=14 \times \pi \Rightarrow\left(14 \times \frac{22}{7}\right)=44 \mathrm{~cm} C$ ircumference of the given circle is 44 cm .
(ii)

Circumference $=2 \pi r \quad=\pi(2 r) \quad=\pi \times$ Diameter of the $\operatorname{circle}(\mathrm{d}) \quad($ Diameter $=2 \times$ Radius $)$
\Rightarrow Circumference $=$ Diameter $\times \pi$ Diameter of the given circle is 35 cm .
\Rightarrow Circumference of the given circle $=35 \times \pi \Rightarrow\left(35 \times \frac{22}{7}\right)=110 \mathrm{~cm} C$ ircumference of the given circle is 110 cm .
(iii)

Circumference $=2 \pi r \quad=\pi(2 r) \quad=\pi \times$ Diameter of the $\operatorname{circle}(d) \quad$ (Diameter $=2 \times$ Radius)
\Rightarrow Circumference $=$ Diameter $\times \pi$ Diameter of the given circle is 10.5 m .
Circumference of the given circle $=10.5 \times \pi \Rightarrow\left(10.5 \times \frac{22}{7}\right)=33 \mathrm{~m}$ Circumference of the given circle is 33 m .

Answer:

Let the radius of the given circle be $r \mathrm{~cm}$
Circumference of the circle $=176 \mathrm{~cm}$
Circumference $=2 \pi r$
$\therefore 2 \pi r=176$
$\Rightarrow r=\frac{176}{2 \pi}$
$\Rightarrow r=\left(\frac{176}{2} \times \frac{7}{22}\right)$
$\Rightarrow \boldsymbol{r}=28$
The radius of the given circle is 28 cm .
Q4
Answer:
Let the radius of the circle be $r \mathrm{~cm}$.
Diameter $=2 \times$ Radius $=2 r \mathrm{~cm}$
Circumference of the wheel $=264 \mathrm{~cm}$
Circumference of the wheel $=2 \pi \mathrm{r}$
$\therefore 2 \pi r=264$
$\Rightarrow 2 r=\frac{264}{\pi}$
$\Rightarrow 2 r=\left(264 \times \frac{7}{22}\right)$
$\Rightarrow 2 r=84$
Diameter of the given wheel is 84 cm .

Q5

Answer :
Radius of the wheel $=\frac{\text { Diameter } \text { of the wheel }}{2}$
$\Rightarrow \mathrm{r}=\frac{77}{2} \mathrm{~cm}$
Circumference of the wheel $=2 \pi r$
$=\left(2 \times \frac{22}{7} \times \frac{77}{2}\right)$
$=242 \mathrm{~cm}$

In 1 revolution the wheel covers a distance equal to its circumference.
\therefore Distance covered by the w heel in 1 revolution $=242 \mathrm{~cm}$
\therefore Distance covered by the w heel in 500 revolution $s=(500 \times 242) \mathrm{cm}$

$$
\begin{aligned}
& =121000 \mathrm{~cm} \\
& =1210 \mathrm{~m} \quad(100 \mathrm{~cm}=1 \mathrm{~m}) \\
& =1.21 \mathrm{~km} \quad(1000 \mathrm{~m}=1 \mathrm{~km})
\end{aligned}
$$

Q6
Answer:
Radius of the wheel $(r)=\frac{\text { Diameter of the wheel }}{2}$
$r=\frac{70}{2} \mathrm{~cm}=35 \mathrm{~cm}$
Circumference of the wheel $=2 \pi r=\left(2 \times \frac{22}{7} \times 35\right)$

$$
=220 \mathrm{~cm}
$$

In one revolution, the wheel covers the distance equal to its circumference.
$\therefore 220 \mathrm{~cm}$ distance $=1$ revolution
$\therefore 1 \mathrm{~cm}$ distance $=\frac{1}{220}$ revolution
$\therefore 1 \mathrm{~km}($ or 100000 cm$)$ distance $=\frac{1 \times 100000}{220}$ revolution $(\therefore 1 \mathrm{~km}=100000 \mathrm{~cm})$
$\therefore 1.65 \mathrm{~km}$ distance $=\frac{1.65 \times 100000}{220}$ revolutions

$$
=750 \text { revolutions }
$$

Thus,the wheel will make 750 revolutions to travel 1.65 km .

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics Concepts of Perimeter and Area
Q1
Answer :

The figure contains 12 complete squares.
Area of 1 small square $=1 \mathrm{sq} \mathrm{cm}$
Q2 \therefore Area of the figure $=$ Number of complete squares \times Area of the square

$$
\begin{aligned}
& =(12 \times 1) \mathrm{sq} \mathrm{~cm} \\
& =12 \mathrm{sq} \mathrm{~cm}
\end{aligned}
$$

Answer:

The figure contains 18 complete squares
Area of 1 small square $=1 \mathrm{sq} \mathrm{cm}$
Q3 \therefore Area of the figure $=$ Number of complete squares \times Area of the square

$$
\begin{aligned}
& =(18 \times 1) \mathrm{sq} \mathrm{~cm} \\
& =18 \mathrm{sq} \mathrm{~cm}
\end{aligned}
$$

Answer :

The figure contains 14 complete squares and 1 half square.
Area of 1 small square $=1 \mathrm{sq} \mathrm{cm}$
Q4 \therefore Area of the figure $=$ Number of squares \times Area of the square
Answer:

The figure contains 6 complete squares and 4 half squares
Area of 1 small square $=1 \mathrm{sq} \mathrm{cm}$
\therefore Area of the figure $=$ Number of squares \times Area of the square
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics Answer:

The figure contains 9 complete squares and 6 half squares.
Area of 1 small square $=1 \mathrm{sq} \mathrm{cm}$
\therefore Area of the figure $=$ Number of squares \times Area of the square

$$
=\left[(9 \times 1)+\left(6 \times \frac{1}{2}\right)\right] \mathrm{sq} \mathrm{~cm}
$$

$$
=12 \mathrm{sq} \mathrm{~cm}
$$

Q6
Answer:

The figure contains 16 complete squares.
Area of 1 small square $=1 \mathrm{sq} \mathrm{cm}$
\therefore Area of the figure $=$ Number of squares \times Area of a square

$$
=(16 \times 1) \mathrm{sq} \mathrm{~cm}
$$

$=16 \mathrm{sq} \mathrm{cm}$
Q7
Answer:

In the given figure, there are 4 complete squares, 8 more than half parts of squares and 4 less than half parts of squares.
We neglect the less than half parts and consider each more than half part of the square as a complete square.

$$
\begin{aligned}
\therefore \text { Area } & =(4+8) \mathrm{sq} \mathrm{~cm} \\
& =12 \mathrm{sq} \mathrm{~cm}
\end{aligned}
$$

Q8
Answer:

In the given figure, there are 9 complete squares, 5 more than half parts of squares and 7 less than half parts of squares.
We neglect the less than half parts of squares and consider the more than half squares as complete squares.
\therefore Area of the figure $=(9+5) \mathrm{sq} \mathrm{cm}$

$$
=14 \mathrm{sq} \mathrm{~cm}
$$

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics Q9
Answer :

The figure contains 14 complete squares and 4 half squares.
Area of 1 small square $=1 \mathrm{sq} \mathrm{cm}$
Area of the figure $=$ Number of squares \times Area of one square
$=\left[(14 \times 1)+\left(4 \times \frac{1}{2}\right)\right]$ sq cm

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics Concepts of Perimeter and Area Ex 21D

The area of a shape is a measure of the size of its surface.

Square Area $=l^{2}$	Rectangle $\text { Area }=I \times w$	Triangle $\text { Area }=\frac{1}{2} b \times h$	Parallelogram Area $=\boldsymbol{b} \times \boldsymbol{h}$
1			
Trapezium Area $=\frac{1}{2}(a+b) h$	Rhombus $\text { Area }=\frac{1}{2} a \times b$	Circle $\text { Area }=\pi r^{2}$	Sector $\text { Area }=\frac{\theta}{360} \pi r^{2}$

Perimeter

- Square: \square Perimeter $=4 a$	- Circle $\text { Perimeter }=2 \times \mathrm{pi} \times r$
- Rectangle: \square b Perimeter $=2 \mathrm{a}+2 \mathrm{~b}$	- Parallelogram: Perimeter $=2 a+2 b$
- Triangle: Perimeter $=\mathrm{a}+\mathrm{b}+\mathrm{c}$	- Trapezoid: $\begin{aligned} \text { Perimeter }=a+b & +c+d \\ & =2 m+c+d \end{aligned}$
- Rhombus:	- Regular \mathbf{N}-gon: Perimeter $=\mathrm{ns}, \mathrm{n}=\#$ of sides
- Ellipse: $\text { Perimeter }-2 \text { pi } \sqrt{\frac{a^{2}+b^{2}}{2}}$	

Q1
Answer :
(i) Length $=46 \mathrm{~cm}$

Breadth $=25 \mathrm{~cm}$
Area of the rectangle $=($ Length \times Breadth $)$ sq units
$=(46 \times 25) \mathrm{cm}^{2}=1150 \mathrm{~cm}^{2}$
(ii) Length $=9 \mathrm{~m}$

Breadth $=6 \mathrm{~m}$
Area of the rectangle $=($ Length \times Breadth $)$ sq units
$=(9 \times 6) \mathrm{m}^{2}=54 \mathrm{~m}^{2}$
(iii) Length $=14.5 \mathrm{~m}$

Breadth $=6.8 \mathrm{~m}$
Area of the rectangle $=($ Length \times Breadth $)$ sq units

$$
=\left(\frac{145}{10} \times \frac{68}{10}\right) \mathrm{m}^{2}=\frac{9860}{100} \mathrm{~m}^{2}=98.60 \mathrm{~m}^{2}
$$

(iv) Length $=2 \mathrm{~m} 5 \mathrm{~cm}$
$=(200+5) \mathrm{cm} \quad(1 \mathrm{~m}=100 \mathrm{~cm})$
$=205 \mathrm{~cm}$
Breadth $=60 \mathrm{~cm}$
Area of the rectangle $=($ Length \times Breadth $)$ sq units
$=(205 \times 60) \mathrm{cm}^{2}=12300 \mathrm{~cm}^{2}$

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics

Answer:
Side of the square plot $=14 \mathrm{~m}$
Area of the square plot $=(\text { Side })^{2}$ sq units
$=(14)^{2} \mathrm{~m}^{2}$
$=196 \mathrm{~m}^{2}$
Q3

Answer:

Length of the table $=2 \mathrm{~m} \mathrm{25cm}$
$=(2+0.25) \mathrm{m} \quad(100 \mathrm{~cm}=1 \mathrm{~m})$
$=2.25 \mathrm{~m}$
Breadth of the table $=1 \mathrm{~m} 20 \mathrm{~cm}$

$$
\begin{aligned}
& =(1+0.20) \mathrm{m} \quad(100 \mathrm{~cm}=1 \mathrm{~m}) \\
& =1.20 \mathrm{~m}
\end{aligned}
$$

Area of the table $=($ Length \times Breadth $)$ sq units
$=(2.25 \times 1.20) \mathrm{m}^{2}$
$=\left(\frac{225}{100} \times \frac{120}{100}\right) \mathrm{m}^{2}$
$=2.7 \mathrm{~m}^{2}$

Q4
Answer:
Length of the carpet $=30 \mathrm{~m} \mathrm{75} \mathrm{cm}$
$=(30+0.75) \mathrm{cm} \quad(100 \mathrm{~cm}=1 \mathrm{~m})$
$=30.75 \mathrm{~m}$
Breadth of the carpet $=80 \mathrm{~cm}$

$$
=0.80 \mathrm{~m} \quad(100 \mathrm{~cm}=1 \mathrm{~m})
$$

Area of carpet $=($ Length \times breadth $)$ sq units

$$
\begin{aligned}
& =(30.75 \times 0.80) \mathrm{m}^{2} \\
& =\left(\frac{3075}{100} \times \frac{80}{100}\right) \mathrm{m}^{2} \\
& =24.6 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of $1 \mathrm{~m}^{2}$ carpet= Rs 150
Cost of $24.6 \mathrm{~m}^{2}$ carpet $=\operatorname{Rs}(24.6 \times 150)$
$=$ Rs 3690
Q5
Answer:
Length of the sheet of paper $=3 \mathrm{~m} 24 \mathrm{~cm}=324 \mathrm{~cm}$
Breadth of the sheet of paper $=1 \mathrm{~m} 72 \mathrm{~cm}=172 \mathrm{~cm}$
Area of the sheet $=($ Length \times Breadth $)$

$$
\begin{aligned}
& =(324 \times 172) \mathrm{cm}^{2} \\
& =55728 \mathrm{~cm}^{2}
\end{aligned}
$$

Length of the piece of paper required to make 1 envelope $=18 \mathrm{~cm}$
Breadth of the piece of paper required to make 1 envelope $=12 \mathrm{~cm}$
Area of the piece of paper required to make 1 envelope $=(18 \times 12) \mathrm{cm}^{2}$

$$
=216 \mathrm{~cm}^{2}
$$

No. of envelope s that can be made $=\frac{\text { Area of the sheet }}{\text { Area of the piece of paper required to make } 1 \text { envelope }}$
\Rightarrow No. of envelopes that can be made $=\frac{55728}{216}=258$ envelopes

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics

Q6
Answer:
Length of the room $=12.5 \mathrm{~m}$
Breadth of the room $=8 \mathrm{~m}$
Area of the room $=($ Length \times Breadth $)$
$=(12.5 \times 8) \mathrm{m} 2=100 \mathrm{~m} 2$
Side of the square carpet $=8 \mathrm{~m}$
Area of the carpet $=(\text { Side })^{2}$
$=8^{2} \mathrm{~m}^{2}$
$=64 \mathrm{~m}^{2}$

Area of the floor which is not carpeted = Area of the room - Area of the carpet
$=(100-64) \mathrm{m}^{2}$
$=36 \mathrm{~m}^{2}$

Q7

Answer :
Length of the road $=150 \mathrm{~m}=15000 \mathrm{~cm}$
Breadth of the road $=9 \mathrm{~m}=900 \mathrm{~cm}$
Area of the road $=($ Length \times Breadth $)$
$=15000 \times 900 \mathrm{~cm}^{2}$
$=13500000 \mathrm{~cm}^{2}$
Length of the brick $=22.5 \mathrm{~cm}$
Breadth of the brick $=7.5 \mathrm{~cm}$
Area of one brick $=($ Length \times Breadth $)$
$=(22.5 \times 7.5) \mathrm{cm}^{2}$
$=168.75 \mathrm{~cm}^{2}$
Number of bricks $=\frac{\text { Area of the road }}{\text { Area of one brick }}=\frac{13500000}{168.75}=80000$ bricks
Q8

Answer:

Length of the room $=13 \mathrm{~m}$
Breadth of the room $=9 \mathrm{~m}$
Area of the room $=(13 \times 9) \mathrm{m}^{2}=117 \mathrm{~m}^{2}$

Let length of required carpet be $x \mathrm{~m}$.
Breadth of the carpet $=75 \mathrm{~cm}$
$=0.75 \mathrm{~m} \quad(100 \mathrm{~cm}=1 \mathrm{~m})$
Area of the carpet $=(0.75 \times x) \mathrm{m}^{2}$
$=0.75 \mathrm{x} \mathrm{m}^{2}$
For carpeting the room:
Area covered by the carpet = Area of the room
$\Rightarrow 0.75 \mathrm{x}=117 \Rightarrow \mathrm{x}=1170.75 \Rightarrow \mathrm{x}=117 \times 43 \Rightarrow \mathrm{x}=156 \mathrm{~m}$

So, the length of the carpet is 156 m .
Cost of 1 m carpet $=$ Rs 65
Cost 156 m carpet $=$ Rs (156×65)
= Rs 10140

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics

Let the length of the rectangular park be $5 x$.
. Breadth of the rectangular park $=3 x$
Perimeter of the rectangular field $=2$ (Length + Breadth $)$

$$
=2(5 x+3 x)
$$

$$
=16 x
$$

It is given that the perimeter of rectangular park is 128 m .
$\Rightarrow 16 \mathrm{x}=128$
$\Rightarrow \mathrm{x}=\frac{128}{16}$
$\Rightarrow \mathrm{x}=8$
Length of the park $=(5 \times 8) \mathrm{m}$
Breadth of the park $=(3 \times 8) \mathrm{m}$

$$
=24 \mathrm{~m}
$$

Area of the park $=($ Length \times Breadth $)$ sq units

$$
=(40 \times 24) \mathrm{m}^{2}
$$

$$
=960 \mathrm{~m}^{2}
$$

Q10

Answer:
Side of the square plot $=64 \mathrm{~m}$
Perimeter of the square plot $=(4 \times S$ ide $) \mathrm{m}=(4 \times 64) \mathrm{m}=256 \mathrm{~m}$
Area of the square plot $=(\text { Side })^{2}$
$=64^{2} \mathrm{~m}^{2}$
$=4096 \mathrm{~m}^{2}$

Let the breadth of the rectangular plot be $x \mathrm{~m}$.
Perimeter of the rectangular plot $=2(1+\mathrm{b}) \mathrm{m}$
$=2(70+x) \mathrm{m}$

Perimeter of the rectangular plot $=$ Perimeter of the square plot (Given)
$\Rightarrow 2(70+x)=256$
$\Rightarrow 140+2 x=256$
$\Rightarrow 2 x=256-140$
$\Rightarrow 2 x=116$
$\Rightarrow x=\frac{116}{2}=58$
So, the breadth of the rectangular plot is 58 m .
Area of the rectangular plot $=(L$ ength $\times B$ readth $)=(70 \times 58) \mathrm{m}^{2}=4060 \mathrm{~m}^{2}$
Area of the square plot - Area of the rectangular plot
$=(4096-4060)$
$=36 \mathrm{~m}^{2}$
Q11

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics

Answer:
Total cost of cultivating the field = Rs 71400
Rate of cultivating the field $=$ Rs $35 / \mathrm{m}^{2}$

Are a of the field $=\frac{\text { Total cost of cultivating the field }}{\text { Rate of cultivating }}=\frac{\mathrm{Rs} 71400}{\mathrm{Rs} 35 / \mathrm{m}^{2}}=2040 \mathrm{~m}^{2}$

Let the length of the field be $x \mathrm{~m}$.
Area of the field $=(L$ ength $\times W$ idth $) \mathrm{m}^{2}=(\mathrm{x} \times 40) \mathrm{m}^{2}=40 \mathrm{x} \mathrm{m}^{2}$
It is given that the area of the field is $2040 \mathrm{~m}^{2}$.
$\Rightarrow 40 \mathrm{x}=2040$
$\Rightarrow \mathrm{x}=\frac{2040}{40}=51$
$\therefore L$ ength of the field $=51 \mathrm{~m}$

Perimeter of the field $=2(1+b)$
$=2(51+40) \mathrm{m}$
$=182 \mathrm{~m}$
Cost of fencing 1 m of the field = Rs 50
Cost of fencing 182 m of the field $=$ Rs (182×50)
= Rs 9100
Q12

Answer :

Let the width of the rectangle be $x \mathrm{~cm}$.
Length of the rectangle $=36 \mathrm{~cm}$
Area of the rectangle $=($ Length \times Width $)=(36 \times \mathrm{x}) \mathrm{cm}^{2}$
It is given that the area of the rectangle is $540 \mathrm{~cm}^{2}$.
$\Rightarrow 36 \times x=540$
$\Rightarrow x=\frac{540}{36}$
$\Rightarrow x=15$
$\therefore W$ idth of the rectangle $=15 \mathrm{~cm}$

Perimeter of the rectangle $=2($ Length + Width $) \mathrm{cm}$
$=2(36+15) \mathrm{cm}$
$=102 \mathrm{~cm}$
Q13

Answer:

Length of the wall $=4 \mathrm{~m}=400 \mathrm{~cm}$
Breadth of the wall $=3 \mathrm{~m}=300 \mathrm{~cm}$
Area of the wall $=(400 \times 300) \mathrm{cm}^{2}=120000 \mathrm{~cm}^{2}$

Length of the tile $=12 \mathrm{~cm}$
Breadth of the tile $=10 \mathrm{~cm}$
Area of one tile $=(12 \times 10) \mathrm{cm}^{2}=(120) \mathrm{cm}^{2}$

Number of tiles required to cover the wall $=\frac{\text { Area of the wall }}{\text { Area of one tile }}=\frac{120000}{120}=1000$ tiles
Cost of 1 tile = Rs 22.50
Cost of 1000 tiles $=(1000 \times 22.50)=$ Rs 22500

Thus, the total cost of the tiles is Rs 22500

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics Answer:

Let the length of the rectangle be $x \mathrm{~cm}$.
Breadth of the rectangle is 25 cm .
Area of the rectangle $=($ Length \times Breadth $) \mathrm{cm}^{2}$
$=(x \times 25) \mathrm{cm}^{2}$
$=25 \mathrm{xcm}^{2}$

It is given that the area of the rectangle is $600 \mathrm{~cm}^{2}$.
$\Rightarrow 25 x=600$
$\Rightarrow x=\frac{600}{25}=24$
So, the length of the rectangle is 24 cm .
Perimeter of the rectangle $=2$ (Length + Breadth $)$ units

$$
\begin{aligned}
& =2(25+24) \mathrm{cm} \\
& =98 \mathrm{~cm}
\end{aligned}
$$

Q15
Answer:
Area of the square $=\left\{\frac{1}{2} \times(D \text { iagonal })^{2}\right\}$ sq units
$=\left\{\frac{1}{2} \times(5 \sqrt{2})^{2}\right\} \mathrm{cm}^{2}$
$=\left\{\frac{1}{2} \times(5)^{2} \times(\sqrt{2})^{2}\right\} \mathrm{cm}^{2}$
$=\left\{\frac{1}{2} \times 25 \times 2\right\} \mathrm{cm}^{2}$
$=\left(\frac{1}{2} \times 50\right) \mathrm{cm}^{2}=25 \mathrm{~cm}^{2}$
Q16
Answer:
(i) Area of rectangle $\mathrm{ABDC}=$ Length \times Breadth
$=A B \times A C \quad(A C=A E-C E)$
$=(1 \times 8) \mathrm{m}^{2}$
$=8 \mathrm{~m}^{2}$
Area of rectangle CEFG $=$ Length \times Breadth
$=C G \times G F \quad(C G=G D+C D)$
$=(9 \times 2) \mathrm{m}^{2}$
$=18 \mathrm{~m}^{2}$
Area of the complete figure $=$ Area of rectangle ABDC + Area of rectangle CEFG

$$
\begin{aligned}
& =(8+18) \mathrm{m}^{2} \\
& =26 \mathrm{~m}^{2}
\end{aligned}
$$

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics
(ii) Area of rectangle AEDC $=$ Length \times Breadth

$$
\begin{aligned}
& =\mathrm{ED} \times \mathrm{CD} \\
& =(12 \times 2) \mathrm{m}^{2} \\
& =24 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of rectangle $\operatorname{FJIH}=$ Length \times Breadth
$=\mathrm{HI} \times \mathrm{IJ}$
$=(1 \times 9) \mathrm{m}^{2}$
$=9 \mathrm{~m}^{2}$
Area of rectangle ABGF $=$ Length \times Breadth

$$
=\mathrm{AB} \times \mathrm{AF}
$$

$$
\{(A B=F J-G J) \text { and } A F=E H-(E A+F H)\}
$$

Area of the complete figure $=$ Area of rectangle AEDC + Area of rectangle FJIH + Area of rectangle ABGF
$=(24+9+10.5) \mathrm{m}^{2}$
$=43.5 \mathrm{~m}^{2}$

(iii) Area of the shaded portion = Area of the complete figure - Area of the unshaded figure
= Area of rectangle ABCD - Area of rectangle GBFE
$=(C D \times A D)-(G B \times B F)$
$=\{(12 \times 9)-(7.5 \times 10)\} \mathrm{m}^{2} \quad(\mathrm{BF}=\mathrm{BC}-\mathrm{FC})$
$=(108-75) \mathrm{m}^{2}$
$=33 \mathrm{~m}^{2}$

Q17

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics Answer:

$$
\begin{aligned}
\text { (i) Area of square } \begin{aligned}
\mathrm{BCDE} & =(\text { Side })^{2} \\
& =(\mathrm{CD})^{2} \\
& =(3)^{2} \mathrm{~cm}^{2} \\
& =9 \mathrm{~cm}^{2} \\
\text { Area of rectangle } \mathrm{ABFK} & =\text { Length } \times \text { Breadth } \\
& =\mathrm{AK} \times \mathrm{AB} \quad[(\mathrm{AB}=\mathrm{AC}-\mathrm{BC}) \text { and }(\mathrm{AK}=\mathrm{AL}+\mathrm{LK}) \\
& =(5 \times 1) \mathrm{cm}^{2} \\
& =5 \mathrm{~cm}^{2} \\
\text { Area of rectangle MLKG } & =\text { Length } \times \text { Breadth } \\
& =\mathrm{ML} \times \mathrm{MG} \\
& =(2 \times 3) \mathrm{cm}^{2} \\
& =6 \mathrm{~cm}^{2} \\
\text { Area of rectangle } \mathrm{JHGF} & =\text { Length } \times \text { Breadth } \\
& =\mathrm{JH} \times \mathrm{HG} \\
& =(2 \times 4) \mathrm{cm}^{2} \\
& =8 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

Area of the figure = Area of rectangle ABFK + Area of rectangle MLKG + Area of rectangle JHGF + Area of square BCDE

$$
\begin{aligned}
& =(9+5+6+8) \mathrm{cm}^{2} \\
& =28 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) Area of rectangle CEFG= Length \times Breadth
$=E F \times C E$
$=(1 \times 5) \mathrm{cm}^{2} \quad(C E=E A-A C)$
$=5 \mathrm{~cm}^{2}$
Area of rectangle $\operatorname{ABDC}=$ Length \times Breadth
$=A B \times B D$
$=(1 \times 2) \mathrm{cm}^{2}$
$=2 \mathrm{~cm}^{2}$
Area of rectangle HIJG $=$ Length \times Breadth
$=\mathrm{HI} \times \mathrm{IJ}$
$=(1 \times 2) \mathrm{cm}^{2}$
$=2 \mathrm{~cm}^{2}$
Area of the figure $=$ Area of rectangle CEFG + Area of rectangle HIJG + Area of rectangle ABDC $=(5+2+2) \mathrm{cm}^{2}$
$=9 \mathrm{~cm}^{2}$

(iii) In the figure, there are 5 squares, each of whose sides are 6 cm in length.

Area of the figure $=5 \times$ Area of square

$$
\begin{aligned}
& =5 \times(\text { side })^{2} \\
& =5 \times(6)^{2} \mathrm{~cm}^{2} \\
& =180 \mathrm{~cm}^{2}
\end{aligned}
$$

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics Concepts of Perimeter and Area

Exercise 21E

Q1
Answer:
(b) 28 cm

Let the length and the breadth of the rectangle be $7 x \mathrm{~cm}$ and $5 x \mathrm{~cm}$, respectively.
It is given that the perimeter of the rectangle is 96 cm .
Perimeter of the rectangle $=2(7 x+5 x) \mathrm{cm}$
$\Rightarrow 2(7 \mathrm{x}+5 x)=96$
$=2(12 x)=96$
$=24 x=96$
$\Rightarrow x=\frac{96}{24}=4$
\therefore Length $=(7 \times 4) \mathrm{cm}=28 \mathrm{~cm}$
Q2
Answer:
(d) 126 cm

Let length of the rectangle be $L \mathrm{~cm}$.
Area of the rectangle $=650 \mathrm{~cm}^{2}$
Area of the rectangle $=(\mathrm{L} \times 13) \mathrm{cm}^{2}$
$\Rightarrow(\mathrm{L} \times 13)=650$
$\Rightarrow \mathrm{L}=\frac{650}{13}=50$
Length of the rectangle is 50 cm
Perimeter of the rectangle $=2($ Length + Breadth $) \mathrm{cm}=2(50+13) \mathrm{cm}=126 \mathrm{~cm}$

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics

Answer:
(b) Rs 2340

Perimeter of the rectangular field $=2$ (Length + Breadth $)$

$$
=2(34+18) \mathrm{m}=104 \mathrm{~m}
$$

Cost of fencing 1 metre = Rs 22.50
Cost of fencing $104 \mathrm{~m}=$ Rs $(22.50 \times 104)=$ Rs 2340

Q4

Answer :
(b) 16 m

Total cost of fencing = Rs 2400
Rate of fencing = Rs $30 / \mathrm{m}$
Perimeter of the rectangular field $=\frac{\text { Total cost }}{\text { Rate }}=\frac{\mathrm{Rs} 2400}{\mathrm{Rs} 30 / \mathrm{m}}=80 \mathrm{~m}$
Let the breadth of the rectangular field be $x \mathrm{~m}$.
Perimeter of the rectangular field $=2(24+x) \mathrm{m}$
$\Rightarrow 2(24+x)=80$
$\Rightarrow 48+2 x=80$
$\Rightarrow 2 x=(80-48)$
$\Rightarrow 2 x=32$
$\Rightarrow x=\frac{32}{2}=16$
So, the breadth of the rectangular field is 16 m .

Q5

Answer:

(c) 17 m

Let the length and the breadth of the rectangle be $L \mathrm{~m}$ and B m, respectively.
Area of the rectangular carpet $=(L \times B) \mathrm{m}^{2}$
$\Rightarrow L B=120$
Perimeter of the rectangular carpet $=2(L+B)$
$\Rightarrow 2(L+B)=46$
$\Rightarrow(L+B)=\frac{46}{2}$
$\Rightarrow(L+B)=23$
Diagonal of the rectangle $=\sqrt{L^{2}+B^{2}} \mathrm{~m}$

$$
\begin{aligned}
& =\sqrt{(L+B)^{2}-2 L B} \mathrm{~m} \\
& =\sqrt{(23)^{2}-240} \mathrm{~m} \\
& =\sqrt{529-240} \mathrm{~m} \\
& =\sqrt{289} \mathrm{~m}
\end{aligned}
$$

$$
=\sqrt{(23)^{2}-240} \mathrm{~m} \quad(\text { from equations }(\mathrm{i}) \text { and }(\mathrm{ii}))
$$

$=17 \mathrm{~m}$
Q6

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics

Answer :
(a) 48 cm

Let the width and the length of the rectangle be $x \mathrm{~cm}$ and $3 x \mathrm{~cm}$, respectively.
Applying Pythagoras theorem:
$(\text { Diagonal })^{2}=(\text { Length })^{2}+(\text { Width })^{2}$
$\Rightarrow(6 \sqrt{10})^{2}=(3 \mathrm{x})^{2}+(\mathrm{x})^{2}$
$\Rightarrow 360=9 \mathrm{x}^{2}+\mathrm{x}^{2}$
$\Rightarrow 360=10 \mathrm{x}^{2}$
$\Rightarrow \mathrm{x}^{2}=\frac{360}{10}$
$\Rightarrow x^{2}=36$
$\Rightarrow \mathrm{x}= \pm 6$
Since the width cannot be negative, we will neglect -6 .

So, width of the rectangle is 6 cm .
Length of the rectangle $=(3 \times 6)=18 \mathrm{~cm}$
Perimeter of the rectangle $=2($ Length + Breadth $)=2(18+6)=48 \mathrm{~cm}$
Q7
Answer :
(b) $2: 1$

Let the breadth of the plot be $b \mathrm{~cm}$.

Let the length of the plot be $x \mathrm{~cm}$.
Perimeter of the plot $=3 x \mathrm{~cm}$

Perimeter of the plot $=2($ Length + Breadth $)=2(x+b) \mathrm{cm}$
$\Rightarrow 2(x+b)=3 x$
$2 x+2 b=3 x$
$\Rightarrow 2 b=3 x-2 x$
$\Rightarrow 2 b=x$
$\Rightarrow b=\frac{x}{2}$
\therefore Ratio of the length and the breadth of the plot $=\frac{\mathrm{x}}{\left(\frac{\mathrm{x}}{2}\right)}=\frac{\mathrm{x}}{\mathrm{x}} \times 2=\frac{2}{1}$
\therefore Ratio of the length and the breadth of the plot $=2: 1$

Q8
Answer :
(b) $200 \mathrm{~cm}^{2}$

Area of the square $=\left\{\frac{1}{2} \times(\text { Diagonal })^{2}\right\}$ sq units
$=\left\{\frac{1}{2} \times(20)^{2}\right\} \mathrm{cm}^{2}$
$=\left\{\frac{1}{2} \times(20) \times(20)\right\} \mathrm{cm}^{2}$
$=(20 \times 10) \mathrm{cm}^{2}$
$=200 \mathrm{~cm}^{2}$
Q9
(c) 20 m

Let one side of the square field be $x \mathrm{~m}$.
Total cost of fencing a square field $=$ Rs 2000
Rate of fencing the field = Rs $25 / \mathrm{m}$
Perimeter of the square field $=\frac{\text { Total cost of fencing the field }}{\text { Rate of fencing the field }}=\frac{\mathrm{Rs} 2000}{\mathrm{Rs} 25 / \mathrm{m}}=\frac{2000}{25} \mathrm{~m}=80 \mathrm{~m}$

Perimeter of the square field $=(4 \times$ side $)=4 \times \mathrm{m}$
$\Rightarrow 4 x=80$
$\Rightarrow x=\frac{80}{4}$
$\Rightarrow x=20$
Each side of the field is 20 m

Q10

Answer :
(b) 22 cm

Radius $=\frac{\text { Diameter }}{2}=\frac{7}{2} \mathrm{~cm}$
Circumference of the circle $=2 \pi r=\left(2 \times \frac{22}{7} \times \frac{7}{2}\right) \mathrm{cm}$
$=22 \mathrm{~cm}$

Q11
Answer:
(a) 28 cm

Circumference of the circle is 88 cm .
Let the radius be $r \mathrm{~cm}$.
It is given that the circumference of the circle is $(2 \pi \mathrm{r}) \mathrm{cm}$.
$\Rightarrow 2 \pi r=88$
$\Rightarrow 2 \times \frac{22}{7} \times r=88$
$\Rightarrow r=\frac{1}{2} \times \frac{7}{22} \times 88$
$\Rightarrow r=14$
\therefore Radius $=14 \mathrm{~cm}$
Diameter $=(2 \times$ Radius $)=(2 \times 14) \mathrm{cm}=28 \mathrm{~cm}$
Q12
Answer:
(b) 110 m

Radius of the wheel $=\frac{\text { Diameter }}{2}=\frac{70}{2}=35 \mathrm{~cm}$
Circumference of the wheel $=2 \pi \mathrm{r}=\left(2 \times \frac{22}{7} \times 35\right) \mathrm{cm}=220 \mathrm{~cm}$
The distance covered by the wheel in one revolution is equal to its circumference
Distance covered by the wheel in 1 revolution $=220 \mathrm{~cm}$
\therefore Distance covered by the wheel in 50 revolution $=(50 \times 220) \mathrm{cm}=11000 \mathrm{~cm}$
$=110 \mathrm{~m}$

Downloaded from www.studiestoday.com RS Aggarwal Solutions for Class 6 Mathematics

Answer:

(d) 80000

Length of the road $=150 \mathrm{~m}=15000 \mathrm{~cm}$
Breadth of the road $=9 \mathrm{~m}=900 \mathrm{~cm}$
Area of the road $=($ Length \times Breadth $)$
$=(15000 \times 900) \mathrm{cm}^{2}$
$=13500000 \mathrm{~cm}^{2}$

Length of the brick $=22.5 \mathrm{~cm}$
Breadth of the brick $=7.5 \mathrm{~cm}$
Area of one brick $=($ Length \times Breadth $)$
$=(22.5 \times 7.5) \mathrm{cm}^{2}$
$=168.75 \mathrm{~cm}^{2}$
Number of bricks $=\frac{\text { Area of the road }}{\text { Area of one brick }}$
$=\frac{13500000 \mathrm{~cm}^{2}}{168.75 \mathrm{~cm}^{2}}=80000$ bricks
Q14
Answer:
(b) $24.3 \mathrm{~m}^{2}$

Length of the room $=5 \mathrm{~m} 40 \mathrm{~cm}=5.40 \mathrm{~m}$
Breadth of the room $=4 \mathrm{~m} 50 \mathrm{~cm}=4.50 \mathrm{~m}$
Area of the room $=($ Length \times Breadth $)=(5.40 \times 4.50) \mathrm{m}^{2}$
$=\left(\frac{540}{100} \times \frac{450}{100}\right) \mathrm{m}^{2}$
$=\left(\frac{27}{5} \times \frac{9}{2}\right) \mathrm{m}^{2}$
$=\frac{243}{10} \mathrm{~m}^{2}=24.3 \mathrm{~m}^{2}$

Q16

Answer:
(b) 64 cm

Side of the square $=16 \mathrm{~cm}$
Perimeter of the square $=(4 \times$ side $)$

$$
=(4 \times 16) \mathrm{cm}
$$

$$
=64 \mathrm{~cm}
$$

