Downloaded from https:// www.studiestoday.com

Downloaded from https:// www.studiestoday.com

प्रायोगिक भौतिकी-2

$$
\text { कक्षा - } 12
$$

माध्यमिक शिक्षा बोर्ड राजस्थान, अजमेर

पाठ्यपुस्तक निर्माण समिति

$$
\begin{aligned}
& \text { पुस्तक : प्रायोगिक भौतिकी }-2 \\
& \text { कक्षा }-12
\end{aligned}
$$

लेखकगण
-:-
प्रोफेसर डॉ. अशोक कुमार नगावत
भौतिक शास्त्र विभाग
राजस्थान विश्वविद्यालय, जयपुर

सुगनलाल चौधरी
सेवानिवृत व्याख्याता
56, बलदेव नगर, अजमेर

रमेश चन्द सैनी
सेवानिवृत व्याख्याता
2 B-4, साकेतनगर, ब्यावर, अजमेर
ज्ञान सिंह पंवार
सेवानिवृत प्रधानाचार्य
सुभाष चौक, केसरगंज, अजमेर

डॉ. अतुल कुमार अग्रवाल भौतिक शास्त्र
राजकीय महाविद्यालय, नसीराबाद

अतुल कुमार चौहान
व्याख्याता
राजकीय उ.मा.विद्यालय, खेरली, धौलपुर

अजय कुमार गुप्ता
उप प्रधानाचार्य
श्री माहेश्वरी उ.मा.विद्यालय, तिलकनगर, जयपुर

संयोजक :
डॉ. नारायण लाल गुप्ता
सम्राट पृथ्वीराज चौहान राजकीय महाविद्यालय, अजमेर (राज.)

सदस्यगण :

प्रो. सुधीश कुमार
भौतिक विज्ञान विभाग
मोहनलाल सुखाड़िया विश्वविद्यालय,
उदयपुर (राज.)
गजेन्द्र कुमार शर्मा
प्रधानाचार्य
राजकीय उच्च माध्यमिक विद्यालय
सरानीखेड़ा (धौलपुर)
अजय कुमार गुप्ता
उप प्रधानाचार्य
माहेश्वरी सीनियर सैकण्डरी स्कूल, विजय पथ, तिलक नगर, जयपुर

दिनेश हिमांशु
व्याख्याता
डाईट, कोटा (राजस्थान)

हीरालाल टेलर
प्रधानाचार्य
राजकीय उच्च माध्यमिक विद्यालय
प्रताप नगर, भीलवाड़ा

भैरुलाल तेली
व्याख्याता
राजकीय फतह उच्च माध्यमिक विद्यालय
उदयपुर (राज.)

आमुख

प्रायोगिक भौतिक विज्ञान की यह पुस्तक माध्यमिक शिक्षा बोर्ड, राजस्थान द्वारा प्रस्तावित पाठ्यक्रमानुसार कक्षा 12 के विद्यार्थियों के लिए लिखी गई है।

विज्ञान के अध्ययन में प्रायोगिक कार्य का विशिष्ट महत्व है। विभिन्न सिद्धान्तों की पुष्टि प्रायोगिक कार्य द्वारा ही की जाती है। इन तथ्यों को राष्ट्रीय पाठ्यचर्या की रूपरेखा 2005 में भी रेखांकित करते हुए विद्यार्थियों के पूर्व ज्ञान के आधार पर समझ के अवसर उपलब्ध कराने पर बल दिया गया है। अतः प्रयोगशाला और प्रायोगिक कार्य के अतिरिक्त विद्यार्थी की जिज्ञासा और परिवेशगत् भौतिकी की प्रघटनाओं को समझने में सहायता की जानी चाहिये। प्रारम्भ से ही प्रायोगिक कार्य में रूचि उत्पन्न करने के लिए यह पुस्तक लिखने का प्रयास किया गया है।

प्रस्तुत पुस्तक में प्रायोगिक कार्यो को पाठ्यानुसार तीन भागों में बांटा गया है - प्रथम भाग में प्रस्तावित प्रयोगों को समाहित किया है, द्वितीय भाग में छात्रों द्वारा करणीय क्रियाकलापों का वर्णन है। प्रायोगिक कार्य में शिक्षक की भूमिका मुख्य बन गयी है। छात्र कतिपय उपकरणों को प्रथम बार देखता है, उसके संचालन एवं उपयोग में लाने की दक्षता वृद्धि हेतु शिक्षक द्वारा विशेष निर्देश दिये जाने की अपेक्षा है।

पुस्तक को सरल एवं सुबोध भाषा में लिखते हुए प्रत्येक प्रयोग के लिए प्रायोगिक उपकरणों, आवश्यक सामग्री, नामांकित चित्रों, सावधानियों एवं मौखिक प्रश्नों का समावेश किया गया है। हमने पुस्तक को स्पष्ट एवं त्रुटि रहित रखते हुए प्रयोगों को किसी भी विद्यालय में विद्यार्थियों (ग्रामीण व शहरी) द्वारा सुगमता से पूर्ण किये जा सकने का प्रयास किया है।

तकनीकी शब्दों को हिन्दी भाषा के साथ-साथ यथासंभव अंग्रेजी में कोष्ठकों में प्रस्तुत किया गया है। पुस्तक के सुधार हेतु विद्वान सहयोगियों एवं विद्यार्थियों के बहुमूल्य सुझाव आमंत्रित है।

लेखकगण

प्रायोगिक परीक्षा मूल्यांकन

1	एक प्रयोग (किसी एक अनुभाग से)	10 अंक
2	दो क्रियाकलाप (किसी एक अनुभाग से) 5×2	
3	रिकॉर्ड (प्रयोग तथा क्रियाकलाप)	10 अंक
4	मौखिक प्रश्न (प्रयोग तथा क्रियाकलाप पर)	05 अंक
		योग

शैक्षिक वर्ष की अवधि में प्रत्येक छात्र को न्यूनतम 10 प्रयोग (प्रत्येक अनुभाग से 5) तथा 8 क्रियाकलाप (प्रत्येक अनुभाग से 4) करने है।
अनुभाग— अ

प्रयोग -

1. विभवान्तर व धारा के बीच ग्राफ खींचकर किसी दिये गये तार का प्रतिरोध व प्रतिरोधकता ज्ञात करना।
2. मीटरसेतु की सहायता से किसी दिये गये तार का प्रतिरोध ज्ञात कर, प्रतिरोधकता ज्ञात करना।
3. मीटरसेतु की सहायता से प्रतिरोधकों की श्रेणी/समांतर संयोजन के नियमों का सत्यापन

करना।
4. विभवमापी द्वारा दिये गये प्राथमिक सेलों के वि.वा.बलों की तुलना करना।
5. विभवमापी द्वारा दिये गये प्राथमिक सेल का आन्तरिक प्रतिरोध ज्ञात करना।
6. विभवमापी की सहायता से दिये गये वोल्टमीटर का अंशशोधन करना व अंशाकन वक्र खींचना।
7. विभवमापी की सहायता से दिये गये अमीटर का अंशशोधन करना व अंशाकन वक्र खींचना।
8. किसी गेल्वेनोमीटर का प्रतिरोध अर्द्धविक्षेप विधि द्वारा ज्ञात करना तथा इसका दक्षतांक ज्ञात करना।
9. दिये गये गेल्वेनोमीटर को वांछित परिसर के अमीटर/वोल्टमीटर में रुपान्तरण कर सत्यापन करना।
10. सोनोमीटर द्वारा a.c. मेन्स की आवृति ज्ञात करना।

क्रियाकलाप-

1. बहुलमापी द्वारा किसी दिये गये परिपथ के सांतत्य का परीक्षण करना तथा प्रतिरोध, वोल्टता $(\mathrm{AC} / \mathrm{DC})$ एवं धारा ($\mathrm{AC} / \mathrm{DC}$) मापना।
2. दिये गये अवयवों को संयोजित कर परिपथ बनाना व एक प्रेक्षण लेकर संयोजन जांच करना।
3. किसी दिये गये ऐसे परिपथ का आरेख खींचना (जिसमें बैटरी, प्रतिरोधक, धारा नियंत्रक, कुंजी, अमीटर, वोल्टमीटर हो) उन अवयवों को चित्रित करना जो उचित क्रम में संयोजित नहीं है, परिपथ को ठीक करके परिपथ आरेख को भी संशोधित करना।
4. स्थायी धारा के लिए किसी तार की लम्बाई के साथ विभवपात में परिवर्तन का अध्ययन करना।
5. दिये गये लेक्लांशी सेल का आंतरिक प्रतिरोध वोल्टमीटर-अमीटर की सहायता से ज्ञात करना।
6. एक शक्ति स्त्रोत, तीन बल्ब, तीन (ON/OFF) स्विच का प्रयोग कर घरेलू विद्युत परिपथ संयोजित करना।

> अनुभाग— ब

1. अवतल दर्पण का प्रयोग करते हुए u के विभिन्न मानों के लिये v के मान ज्ञात करके दर्पण की फोकस दूरी ज्ञात करना।
2. u तथा v अथवा $1 / \mathrm{u}$ तथा $1 / \mathrm{v}$ के बीच ग्राफ खींचकर किसी उत्तल लैंस की फोकस दूरी ज्ञात करना।
3. उत्तल लैंस का उपयोग करके उत्तल दर्पण की फोकस दूरी ज्ञात करना।
4. उत्तल लैंस का उपयोग करके अवतल लैंस की फोकस दूरी ज्ञात करना।
5. दिए गए प्रिज्म के लिए आपतन कोण एवं विचलन कोण के बीच ग्राफ खींच कर न्यूनतम विचलन कोण तथा अपवर्तनांक ज्ञात करना।
6. चल सूक्ष्मदर्शी द्वारा काँच की सिल्ली का अपवर्तनांक ज्ञात करना।
7. (i) अवतल दर्पण (ii) समतल दर्पण तथा उत्तल लेंस द्वारा किसी द्रव का अपवर्तनांक ज्ञात करना।
8. अग्रदिशिक तथा पश्चदिशिक अभिनति में P-N संधि के I-V वक्र अभिलाक्षणिक वक्र खींचना तथा अग्र एवं पश्च प्रतिरोध ज्ञात करना।
9. जेनर डायोड के अभिलाक्षणिक वक्र खींचना तथा इसका भंजन वोल्टता ज्ञात करना।
10. किसी उभयनिष्ठ उत्सर्जक pnp अथवा npn ट्रांजिस्टर के अभिलाक्षणिक वक्र खींचना।
11. प्रत्यावर्ती धारा परिपथ में प्रतिरोध एवं प्रेरण कुण्डली को श्रेणीक्रम में संयोजित कर धारा व वोल्टता में सम्बन्ध स्थापित करना।
12. प्रत्यावर्ती धारा परिपथ में प्रतिरोध एवं संधारित्र को श्रेणीक्रम में संयोजित कर धारा एवं वोल्टता में सम्बन्ध स्थापित करना।
क्रियाकलाप-
13. किसी L.D.R. पर प्रकाश की तीव्रता के प्रभाव का स्त्रोत की दूरी में परिवर्तन करके अध्ययन करना।
14. डायोड, LED ट्रांजिस्टर,, I.C., प्रतिरोधक एवं संधारित्र की ऐसे ही मिश्रित वस्तुओं के संचयन में से पहचान करना।
15. बहुलमापी द्वारा (i) ट्रांजिस्टर के आधार को पहचानना या (ii) npn तथा pnp प्रकार के ट्रांजिस्टरों में विभेद करना या (iii) डायोड तथा LED के प्रकरणों में धारा के एकदिशिक प्रवाह का प्रेक्षण करना या (iv) डायोड, ट्रांजिस्टर अथवा I.C. जैसे दिये गये इलेक्ट्रोनिक अवयवों का परीक्षण उनके चालू अवस्था में होने अथवा न होने का परीक्षण करना।
16. किसी कॉच की सिल्ली पर तिर्यक आपतित प्रकाश पुन्ज के अपवर्तन तथा पार्श्विक विचलन का प्रेक्षण करना।
17. दो पोलरॉयड द्वारा प्रकाश के ध्रुवण का अध्ययन करना।
18. पतली झिरी के कारण प्रकाश के विवर्तन का प्रेक्षण करना।
19. मोमबती एवं पर्दे का उपयोग करते हुए (i) उत्तल लैंस (ii) अवतल दर्पण द्वारा पर्दे पर बनने वाले प्रतिबिम्ब की प्रकृति तथा आमाप (लेंस / दर्पण से मोमबत्ती की विभिन्न दूरियों के लिए) का अध्ययन करना।
20. लेन्सों के दिये गये समुच्चय से दो लेंसों द्वारा किसी विशिष्ट फोकस दूरी का लेंस-संयोजन प्राप्त करना।

अनुक्रमणिका

क्र.सं.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

विषयस्तु
भाग (अ)

प्रयोग-1	$01-07$
प्रयोग-2	$08-11$
प्रयोग-3	$12-16$
प्रयोग-4	$17-20$
प्रयोग-5	$21-31$
प्रयोग-6	$32-35$
प्रयोग-7	$36-40$
प्रयोग-8	$41-46$
प्रयोग-9	
प्रयोग-10	$47-54$
क्रियाकलाप-1	$55-60$
क्रियाकलाप-2	$61-68$
क्रियाकलाप-3	$69-70$
क्रियाकलाप-4	$71-72$
क्रियाकलाप-5	$73-76$
क्रियाकलाप-6	$77-78$

भाग (ब)

प्रयोग-1	$82-90$
प्रयोग-2	$91-99$
प्रयोग-3	$100-105$
प्रयोग-4	$106-111$
प्रयोग-5	$112-117$
प्रयोग-6	$118-121$
प्रयोग-7	$122-127$
प्रयोग-8	$128-133$
प्रयोग-9	$134-137$
प्रयोग-10	$138-142$
प्रयोग-11	$143-149$
प्रयोग-12	$150-154$
क्रियाकलाप-1	$155-158$
क्रियाकलाप-2	$159-163$
क्रियाकलाप-3	$164-166$
क्रियाकलाप-4	$167-169$
क्रियाकलाप-5	$170-173$
क्रियाकलाप-6	$174-175$
क्रियाकलाप-7	$176-180$
क्रियाकलाप-8	$181-182$

भाग-अ

प्रयोग 1

उद्देश्य - विभवांतर व धारा के बीच ग्राफ खींचकर किसी दिए गए तार का प्रतिरोध व प्रतिरोधकता ज्ञात करना।
उपकरण - अज्ञात प्रतिरोध तार, सीसा संचायक सेल अथवा दिष्ट धारास्रोत, वोल्टमीटर, अमीटर, धारा नियंत्रक, मीटर स्केल, स्क्रूगेज, प्लग कुंजी, संयोजक तार, रेगमाल, कागज आदि।
सिद्धांत - ओम के नियम से किसी चालक की भौतिक अवस्था (लम्बाई, काटक्षेत्र, ताप आदि) स्थिर रहे तो उसके सिरों पर विभवांतर उसमें प्रवाहित धारा के समानुपाती होता है। अर्थात्

$$
\begin{align*}
& V \propto I \\
& V=R I \tag{1.1}
\end{align*}
$$

यहां $V=$ विभवांतर, $I=$ धारा व $R=$ चालक का प्रतिरोध है।
यदि विभवांतर V वोल्ट व धारा I एम्पियर में है तो प्रतिरोध का मात्रक ओम (Ω) होगा। Ω एक ग्रीक वर्ण है जो ओम को व्यक्त करता है।

समीकरण (1.1) से स्पष्ट है कि विभवांतर V व धारा I में एक सरल रेखीय संबंध है अर्थात् V व I में ग्राफ एक सरल रेखा प्राप्त होती है जो कि मूल बिंदु से गुजरती है। इस ग्राफ का ढाल $R=\frac{V}{I}$ चालक का प्रतिरोध प्रदर्शित करता है जबकि धारा $(I), \mathrm{X}$-अक्ष व विभवांतर $(V), Y-$ अक्ष के अनुदिश हो।
विधि - 1. पेचमापी की सहायता से अज्ञात प्रतिरोध तार की भिन्न-भिन्न स्थानों से त्रिज्या ज्ञात करके माध्य त्रिज्या ज्ञात करें।
2. मीटर पैमाने से तार की लंबाई l ज्ञात करे।
3. सबसे पहले संयोजन तार के सिरो को रेगमाल कागज से रगड कर साफ करेंगे।
4. चित्रानुसार विद्युत परिपथ जोडेंगे। अर्थात् अमीटर श्रेणीक्रम व वोल्टमीटर चालक तार के समांतरकम में जोडते हैं।
5. अब अमीटर व वोल्टमीटर के संकेतक को देखते हैं कि वह शून्य पर है या नहीं। यदि संकेतक शून्य पर नहीं है तो उनको शून्य पर (पेचकस की सहायता से) लायेंगे।
6. अमीटर व वोल्टमीटर का लघुत्तम माप ज्ञातकर नोट करेंगे।
7. अब परिपथ में कुंजी K बंद करके वोल्टमीटर व अमीटर के पाठ्यांक नोट करते हैं। धारा नियंत्रक की सहायता से परिपथ में धारा का मान बदलकर वोल्टमीटर से विभवांतर व अमीटर से धारा के पाठ्यांक लेते हैं।
8. उचित पैमाना मानकर X-अक्ष पर धारा I एम्पीयर में व Y-अक्ष पर विभवांतर V वोल्ट में लेकर ग्राफ बनाते है तो यह एक सरल रेखा प्राप्त होती है।

चित्रः 1.1 विद्युत परिपथ

चित्र: 1.2 विभवांतर व धारा में ग्राफ

$$
\begin{aligned}
& \mathrm{E}=\text { संचायक सेल } \\
& \mathrm{K}=\text { कुंजी } \\
& \mathrm{R}_{\mathrm{h}}=\text { धारा नियंत्रक } \\
& \mathrm{R}=\text { चालक प्रतिरोधक तार } \\
& \mathrm{A}=\text { अमीटर } \\
& \mathrm{V}=\text { वोल्टमीटर }
\end{aligned}
$$

तार के व्यास की सारणी
पेचमापी का चूड़ी अन्तराल $=$ \qquad सेमी.

पेचमापी का लघुत्तम माप $=\frac{\text { चू.अ. }}{\text { वृत्ताकार पैमाने पर भागों की कुल संख्या }}=\ldots \ldots$. सेमी
शून्यांक त्रुटि $=$ \qquad भाग (चिन्ह सहित) = \qquad सेमी. (चिन्ह सहित)

क्र.सं.	किसी एक दिशा में				लम्बवत दिशा में				$\begin{array}{r} \text { माध्य } \\ \text { व्यास } \\ \frac{d+d^{\prime}}{2} \end{array}$
	प्र.पै. का पाठयांक	वृत्ताकार पैमाने का पा.		कुल पा. d	प्र.पै. का पाठयांक	वृत्ताकार पैमाने का पा.		कुल d^{\prime}	
		भागों में n	सेमी में $n \times L . c$			भागों में	सेमी में $n \times L . c$		
1. सेमी. \qquad सेमी.		सेमी. सेमी.	\qquad सेमी \qquad सेमी	$\begin{gathered} \text { सेमी. } \\ \text {....... सेमी. } \end{gathered}$	$\begin{aligned} & \text {...... भाग } \\ & \text {...... भाग } \end{aligned}$.सेमी. सेमी.	...सेमी ...सेमीसेमी

तार का माध्य व्यास $(\mathrm{D})=$ \qquad सेमी, संशेधित व्यास $=$ माध्य व्यास - (\pm शून्यांक त्रुटि)

तार की त्रिज्या $(r)=\frac{\text { संशोधित व्य सस }}{2}=$ \qquad सेमी $=$ \qquad मीटर

तार का काट क्षेत्र $(\mathrm{A})=\pi r^{2}$ \qquad वर्ग मी.

$$
\begin{aligned}
\text { प्रेक्षण- वोल्टमीटर का अल्पतमांक } & =\frac{\text { परास }}{\text { भागों की कुल संख्या }}=\ldots \ldots \ldots \ldots \ldots \ldots . \text { वो. } \\
\text { अमीटर का अल्पतमांक } & =\frac{\text { परास }}{\text { भागों की कुल संख्या }}=\ldots \ldots \ldots \ldots \ldots \ldots \text { ए. }
\end{aligned}
$$

प्रतिरोध तार की लम्बाई $(l)=$ \qquad m
सारणी

क्र.सं.	वोल्ट मीटर का पाठ्यांक		अमीटर का पाठ्यांक		प्रतिरोध		
	भाग	भाग \times अल्पतमांक(वो.)	भाग	भाग× अल्पतमांक (ए.)	$R=\frac{V}{l}$	माध्य R	ग्राफ के ढाल से
1. 2. 3. 4. 5.		\qquad वोल्ट \qquad वोल्ट \qquad वोल्ट \qquad वोल्ट \qquad वोल्ट		\qquad (ए.) \qquad (ए.) \qquad (ए.) \qquad (ए.) \qquad (ए.)	$\begin{gathered} \ldots \ldots . . \Omega \\ \ldots \ldots . \Omega \\ \ldots \ldots . . \Omega \\ \ldots \ldots . . \Omega \\ \ldots \Omega \end{gathered}$	$\mathrm{R}=\ldots \Omega$	$\mathrm{R}^{\prime}=. \Omega$

गणना - विभवांतर (वोल्ट) V तथा धारा I (एम्पीयर) में ग्राफ खींचने के लिए उचित पैमाना लेते है। X - अक्ष पर धारा I व Y-अक्ष पर विभवांतर V लेकर ग्राफ बनाते है तो चित्र 1.2 के अनुसार एक सरल रेखा प्राप्त होती है। इस ग्राफ का ढाल (Slope) $R_{1}=\frac{\Delta V}{\Delta I}=\frac{\mathrm{AB}}{\mathrm{BC}}$ ज्ञात करते है। यह चालक तार का प्रतिरोध R_{1} होगा।

$$
\text { तार की प्रतिरोधकता } \rho=\frac{R A}{l} \text { से गणना करते है । }
$$

सत्यापन - प्रेक्षण सारणी में प्राप्त V तथा धारा I से भी प्रतिरोध R की गणना करते है। अब प्रतिरोध का मान ग्राफ के ढाल से लगभग ढाल से $R_{1}=\frac{\Delta V}{\Delta I}=\frac{\mathrm{AB}}{\mathrm{BC}}$ ज्ञात करते है तो स्पष्ट हैं कि प्रतिरोध का मान लगभग समान आता है। जो कि गणना से प्राप्त प्रतिरोध R के लगभग

बराबर है।
परिणाम - 1. प्रेक्षण सारणी व ग्राफ से स्पष्ट है कि विभवांतर का धारा के साथ रेखीय संबंध है।
2. चालक का प्रतिरोध \qquad Ω प्राप्त हुआ।
3. दिये गये तार की प्रतिरोधकता \qquad Ωm प्राप्त हुई।

सावधानियां - 1. संयोजन हेतु ताम्बे के मोटे तार लेने चाहिए तथा उनके सिरो को रेगमाल कागज से रगड. कर साफ करना चाहिए।
2. विद्युत उपकरणों के सभी बिंदुओं पर संयोजन कसा होना चाहिए।
3. वोल्टमीटर को सदैव चालक तार (प्रतिरोधक) के समांतरक्रम में तथा अमीटर को श्रेणीक्रम में जोडना चाहिए। विद्युत धारा इनके धनात्मक टर्मिनल पर प्रवेश करके ऋणात्मक सिरे से बाहर निकलनी चाहिए।
4. कुंजी में प्लग लगाने से पूर्व यह निश्चित कर लेना चाहिए कि विद्युत परिपथ सही है।
5. जब पाठ्यांक नोट करना हो तो ही कुंजी में प्लग लगाना चाहिए अन्यथा चालक तार (प्रतिरोधक) में अनावश्यक ऊष्मा उत्पन्न होगी।
6. विद्युत उपकरण (वोल्टमीटर एवं अमीटर) उचित परास के होने चाहिए एवं उनमें शून्यांक त्रुटि हो तो उसका निवारण कर लेना चाहिए।
7. विद्युत परिपथ में अधिक मात्रा में विद्युत धारा प्रवाहित नहीं करनी चाहिए एवं लघुपथन नहीं होना चाहिए।
8. प्रतिरोध तार की लंबाई वोल्टमीटर के दोनों टर्मिनलों के मध्य की ही नापनी चाहिए।

मौखिक प्रश्न

प्र. 1 विद्युत धारा किसे कहते हैं?
उ. आवेश प्रवाह की दर को विद्युत धारा कहते हैं।
विद्युत धारा $=\frac{\text { आवेश }}{\text { समय }}$
यदि Q कूलॉम आवेश t सैकण्ड तक प्रवाहित हो तो धारा I (एम्पीयर में) का मान
$I=\frac{Q}{t}$ होगा।
2. विभवांतर से क्या अभिप्राय है?

उ. विद्युत क्षेत्र में दो बिंदुओं के बीच एकांक धनआवेश को क्षेत्र के विपरीत दिशा में ले जाने में किए गए कार्य को उन दो बिंदुओं के बीच विभवांतर कहते है।
विभवांतर $=\frac{\text { कार्य }}{\text { आवेश }}$
3. प्रतिरोध किसे कहते है?

उ. किसी चालक में धारा प्रवाह में उत्पन्न अवरोध को उस चालक का प्रतिरोध कहते है।
4. धातुओं में प्रतिरोध के क्या कारण है?

उ. धातुओं में प्रतिरोध के कारण-

1. जालक की अनियमितताओं द्वारा इलेक्ट्रान संघट्ट
2. इलेक्ट्रान- इलेक्ट्रान संघट्ट
3. प्रतिरोध का मात्रक क्या है?

उ. प्रतिरोध का मात्रक-ओम (Ω) है।
6. एक ओम प्रतिरोध किसे कहते है?

उ. यदि किसी चालक के सिरों पर एक वोल्ट विभवातंर लगाने पर उसमें प्रवाहित धारा एक एम्पियर हो तो उस चालक का प्रतिरोध एक ओम कहलाता है।
7. किसी चालक का प्रतिरोध किन-किन बातों पर निर्भर करता है।

उ. किसी चालक का प्रतिरोध -

1. चालक की लम्बाई के समानुपाती होता है अर्थात् $(\mathrm{R} \alpha l)$
2. चालक के काट क्षेत्र के प्रतिलोमानुपाती होता है अर्थात् $\left(R \alpha \frac{1}{A}\right)$
3. चालक के पदार्थ की प्रकृति
4. चालक के ताप पर निर्भर करती है।
5. प्रतिरोधकता (विशिष्ट प्रतिरोध) से क्या तात्पर्य है?

उ. पदार्थ की विद्युत प्रवाह में अवरोध उत्पन्न करने की क्षमता को प्रतिरोधकता कहते हैं। यह किसी पदार्थ की एकांक लम्बाई व एकांक काट क्षेत्रफल वाले पदार्थ के प्रतिरोध के बराबर है।
9. प्रतिरोधकता किन-किन बातों पर निर्भर करती है एवं इसका मात्रक क्या है?
उ. किसी चालक की प्रतिरोधकता-

1. उसके ताप पर
2. उसके पदार्थ की प्रकृति पर निर्भर करता है। प्रतिरोधकता का मात्रक ओम मीटर है।
3. यदि 10 मिली एम्पीयर धारा 100 कूलॉम आवेश प्रवाहित करती है। धारा प्रवाह का समय ज्ञात करो?

उ. हम जानते हैं कि $I=\frac{Q}{t}$ या $t=\frac{Q}{I}=\frac{100}{10 \times 10^{-3}}=10^{4}$ से.
11. ओम का नियम क्या है?

उ. यदि किसी चालक की भौतिक अवस्था (लम्बाई, काट क्षेत्र आदि) स्थिर रहे तो उसके सिरों पर विभवांतर, उसमें प्रवाहित धारा के समानुपाती होता है। अर्थात् $V \alpha I$ अर्थात् $V=I R$

यहां $\mathrm{V}=$ विभवांतर, $\mathrm{I}=$ धारा, $\mathrm{R}=$ चालक का प्रतिरोध
12. क्या सभी चालक ओम के नियम का पालन करते हैं?

उ. हां सभी चालक पदार्थ ओम के नियम का पालन करते है इसलिए इनको ओह्मिक पदार्थ (Ohmic Material) कहते हैं। जो पदार्थ ओम के नियम का पालन नहीं करते है उन्हें अनओह्मिक पदार्थ (Unohmic Material) कहते हैं।
13. अनओहमिक पदार्थों के उदाहरण दें?

उ. विद्युत अपघट्य, डायोड आदि।
14. धारा का S.I. पद्धति में मात्रक क्या है?

उ. एम्पियर
15. एक एम्पीयर धारा किसे कहते हैं?

उ. यदि किसी में चालक में एक कूलॉम आवेश एक सैकण्ड तक प्रवाहित होता है तो इसे एक एम्पीयर धारा कहते हैं।
16. प्रत्येक धात्वीय चालक में अत्यधिक मुक्त इलेक्ट्रॉन होते है जो कि अत्यधिक तापीय वेग से गति करते हैं। इस चालक के सिरो पर सुग्राही धारामापी अथवा अमीटर लगाने पर विक्षेप क्यों नहीं होता है?
उ. चालक में मुक्त इलेक्ट्रॉन अनियमित गति करते है। किसी चालक के काट क्षेत्र से एक दिशा में व विपरीत दिशा में गुजरने वाले मुक्त इलेक्ट्रॉन की संख्या लगभग बराबर होती है। अतः अमीटर में धारा प्रवाह शून्य होता है।
17. किसी चालक में मुक्त इलेक्ट्रॉनों का प्रवाह एक विशेष दिशा में किस प्रकार होगा? और क्यो होगा?
उ. जब किसी चालक के सिरों पर विभवांतर लगाते है तो मुक्त इलेक्ट्रॉनों का प्रवाह एक विशेष दिशा में होगा जिसे मुक्त इलेक्ट्रॉन की अपवहन गति कहते है। क्योंकि चालक के सिरों पर विभवांतर लगाने पर उसमें विद्युत क्षेत्र उत्पन्न होता है। मुक्त इलेक्ट्रॉन विद्युत क्षेत्र के विपरीत दिशा में बल अनुभव करते है तथा गति करते है।
18. इलेक्ट्रॉन का अपवहन वेग किसे कहते है?

उ. जब चालक के सिरों पर विभवांतर लगाते है तो मुक्त इलेक्ट्रॉन अनियमित गति के साथ वे विद्युत क्षेत्र के विपरीत दिशा में परिणामी गति करते है। इस वेग को अपवहन वेग कहते है।
19. सामान्य कमरे के ताप $(\mathbf{3 0 0 K})$ पर चालक के मुक्त इलेक्ट्रॉन की तापीय गति व इस के सिरों पर विभवांतर (लगभग 5 वोल्ट) लगाने पर अपवहन वेग की कोटि क्या होगी?
उ. मुक्त इलेक्ट्रॉनों का तापीय वेग 10^{5} मी./से. तथा अपवहन वेग 10^{-3} मिमी./से. की कोटि का होता है।
20. विद्युत सेल किसे कहते हैं?

उ. रासायनिक ऊर्जा को विद्युत ऊर्जा में रूपान्तरण के साधन को विद्युत सेल कहते है। विद्युत सेल में होने वाली रासायनिक ऊर्जा के कारण उसमें वि.वा. बल उत्पन्न होता है।
21. सेल के मुख्य भाग क्या-क्या है?

उ. सेल के दो प्रमुख भाग है- (1) दो इलेक्ट्रॉड (a) धनाग्र व (b) ऋणाग्र (2) विद्युत अपघट्य
21. प्राथमिक व द्वितीयक सेल में मुख्य अंतर क्या है?

उ. 1. प्राथमिक सेल में विद्युत अपघट्य डालकर परिपथ में जोडने पर रासायनिक किया से विद्युत ऊर्जा प्राप्त होती है। जबकि द्वितीयक सेल को विद्युत ऊर्जा देते है जो कि इसमें रासायनिक ऊर्जा के रूप में संचित हो जाती है। जब इसका उपयोग करते हैं तो यह रासायनिक ऊर्जा पुनः विद्युत ऊर्जा में रूपान्तरित हो जाती है।
2. प्राथमिक सेल को पुनः आवेशित नहीं कर सकते है। अर्थात् रासायनिक किया उत्क्रमणीय नहीं होती है। जबकि द्वितीयक सेल में रासायनिक किया उत्क्कमीय होती है अर्थात् इनको पुनः आवेशित कर सकते है।
22. प्राथमिक व द्वितीयक सेल के उदाहरण दीजिए।

उ. प्राथमिक सेल-डेनियल सेल, लेक्लांशी सेल, शुष्क सेल आदि।
द्वितीयक सेल- सीसा संचायक सेल, क्षारीय संचायक सेल आदि।
23. शुष्क सेल क्या है?

उ. शुष्क सेल मुख्यतः लेक्लांशी सेल का ही संशोधित रूप है। इसमें विद्युत अपघट्य घोल के बजाय पेस्ट के रूप में होता है।
24. बैट्री किसे कहते हैं?

उ. यदि सेलों को श्रेणीक्रम एवं समान्तरक्रम में जोड दिया जाए तो इसे बैट्री कहते है। बैट्री का उपयोग उच्च धारा प्राप्त करने के लिए करते हैं। बैट्री का वि.वा. ब. श्रेणी कम में जोड़े गए सभी सेलों के वि.वा.ब. के योग के बराबर होता है।
26. सेल का आन्तरिक प्रतिरोध किसे कहते है?

उ. जब सेल से बाह्य परिपथ में धारा लेते है तो उसके घोल में आयनों के प्रवाह में उत्पन्न बाधा को सेल का आन्तरिक प्रतिरोध कहते हैं।
प्र. 27 सेल से धारा लेते समय घोल में आयनों की गति किस प्रकार होगी?
उ. जब सेल से धारा लेते हैं तो सेल के घोल में धनायन ऐनोड की ओर तथा ऋणायन केथोड की ओर गति करते हैं।

प्रयोग -2

उद्देश्य- मीटर सेतु की सहायता से किसी दिए गए तार का प्रतिरोध ज्ञात कर प्रतिरोधकता ज्ञात करना।
उपकरण - मीटर सेतु, प्रतिरोधक तार जिसकी प्रतिरोधकता ज्ञात करनी है, प्रतिरोध बॉक्स, धारामापी, विसर्पी कुंजी (जोकी), कुंजी, लेक्लांशी सेल, संयोजक तार, रेगमाल कागज, मीटर पैमाना, पेचमापी आदि।
उपकरण का वर्णन- उपकरण में लकड़ी के बोर्ड पर एक मीटर पैमाने पर चित्र 2.2 में दर्शाये अनुसार एक समान अनुप्रस्थ काट क्षेत्र का एक मीटर लम्बाई का प्रतिरोध तार AC कसा होता है। यह तार मिश्र धातु (मेगनिन या कान्सटेन्टन) का होता है जिसकी प्रतिरोधकता उच्च तथा प्रतिरोध का ताप गुणांक कम होता है। तार के दोनों सिरे दो L- आकार की चालक धातु की पट्किाओं पर कसे होते है। तार के दोनों सिरे क्रमशः पैमाने के 0 तथा 100 से.मी. पर होने चाहिए।

दोनों पट्टिकाओं के बीच दो खाली स्थान छोड़ कर बोर्ड पर तार के समांतर एक और चालक धातु की लंबी पट्टिका लगी होती है। तार पर विसर्पी कुंजी (जोकी) J आगे पीछे खिसक सकती है।
सिद्धांत - मीटर सेतु व्हीट स्टोन सेतु के सिद्धांत पर आधारित है। इसमें चार प्रतिरोध P, Q, R, व S एक नेटवर्क (Network) ABCD के रूप में जुड़े होते है। अर्थात् P व Q श्रेणीक्रम तथा R व S भी श्रेणीक्रम में जुड़े होते है। इनको A व C पर समांतर क्रम में जोड़ देते है। बिंदु A व C के मध्य सेल व कुंजी K_{1} जोड़ते है। B व D के मध्य सुग्राही धारामापी G व कुंजी K_{2} जोड़ते है। यदि कुंजी K_{1} व K_{2} क्रमशः बंद करने पर धारामापी में विक्षेप शून्य है तो व्हीटस्टोन सेतु संतुलन की स्थिति में होगा।

अतः संतुलन की स्थिति में व्हीटस्टोन सिद्धांत से

$$
\begin{equation*}
\frac{P}{Q}=\frac{R}{S} \tag{1}
\end{equation*}
$$

मीटर सेतु में ज्ञात प्रतिरोध (प्रतिरोध बॉक्स R) एवं दांए खाली स्थान पर अज्ञात प्रतिरोध S को जोड़ते है। तार AC प्रतिरोध P एवं Q को प्रदर्शित करता है। (देखिए चित्र 2.2) जब कुंजी K बंद है तो विसर्पी कुंजी J को तार AC पर इस प्रकार समंजित करते है

कि धारामापी में विक्षेप शून्य हो तो अर्थात् $V_{\mathrm{B}}=V_{\mathrm{D}}$ होगा। अतः संतुलन की स्थिति में

$$
\begin{align*}
& \frac{R}{S}=\frac{A B \text { तार की लम्बाई का प्रतिरोध }}{B C \text { तार की लम्बाई का प्रतिरोध }} \\
& \text { या } \quad \frac{R}{S}=\frac{l \rho^{\prime}}{(100-l) \rho^{\prime}} \tag{2}
\end{align*}
$$

यहां ρ^{\prime} मीटर सेतु के तार की एकांक लंबाई का प्रतिरोध तथा $l=A B$ तार की संतुलित लंबाई

या

$$
\begin{equation*}
S=\frac{(100-l) R}{l} \tag{3}
\end{equation*}
$$

मीटर सेतु के तार का काट क्षेत्र समान है अतः प्रतिरोध उसकी लंबाई के समानुपाती होगा। इस प्रक्रार समी. (3) से अज्ञात प्रतिरोध की गणना कर सकते है।

प्रतिरोधकता- तार के पदार्थ की प्रतिरोधकता ρ है तो

$$
\rho=\frac{S a}{L}
$$

$$
\begin{aligned}
& \text { यहां } L=\text { अज्ञात प्रतिरोध तार की लंबाई } \\
& a=\text { दिए गए तार का काट क्षेत्र तथा } a=\pi r^{2} \\
& \text { जहां } r=\text { तार की त्रिज्या } \quad ; S=\text { अज्ञात प्रतिरोध का मान }
\end{aligned}
$$

विधि- 1. पेचमापी की सहायता से अज्ञात प्रतिरोध तार की भिन्न-भिन्न स्थानों से त्रिज्या ज्ञात करके माध्य त्रिज्या ज्ञात करें।
2. मीटर पैमाने से तार की लंबाई L ज्ञात करे।
3. संयोजक तार के सिरों को रेगमाल कागज से साफ करें। प्रतिरोध बॉक्स के सभी प्लग कसे हुए हों।

चित्र 2.2 मीटर सेतु का परिपथ
9
4. अब चित्र 2.2 अनुसार विद्युत परिपथ जोड़े। बांए खाली स्थान में प्रतिरोध बॉक्स R.B. व दांए खाली स्थान में अज्ञात प्रतिरोध तार जोड़े।
5. प्रतिरोध बॉक्स में से कुछ भी प्रतिरोध नहीं निकाले तथा विसर्पी कुंजी J को तार AC पर स्पर्श कर धारामापी में विक्षेप की दिशा नोट करे। इसके बाद $R=\infty$ (अनंत प्रतिरोध) निकालकर धारामापी में विक्षेप देखे। यदि दोनों स्थितियों $(R=0$ व $R=\infty)$ में विक्षेप विपरीत दिशा में है तो विद्युत परिपथ सही है अन्यथा नहीं। विक्षेप एक ही दिशा में आने पर निम्न त्रुटियां हो सकती है-
(1) संयोजन सही नहीं किया हो। (2) कोई संयोजन तार टूटा हो।
(3) प्रतिरोध बॉक्स में कोई प्लग ढीला हो अथवा प्रतिरोध बॉक्स ठीक न हो ।
6. प्रतिरोध बॉक्स से 1Ω या 2Ω को निकाले तथा विसर्पी कुंजी को तार AC के एक सिरे पर दबाते है एवं धारामापी में विक्षेप की दिशा नोट कर तार के दूसरे सिरे पर विसर्पी कुंजी को स्पर्श कराते हैं। विक्षेप पहले से विपरीत दिशा में प्राप्त होगा अन्यथा प्रतिरोध बॉक्स में R का मान बदलकर प्रयोग को दोहराए।
7. प्रतिरोध बॉक्स से कुछ प्रतिरोध के प्लग निकालकर कर विसर्पी कुंजी को तार AC पर ऐसे स्थान पर स्पर्श कराए कि धारामापी में विक्षेप शून्य हो। शून्य विक्षेप की स्थिति तार AC के लगभग मध्य (30 सेमी से 70 सेमी) में होनी चाहिए। प्रतिरोध बाक्स में से भिन्न भिन्न प्रतिरोध निकालकर प्रत्येक के लिए शून्य विक्षेप की स्थिति में पाठ्यांक l नोट करें।
8. प्रतिरोध बॉक्स एवं अज्ञात प्रतिरोध तार का स्थान परस्पर बदलक्रर पुनः धारामापी में शून्य विक्षेप की स्थिति प्राप्त कर पाठ्यांक नोट करें। प्रतिरोध बॉक्स के सिरे के संगत सामने वाली संतुलित लम्बाई l होगी।

प्रेक्षण- 1. अज्ञात प्रतिरोध तार की लंबाई $\mathrm{L}=\ldots . . .$. सेमी $=\ldots \ldots \ldots$ मीटर
2. अज्ञात प्रतिरोध तार का व्यास ज्ञात करना। पेचमापी का अल्पतमांक $=$ \qquad सेमी
पेचमापी का शून्यांक त्रुटि $=$........ भागों में $=$ \qquad सेमी में
तार के व्यास हेतु सारणी

क्रं.सं.	पाठ्यांक एक दिशा में				पाठ्यांक परस्पर लम्ब दिशा में				माध्य व्यास $\frac{d_{1}+d_{2}}{2}$
	$\begin{aligned} & \text { प्र. पै. } \\ & \text { का पा. } \\ & \mathrm{P} \end{aligned}$	वृत्ताकार पै. का पा.		$\begin{aligned} & \text { कुल पा. } \mathrm{d}_{1} \\ & =\mathrm{P}+\mathrm{n} \times \text { L.C. } \end{aligned}$	प्र. पै. का पा P^{\prime}	$\begin{gathered} \text { वृत्ताकार } \\ \text { भागों में } \\ \mathrm{n}^{\prime} \end{gathered}$	पै. का पा. कुल पा. n' \times L.C. d_{2}		
		भागों में n	$\mathrm{n} \times$ L.C.						
1.	...सेमी ...सेमी ...सेमी	$\begin{aligned} & \text {.....भाग } \\ & \text {.....भाग } \\ & \text {.....भाग } \end{aligned}$सेमी \qquad .सेमी \qquad .सेमी	$\begin{aligned} & \text {...सेमी } \\ & \text {...सेमी } \\ & \text {....सेमी } \end{aligned}$सेमी सेमी \qquad सेमी	$\begin{gathered} भ ा ग \\ भ ा ग \\ भ ा ग \end{gathered}$...सेमी सेमी ...सेमी	$\begin{aligned} & \ldots \text {..सेमी } \\ & \ldots \text {..सेमी } \\ & \text {...सेमी } \end{aligned}$	$\begin{aligned} & . . . \text { सेमी } \\ & \ldots \text {..सेमी } \\ & \text {...सेमी } \end{aligned}$
		संशोधि	व्यास	माध्य व्या माध्य व्यास	$\begin{aligned} & =\ldots . . \\ & -(\pm \end{aligned}$	न्यांक त्रै	$)=$		

$$
\text { त्रिज्या }=\frac{\text { संशोधित व्यास }}{2}=\ldots . . . \mathrm{cm}
$$

अज्ञात प्रतिरोध हेतु सारणी-

क्र.सं.	प्रतिरोध बॉक्स में प्रतिरोध R	तार की संतुलित लंबाई जब प्रतिरोध बॉक्स			अज्ञात प्रतिरोधतार की ओरसंतुलित लंबाई$=(100-l)$	$S=\frac{R(100-l)}{l}$
		बांई ओर $\left(l_{1}\right)$	दांई ओर $\left(l_{2}\right)$	माध्य $l=\frac{l_{1}+l_{2}}{2}$		
1.	1Ωसेमीसेमीसेमीसेमी	\ldots
2.	2Ωसेमीसेमीसेमीसेमी	\ldots
3.	3Ωसेमीसेमीसेमीसेमी	\ldots
4.	4Ωसेमीसेमीसेमीसेमी	\ldots
5.	5Ωसेमीसेमीसेमीसेमी	. Ω

माध्य S (अज्ञात प्रतिरोध) का मान $=$ \qquad Ω
गणना - $L=$ \qquad सेमी $=$ \qquad मी.
त्रिज्या $r=$ \qquad सेमी $=$ \qquad मी.
अज्ञात प्रतिरोध $S=\ldots \ldots \ldots \Omega$ उपरोक्त मान सूत्र $\rho=\frac{S \pi r^{2}}{L}$ में रखकर गणना करने पर $\rho=$ \qquad Ω मी
परिणाम- 1. दिए गए अज्ञात प्रतिरोध तार का प्रतिरोध $S=\Omega$
2. प्रतिरोधकता $\rho=\ldots \Omega$ मी ज्ञात हुई।

सावधानियां- 1. सभी टर्मिनल बिंदुओं पर संयोजन व प्लग कसे हुए होने चाहिए।
2. कुंजी K में प्लग केवल प्रेक्षण लेते समय ही लगाना चाहिए।
3. शून्य विक्षेप की स्थिति मीटर सेतु तार के लगभग मध्य में प्राप्त होनी चाहिये।
4. प्रतिरोध बॉक्स व अज्ञात प्रतिरोध तार को परस्पर विनिमेय कर पाठ्यांक लेने चाहिये।

जिससे सिरा संशोधन नगण्य हो जाए।
5. लेक्लांशी सेल में जस्ते की छड़ को केवल पाठ्यांक लेते समय ही घोल में डालनी चाहिये, जिससे स्थानीय क्रिया न्यूनतम हो।

$$
\text { प्रयोग - } 3
$$

उ़द्देश्य - मीटर सेतु की सहायता से प्रतिरोधकों के संयोजन के नियमों (श्रेणी कम/समांतर कम) का सत्यापन करना।
उपकरण - मीटर सेतु, सुग्राही धारामापी, दो भिन्न मान के प्रतिरोध, प्रतिरोध बॉक्स, कुंजी, लेक्लांशी सेल, संयोजक तार, रेगमाल कागज आदि।

सिद्धांत - जब दो प्रतिरोध R_{1} व R_{2} को विद्युत परिपथ में श्रेणीक्रम में जोड़ा जाता है तो तुल्य प्रतिरोध R_{s} का मान

$$
\begin{equation*}
R_{\mathrm{s}}=R_{1}+R_{2} \tag{1}
\end{equation*}
$$

जब प्रतिरोध R_{1} व R_{2} को विद्युत परिपथ में समांतर क्रम में जोड़ा जाता है तो तुल्य
प्रतिरोध Rp का मान $\frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
या $R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

चित्र 3.1 : श्रेणी क्रम में प्रतिरोध

चित्र 3.2 : समांतर क्रम में प्रतिरोध विधि- 1. रेगमाल कागज से संयोजक तार के सिरों पर रगड़ कर साफ करेंगे। चित्रानुसार विद्युत परिपथ जोड़ेंगे।
2. प्रतिरोध बॉक्स के सभी प्लगों को घुमाकर एवं दबाकर अच्छी तरह कसेंगे जिससे इनमें विद्युत सम्पर्क सही होंगे।
3. प्रारम्भ मे गेप F में क्रमशः R_{1} व R_{2} को जोड़कर प्रत्येक के लिए शून्य विक्षेप की स्थिति ज्ञात करते है।
4. प्रतिरोध बॉक्स में से प्लग निकालकर उसमें उचित मान का प्रतिरोध उत्पन्न करते है। विसर्पी कुंजी को A व C के मध्य मीटर सेतु के तार पर स्पर्श कराकर शून्य विक्षेप की स्थिति ज्ञात करते है।
5. प्रतिरोध बॉक्स में से R का मान व तार की लंबाईयां AB व BC नोट करते हैं।
6. R_{1} व R_{2} को चित्रानुसार श्रेणीकम में जोड़कर शून्य विक्षेप की स्थिति ज्ञात करते है।
7. प्रतिरोधों के श्रेणीक्रम संयोजन के लिए प्रायोगिक तुल्य प्रतिरोध का मान सारणी द्वारा ज्ञात करेंगे।
8. इस प्रकार प्रतिरोध बाक्स से भिन्न-भिन्न प्रतिरोध के लिए प्रयोग को दोहरायेंगे।
9.अब प्रतिरोधों को चित्रानुसार समांतर क्रम में जोड़कर पुनः प्रयोग को दोहराकर तुल्य प्रतिरोध $\left(\mathrm{R}_{\mathrm{p}}\right)$ का प्रायोगिक मान ज्ञात करें। R_{1} व R_{2} के लिए सारणी
प्रेक्षण - प्रतिरोधों के श्रेणीक्रम व समांतर क्रम संयोजन के लिए सारणी

	क्र.सं.	प्रतिरोध R	शून्य विक्षेप स्थिति में		अज्ञात प्रतिरोध$\begin{aligned} & R_{\mathrm{S}} \text { या } R_{\mathrm{p}} \\ & =\frac{R \times l^{\prime}}{l} \end{aligned}$	माध्य
			लम्बाई $\mathrm{AB}=l$	लम्बाई $\begin{aligned} & \mathrm{BC}=l^{\prime} \\ & =100-l \end{aligned}$		
$\begin{aligned} & \mathrm{R}_{1} \text { व } \mathrm{R}_{2} \\ & \text { श्रेणी क्रम } \end{aligned}$	$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$सेमी सेमीसेमी सेमी	$\begin{gathered} \Omega \\ ~ \\ \hline \end{gathered}$	$R_{\mathrm{s}}^{\prime}=\ldots . . \Omega$
$\begin{gathered} \mathrm{R}_{1} \text { व } \mathrm{R}_{2} \\ \text { समांतर क्रम } \end{gathered}$	1.	$\begin{aligned} & \Omega \\ & ~ \\ & \hline \end{aligned}$सेमी सेमीसेमी सेमी	$\begin{gathered} \Omega \\ ~ \\ \hline \end{gathered}$	$R_{\mathrm{p}}^{\prime}=\ldots . . . \Omega$

गणना- 1. R_{1} व R_{2} अज्ञात प्रतिरोध है अतः इनको श्रेणीक्रम में जोड़ने पर तुल्य प्रतिरोध का सैद्धांतिक मान
$R_{\mathrm{S}}=R_{1}+R_{2}$ तथा समांतर क्रम में तुल्य प्रतिरोध का सैद्धांतिक मान $R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
2. प्रायोगिक मान $\mathrm{R}_{\mathrm{s}}^{\prime}$ या $R_{P}^{\prime}=\frac{R \times l^{\prime}}{l}$
3. ये सभी मान उपरोक्त सूत्र में रखकर गणना द्वारा ज्ञात करेंगे।

	संयोजन का अपेक्षित सैद्धान्तिक मान	प्राप्त प्रायोगिक मान	अंतर
श्रेणीक्रम संयोजन समांतरकम संयोजन	$\begin{aligned} & R_{\mathrm{S}}=R_{1}+R_{2} \\ & R \mathrm{~s}=\ldots \ldots+\ldots . .=\ldots . . \Omega \\ & R_{\mathrm{p}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\ldots \ldots . \Omega \end{aligned}$	$R_{\mathrm{s}}{ }^{\prime}=$ \qquad $R_{\mathrm{p}}^{\prime}=$ \qquad	$\begin{aligned} & \Delta R_{\mathrm{S}}=R_{\mathrm{s}}-R_{\mathrm{s}}^{\prime} \\ & \Delta R_{\mathrm{S}}=\ldots \ldots . . \Omega \\ & \Delta R_{\mathrm{p}}=R_{\mathrm{p}}-R_{\mathrm{p}}^{\prime} \\ & \Delta R_{\mathrm{p}}=\ldots \ldots \ldots . . \end{aligned}$

13

परिणाम- उपरोक्त सारणी से स्पष्ट है कि प्रतिरोध R_{1} व R_{2} को क्रमशः श्रेणीक्रम व समांतर क्रम में जोड़ने पर R_{s} व R_{p} का सैद्धांतिक व प्रायोगिक मान लगभग बराबर प्राप्त हुआ। चूंकि ΔR_{S} व ΔR_{p} का मान अत्यल्प है अतः प्रतिरोधों के श्रेणीक्रम व समांतर क्रम संयोजन नियमों का मीटर सेतु से सत्यापन हुआ।
सावधानियां - 1. उपकरण के सभी टर्मिनलों पर संयोजन एवं प्रतिरोध बॉक्स के प्लग कसे हुए होने चाहिए।
2. विसर्पी कुंजी को मीटर सेतु तार पर अधिक दाब से रगड़कर नहीं खिसकाना चाहिए बल्कि हल्के दाब से स्पर्श कराकर शून्य विक्षेप की स्थिति ज्ञात करनी चाहिए।
3. शून्य विक्षेप की स्थिति मीटर सेतु के तार के मध्य क्षेत्र (30 सेमी. से 70 सेमी के बीच) में प्राप्त होनी चाहिए।
4. परिपथ में प्लग कुंजी को पाठ्यांक लेते समय ही लगानी चाहिए।
5. लेक्लांशी सेल में जस्ते की छड़ को केवल पाठ्यांक लेते समय ही विद्युत अपघट्य
(घोल) में डालनी चाहिए। जिससे स्थानीय क्रिया-न्यूनतम हो।

मौखिक प्रश्न

1. मीटर सेतु क्या है एवं किस सिद्धांत पर आधारित है?

उ. मीटर सेतु एक ऐसा उपकरण है जिसकी सहायता से दिए गए अज्ञात प्रतिरोध का मान ज्ञात करते है। मीटर सेतु, व्हीटस्टोन सेतु के सिद्धांत पर आधारित है।
2. व्हीटस्टोन सेतु कब अधिकतम सुग्राही होगा?

उ. जब ह्हीटस्टोन सेतु की चारों भुजाएं $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ व S का प्रतिरोध लगभग समान कोटि का हो।
3. व्हीटस्टोन सेतु कब संतुलित होगा?

उ. जब व्हीटस्टोन सेतु के बिंदु B व D का विभव समान होगा तो ह्हीटस्टोन सेतु संतुलित होगा अर्थात् बिंदु B व D के मध्य विभवांतर शून्य होगा।

अतः $V_{\mathrm{B}}-V_{\mathrm{D}}=0$ या $V_{\mathrm{B}}=V_{\mathrm{D}}$
इस अवस्था में धारामापी में विक्षेप शून्य होगा।
4 जब व्हीटस्टोन सेतु संतुलित है तो $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ व \mathbf{S} में क्या संबंध है?
उ $\frac{P}{Q}=\frac{R}{S}$
5. मीटर सेतु के प्रयोग में सेल व धारामापी की स्थितियां परस्पर विनिमय कर दे तो क्या होगा?
उ. यदि सेल व धारामापी की स्थितियां परस्पर विनिमय कर दे तो संतुलन बिंदु अप्रभावित रहेगा। अतः भुजा AC व BD संयुग्मी भुजाएं (Conjugate arms) कहलाती है।
6. मीटर सेतु के तार पर विसर्पी कुंजी को दाब से रगड़कर क्यों नहीं

खिसकाते है?
उ. इससे मीटर सेतु के तार की समांगता समाप्त हो जाती है।
7. प्रयोग में केवल पाठ्यांक लेते ही समय ही धारा प्रवाहित करते है, लगातार क्यों नहीं?
उ. यदि प्रयोग में लगातार धारा प्रवाह करते है तो उसमें उत्पन्न ऊ़ष्मा के कारण प्रतिरोध का मान बढ जाएगा।
8. मीटर सेतु के तार का काट क्षेत्र $\left(\pi r^{2}\right)$ समान क्यों होना चाहिए?

उ़. यदि मीटर सेतु के तार का काट क्षेत्र असमान है तो उ़सका एकांक लंबाई का प्रतिरोध भिन्न-भिन्न होगा।
9. किसी चालक के प्रतिरोध \mathbf{R} व ताप वृद्धि $(\boldsymbol{\Delta} \boldsymbol{\theta})$ में क्या संबंध है?

उ. किसी चालक का $\left(\theta_{1}{ }^{\circ} \mathrm{C}\right)$ पर प्रतिरोध R_{o} व $\left(\theta_{2}{ }^{\circ} \mathrm{C}\right)$ पर प्रतिरोध R_{θ} है तो $R_{\mathrm{\theta}}=R_{0}(1+\alpha \Delta \theta)$
यहां ताप वृद्धि $=\Delta \theta=\left(\theta_{2}-\theta_{1}\right)$
प्रतिरोध का तापीय गुणांक $=\alpha$
10. प्रतिरोध के तापीय गुणांक α को R_{θ}, R_{0} व $\Delta \theta$ के रूप में किस प्रकार व्यक्त करेंगे? इसका मात्रक भी लिखिए।

उ. $\alpha=\frac{R_{\theta}-R_{0}}{R_{0} \Delta \theta}$ तथा α का मात्रक प्रति ${ }^{0} C$ या $\left({ }^{0} C\right)^{-1}$
11. ऐसे पदार्शो को क्या कहते है जिनका ताप बढाने पर प्रतिरोध घटता है? उदाहरण दो।
उ. अर्द्धचालक, उदाहरण- Ge, Si आदि।
12. मीटर सेतु का तार किस धातु का बना होता है। और क्यो?

उ. मीटर सेतु के तार को ऐसे पदार्थ का बनाते है जिसके प्रतिरोध के तापीय गुणांक का मान कम से कम (नगण्य) हो तथा उसकी प्रतिरोधकता अधिकतम हो। अतः मीटर सेतु का तार मेगनिन या कान्स्टेन्टन मिश्र धातु का बनाते है।
13. इसे मीटर सेतु ही क्यों कहते है?

उ़. इसमें एक मीटर लंबा प्रतिरोध तार मीटर पैमाने के सहारे लगा होता है तथा यह तार व्हीटस्टोन सेतु की दो अनुपाती भुजाओं का कार्य करता है।
14. मीटर सेतु की सहायता से क्या-क्या ज्ञात किया जा सकता है?

उ. मीटर सेतु की सहायता से ज्ञात किया जा सकता है-
(i) अज्ञात प्रतिरोध (ii) किसी तार का विशिष्ट प्रतिरोध या प्रतिरोधकता
(iii) प्रतिरोधों के संयोजन नियमों का सत्यापन।
15. मीटर सेतु के प्रयोग में धारामापी को क्यों उपयोग में लाते हैं?

उ. मीटर सेतु में धारामापी की सहायता से मीटर सेतु की संतुलित स्थिति को उसके तार

पर संतुलन बिंदु प्राप्त करके ज्ञात करते है।
16. क्या मीटर सेतु का तार तांबे का लिया जा सकता है?

उ. नहीं, तांबे का विशिष्ट प्रतिरोध (प्रतिरोधकता) अत्यल्प होता है तथा प्रतिरोध का तापीय गुणांक अधिक होता है।
17. मीटर सेतु का संशोधित सेतु (ब्रिज) कौनसा है?

उ.. केरीफोस्टर ब्रिज।
18. क्या मीटर सेतु के प्रयोग में संचायक सेल लगा सकते है? आपके उत्तर के समर्थन में तर्क दें।
उ. नहीं, संचायक सेल से प्राप्त धारा की प्रबलता अधिक होती है जिससे ऊष्मा उत्पन्न होकर तार के प्रतिरोध में वृद्धि करेगी।
19. मीटर सेतु में तांबे की मोटी पत्तियां क्यों लगाई जाती है?

उ. ताकि उनका प्रतिरोध नगण्य माना जा सके।
20. मीटर सेतु अधिक सुग्राही किस स्थिति में होता है?

उ. मीटर सेतु की सुग्राहिता सबसे अधिक तब होती है जबकि संतुलन बिंदु तार के लगभग मध्य में होता है।
प्रयोग-4

उद्देश्य-विभवमापी द्वारा दिए गए दो प्राथमिक सेलों के विद्युत वाहक बलों की तुलना करना।
उपकरण- विभवमापी, लेक्लांशी सेल, डेनियल सेल, द्विमार्गी कुंजी, धारामापी, सीसा संचायक सेल, धारानियंत्रक, प्लग कुंजी, संयोजक तार, रेगमाल कागज आदि। उपकरण का वर्णन-
(i) विभवमापी- विभवमापी विभव नापने की एक ऐसी युक्ति है जो विभव का परिशुद्ध मापन करती है। वोल्टमीटर की सहायता से विभवांतर का परिशुद्ध (सही) मान ज्ञात करना संभव नहीं है क्योंकि वोल्टमीटर का प्रतिरोध उच्च होते हुए भी उसका मान सीमित होता है, जिससे मापन के समय उसमें कुछ न कुछ धारा अवश्य प्रवाहित होती है और प्रायोगिक प्रतिरोध के सिरों पर विभवांतर में कमी आ जाती है जिसके कारण मापे गए विभवांतर में त्रुटि आ जाती है। अतः विभवांतर के परिशुद्ध मापन के लिए ऐसा उपकरण होना चाहिए जिसका प्रतिरोध अनन्त हो अर्थात् जो परिपथ में जोड़ने पर बगैर धारा ग्रहण किए विभवांतर माप सके। विभवमापी अविक्षेप विधि पर आधारित उपकरण है। अतः यह अनंत प्रतिरोध के उपकरण की तरह व्यवहार करता है और विभव का सही मापन करता है। अर्थात् विभवमापी आदर्श वोल्टमीटर की तरह कार्य करता है।
(ii) बनावट - विभवमापी में उच्च प्रतिरोधकता व नगण्य प्रतिरोध ताप गुणांक वाला धातु (मैगनीन, कांस्टेन्टन आदि मिश्र धातु) का 10 मीटर लंबा व एक समान व्यास का प्रतिरोध तार एक लकड़ी के आधार पर संबंधक पेच A व B के बीच खिंचा हुआ लगा रहता है। इसका आकार छोटा करने के लिए 10 मीटर लंबे तार को एक-एक मीटर पर नौ बार मोड़कर तनी हुई अवस्था में लकड़ी के आधार पर व्यवस्थित किया जाता है। इन तारों के समांतर में एक मीटर पैमाना लगा होता है। एक जॉकी (एक विसर्पी कुंजी), जो लकड़ी के आधार पर धातु की छड़ पर सरकायी जा सकती है, के द्वारा तार की किसी भी लंबाई पर विद्युत सम्पर्क बनाया जा सकता है।

चित्र 4.1 (अ) व (ब)
सिद्धांत - विभवमापी के सिद्धांतानुसार यदि अज्ञात विभवांतर E_{1} तार $A B$ पर विभवपतन से कम हो तो एक बिंदु C इस प्रकार प्राप्त किया जा सकता है कि तार की $A C$ लम्बाई पर विभव पतन का मान अज्ञात विभव (वि.वा.बल) E_{1} के तुल्य हो। इस अवस्था में गेल्वेनोमीटर
(धारामापी) में कोई धारा प्रवाहित नहीं होने के कारण शून्य विक्षेप आएगा। अतः विभवमापी द्वारा अज्ञात विभवांतर की तुलना ज्ञात विभवांतर से कर अज्ञात विभवांतर (वि.वा.ब.) का मान यथार्थता से ज्ञात किया जा सकता है।

जब विभवमापी के समान काट क्षेत्र के तार में स्थिर धारा प्रवाहित होती है तो किन्हीं दो बिंदुओं के मध्य विभवांतर V इन बिंदुओं के मध्य लंबाई L के समानुपाती होता है अर्थात् -

$$
\begin{equation*}
V \propto L \quad \text { या } \quad V=\phi L \tag{1}
\end{equation*}
$$

यहां ϕ विभवप्रवणता है। "तार की एकांक लंबाई पर विभव पतन को विभव प्रवणता कहते है।"

विभवमापी के तार की लंबाई बढाने पर विभव प्रवणता का मान कम होगा एवं विभवमापी अधिक सुग्राही होगा।

यदि एक प्राथमिक सेल (लेक्लांशी सेल) का वि.वा.ब. E_{1} हो तो धारामापी में अविक्षेप की स्थिति में विभवमापी की संतुलित लंबाई l_{1} है तो विभवमापी के सिद्धांत से

$$
\begin{equation*}
E_{1}=\phi l_{1} \tag{2}
\end{equation*}
$$

दूसरे प्राथमिक (डेनियल) सेल का वि.वा.ब. E_{2} व धारामापी में अविक्षेप स्थिति में विभवमापी की संतुलित लंबाई l_{2} है तो

$$
\begin{equation*}
E_{2}=\phi l_{2} \tag{3}
\end{equation*}
$$

दोनों प्राथमिक सेलों के वि.वा.बलों की तुलना करने के लिए सभी (2) में (3) का भाग देने पर

$$
\begin{align*}
& \frac{E_{1}}{E_{2}}=\frac{\phi l_{1}}{\phi l_{2}} \\
& \text { या } \frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}} \tag{4}
\end{align*}
$$

चित्र 4.2 : विभवमापी द्वारा दो सेलों के वि.वा. बलों की तुलना

विधि - 1. रेगमाल कागज से संयोजन तार के सिरों को रगड़ कर साफ करेंगे। चित्र 4.2 अनुसार विद्युत परिपथ जोड़ेंगे। सीसा संचायक सेल के धन टर्मिनल को विभवमापी के तार के A सिरे से जोड़ेंगे। सेल के ऋण टर्मिनल को कुंजी व धारा नियंत्रक के साथ श्रेणी कम में जोड़ते हुए धारा नियंत्रक के दूसरे सिरे को विभवमापी के तार के B सिरे से जोड़ेंगे। यह परिपथ प्राथमिक परिपथ कहलाता है जो विभवमापी के सभी प्रयोगों में एक समान रहता है। प्राथमिक परिपथ में प्रयुक्त संचायक सेल का वि.वा.ब. सदैव परिपथ में प्रयुक्त अन्य सेलों के वि.वा.ब बलों से अधिक होना चाहिए।
2. अब लेक्लांशी सेल E_{1} के ऐनोड (धनात्मक सिरे) को विभवमापी के A बिंदु पर तथा केथोड (ऋणात्मक सिरे) को द्विमार्गी कुंजी के a टर्मिनल से जोड़ेंगे। डेनियल सेल E_{2} के धनात्मक सिरे को विभवमापी के A बिंदु पर तथा ऋणात्मक सिरे को द्विमार्गी कुंजी के b टर्मिनल से जोड़ेंगे। द्विमार्गी कुंजी के मध्य बिंदु C को धारा मापी से व धारामापी को विसर्पी कुंजी J से जोड़ेंगे। इसे द्वितीयक परिपथ कहते है।
3. प्राथमिक परिपथ में कुंजी K में प्लग लगाकर द्वितीयक परिपथ में द्विमार्गी कुंजी के a व c के मध्य प्लग लगाते है। विसर्पी कुंजी J को विभवमापी के तार के A सिरे पर स्पर्श कर धारामापी G में विक्षेप की दिशा नोट करते है। अब विसर्पी कुंजी J को विभवमापी के तारे के दूसरे सिरे B पर स्पर्श कर धारामापी में विक्षेप की दिशा नोट करते है। दोनों स्थितियों में धारामापी में विक्षेप विपरीत दिशा में आना चाहिए। यदि विक्षेप विपरीत दिशा में नहीं आता है तो (1) विद्युत परिपथ की जांच करेंगे। (2) सभी टर्मिनलों पर संयोजन कसेंगे। (3) धारानिय़ंत्रक R_{h} को संमजित कर विक्षेप विपरीत दिशा में प्राप्त करते है।
4. विसर्पी कुंजी J को विभवमापी के तार AB पर स्पर्श कर धारामापी में शून्य विक्षेप की स्थिति प्राप्त करते है। बिंदु A से इस बिंदु की दूरी l_{1} नोट करते है। यह दूरी लेक्लांशी सेल E_{1} के लिए विभवमापी तार पर संतुलित लंबाई होगी।
5. अब द्विमार्गी कुंजी के a व c के मध्य से प्लग निकालकर c व b के मध्य प्लग लगाते हैं तो डेनियल सेल E_{2} परिपथ में होगा। विसर्पी कुंजी को तार AB पर स्पर्श कर पुनः शून्य विक्षेप की स्थिति ज्ञात कर संतुलित लंबाई l_{2} नोट करते है। पाठ्यांक l_{1} व l_{2} के एक सेट के लिए धारा नियंत्रक में प्रतिरोध का मान समान रहना चाहिए ताकि प्राथमिक परिपथ में धारा का मान स्थिर रहे।
6. धारा नियंत्रक R_{h} की स्थिति (प्रतिरोध) परिवर्तित कर पुनः l_{1} व l_{2} का मान ज्ञात करते है। इस प्रकार धारा नियुंत्रक की विभिन्न स्थितियों के लिए संतुलित लम्बाइयों l_{1} व l_{2} के कम से कम 5 प्रेक्षण सेट लेते है।
7. प्रत्येक सेट के लिए $\frac{l_{1}}{l_{2}}$ की गणना करते है।

प्रेक्षण सारणी-

क्र.सं.	विभवमापी तार पर संतुलन लंबाई (मी. में)		$\frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}}$	माध्य $=\frac{E_{1}}{E_{2}}$
	सेल E_{1} के लिए	सेल E_{2} के लिए		
1.	$\ldots . . \mathrm{m}$	$\ldots . . \mathrm{m}$		
2.	$\ldots . . \mathrm{m}$	$\ldots . . . \mathrm{m}$		
3.	$\ldots . . \mathrm{m}$	$\ldots . . . \mathrm{m}$		
4.	$\ldots . . . \mathrm{m}$	$\ldots \ldots . . \mathrm{m}$		
5.	$\ldots . . \mathrm{m}$			

गणना-सूत्र $\frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}}$ में l_{1} व l_{2} का मान रखकर प्रत्येक पाठ्यांक सेट के लिए $\frac{E_{1}}{E_{2}}$ की गणना करेंगे।

माध्य $\frac{E_{1}}{E_{2}}$ भी ज्ञात करेंगे।
परिणाम - विभवमापी की सहायता से दिए गए दो प्राथमिक (लेक्लांशी व डेनियल) सेलों
के वि.वा.बल का अनुपात $\frac{E_{1}}{E_{2}}=$ \qquad प्राप्त हुआ।

सावधानियां - 1. परिपथ में प्रयुक्त सभी सेलों के धन ध्रुव एक ही बिंदु A पर जुड़े होने चाहिए।
2. दोनों सेलों के लिए संतुलित लंबाई लेते समय प्राथमिक परिपथ में धारा अपरिवर्तित रहनी चाहिए।
3. परिपथ में धारा उसी समय प्रवाहित करनी चाहिए जब आवश्यक हो, अन्यथा अविक्षेप बिंदु की स्थिति परिवर्तित होती रहेगी।
4. पाठ्यांक पर्याप्त समयातंराल पर लेने चाहिए ताकि ध्रुवण के कारण सेल के वि.वा.बल में परिवर्तन नही हो।
5. जब सेल काम नहीं आ रहे हो तो जस्ते की छड़ को बाहर निकाल देना चाहिए जिससे स्थानीय क्रिया न्यूनतम हो।
6. संचायक सेल का वि.वा.ब. प्राथमिक सेल के वि.वा.बल से अधिक होना चाहिए। इसके लिए संचायक सेल पूर्ण आवेशित व अधिक क्षमता का होना चाहिए जिससे प्राथमिक परिपथ में धारा स्थिर रह सके तथा विभव प्रवणता भी स्थिर रह सके।
7. विसर्पी कुंजी को विभवमापी के तार पर दबाकर नहीं खिसकाना चाहिए।

प्रयोग - 5

उद्देश्य-विमवमापी द्वारा दिए गए प्राथमिक सेल का आन्तरिक प्रतिरोध ज्ञात करना।
उपकरण - विभवमापी, संचायक सेल/ एलिमिनेटर, धारा नियंत्रक, दो एकमार्गी कुंजी, प्रतिरोध बॉक्स, प्राथमिक सेल, संयोजन तार, धारामापी (गेल्वेनोमीटर), रेजमाल कागज।
सिद्धांत- यदि किसी सेल का वि.वा.बल E व आन्तरिक प्रतिरोध r है तथा इस सेल को बाह्य प्रतिरोध R के साथ जोड़ने पर बाह्य परिपथ में धारा I है तो

$$
\begin{equation*}
I=\frac{E}{R+r} \tag{1}
\end{equation*}
$$

हम जानते हैं कि सेल के सिरों पर विभवांतर $V=I R$

$$
\begin{array}{ll}
\text { या } & V=\frac{E}{(R+r)} \cdot R \\
\text { या } & \frac{E}{V}=\frac{R+r}{R} \\
\text { या } & \frac{E}{V}=\left(1+\frac{r}{R}\right) \\
\text { या } & \frac{r}{R}=\left(\frac{E}{V}-1\right) \\
\text { या } & r=\left(\frac{E}{V}-1\right) R \\
\text { या } & r=\left(\frac{E-V}{V}\right) R \tag{2}
\end{array}
$$

यदि खुले परिपथ में शून्य विक्षेप की स्थिति में विभवमापी के A सिरे से संतुलित लंबाई l_{0} व बंद परिपथ में संतुलित लंबाई l है तो $E=\phi l_{0}$ तथा $V=\phi l$

यहां ϕ विभव प्रवणता है।
यह मान समी. (2) में रखने पर

$$
\begin{equation*}
r=\left(\frac{l_{0}-l}{l}\right) R \tag{3}
\end{equation*}
$$

चित्र 5.1 : विभवमापी द्वारा सेल का आन्तरिक प्रतिरोध ज्ञात करने हेतु विद्युत परिपथ

विधि- 1. रेगमाल कागज से संयोजन तार के सिरों को रगड़ कर साफ करेंगे। चित्रानुसार विद्युत परिपथ जोड़ेंगे। सीसा संचायक सेल E के धनाग्र (ऐनोड) को विभवमापी के तार के A सिरे से जोड़ेंगे। संचायक सेल E के ऋणात्मक (केथोड) को कुंजी K_{1} व धारानियंत्रक R_{h} के साथ श्रेणीक्रम में जोड़ते हैं। धारा नियंत्रक के दूसरे सिरे को विभवमापी के तार के B सिरे से जोडेंगे। यह परिपथ प्राथमिक परिपथ कहलाता है जो विभवमापी के सभी प्रयोगों में एक समान रहता है। प्राथमिक परिपथ में प्रयुक्त संचायक सेल का वि.वा.बल सदैव परिपथ में प्रयुक्त अन्य सेलों के वि. वा.ब से अधिक होना चाहिए।
2. अब प्राथमिक (लेक्लांशी) सेल E_{1} जिसका आन्तरिक प्रतिरोध ज्ञात करना है का धनाग्र विभवमापी के तार के धन सिरे A से तथा ऋणाग्र धारामापी के द्वारा विसर्पी कुंजी से जोड़ देते है। सेल के दोनों टर्मिनलों से एक प्रतिरोध बॉक्स व कुंजी K_{2} जोड़ देते है। इसे द्वितीयक परिपथ कहते है।
3. सर्वप्रथम संयोजन सही होने की जांच करेंगे। इसके लिए द्वितीयक परिपथ की कुंजी K_{2} को खुली रखकर प्राथमिक परिपथ में कुंजी K_{1} में प्लग लगाकर प्राथमिक परिपथ पूर्ण करेंगे। विसर्पी कुंजी J को विभवमापी के प्रथम तार के सिरे A पर स्पर्श कराकर धारामापी में विक्षेप की दिशा नोट करेंगे। अब विसर्पी कुंजी को अंतिम तार के B सिरे के पास ले जाकर स्पर्श कराते है तो धारामापी में विक्षेप विपरीत दिशा में प्राप्त होता है तो संयोजन सही है।
4. यदि विक्षेप एक ही दिशा में आता है तो धारानियंत्रक को संमजित कर विक्षेप विपरीत दिशा में प्राप्त करते है। यदि अब भी विक्षेप एक ही दिशा में आता है तो निम्न त्रुटियां हो सकती है-
(1) संयोजन त्रुटिपूर्ण है।
(2) संयोजन ढीले है।
(3) संचायक सेल का वि.वा.बल E प्राथमिक सेल के वि.वा.बल E_{1} से कम $\left(\mathrm{E}<\mathrm{E}_{1}\right)$ है। ऐसी अवस्था में संचायक सेल बदलकर उपरोक्त त्रुटि का निवारण करेंगे।
5. विभवमापी तार पर संतुलन लंबाई l_{0} ज्ञात करना-
(जब सेल E_{1} खुले परिपथ में हों) - संयोजन सही होने पर सेल के वि.वा.बल को विभवमापी के तार AB पर संतुलित करेंगे। इसके लिए विसर्पी कुंजी J को विभवमापी के तार के A सिरे से B सिरे तक भिन्न-भिन्न बिंदुओं पर स्पर्शकर शून्य विक्षेप की स्थिति ज्ञात करते है। विभवमापी की सुग्राहिता बढ़ाने के लिए संतुलन बिंदु (शून्य विक्षेप की स्थिति) अंतिम तार (नवें या दसवें तार) पर प्राप्त होना चाहिए। इसके लिए धारा नियंत्रक द्वारा समायोजित करते है। अविक्षेप बिंदु की A सिरे से दूरी l_{0} नोट करते हैं। धारानियंत्रक का प्रतिरोध स्थिर रखकर l_{0} को नियत ही रखते है अर्थात् बार-बार ज्ञात नहीं करते है।
6. विभवमापी तार पर संतुलन लंबाई l ज्ञात करना (जब सेल बंद परिपथ में हो)प्राथमिक परिपथ अपरिवर्तित रखकर द्वितीयक परिपथ में कुंजी K_{2} में प्लग लगाते है। प्रतिरोध बॉक्स में से (3 ओम से 12 ओम के मध्य) प्रतिरोध R निकालकर विसर्पी कुंजी J को तार AB पर स्पर्शकर शून्य विक्षेप (संतुलन) की स्थिति ज्ञात करते है। यह लंबाई l नोट करते है। यह संतुलित लंबाई l सदैव 1_{0} से कम होगी $\left(l<l_{0}\right)$ ।
7. प्रतिरोध बॉक्स से भिन्न-भिन्न प्रतिरोध निकालकर प्रत्येक के लिए संतुलित लंबाई नोट करते है।
8. प्रत्येक पाठ्यांक के लिए आंतरिक प्रतिरोध r की गणना करेंगे। $\frac{1}{R}$ व $\frac{1}{l}$ में ग्राफ खींचकर भी r की गणना ग्राफ द्वारा करेंगे।
प्रेक्षण सारणी-

क्र.सं.	प्रतिरोध बॉक्स में प्रतिरोध R	विभवमापी के तार की संतुलन लम्बाई		आन्तरिक प्रतिरोध $r=\frac{\left(l_{0}-l\right)}{l} R$	$\frac{1}{R}$	$\frac{1}{l}$
		खुले परिपथ में l_{0}	बंद परिपथ में l			
1.	$\ldots \ldots$ मी	. मी	\ldots	$\ldots \ldots . \Omega^{-1}$	m^{-1}
2.	\ldots मी	. ी Ω	$\ldots \ldots . \Omega^{-1}$. ${ }^{-1}$
3.	\ldots मी	मी Ω	$\ldots . . \Omega^{-1}$	$\ldots . .{ }^{-1}$
4.	\ldots मी	...मी Ω	$\ldots \ldots . \Omega^{-1}$	$\ldots \mathrm{m}^{-1}$
5.	. Ω	.. मी	 Ω	$\ldots . . . \Omega^{-1}$	$\ldots . . \mathrm{m}^{-1}$

गणना-1. सूत्र $r=\frac{\left(l_{0}-l\right)}{l} R$ में प्रत्येक पाठ्यांकके लिए l_{0}, l व R का मान रखकर सेल के आंतरिक प्रतिरोध r की गणना करेंगे।
2. ग्राफीय विधि से भी सेल के आंतरिक प्रतिरोध r की गणना निम्न प्रकार से करते है-

समी (3) से $r=\frac{\left(l_{0}-l\right)}{l} R$ को
हल करने पर $\frac{1}{R}=\frac{l_{0}}{r}\left(\frac{1}{l}\right)-\frac{1}{r}$
(4)

यह एक सरल रेखा का समीकरण है।
3. $\frac{1}{l}$ को X - अक्ष तथा $\frac{1}{R}$ को Y - अक्ष पर लेकर ग्राफ खीचंते है तो यह एक सरल रेखा प्राप्त होगी।
4. इस सरल रेखा को पीछे की और बढ़ाने पर $\frac{1}{R}$ अक्ष पर बिंदु P पर चित्र 5.2 अनुसार काटती है। Y- अक्ष पर. ऋणात्मक भाग (negative intercept) $\quad O P=\frac{1}{r}$ का मान व्यक्त करता है। इससे r का मान ज्ञात करेंगे।।

$$
\text { चित्र } 5.2: \frac{1}{R} \text { व } \frac{1}{r} \text { में ग्राफ }
$$

परिणाम- दिए गए सेल के आन्तरिक प्रतिरोध का मान
(i) गणना से $\mathrm{r}=$ \qquad . Ω
(ii) ग्राफ से $\mathrm{r}=$ \qquad Ω
ज्ञात हुआ।
सावधानियां- 1. प्राथमिक परिपथ में धारा प्रवाहित करने के लिए संचायक सेल अथवा बैट्री ऐलिमिनेटर का ही प्रयोग करें। प्राथमिक शुष्क सेलों का प्रयोग नहीं करें।
2. परिपथ में प्रयुक्त सभी सेलों के धन ध्रुव एक ही बिंदु A पर जुड़े होने चाहिए।
3. संचायक सेल का वि.वा.बल,प्राथमिक सेल के वि.बा. बल से अधिक होना चाहिए। इसके लिए संचायक सेल या बैटरी पूर्ण आवेशित एंव अधिक क्षमता वाली होनी चाहिए जिससे प्राथमिक

परिपथ में धारा स्थिर रह सके, साथ ही विभव प्रवणता भी स्थिर रह सके।
4. धारा नियंत्रक में प्रतिरोध समायोजन इस प्रकार करना चाहिए कि खुले परिपथ में संतुलन बिंदु विभवमापी के अंतिम तार पर प्राप्त हो।
5. एक सेट के पाठ्यांक लेते समय l_{0} लेने के पश्चात l के प्रेक्षण लेने हेतु धारा नियंत्रक की स्थिति परिवर्तित नहीं करनी चाहिए।
6. विसर्पी कुंजी को तार पर दबाकर नहीं खिसकाना चाहिए।
7. प्रतिरोध बॉक्स में से निकाला गया प्रतिरोध प्राथमिक सेल के आंतरिक प्रतिरोध की कोटि का होना चाहिए।
8. सेल काम नहीं आ रहा है तो जस्ते की छड़ को बाहर निकाल देना चाहिए जिससे स्थानीय किया न्यूनतम हो।
9. प्राथमिक सेल को प्रयोग के दौरान हिलाना नहीं चाहिए।

मौखिक प्रश्न

1. किसी बिंदु पर विद्युत विभव से क्या तात्पर्य है? या विद्युत विभव किसे कहते हैं?
उ. वि. क्षेत्र के किसी बिंदु पर विद्युत विभव, एकांक धनावेश को अनंत से विद्युत क्षेत्र के उस बिंदु तक लाने में किए गए कार्य के बराबर होता है। अर्थात् विभव $=\frac{\text { कार्य }}{\text { आवेशे }}$
2. विभव का मात्रक क्या है?

उ. वोल्ट
3. एक वोल्ट विभव किसे कहते हैं एवं जूल और वोल्ट में क्या संबंध है?

उ. यदि एक कूलॉम आवेश को अनंत से विद्युत क्षेत्र के विरूद्ध किसी बिंदु तक लाने में किया गया कार्य 1 जूल है तो उस बिंदु पर विद्युत विभव एक वोल्ट कहलाता है।

एक वोल्ट $=\frac{1 \text { जूल }}{1 \text { कूलॉम }}$
4. विभव पतन किसे कहते हैं?

उ. किसी तार AB को विद्युत स्रोत बैट्री से इसका प्रकार जोड़ते है कि A सिरा धनाग्र (उच्च विभव) एवं B सिरा ऋणाग्र (कम विभव) से जुड़ा हो। अब स्थिर मान की धारा प्रवाहित करते है तो तार AB पर विभवांतर उत्पन्न होता है। तार A सिरे से B की ओर जाने पर विभवांतर घटता जाता है जिसे विभव पतन कहते हैं। अर्थात् चालक में धारा प्रवाहित करने पर, चालक पर स्थापित विभवांतर को विभवपतन कहते हैं;
5. तार की लंबाई \mathbf{A} से \mathbf{B} तक विभव पतन का मान किस प्रकार बदलता है ?

उ. तार AB का काटक्षेत्र व पदार्थ समान है तो तार पर विभवपतन सतत व समान होता

है।
6. विभवपतन के सतत परिवर्तन से आप क्या समझते हैं?

उ. तार के किन्हीं दो बिंदुओं के बीच विभवपतन उन दो बिंदुओं के बीच तार की लंबाई के समानुपाती होता है।
7. क्या विभवपतन का सतत व समान परिवर्तन किसी भी प्रकार के तार के लिए सही है?
उ. नहीं, इसके लिए (1) तार का काटक्षेत्र $\left(\pi r^{2}\right)$ समान होना चाहिए। (2) तार की संरचना समान पदार्थ की होनी चाहिए।
8. तार पर समान विभवपतन हो इसके लिए किस प्रकार के तार का चयन करते है?
उ. 1. तार का काट क्षेत्र सम्पूर्ण लंबाई के लिए समान हो। 2. तार ऐसे पदार्थ का हो जिसकी प्रतिरोधकता उच्च व प्रतिरोध का तापीय गुणांक कम हो।
9. ऐसे कौनसे पदार्थ है जिनकी प्रतिरोधकता उच्च व प्रतिरोध का तापीय गुणांक कम हो?
उ. मेगनिन व कान्स्टेंटन (मिश्रधातु) की प्रतिरोधकता उच्च व प्रतिरोध का तापीय गुणांक कम होता है।
10. विभवमापी के प्रयोग हेतु प्राथमिक परिपथ में किस प्रकार का विद्युत वा.बल का स्रोत होना चाहिए?
उ. वि.वा.बल का स्रोत इस प्रकार का होना चाहिए जिससे लगातार समान स्थिर विद्युत धारा प्राप्त कर सकते है। (संचायक सेल)
11. किस प्रकार के सेल से लगातार स्थिर विद्युत धारा प्राप्त कर सकते है?

उ. चार्ज किए हुए संचायक सेल से लगातार स्थिर विद्युत धारा प्राप्त कर सकते है।
12. परिपथ में धारानियंत्रक का क्या उपयोग है?

उ. विभवमापी के प्रयोग में धारा नियंत्रक की सहायता से तार की विभव प्रवणता का मान नियंत्रित किया जाता है।
13. विभव प्रवणता किसे कहते हैं?

उ. " विभवमापी के तार की एकांक लंबाई पर विभवपतन को उसकी विभव प्रवणता कहते हैं।" यदि विभवमापी के तार की l लंबाई पर विभवांतर V है तो विभव प्रवणता $\phi=\frac{V}{l}$ वोल्ट/मीटर होगा। विभव प्रवणता का मात्रक वोल्ट/मीटर
14. क्या विभव प्रवणता को प्रतिरोधकता के पद में व्यक्त कर सकते है?

उ. हां, यदि तार की लंबाई l, काट क्षेत्र A व प्रतिरोधकता ρ है तो $\phi=\frac{I \rho}{A}$ । (I- तार में प्रवाहित धारा)
15. क्या तार के पदार्थ का विशिष्ट प्रतिरोध (प्रतिरोधकता) इस प्रयोग द्वारा ज्ञात कर सकते हैं?

उ. हां, इसके लिए प्राथमिक परिपथ में एक अमीटर, धारानियत्रंक के श्रेणीक्रम जोड़कर धारा I का मापन करते है। तार के काटक्षेत्र $\mathrm{A}=\pi \mathrm{r}^{2}$ का मापन पेचमापी द्वारा तार का व्यास ज्ञात करके करेंगे। तार की विभव प्रवणता $\phi=\frac{V}{l}$ से अथवा V व l में ग्राफ के ढाल से ज्ञात करेंगे।
$\therefore \phi=\frac{I \rho}{A}$ या $\rho=\frac{\phi A}{I}$ इस सूत्र में
ϕ, A व I का मान रखकर तार का विशिष्ट प्रतिरोध ज्ञात करेंगे।
16. विभवमापी क्या है?

उ. विभवमापी शून्य विक्षेप विधि पर आधारित एक आदर्श वोल्ट मीटर है। जिसकी सहायता से विभवांतर या सेल का वि.वा.बल माप सकते हैं।
17. इसका सिद्धांत क्या है?

उ. किसी अज्ञात विभवांतर का मान, ज्ञात एवं परिवर्ती विभवांतर की सहायता से शून्य विक्षेप विधि से ज्ञात किया जाता है।
18. विभवमापी किस विधि पर आधारित है?

उ. विभवमापी शून्य विक्षेप विधि पर आधारित उपकरण है।
19. सेल के वि.वा.बल से क्या तात्पर्य है?

उ. 1. जब सेल खुले परिपथ में हो तो उसके सिरों पर विभवांतर को सेल का विद्युत वाहक बल कहते है। अर्थात् जब सेल से बाहा परिपथ में धारा प्रवाह न हो तो उसके धनाग्र व ऋणाग्र के मध्य विभवांतर उसका वि.वा.बल कहलाता है। $\therefore E=V$
2. एकांक धनावेश को विद्युत परिपथ में एक पूरा चक्कर लगाने में किए गए कार्य (सेल द्वारा व्यय ऊर्जा) को सेल का वि.वा. बल कहते है।
3. सेल का वि.वा.बल एकांक धन आवेश द्वारा सेल से प्राप्त ऊर्जा के बराबर होता है।
20. क्या आप वोल्टमीटर से सेल का वि.वा.बल माप सकते हैं?

उ. नहीं, जब वोल्टमीटर को सेल के धनाग्र व ऋणाग्र (टर्मिनल) के मध्य जोड़ते है तो वोल्टमीटर द्वारा सेल से धारा ली जाती है। अतः वोल्टमीटर से सेल के इलेक्ट्रोडो (धनाग्र व ऋणाग्र) के मध्य मापा गया विभवांतर ही होगा क्योंकि सेल बंद परिपथ में है। अतः वोल्टमीटर सेल का टर्मिनल विभंवातर ही माप सकता है न कि वि.वा.बल।
यदि आदर्श वोल्टमीटर है तो सेल का वि.वा.बल माप सकते है परंतु आदर्श वोल्टमीटर प्रायोगिक रूप से संभव नहीं है।
21. क्या आप जानते है कि ऐसा कोई वोल्टमीटर है जो विद्युत परिपथ से धारा लिए बिना ही कार्य करता है?
उ. हां, इलेक्ट्रोनिक वोल्टमीटर, निर्वात नली वोल्ट मीटर (VTUM=Vacuum Tube Voltmeter) का प्रतिरोध लगभग अनंत होता है। इस कारण नगण्य धारा, लगभग शून्य धारा ही लेता है।
22. क्या सेल की टर्मिनल विभवांतर व वि.बा. बल भिन्न-भिन्न है?

उ. हां, सेल के वि.वा.बल का मान विभवांतर से अधिक होता है।
क्योंकि $E=V+I r$ इसलिए $E>V$
यदि $I=0$ अथवा $r=0$ हो तो $E=V$ होगा।
23. सेल का वि.वा.बल व विभवांतर भिन्न क्यों होते है? समझाइये।

उ. यदि वोल्टमीटर का प्रतिरोध R, सेल का वि.वा.बल E व सेल का आंतरिक प्रतिरोध r
है तो सेल से वोल्टमीटर में प्रवाहित धारा $I=\frac{E}{R+r}$
या $E=I R+I r$
परंतु $V=I R$ वोल्ट मीटर से मापा गया विभवांतर
या $E=V+\quad$ Ir
$\therefore E>\mathrm{V}$ क्योंकि Ir $\neq 0$
24. यदि $\mathbf{I r}=\mathbf{0}$ होगा तो क्या होगा?

उ. $I r=0$ का तात्पर्य है या तो $r=0$ अथवा $I=0$ परंतु किसी भी सेल का आंतरिक प्रतिरोध शून्य नहीं होता है। r का मान बहुत कम हो सकता हैं। दूसरी संभावना है I $=0$ इसका तात्पर्य है कि सेल से धारा प्रवाह नहीं हो रहा है। अतः जब $I=0$ है तो $E=V$ होगा। अतः सेल का वि.वा.बल का मान उसके सिरों के मध्य विभवांतर के बराबर होगा जबकि उससे ली गई धारा का मान शून्य है। सेल खुले परिपथ में होने पर घोल में आयनों का प्रवाह नहीं होता है अतः $I=0$ होगा।
25. विभवमापी के प्रयोग में प्राथमिक व द्वितीयक परिपथ के सेलों का चयन किस का प्रकार करते हैं?
उ. 1. प्राथमिक परिपथ में जोड़े गए संचायक सेल का वि.वा.बल, द्वितीयक परिपथ के सेल के वि.वा.बल से अधिक होना चाहिए अर्थात् $E>E_{1}$ एवं $E>E_{2}$
2. संचायक सेल से प्राप्त धारा का मान स्थिर होना चाहिए।
26. E का मान E_{1} व E_{2} से अधिक क्यों होना चाहिए?

उ. यदि $E<E_{1}$ तथा $E<E_{2}$ है तो विभवमापी के तार पर शून्य विक्षेप की स्थिति प्राप्त नहीं होगी। इस कारण विभवमापी का उपयोग नहीं कर सकते हैं।
27. विभवमापी की सुग्राहिता से क्या तात्पर्य है?

उ. विभवमापी की सुग्राहिता से तात्पर्य है कि यह अत्यल्प विभवांतर का मापन कर सके।
28. विभवमापी की सुग्राहिता किस प्रकार बढ़ाई जा सकती है?

उ. विभवमापी की सुग्राहिता बढ़ाने के लिए इसकी विभव प्रवणता का मान घटाएंगे अर्थात् विभवमापी के तार की एकांक लंबाई पर विभवपतन कम हो। इसके लिए विभवमापी के तार की लंबाई अधिक हो अर्थात् एक मीटर या चार मीटर लंबाई के तार के बजाय 10 मीटर लंबाई के तार का उपयोग विभवमापी में करेंगे अथवा प्राथमिक परिपथ में धारा नियंत्रक लगाकर I को कम करने से $\phi=\frac{I \rho}{A}, \phi$ का मान घटेगा।
29. यदि दो विभवमापी भिन्न-भिन्न विभव प्रवणता के हो तो कौनसा विभवमापी अधिक सुग्राही होगा?

उ. जिस विभवमापी की विभव प्रवणता कम (न्यून) है वह विभवमापी अधिक सुग्राही होगा।
30. यदि विभवमापी के तार की एकांक लंबाई का प्रतिरोध ρ, सेल का वि.वा.ब. \boldsymbol{E} व श्रेणी क्रम में जोड़ा गया प्रतिरोध \boldsymbol{R} है तो तार की विभव प्रवणता व्यंजक सूत्र ज्ञात करो।
उ. विभवमापी के तार की एकांक लंबाई पर विभवपतन अर्थात् विभव प्रवणता $=$ धारा \times तार की इकाई लंबाई का प्रतिरोध

या $\phi=i \rho$ परंतु $\quad i=\frac{E}{R+R}$,
या $\phi=\frac{\rho E}{R+R^{\prime}}$ परन्तु $\mathrm{R}^{\prime}=\rho L$
या $\phi=\frac{\rho E}{R+\rho L}$
$R^{\prime}=$ विभवमापी के तार का प्रतिरोध
$L=$ विभवमापी के तार की लंबाई
31. क्या विभवमापी से धारा व प्रतिरोध मापा जा सकता है?

उ. हां, अज्ञात धारा को ज्ञात प्रतिरोध में प्रवाहित कर स्थापित विभवांतर मापते हैं।

$$
\therefore I=\frac{V}{R} \text { इसी प्रकार } \quad R=\frac{V}{I}
$$

32. किस प्रकार जांच करोगे कि विभवमापी उपकरण शून्य विक्षेप प्राप्त करने के लिए तैयार (सही) है?
उ. जब विसर्पी कुंजी को विभवमापी के तार के A सिरे पर स्पर्श कराकर धारामापी में विक्षेप नोट कर, विसर्पी कुंजी को विभवमापी के अंतिम तार के दूसरे B सिरे पर स्पर्श कराते है तो विक्षेप विपरीत दिशा में आना चाहिए।
33. यदि उपरोक्त दोनों अवस्थाओं में धारामापी में विक्षेप एक ही दिशा में आता है तो इससे क्या निष्कर्ष होगा?
उ. यदि धारामापी में विक्षेप एक ही दिशा में आता है तो इसके दो कारण हो सकते हैं1. सभी सेलों के धनात्मक टर्मिनल एक ही बिंदु A पर न जुड़े हो।
34. विभवमापी के तार पर विभवांतर (विभवपतन) का मान द्वितीयक परिपथ में जोड़े गए सेल के वि.वा.बल से कम है।
35. यदि धारामापी में विक्षेप एक ही दिशा में आता है तो इस स्थिति में आप क्या करेंगे?
उ. 1. सबसे पहले परिपथ में संयोजन की जांच करेंगे कि सेलों के सभी धनात्मक टर्मिनल एक ही बिंदु A पर जुड़े है या नहीं।
36. इससे भी समस्या का हल (विक्षेप विपरीत दिशा में) नहीं होता है तो धारा नियंत्रक में प्रतिरोध का मान न्यूनतम करके विभवमापी में धारा का मान बढ़ाएंगे।
37. विसर्पी कुंजी के तार पर स्पर्श कराने पर धारामापी में विक्षेप नहीं आता है तो

क्या त्रुटि हो सकती है?
उ. (1) द्वितीयक परिपथ में जोड़े गये सेल पूर्णतया विसर्जित (Discharge) हो गये है।
(2) इस परिपथ में संयोजन नहीं है। अथवा - धारामापी के परिपथ में संयोजन नहीं है।
36. सेल का आंतरिक प्रतिरोध किसे कहते हैं?

उ. जब सेल को किसी बाह्य प्रतिरोध से जोड़कर धारा प्रवाहित की जाती है तो सेल के विद्युत अपघट्य में आयानों के प्रवाह में अन्य अणुओं से टक्कर के कारण जो बाधा उत्पन्न होती है उसे सेल का आन्तरिक प्रतिरोध कहते हैं।
37. सेल का आंतरिक प्रतिरोध किन बातों पर निर्भर करता है।

उ. सेल का आन्तरिक प्रतिरोध निम्न बातों पर निर्भर करता है-

1. विद्युत अपघट्य की प्रकृति (सान्द्रता), ताप आदि पर अर्थात् सेल का आन्तरिक प्रतिरोध विद्युत अपघट्य की विशिष्ट चालकता के प्रतिलोमानुपाती होता है।
2. इलेक्ट्रोडो के बीच की दूरी पर अर्थात् सेल का आन्तरिक प्रतिरोध इलेक्ट्रोडो के बीच की दूरी के समानुपाती होता है।
3. विद्युत अपघट्य में इलेक्ट्रोडो के डूबे हुए भाग के क्षेत्रफल पर अर्थात् सेल का आंतरिक प्रतिरोध अपघट्य में इलेक्ट्रोडो के डूबे हुए क्षेत्रफल के प्रतिलोमानुपाती होता है।
4. सेल में प्रवाहित धारा पर , 5. सेल के दोषों जैसे ध्रुवण, स्थानीय क्रिया आदि पर।
5. लेक्लांशी सेल का आन्तरिक प्रतिरोध किस कोटि का होता है?

उ. लेक्लांशी सेल का आन्तरिक प्रतिरोध 2 ओम से 12 ओम की कोटि का होता है।
39. विभवमापी के क्या उपयोग है?

उ. विभवमापी के निम्न उपयोग है-

1. अज्ञात वि.वा.बल का मापन।
2. अज्ञात विभवांतर का मापन।
3. दो प्राथमिक सेलों के वि.वा बलों की तुलना करना।
4. सेल का आंतरिक प्रतिरोध ज्ञात करना।
5. दो अल्प प्रतिरोधों की तुलना करना।
6. ताप विद्युत युग्म के वि.वा..बल (अल्प वि.बा.बल) का मापन।
7. अमीटर व वोल्टमीटर का अशांकन व अंश शोधन करना।
8. सीसा संचायक सेल या अन्य द्वितीयक सेलों का आन्तरिक प्रतिरोध विभवमापी द्वारा माप सकते है?
उ. नहीं, क्योंकि इन सेलों का आन्तरिक प्रतिरोध अतिअल्प (0.01Ω से 0.02Ω) होता है।
9. क्या सेल का आन्तरिक प्रतिरोध $\frac{1}{R}$ व $\frac{1}{l}$ में ग्राफ खींच कर ज्ञात कर सकते है? कैसे?

उ. हां, $\frac{1}{l}$ को X - अक्ष तथा $\frac{1}{R}$ को Y - अक्ष पर लेकर ग्राफ खींचते है तो यह एक सरल

रेखा प्राप्त होती है। इस रेखा को पीछे की ओर बढ़ाते है तो Y - अक्ष के ऋणात्मक भाग पर काटती है। यह ऋणात्मक भाग (काट) $\frac{1}{r}$ को व्यक्त करता है। प्रयोग में खींचे गए ग्राफ में $O P=\frac{1}{r}$ है।

$$
\therefore r=\frac{1}{O P}=\text { सेल का आन्तरिक प्रतिरोध }
$$

42. सेल के लिए क्या $V>\mathbf{E}$ हो सकता है ? यदि हां तो किस परिर्थिति में ? उ. हां, जब सेल को आवेशित किया जाता है तो $\boldsymbol{V}>\mathbf{E}$ होगा।

प्रयोग -6

उद्देश्य (Aim)- विभवमापी की सहायता से दिए गए वोल्टमीटर का अंशांकन करना एवं अंशाकन वक्र खींचना।
उपकरण (Apparatus) - विभवमापी, दो संचायक सेल, दो धारा नियत्रंक, दो प्लग कुंजियों, एक द्विमार्गी कुंजी, धारामापी, वोल्टमीटर, प्रतिरोध बॉक्स एवं संयोजक तार आदि। वोल्टमीटर एवं उसके अंशांकन की आवश्यकता -

वोल्टीमीटर दो बिन्दुओं के मध्य विभवान्तर का मापन करता है। वोल्टमीटर मापे जाने वाले विभवान्तर से धारा ग्रहण न करे, अतः इसका प्रतिरोध अनन्त होना चाहिए परंतु यह संभव नहीं है, अतः वोल्टमीटर का प्रतिरोध उच्च होता है। वोल्टमीटर बनाने के लिए धारामापी की कुण्डली के श्रेणी क्रम में उच्च प्रतिरोध जोड़ा जाता है। वोल्टमीटर को उन दो बिन्दुओं के मध्य समांतर क्रम में संयोजित करते है, जिनके मध्य विभवान्तर का मापन करना है। चूंकि वोल्टमीटर का प्रतिरोध उच्च होता है, परंतु अनन्त नहीं अतः वोल्टमीटर मापे जाने वाले विभवान्तर से कुछन कुछ धारा अवश्य ग्रहण कर लेता है तथा विभवान्तर का यथार्थ मापन नहीं कर पाता जैसे माना हमें एक प्रतिरोध R जिसमें I धारा प्रवाहित है, के सिरों पर विभवान्तर $\mathrm{V}=\mathrm{IR}$ का मापन करना है (चित्र 6.1) इसके लिए हम जैसे ही प्रतिरोध के सिरों पर

चित्र 6.1 (अ)

चित्र 6.1(ब)

वोल्टमीटर संयाजित करते है, कुछ धारा I' वोल्टमीटर में होकर प्रवाहित होती है। प्रतिरोध में शेष धारा (I-I') प्रवाहित होती है (चित्र 6.1(ब))। अतः वोल्टमीटर, विभवान्तर $\mathrm{V}^{\prime}=\left(\mathrm{I}-\mathrm{I}^{\prime}\right) \mathrm{R}$ का मापन करता है न कि $\mathrm{V}=\mathrm{IR}$ का। विभवमापी अविक्षेप विधि सिद्धान्त पर विभवान्तर का मापन करता है फलतः विभवमापी से विभवान्तर का यथार्थ मापन किया जा सकता हैं। वोल्टमीटर से प्राप्त पाठ्यांक की तुलना विभवमापी द्वारा मापे गए यथार्थ विभवान्तर से करते है। इसे ही वोल्टमीटर का अंशाकन या अंशशोधन कहते है

सिद्धान्त - (i) विभवमापी द्वारा मानक सेल (डेनियल सेल) के विद्युत वाहक बल E_{0} के लिए संतुलन लम्बाई l_{0} है तो विभव प्रवणता $\phi=\frac{E_{0}}{l_{0}}$
(ii) प्रतिरोध बॉक्स में प्रयुक्त प्रतिरोध R के सिरों पर उत्पन्न विभवान्तर V^{\prime} के लिए संतुलन लम्बाई l है तो $V^{\prime}=\phi l=\frac{E_{0}}{l_{0}} \times l$
(iii) यदि इस विभवान्तर के संगत वोल्टमीटर द्वारा मापा गया पाठ्यांक V है तो वोल्टमीटर के पाठ्यांक में त्रुटि $\Delta V=V-V^{\prime}$

जहाँ E_{0} - मानक (डेनियल) सेल का वि.वा. बल (वोल्ट में)
l_{0} - विभवमापी पर मानक सेल के लिए संतुलन लम्बाई (मीटर में)
l - विभवमापी पर प्रतिरोध R के सिरों पर उत्पन्न विभवान्तर V^{\prime} के लिए संतुलन लम्बाई
(iv) त्रुटि ΔV का, वोल्टमीटर के पाठ्यांक V के साथ आरेख, अंशांकन वक्र कहलाता है।

विधि - 1. सर्वप्रथम उपरोक्त चित्रानुसार परिपथ संयोजन पूर्ण करते है।
2. अब प्राथमिक परिपथ की कुंजी K बंद कर देते है।
3. द्विमार्गी कुंजी के टर्मिनल X व Y के मध्य डॉट लगाकर मानक सेल को परिपथ में संयोजित करते है।
4. अब विसर्पी कुंजी को विभवमापी तार पर A सिरे से B सिरे की ओर चलाते हुए धारामापी में शून्य विक्षेप स्थिति प्राप्त करते है। सिरे A से इस बिन्दु की दूरी l_{0} नोट कर लेते है तथा

सूत्र $\phi=\frac{E_{0}}{l_{0}}$ से विभव-प्रवणता ϕ का मान ज्ञात कर लेते है।
5. अब द्विमार्गी कुंजी के टर्मिनल X व Y का संबंध विच्छेद कर टर्मिनल Y व Z के मध्य डॉट लगाकर प्रतिरोध बॉक्स के सिरों पर विभवान्तर को परिपथ से संयोजित करते है।
6. अब प्रतिरोध बॉक्स में उपयुक्त प्रतिरोध (जैसे $R=2 \Omega$) प्रयुक्त कर कुंजी K_{1} को बन्द कर देते है।
7. अब द्वितीयक परिपथ के धारा नियंत्रक $R_{h_{1}}$ को इस प्रकार समंजित करते है कि वोल्टमीटर में अल्पतम पाठ्यांक आये। यह पाठ्यांक नोटकर लेते है।
8. वोल्टमीटर के इस पाठ्यांक के संगत विभवमापी तार पर संतुलन स्थिति प्राप्त कर संतुलन लम्बाई l नोट करते है।
9. धारा नियत्रंक को भिन्न-भिन्न स्थितियों में रखकर, प्रत्येक बार वोल्टमीटर का पाठ्यांक तथा विभवमापी पर संतुलन लम्बाई नोट करते है। यह प्रक्रिया वोल्टमीटर की सम्पूर्ण परास तक दोहराकर पांच पाठ्यांक लेते है।
प्रेक्षण (Observations)- (i) मानक सेल का विद्युत वाहक बल $E_{0}=$ \qquad वोल्ट
(ii) वोल्टमीटर का अल्पतमांक $=\frac{\text { परास }}{\text { कुल खानों की संख्या }}=$ \qquad वोल्ट
(iii) मानक सेल के लिए संतुलन लम्बाई $l_{0}=$ \qquad मीटर

प्रेक्षण सारणी (Observation Table)

क्र.सं	वोल्टमीटर का पाठ्यांकV (वोल्ट)		विभवमापी तार पर संतुलन लम्बाई I (मीटर)	विभवान्तर का यथार्थ मान$\begin{gathered} V^{\prime}=\frac{E_{0}}{l_{0}} \times l \\ (\text { वोल्ट }) \end{gathered}$	वोल्टमीटर पाठ्यांक में त्रुटि $\Delta V=V-V^{\prime}$ (वोल्ट)
	भागों की संख्या n	$n \mathrm{X}$ अल्पमांक (वोल्ट)			
1भाग वोल्ट मी ${ }_{0}$ वोल्ट वोल्ट
2	भाग	... वोल्ट मी 0 वोल्ट वोल्ट
3भाग वोल्ट मी 0 वोल्ट वोल्ट
4भाग वोल्ट मी 0 वोल्ट वोल्ट
5भाग वोल्ट मी ${ }_{0}$ वोल्ट वोल्ट

गणना - (i) सूत्र $\phi=\frac{E_{0}}{l_{0}}$ से विभव प्रवणता की गणना करते है ।
(ii) प्रत्येक पाठ्यांक के संगत विभवान्तर का यथार्थ मान सूत्र $V^{\prime}=\frac{E_{0}}{l_{0}} \times l$ से ज्ञात करते है।
(iii) प्रत्येक पाठ्यांक के संगत त्रुटि $\left(V-V^{\prime}\right)$ की गणना करते है।
(iv) वोल्टमीटर के पाठ्यांक V को X - अक्ष पर तथा त्रुटि $\Delta V=\left(V-V^{\prime}\right)$ को Y - अक्ष पर लेकर उचित पैमाना मानकर आरेख खींचते है। देखें चित्र (6.3)

चित्र 6.3 : वोल्टमीटर का अंशाकन वक्र
(नोट- अंशांकन वक्र किसी भी आकृति का (zig-zag) प्राप्त हो सकता है। प्राप्त बिन्दुओं को क्रमिक रूप में मिलाया जाता है निष्कोण वक्र नहीं खींचा जाता)

परिणाम — दिये गए वोल्टमीटर का अंशांकन वक्र संलग्न आरेख अनुसार प्राप्त होता है। स्पष्ट है कि त्रुटि धनात्मक एवं ऋणात्मक दोनों प्रकार की हो सकती है।

सावधानियां -1. वोल्टमीटर उपुयक्त का परास होना चाहिए।
2. संयोजन दृढ व कसे हुए होने चाहिए।
3. एक बार प्राथमिक परिपथ का समंजन कर लेने के पश्चात् प्राथमिक परिपथ के धारा-नियंत्रक की स्थिति परिवर्तित नहीं करनी चाहिए। अन्यथा विभव प्रवणता परिवर्तित हो जाती है।
4. मानक सेल नया होना चाहिए। अन्यथा इसका वि.बा. बल कम हो जाता है।
5. विभवमापी तार की मोटाई एक समान होनी चाहिए ताकि विभव प्रवणता का मान नियत रहे।
6. प्रेक्षण लेते समय ही कुंजी की डॉट लगानी चाहिए ताकि तार में अधिक देर तक धारा प्रवाह न हो एवं यह गर्म न हो।
त्रुटि स्त्रोत- 1. विभवमापी तार की मोटाई, सर्वत्र एक समान न होना।
2. संचायक सेल का विद्युत वाहक बल नियत न रहना।
3. हो सकता है कि विभवमापी के तार की विभवप्रवणता नियत न रहे।

प्रयोग-7

उद्देश्य - विभवमापी की सहायता से किसी दिए गए अमीटर का अंशांकन करना एवं अंशांकन वक्र खींचना।

उपकरण — विभवमापी, दो संचायक सेल, दो धारा नियंत्रक, धारामापी, एक ओम की मानक प्रतिरोध कुण्डली, दो प्लग कुंजियां, एक द्विमार्गी कुंजी, डेनियल सेल, अमीटर, संयोजक तार आदि। अमीटर एवं उसके अंशाकन की आवश्यकता -

अमीटर, परिपथ में धारा का मापन करने के लिए प्रयुक्त किया जाता है। परिपथ में प्रवाहित सम्पूर्ण धारा अमीटर में होकर प्रवाहित हो सके, इसके लिए अमीटर को परिपथ में सदैव श्रेणीक्रम में संयोजित करते है। अमीटर, संयोजित करने पर परिपथ की धारा के मान में परिवर्तन न हो इसके लिए अमीटर का प्रतिरोध शून्य होना चाहिए, परंतु यह संभव नहीं है, अतः अमीटर का प्रतिरोध अल्प प्रतिरोध रखा जाता है जिसके लिए धारामापी कुण्डली के समान्तर क्रम में अल्प प्रतिरोध (शंट) संयोजित कर इसे अमीटर में रूपान्तरित करते है। चूंकि एक अमीटर का प्रतिरोध शून्य नहीं होता अतः परिपथ के श्रेणीक्रम में अमीटर संयोजित करने पर परिपथ का प्रभावी प्रतिरोध कुछ बढ जाता है जिससे परिपथ में प्रवाहित धारा के मान में कमी आ जाती है। इस प्रकार अमीटर द्वारा मापा गया धारा का मान त्रुटिपूर्ण होता है।

चूंकि विभवमापी अविक्षेप विधि सिद्धान्त पर विभवान्तर का मापन करता है। अतः विभवमापी से विभवान्तर का यर्थाथ मापन होता है। यदि यह विभवान्तर एक ओम के मानक प्रतिरोध के सिरों पर उत्पन्न हो तो -

$$
V=I R=I \times 1=I
$$

अर्थात् विभवमापी द्वारा मापा गया यथार्थ विभवान्तर प्रतिरोध में प्रवाहित धारा के यर्थाथ मान को व्यक्त करेगा। इस प्रकार अमीटर द्वारा मापे गये धारा के त्रुटिपूर्ण पाठ्यांक के संगत विभवमापी से धारा का यथार्थ मान ज्ञात किया जा सकता है। अमीटर के पाठ्यांक की विभवमापी के पाठ्यांक से तुलना करना अमीटर का अंशांकन कहलाता है।
सिद्धान्त-
(i) यदि डेंनियल सेल का विद्युत वाहक बल E विभवमापी के तार की लम्बाई I_{1} के लिए संतुलित हो तो

$$
\begin{equation*}
E=l_{1} \phi \tag{1}
\end{equation*}
$$

यहां ϕ विभवमापी के तार की प्रवणता है। यदि I ओम के मानक प्रतिरोध के सिरों के मध्य विभवान्तर V_{1} तार की लम्बाई l_{2} के लिए संतुलित हो तो

$$
\begin{equation*}
V_{1}=l_{2} \phi \tag{2}
\end{equation*}
$$

अतः समी (1)व(2) से

$$
\begin{equation*}
\frac{V_{1}}{E}=\frac{l_{2}}{l_{1}} \tag{2}
\end{equation*}
$$

या $\quad V_{1}=\frac{l_{2}}{l_{1}} E$
कुण्डली R में i_{1} धारा प्रवाहित हो रही हो तो ओम के नियम से -

$$
V_{1}=i_{1} R
$$

परन्तु $\mathrm{R}=1$ ओम अतः $V_{1}=i_{1}$
समी. (4) से $i_{1}=\frac{l_{2}}{l_{1}} E$
परिपथ चित्र (Circuit Diagram)-

जहां

AB	-	विभवमापी तार
$\mathrm{B}_{1}, \mathrm{~B}_{2}$	-	संचायक सेल
$R_{h_{1}}, R_{h_{2}}-$	धारा नियंत्रक	
$\mathrm{K}_{1}, \mathrm{~K}_{2}$	-	प्लग कुंजियां
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	-	द्विमार्गी कुंजी
G	-	धारामापी
A	-	अमीटर
E	-	डेनियल सेल
J	-	विसर्पी कुंजी

चित्र 7.1 : अमीटर के अंशाकन हेतु परिपथ
यदि इस धारा के लिए अमीटर में पाठयांक \boldsymbol{l} हो तो अमीटर के पाठयांक में त्रुटि $=i-i_{1}$ विभवमापी से ज्ञात की गई धारा को सही मानकर धारा नियंत्रक से परिपथ में धारा के मान को परिवर्तित करके अमीटर को पूर्ण परास के लिए अशांकित कर लेते है।
i तथा त्रुटि $\left(i-i_{1}\right)$ के मध्य ग्राफ खींच लेते है। यह ग्राफ ही अशांकन वक है।
विधि (Proudure)-

1. चित्र के अनुसार विभवमापी के प्राथमिक परिपथ को जोड़ देते है अर्थात संचायक सैल B_{1} के धनात्मक ध्रुव को विभवमापी के तार के A सिरे से तथा ऋणात्मक ध्रुव को धारा नियंत्रक व कुंजी K_{1} से होते हुए तार के सिरे B से जोड़ दीजिये।
2. डेनियल सैल के धनात्मक ध्रुव को तार के A सिरे से एवं ऋणात्मक सिरे को द्विमार्गी कुंजी के सिरे X से जोड़ देते है।
3. दूसरे संचायक सैल को 1 ओम के प्रतिरोध, धारा नियंत्रक $R_{h_{2}}$, कुंजी K_{2} तथा अमीटर A को श्रेणीकम में जोड़कर दूसरा परिपथ बना लीजिये।
4. मानक प्रतिरोध के सिरे P को तार के सिरे A से तथा Q को द्विमार्गी कुंजी के टर्मिनल Z से जोड़ दीजिये।
5. द्विमार्गी कुंजी के टर्मिनल Y व विसर्पी कुंजी J के मध्य एक गैल्वेनोमीटर लगा दीजिये।
6. कुंजी K_{2} में प्लग लगाकर धारा नियंत्रक Rh_{2} के मान को इतना कम कीजिये कि अमीटर के पूरे पैमाने पर विक्षेप आ जाये। अब कुंजी K_{1} को लगा दीजिये।
7. यदि मानक प्रतिरोध के सिरों पर विभवान्तर डेनियल सैल के वि.वा.बल से कम हो तो द्विमार्गी कुंजी में X व Y के मध्य प्लग लगाकर और यदि मानक प्रतिरोध के सिरों पर विभवान्तर डेनियल सैल के वि.वा.बल से अधिक हो तो द्विमार्गी कुंजी में Y व Z के मध्य प्लग लगाकर धारा नियंत्रक $R h_{1}$ को इस प्रकार व्यवस्थित कीजिये कि संतुलन बिन्दु विभवमापी के अंतिम तार पर आये।
8. I_{1} ज्ञात करना - कुंजी K_{1} में प्लग लगा दिजिये। द्विमार्गी कुंजी में X व Y के मध्य प्लग लगाकर विसर्पी कुंजी J को तार पर इस प्रकार व्यवस्थित कीजिये कि गेल्वेनोमीटर में विक्षेप शून्य हो जाये। इस प्रकार डेनियल सैल के वि.वा.बल से संतुलित होने वाली लम्बाई विभवमापी तार पर ज्ञात कीजिये। यह संतुलित लम्बाई I_{1} होगी।
9. i_{2} व i_{1} ज्ञात करना - द्विमार्गी कुंजी में X व Y के मध्य प्लग निकालकर Y व Z के मध्य प्लग लगा दीजिये। कुंजी K_{2} के मध्य प्लग को लगाकर धारा नियंत्रक Rh_{2} के मान को इस प्रकार व्यवस्थित कीजिये कि अमीटर का पाठयांक 0.1 एम्पीयर या 0.2 एम्पीयर हो अब 1 ओम के मानक प्रतिरोध के दोनों सिरों पर विभवान्तर से संतुलित होने वाली लम्बाई विभवमापी के तार पर ज्ञात कर लीजिये। यह लम्बाई l_{2} है। अमीटर का पाठयांक पढ़ लिजिये यह i है। परिपथ में प्रवाहित धारा i_{1} का सही मान सूत्र से ज्ञात करके त्रुटि $\left(i-i_{1}\right)$ ज्ञात कर लीजिये।
10. धारा नियंत्रक Rh_{2} के प्रतिरोध में परिवर्तन कर अमीटर में पाठयांक 0.1 एम्पीयर के कम में बढ़ाते जाइये। अमीटर के प्रत्येक पाठयांक के लिए विभवमापी के तार पर संतुलित लम्बाई ज्ञात कीजिये एवं उपरोक्त विधि से अमीटर से संबंधित त्रुटि ज्ञात कीजिये।
11. अमीटर के प्रेक्षित पाठयांकों को X अक्ष पर एवं उनसे सत्बन्धित त्रुटियों को Y अक्ष पर लेकर ग्राफ खींचिये। ग्राफ चित्र 7.2 के अनुसार होगा।

चित्र-7.2 : अमीटर का अंशाकन वक

नोट- यह आवश्यक नहीं हैं कि आपके प्रयोग से ग्राफ की आकृति ऐसी ही प्राप्त हो।
प्रेक्षण (Observations)
(i) डेनियल सेल का विद्युत वाहक बल Eo $=1.08$ वोल्ट
(ii) मानक प्रतिरोध $=1$ ओम
(iii) अमीटर का लघुत्तम माप $=$ \qquad एम्पीयर
(iv) l_{1} व l_{2} के लिए सारणी-

क्र.स	डेनियल सैल के वि.वा.ब. E से संतुलित लम्बाई l_{1} मी. में	1 ओम प्रतिरोध पर विभवान्तर से संतुलित लम्बाई l_{2} मी. में	1 ओम के प्रतिरोध से प्रवाहित वास्तविक धारा $i_{1}=E \frac{l_{2}}{l_{1}}$ एम्पीयर में	अमीटर में पाठयांक(i) एम्पीयर में	त्रुटि ($i \quad-i{ }_{1}$) एम्पीयर में
1 2 3 4 5	\qquad मी. \qquad मी. \qquad मी. \qquad मी. \qquad मी.	\qquad मी. \qquad मी. \qquad मी. \qquad मी. \qquad मी.	\qquad ए. \qquad ए. \qquad ए. \qquad ए. \qquad ए.	$\begin{aligned} & ~ ए . ~ \\ & \ldots ~ ए . ~ \\ & \ldots ~ ए . ~ \\ & \ldots ~ ए . ~ \\ & \ldots ~ ए . ~ \end{aligned}$	$\begin{aligned} & \ldots . . . \text { ए. } \\ & \ldots . . . \text { ए. } \\ & \ldots \text { ए. } \\ & \ldots . . . \text { ए. } \\ & \ldots . . . \text { ए. } \end{aligned}$

गणना - सूत्र $i_{1}=E \frac{l_{2}}{l_{1}}$ में मान रखकर i_{1} का मान ज्ञात कीजिये एवं i तथा $\left(i-i_{1}\right)$ में ग्राफ खींचिये।
परिणाम- अमीटर का प्रेक्षित पाठयांक तथा अमीटर पाठयांक की त्रुटि में खींचा गया ग्राफ ही अमीटर का अंशांकन वक्र है।
सावधानियां-

1. अमीटर उपयुक्त परास का होना चाहिए।
2. संयोजन दृढ़ व कसे हुए होने चाहिए।
3. मानक सेल (डेनियल सेल) नया होना चाहिए।
4. विभवमापी तार की मोटाई एक समान होनी चाहिए ताकि विभव प्रवणता नियत रहे।
5. एक बार प्राथमिक परिपथ का समंजन कर लेने के पश्चात् प्राथमिक परिपथ के धारा नियत्रंक की स्थिति परिवर्तित नहीं करनी चाहिए।
6. प्रेक्षण लेते समय ही कुंजियों की डॉट लगानी चाहिए ताकि तार में अधिक समय तक धारा प्रवाहित न हो एवं यह गर्म न हो।

त्रूटि स्त्रोत-

1. विभवमापी के तार का अनुप्रस्थ काट क्षेत्रफल प्रत्येक जगह समान नहीं हो सकता है।
2. प्राथमिक परिपथ में संचालक सेल का वि.वा. बदल सकता है।
3. हो सकता है कि विभवमापी के तार की विभव प्रवणता नियत न रहे।

मौखिक प्रश्न

1. अमीटर के अंशाकन से क्या तात्पर्य हैं?

उ. अमीटर के अंशाकन से तात्पर्य हैं कि अमीटर द्वारा लिये गये पाठयांक में कितनी त्रुटि रहती है।
2. मानक प्रतिरोध कुण्डली एक ओम की क्यों लेते है?

उ. जिससे कि कुण्डली के सिरों पर विभवान्तर कुण्डली में प्रवाहित धारा के बराबर हो जाये।
3. अमीटर अंशाकन वक्र अनियमित क्यों प्राप्त होता है?

उ. क्योंकि अमीटर में त्रुटि भी अनियमित शून्य धनात्मक एवं ऋणात्मक होती है।
4. क्या अन्य विधि से भी अमीटर का अंशाकन किया जा सकता है?

उ. सिल्वर वोल्टामीटर विधि द्वारा अमीटर का अंशाकन किया जा सकता है।
5. विभवमापी अथवा सिल्वर वोल्टामीटर में से कौन सी विधि अमीटर के अशांकन के लिए अच्छी है ?
उ. सिल्वर वोल्टामीटर विधि अधिक अच्छी है परन्तु यह विधि बहुत अधिक लम्बी होती है।
6. क्या इस प्रयोग में डेनियल सैल के स्थान पर अन्य सैल का भी उपयोग कर सकते हैं?

उ. डेनियल सैल के स्थान पर कैडमियम सैल का उपयोग किया जा सकता है।
7. विभवमापी सबसे अधिक सुग्राही कब होता है ?

उ. जब संतुलन बिन्दु विभवमापी के अन्तिम तार की लगभग पूर्ण लम्बाई पर प्राप्त हो तो विभवमापी सबसे अधिक सुग्राही होगा।

प्रयोग सं. 8

उद्देश्य - किसी गेलवेनोमीटर का प्रतिरोध अर्द्धविक्षेप विधि द्वारा ज्ञात करना तथा इसका दक्षतांक (Figure of merit) ज्ञात करना।
उपकरण - चल कुण्डली धारामापी, संचायक सेल या बैट्री एलीमीनेटर ($0-6$ वोल्ट), उच्च प्रतिरोध बॉक्स (HRB) 0-10 किलो ओम परास, प्रतिरोध बॉक्स (R.B.) 0-200 Ω परास, दो प्लग कुंजी, वोल्टमीटर, संयोजन तार, रेगमाल कागज आदि।
सिद्धांत एवं बनावट- धारामापी एक सुग्राही उपकरण है। यह उपकरण चुम्बकीय क्षेत्र में धारामापी कुण्डली पर बलयुग्म के आघूर्ण के सिद्धान्त पर कार्य करता है।
धारामापी दो प्रकार के होते हैं-
(1) चल चुम्बक धारामापी - उदाहरण- स्पर्शज्या धारामापी
(2) चल कुण्डली धारामापी - उदाहरण- कीलकित चल कुण्डली धारामापी (वेस्टन गेल्वेनोमीटर)
कीलकित चल कुण्डली धारामापी- धारामापी में कुण्डली को दो कीलकों (Pivots) की सहायता से एक स्थायी तथा शक्तिशाली नाल चुम्बक के अवतल ध्रुव खण्डोंके बीच संतुलित किया जाता है। कुण्डली के दोनों सिरे स्प्रिंगों द्वारा संयोजक पेच से जुड़े होते हैं। ये स्प्रिंग धाराप्रवाह के अतिरिक्त प्रत्यानयन बल युग्म उत्पन्न करने का काम भी करते हैं। जब कुण्डली में धारा प्रवाहित करते हैं तो कुण्डली विक्षेपित होती है। कुण्डली का विक्षेप पढ़ने के लिए कुण्डली के साथ हल्का एल्यूमिनियम का एक संकेतक लगा रहता है जो एक वृताकार पैमान पर घूमता है एवं पैमाने का शून्यांक मध्य में होता है। इस प्रकार का धारामापी आकार में छोटा होता है। साधारणतया इसका उपयोग प्रयोगशाला के कार्यों के लिए किया जाता है। इस धारामापी का उचित रूपान्तरण कर अमीटर एवं वोल्टमीटर बना सकते हैं।

चित्र 8.1 : कीलकित कुण्डली धारामापी

अर्द्ध विक्षेप विधि - जब समरूप एवं त्रिज्य चुम्बकीय क्षेत्र में कीलकित चल कुण्डली में धारा I प्रवाहित की जाती है तो कुण्डली में विक्षेप उत्पन्न होता है। यह विक्षेप धारा के समानुपाती होता है अर्थात्
$I \alpha \theta$

$$
\begin{equation*}
\text { या } \quad I=k \quad \theta \tag{1}
\end{equation*}
$$

यहाँ k एक समानुपाती नियंताक है जिसे धारामापी का दक्षतांक (figure of merit) कहते हैं।
जब परिपथ में प्रतिरोध R जोड़ते हैं तो धारामापी से प्रवाहित धारा

$$
\begin{equation*}
I_{g}=\frac{V}{G} \tag{2}
\end{equation*}
$$

इस स्थिति में कुंजी K_{2} खुली है।
यहाँ
$G=$ धारामापी का प्रतिरोध जिसे ज्ञात करना है।
यदि धारा I_{g} धारामापी में विक्षेप θ उत्पन्न करती है तो समी. (1) को इस प्रकार व्यक्त कर सकते हैं-

$$
\begin{equation*}
I_{\mathrm{g}}=k \theta \tag{3}
\end{equation*}
$$

समी. (2) व (3) से

$$
\begin{equation*}
\frac{V}{G}=k \theta \tag{4}
\end{equation*}
$$

यदि धारामापी के समांतर क्रम में जुड़े प्रतिरोध बॉक्स से ऐसे मान का प्रतिरोध
निकालते हैं जिसके कारण धाराामापी में विक्षेप $\frac{\theta}{2}$ हो जाता है अर्थात अर्द्ध विक्षेप की स्थिति में

$$
\begin{equation*}
\frac{V}{G+R}=\frac{k \theta}{2} \tag{5}
\end{equation*}
$$

समी. (4) व (5) से

$$
\frac{V}{G+R}=\frac{1}{2}\left(\frac{V}{G}\right)
$$

$$
\begin{array}{ll}
\text { या } & 2 G=G+R \\
\text { या } & G=R
\end{array}
$$

चित्र 8.2 : अर्द्ध विक्षेप विधि से धारामापी के प्रतिरोध हेतु परिपथ
42

अर्थात् धारामापी का प्रतिरोध उसके समांतर क्रम में जोड़े गये प्रतिरोध R के बराबर होगा।
दक्षतांक - धारामापी के पैमाने के एक भाग विक्षेप के लिए आवश्यक धारा को उसका दक्षतांक कहते हैं। यहाँ $k=\frac{E}{R^{\prime}+G}\left(\frac{1}{\theta}\right)$
विधि - 1. धारामापी का प्रतिरोध ज्ञात करने हेतु परिपथ का संयोजन चित्र 8.2 अनुसार करेंगे।
2. उच्च प्रतिरोध बॉक्स (HRB) से उच्च प्रतिरोध (किलो ओम) निकाले। फिर कुंजी K_{1} को लगाकर धारा प्रवाह कर धारामापी में विक्षेप देखें। यदि धारामापी में विक्षेप स्केल के बाहर हो तो उच्च प्रतिरोध R' का मान इतना बढ़ाये कि पैमाने पर विक्षेप अंश सम संख्या में हो। इस स्थिति में कुंजी K_{2} खुली होनी चाहिये।
3. अब कुंजी K_{2} को बंद कर प्रतिरोध बॉक्स (R.B.) में से R का मान इतना निकाले कि धारामापी में विक्षेप पहले का आधा $\left(\frac{\theta}{2}\right)$ हो जाए। R का यह मान धारामापी के प्रतिरोध (G) के बराबर होगा।
4. अब उच्च प्रतिरोध बॉक्स से R' के मान में परिवर्तन करके लगभग पाँच बार विधि (2) व (3) को दोहरा कर G का मान ज्ञात करें।
5. प्रत्येक प्रेक्षण सेट से G का मान ज्ञात कर माध्य G ज्ञात करें।
6. सूत्र $k=\frac{E}{R^{\prime}+G}\left(\frac{1}{\theta}\right)$ से k की गणना करें।

प्रेक्षण सारिणी

क्र.ंसं.	HRB से उच्च प्रतिरोध R'	धारामापी में में विक्षेप $\theta=\mathrm{n}$	धारामापी में विक्षेप $\left(\frac{n}{2}\right.$ भाग)	अर्द्ध विक्षेप के लिए R.B. से प्रयुक्त प्रतिरोध	$k=\frac{E}{R^{\prime}+G}\left(\frac{1}{\theta}\right)$
$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \\ & 5 . \end{aligned}$				 ऐ. / डिवी. \qquad ऐ. / डिवी \qquad ऐ. / डिवी. \qquad ऐ./ डिवी \qquad ऐ. / डिवी.

गणना - सूत्र $k=\frac{E}{R^{\prime}+G}\left(\frac{1}{\theta}\right)$ से दक्षतांक k की गणना करें।
परिणाम - दिये गये धारामापी का अर्द्ध विक्षेप विधि द्वारा प्रतिरोध $\mathrm{G}=\ldots .$. ओम तथा दक्षतांक $\mathrm{k}=. . . .$. ऐ. / अंश प्राप्त हुआ।

सावधानियां - 1. सभी संयोजन दृढ़ (कसे) होने चाहिये।
2. प्रयुक्त संचायक सेल पूर्णतः आवेशित होना चाहिए जिससे इसका वि.वा. बल सम्पूर्ण प्रयोग में स्थिर रहे अन्यथा सेल से स्थिर धारा प्राप्त नहीं होगी।
3. प्रयोग प्रारम्भ करने से पूर्व धारामापी की सुई शून्य पर होनी चाहिये अन्यथा इसमें त्रुटि होगी।
4. प्रतिरोध R के मान में वृद्धि या कमी धीरे धीरे करनी चाहिये।
5. उच्च प्रतिरोध बॉक्स (HRB) से निकाला गया प्रतिरोध उच्च होना चाहिये तथा इससे धारामापी

में विक्षेप सम संख्या में होना चाहिए।

मौखिक प्रश्न

प्र. 1 गेलवेनोमीटर (धारामापी) किसे कहते हैं?
उ. वह यंत्र जो किसी विद्युत परिपथ में धारा के प्रवाह का पता लगाने के लिए प्रयुक्त किया जाता है उसे धारामापी कहते हैं।
2. अमीटर किसे कहते हैं?

उ. वह यंत्र जो किसी विद्युत परिपथ में धारा मापन के लिए प्रयुक्त होता है उसे अमीटर कहते हैं।
3. धारामापी किस सिद्धान्त पर कार्य करता है?

उ. जब किसी धारावाही कुण्डली को चुम्बकीय क्षेत्र में लटकाया जाता है तो उस पर एक बल युग्म कार्य करता है जिसके कारण कुण्डली विक्षेपित होती है। इस बल युग्म का मान परिपथ या कुण्डली में प्रवाहित विद्युत धारा के अनुक्रमानुपाती होता है।
4. धारामापी कितने प्रकार के व कौन से होते हैं? प्रत्येक का उदाहरण दो।

उ. (1) चल चुम्बक प्रकार का धारामापी - स्पर्शज्या धारामापी।
(2) चल कुण्डली प्रकार का धारामापी - कीलकित चलकुण्डली (वेस्टन) धारामापी।
5. प्रयोगशाला में उपयोग में लाया जाने वाला धारामापी किस प्रकार का होता है?
उ. प्रयोगशाला में उपयोग में लाया जाने वाला धारामापी कीलकित चल कुण्डली (वेस्टन) धारामापी प्रकार का होता है।
6. धारामापी को अमीटर में कैसे रूपान्तरित किया जा सकता है?

उ. किसी धारामापी की कुण्डली के समान्तर क्रम में उपयुक्त मान का अल्प प्रतिरोध (शंट) लगाकर उसे अमीटर में रूपान्तरित किया जा सकता है।
7. आदर्श अमीटर का प्रतिरोध कितना होता है?

उ. शून्य
8. अमीटर को विद्युत परिपथ में किस प्रकार व क्यों लगाते हैं?

उ. अमीटर को विद्युत परिपथ में सदैव श्रेणीक्रम में ही जोड़ते हैं क्योंकि अमीटर परिपथ में धारा मापने के लिए प्रयुक्त होता है। अतः सम्पूर्ण धारा इसमें प्रवाहित होनी चाहिये।
9. वोल्टमीटर किसे कहते हैं?

उ. विद्युत परिपथ के किन्हीं दो बिन्दुओं के बीच विभवांतर मापने वाले यंत्र को वोल्टमीटर कहते हैं।
10. धारामापी को वोल्टमीटर में कैसे रूपान्तरित किया जा सकता है?

उ. धारामापी की कुण्डली के श्रेणीक्रम में उच्च प्रतिरोध तार लगाकर उसे वोल्टमीटर में रूपान्तरित करते हैं।
11. वोल्टमीटर को विद्युत परिपथ में कैसे जोड़ते हैं?

उ. वोल्टमीटर को विद्युत परिपथ में सदैव उन दो बिन्दुओं के समातंर क्रम में जोड़ा जाता है जिसके मध्य विभवांतर ज्ञात करना है।
12. वोल्टमीटर को सदैव समातंर क्रम में ही क्यों जोड़ते हैं?

उ. (1) वोल्टमीटर का उपयोग परिपथ के किन्हीं दो बिन्दुओं के मध्य विभवातंर के मापने के लिए किया जाता है इसलिए वोल्टमीटर को सदैव दो बिन्दुओं के मध्य समातंर क्रम में जोड़ा जाता है। (2) यदि वोल्टमीटर को विद्युत परिपथ के श्रेणीक्रम में जोड़ दे तो (a) यह सम्पूर्ण परिपथ का विभवांतर मापेगा। (b) इसका प्रतिरोध अत्यधिक (उच्च) होने के कारण यह परिपथ की धारा के मान को प्रभावित करेगा अर्थात् धारा को घटा देगा।
13. आदर्श वोल्टमीटर का प्रतिरोध कितना होता है?

उ. अनंत
14. अर्द्धविक्षेप विधि से धारामापी का प्रतिरोध ज्ञात करने हेतु कौनसा सूत्र काम में लेते हैं।
उ. $R=G$
15. आप धारामापी का प्रतिरोध किस विधि से ज्ञात कर सकते हैं?

उ. अर्द्ध विक्षेप विधि से।
16. क्या अर्द्ध विक्षेप विधि में धारामापी का प्रतिरोध \boldsymbol{G} सदैव उसके समातंर क्रम में जोड़े गये प्रतिरोध (शंट) \boldsymbol{S} के बराबर होता है?
उ. नहीं, यह तब ही सही है जबकि धारामापी के श्रेणीक्रम में जोड़े गये उच्च प्रतिरोध R' का मान S से बहुत अधिक हो अर्थात् $R^{\prime} \gg S$.
17. क्या अर्द्धविक्षेप विधि के अलावा किसी अन्य विधि से धारामापी को प्रतिरोध ज्ञात किया जा सकता है?
उ. धारामापी का प्रतिरोध अर्द्ध विक्षेप विधि के अलावा पोस्ट आफिस बाक्स विधि से भी ज्ञात किया जा सकता है। इसे थामसन विधि कहते हैं। केल्विन विधि से भी धारामापी का प्रतिरोध ज्ञात कर सकते हैं।
18. धारामापी का संकेतक किस धातु का बना होता है? क्यों?

उ. धारामापी का संकेतक एल्यूमिनियम का बनाते हैं क्योंकि एल्यूमिनियम अचुम्बकीय पदार्थ है एवं हल्का होने से जड़त्व कम है।
19. क्या यह संकेतक लोहे का भी बना सकते हैं?

उ. नहीं, क्योंकि लोहे का संकेतक होने पर धारामापी का चुम्बक इसे अपनी ओर आकर्षित करेगा।
20. संयोजी तारों पर धागा क्यों लिपटा रहता है?

उ. जिससे तारों के आपस में छू जाने पर सेल अथवा कोई भी परिपथ लघुपथित न हो।
21. धारामापी में धारा बहने से विक्षेप क्यों आता है?

उ. धारामापी में धारा बहने पर इसकी कुण्डली पर एक बल युग्म आघूर्ण कार्य करता है

जिससे कुण्डली के घूमने के कारण संकेतक चलता है अर्थात् विक्षेपित होता है।
22. धारामापी की सुग्राहिता का क्या अर्थ है?

उ. परिपथ में कम धारा प्रवाहित होने पर अधिक विक्षेप आये तो धारामापी सुग्राही होता है। अर्थात्- इकाई धारा से धारामापी में उत्पन्न विक्षेप को धारामापी की सुग्राहिता कहते है।

धारा सुग्राहिता $=\frac{\theta}{I_{g}}$ यहाँ, $I_{g}=$ धारामापी में प्रवाहित धारा

$$
\theta=\text { धारामापी के स्केल पर कुल भागों की संख्या }
$$

23. धारामापी की धारा \mathbf{I}_{g} किस प्रकार ज्ञात करेंगे?

उ. धारामापी के स्केल पर कुल भागों की संख्या (शून्य के एक दिशा में) तथा दक्षतांक का गुणनफल धारामापी की धारा के बराबर होता है। अर्थात् $I_{g}=k \theta$
24. दक्षतांक किसे कहते हैं?

उ. किसी धारामापी के पैमाने के एक भाग विक्षेप के लिए आवश्यक धारा को उसका दक्षतांक कहते हैं। यह धारामापी की धारा सुग्राहिता के व्युत्क्रम के बराबर होता है।

```
प्रयोग - 9 (अ)
```

उद्देश्य - दिए गए गेलवेनोमीटर को वांछित दी गयी परास के अमीटर में रूपान्तरित करना एवं सत्यापित करना।
उपकरण - ज्ञात प्रतिरोध एवं ज्ञात दक्षतांक का एक धारामापी, तॉबा, कान्सटेनटन या मैंगनीन का एक तार (26 या 30 गेज व्यास), एक सैल या संचायक सैल, एक मार्गी कुंजी, एक धारानियन्त्रक (परास $0-200 \Omega) 0-30 \mathrm{~mA}$ परास का एक अमीटर, $0-3 V$ परास का वोल्टमीटर, संयोजक तार एवं रेगमाल।
सिद्धान्त - धारामापी एक ऐसी युक्ति है जिसके द्वारा परिपथ की अल्प मान की धारा $0-100 \mathrm{~mA}$ तक की धारा मापी जा सकती हैं। धारामापी की कुण्डली का प्रतिरोध अधिक होने से इसके द्वारा मापी गयी धारा के मान में त्रुटि आती है। उच्चमान की धारा व धारा का मान यर्थाथ नापने के लिये, धारामापी की कुण्डली के समान्तर क्रम में उचित मान का न्यून प्रतिरोध जोड़ा जाता है। इस न्यून प्रतिरोध को शंट (S) कहते है। माना धारामापी कुण्डली का प्रतिरोध G है। धारामापी की कुण्डली के समान्तर शंट जोड़ने से बनी युक्ति को अमीटर कहते है। माना अमीटर की परास $0-I_{0}$ है एवं यहां I_{0} अमीटर में पूर्ण स्केल विक्षेप के लिये परिपथ की धारा है। यदि I_{g} धरामापी में पूर्ण स्केल विक्षेप की धारा हो तो शंट (S) से प्रवाहित धारा $I_{0}-I_{g}$ होगी।

चित्र 9.1 गेलवेनोमीटर को अमीटर में बदलना
शंट S व G समान्तर जुड़े होने से इन पर विभावन्तर समान होगा।

$$
\begin{align*}
& \left(I_{o}-I_{g}\right) S=I_{g} G \\
\therefore \quad & S=\frac{I_{o} G}{\left(I_{0}-I_{g}\right)} \tag{9.1}
\end{align*}
$$

अमीटर के पैमाने को इस प्रकार अंशांकित करते है कि यह परिपथ की धारा को सीधे ऐम्पीयर में प्रदर्शित करे। धारामापी का दिया गया दक्षतांक k है। k पैमाने के एक छोटे भाग से विक्षेप के लिये धारा होती है। माना पैमाने पर कुल विभाग N है।

$$
\therefore \quad I_{g}=k N
$$

परिपथ की किसी धारा I के लिये अमीटर में विक्षेप n भाग हो तो

$$
I=\frac{n \cdot I_{g}}{N}
$$

उपयोग में लिया गया शंट तार एक समरूप तार होता है। यदि शंट($S(S$ के तार के पदार्थ की प्रतिरोधकता ρ तथा त्रिज्या r हो तो इसकी लम्बाई निम्न सूत्र द्वारा ज्ञात कर सकते है -

$$
\begin{equation*}
l=\frac{S \pi r^{2}}{\rho} \tag{9.2}
\end{equation*}
$$

विधि -

1. अर्ध विक्षेप विधि द्वारा धारामापी की कुण्डली का प्रतिरोध G व दक्षतांक k का मान ज्ञात करते है। (यदि इनके मान दिये हुए न हो)।
2. धारामापी के पैमाने पर कुल विभागों की संख्या ज्ञात करते हैं। माना कुल विभाग N है।
3. $I_{g}=N k$ सूत्र द्वारा धारामापी में पूर्ण स्केल विक्षेपके लिये धारा I_{g} का मान ज्ञात करते है।
4. शंट S के मान को सूत्र $S=\frac{I_{g} G}{I_{0}-I_{g}}$ से ज्ञात करते हैं।
5. शंट के तार की त्रिज्या (r) पेचमापी की सहायता से ज्ञात करते है । शंट के तार के पदार्थ की ज्ञात प्रतिरोधकता ρ एवं r की सहायता से शंट के तार की लम्बाई l निम्न सूत्र द्वारा ज्ञात करते है।

$$
l=\frac{S \pi r^{2}}{\rho}
$$

6. गणना से प्राप्त शंट की लम्बाई से $2-3$ सेमी अधिक लम्बाई का शंट तार लेकर इसे धारामापी की कुण्डली के समान्तर क्रम में जोड़ते हैं।
7. चित्र 7.2 (अ) में दिखाये परिपथ का संयोजन करते हैं।

चित्र 7.2 (अ)
8. जोड़े गये शंट तार की लम्बाई को इस प्रकार व्यवस्थित करते हैं कि धारामापी में पूर्ण स्केल विक्षेप प्राप्त होने पर परिपथ के मानक अमीटर (A) में विक्षेप 30 mA प्राप्त हो। शंट तार की इस वास्तविक लम्बाई l 'को मीटर पैमाने द्वारा नाप कर ज्ञात करते हैं।
9. धारामापी $0-30 \mathrm{~mA}$ परास के अमीटर में रूपान्तरित हो गया है।
10. शंट तार की वास्तविक नापी गयी लम्बाई, त्रिज्या व ज्ञात प्रतिरोधकता द्वारा शंट का प्रतिरोध ज्ञात करते है।

$$
S^{\prime}=\frac{\rho l^{\prime}}{\pi r^{2}}
$$

11. शंट के प्राप्त प्रतिरोध S^{\prime} की तुलना सूत्र $S=\frac{I_{o} G}{I_{0}-I_{g}}$ से प्राप्त प्रतिरोध से करते है ।

प्रेक्षण -

1. धारामापी का दिया गया प्रतिरोध $G=$ \qquad
2. धारामापी का दिया गया दक्षतांक

$$
K=\cdots \cdots \quad \frac{\text { एम्पी. }}{\text { भाग }}
$$

3. धारामापी के पैमाने पर कुल विभागों की संख्या $N=$ \qquad भाग
4. पूर्ण स्केल विक्षेपके लिये धारा $I_{g}=k N=$ \qquad एम्पी.
5. शंट तार की त्रिज्या

पेचमापी का अल्पतमांक $=\frac{\text { चूडी अंतराल }}{\text { वृत्ताकार पैमाने पर विभागों की संख्य T }}$

$$
=
$$

\qquad सेमी
शुन्यांक त्रुटि $=$ \qquad भाग (चिन्ह सहित)

तार के व्यास की सारणी

किसी एक दिशा में									
क्र. ंसं.	प्रधानपै. का पाठ्यांक का (सेमी) a	वृ.पै. का संपातित भाग n	वृ.पै. का पाठयांक $c=n \times L . c$	व्यास $D_{1}=a+c$	प्रधान पैमाने का पाठ्यांक a सेमी	वृ.पै. का संपातित भाग n	वृ. पै. का पाठ्यांक $c^{\prime}=n^{\prime} \times L . c$	व्यास $D_{2}=a+c,$	औसत व्यास
1.	$\begin{aligned} & \ldots . . \text { सेमी } \\ & \ldots . . \text { सेमी } \end{aligned}$ भाग	… सेमी … सेमी सेमी ... सेमी	$\begin{aligned} & \ldots . \text { सेमी } \\ & \ldots \text { सेमी } \end{aligned}$	$\begin{aligned} & \text {.... भाग } \\ & \text {.... भाग } \end{aligned}$ सेमी सेमी	... सेमी सेमी	...सेमी

49

माध्य व्यास $=$ \qquad सेमी

गणना —

1. शंट प्रतिरोध $\quad S=\frac{I_{o} G}{I_{0}-I_{g}}$
2. शंट तार के पदार्थ की दी गयी प्रतिरोधकता $\rho=$ \qquad Ω मीटर
3. शंट तार की लम्बाई

$$
l=\frac{S \pi r^{2}}{\rho}
$$

\qquad सेमी
4. दी गई परास के लिये शंट तार की नापी गयी लम्बाई $l^{\prime}=$ \qquad सेमी
5. नापी गयी लम्बाई द्वारा शंट तार का प्रतिरोध

$$
S^{\prime}=\frac{\rho l^{\prime}}{\pi r^{2}}=
$$

\qquad Ω

परिणाम -

1. धारामापी को 0 से 30 mA परास के अमीटर मे रूपान्तरित किया।
2. शंट तार का गणना द्वारा प्रतिरोध $\mathrm{S}=$ \qquad Ω
3. शंट तार का नापा गया प्रतिरोध $S^{\prime}=$ \qquad Ω
4. S व S^{\prime} में अन्तर नगण्य प्राप्त होता है, रूपान्तरण सही है।

सावधानियॉ -

1. प्रयुक्त मानक अमीटर दी गयी परास का ही होना चाहिए।
2. प्रयोग प्रारम्भ करते समय अमीटर व धारामापी का संकेतक पैमाने के शून्य पर रहना चाहिये।
3. शंट तार की लम्बाई गणना से प्राप्त लम्बाई से $2-3$ सेमी अधिक लेनी चाहिये।
4. दी गयी परास के लिये शंट तार को व्यवस्थित कर शंट तार की लम्बाई टर्मीनलों के मध्य सही नापनी चाहिये।
त्रुटियों के उद्गम -
5. धारामापी व अमीटर का संकेतक प्रारम्भ में पैमाने के शून्य पर न हो।
6. शंट तार की लम्बाई नापने में त्रुटि हो।
7. सभी टर्मीनल कसे न हों।

प्रयोग 9 (ब)

उद्देश्य - दिए गए गेलवेनोमीटर को वांछित दी गयी परास के वोल्टमीटर में रूपान्तरित करना एवं इसे सत्यापित करना।

उपकरण -
ज्ञात प्रतिरोध एवं दक्षतांक का एक धारामापी, एक प्रतिरोध बॉक्स 0 से $10 K \Omega$ परास का, संचायक सैल, धारा नियन्त्रक ($0-200 \Omega$ परास), एकमार्गी कुंजी, एक वोल्टमीटर $(0-3 \mathrm{~V}$ परास) कान्सटेन्टन या मैंगनीन का एक तार, संयोजक तार, रेगमाल।

सिद्धान्त -

धारामापी की कुण्डली के श्रेणी क्रम में उचित मान (परास के अनुसार) का उच्च प्रतिरोध का तार जोड़कर धारामापी को वोल्टमीटर में रूपान्तरित कर सकते है।

परिपथ में वोल्टमीटर उस विद्युत युक्ति के समान्तर जोड़ते हैं जिसके सिरों के मध्य विभवान्तर नापना है।

धारामापी की कुण्डली का ज्ञात प्रतिरोध G एवं पूर्ण स्केल के विक्षेप की धारा I_{g} हो तो धारामापी पर विभवान्तर $I_{g} G$ होगा।

माना धारामापी को $0-V_{0}$ वोल्ट की परास के वोल्टमीटर में रूपान्तरित करना है। $0-V_{0}$ वोल्ट की परास के वोल्टमीटर में रूपान्तरण के लिये धारामापी की कुण्डली के श्रेणी क्रम में जोड़े गये उच्च प्रतिरोध का मान $\quad R=\frac{V_{o}}{I_{g}}-G$

चित्र 9.3 : गेलवेनोमीटर का वोल्टमीटर रूपांतरण
विधि -

1. धारामापी की कुण्डली का ज्ञात प्रतिरोध G व ज्ञात दक्षतांक k का मान नोट करते है।
2. धारामापी के शून्य के किसी एक ओर पैमाने पर कुल भागों की संख्या ज्ञात करते है। माना भागों की संख्या N है।
3. धारामापी मे पूर्ण स्केल विक्षेप की धारा $I_{g}=N k$ ज्ञात करते हैं।
4. वोल्टमीटर की परास $0-\mathrm{V}_{0}$ के लिये जोड़े जाने वाले उच्च प्रतिरोध $R=\frac{V_{o}}{I_{g}}-G$ से ज्ञात

करते है।
5. चित्र 9.4 में दिखाये परिपथ के अनुसार संचायक सैल को कुंजी, धारा नियन्त्रक, एवं रूपान्तरित धारामापी की परास के बराबर परास के वोल्टमीटर से जोड़ते है। इस वोल्टमीटर के समान्तर क्रम में धारामापी व उच्च प्रतिरोध बाक्स को जोड़ते है।

चित्र 9.4 : गेलवेनोमीटर को वोल्टमीटर रूपांतरण परिपथ
कुंजी K को बन्द करते हैं। धारा नियन्त्रक की किसी स्थिति के साथ प्रतिरोध बॉक्स से इतना प्रतिरोध निकालते हैं कि वोल्टमीटर में विक्षेप परास अधिकतम मान के बराबर आ जाये एवं उसी समय धारामापी में विक्षेप पूर्ण स्केल विक्षपे के बराबर आ जाये। प्रतिरोध बॉक्स से निकाले गये कुल प्रतिरोध R^{\prime} का मान ज्ञात करते हैं।
6. धारामापी की कुण्डली के श्रेणी में R मान का प्रतिरोध तार जोड़ते है।

प्रेक्षण - 1. धारामापी की कुण्डली का दिया गया प्रतिरोध $G=$ Ω
2. धारामापी का दिया गया दक्षतांक $\quad k=\ldots \frac{\text { ए म्पीय }}{\text { भाग }}$
3. धारामापी के पैमाने के शून्य के किसी एक ओर विभागों की संख्या $N=$ \qquad भाग
4. धारामापी में पूर्ण स्केल विक्षेप (N भाग) के लिये धारा $I_{g}=k N=$ \qquad एम्पी
5. प्रतिरोध बाक्स से निकाला गया कुल प्रतिरोध $R^{\prime}=$ \qquad Ω

गणना -
धारामापी के श्रेणी क्रम में जोड़े जाने वाले प्रतिरोध का मान

$$
R=\frac{V_{o}}{I_{g}}-G \quad \ldots \ldots \ldots \ldots
$$

परिणाम -

1. धारामापी की कुण्डली के श्रेणी क्रम में R^{\prime} का मान का प्रतिरोध जोड़ने पर धारामापी
$0-V_{0}$ परास के वोल्टमीटर में रूपान्तरित हुआ।
2. गणना से प्राप्त R का मान $R=$. \qquad
3. प्रेक्षण से प्राप्त R^{\prime} का मान $R^{\prime}=\ldots \ldots ~ \Omega$
4. पूर्ण स्केल विक्षेष के लिये धारा $I_{\mathrm{g}}=$ \qquad एम्पी
5. R व R^{\prime} के मान लगभग समान प्राप्त होते हैं। इनमें अन्तर नगण्य प्राप्त होता है। अतः रूपान्तरण सही है।
सावधानियाँ -
6. प्रतिरोध बाक्स उच्च परास का लेना चाहिये।
7. श्रेणी क्रम में जोड़े जाने वाले प्रतिरोध का मान सही ज्ञात करना चाहियें।
8. धारामापी व वोल्टमीटर में शून्य त्रुटि नहीं होनी चाहिये।

त्रुटियों के उद्गम -

1. धारामापी व वोल्टमीटर का संकेतक प्रारम्भ में पैमाने के शून्य पर न हो।
2. सभी टर्मिनल कसे न होने पर।
3. श्रेणी क्रम में जोड़े गये प्रतिरोध R का मान सही न होने पर।

मौखिक प्रश्न 9 (अ) व (ब)
प्र.1. धारामापी को अमीटर में किस प्रकार बदल सकते हैं ?
उ. धारामापी की कुण्डली के समान्तर क्रम में न्यून प्रतिरोध लगाकर।
प्र.2. शंट प्रतिरोध क्या हैं ?
उ. न्यून प्रतिरोध के तार को शंट प्रतिरोध कहते है।
प्र.3. शंट का मान किस आधार पर निर्धारित किया जाता है ?
उ. अमीटर की परास पर।
प्र.4. आदर्श अमीटर का प्रतिरोध कितना होता है ?
उ. शून्य
प्र.5. परिपथ में अमीटर किस क्रम में जोड़ा जाता है ?
उ. श्रेणी क्रम में
प्र.6. धारामापी व अमीटर में क्या अन्तर है ?
उ. धारामापी से प्रवाहित धारा की दिशा ज्ञात करते है जबकि अमीटर से प्रवाहित धारा का मान ज्ञात करते है।
प्र.7. प्रयोगशाला में उपयोग में लिया गया धारामापी किस प्रकार का है ?
उ. किलकित रूद्धदोल चल कुण्डली धारामापी।
प्र.8. अमीटर की परास को किस प्रकार परिवर्तित कर सकते हैं ?
उ. शंट का मान परिवर्तित कर।

प्र.9. धारामापी का दक्षतांक किसे कहते है ?
उ. धारामापी के पैमाने पर एक भाग के विक्षेप के लिये आवश्यक धारा को दक्षतांक कहते है।
प्र.10. दक्षतांक का मात्रक क्या है ?
उ. एम्पीयर प्रतिभाग
प्र.11. धारा सुग्रहिता किसे कहते है ?
उ. इकाई धारा से उत्पन्न विक्षेप को धारा सुग्राहिता कहते है। यह दक्षतांक के व्युत्क्रम के बराबर होती है।
प्र.12. धारामापी को वोल्टमीटर में किस प्रकार बदला जा सकता है ?
उ. धारामापी की कुण्डली के श्रेणी क्रम में उच्च प्रतिरोध लगाकर।
प्र.13. उच्च प्रतिरोध का मान किस आधार पर निर्धारित किया जाता है ?
उ. वोल्टमीटर की परास पर।
प्र.14. आदर्श वोल्टमीटर का प्रतिरोध कितना होता है ?
उ. अनन्त।
प्र.15. वोल्टमीटर को परिपथ में किस प्रकार लगाया जाता है ?
उ. जिस युक्ति के सिरों पर विभवान्तर नापना है उस के सिरों के समान्तर जोड़ते हैं।
प्र.16. क्या वोल्टमीटर को परिपथ में श्रेणी क्रम में जोड़ा जा सकता है।
उ. नहीं, क्योंकि वोल्टमीटर को परिपथ के श्रेणी क्रम में जोड़ने पर इसका उच्च प्रतिरोध परिपथ के श्रेणीक्म आ जायेगा एवं परिपथ में प्रवाहित धारा नगण्य हो जायेगी।

प्रयोग -10

उद्देश्य - स्वरमापी की सहायता से प्रत्यावर्ती धारा की आवृति ज्ञात करना।
उपकरण - स्वरमापी जिस पर नर्म लोहें का तार खिंचा हो, एक विद्युत चुम्बक, एक अपचायी ट्रांसफार्मर, एक हैंगर, $1 / 2-1 / 2$ किग्रा के बाट, भौतिक तुला, बाट बाक्स, ऊपरी सिरो से तीखे दो सेतु। सिद्धान्त - दृढ़ सिरों के मध्य तने हुये तार के मूल स्वर की आवृति निम्न सम्बन्ध द्वारा दी जाती है।

$$
n=\frac{1}{2 l} \sqrt{\frac{T}{m}}
$$

यहॉ l तने हुये तार की लम्बाई, T तार पर तनाव बल व m तार की एकांक लम्बाई का द्रव्यमान का है।

विद्युत चुम्बक की कुण्डली में धारा प्रवाहित करने पर इसका चुम्बकत्व ततक्ष्षणिक धारा के अनुक्रमानुपाती होता है। प्रत्यावर्ती धारा के एक चक्र में चुम्बक का एक सिरा आधे चक्र के लिये उत्तरी ध्रुव बनता है तो वही सिरा अगले आधे चक्र मे दक्षिणी ध्रुव बन जाता है। यदि स्वरमापी के तार का मध्य भाग विद्युत चुम्बक के किसी एक ध्रुव के निकट हो तो धारा के एक चक्र में तार चुम्बक के ध्रुव से दो बार खिंचता है एवं दो बार मुक्त होता है। क्योंकि नर्म लोहे का तार चुम्बकीय क्षेत्र से आकर्षित होता है, इसलिये चुम्बक का तार के निकट सिरा उत्तरी ध्रुव बने या दक्षिणी ध्रुव बने दोनों ही अवस्थाओं में तार आकर्षित होता है। अनुनाद की अवस्था में तार प्रत्यावर्ती धारा की आवृत्ति की दुगनी आवृति से कम्पन करता है। स्वरमापी तार की आवृति n होने पर प्रत्यावर्ती धारा की आवृति (f)

$$
f=\frac{n}{2}=\frac{1}{4 l} \sqrt{\frac{T}{m}}
$$

समीकरण 10.2 से - $4 n^{2} l^{2} m=T$

$$
l^{2}=\frac{1}{4 n^{2} m} \mathrm{~T}
$$

l^{2} के मान Y अक्ष पर व T के मान X अक्ष पर लेकर l^{2} व T के मध्य ग्राफ खींचते है, ग्राफ

सीधी रेखा प्राप्त होती है।
सीधी रेखा का ढाल $=\frac{1}{4 n^{2} m}$ होगा।

$$
\begin{aligned}
\therefore n^{2} & =\frac{1}{4 \mathrm{~m} \times \text { ढाल }} \\
\mathrm{n} & =\frac{1}{2 \sqrt{\mathrm{~m} \times \text { ढाल }}}
\end{aligned}
$$

प्रत्यावर्ती धारा की आवृति

$$
f=\frac{\mathrm{n}}{2}=\frac{1}{4} \times \frac{1}{\sqrt{\mathrm{~m} \times \text { ढाल }}}
$$

विधि - 1. स्वरमापी तार पर हैंगर में बाट लटकाकर तनाव उत्पन्न करते है।
2. स्टैण्ड पर विद्युत चुम्बक लगाकर इसकी कुण्डली का सम्बन्ध अपचायी ट्रासफार्मर की द्वितीयक कुण्डली से करते है स्टैण्ड को इस प्रकार व्यवस्थित करते हैं कि विद्युत चुम्बक का कोई एक ध्रुव (सिरा) सेतु के मध्य स्वरमापी तार के मध्य भाग के निकट रहे।

चित्र 10.1 : सोनोमीटर से प्रत्यावर्ती धारा की आवृत्ति ज्ञात करना
3. विद्युत चुम्बक की कुण्डली में प्रत्यावर्ती धारा प्रवाहित करते हैं सेतु W व W^{\prime} को दांये बांये विस्थापित कर ऐसी स्थिति लाते हैं कि सेतुओं के मध्य तार के भाग AB के कम्पनों का आयाम अधिकतम हो।
4. स्वरमापी पर लगे मीटर पैमाने पर W व W^{\prime} की स्थितियाँ नोट कर कम्पित तार AB की अनुनादित लम्बाई ज्ञात करते है।
5. हैंगर में $\frac{1}{2}-\frac{1}{2}$ किलो के बाट बढ़ाकर तार पर तनाव परिवर्तित कर प्रत्येक तनाव के संगत

अनुनादित लम्बाई (l) ज्ञात करते हैं।
6. अनुनादित लम्बाई के प्रेक्षण लेने पश्चात् स्वरमापी से नर्म लोहे के तार को निकालकर भौतिक तुला से इसका द्रव्यमान ज्ञात करते हैं। तार की लम्बाई मीटर पैमाने से ज्ञात करते है। प्राप्त द्रव्यमान में लम्बाई का भाग देकर तार की एकांक लम्बाई का द्रव्यमान m ज्ञात करते है।

प्रेक्षण -

1. स्वरमापी तार की लम्बाई $=$ \qquad m
2. तार का द्रव्यमान $=$ \qquad g = \qquad kg
3. तार की एकांक लम्बाई का द्रव्यमान $\mathrm{m}=$ \qquad kg / m प्रेक्षण सारणी

क्र. सं.	बाट+हेन्गर का द्रव्यमान M kg	तार पर तनाव $\mathrm{T}=\mathrm{Mg}$ N	अनुनादित लम्बाई l			$\begin{aligned} & \text { माध्य } \\ & l(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & n=\frac{1}{2 l} \sqrt{\frac{T}{m}} \\ & \mathrm{~Hz} \end{aligned}$
			$\begin{gathered} 1 \\ \text { प्रथम बार } \\ \mathrm{cm} \\ \hline \end{gathered}$	$\begin{gathered} \text { द्वितीय बार } \\ \text { cm } \end{gathered}$	$\begin{aligned} & \text { माध्य } \\ & \mathrm{cm} \end{aligned}$		
1 kg N cm cm cm m Hz
2 kg N cm cm cm m Hz
3 kg N	$\ldots \ldots . . \mathrm{cm}$ cm cm m Hz
4 kgN cm cm cm m Hz
5 kgN	$\ldots \ldots . \mathrm{cm}$ cm cm m Hz

गणना -

1. स्वरमापी तार की अनुनादी आवृति प्रत्येक पाठ्यांक के लिये $n=\frac{1}{2 l} \sqrt{\frac{T}{m}}=$ \qquad
2. माध्य $n=$ \qquad H_{Z}
3. प्रत्यावर्ती धारा की आवृति $f=\frac{n}{2}=$ \qquad H_{Z}
4. l^{2} के मान Y अक्ष पर व T के मान X अक्ष पर लेकर l^{2} व T मे एक ग्राफ खींचते है। ग्राफ सरल रेखा प्राप्त होता है। ग्राफ का ढाल ज्ञात करते हैं। ग्राफ से ढाल $=\frac{P Q}{Q R}$

सूत्र-

$$
f=\frac{1}{4} \times \frac{1}{\sqrt{m \times \text { ढाल }}}=.
$$

\qquad H_{Z}

परिणाम -

1. l^{2} व T के मध्य ग्राफ सरल रेखा प्राप्त होता है।
2. ग्राफ का ढाल $\frac{l^{2}}{T}=\frac{1}{4 n^{2} m}=$ \qquad
3. प्रत्यावर्ती धारा की आवृति $f=\frac{n}{2}$
(i). गणना से \qquad H_{Z} प्राप्त हुयी ।
(ii) ग्राफ से \qquad H_{Z} प्राप्त हुयी ।

सावधानियॉ -

1. स्वरमापी की घिरनी घर्षण रहित होनी चाहिये।
2. सेतुओंके ऊपरी सिरे तीक्ष्ण होने चाहिये।
3. स्वरमापी तार का काट क्षेत्र समरूप होना चाहिये एवं इसमें कोई ऐंठन नहीं होनी चाहिये।
4. विद्युत चुम्बक का ध्रुव स्वरमापी तार के मध्य भाग के निकट होना चाहिये।
5. प्रत्येक प्रेक्षण के पश्चात् कुछ मिनट के लिये प्रत्यावर्ती धारा बंद रखनी चहिए।

त्रुटियों के स्त्रोत -

1. स्वरमापी की घिरनी घर्षण रहित न होने पर।
2. प्रत्यावर्ती धारा की आवृति अचर न होने पर।

मौखिक प्रश्न -
प्र.1. अनुप्रर्थ तंरग किसे कहते हैं?

उ. तरंग, जिसमें माध्यम के विक्षुब्ध कण तरंग संचरण के लम्बवत् कम्पन करते हैं अनुप्रस्थ तरंग कहलाती है।

प्र.2. अप्रगामी तरंगे किन्हें कहते हैं?
उ. तरंगे जिनके द्वारा उर्जा का संचरण नहीं होता है एवं तरंगाग्र आगे की ओर संचारित होते हुये प्रतीत नहीं होते हैं, अप्रगामी तरंगें कहलाती है।
प्र.3. निस्पन्द व प्रस्पन्द बिन्दु किन्हें कहते हैं ?
उ. (i) निस्पन्द बिन्दु - अप्रगामी तरंग प्रतिरूप में न्यूनतम विस्थापन के बिन्दु को निस्पन्द बिन्दु कहते है।
(ii) प्रस्पन्द बिन्दु - अप्रग्रामी तरंग प्रतिरूप में अधिकतम विस्थापन के बिन्दुओं को प्रस्पन्द बिन्दु कहते है।
प्र.4. दो क्रमागत निस्पन्द बिन्दुओं के मध्य दूरी कितनी होती है ?
उ. $\frac{\lambda}{2}$
प्र.5. स्वरमापी तार के किस भाग में अनुनाद की अवस्था प्राप्त होती है ?
उ. सेतुओंके मध्य।
प्र.6. स्वरमापी तार में कौन सी तरंगे बनती है ?
उ. अनुप्रस्थ अप्रगामी तरंगे।
प्र.7. निस्पन्द व प्रस्पन्द कहॉ बनते है ?
उ. सेतुओं पर निस्पन्द व तार के ठीक बीच में प्रस्पन्द।
प्र.8. स्वरमापी तार में कौनसा स्वर उत्पन्न होता है ?
उ. मूल स्वर
प्र.9. तार में मूल स्वर ही क्यों लेते है ?
उ. तार मे मूल स्वर बनने पर स्वरमापी के तार का कम्पन आयाम अधिकतम होता है एवं अनुनाद की सही अवस्था प्राप्त होती है।
प्र.10. प्रत्यावर्ती धारा की आवृति किसे कहते है ?
उ. प्रत्यावर्ती धारा की दिशा एक नियत समय अन्तराल में विपरीत हो जाती है। प्रति सैकण्ड प्रत्यावर्ती धारा के चक्रों की संख्या को आवृति कहते है।
प्र.11. घरों में आने वाली प्रत्यावर्ती धारा की आवृति कितनी होती है ?
उ. 50 हर्ट्ज

प्र.12. अपचायी ट्रांसफार्मर किसे कहते हैं ?
उ. उच्च प्रत्यावर्ती वोल्टता को निम्न प्रत्यावर्ती वोल्टता में रूपान्तरित करने वाले ट्रांसफार्मर को अपचायी ट्रांसफार्मर कहते है।

प्र.13. प्रत्यावर्ती धारा किसे कहते है ?
उ. धारा जिसके तात्क्षणिक मान व दिशा समय के साथ परिवर्तित होते है एवं प्रतिचक्र धारा का औसत मान शून्य होता है।
प्र.14. क्या स्वरमापी तार प्रत्यावर्ती धारा की आवृति से कम्पन्न करता है ?
उ. नहीं। प्रत्यावर्ती धारा की आवृति की दुगनी आवृति से।
प्र.16. स्वरमापी तार किस पदार्थ का बना होता है ?
उ. नर्म लोहे के तार का जो चुम्बकीय पदार्थ होता है।
प्र.17. प्रत्यावर्ती धारा के कारण विद्युत चुम्बक के ध्रुव किस प्रकार बनते है ?
उ. विद्युत चुम्बक का कोई भी सिरा यदि प्रत्यावर्ती धारा के किसी अर्ध चक्र के लिये उत्तरी ध्रुव बनता है तो अगले अर्ध चक्र के लिये दक्षिणी ध्रुव बनेगा।
प्र.18. स्वरमापी तार उत्तरी ध्रुव व दक्षिणी ध्रुव में से किस ध्रुव से आकर्षित होता है ?
उ. दोनों ध्रुवों से।

क्रियाकलाप -1

उद्देश्य - बहुलमापी द्वारा किसी दिये गये परिपथ के सातंत्य का परीक्षण करना तथा प्रतिरोध, वोल्टता $(\mathrm{AC} / \mathrm{DC})$ एवं धारा $(\mathrm{AC} / \mathrm{DC})$ को मापना।
उपकरण - एक मल्टीमीटर, तीन कार्बन प्रतिरोध, अपचायी ट्रांसफार्मर $(2 \mathrm{~V}, 4 \mathrm{~V}, 6 \mathrm{~V}$ के टर्मिनल युक्त), एक एलीमीनेटर $(2 \mathrm{~V}, 4 \mathrm{~V}, 6 \mathrm{~V}$ के टर्मिनल युक्त), एक 100Ω का प्रतिरोध AC परिपथ के लिये, एक मानक प्रतिरोध कुण्डली, कुंजी, संयोजक तार।
सिद्धान्त - कार्बन प्रतिरोध - अधिकांश विद्युत् परिपथों में कार्बन प्रतिरोध का उपयोग किया जाता है। इन प्रतिरोधों को चालक पदार्थ कार्बन ब्लैक में बन्धक कारक (resin) कुचालक पदार्थ मिलाकर बनाया जाता है। इनके मिश्रण को दबाकर पतले बेलनाकार स्वरूप में लेते है बेलन के दोनों सिरों पर परिपथ में संयोजन के लिये चालक तार जोड़े जाते हैं। $1 / 2$ वाट, 1 वाट व 2 वाट क्षमता के कार्बन प्रतिरोध उपलब्ध रहते है। कार्बन प्रतिरोधकों का प्रतिरोध एवं सह्यता बेलनाकार पृष्ठ पर बने रंगीन वृतों से वर्ण संकेत द्वारा ज्ञात कर सकते है।

प्रतिरोध वर्ण संकेत सारणी

रंग	अंक	गुणक	सह्यता प्रतिशत
काला (Black)	0	10^{0}	
भूरा (Brown)	1	10^{1}	
लाल (Red)	2	10^{2}	
नारंगी (Orange)	3	10^{3}	
पीला (Yellow)	4	10^{4}	
हरा (Green)	5	10^{5}	
नीला (Blue)	7	10^{6}	
बैंगनी (Violet)	8	10^{7}	
ग्रे (Gray)	9	10^{8}	
सफेद (White)	-	10^{9}	
सुनहरी (Golden)	-	10^{-1}	5%
चॉदी सा (Silvery)		10^{-2}	10%

प्रतिरोध ज्ञात करने के लिये - कार्बन प्रतिरोध की बेलनाकार पृष्ठ पर संकेत भी अंकित रहते है।

$$
\text { सारणी - } 2
$$

संकेत	समें मान	
R 27	0.27Ω	$\mathrm{~F}= \pm 1 \%$
1 R 0	1.0Ω	$\mathrm{G}= \pm 2 \%$
10 R	10Ω	$\mathrm{~J}= \pm 5 \%$
K 220	$0.220 \mathrm{~K} \Omega$	$\mathrm{~K}= \pm 10 \%$
1 K 0	$1.0 \mathrm{~K} \Omega$	$\mathrm{M}= \pm 20 \%$
18 K	$18 \mathrm{~K} \Omega$	
M 18	$0.18 \mathrm{M} \Omega$	
3 M 2	$3.2 \mathrm{M} \Omega$	

चिन्ह -K किलो के लिये $=10^{3} ; ~ \mathrm{M}$ मेगा के लिये $=10^{6}$
वर्तमान में कुचालक बेलन पर कार्बन की परत के प्रतिरोधों का चलन अधिक होने लगा है।
दिष्ट वोल्टता व दिष्ट धारा स्रोत - संचायक सैल एवं बैटरी एलीमीनेटर $0-6 \mathrm{~V}$ परास जिसमें $0,2 \mathrm{~V}, 4 \mathrm{~V}, 6 \mathrm{~V}$ के टर्मीनल लगे हो दिष्ट धारा स्रोत के रूप में लिये जा सकते हैं, इन स्रोतों के धन व ऋण इलेक्ट्रोड्स के मध्य विभवान्तर समान बना रहता है। जब किसी प्रतिरोधक को दिष्ट वोल्टता स्रोत से जोड़ा जाता है तो इसमें दिष्ट धारा प्रवाहित होती है।

प्रत्यावर्ती वोल्टता व धारा स्रोत - अपचायी ट्रांसफार्मर जिसमें $0,2 \mathrm{~V}, 4 \mathrm{~V}$ व 6 V के टर्मिनल लगे हो प्रत्यावर्ती वोल्टता स्रोत के रूप में लिये जाते हैं। इस स्त्रोत् से प्रतिरोधक जोड़ने पर इसमें प्रत्यावर्ती धारा प्रवाहित होती है।

दिष्ट धारा का मापन - दिष्ट धारा को चल कुण्डली या कीलकित कुण्डली धारामापी द्वारा मापा जाता है। इन धारामापियों में विक्षेप (θ) इनकी कुण्डली में प्रवाहित धारा के अनुक्रमानुपाती होता है।
प्रत्यावर्ती धारा का मापन - प्रत्यावर्ती धारा का मापन AC अमीटर या तप्त तार अमीटर द्वारा किया जाता है। यह अमीटर जूल के ऊष्मा के सिद्धान्त पर कार्य करता है प्रतिरोधक में उत्पन्न ऊष्मा धारा के वर्ग के अनुक्रमानुपाती होती है।

AC वोल्टमीटर प्रत्यावर्ती वोल्टता के वर्गमाध्य मूल मान को नापते है।

$$
V_{r m s}=\frac{V_{o}}{\sqrt{ } 2}
$$

V_{o} वोल्टता का शिखर मान है। AC अमीटर प्रत्यावर्ती धारा के वर्ग माध्यमूल मान को नापते है।

$$
I_{r m s}=\frac{I_{o}}{\sqrt{2}}
$$

I_{o} धारा का शिखर मान है।
मल्टीमीटर का वर्णन -
मल्टीमीटर एक ऐसा उपकरण है जो एक $(\mathrm{AC} / \mathrm{DC})$ वोल्टमीटर, अमीटर $(\mathrm{AC} / \mathrm{DC})$ व ओममीटर के रूप में उपयोग में लिया जा सकता है।

मल्टीमीटर के सामने के पैनल पर धूमने वाली प्रचालन घुण्डी (Function knob) व परास घुण्डी (R) (Range selector Knob) लगी रहती है। प्रथम घुण्डी से नापी जाने वाली राशि का चयन करते हैं व दूसरी घुण्डी R से मापी जाने वाली राशि के मापन की परास का चयन किया जाता है।

प्रचालन घुण्डी व परास घुण्डी को उचित स्थितियो में रखकर भिन्न भिन्न मान की वोल्टता, धारा व प्रतिरोध को मापा जा सकता है।

मल्टीमीटर के सामने के पैनल के ऊपरी भाग में विभिन्न परास के $\mathrm{AC} / \mathrm{DC}$ वोल्टता, $\mathrm{AC} /$ DC धारा, मिली एम्पीयर में, व प्रतिरोध मापने के पैमाने बने होते है। पैमाने पर एक संकेतक घूमता है।

सबसे ऊपरी वाला पैमाना प्रतिरोध मापन हेतु प्रयुक्त किया जाता है। यह पैमाना 0 से ∞ तक असममित रूप से विभाजित रहता है। इस पैमाने के नीचे दिष्ट धारा / वोल्टता नापने हेतु विभिन्न परास के वृताकार पैमाने होते हैं जो सममित विभाजित होते हैं। इसके बाद प्रत्यावर्ती वोल्टता/धारा मापन हेतु विभिन्न परास के वृताकार पैमाने होते है जो सममित विभाजित होते है।

(i) मल्टीमीटर द्वारा प्रतिरोध का मापन -

1. कार्बन प्रतिरोध को $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ के रूप में चिन्हित करते है।
2. प्रत्येक कार्बन प्रतिरोधक पर बनी रंगीन वृताकार रिंगो के रंग नोट कर सारणी में भरते है। $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ के प्रतिरोध व सह्यता वर्ण संकेत द्वारा ज्ञात करते है।
3. काले तार की लीड को कामन जैक के छिद्र मं लगाते है।
4. लाल तार की लीड को +ve (Positve) जैक के छिद्र में लगाते हैं।
5. परास घुण्डी (R) को घुमाकर प्रतिरोध मापन की उचित परास $(1 \mathrm{M} \Omega$ या $10 \mathrm{~K} \Omega)$ का चयन करते है।
6. संकेतक को व्यवस्थित करने के लिये टेस्ट पिनों की लीड को एक दूसरे से स्पर्श करते हुये रखते है। अब शून्य समायोजन घुण्डी को इतना घूमाते है कि संकेतक सबसे ऊपर के पैमाने पर दाहिनी ओर स्थित शून्य स्थिति में आ जाये पैमाने पर पूर्ण स्केल विक्षेप प्राप्त होगा। मल्टीमीटर प्रतिरोध मापन हेतु तैयार है।
7. टेस्ट पिनों को पृथक कर लेते हैं। प्रतिरोध R_{1} को दोनों टेस्ट पिनों के धातुओं की लीड के अन्तिम सिरों के मध्य रखते हैं (चित्र 11.3)
8. प्रतिरोध पैमाने पर संकेतक की स्थिति नोट कर प्रतिरोध के मान ज्ञात करते है।
9. R_{2} व R_{3} प्रतिरोधों के मान उपरोक्त विधि को दोहराकर ज्ञात करते हैं।
10. प्रेक्षण से प्राप्त प्रतिरोध के मान वर्ण संकेत से प्राप्त प्रतिरोध के मान की तुलना करते हैं।

क्र.	रिंगो के रंग क्रमशः					$\begin{array}{c}\text { प्रतिरोध का मान } \\ \text { वर्ण संकेत द्वारा } \\ \Omega\end{array}$	$\begin{array}{c}\text { मल्टीमीटर से } \\ \text { मापित प्रतिरोध } \\ \Omega\end{array}$
स.	1	2	3	4	$\begin{array}{c}\text { अन्तर }\end{array}$		
Ω							

(ii) मल्टीमीटर द्वारा (A.C./D.C.) वोल्टता का मापना -

1. काले तार की लीड को कामन (Com) जैक के छिद्र में तथा लाल तार की लोड़ को +V (Positive) जैक के छिद्र में लगाते हैं।
2. परास घुण्डी को घुमाकर $(\mathrm{AC} / \mathrm{DC})$ वोल्टता के लिये उचित परास के पैमाने का चयन करते हैं।
3. चयन किये गये पैमाने का अल्पतमांक ज्ञात करते है।
4. दिष्ट वोल्टता मापन के लिये लाल तार की दूसरे सिरे की लीड को नापे जाने वाले विभवान्तर के +ve टर्मीनल से स्पर्श कराते हैं व काले तार के दूसरे सिरे की लीड को - ve टर्मीनल से स्पर्श कराते है। चित्र 11.4 (अ)
5. चयनित पैमाने पर संकेतक की स्थिति देखकर कर विभवान्तर का मान ज्ञात करते हैं।
6. AC वोल्टता मापन के लिये लाल व काले तार की दूसरी लीड को नापे जाने वाले AC स्रोतक दोनों टर्मिनलो से स्पर्श कराते है। चित्र 11.4 (ब)

चित्र 11.4 (अ)

चित्र 11.4 (ब)

चयनित पैमाने पर संकेतक की स्थिति देखकर A.C. विभवान्तर ज्ञात करते है।
प्रेक्षण व परिणाम -

1. चयनित पैमाने का अल्पतमांक $=\frac{\text { परास }}{\text { पैमाने पर कुल विभागों की संख्या }}=\ldots .{ }_{c}$
2. संकेतक का पाठ्यांक $=\ldots$. भाग
3. दिये गये स्त्रोत के सिरों पर विभवान्तर

$$
\text { = पाठ्यांक के भाग } \mathrm{X} \text { अल्पतमांक= }
$$

\qquad वोल्ट
(iii) मल्टीमीटर द्वारा $\mathrm{AC} / \mathrm{DC}$ धारा का मापन -

1. काले तार की लीड को कामन (Com.) जैक के छिद्र में तथा लाल तार की लीड को +Ve जैंक के छिद्र में लगाते है।
2. परास घुण्डी को घुमाकर $\mathrm{AC} / / \mathrm{DC}$ धारा के लिये उचित परास के पैमाने का चयन करते है।
(iv) चयन किये गये पैमाने का अल्पतमांक ज्ञात करते है।
(v) AC धारा मापन के लिये लाल व काले तारों की दूसरे सिरों की लीड को परिपथ के श्रेणी क्रम में संयोजित करते है।
(vi) चयनित पैमाने पर संकेतक की स्थिति नोट कर AC धारा का वर्ग माध्य मूल मान ज्ञात करते है।
(vi) DC धारा मापन के लिये लाल तार की दूसरी लीड का परिपथ के उच्च विभव के टर्मिनल से व काले तार की दूसरी लीड को निम्न विभव के टर्मिनल से स्पर्श कराते है। चयनित पैमाने पर

संकेतक की स्थिति नोट कर DC धारा का मान ज्ञात करते है।
प्रेक्षण व परिणाम -
चयनित पैमाने का अल्पतमांक $\left.=\frac{\text { परास }}{\text { पैमाने पर कुल विभागों की संख्या }}=\ldots ..\right)_{\cdots} . . .$. एम्पी
(ii) संकेतक का पाठ्यांक $=$ \qquad भाग
(iii) परिपथ में धारा $=$ पाठ्यांक के भाग \times अल्पतमांक $=$ \qquad एम्पी
(iv) दिये गये परिपथ की सांतत्यता (Continuity) की जॉच -

1. काले तार की लीड को कामन (Com.) जैक के छिद्र में व लाल तार की लीड को +Ve (Positive) जैंक के छिद्र में लगाते है।

चित्र 11.5

2. परास घुण्डी को घुमाकर प्रतिरोध मापन के $\mathrm{M} \Omega$ परास पर रखते है।
3. लाल व काले तारों की दूसरी लीड को क्रमशः परिपथ के A व B बिन्दुओं पर स्पर्श कराते हैं।
4. पूर्ण स्केल विक्षेप परिपथ की सांतत्यता (Continuity) को प्रदर्शित करता है।
5. इसी प्रकार बिन्दु B व C तथा C व D के मध्य Continuity की जांच करते है।
6. यहॉ काली व लाल तार की लीड को सेल के धन व ऋण टर्मिनल के सिरों पर स्पर्श नहीं कराना चाहिये।
निष्कर्ष - 1. मल्टीमीटर से मापे गये प्रतिरोध का मान वर्ण संकेत से प्राप्त प्रतिरोध के समान प्राप्त हुआ।
7. मल्टीमीटर द्वारा A.C./D.C. वोल्टता व A.C./D.C. धारा के मान प्राप्त हुए।
8. मल्टीमीटर द्वारा परिपथ की सांतत्यता (Continuity) की जॉच हुई।

सावधानियाँ - 1. मल्टीमीटर का उपयोग सावधानी से करना चाहिये क्योंकि यह एक सुग्राही उपकरण है।
2. मापन की जाने वाली वोल्टता, धारा व प्रतिरोध के लिये मल्टीमीटर के चयनित पैमाने की परास उचित लेनी चाहिये।
3. यदि मापित राशि के मानों की परास ज्ञात न हो तो पैमाने की अधिकतम परास से मापन प्रारम्भ करना चाहिये।
4. गर्म तार के प्रतिरोध मापन में त्रुटि हो सकती हैं।

मौखिक प्रश्न -
प्र.1. मल्टीमीटर से किन किन राशियों का मापन किया जा सकता है ?
उ. A.C./D.C. वोल्टता, A.C./D.C. धारा, प्रतिरोध।
प्र.2. मल्टीमीटर द्वारा अज्ञात A.C. वोल्टता को किस प्रकार मापेगें ?
उ. प्रयोग में दी गयी विधि देखें।
प्र.3. क्या मल्टीमीटर से प्रत्यावर्ती वोल्टता का शिखर मान ज्ञात कर सकते हैं ?
उ. सीधे ज्ञात नहीं कर सकते हैं। $V_{r m s}$ मल्टीमीटर से ज्ञात कर $\mathrm{V}_{\mathrm{O}}=\sqrt{ } 2 \quad V_{r m s}$ द्वारा ज्ञात कर सकते है।
प्र.4. अपचायी ट्रांसफार्मर किसे कहते हैं ?
उ. उच्च प्रत्यावर्ती वोल्टता को निम्न प्रत्यावर्ती वोल्टता में परिवर्तित करने वाले ट्रांसफार्मर को अपचायी ट्रांसफार्मर कहते है।
प्र.5. एलीमीनेटर क्या कार्य करता है ?
उ. एलीमीनेटर प्रत्यावर्ती धारा को दिष्ट धारा में रूपान्तरित करता है यह कार्य पूर्ण तरंग दिष्टकारी व फिल्टर परिपथ द्वारा किया जाता है।
प्र.6. एक पूर्ण चक्र में प्रत्यावर्ती धारा का औसत मान कितना होता है ?
उ. शून्य

क्रियाकलाप - 2

उद्देश्य - दिये गये अवयवों को संयोजित कर विद्युत परिपथ बनाना व प्रेक्षण लेकर संयोजन जांच करना।
उपकरण - वोल्टमीटर, अमीटर, प्रतिरोधक तार, धारा नियंत्रक, सैल, कुंजी, संयोजक तार, टार्च बल्ब।

चित्र 12.1
विधि - 1. सैल के विद्युत वाहक बल का मान ज्ञात करते है।
2. उचित परास के वोल्टमीटर व अमीटर का चयन करते है।
3. अमीटर परिपथ में श्रेणी क्रम में जोड़ा जाता है।
4. वोल्टमीटर उस युक्ति के समान्तर क्रम में जोड़ते हैं जिसके सिरों पर विभवान्तर ज्ञात करना हो।
5. सैल के धन टर्मिनल को संयोजी तार द्वारा अमीटर के धन टर्मिनल से जोड़ते है।
6. सैल का ऋण टर्मिनल कुंजी से तथा कुंजी K का दूसरा टर्मीनल धारा नियन्त्रक से जोड़ते है।
7. अमीटर का ऋण टर्मिनल प्रतिरोधक तार के एक सिरे से जोड़ा गया है इसी सिरे पर वोल्टमीटर का धन टर्मिनल जोड़ा जाता है।
8. वोल्टमीटर के ऋण टर्मीनल को प्रतिरोध तार के दूसरे सिरे पर जोड़ते है। वोल्टमीटर प्रतिरोध तार के समान्तर जुड़ा रहता है।
9. धारा नियन्त्रक का विस्थापित होने वाला टर्मिनल टार्च बल्ब के एक टर्मिनल से जोड़ा जाता है। टार्च बल्ब का दूसरा टर्मिनल वोल्टमीटर के ऋण टर्मिनल से जोड़ते हैं।
प्रेक्षण सारणी -

क्र.सं	अमीटर का पाठ्यांक I	वोल्टमीटर का पाठ्यांक V	प्रतिरोध $R=\frac{V}{I}$	माध्य प्रतिरोध
1	 वोल्ट \qquad वोल्ट Ω Ω Ω

निष्कर्ष - विद्युत परिपथ में विभिन्न उपकरणों एवं युक्तियों का संयोजन पूर्ण हुआ एवं दिये गये प्रतिरोधक तार का प्रतिरोध $\cdots \cdots \Omega$ प्राप्त हुआ।
सावधानियॉ - 1. वोल्टमीटर व अमीटर की परास उचित (सैल के वि.वा.ब. के मान के आधार पर) होनी चाहिये।
2. सभी टर्मिनल कसे होने चाहिये।
3. वोल्टमीटर समान्तर क्रम में जोड़ा जाता है।

मौखिक प्रश्न -
प्र.1. अमीटर परिपथ में किस क्रम में जोड़ा जाता है ?
उ. श्रेणी क्रम में।
प्र.2. वोल्टमीटर परिपथ में किस क्रम में जोड़ा जाता है ?
उ. जिन दो बिन्दुओं के मध्य विभवान्तर ज्ञात करना है उनके समान्तर क्रम में।
प्र.3. सैल के धन टर्मीनल से अमीटर का कौनसा टर्मीनल जोड़ा जाता है ?
उ. धन टर्मीनल।
प्र.4. वोल्टमीटर को परिपथ के श्रेणी क्रम में जोड़ने पर क्या होगा ?
उ. वोल्टमीटर का प्रतिरोध बहुत उच्च होता है, इसका उच्च प्रतिरोध परिपथ के श्रेणी क्रम में आने से परिपथ की धारा नगण्य हो जायेगी।
प्र.5. क्या परिपथ में कुंजी लगाना आवश्यक है ?
उ. हॉ। कुंजी न होने पर परिपथ में धारा लगातार प्रवाहित होगी व प्रतिरोधक तार आदि गर्म हो जायेगें।

क्रियाकलाप -3

उद्देश्य - किसी दिये गये ऐसे विद्युत परिपथ का आरेख खींचना (जिसमें एक सैल, एक धारा नियन्त्रक, प्रतिरोधक,अमीटर, वोल्टमीटर व कुंजी जुड़ी हो) उन अवयवों को चित्रित करना जो उचित कम में संयोजित नहीं है । परिपथ आरेख को सही करना।
उपकरण - एक सैल $(0-6 \mathrm{~V})$, एक शुष्क सैल $(1.5 \mathrm{~V})$, प्रतिरोध बॉक्स ($0-100 \Omega$ परास), धारा नियन्त्रक दो एक मार्गी कुजियॉ, दिष्ट धारा अमीटर ($0-300 \mathrm{~mA}$ परास), वोल्टमीटर ($0-$ 3 V परास), संयोजक तार।
सिद्धान्त - खुला विद्युत परिपथ विभिन्न मौलिक विद्युत युक्तियों का ऐसा संयोजन जिसमें परिपथ को बंद करने पर सैल से परिपथ में कोई धारा नही ली जाती है।
परिपथ चित्र - विभिन्न मौलिक युक्तियों को निम्न विद्युत परिपथ के अनुसार संयोजित करते है।

चित्र 3.1
विधि -1. चित्र 3.1 के अनुसार विभिन्न उपकरणों व युक्तियों को संयोजक तार द्वारा परिपथ में जोड़ते है।
2. अमीटर व वोल्टमीटर के धन व ऋण टर्मिनलों का संयोजन सही कर जॉच लेते है।
3. शुष्क सैल $(1.5 \mathrm{~V})$ की श्रेणी क्रम में अमीटर, प्रतिरोध बॉक्स $(0-100 \Omega)$ व धारा नियन्त्रक व कुंजी K_{1} जुड़े होने चाहिये। सैल $(0-6 \mathrm{~V})$ को धारानियन्त्रक के समान्तर क्रम में कुंजी K_{2} सहित जोड़ते है।
4. वोल्टमीटर को प्रतिरोध बॉक्स के समान्तर क्रम में जोड़ते है।
5. अमीटर व वोल्टमीटर के लघुत्तम माप ज्ञात करते है।
6. कुंजी K_{2} को खुला रखते हुये प्रतिरोध बॉक्स से कुछ प्रतिरोध (5Ω) निकालते है। कुंजी
K_{1} को बंद कर मिली अमीटर व वोल्टमीटर के पाठ्यांक नोट करते है।
7. कुंजी K_{2} को बंद करते हैं। मिलीअमीटर कुछ धारा प्रदर्शित करता है।
8. धारा नियन्त्रक को धीरे-धीरे बॉये से दॉयी ओर विस्थापित करते हैं जब तक की मिली अमीटर

में धारा शून्य प्राप्त न हो जाये।
9. मिली अमीटर में धारा शून्य होने पर अमीटर का परिपथ खुले परिपथ में व्यवस्थित होगा।
10. प्रतिरोध बॉक्स से भिन्न भिन्न प्रतिरोध लेकर प्रयोग दोहराते है।

सावधानियॉ - 1. अमीटर व वोल्टमीटर की परास उचित मान की होनी चाहिए।
2. सभी टर्मीनल कसे हुये होने चाहिये।
3. अमीटर को परिपथ में श्रेणी क्रम में व वोल्टमीटर को समान्तर क्रम में जोड़ना चाहिये।

मौखिक प्रश्न -

प्र.1. खुला परिपथ किसे कहते है ?
उ. कई विद्युत उपकरणों से जुड़ा ऐसा परिपथ जिसे बंद करने पर परिपथ सैल से कोई धारा नहीं लेता है।
प्र.2. सैल में कितने टर्मिनल होते है ?
उ. दो, उच्च विभव का टर्मिनल धनाग्र व निम्न विभव का टर्मिनल ऋणाग्र।
प्र.3. खुले परिपथ की अवस्था में अमीटर कितना पाठ्यांक देता है ?
उ. शून्य।
प्र.4. धारा नियन्त्रक परिपथ में किस प्रकार कार्य करता है ?
उ. विभव विभाजक के रूप में।
प्र.5. प्रतिरोध बॉक्स में प्रतिरोध कुण्डलियों किस क्रम में जुड़ी रहती है ?
उ. श्रेणी क्रम में।
प्र.6. सैल से धारा प्रवाह किस दिशा में होता है ?
उ. धन टर्मीनल से ऋण टर्मिनल की ओर।

क्रियाकलाप -4

उद्देश्य - स्थायी धारा के लिये किसी तार की लम्बाई के साथ विभवपात में परिवर्तन का अध्ययन करना।

उपकरण - एक विभवमापी, धारानियन्त्रक, एक वोल्टमीटर (0 से 3 V परास), संचायक सैल (0 -6 V) संयोजक तार।
सिद्धान्त - विभवमापी की सहायता से किन्ही दो बिन्दुओं के मध्य विभवान्तर व सैल का वि.वा.ब. नापा जा सकता है। विभवमापी आदर्श वोल्टमीटर के समान व्यवहार करता है।

किसी समान काट क्षेत्र व समरूप चालक से प्रवाहित धारा नियत रहे तो चालक पर उत्पन्न विभवान्तर चालक की लम्बाई के अनुक्रमानुपाती होता है।

$$
\begin{aligned}
V & \propto l \\
\frac{V}{l} & =\phi
\end{aligned}
$$

यहॉ ϕ चालक की एकांक लम्बाई पर उत्पन्न विभवान्तर है, इसे विभव प्रवणता कहते है।

चित्र 14.1
विधि - 1. चित्रानुसार विद्युत परिपथ जोड़ते है।
2. वोल्टमीटर व अमीटर की परास ज्ञात करते है।
3. वोल्टमीटर पैमाने व अमीटर पैमाने के लधुत्तम माप ज्ञात करते है।
4. विभवमापी तार $A B$ के श्रेणी क्रम में संचायक सैल $(0-6 V)$, कुंजी K, धारा नियन्त्रक व अमीटर को जोड़ते है।
5. वोल्टमीटर के धन टर्मीनल को विभवमापी तार के A बिन्दु से व ऋण टर्मीनल को जोकी J से जोड़ते है।
6. कुंजी K को बंद करते है इससे परिपथ में धारा प्रवाहित होने लगती है।
7. जोकी J को विभवमापी तार के सिरे B के निकट लाते है।
8. धारा नियन्त्रक को विस्थापित कर ऐसी स्थिति पर लाते है कि वोल्टमीटर मे पूर्ण स्केल विक्षेप प्राप्त हो जाये।
9. विभवमापी तार को 10 बराबर लम्बाईयों में लेते है।
10. जोकी को विभवमापी तार की प्रथम लम्बाई 50 सेमी पर स्पर्श कराते है। अमीटर व वोल्टमीटर का पाठ्यांक नोट करते है।
11. धारानियन्त्रक से अमीटर में धारा समान रखते हुये विभवमापी तार की भिन्न भिन्न लम्बाइयों $(90 \mathrm{~cm}, 150 \mathrm{~cm}, 210 \mathrm{~cm}$.............) पर वोल्टमीटर से विभवान्तर ज्ञात करते हैं। इस प्रकार तार की भिन्न भिन्न 4 लम्बाईयोंके संगत विभवान्तर के मान प्राप्त होते है।
प्रेक्षण -

1. वोल्टमीटर की परास $=$................... वोल्ट
2. अमीटर की परास $=$.................... एम्पी
3. वोल्टमीटर का लघुतम माप $=$................... वोल्ट
4. अमीटर का लघुतम माप $=$................. एम्पी.
5. परिपथ में धारा का नियतमान $=$................. एम्पी.

लम्बाई व विभवान्तर की सारणी

क्र.सं.	विधुत धारा I(A)	विभवमापी तार की लम्बाई $l(\mathrm{~m})$	तार पर विभवान्तर V (volt)	विभव प्रवणता
1 AmVV/m
2 AmVV/m
3 AmVV/m
4 AmVV/m

ग्राफ -
विभवान्तर V के मान Y अक्ष पर व लम्बाई के मान X अक्ष पर लेकर V व l के मध्य ग्राफ खींचते है । ग्राफ सरल रेखा प्राप्त होता है।

ग्राफ पर A वB दो बिन्दु कुछ दूरी पर (निकट नहीं) लेते है। बिन्दु A से X अक्ष पर लम्ब AC व बिन्दु B से Y अक्ष पर लम्ब खींचते है जो बिन्दु C पर मिलते है।

ग्राफ का ढाल

$$
=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\Delta V}{\Delta l}
$$

विभव प्रवणता $=$

$$
K=\frac{\Delta V}{\Delta l}=\ldots \ldots \ldots \ldots \ldots . V m^{-1}
$$

निष्कर्ष -

1. नियत धारा के लिये $\mathrm{V}-l$ ग्राफ सरल रेखा प्राप्त होता है। अतः विभवान्तर तार की लम्बाई के अनुक्रमानुपाती होता है जबकि धारा नियत रहे।
2. विभव प्रवणता $\phi=$ \qquad Vm^{-1} सावधानियाँ -
3. परिपथ में संयोजन की जॉच करनी चाहिये।
4. सभी टर्मीनल कसे हुये रहने चाहिये।
5. कुंजी बंद करने से पूर्व वोल्टमीटर व अमीटर के संकेतक पैमाने की शून्य पर रहने चाहिये।
6. वोल्टमीटर को तार AB के समान्तर क्रम में व अमीटर को श्रेणी क्रम में जोड़ना चाहिये।
7. लम्बाई का मान पैमाने पर सही पढ़ना चाहिये।

मौखिक प्रश्न -

प्र.1. विद्युत विभव किसे कहते है ?
उ. अनन्त से एकांक धन आवेश को विधुत क्षेत्र के किसी बिन्दु तक लाने में किये गये कार्य का मान उस बिन्दु पर विधुत विभव कहलाता है। इसका मात्रक वोल्ट होता है ।
प्र.2. विभवान्तर किसे कहते हैं?
उ. एकांक धन आवेश को विधुत क्षेत्र के एक बिन्दु से दूसरे बिन्दु तक ले जाने में किया गया कार्य उन दो बिन्दुओं के मध्य विभवान्तर कहलाता है।

प्र.3. विभवान्तर का मात्रक क्या है?
उ. वोल्ट
प्र.4. एक वोल्ट विभवान्तर किसे कहते है?
उ. विधुत क्षेत्र के एक बिन्दु से दूसरे बिन्दु तक एकांक धन आवेश को ले जाने पर एक जूल कार्य सम्पन्न हो तो उन दो बिन्दुओं के मध्य विभवान्तर एक वोल्ट होता है।
प्र.5. विभवान्तर चालक की लम्बाई पर किस प्रकार निर्भर करता है?
उ. चालक पर विभवान्तर उसकी लम्बाई के अनुक्रमानुपाती होता है।
प्र.6. क्या धारावाही तार पर विभवान्तर विभवमापी के स्थान पर वोल्टमीटर से नापना उचित रहेगा ?
उ. नहीं क्योंकि वोल्टमीटर परिपथ से कुछ धारा ग्रहण करता है, इसके द्वारा मापा गया विभवान्तर वास्तविक विभवान्तर से कुछ कम होता है। जबकि विभवमापी आदर्श वोल्टमीटर के समान कार्य करता है व वास्तविक विभवान्तर प्रदर्शित करता है।
प्र.7. समान दिष्ट धारा किन स्रोत से प्राप्त हो सकती है ?
उ. संचायक सैल या एलीमीनेटर जिसमें फिल्टर परिपथ लगा हो।

क्रियाकलाप -5

उद्देश्य -
दिये गये लेक्लांशी सैल का आंतरिक प्रतिरोध वोल्टमीटर-अमीटर की सहायता से ज्ञात करना।

उपकरण -

प्राथमिक सैल, वोल्टमीटर, अमीटर, धारा नियंत्रक कुंजी, संयोजक तार।
सिद्धान्त -
जब सैल खुले परिपथ में हो (अर्थात् उसमें से धारा नहीं ली जा रही हो) तो उसके टर्मिनलों से जुड़ा हुआ वोल्टमीटर का पाठयांक सैल के वि.वा.ब. E को व्यक्त करता है तथा जब सैल से धारा प्रवाहित की जा रही हो (सैल का उपयोग) हो, उस समय उसके टर्मिनलों से संयोजित वोल्टमीटर सैल की टर्मिनल वोल्टता V मापता है।

सैल के वि.वा.ब. E, टर्मिनल वोल्टता V, सैल के आंतरिक प्रतिरोध r तथा सैल से प्रवाहित धारा I में निम्न संबंध होता है।
$r=\frac{E-V}{I}$
परिपथ से कुंजी K हटाने से सैल खुले परिपथ में होगा तथा कुंजी K लगाने से सैल बंद परिपथ में होगा।
परिपथ चित्र -

क्र.सं.	खुले परिपथ में वोल्टमीटर पाठयांक E	बंद परिपथ में वोल्टमीटर पाठयांक V	प्रवाहित धारा I	आंतरिक प्रतिरोध $r=\frac{E-V}{I}$
1 वोल्ट वोल्ट ए.	\cdots
2 वोल्ट वोल्ट ए. Ω
3 वोल्ट वोल्ट ए. Ω

```
गणना -
सूत्र \(r=\frac{E-V}{I}\) से सभी पाठयांकों के लिए \(r\) की गणना करेगे। परिणाम -
दिये गये लेक्लांशी सैल का आंतरिक प्रतिरोध ....... \(\Omega\) से ....... \(\Omega\) तक प्राप्त हुआ।
```

क्रियाकलाप -6

उद्देश्य - एक शक्ति स्त्रोते, तीन बल्ब, तीन ऑन / ऑफ स्विच, का प्रयोग कर घरेलू विद्युत परिपथ संयोजित करना।
उपकरण - तीन विद्युत बल्ब प्रत्येक(6 V व 1 W) के, तीन ऑन / ऑफ स्विच, फ्यूजतार 0.6 A , विद्युत, शक्ति स्रोत $4 \mathrm{~V}, 6 \mathrm{~V}, 8 \mathrm{~V}$, व 10 V टर्मिनलों का, एक मेन स्विच, AC अमीटर।
सिद्धान्त - घरों मे जुड़ा विद्युत परिपथ मुख्य विद्युत स्रोत (मेन्स) की $220 \mathrm{~V}, 50 \mathrm{H}_{\mathrm{Z}}$ पर कार्य करता है, यहॉ धारा की परास 5 एम्पी की होती है। घरो में विद्युत परिपथ की सामान्य युक्तियॉ विद्युत बल्ब,, टयूब लाइट, पंखे आदि होती है।

उच्च लोड की युक्तियॉ जैसे फ्रीज, एयर कन्डीसनर, गीजर, रूम हीटर के लिये 15 एम्पी धारा तक की पावर सप्लाई उपयोग में लेते है। विद्युत परिपथ की सभी युक्तियों द्वारा किसी समय कुल उपयोग शक्ति -

$$
P=P_{1}+P_{2}+P_{3}+\ldots \ldots .
$$

यहॉ $P_{1}, P_{2}, P_{3} \ldots \ldots .$. विभिन्न युक्तियों द्वारा व्यय शक्ति के मान है।
विद्युत शक्ति -

$$
\begin{aligned}
& P=V I \\
& \therefore I=\frac{P}{V}
\end{aligned}
$$

यहॉ $I=$ परिपथ में धारा, $V=$ विभवान्तर है। I एम्पी, V वोल्ट व शक्ति P वाट में लिये गये हैं।

परिपथ में जुड़ी विभिन्न युक्तियों में इनकी परास से अधिक धारा प्रवाह के कारण होने वाली क्षति से बचने के लिये युक्तियों के श्रेणी क्रम में फ्यूज तार जोड़ा जाता है। फ्यूज तार के पिघलने की धारा युक्तियों की सुरक्षित धारा मानों से 10% से 20% अधिक ली जाती है। घरों के विधुत परिपथ में सभी विद्युत युक्तियॉ समान्तर क्रम में जोड़ी जाती है एवं प्रत्येक युक्ति के श्रेणी क्रम में एक ऑन/ऑफ स्विच जोड़ा जाता है। विद्युत परिपथ में फ्यूज तार विद्युत मेन्स के श्रेणी क्रम में जोड़ा जाता हैं।

फ्यूज तार विधुत उपकरणों की सुरक्षा के लिये जोड़ा जाता है इसलिये उच्च धारा सहन करने की क्षमता का फ्यूज तार नहीं लगाना चहिये।
विधि -

1. प्रत्येक बल्ब $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$ के श्रेणी क्रम में ऑन /ऑफ स्विच क्रमशः $\mathrm{S}_{1}, \mathrm{~S}_{2} \mathrm{~S}_{3}$ जोड़ते है। सभी बल्ब व स्विच के संयोजनों को परस्पर समान्तर क्रम मे जोड़ते है। (चित्र 6.1)
2. विद्युत शक्ति स्रोत (मेन्स) के श्रेणी क्रम में फ्यूज तार को जोड़ते है। विधुत स्रोत एक अपचायी ट्रांसफार्मर हो सकता है जिसमें $0 V, 4 \mathrm{~V}, 6 \mathrm{~V}, 8 \mathrm{~V}$ व 10 V के टर्मिनल उपलब्ध हों।

चित्र 6.1

3. बल्बों व स्विचों के संयोजन का एक सिरा विद्युत स्रोत से व दूसरा सिरा AC अमीटर के एक टर्मीनल से जोड़ते है AC अमीटर का दूसरा सिरा फ्यूज तार से जोड़ा जाता है। अब विद्युत परिपथ पूर्णरूप से जुड़ गया है।
4. फ्यूज तार की जॉच -

माना प्रत्येक बल्ब 5 V व 1.0 वाट का है। एक बल्ब द्वारा परिपथ से ली गयी धारा

$$
I=\frac{P}{V}=\frac{1}{5}=0.2 \mathrm{~A}
$$

तीन समान्तर क्रम में जुड़े बल्बों द्वारा ली गयी धारा $0.2+0.2+0.2=0.6 \mathrm{~A}$
5. परिपथ में संयोजित युक्तियों में से उपयोग में ली जाने वाली युक्तियों की संख्या जैसे—जैसे बढ़ती है। वैसे-वैसे परिपथ की धारा 0 से $0.75 A$ तक बढ़ती जाती है। $0.6 A$ से कुछ अधिक धारा पर फ्यूज तार जल जाना चाहिये।

निष्कर्ष - घर का विधुत परिपथ संयोजन पूर्ण हुआ एवं संयोजन उचित मान के फ्यूज तार से जोड़ा गया।

सावधानियॉ -

1. फ्यूज तार उचित धारा सहन शक्ति का होना चाहिये।
2. ट्रांसफार्मर में $0 \mathrm{~V}, 4 \mathrm{~V}, 6 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}$ के टर्मिनल होने चाहिये।

मौखिक प्रश्न -
प्र.1. घरों में विद्युत उपकरण किस क्रम में जोड़े जाते है ?
उ. समान्तर क्रम में।
प्र.2. फ्यूज तार क्यों लगाया जाता है ?
उ. घरों में कई विद्युत उपकरणों का एक साथ उपयोग करने पर विद्युत परिपथ में धारा बहुत उच्च प्रवाहित होने लगती हैं एवं विद्युत उपकरणों व विद्युत लाइन की जलने की संभावना रहती है। इससे बचने के लिये फ्यूज तार लगाते हैं जिससे धारा का मान एक सुरक्षित मान से अधिक होते ही फ्यूज वायर जल जाता है व उपकरण सुरक्षित रहते हैं।
प्र.3. विद्युत स्विच किस प्रकार कार्य करता है ?
उ. स्विच ऑफ होने पर इसके दोनों टर्मिनलों के मध्य वायु आ जाती है जो कुचालक होने से अनन्त प्रतिरोध उत्पन्न करती है व परिपथ में धारा प्रवाह रूक जाता है। स्विच ऑन होने पर दोनों टर्मिनल धातु की पत्ती से जुड़ जाते है जो विद्युत की चालक होती है एवं परिपथ में धारा प्रवाहित होने लगती है।
प्र.4. स्विच को गीले हाथ से क्यों नही छूना चाहिये ?
उ. गीले हाथ का पानी स्विच में जाने की संभावना रहती है। सामान्य पानी विद्युत का चालक होता है। अतः शरीर में करंट आने की संभावना रहती है।
प्र.5. स्विच ऑन करने पर बल्ब प्रकाशमान क्यों होता है ?
उ. स्विच ऑन करने पर बल्ब के फिलामेन्ट (तंतु) में धारा प्रवाहिति होने से जूल के प्रभाव से यह गर्म हो जाता है व उच्च ताप होने पर प्रकाश उत्सर्जित करने लगता है।
प्र.6. बल्ब को परिपथ में लगाते समय धन व ऋण टर्मीनल का ध्यान रखना चाहिये ?
उ. नहीं, इसमें धन व ऋण टर्मीनल नहीं होते है।

$$
\begin{aligned}
& \text { भाग- ब } \\
& \text { प्रयोग - } 1
\end{aligned}
$$

अवतल दर्पण से सम्बन्धित परिभाषायें एवं राशियॉ -

1. मुख्य अक्ष - दर्पण के ध्रुव व वक्रता केन्द्र से निकलने वाली रेखा (PC) मुख्य अक्ष कहलाती है।
2. ध्रुव - दर्पण का मध्य बिन्दु (केन्द्र) ध्रुव (P) कहलाता है।

चित्र 1.1
3. मुख्य फोकस - मुख्य अक्ष के समान्तर आपतित प्रकाश किरणें दर्पण के पृष्ठ से परावर्तन के पश्चात् मुख्य अक्ष के जिस बिन्दु पर मिलती है उस बिन्दु को दर्पण का मुख्य (F) फोकस कहते है।
4. फोकस दूरी - मुख्य फोकस F व ध्रुव P के मध्य दूरी को फोकस दूरी (f) कहते हैं।
5. वास्तविक व आभासी प्रतिबिम्ब -

बिम्ब से चलने वाली प्रकाश किरणें दर्पण से परावर्तित होकर प्रतिबिम्ब से होकर गुजरती है तो प्रतिबिम्ब वास्तविक प्रतिबिम्ब कहलाता है। परन्तु दर्पण से परावर्तित किरणें प्रतिबिम्ब से केवल आती हुई दिखायी देती है तो प्रतिबिम्ब आभासी कहलाता है। वास्तविक प्रतिबिम्ब उल्टे बनते है एवं आभासी सीधे।
6. चिन्ह नियम -

1. सभी दूरियॉ दर्पण के ध्रुव से नापी जाती है।
2. दर्पण पर आपतित प्रकाश किरणों की संचरण दिशा में नापी गयी दूरियाँ धनात्मक ली जाती है एवं इसके विपरीतदिशा में नापी गयी दूरियाँ ऋणात्मक ली जाती है।
3. मुख्य अक्ष के ऊपर की ओर नापी गयी ऊँचाईयाँ धनात्मक व नीचे की ओर नापी गयी ऊँचाईयाँ ऋणात्मक ली जाती है।
4. उपरोक्त चिन्ह नियमों को लेने पर बिम्ब दर्पण के बॉयी ओर व्यवस्थित किया जाता है।
5. बैंच त्रुटि - किसी प्रयोग में प्रकाश बैंच पर सभी दूरियॉ दर्पण के ध्रुव से नापी जाती है। दर्पण के ध्रुव व पिन की ऊपरी नोक के मध्य दूरी, नापी जाने वाली वास्तविक दूरी होती है। प्रकाश बैंच पर बने पैमाने पर ये दूरियॉ दर्पण व पिन के ऊर्ध्व स्टैण्डों के पैमाने पर स्थितियों के मध्य नापी जाती हैं। इन्हें मापित दूरियाँ कहते है।

दर्पण अवतल होने से मध्य से कुछ दबा हुआ रहता है। परिणामस्वरूप उध्ध्व स्टैण्डों के मध्य पैमाने पर नापी गयी दूरी दर्पण के ध्रुव व पिन की नोक के मध्य वास्तविक दूरी से भिन्न आ सकती है। इसे बैंच त्रुटि कहते हैं।

बैंच त्रुटि $=$ मापित दूरी - वास्तविक दूरी
बैंच संशोधन $=$ वास्तविक दूरी - मापित दूरी
बैंच संशोधन धनात्मक हो या ऋणात्मक इसका मापित दूरी में बीजगणीतीय योग किया जाता है। बैंच त्रुटि ज्ञात करना :- बिम्ब व प्रतिबिम्ब की दूरियाँ u व v में बैंच त्रुटि ज्ञात करने के लिये एक सीधी व नुकीले सिरों की T छड़ का उपयोग करते है। T छड़ को इस प्रकार व्यवस्थित करते हैं इसका कोई एक नुकीला सिरा दर्पण के ध्रुव P को स्पर्श करे। अब बिम्ब पिन को दर्पण के निकट इस प्रकार लाते है कि T छड़ का दूसरा नुकीला सिरा बिम्ब पिन की ऊपरी नोक को स्पर्श करें। बैंच पैमाने पर दर्पण स्टैण्ड व बिम्ब पिन स्टैण्ड के मध्य दूरी ज्ञात करते है। माना यह मापित मान y प्राप्त होता है। T छड़ के दोनों सिरों के मध्य दूरी मीटर पैमाने पर ज्ञात करते है, यह वास्तविक दूरी X होगी।

बैंच त्रुटि $e=y-x$
बैंच संशोधन $(-e)=x-y$
ठीक उपरोक्त विधि से प्रतिबिम्ब पिन के लिये भी बैंच संशोधन ज्ञात करते है।

चित्र 1.2
8. विस्थापनाभास - बिम्ब पिन व प्रतिबिम्ब पिन को इस प्रकार व्यवस्थित करते है कि बिम्ब पिन के उल्टे बने प्रतिबिम्ब की नोक प्रतिबिम्ब पिन के ठीक सीध में हो एवं इसकी नोक को ठीक स्पर्श करे। नेत्र को बायी या दायी और विस्थापित करने पर दर्पण के सापेक्ष दोनों साथ-साथ न चले तो पिनों में विस्थापनाभास है। प्रतिबिम्ब पिन को आगे पीछे विस्थापित कर बैंच पर इसे ऐसी स्थिति में लाते है कि नेत्र को दाये बाये विस्थापित करने पर प्रतिबिम्ब पिन व बिम्ब पिन का प्रतिबिम्ब साथ-साथ चले। अब विस्थापनाभास दूर हो गया है।

इस अवस्था में बिम्ब पिन का प्रतिबिम्ब ठीक प्रतिबिम्ब पिन के स्थान पर बनता है।

$$
\text { प्रयोग }-1
$$

उद्देश्य -
अवतल दर्पण के लिये ' u ' के भिन्न भिन्न मानों के लिये ' v ' के मान ज्ञात कर फोकस दूरी ज्ञात करना।

उपकरण एवं सामग्री -
एक प्रकाश बैंच, दो उर्ध्वाधर पिन स्टैण्ड, एक स्टैण्ड दर्पण होल्डर सहित, दो नुकीली पिनें, अवतल दर्पण (20 सेमी. से कम फोकस दूरी का), टी - छड़, मीटर पैमाना।

सिद्धान्त -
' f ' फोकस दूरी के अवतल दर्पण के ध्रुव से बिम्ब की दूरी ' u ' होने पर यदि ध्रुव से प्रतिबिम्ब
' v ' दूरी पर बने तो इन दूरीयों में निम्न सम्बन्ध होगा -

$$
\begin{aligned}
\frac{1}{f} & =\frac{1}{\mathrm{u}}+\frac{1}{v} \\
\text { या } \quad f & =\frac{\mathrm{u} v}{\mathrm{u}+v}
\end{aligned}
$$

चित्र 1.3
यदि बिम्ब F व वक्रता केन्द्र 2 F के मध्य स्थित हो तो प्रतिबिम्ब 2 F व अनन्त के मध्य वास्तविक, उल्टा, आवर्धित व स्पष्ट बनता है।

विधि -

1. अवतल दर्पण से किसी दूरस्थ वस्तु जैसे कोई पेड़ या भवन का स्पष्ट प्रतिबिम्ब सफेद कागज पर फोकसित करते है। मीटर पैमाने द्वारा दर्पण के ध्रुव से कागज की दूरी नापते हैं। यह दर्पण की लगभग फोकस दूरी होगी। इसे नोट करते हैं।
2. प्रकाश बैंच को किसी दृढ़ धरातल की टेबुल पर रखते हैं जो न तो हिले एवं नही कम्पन करें। प्रकाश बैंच को स्प्रिट लेवल से क्षैतिज कर लेते है।
3. ऊर्ध्वाधर स्टैण्ड पर लगे दर्पण होल्डर में अवतल दर्पण को लगाते है। इस स्टैण्ड को बैंच पैमाने के एक सिरे पर (शून्य स्थिति पर) व्यवस्थित करते हैं।
4. स्टैण्ड पर पिन P_{1} लगाते हैं। अवतल दर्पण की परावर्तक धरातल के समक्ष पिन P_{1} को इस प्रकार लगाते है कि P_{1} की ऊपरी नोक की ऊँचाई दर्पण के ध्रुव P के बराबर हो जाये। P_{1} बिम्ब पिन होगी। पिन P_{1} की ऊँचाई व दर्पण के झुकाव को इस प्रकार व्यवस्थित करते हैं कि P_{1} का प्रतिबिम्ब P_{1} की ऊँचाई के बराबर ऊँचाई पर बने इस अवस्था में दर्पण की मुख्य अक्ष प्रकाश बैंच के समान्तर होगी।
5. दूसरे स्टैण्ड पर पिन P_{2} को इस प्रकार लगाते हैं कि पिन P_{1} व P_{2} की नोक की ऊँचाई बैंच से ध्रुव P की ऊँचाई के ठीक बराबर रहे। P_{2} प्रतिबिम्ब पिन होगी। पिन P_{2} की दर्पण से दूरी P_{1} की तुलना में अधिक रखेंगे।
6. P_{1} व P_{2} पिनों के लिये बैंच त्रुटि ज्ञात करते है।

T छड़ को इस प्रकार रखते है कि इसका एक सिरा ध्रुव P को व दूसरा सिरा पिन P_{1} की नोक को स्पर्श करे। बैंच पैमाने पर पिन व दर्पण क स्टैण्डों की स्थितियॉ A वB ज्ञात करते है। इनकी स्थितियों में अन्तर पिन P_{1} की नोक व ध्रुव P के मध्य मापित दूरी को प्रदर्शित करता है। T छड़ की वास्तविक लम्बाई AB मीटर पैमाने पर ज्ञात करते हैं। वास्तविक व मापित दूरियों में अन्तर पिन P_{1} के लिये बैंच संशोधन होगा। ठीक उपरोक्त विधि से पिन P_{2} के लिये बैंच संशोधन ज्ञात करते है।
7. पिन P_{1} को फोकस बिन्दु F व वक्रता केन्द्र C या 2 F के मध्य रखते है। पिन P_{1} की नोक पर कागज का छोटा टुकड़ा लगा देते है। पिन P_{1} बिम्ब का कार्य करती है। पिन की स्थिति पैमाने पर ज्ञात करते है।

चित्र 1.4
8. पिन P_{2} को 2 F से आगे रखते हैं। P_{2} को आगे पिछे विस्थापित कर ऐसी स्थिति लाते है कि P_{1} का वास्तविक व उल्टा प्रतिबिम्ब ठीक पिन P_{2} के ऊपर बने एवं पिन P_{2} व पिन P_{1} के प्रतिबिम्ब में विस्थापनाभास न रहे। इस अवस्था में पिन P_{1} का प्रतिबिम्ब पिन P_{2} की स्थिति पर बनता है। पैमाने पर P_{2} की स्थिति ज्ञात करते हैं। दर्पण के ध्रुव से बिम्ब की दूरी u व प्रतिबिम्ब की दूरी v है।
9. पिन की भिन्न भिन्न पॉच स्थितियों में (u) के संगत v के मान ज्ञात कर सारणी में भरते है।
10. मापित मानों में बैंच संशोधन कर \mathbf{u} व v के संशोधित मान ज्ञात फोकस दूरी f का मान निकालते है।

प्रेक्षण -

1. अवतल दर्पण की लगभग फोकस दूरी = \qquad सेमी
2. T छड़ द्वारा दर्पण से बिम्ब पिन P_{1} की नापी गयी वास्तविक दूरी $\mathrm{l}_{\mathrm{O}}=$ \qquad सेमी
3. दर्पण से बिम्ब पिन P_{1} की मापित दूरी $\mathrm{l}_{\mathrm{O}}=$. \qquad सेमी
4. बिम्ब पिन P_{1} के लिये बैंच संशोधन

$$
\begin{aligned}
& \mathrm{e}=\text { वास्तविक दूरी }- \text { मापित दूरी } \\
& \mathrm{e}=\mathrm{l}_{\mathrm{o}}-\mathrm{l}_{\mathrm{o}}^{\prime}=\ldots \ldots \ldots \ldots \ldots \ldots . . \text { सेमी }
\end{aligned}
$$

5. प्रतिबिम्ब पिन P_{2} के लिये बैंच संशोधन
$\mathrm{e}^{\prime}=l_{1}-\mathrm{l}^{\prime} 1=$ \qquad सेमी
प्रेक्षण सारणी
गणना —

क्र.सं	प्रकाश बैंच पैमाने पर स्थिति			$\begin{gathered} \begin{array}{c} \text { मापित } \\ \mathrm{u}^{\prime}=\mathrm{P}_{1}-\mathrm{M} \end{array} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \text { मापित } \\ \mathrm{u}^{\prime}=\mathrm{P}_{2}-\mathrm{M} \end{gathered}, \begin{aligned} & (\mathrm{cm}) \end{aligned}$	संशोधित $u=u^{\prime}+e$ (cm)	संशोधित $\mathcal{v}=\mathrm{v}^{1}+\mathrm{e}^{\prime}$ (cm)	$f=\frac{\mathrm{uv}}{\mathrm{u}+\boldsymbol{v}}$ (cm)
	$\begin{aligned} & \text { दर्षण } \\ & \mathrm{M} \\ & (\mathrm{~cm}) \end{aligned}$	बिम्ब पिन P_{1} (cm)	$\begin{gathered} \text { प्रतिबिम्ब पिन } \\ \mathrm{P}_{2} \\ (\mathrm{~cm}) \\ \hline \end{gathered}$					
1cmcm						
2cm							
3cmcmcmcmcmcmcmcm
4cmcm						
5cm							

1. फोकस दूरी

$$
f=\frac{\mathrm{u} v}{\mathrm{u}+v}=
$$

\qquad सेमी
2. माध्य

$$
f=\frac{f 1+f 2+f 3+f 4+f 5}{5}=
$$

\qquad सेमी

परिणाम -
दिये गये अवतल दर्पण की फोकस दूरी $f=$ \qquad सेमी प्राप्त हुयी।

सावधानियॉ -

1. अवतल दर्पण की मुख्य अक्ष प्रकाश बैंच के पैमाने के समान्तर रहनी चाहिये।
2. पिन स्टैण्ड व दर्पण होल्डर स्टैण्ड दृढ़ होने चाहिये एवं ऊर्ध्वाधर रहने चाहिये।
3. अवतल दर्पण का द्वारक छोटा होना चाहिये अन्यथा प्रतिबिम्ब स्पष्ट नहीं दिखेगा।
4. बिम्ब पिन P_{1} बैच पर F व 2 F के मध्य रहनी चाहिये।
5. पिन P_{1} व P_{2} की ऊपरी नोक व ध्रुव का क्षैतिज तल समान होना चाहिये।
6. बिम्ब पिन P_{1} के उल्टे प्रतिबिम्ब की नोक पिन P_{2} को ठीक स्पर्श़ करनी चाहिये इनमें अतिव्यापन नहीं होना चाहिये। विस्थापनाभास दूर करते समय भी यही स्थिति रहनी चाहिये।
7. प्रयोग करते समय पिन P_{1} व P_{2} परस्पर बदलना नहीं चाहिये।
8. u व v के मानों में बैंच संशोधन करना चाहिये।

त्रुटि के उद्गम -

1. प्रकाश बैंच का पैमाना क्षैतिज न होने पर एवं पिन $\mathrm{P}_{1}, \mathrm{P}_{2}$ व दर्पण का ध्रुव P समान क्षैतिज तल में नहोने पर।
2. दर्पण का द्वारक छोटा न होने पर।

मौखिक प्रश्न -
प्र.1. दर्पण का वक्रता केन्द्र किसे कहते है ?

उ. दर्पण जिस गोले का भाग है, उसके केन्द्र को वक्रता केन्द्र कहते है।
प्र.2. अवतल दर्पण का ध्रुव किसे कहते है ?
उ. दर्पण के मध्य बिन्दु को ध्रुव कहते है।
प्र.3. दर्पण की वक्रता त्रिज्या किसे कहते है ?
उ. दर्पण के ध्रुव से वक्रता केन्द्र की दूरी को वक्रता त्रिज्या कहते हैं।
प्र.4. फोकस बिन्दु किसे कहते है ?
उ. दर्पण के मुख्य अक्ष के समान्तर आपतित किरणें परावर्तन के पश्चात् मुख्य अक्ष के जिस बिन्दु से निकलती है उसे फोकस बिन्दु कहते है।

प्र.5. फोकस दूरी किसे कहते है ?
उ. ध्रुव से फोकस बिन्दु की दूरी को फोकस दूरी कहते है।
प्र.6. परावर्तन किसे कहते है।
उ. प्रकाश किरण का एक माध्यम से संचरित होकर पृथक माध्यम के पृष्ठ से टकराकर पुनः उसी माध यम मे लौटने के प्रभाव को परावर्तन कहते है।

प्र.7. परार्वतन के नियम क्या है -
उ. (1) आपतन व परावर्तन कोण समान होते है।
(2) आपाती किरण, परावर्तित किरण व अभिलम्ब एक ही धरातल में होते है।

प्र.8. अवतल दर्पण के वक्रता केन्द्र पर स्थित बिम्ब का प्रतिबिम्ब कहॉ व कैसा बनता है ?
उ. प्रतिबिम्ब वक्रता केन्द्र पर ही बनता है। प्रतिबिम्ब उल्टा व समान आकार का बनता है।
प्र.9. अवतल दर्पण में आभासी प्रतिबिम्ब कब बनता है ?
उ. जब बिम्ब ध्रुव व फोकस बिन्दु के मध्य हो।
प्र.10. फोकस दूरी व वक्रता त्रिज्या में क्या सम्बन्ध है ?
उ. फोकस दूरी वक्रता त्रिज्या की आधी होती है।
प्र.11. समतल दर्पण की वक्रता त्रिज्या कितनी होती है ?
उ. अनन्त

प्र.12. अवतल दर्पण का द्वारक छोटा क्यों लेना चाहिये ?
उ. द्वारक छोटा लेने से प्रतिबिम्ब मे विभिन्न दोष जैसे वर्ण विपथन आदि उत्पन्न नही होते है।
प्र.13. अवतल दर्पण के फोकस बिन्दु पर बिम्ब होने की अवस्था में प्रतिबिम्ब कैसा व कहॉ बनता है ?

उ. प्रतिबिम्ब अनन्त पर वास्तविक, उल्टा व बहुत बड़ा।
प्र.14. दर्पण पर आपतित अभिलम्बवत् किरण के लिये आपतन व परावर्तन कोण का मान कितना होता है ?

उ. दोनों शून्य।

प्रयोग - 2

लैन्स से सम्बन्धित कुछ परिभाषायें एवं राशियॉ -

1. मुख्य अक्ष - लैंस की दोनों वक्र पृष्ठों के वक्रता केन्द्रों को मिलाने वाली रेखा मुख्य अक्ष कहलाती है।
2. प्रकाश केन्द्र - प्रकाश केन्द्र मुख्य अक्ष पर स्थित वह बिन्दु है जिससे निकलने वाली प्रकाश किरण लैंस में से बिना विचलित हुये निकलती है।
3. मुख्य फोकस - लैंस की मुख्य अक्ष के समान्तर आपाती किरणें लैंस से अपवर्तित होकर मुख्य अक्ष के जिस बिन्दु से निकलती है (उत्तल लैंस के लिये) अथवा मुख्य अक्ष के जिस बिन्दु से आती हुयी प्रतीत होती है (अवतल लैंस के लिये) लैंस का मुख्य फोकस कहलाता है। इसे लैंस का द्वितीय मुख्य फोकस भी कहते है।
4. फोकस दूरी - लैंस के फोकस बिन्दु व प्रकाश केन्द्र के मध्य दूरी को फोकस दूरी कहते है।
5. ग्राफ के काट - यदि ग्राफ X व Y अक्षों को काटता है तो मूल बिन्दु व अक्षों पर काट बिन्दुओं के मध्य लम्बाई को ग्राफ का काट कहते है।
6. लैंस में प्रतिबिम्ब की संरचना - लैंस में प्रतिबिम्ब की संरचना के लिये निम्न तीन किरणों में से कोई दो किरणें ले सकते हैं।
(1). बिम्ब की नोक से मुख्य अक्ष के समान्तर किरण जो अपवर्तन के पश्चात् द्वितीय मुख्य फोकस (F') से निकलती है (उत्तल लैंस के लिये) अथवा प्रथम मुख्य फोकस F से अपवर्तन के पश्चात् आती हुयी प्रतीत होती है (अवतल लैंस के लिये)
(2). बिम्ब की नोक से संचरित प्रकाश किरण जो प्रकाश केन्द्र से बिना विचलित हुये अपवर्तित होती है क्योंकि पतले लैंस का मध्य भाग एक पतली कांच की सिल्ली के समान व्यवहार करता है।
(3). बिम्ब के नोक से प्रथम फोकस (F) से निकलने वाली किरण (उत्तल लैंस के लिये) अथवा द्वितीय फोकस $\left(\mathrm{F}^{1}\right)$ से निकलते हुये प्रतीत होने वाली किरण (अवतल लैंस के लिये) जो अपवर्तन के पश्चात् मुख्य अक्ष के समान्तर निकलती है ।

उद्देश्य $-u$ तथा v अथवा $1 / u$ व $\frac{1}{\mathrm{v}}$ के बीच ग्राफ खींचकर किसी उत्तल लैंस की फोकस दूरी ज्ञात करना।

उपकरण एवं सामग्री - एक प्रकाश बैंच, दो उर्ध्वाधर पिन स्टैण्ड, दो नुकीली पिनें, एक स्टैण्ड लैंस होल्डर सहित, T -छड़, मीटर पैमाना स्प्रिट लेवल, पतला उत्तल लैंस (फोकस दूरी 20 सेमी से कम)।

सिद्धान्त - ' f ' फोकस दूरी के पतले उत्तल लैंस के प्रकाश केन्द्र से 'u' दूरी पर स्थित बिम्ब का वास्तविक व उल्टा प्रतिबिम्ब लैंस के दूसरी ओर प्रकाश केन्द्र से v दूरी पर बनता है तो u, v व f में निम्न सम्बन्ध होगा -

$$
\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}
$$

चिन्ह नियमों के अनुसार u को ऋणात्मक व v को धनात्मक लिया जायेगा। $1 / \mathrm{v}$ व $1 / \mathrm{u}$ में ग्राफ सीधी रेखा प्माप्त होगा जिसका ढाल ऋणात्मक होगा।

यदि $1 / \mathrm{v}=0$ हो तो ${ }^{1} / \mathrm{f}=1 / \mathrm{u}$ एवं $1 / \mathrm{u}=0$ हो तो ${ }^{1} / \mathrm{f}=1 / \mathrm{v}$ होगा। दोनों अक्षों पर ग्राफ का काट ${ }^{1} / f$ के बराबर होगा।

विधि -

1. उत्तल लैंस की लगभग फोकस दूरी दूरस्थ वस्तु के प्रतिबिम्ब को फोकसित कर ज्ञात करते

हैं। उत्तल लैंस द्वारा सूर्य अथवा दूरस्थ स्थित पेड का प्रतिबिम्ब समतल दीवार या सफेद कागज पर फोकसित करते हैं। मीटर पैमाने द्वारा लैंस व दीवार के मध्य दूरी ज्ञात करते है, यह दूरी लैंस की लगभग फोकस दूरी होगी।
2. प्रकाश बैंच को दृढ़ समतल धरातल की टेबुल पर रखकर स्प्रिट लेवल द्वारा क्षैतिज करते हैं।
3. प्रकाश बैंच पर एक स्टैण्ड लगाकर इस पर लैंस होल्डर लगाते हैं। लैंस होल्डर में उत्तल लैंस को इस प्रकार कसते हैं कि लैंस की मुख्य अक्ष प्रकाश बैंच के पैमाने के समान्तर रहे। लैंस स्टैण्ड को पैमाने के मध्य में रखते हैं।
4. दोनों पिन स्टैण्डो को लैंस के बॉयी व दॉयी ओर प्रकाश बैंच पर लगाते हैं स्टैण्डों पर नुकीली पिनों को इस प्रकार कसते हैं कि पिनों की नोक की ऊँचाई बैंच से लैंस के प्रकाश केन्द्र (O) की ऊँचाई के बराबर रहे।
5. लैंस के बॉयी ओर की पिन P को बिम्ब पिन व दॉयी ओर की पिन P^{\prime} को प्रतिबिम्ब पिन लेते है।
6. बैंच त्रुटि ज्ञात करने के लिये $\mathrm{T}-$ छड़ को इस प्रकार रखते है कि इसका एक नुकीला सिरा लैंस को प्रकाश केन्द्र बिन्दु (0) को तथा दूसरा सिरा पिन P की नोक को स्पर्श करे। प्रकाश बैंच के पैमाने पर लैंस स्टैण्ड व पिन P के स्टैण्ड की रिथतियों को ज्ञात करते है। इनकी स्थितियों में अन्तर मापित लम्बाई होगी। T- छड़ की वास्तविक लम्बाई मीटर पैमाने पर ज्ञात करते है इस लम्बाई में लैंस की आधी मोटाई जोड़ते है क्योंकि लैंस का प्रकाश केन्द्र वक्र धरातलो के मध्य में होता है। वास्तविक लम्बाई व मापित लम्बाई मे अन्तर पिन P के लिये बैंच संशोधन का मान होगा। ठीक इसी प्रकार पिन P' के लिये भी बैंच संशोधन ज्ञात करते है।

चित्र 2.2
7. बांयी ओर की बिम्ब पिन P को लैंस के प्रकाश केन्द्र से F व 2 F के मध्य किसी स्थिति पर रखते है। लैंस के दूसरी ओर (दॉयी ओर) पिन P^{\prime} को इस स्थिति मे लाते है कि बिम्ब पिन P^{\prime} का वास्तविक व उल्टा प्रतिबिम्ब ठीक पिन P^{\prime} के ऊपर बने तथा प्रतिबिम्ब की नोक पिन P^{\prime} की नोक को स्पर्श करे, पिन P^{\prime} व P पिन के प्रतिबिम्ब की नोक से नोक में विस्थापनाभास दूर करते है। बिम्ब पिन P , लैंस L व प्रतिबिम्ब पिन P^{\prime} की स्थितियां को बैंच पैमाने पर ज्ञात कर सारणी में भरते है।
8. बिम्ब पिन P को 2 cm से 3 cm तक विस्थापित कर प्रयोग को दोहराकर पिन P को F व 2 F के मध्य पॉच भिन्न-भिन्न स्थितियों के लिये प्रेक्षण सेट लेते है।

1. उत्तल लैंस की लगभग फोकस दूरी $=$ \qquad cm
2. T छड़ की मीटर पैमाने पर मापी गयी लम्बाई $\mathrm{L}_{0}=$. \qquad cm
3. उत्तल लैंस की ज्ञात मोटाई t \qquad .cm
4. उत्तल लैंस के वक्रता केन्द्र 0 से पिन की नोक के मध्य वास्तविक लम्बाई $l_{0}=l_{0}+\frac{\mathrm{t}}{2}=$ \qquad cm
5. छड़ की मापित लम्बाई

$$
\begin{aligned}
& l_{0}^{\prime}=\text { पैमाने पर लैंस स्टैण्ड की स्थिति - पैमाने पर बिम्ब पिन } \mathrm{P} \text { की स्थिति } \\
& =\ldots \mathrm{cm}
\end{aligned}
$$

6. बिम्ब पिन P के लिये बैंच संशोधन

$$
\mathrm{e}_{0}=l_{0}-l_{0}^{\prime}=.
$$

\qquad cm
इसी प्रकार प्रतिबिम्ब P^{1} के लिये बैंच संशोधन

$$
\mathrm{e}_{\mathrm{i}}=1_{1}-1_{1}^{\prime}
$$

u, V व \boldsymbol{f} के लिये सारणी

क्र.सं.	लैन्स की स्थिति a (cm)	बिम्ब पिन P की स्थिति b(cm)	प्रतिबिम्ब पिन P^{1} की स्थिति c (cm)	$\begin{gathered} \text { मापित } \\ \mathrm{u}=\mathrm{a}-\mathrm{b}(\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \text { मापित } \\ v=a-c \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \text { संशोधित } \\ u=\text { मापित } \\ u+\mathrm{e}_{0}(\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \text { संशोधित } \\ v=\begin{array}{c} \text { मापित } v+\mathrm{e}_{\mathrm{i}} \\ (\mathrm{~cm}) \end{array} \end{gathered}$	$\frac{1}{\mathrm{u}}(\mathrm{cm})^{-1}$	$\frac{1}{\mathrm{~V}(\mathrm{~cm})^{-1}}$	$f=\frac{\mathrm{uV}}{\mathrm{u}+\mathrm{V}}(\mathrm{cm})$
1cm	$\ldots c m$	\ldots	\ldotscmcm	\ldotscm ${ }^{-1}$cm cm^{-1}cm
2cmcmcmcmcmcmcm	$\ldots . . \mathrm{cm}^{-1}$	$\ldots . . \mathrm{cm}^{-1}$cm
3	$\ldots c m$	$\ldots c m$cmcmcm	\ldotscmcm ${ }^{-1}$cm ${ }^{-1}$cm
4cmcmcmcmcm	\ldotscmcm ${ }^{-1}$cm ${ }^{-1}$cm
5cmcm ${ }^{-1}$cm ${ }^{-1}$cm						

ग्राफ द्वारा फोकस दूरी f ज्ञात करना -
(i) $u-v$ ग्राफ : - यहॉ बिम्ब दूरी u ऋणात्मक एवं प्रतिबिम्ब की दूरी v धनात्मक होती है।

लेते है। $u-v$ ग्राफ एक अतिपरवलय प्राप्त होता है।

चित्र 2.3
मूल बिन्दु O से कोण $\angle \mathrm{xoy}$ की द्विभाजक रेखा खींचते है जो अति परवलय को बिन्दु Q पर काटती है। बिन्दु Q से x अक्ष व y अक्ष पर लम्ब QA व QB खींचते है।
(i) x अक्ष पर दूरी $\mathrm{OA}(2 f)=$ \qquad cm
(ii) y अक्ष पर दूरी $\mathrm{OB}(2 f)=$ \qquad cm

उत्तल लैंस की माध्य फोकस दूरी -

$$
f=\frac{\mathrm{OA}+\mathrm{OB}}{4}=
$$

\qquad cm
(ii) $\frac{1}{\mathrm{u}}-\frac{1}{\mathrm{v}}$ ग्राफ -
x अक्ष पर तो $1 / \mathrm{u}$ व y अक्ष पर $1 / \mathrm{v}$ के मान लेकर ग्राफ खींचते है। ग्राफ सरल रेखा प्राप्त होता है।

चित्र 2.4

96
x अक्ष व y अक्ष पर ग्राफ के काट OA^{\prime} व OB^{\prime} दूरीयाँ ${ }^{1} / f$ के बराबर होती हैं।

$$
\begin{aligned}
& \mathrm{x} \text { अक्ष पर काट } \mathrm{OA}^{\prime}(1 / f)=\ldots \ldots \ldots . . \mathrm{cm}^{-1} \\
& \mathrm{y} \text { अक्ष पर काट } \mathrm{OB}^{\prime}(1 / f)=\ldots \ldots \ldots . . \mathrm{cm}^{-1} \\
& \text { माध्य }^{1} / f=\frac{\mathrm{OA}^{\prime}+\mathrm{OB}}{2}=\ldots \ldots \ldots \mathrm{cm}^{-1} \text { अतः } f=.
\end{aligned}
$$

\qquad cm

परिणाम - पतले उत्तल लैंस की फोकस दूरी (f) -
(i) गणना द्वारा प्राप्त फोकस दूरी $f=$ cm

यहॉ f माध्य फोकस दूरी है।
(ii) $\mathrm{u}-\mathrm{v}$ ग्राफ द्वारा प्राप्त $f=$ \qquad cm
(iii) $1 / \mathrm{u}$ व $1 / \mathrm{v}$ ग्राफ से प्राप्त $f=$ \qquad cm

सावधानियाँ -

1. विस्थापनाभास सावधानी से दूर करना चाहिये।
2. प्रयोग से पूर्व लैंस को साफ कर लेना चाहिये।
3. स्टैण्ड दृढ़ व ऊर्ध्वाधर रहने चाहिये।
4. लैंस का द्वारक छोटा होना चाहिये अन्यथा प्रतिबिम्ब स्पष्ट नहीं बनेगा।
5. प्रयोग करते समय बिम्ब पिन व प्रतिबिम्ब पिन को परस्पर नहीं बदलना चाहिये।

त्रुटियों के उद्गम -

1. स्टैण्ड ऊर्ध्वाधर न होने पर।
2. T- छड़ के सिरे नुकीले न होने पर

मौखिक प्रश्न -
प्र.1. उत्तल लैंस की वक्रता त्रिज्या किसे कहते हैं?

उ. उत्तल लैंस का पृष्ठ जिस गोले का भाग है उसकी त्रिज्या को लैंस की वक्रता त्रिज्या कहते हैं।
प्र.2. उत्तल लैंस में कितनी वक्रता त्रिज्यायें होती है?
उ. दोनों पृष्ठों के लिये दो।
प्र.3. उत्तल लैंस की मुख्य अक्ष किसे कहते हैं?
उ. लैंस के दोनों वक्रता केन्द्रों को मिलाने वाली रेखा को मुख्य अक्ष कहते हैं।
प्र.4. उत्तल लैंस में कितने फोकस बिन्दु होते है ?
उ. दो
प्र.5. उत्तल लैंस का वक्रता केन्द्र किसे कहते है ?
उ. उत्तल लैंस का पृष्ठ जिस गोले का भाग है उसके केन्द्र को वक्रता केन्द्र कहते है। उत्तल लैंस के दो वक्रता केन्द्र होते हैं।

प्र.6. लैंस के प्रकाश केन्द्र का क्या गुण है?
उ. प्रकाश केन्द्र वह बिन्दु है जिससे निकलने वाली किरणे बिना विचलित हुये निकलती है।
प्र.7. लैंस की फोकस दूरी किन-किन राशियों पर निर्भर करती है ?
उ. लैस के पदार्थ, माध्यम, ताप व प्रकाश की आवृति।
प्र.8. उत्तल लैंस की क्षमता किसे कहते है ?
उ. उत्तल लैंस द्वारा प्रकाश किरणों को अभिसारित करने की क्षमता को लैंस क्षमता कहते हैं। यह फोकस दूरी के व्युत्क्रम के बराबर होती है।

प्र.9. लैंस क्षमता का मात्रक क्या है ?
उ. डायप्टर।
प्र.10. पतले व मोटे लैंस में से किसकी क्षमता अधिक होती है ?
उ. मोटे लैंस की।
प्र.11. बिम्ब, प्रकाश केन्द्र व फोकस बिन्दु के मध्य स्थित हो तो प्रतिबिम्ब कैसा बनता है ?

उ. आभासी, सीधा व बड़ा।
प्र.12. लैंसो का उपयोग क्या है ?
उ. दूरदर्शी में, सूक्ष्मदर्शी मे, नेत्र दोष दूर करने में, फोटो ग्राफिक कैमरे में।
प्र.13. लैंस किसे कहते है ?
उ. लैंस एक पारदर्शक माध्यम होता है जो दो वक्र तलों से घिरा होता है अथवा एक समतल व एक वक्र तल से घिरा होता है।

प्र.14. बिम्ब, फोकस बिन्दु व वक्रता केन्द्र के मध्य स्थित होने पर प्रतिबिम्ब कैसा बनता है ?
उ. लैंस के दूसरी और वक्रता केन्द्र से आगे वास्तविक, उल्टा व बड़ा।
प्र.15. बैंच त्रुटि किसे कहते हैं?
उ. लैंस के प्रकाश केन्द्र से पिन की नोक के बीच प्रकाशीय बैंच पर नापी गयी दूरी व वास्तविक दूरी में अन्तर को बैंच त्रुटि कहते है।

प्रयोग - 3

उद्देश्य - उत्तल लैंस का उपयोग करके उत्तल दर्पण की फोकस दूरी ज्ञात करना।
उपकरण एवं आवश्यक सामग्री -
एक प्रकाश बैंच, एक उत्तल दर्पण, एक पतला उत्तल लैंस, प्रकाश बैंच पर उत्तल दर्पण व उत्तल लैंस लगाने के दो स्टैण्ड, दो पिन स्टैण्ड, दो नुकीली पिनें, टी-छड़, मीटर पैमाना, स्प्रिट लेवल।

सिद्धात -
उत्तल दर्पण में किसी बिम्ब का प्रतिबिम्ब सीधा व आभासी बनता है। उत्तल दर्पण की फोकस दूरी सीधे ज्ञात करना सम्भव नही है। परन्तु एक उत्तल लैंस को बिम्ब व उत्तल दर्पण के मध्य रखकर फोकस दूरी ज्ञात कर सकते है।
चित्र 3.1 में दिखाये अनुसार एक उत्तल लैंस L बिम्ब पिन P व उत्तल दर्पण M के मध्य व्यवस्थित किया जाय। L, M वP को इस प्रकार व्यवर्थित किया जाय कि पिन P व इसके वास्तविक व उल्टे प्रतिबिम्ब में विस्थानाभास न रहे। इस अवस्था में बिम्ब से चलने वाली प्रकाश किरणे उत्तल दर्पण पर लम्बवत् पहुँचती

है।

चित्र 3.1

उत्तल दर्पण पर पहुँचने वाली किरणें पीछे की ओर बढाने पर दर्पण के वक्रता केन्द्र C पर मिलनी चाहिए। दूरी MC उत्तल दर्पण की वक्रता त्रिज्या को प्रदर्शित करती है। वक्रता त्रिज्या की आधी दूरी दर्पण की फोकस दूरी के बराबर होगी। बिम्ब पिन P व उत्तल लैंस L की स्थिति को परिवर्तित किये बिना उत्तल दर्पण को हटा लेते हैं एवं इसी ओर दूसरी पिन P^{\prime} को विस्थानाभास द्वारा पिन P के प्रतिबिम्ब की स्थिति पर व्यवस्थित करते है। MP' दूरी को नापते हैं।

यहॉ $\mathrm{MP}^{\prime}=\mathrm{MC}=\mathrm{R}$
उत्तल दर्पण की फोकस दूरी -

$$
f=\frac{\mathrm{R}}{2}
$$

$$
f=\frac{\mathrm{MP}^{\prime}}{2}
$$

R दर्पण की वक्रता त्रिज्या हैं।
विधि -

1. उत्तल लैंस की फोकस दूरी ज्ञात न हो, तो इसकी लगभग फोकस दूरी दूरस्थ वस्तु का प्रतिबिम्ब दीवार पर फोकसित कर ज्ञात करते है।
2. प्रकाश बैंच को दृढ़ टेबुल या किसी समतल पर रखते है एवं इसको स्प्रिट लेवल की सहायता से क्षैतिज करते है।
3. प्रकाश बैंच पर उत्तल दर्पण M , उत्तल लैंस L व बिम्ब पिन P उर्ध्वाधर स्टैण्डो पर लगाते हैं।
4. बिम्ब पिन, उत्तल लैंस व उत्तल दर्पण को इस प्रकार लगाते है कि पिन P की नोंक, उत्तल लैंस का प्रकाश केन्द्र व उत्तल दर्पण का ध्रुव समान ऊँचाई व एक क्षैतिज रेखा पर हो जो प्रकाश बैंच के पैमाने के समान्तर रहे।
5. T- छड़ की सहायता से उत्तल दर्पण M व प्रतिबिम्ब पिन P^{\prime} के मध्य बैंच त्रुटि ज्ञात करते है।
6. बिम्ब पिन P को उत्तल लैंस से इसकी फोकस दूरी से थोड़ा आगे रखते है।
7. उत्तल दर्पण M को दॉये बॉये विस्थापित कर ऐसी स्थिति में लाते है कि दर्पण से परावर्तित किरणें उत्तल लैंस L से अपवर्तन के पश्चात् वास्तविक व उल्टा प्रतिबिम्ब बिम्ब पिन P से संपातित होते हुये बनाये। यह स्थिति उसी अवस्था में होगी जब बिम्ब पिन P से चलने वाली प्रकाश किरणें लैंस L से अपवर्तन के पश्चात् दर्पण M पर लम्बवत् गिरे एवं दर्पण से परावर्तन के पश्चात् अपने पूर्व मूल पथ पर चले। बिम्ब पिन Pव इसके प्रतिबिम्ब में विस्थापनाभास दूर करते है।
8. पिन P , उत्तल लैंस L व उत्तल दर्पण M की स्थितियॉ बैंच पैमाने पर ज्ञात कर नोट करते है।
9. बिम्ब पिन Pव उत्तल लैंस L की स्थितियों को समान रखते हुये, उत्तल दर्पण को हटा लेते हैं। उत्तल दर्पण के स्थान पर दूसरी पिन P^{\prime} उर्ध्वाधर स्टैण्ड पर इस प्रकार लगाते है कि इसकी नोंक बिम्ब पिन P की नोक व उत्तल लैंस L के प्रकाश केन्द्र के सीध में क्षैतिज सरल रेखा में प्रकाश बैंच के समान्तर रहे।
10. बिम्ब पिन P व लैन्स की स्थिति परिवर्तित किये बिना, प्रतिबिम्बपिन P^{\prime} को दॉये बॉये विस्थापित कर इस प्रकार लाते है कि बिम्ब पिन P का वास्तविक व उल्टा प्रतिबिम्ब इसकी नोक से सम्पातित करें।

प्रतिबिम्ब पिन P^{\prime} व बिम्ब पिन P के प्रतिबिम्ब में विस्थापनाभास दूर करते हैं।
11. प्रतिबिम्ब पिन P^{\prime} की स्थिति नोट करते हैं।
12. बिम्ब पिन P, लैन्स L व दर्पण M की दूरियॉ परिवर्तित कर पाठ्ंयाक के पॉच भिन्न-भिन्न सेट लेते है।

प्रेक्षण -

1. उत्तल लैंस की लगभग प्रेक्षित फोकस दूरी $f=$ \qquad cm
2. T छड़ की वास्तविक लम्बाई $l=$ cm
3. छड़ की मापित लम्बाई (पैमाने पर)
$l^{\prime}=$ दर्पण स्टैण्ड की रिथत - प्रतिबिम्ब पिन P^{\prime} की र्थिति $=$ \qquad cm
4. बैंच संशोधन $\mathbf{e}=$ वास्तविक लम्बाई - मापित लम्बाई $\therefore \mathrm{e}=l-l^{\prime}=$ \qquad cm उत्तल दर्पण की वक्रता त्रिज्या (R) की सारणी

क्र.स.	पैमाने पर स्टैण्ड की स्थिति				$\begin{gathered} \text { मापित } \\ \mathrm{R}^{\prime}=\mathrm{c}-\mathrm{d} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \text { संशोधित } \\ \mathrm{R}=\mathrm{R}^{\prime}+\mathrm{e} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{aligned} & \text { माध्य } \\ & R \\ & (\mathrm{~cm}) \end{aligned}$	फोकस दूरी$f=\frac{\mathrm{R}}{2}(\mathrm{~cm})$
	बिम्ब पिन P a (cm)	$\begin{gathered} \text { उत्तल लैंस } \\ \text { L } \\ \mathrm{b}(\mathrm{~cm}) \end{gathered}$	उत्तल दर्पण M c (cm)	प्रतिबिम्ब पिन P^{\prime} $\mathrm{d}(\mathrm{cm})$				
1cm	$\ldots c m$cmcm.cmcmcmcm
2cm	$\ldots c m$cmcm.cmcmcm	$\ldots c m$
3	$\ldots c m$	$\ldots c m$cmcm.cmcm	$\ldots \mathrm{cm}$	$\ldots c m$
4cmcmcmcm.cmcmcmcm
5cm	$\ldots c m$cmcm.cmcm	$\ldots \ldots . . \mathrm{cm}$cm

गणना -

1. वक्रता त्रिज्या का माध्य मान ज्ञात करते है।
2. उत्तल दर्पण की फोकस दूरी
(ii) $f=\frac{\mathrm{R}}{2}=$ \qquad cm

परिणाम -
उत्तल दर्पण की फोकस दूरी $f=$ \qquad cm प्राप्त हुयी।

सावधानियाँ -

1. उत्तल लैंस, उत्तल दर्पण, बिम्ब पिन व प्रतिबिम्ब पिन को दृढ़ स्टैण्ड पर उर्ध्वाधर लगाना

चाहिये।
2. बिम्ब पिन की नोंक, उत्तल लैंस का प्रकाश केन्द्र व उत्तल दर्पण का ध्रुव एक ही क्षैतिज रेखा पर बैंच के समान्तर रहने चाहिये।
3. उत्तल दर्पण व प्रतिबिम्ब पिन के मध्य बैंच संशोधन सही ज्ञात करना चाहिये।
4. बिम्ब व प्रतिबिम्ब में विस्थापनाभास पिन की नोक से नोक तक सही दूर करना चाहिये।
5. उत्तल दर्पण को हटाते समय बिम्ब पिन व उत्तल लैंस की स्थिति में परिवर्तन नहीं करना चाहिये।

त्रुटियों के उद्गम -

1. प्रकाश बैंच क्षैतिज न होने के कारण।
2. विस्थापनाभास सही दूर न करने के कारण।

मौखिक प्रश्न -
प्र.1. उत्तल दर्पण का ध्रुव किसे कहते है ?
उ. उत्तल दर्पण के मध्य बिन्दु को दर्पण का ध्रुव कहते है।
प्र.2. उत्तल दर्पण का फोकस बिन्दु किसे कहते है ?
उ. मुख्य अक्ष के समान्तर आने वाली किरणें, उत्तल दर्पण से परावर्तन के पश्चात्, मुख्य अक्ष के जिस बिन्दु से आती हुयी प्रतीत होती है, उसे उत्तल दर्पण का फोकस बिन्दु कहते है।

प्र.3. फोकस दूरी किसे कहते है ?
उ ध्रुव से फोकस बिन्दु के बीच की दूरी को फोकस दूरी कहते है ।
प्र.4. उत्तल दर्पण की वक्रता त्रिज्या किसे कहते है ?
उ. उत्तल दर्पण जिस गोले का भाग है, उसकी त्रिज्या को दर्पण की वक्रता त्रिज्या कहते है।
प्र.5. वक्रता त्रिज्या व फोकस दूरी में क्या सम्बन्ध है ?

उ. फोकस दूरी वक्रता त्रिज्या की आधी होती है।
प्र.6. उत्तल दर्पण में प्रतिबिम्ब कहाँ बनता है ?
उ. उत्तल दर्पण में प्रतिबिम्ब सदैव दर्पण के ध्रुव व फोकस बिन्दु के मध्य बनता है।
प्र.7. उत्तल दर्पण में प्रतिबिम्ब किस प्रकार का बनता है ?
उ. उत्तल दर्पण में प्रतिबिम्ब आभासी, सीधा व छोटा बनता है।
प्र.8. बैंच त्रुटि किसे कहते है ?
उ. दर्पण के ध्रुव तथा पिन के बीच प्रकाशीय बैंच पर नापी गयी दूरी तथा वास्तविक दूरी के अन्तर को बैंच त्रुटि कहते हैं।

प्रयोग - 4

उद्देश्य -
उत्तल लैंस का उपयोग करके अवतल लैंस की फोकस दूरी ज्ञात करना।
उपकरण एवं सामग्री -
एक प्रकाश बैंच, एक उत्तल लैंस (फोकस दूरी, अवतल लैंस से कम), एक अवतल लैंस, उत्तल लैंस व अवतल लैंस के दो स्टैण्ड लैंस होल्डर सहित, दो नुकीली पिन, दो पिन स्टैण्ड, T - छड़, स्प्रिट लेवल, मीटर पैमाना।

सिद्धान्त -
अवतल लैंस से सदैव आभासी व सीधा प्रतिबिम्ब बनता है। इस कारण अवतल लैंस की फोकस दूरी सीधो ज्ञात करना संभव नहीं है परन्तु बिम्ब व अवतल लैंस के मध्य उत्तल लैंस लगाकर अप्रत्यक्ष विधि से फोकस दूरी ज्ञात की जा सकती है।

किसी बिम्ब P को उत्तल लैंस L_{1} की फोकस दूरी से थोड़ा अधिक दूरी पर रखा जाय तो प्रतिबिम्ब लैंस के दूसरी ओर वास्तविक व उल्टा I_{1} बनता है।

यदि L_{1} व I_{1} के मध्य अवतल लैंस को इस प्रकार रखा जाए कि L_{1} द्वारा बना वास्तविक प्रतिबिम्ब I_{1} अवतल लैंस के लिये आभासी बिम्ब का कार्य करे तो अवतल लैंस L_{2} द्वारा आभासी बिम्ब I_{1} का वास्तविक प्रतिबिम्ब I_{2} बनेगा। अवतल लैंस L_{2} के लिये-

बिम्ब की दूरी $\mathrm{O}_{2} \mathrm{I}_{1}=\mathrm{u}$
प्रतिबिम्ब की दूरी $\mathrm{O}_{2} \mathrm{I}_{2}=\mathrm{v}$
अवतल लैंस की फोकसी दूरी f हो तो u, v व f में सम्बन्ध निम्न होगा -

$$
\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}
$$

यहॉ u व v दोनों धनात्मक होगे।

$$
\therefore f=\frac{u v}{u-v} \text { सेमी }
$$

चित्र 4.1
विधि -

1. उत्तल लैंस की फोकस दूरी दी गयी नहीं हो तो उत्तल लैंस द्वारा दूरस्थ वस्तु (सूर्य या पेड़) का प्रतिबिम्ब समतल दीवार पर फोकसित कर इसकी लगभग फोकस दूरी ज्ञात करते है।
2. यह जॉच लेते है कि उत्तल लैंस की फोकस दूरी अवतल लैंस से कम है।
3. प्रकाश बैंच को दृढ़ टेबुल या दृढ़ समतल पर रखकर स्प्रिट लेवल द्वारा क्षैतिज करते है।
4. प्रकाश बैंच पर लैंस स्टैण्ड लगाकर इसके लैंस होल्डर में उत्तल लैंस $\left(\mathrm{L}_{1}\right)$ का कसते है। लैंस के बॉयी व दांयी और दो पिन स्टैण्ड लगाकर इनपर पिन P_{1} व P_{2} कसते है।
5. P_{1} व P_{2} तथा लैंस L_{1} को इस प्रकार रखते है कि P_{1} व P_{2} की नोंक तथा उत्तल लैंस L_{1} का प्रकाश केन्द्र O_{1} एक ही क्षैतिज रेखा में प्रकाश बैंच के समान्तर रहे।
6. पिन P_{1} को बिम्ब पिन व P_{2} का प्रतिबिम्ब पिन लेते है।
7. बिम्ब पिन P_{1} को उत्तल लैंस L_{1} की फोकस दूरी से थोड़ा आगे (F व 2 F के मध्य) रखते है।
8. प्रतिबिम्ब पिन P_{2} को ऐसी स्थिति में लाते है कि बिम्ब पिन P_{1} के वास्तविक व उल्टे प्रतिबिम्ब I_{1} की नोक के पिन P_{2} ठीक उपर बने। पिन P_{2} व P_{1} के प्रतिबिम्ब पिन I_{1} के मध्य नोक से नोक पर विस्थापनाभास दूर करते है।
9. बिम्ब पिन P_{1}, उत्तल लैंस L_{1} व प्रतिबिम्ब पिन P_{2} की स्थिति पैमाने पर नोट कर सारणी में भरते हैं।
10. बिम्ब पिन P_{1} व उत्तल लैंस L_{1} की स्थिति अपरिवर्तित रखते हुये लैंस L_{1} व प्रतिबिम्ब पिन P_{2} के मध्य अवतल लैंस स्टैण्ड पर उर्ध्वाधर कसते हैं। प्रतिबिम्ब I_{1} अवतल लैंस के लिये आभासी बिम्ब के समान कार्य करेगा।
11. T छड़ की सहायता से अवतल लैंस व प्रतिबिम्ब पिन P_{2} के मध्य बैंच त्रुटि (प्रयोग 10 के अनुसार) ज्ञात करते हैं।
12. उत्तल लैंस से अवतल लैंस को ऐसी दूरी पर रखते हैं कि आभासी बिम्ब I_{1} का वास्तविक व उल्टा प्रतिबिम्ब I_{2} पिन P_{2} के ठीक ऊपर बने। इस हेतु अवतल लैंस को उत्तल लैंस के निकट ही रखते है। अब प्रतिबिम्ब I_{1} की स्थिति से आगे बनेगा।
13. प्रतिबिम्ब पिन P_{2} व वास्तविक प्रतिबिम्ब I_{2} के मध्य नोक से नोक में विस्थापनाभास दूर करते है।
14. अवतल लैंस की स्थिति व पिन P_{2} की नयी स्थिति I_{2} को नोट कर सारणी में भरते हैं।
15. अवतल लैंस L_{2} या बिम्ब पिन P_{1} की भिन्न-भिन्न स्थितियों के लिये प्रयोग को दोहरा कर u व v के मान ज्ञात करते है। अवतल लैंस के लिये $\mathrm{u}=\mathrm{O}_{2} \mathrm{I}_{1}$ एवं $\mathrm{v}=\mathrm{O}_{2} \mathrm{I}_{2}$
16. u व v के प्रत्येक मान से बैंच त्रुटि घटाकर संशोधित मान ज्ञात करते हैं।
17. संशोधित मानों की सहायता से अवतल लैंस की फोकस दूरी ज्ञात कर इसका माध्य निकालते है।

प्रेक्षण -

1. उत्तल लैंस L_{1} की फोक्स दूरी $f_{1}=$ \qquad cm
2. T छड़ की पैमाने पर नापी गयी वास्तविक लम्बाई $\mathrm{S}=$ \qquad cm
3. प्रकाश केन्द्र पर अवतल लैंस की मोटाई $t=$ \qquad cm
4. प्रकाश केन्द्र से प्रतिबिम्ब पिन P_{2} की वास्तविक लम्बाई

$$
l=\mathrm{S}+\frac{\mathrm{t}}{2}=
$$

\qquad cm
5. T छड़ की पैमाने पर नापी गयी लम्बाई $=$ अवतल लैंस की स्थिति - पिन P_{2} की स्थिति $l_{1}=$ \qquad cm
6. बैंच संशोधन $\mathrm{e}=l-l_{1}=$ \qquad cm
\mathbf{u}, v व f के लिये सारणी

क्र.सं.	$\begin{aligned} & \text { बिम्ब पिन } \\ & \mathrm{P}_{1} \text { की } \\ & \text { स्थिति } \\ & \mathrm{a}(\mathrm{~cm}) \end{aligned}$	उत्तल लैन्स L_{1} की सिथति b (cm)	प्रतिबिम्ब पिन P_{2} की प्रथम स्थिति I_{1} c (cm)	अवतल लैन्स L_{2} की स्थिति d (cm)	प्रतिबिम्ब पिन P_{2} की द्वितीय स्थिति I_{2} g (cm)	$\begin{array}{r} \text { मापित } \\ \mathrm{u}^{1}=\mathrm{c}-\mathrm{d} \\ (\mathrm{~cm}) \end{array}$	$\begin{gathered} \text { मापित } \\ v^{\prime}=\mathrm{g}-\mathrm{d} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \text { संशोधित } \\ \mathrm{u}^{2}=\mathrm{u}^{1}+\mathrm{e} \\ (\mathrm{~cm}) \end{gathered}$	संशोधित $\nu=v^{\prime}+e$ (cm)	$\begin{aligned} & f=\frac{\mathrm{u} v}{\mathrm{u}+v} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{gathered} \text { माध्य } \\ f \\ (\mathrm{~cm}) \end{gathered}$
1cm										
2cm										
3cmcm									
4cm										
5cmcm	\ldots	\ldotscmcmcmcmcmcm	

गणना —
अवतल लैंस की फोकस दूरी -

$$
f=\frac{\mathrm{uv}}{\mathrm{u}-\mathrm{v}}=\ldots \ldots \ldots \ldots \ldots \mathrm{cn}
$$

माध्य $f=$ \qquad cm

परिणाम -
अवतल लैंस की फोकस दूरी $f=$ \qquad cm प्राप्त हुई।

सावधानियाँ -

1. उत्तल लैंस की फोकस दूरी अवतल लैंस से कम होनी चाहिये।
2. अवतल लैंस को उत्तल लैंस के निकट ही रखना चाहिये जिससे प्रतिबिम्ब I_{2} प्रकाश बैंच पर प्राप्त हो सके।
3. अवतल लैंस लगाते समय पिन P_{1} व उत्तल लैंस L_{1} की र्थिति परिवर्तित नहीं होनी चाहिये।
4. पिन P_{1} व पिन P_{2} पतली लेनी चाहिये।
5. विस्थापनाभास सही दूर करना चाहिये।
6. u व v के लिये बैंच संशोधन करना चाहिये।

त्रुटियों के स्त्रोत् -

1. पिन P_{1} की नोक, उत्तल लैंस का प्रकाश केन्द्र 0 व पिन P_{2} की नोक ठीक क्षैतिज रेखा में न हो।
2. पिन नुकीली व पतली न होने पर।

मौखिक प्रश्न -
प्र.1. अवतल लैंस का फोकस बिन्दु किसे कहते हैं?
उ. मुख्य अक्ष के समान्तर आपतित किरणें अपवर्तन के पश्चात् मुख्य अक्ष के जिस बिन्दु से आती हुयी प्रतीत होती है उसे मुख्य फोकस कहते है।
प्र.2. लैंस की फोकस दूरी अपवर्तनांक व वक्रता त्रिज्याओं में क्या सम्बन्ध है ?
उ. $\quad \frac{1}{f}=(\mathrm{n}-1)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)$

प्र.3. अवतल लैंस में प्रतिबिम्ब किस प्रकार के बनते है।
उ. अवतल लैंस द्वारा बना प्रतिबिम्ब सदैव काल्पनिक, सीधा व बिम्ब से छोटे आकार का होता है।
प्र.4. अवतल लैंस को अपसारी लैंस क्यों कहते है।
उ. अवतल लैंस की मुख्य अक्ष के समान्तर आपतित किरणें लैंस से अपवर्तन के पश्चात् किसी बिन्दु से दूर हटती है। इस कारण लैंस को अपसारी लैंस कहते हैं।

प्रयोग 5

उद्देश्य -

दिए गए कांच के प्रिज्म के लिए आपतन कोण एवं विचलन कोण के मध्य ग्राफ खींच कर न्यूनतम विचलन कोण तथा अपवर्तनांक ज्ञात करना। उपकरण एवं सामग्री-

ड्राइंग बोर्ड, सफेद कागज, कांच का प्रिज्म, मीटर स्केल, तीखी आलपिनें, सेलोटेप / ड्राइंग पिने, ग्राफ पेपर, चांदा, पेंसिल आदि

एक साधारण प्रिज्म तीन आयताकार एवं दो त्रिभुजाकार फलकों से बना समांगी पारदर्शी माध्यम होता है। तीनों आयताकार फलक आपस में तथा त्रिभुजाकार फलकों से चित्रानुसार जुड़े होते हैं। चित्र - 5.1 (अ)
सिद्धांत-

चित्र - 5.1 (अ)

चित्र - 5.1 (ब)

प्रकाश की किरण PQ किसी आयताकार फलक पर आपतित होती है तो कांच के सघन माध यम में प्रवेश करने पर अपवर्तन के कारण अपवर्तित किरण QR के रूप में अभिलंब की ओर मुडती है। यह किरण QR जब दूसरे आयताकार फलक पर आपतित होती है तो निर्गत किरण RS के रूप में वायु में अभिलंब से दूर हटती है। चित्र - 5.1 (ब)

आपतित किरण PQ को आगे की और तथा निर्गत किरण RS को पीछे की और बढ़ाने पर दोनों किरणें बिन्दु T पर मिलती है। आपतित किरण की दिशा एवं निर्गत किरण RS की दिशा के मध्य बनने वाले कोण को विचलन कोण δ कहते हैं।
चित्र की ज्यामिती से $\angle \mathrm{r}_{1}+\angle \mathrm{r}_{2}=\angle \mathrm{A} . \ldots$. (1)
तथा $\delta=\left(i-r_{1}\right)+\left(e-r_{2}\right) \ldots .$. (2) यहां $\mathrm{i}=$ आपतन कोण, $\mathrm{e}=$ निर्गत कोण

$$
\begin{aligned}
& \angle \mathrm{r}_{1}=\text { तल } \mathrm{AB} \text { के लिए अपवर्तन कोण } \\
& \angle \mathrm{r}_{2}=\text { तल } \mathrm{AC} \text { के लिए अपवर्तन कोण }
\end{aligned}
$$

यदि आपतन कोण i का मान बढ़ाया जाता है तो विचलन कोण का मान कम होता जाता है। आपतन कोण के एक विशेष मान पर विचलन कोण मान न्यूनतम / अल्पतम होता है। आपतन कोण के मान को और अधिक बढ़ाने पर विचलन कोण का मान पुनः बढ़ने लगता है। अल्पतम विचलन कोण की अवस्था में प्रिज्म द्वारा निर्मित प्रतिबिंब की तीव्रता अधिकतम होती है। अल्पतम विचलन कोण की अवस्था में $\delta=\delta_{\mathrm{m}}, \mathrm{r}_{1}=\mathrm{r}_{2}=\mathrm{r}$ तथा $\mathrm{i}=\mathrm{e}$ होता है। अतः $\mathrm{A}=2 \mathrm{r}, \delta_{\mathrm{m}}=2 \mathrm{i}-\mathrm{A}$
प्रिज्म के पदार्थ का अपवर्तनां $\mathrm{n}=\frac{\operatorname{Sin} \frac{\left(\mathrm{A}+\delta_{\mathrm{m}}\right)}{2}}{\operatorname{Sin}(\mathrm{~A} / 2)}$
यहाँ $\mathrm{A}=$ प्रिज्म कोण, $\delta_{\mathrm{m}}=$ न्यूनतम विचलन कोण

चित्र 5.2
विधि-

1. ड्राइंग बोर्ड पर कागज की शीट सेलोटेप/ड्राइंग पिनो से लगावें।

2 शीट पर एक लंबी सरल रेखा $x y$ खींचो ।
3 इस रेखा पर भिन्न बिन्दुओं $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ पर लंब खींचे ।
4 प्रत्येक बिन्दु लंब से कोण $30^{\circ}, 35^{\circ}, 40^{\circ}, 45^{\circ}, 50^{\circ}$ आदि पर रेखा $\mathrm{P}_{1} \mathrm{O}_{1}, \mathrm{P}_{2} \mathrm{O}_{2}, \mathrm{P}_{3} \mathrm{O}_{3}$ खींचे ।

5
प्रिज्म के त्रिभुजाकार फलक को इस प्रकार रखें कि एक आयताकार उर्ध्व फलक रेखा xy से सम्पाती हो।

6
7

8

प्रिज्म की सीमा रेखा बनाने के बाद इसे हटा दे।
10 पिनों को हटा कर, उनके स्थानों पर छोटे गोले बना दे। बिन्दु S_{1} एवं R_{1} को मिलाती हुई रेखा सरल रेखा खींचे। रेखा $\mathrm{P}_{1} \mathrm{Q}_{1}$ को O_{1} से डॉट रेखा द्वारा आगे बढ़ावे जो $\mathrm{R}_{1} \mathrm{~S}_{1}$ रेखा को पीछे बढ़ाने पर D_{1} पर काटती है।
11 चित्रानुसार बने विचलन कोण δ एवं संगत आपतन कोण के मानों को सारिणी में लिखे।
12 उपरोक्त विधि से अन्य आपतन कोणों के लिए प्रयोग करें एवं प्राप्त विचलन कोण एवं संगत आपतन कोण के मानों को सारणीबद्ध करें।
13. प्रिज्म कोण A ज्ञात करने के लिए प्रयोग के दौरान प्राप्त प्रिज्म की त्रिभुजाकार आकृतियों में से किसी एक के तीनों कोणों को मापकर औसत लें। यही A का मान होगा।
प्रेक्षण - चांदे का अल्पतमांक = ड डिग्री
$\mathrm{A}=\frac{\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}}{3}$
$A=-\quad$ डिग्री
क्र सं आपतन कोण विचलन कोण

1	..डिग्री	. डिग्री
2	डिग्री	.डडग्री
3	..डिग्री	..डिग्री
4	..डिग्री	.डिग्री
5	..डिग्री	.डडग्री

गणना
आपतन कोण i को X - अक्ष एवं विचलन कोण δ को Y - अक्ष पर लेते हुए ग्राफ बनावें। जो निम्न प्रकार का प्राप्त होता है।

इन बिन्दुओं को मुक्त हस्त से मिलाते हुए वक्र की आकृति दें। (सीधी रेखा द्वारा नहीं मिलावें) हो सकता है आपका कोई भी पाठयांक अल्पतम विचलन कोण के लिए नहीं हो, परंतु वक्र के न्यूनतम बिन्दु P से δ अक्ष पर लंब PQ डालने से अल्पतम विचलन कोण δ_{m} (बिन्दु Q का पाठयांक) प्राप्त हो जाता है।
(अथवा i के समान्तर, न्यूनतम बिन्दु पर खींची) हुई स्पर्श रेखा δ अक्ष पर जो मान बताती है वही δ_{m} होगा) अपवर्तनांक के लिए गणना $\mathrm{n}=\frac{\operatorname{Sin} \frac{\left(\mathrm{A}+\delta_{\mathrm{m}}\right)}{2}}{\operatorname{Sin}(\mathrm{~A} / 2)}$ में δ_{m} एवं A के मान रखकर साईन सारणी की सहायता से गणना करें। ($\mathrm{n}=$ मात्रक हीन) परिणाएम-

1. दिए गए प्रिज्म के लिए अल्पतम विचलनप कोण का मान \qquad डिग्री प्राप्त होता है।
2. दिए गए प्रिज्म के पदार्थ का अपवर्तनांक $\mathrm{n}=$ \qquad प्राप्त हुआ। सावधानियां

1 पिनों को ठीक ऊर्ध्व स्थिति में गाड़ें।
2 पिनों के बीच की दूरी अधिक रखने पर लंबन द्वारा अधिक सही पाठयांक प्राप्त होता है।
3 सभी पाठयांकों में प्रिज्म कोण वही रखना चाहिए (अच्छा हो उसे पेन/मार्कर) से अंकित कर ले।
4 चारों पिने लगाते समय प्रिज्म नहीं हिलना चाहिए। प्रिज्म रखने के बाद पेंसिल से उसके चारों और सीमांकन कर दें।

5 संभावित न्यूनतम विचलन कोण के निकट अधिक प्रेक्षण लें। जिससे ग्राफ की अधिक वास्तविक आकृति

प्राप्त होती है।
6 न्यूनतम विचलन कोण के लिए स्पर्श रेखा खींचते समय अधिक सावधान रहें।
मौखिक प्रश्न
प्र 1 प्रकाश की किरण जब एक माध्यम से दूसरे माध्यम से प्रवेश करती है तो अपने मूल पथ से क्यों मुड़ जाती है?
उ माध्यम बदलने से प्रकाशीय घनत्व बदल जाता है एवं प्रकाश का वेग एवं तरंग दैर्ध्य दोनों बदलने से किरण की दिशा बदलती है।
प्र 2 जब प्रकाश की किरण सघन माध्यम से विरल माध्यम की सीमा पर आपतित हो तो किरण किस प्रकार मुड़ती है?
उ इस परिस्थिति में अपवर्तित किरण अभिलंब से दूर हटती है।
प्र 3 अपवर्तन के लिए स्नेल का नियम बताओ।
उ स्नेल के नियमानुसार $n=\frac{\operatorname{Sin} \mathrm{i}}{\operatorname{Sin} \mathrm{r}} \quad \begin{aligned} & \text { जहां } \mathrm{n} \text { पदार्थ का अपवर्तनांक, } \mathrm{i} \text { एवं } \mathrm{r} \text { क्रमशः आपतन } \\ & \text { एवं अपवर्तन कोण है। }\end{aligned}$
प्र 4 जब प्रकाश की किरण माध्यमों की सीमा पर लंबवत आपातित है, तो अपवर्तित किरण किस प्रकार मुड़ती है? अर्थात आपतन कोण $\mathrm{i}=0$ होने पर $\mathrm{r}=$?
उ अपवर्तित किरण बिना मुड़े सीधी दूसरे माध्यम मे चली जाती है। $(\mathrm{r}=\mathrm{o})$
प्र 5 क्या किसी माध्यम का अपवर्तनांक एक नियतांक है?
उ नहीं, क्योंकि इसका मान अन्य माध्यम के सापेक्ष होता है तथा गुजरने वाले प्रकाश की तरंग दैर्ध्य पर निर्भर करता है।
प्र 6 यदि भिन्न तरंग दैर्ध्य के लिए माध्यम का अपवर्तनांक भिन्न है तो फिर यह क्यों कहा जाता है कि पानी का अपवर्तनांक 1.33 है?
उ इस प्रकार से दिया गया मान निर्वात के सापेक्ष माध्यम का अपवर्तनांक माध्य तरंग दैर्ध्य (पीले रंग की सोडियम लाइट) के लिए होता है।
प्र 7 सघन माध्यम से विरल माध्यम में अपवर्तन के समय आपतन कोण के बदलते मानों के साथ होने वाली घटना को समझाओ।
उ सघन माध्यम से विरल माध्यम में अपवर्तन के समय, आपतन कोण का मान बढ़ाने पर अपवर्तन कोण का मान भी बढ़ता है। आपतन कोण के एक विशेष मान i_{c} पर अपवर्तन कोण $r=90^{\circ}$ हो जाता है। आपतन कोण का मान $\mathrm{i}>\mathrm{i}_{\mathrm{c}}$ होने पर पूरी की पूरी किरण पुनः उसी माध्यम में परावर्तित हो जाती है। यद्यपि माध्यमों की सीमा पूर्ण पारदर्शी है। इस घटना को पूर्ण आंतरिक

[^0]
प्रयोग सं. 6

उद्देश्य - चल सूक्ष्मदर्शी की सहायता से काँच के गट्टे के पदार्थ का अपवर्तनांक ज्ञात करना।
उपकरण एवं सामग्री - वर्नियर पैमाने युक्त चल सूक्ष्मदर्शी, काँच का गट्टा।
सिद्धांत - जब किसी निश्चित गहराई वाले पात्र में पानी डाला जाता है एवं ऊपर से देखा जाता है, तो पात्र का पैंदा कुछ ऊपर उठा हुआ दिखाई देता है। अर्थात् अब पात्र की गहराई कम प्रतीत होती है। ऊपर से पेंदे की इस दूरी को आभासी गहराई कहते हैं। वास्तविक गहराई एवं आभासी गहराई का सम्बन्ध पानी के अपवर्तनांक से निम्न प्रकार है-

पानी का वायु के सापेक्ष अपवर्तनांक $\mathrm{n}_{\mathrm{wa}}=\frac{\text { वास्तविक गहराई }}{\text { आभासी गहराई }}$
इसी प्रकार काँच के गट्टे के लिए, कांच का वायु के सापेक्ष अपवर्तनांक

$$
\mathrm{n}_{\mathrm{ga}}=\frac{\text { गदे की वास्तविक मोटाई }}{\text { गग्टे की आभासी मोटाई }} ; \mathrm{n}_{\mathrm{ga}}=\frac{\mathrm{C}-\mathrm{A}}{\mathrm{C}-\mathrm{B}}
$$

यहां $-\mathrm{A}=$ बिना गट्टा रखे, कागज पर लगे चिन्ह पर सूक्ष्मदर्शी का पाठ्यांक
$\mathrm{B}=$ गट्टा रखने के बाद गट्टे के नीचे चिन्ह पर सूक्ष्मदर्शी का पाठ्यांक
$\mathrm{C}=$ गट्टे के ऊपर लगे चिन्ह पर सूक्ष्मदर्शी का पाठ्यांक

चित्र 6.1(a) वर्नियर चित्र 6.1(b) कागज के चित्र 6.1(c) गट्टे के नीचे चित्र 6.1(d) गट्टे के ऊपर चल सूक्ष्मदर्शी चिन्ह पर फोकस चिन्ह पर फोक्स चिन्ह पर फोकस

चित्र 6.1
विधि - 1. एक सफेद कागज पर नीली स्याही से एक निशान लगा दें। (अथवा लिखा हुआ कागज लें) इस कागज के ऊपर लगे चिन्ह पर सूक्ष्मदर्शी को फोकस करें एवं सूक्ष्मदर्शी का पाठयांक लें। यह पाठयांक A है।
2. कागज पर दी गई काँच की पट्टिका रखें। सूक्ष्मदर्शी को ऊपर ले जाते हुए पुनः उसी नीले रंग के धब्बे को फोकस करें एवं सूक्ष्मदर्शी के प्रमुख पैमाने एवं वर्नियर सम्पातित चिन्ह का मान सारिणी में लिखें। यह पाठ्यांक B होगा।
3. अब काँच की पट्टिका के ऊपर लाल स्याही से चिन्हित करें। सूक्ष्मदर्शी को ऊपर ले जाते हुए इस लाल चिन्ह पर फोकस करें। सूक्ष्मदर्शी के प्रमुख पैमाने का पाठ्यांक एवं वर्नियर सम्पातित चिन्ह का मान सारणी में लिखें। यह पाठ्यांक C होगा।
4. काँच की पट्टिका को उलट कर पुनः प्रक्रिया 2 एवं 3 करें एवं पाठ्यांक सारणीबद्ध करें।
5. काँच की पट्टिका के एक अन्य स्थान पर प्रक्रिया 2 एवं 3 करें एवं पाठ्यांक सारणीबद्ध करें।

प्रेक्षण- वर्नियर सूक्ष्मदर्शी का अल्पतमांक
प्रमुख पैमाने के सबसे छोटे भाग का मान $=$ \qquad cm
वर्नियर पैमाने पर कुल भागों की संख्या $=$ \qquad भाग

वर्नियर सूक्ष्मदर्शी का अल्पतमांक $=$ \qquad .cm

$$
\left(\mathrm{LC}=\frac{\text { प्रमुख पै.के } 1 \text { भाग का मान }}{\text { वर्नियर पै. पर कुल भागों की सं. }}\right)
$$

उदाहरण-1 1. प्रमुख पैमाने के 20 भागों का मान $=1 \mathrm{~cm}$ प्रमुख पैमाने के 1 भाग का मान $=\frac{1}{20} \mathrm{~cm}$
2. वर्नियर पैमाने पर कुल विभागों की संख्या $=50$

$$
\text { अल्पतमांक }=\frac{1}{20 \times 50} \mathrm{~cm}=.001 \mathrm{~cm}
$$

प्रेक्षण सारिणी

क्रं.सं.	वर्नियर सूक्ष्मदर्शी का पाठ्यांक जब वह फोकसित हो								
	कागज के चिन्ह पर			पट्टिका रखने के बाद नीचे के चिन्ह पर			पट्टिका के ऊपर के चिन्ह पर		
	मुपै. का पाठ्यांक M	वर्नियर संपादित चिन्ह n	$\begin{gathered} \text { कुल पा. } \\ \mathrm{M}+\mathrm{n} \times L \mathrm{C} \end{gathered}$	मुपै. का पाठ्यांक M	घर्नियर संपादित चिन्ह n	$\begin{gathered} \text { कुल पा. } \\ \text { B } \\ \mathrm{B}=\mathrm{M}+\mathrm{nxLC} \end{gathered}$	मुपै. का पाठ्यांक M	वर्नियर संपादित चिन्ह n	कुल पा. C $C=M+n x L C$
1.cm वां भाग cm	$\ldots \mathrm{cm}$वां भाग cm cm वां भाग cm
2cm वां भागcmcmवां भाग cm cm वां भाग cm
3.cm वां भाग	cmवां भाग	 cm वां भाग cm

गणना - काँच के अपवर्तनांक n_{ga} के लिए सूत्र
$\mathrm{n}_{\mathrm{ga}}=\frac{\text { पट्टिका की वास्तविक मोटाई }}{\text { पट्टिका की आभासी मोटाई }}=\frac{\mathrm{C}-\mathrm{A}}{\mathrm{C}-\mathrm{B}}$
उपरोक्त सूत्र का उपयोग प्रत्येक पाठयांक के लिए करते हुए अपवर्तनांक के मान n_{1}, $\mathrm{n}_{2}, \mathrm{n}_{3}$ ज्ञात करें एवं माध्य
अपवर्तनांक n_{ga} ज्ञात करें।
माध्य अपवर्तनांक $\mathrm{n}_{\mathrm{ga}}=\frac{\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}}{3}=$ \qquad
परिणाम - चल सूक्ष्मदर्शी की सहायता से काँच की पट्टिका के माध्यम का वायु के सापेक्ष अपवर्तनांक $\mathrm{n}_{\mathrm{ga}}=$ \qquad .(मात्रकहीन) प्राप्त हुआ।

सावधानियां - 1. चल सूक्ष्मदर्शी का अल्पतमांक सावधानी से ज्ञात करें।
2. पूरे प्रयोग के दौरान सूक्ष्मदर्शी की स्थिति में परिवर्तन नहीं करें।
3. फोकस करते समय स्पष्ट दिखने के बाद ही पाठयांक लें।
4. वर्नियर सूक्ष्मदर्शी का पाठ्यांक पढ़ने के लिए आवर्धक लैंस का प्रयोग करें।

मौखिक प्रश्न

प्र. 1 अपवर्तनांक किसे कहते हैं?

उ. अपवर्तनांक किसी माध्यम का वह गुण है, जिसे निम्न आनुपातिक अंक द्वारा व्यक्त किया जाता है।

$$
\text { अपवर्तनांक }=\frac{\text { प्रकाश का वायु में वेग }}{\text { प्रकाश का माध्यम में वेग }}
$$

2. क्या यह अपवर्तनांक काँच के पदार्थ का है?

उ. यह मान वायु के सापेक्ष (माध्यम) काँच के पदार्थ के अपवर्तनांक का है।
3. किसी पदार्थ का अपवर्तनांक किन कारकों पर निर्भर करता है?

उ. 1. माध्यम के प्रकाशीय घनत्व
2. उसके चारों ओर अन्य माध्यम पर
3. गुजरने वाले प्रकाश की तरंग दैर्ध्य पर
4. क्या पदार्थ का द्रव्यमान घनत्व एवं प्रकाशीय घनत्व भिन्न होते हैं?

उ. हाँ। यह आवश्यक नहीं है कि द्रव्यमान घनत्व अधिक होने पर प्रकाशीय घनत्व भी अधिक हो।
5. कोई उदाहरण दें।

उ. केरोसीन का द्रव्यमान घनत्व पानी से कम होते हुए भी इसका अपवर्तनांक पानी के अपवर्तनांक से अधिक होता है।
6. प्रकाश का अपवर्तन क्यों होता है?

उ. माध्यम में प्रकाश के वेग में परिवर्तन के कारण। [$\left.\mu_{\mathrm{ga}}=\frac{\text { वायु में प्रकाश का वेग }}{\text { कांच में प्रकाश का वेग }}\right]$
7. अपवर्तन में प्रकाश के वेग में परिवर्तन के कारण तरंग दैर्ध्य एवं आवृति में से किसमें परिवर्तन होता है?
उ. तरंग दैर्ध्य में परिवर्तन होता है, क्योंकि आवृति स्रोत पर निर्भर करती है।
8. क्या, केवल प्रकाश तरंगों का ही अपवर्तन होता है?

उ. अपवर्तन सभी प्रकार की तरंगों का मुख्य गुणधर्म है। माध्यम उस तरंग के लिए पारदर्शी होना चाहिए।

प्रयोग सं. 7 (A)

उद्देश्य - किसी द्रव (पानी) का अपवर्तनांक अवतल दर्पण की सहायता से ज्ञात करना।
उपकरण एवं सामग्री - अधिक फोकस दूरी वाला अवतल दर्पण, एक स्टेण्ड जिसमें क्लेम्प लगा हो तथा भारी आधार हो। स्टेन्ड की ऊँचाई फोकस दूरी से दुगुनी हो। एक नुकीली लम्बी सुई तथा सुई को पकड़ने के लिए कार्क के टुकड़े, साहुल सूत्र मीटर स्केल।

चित्र 7.1
सिद्धांत - किसी अवतल दपर्ण के वक्रता केन्द्र पर बिम्ब को रखने पर उसका प्रतिबिम्ब भी वक्रता केन्द्र पर ही बनता है। प्रतिबिम्ब वास्तविक, उल्टा एवं समान आकार का होता है। बिम्ब एवं प्रतिबिम्ब के बीच विस्थापनाभास (Paralax) दूर करके दर्पण की वक्रता त्रिज्या ज्ञात की जा सकती है। इसी प्रकार से दर्पण में कुछ पानी डाल कर पुनः आभासी वक्रता त्रिज्या ज्ञात की जा सकती है। इस विधि से प्राप्त वास्तविक वक्रता त्रिज्या R तथा आभासी वक्रता त्रिज्या R^{\prime} होने पर

$$
\begin{aligned}
& \text { अपवर्तनांक }=\frac{\text { वास्तविक वक्रता त्रिज्या }}{\text { आभासी वक्रता त्रिज्या }} \\
& \mathrm{n}_{\mathrm{wa}}=\frac{\mathrm{R}}{\mathrm{R}^{\prime}}
\end{aligned}
$$

यहां $\mathrm{R}=$ अवतल दर्पण की वास्तविक वक्रता त्रिज्या, $\mathrm{R}^{\prime}=$ आभासी वक्रता त्रिज्या इस विधि से किसी पारदर्शी द्रव का अपवर्तनांक ज्ञात किया जा सकता है।

विधि - 1. अधिक वक्रता त्रिज्या (कम गहराई) वाला अवतल दर्पण लें। सूर्य की किरणों/दूरस्थ वस्तु को दर्पण द्वारा दीवार पर फोकसित करें। दर्पण से दीवार की दूरी दर्पण की अनुमानित फोकस दूरी f होगी। वक्रता त्रिज्या $R=2 f,(R$ के अनुमानित ज्ञान से प्रेक्षण में सुविधा होती है।)
2. स्टेन्ड के आधार पर अवतल दर्पण इस प्रकार रखें कि उसकी परावर्तक सतह

ऊपर की ओर रहे। दर्पण स्थिर करने के लिए उसे किसी छोटी वलय/चूड़ी (Bangel) पर रख सकते हैं।
3. कार्क के टुकड़ों के बीच सुई को रख कर क्लेम्प में कस दें एवं क्लेम्प को अनुमानित वक्रता त्रिज्या जितनी दूरी तक ले जावें। पिन का प्रतिबिम्ब दर्पण में देखें तथा पिन को क्लेम्प में इस प्रकार समंजित करें पिन एवं उसके प्रतिबिम्ब की नोंक एक दूसरे को चित्रानुसार स्पर्श करे। पिन की स्थिति में अल्प परिवर्तन करते हुए, बिम्ब एवं प्रतिबिम्ब में विस्थापनाभास (Paralax) दूर करें। (लम्बन विधि)।
4. साहुल सूत्र द्वारा पिन की नोंक एवं दर्पण के तल के बीच की दूरी ज्ञात करें। साहुल सूत्र को पिन की नोंक की सीध में लटकाते जाओ जब तक कि नोंक दर्पण के तल को स्पर्श न कर ले। मीटर स्केल से साहुल सूत्र की लम्बाई ज्ञात करें। यह दूरी ही वास्तविक वक्रता त्रिज्या होगी।
5. अब दर्पण में कुछ पानी डाल कर पुनः पिन एवं उसके प्रतिबिम्ब के मध्य विस्थापनाभास दूर करो। इसके लिए आपको पिन की स्थिति नीचे करनी होगी।
6. दर्पण से पानी को हटाकर, पुनः साहुल सूत्र द्वारा पिन एवं दर्पण के मध्य की दूरी ज्ञात करो। यह दर्पण की आभासी वक्रता त्रिज्या R^{1} होगी।
7. इस प्रकार तीन प्रेक्षण लें। अच्छा हो आप भिन्न वक्रता त्रिज्या वाले तीन अवतल दर्पण लें।
प्रेक्षण- अवतल दर्पण की अनुमानित फोकस दूरी $\mathrm{f}=\ldots . . \mathrm{cm}$
अवतल दर्पण की अनुमानित वक्रता त्रिज्या $\mathrm{R}=2 \mathrm{f}=\ldots . . \mathrm{cm}$
प्रेक्षण सारिणी-

क्र.सं.	अवतल दर्पण के तल से पिन की दूरी		$\mathrm{n}_{\mathrm{wa}}=\frac{\mathrm{R}}{\mathrm{R}^{\prime}}$
	दर्पण के लिए R	पानी सहित दर्पण के लिए R	
1	$\ldots \mathrm{cm}$	$\ldots c m$	
2	$\ldots c m$ cm	
3 cm cm	

गणना - (1) प्रत्येक प्रेक्षण के लिए $\mathrm{n}_{\mathrm{wa}}=\frac{\mathrm{R}}{\mathrm{R}^{\prime}}$ ज्ञात करें एवं इस प्रकार प्राप्त मानों का
माध्य ज्ञात करें।

परिणाम - अवतल दर्पण की सहायता से जल का अपवर्तनांक $\mathrm{n}_{\mathrm{wa}}=\ldots . .$. (मात्रकहीन) प्राप्त हुआ।
सावधानियां - 1. पिन/सुई का समंजन इस प्रकार करें कि उसकी नोंक एवं उसका प्रतिबिम्ब दर्पण के ठीक बीच में दिखाई दे।
2. दर्पण का आकार बहुत छोटा होना चाहिए।
3. दर्पण में पर्याप्त पानी डालना चाहिए अन्यथा द्रव की सतह समतल न होकर वक्र हो जाएगी।
4. आँख की पिन से दूरी लगभग 25 cm होनी चाहिए।

प्रयोग सं. 7 (B)

उद्देश्य - उत्तल लैंस एवं समतल दर्पण की सहायता से पानी का अपवर्तनांक ज्ञात करना।
उपकरण एवं सामग्री - लगभग 20 cm फोकस दूरी वाला उभयोत्तल (double convex) लैंस, लैंस के आकार से बड़े आकार का समतल दर्पण, लम्बा, भारी आधार वाला क्लेम्प लगा स्टेन्ड, साहुल सूत्र, मीटर स्केल एवं ड्रॉपर।

चित्र 7.2
उत्तल लैंस के लिए

संयुक्त लैंस के लिए चित्र 7.3
सिद्धांत - फोकस बिन्दु से चलने वाली प्रकाश की किरणें लैंस से अपवर्तन के बाद मुख्य अक्ष के समान्तर हो जाती है। सामने रखे समतल दर्पण पर ये किरणें लम्बवत गिरती है। $\angle \mathrm{i}=0 ; \angle \mathrm{r}=0$ । दर्पण से परावर्तन के बाद ये किरणें पुनः उत्तल लैंस पर समान्तर गिरती है। तथा लैंस से पुनः अपवर्तन के बाद फोकस पर मिलती है। इस प्रकार की चित्रानुसार (चित्र-7.2) प्रायोगिक व्यवस्था में, फोकस पर रखी पिन एवं उसके प्रतिबिम्ब की स्थिति एक ही होगी अर्थात् पिन एवं उसके प्रतिबिम्ब के मध्य विस्थापनाभास दूर होने पर पिन की लैंस से दूरी, उस लैंस की फोकस दूरी होगी।
चित्र 7.3 के अनुसार यदि दर्पण एवं लैंस के बीच पानी हो, तो यह व्यवस्था दो लैंसों के संयोजन के समान होगी (काँच का उत्तल लैंस एवं पानी का समतलावतल लैंस)। यह संयोजन भी उत्तल लैंस की भाँति कार्य करता है। तथा अब पिन एवं उसके प्रतिबिम्ब के मध्य विस्थापनाभास दूर होने पर यह दूरी संयुक्त लैंस की फोकस दूरी f^{1} होगी।

पानी का अवर्तनांक $\mathrm{n}_{\mathrm{wa}}=\left(1+\frac{\mathrm{R}}{\mathrm{f}_{\mathrm{w}}}\right)$ जहाँ $\mathrm{R}=$ उत्तल लैंस की वक्रता त्रिज्या

$$
\mathrm{f}_{\mathrm{w}}=\text { पानी के लैंस की फोकस दूरी }
$$

R का मान स्फेरोमीटर तथा f_{w} का मान $f_{w}=\frac{\mathrm{ff}^{\prime}}{f-f^{\prime}}$ से ज्ञात किया जा सकता है ।

जहां $f=$ उत्तल लैंस की फोकस दूरी तथा $f^{\prime}=$ संयुक्त लैंस की फोकस दूरी।
विधि -

1. समतल दर्पण को स्टेन्ड के आधार पर इस प्रकार रखें कि उसकी परावर्तक सतह ऊपर की ओर रहे।
2. उत्तल लैंस को दर्पण के ऊपर रखें।
3. क्लेम्प में लगी पिन / सुई को इस प्रकार समंजित करो कि नोंक लैंस के केन्द्र पर रहे।
4. क्लेम्प को ऊपर/नीचे करते हुए ऐसी स्थिति प्राप्त करो कि पिन एवं उसके प्रतिबिम्ब की नोंक के मध्य विस्थापनाभास दूर हो जाए।
5. विस्थापनाभास दूर होने के बाद पिन एवं लैंस की दूरी h_{1} तथा लैंस को हटाकर पिन एवं दर्पण के मध्य दूरी h_{2} साहुल सूत्र एवं मीटर स्केल से ज्ञात करें। इन दूरियों का माध्य ही फोकस दूरी होगी।

$$
\mathrm{f}=\frac{\mathrm{h}_{1}+\mathrm{h}_{2}}{2}
$$

6. ड्रापर की सहायता से लैंस एवं दर्पण के मध्य पानी डालें पुनः पिन एवं उसके प्रतिबिम्ब के मध्य विस्थापनाभास दूर करें। पिन की नई स्थिति एवं लैंस के बीच की दूरी h_{3} तथा पिन एवं दर्पण के मध्य दूरी h_{4} का मापन साहुल सूत्र एवं मीटर स्केल की सहायता से करें। इन दूरियों का औसत (माध्य) ही संयुक्त लैंस की फोकस दूरी f^{1} होगी।
7. स्फेरोमीटर की सहायता से लैंस की वक्रता त्रिज्या R का मापन करें। कक्षा XI में आप यह प्रयोग कर चुके हैं।
स्फेरोमीटर के तीनों पायों के बीच की माध्य दूरी चित्रानुसार ज्ञात करें।
$\mathrm{a}=\frac{\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}}{3}$

प्रेक्षण- (i) लैंस की वक्रता त्रिज्या \mathbf{R} का मापन।
(i) स्फेरोमीटर के दो पायों के बीच औसत दूरी $\mathrm{a}=\ldots \ldots \ldots \mathrm{cm}$
(ii) स्फेरो मीटर द्वारा, लैंस के उभरे भाग की ऊँचाई $\mathrm{h}=$ \qquad .cm
(iii) माध्य $\left(R=\frac{a^{2}}{6 h}+\frac{h}{2}\right.$ से प्राप्त) $R=$ \qquad cm प्रेक्षण सारिणी-

क्र.सं.	लैंस के प्रकाशीय केन्द्र से पिन की दूरी						$\mathrm{f}_{\mathrm{w}}=\frac{\mathrm{ff}}{}{ }^{\prime}$
	केवल उत्तल लैंस के लिए			संयुक्त लैंस के लिए			
	ऊपरी तल की दूरी h_{1}	नीचे के तल की दूरी h_{2}	माध्य $\mathrm{f}=\frac{\mathrm{h}_{1}+\mathrm{h}_{2}}{2}$	ऊपरी सतह की दूरी h_{3}	निचली सतह की दूरी h_{4}	माध्य $f^{\prime}=\frac{h_{3}+h_{4}}{2}$	
$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \end{aligned}$	\qquad cm \qquad cm \qquad cm		$\ldots \ldots . \mathrm{cm}$	$\ldots \ldots . \mathrm{cm}$ $\ldots \ldots . . \mathrm{cm}$ $\ldots \ldots . \mathrm{cm}$	$\ldots \ldots \ldots . \mathrm{cm}$ $\ldots \ldots . . \mathrm{cm}$ $\ldots \ldots . . \mathrm{cm}$	$\ldots \ldots . . \mathrm{cm}$ $\ldots \ldots . . \mathrm{cm}$ $\ldots \ldots . . \mathrm{cm}$ cm

गणना - 1. सूत्र $\mathrm{R}=\frac{\mathrm{a}^{2}}{6 \mathrm{~h}}+\frac{\mathrm{h}}{2}$ से उत्तल लैंस की वक्रता त्रिज्या की गणना करें।
2. सूत्र $f_{w}=\frac{f f^{\prime}}{f-f^{\prime}}$ की सहायता से पानी के लैंस की फोकस दूरी ज्ञात करें।
3. सूत्र $\mathrm{n}_{\mathrm{wa}}=\left(1+\frac{\mathrm{R}}{\mathrm{f}_{\mathrm{w}}}\right)$ की सहायता से पानी के अपवर्तनांक की गणना करें।

परिणाम - उत्तल लैंस एवं समतल दर्पण की सहायता से पानी का अपवर्तनांक $n_{w a}=$. (मात्रकहीन) प्राप्त हुआ।
सावधानियां - 1. समतल दर्पण क्षैतिज रहना चाहिए।
2. पिन पूर्णतः क्षैतिज हों तथा नोंक लैंस के मध्य रहे।
3. लैंस एवं दर्पण के मध्य पानी डालने पर वायु के बुलबुले नहीं होने चाहिए।
4. साहुल सूत्र के प्रयोग के समय व्यवस्था परिवर्तित नहीं होनी चाहिए।
5. पिन की नोंक एवं उसके प्रतिबिम्ब के मध्य विस्थापनाभास दूर करते समय सावधानी रखनी चाहिए।

प्रयोग सं. 8

उद्देश्य - अग्रदिशिक तथा पश्चदिशिक अभिनति में $\mathrm{P}-\mathrm{N}$ संधि के $\mathrm{I}-\mathrm{V}$ वक्र अभिलाक्षणिक वक्र खींचना तथा अग्र एवं पश्च प्रतिरोध ज्ञात करना।

उपकरण एवं सामग्री - एक $\mathrm{P}-\mathrm{N}$ संधि डायोड (IN 4007 या अन्य), $3 \Omega, \frac{1}{2}$ वाट का एक प्रतिरोध (कार्बन प्रतिरोध), $(0-12 \mathrm{~V})$ का DC परिवर्ती स्रोत, एक $(0-200 \mathrm{~mA})$ का मिली अमीटर; एक $(0-200 \mu \mathrm{~A})$ का माइक्रो अमीटर, $(0-12 \mathrm{~V})$ का वोल्टमीटर; $(0-1.5 \mathrm{~V})$ का वोल्टमीटर, संयोजी तार एवं एकमार्गी कुंजी।

दिष्टकारी डायोड

चित्र 8.1

डायोड प्रतीक

सिद्धांत - P -प्रकार एवं N -प्रकार के अर्धचालकों से जब $\mathrm{P}-\mathrm{N}$ संधि बनती है तो संधि क्षेत्र के बहुत पतले भाग $\left(\approx 10^{-6} \mathrm{~m}\right)$ में कोई भी स्वतन्त्र धारावाही उपलब्ध नहीं होते, जिसे अवक्षय परत कहते हैं। P प्रकार के अर्धचालक से कोटर N प्रकार तथा N -प्रकार के अर्धचालक से मुक्त इलेक्ट्रोन, P -प्रकार के अर्धचालक में जाने से संधि तल पर एक सम्पर्क विभव/ विभव अवरोध स्थापित हो जाता है। जिसका धन टर्मिनल N प्रकार तथा ऋण टर्मिनल P -प्रकार के अर्धचालक की ओर होता है। यह सम्पर्क विभव और अधिक धारावाहियों को संधि तल पार करने से रोकता है।

अग्र बायस- जब P -प्रकार के अर्धचालक को बेटरी के धन टर्मिनल से तथा N -प्रकार के अर्ध चालक को बेटरी के ऋण टर्मिनल से जोड़ते हैं तो इस संयोजन को अग्र बायस कहते हैं। अग्र बायस की स्थिति में संधि तल पर विभव का मान शून्य से बढ़ाना आरम्भ करते हैं एवं प्रवाहित धारा का मापन करते हैं। विभव के अल्प मान ($0.1 \mathrm{~V}, 0.2 \mathrm{~V} . .$.) पर धारा नगण्य होगी, परन्तु विभव का मान अधिक करने पर धारा चरघातांकी रूप से बढ़ती है। यह धारा मुख्य धारावाही द्वारा प्राप्त होती है।

उत्क्रम बायस (पश्च बायस, Reverse bias)

जब P -प्रकार के अर्धचालक को बेटरी के ऋण टर्मिनल तथा N -प्रकार के अर्धचालक को बेटरी के धन टर्मिनल से जोड़ा जाता है, तो इस संयोजन को पश्च बायस / उत्क्रम बायस कहते हैं।

उत्क्रम बायस की अवस्था में संधि तल पर अवक्षय परत की मोटाई एवं विभव अवरोध का मान बढ़ जाता है। इस अवस्था में कोई भी बहुसंख्यक धारावाही संधि तल की ओर प्रवाहित नहीं होते हैं एवं संधि तल का प्रतिरोध बहुत उच्च हो जाता है। अल्पसंख्यक धारावाही (P -प्रकार में इलेक्ट्रोन व N -प्रकार में कोटर) के कारण अत्यन्त अल्प धारा संधि से प्रवाहित होती है। पश्च बायस में विभव के एक निश्चित मान पर बहुत अधिक पश्च धारा प्रवाहित होगी। इस स्थिति में अवक्षय परत में बॉन्ड व्यवस्था टूटने से बहुत अधिक स्वतन्त्र धारावाही उत्पन्न होते हैं। इस पश्च विभव को जेनर विभव कहते हैं।
विधि - कई प्रयोगशालाओं में अर्धचालक डायोड के अभिलाक्षणिक के लिए इस प्रकार का (Plug-in-type) उपकरण उपलब्ध होता है जिसमें सारे संयोजन किए होते हैं एवं छात्र को केवल वोल्टमीटर एवं अमीटर के पाठयांक लेने होते हैं परन्तु यह अच्छा रहता है कि इस प्रयोग के लिए चित्रानुसार एक बोर्ड तैयार करें एवं विभिन्न उपकरणों को संयोजित करें।

अग्र बायस अभिलाक्षणिक-

1. चित्रानुसार उपकरणों का संयोजन करें।
2. अग्र बायस में विभव का मान शून्य से 0.1 V के क्रम में बढ़ाते जाएं एवं संगत मिली अमीटर का पाठयांक ज्ञात करके सारणीबद्ध करें। शुरू में विभव के साथ धारा में वृद्धि बहुत कम होती है, परन्तु कुछ अधिक विभव ($\simeq 0.6 \mathrm{~V}-0.7 \mathrm{~V})$ के बाद धारा का मान तेजी से बढ़ता है।
3. उत्क्रम बायस/पश्च बायस अभिलाक्षणिक के लिए-
(i) डायोड को खोलकर उल्टा संयोजन करें तथा वोल्टमीटर एवं अमीटर को बदलकर उचित परास के मीटर संयोजित करें। (माइक्रोमीटर तथा अधिक परास का वोल्टमीटर)
(ii) इस संयोजन में विभव का मान 1.0 V के पदों में बढ़ाया जाता है। धारा में वृद्धि ($\mu \mathrm{A}$ में) लगभग रेखीय होती है। एक विशेष पश्च बायस विभव, जेनर विभव पर पश्च धारा का मान एकाएक बढ़ जाता है।
प्रेक्षण-
4. $\mathrm{P}-\mathrm{N}$ डायोड के नम्बर (यदि ज्ञात हो)
5. अग्र बायस में वोल्टमीटर का परास oV से \qquad
6. मिली वोल्टमीटर का अल्पतमांक $=$ \qquad V
7. मिली अमीटर का परास 0 mA से \qquad mA
8. मिली अमीटर का अल्पतमांक \qquad mA

पश्च बायस में-

1. वोल्टमीटर का परास 0 से \qquad V
2. वोल्टमीटर का अल्पतमांक $=$ \qquad V
3. माइक्रो अमीटर का परास 0 से $\mu \mathrm{A}$
4. माइक्रो अमीटर का अल्पतमांक $\mu \mathrm{A}$

प्रेक्षण सारिणी-

बायस	क्र.सं.	V	I
अग्र बायस	1	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots . . \mathrm{mA}$
	2	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots . . \mathrm{mA}$
	3	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots . . \mathrm{mA}$
	4	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots . . \mathrm{mA}$
	5	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots . . \mathrm{mA}$
	1	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots . . \mu \mathrm{A}$
	2	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots . . \mu \mathrm{A}$
	3	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots . . \mu \mathrm{A}$
	4	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots . . \mu \mathrm{A}$
	5	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots . . \mu \mathrm{A}$
	6	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots . . \mu \mathrm{A}$

गणना - अग्रबायस एवं उत्क्रम बायस में V एवं I के प्राप्त मानों के आधार पर उचित पैमाना मानते हुए ग्राफ प्राप्त करते है।

1. ग्राफ पेपर पर चित्रानुसार अक्ष अंकित करते हैं। ग्राफ के केन्द्र पर $(0,0)$ मानते हैं। ग्राफ के दाहिने भाग में अग्र वोल्टता एवं अग्र धारा के मध्य ग्राफ बनाते हैं। X -अक्ष पर अग्र विभव को $0.1 \mathrm{~V}=10$ खाने से तथा Y अक्ष पर $1 \mathrm{~mA}=10$ भाग से अंकित किया जा सकता हैं।

2. ग्राफ पेपर के बांऐं भाग में पश्च वोल्टता एवं पश्च धारा के लिए X -अक्ष पर 10 भाग $=2$ Volt या अधिक तथा -Y अक्ष पर 10 भाग $=20 \mu \mathrm{~A}$ के लगभग पैमाना मान कर ग्राफ बनाया जा सकता हैं जो चित्रानुसार प्राप्त होते हैं।
3. अग्रदिशिक प्रतिरोध के लिए, अग्रदिशिक V-I वक्र पर कोई दो बिन्दु A एवं B लेते हैं। A एवं B से विभव अक्ष एवं धारा अक्ष पर लम्ब डालते है जो क्रमश: C ,
D एवं R, S पर काटते है। अग्रदेशिक गतिक प्रतिरोध का मान $\mathrm{R}_{f}=\frac{\mathrm{CD}}{\mathrm{RS}}$ होगा।

इसी प्रकार R_{r} के मान के लिए पश्चदिशिक V-I वक्र पर दो बिन्दु P एवं O (मूल बिन्दु) लेते हैं। P से विभव अक्ष पर लम्ब PQ डालते हैं। इसी प्रकार P से धारा अक्ष पर लम्ब PT डालते हैं। पश्चदिशिक गतिक प्रतिरोध R_{r} का मान $\mathrm{R}_{\mathrm{r}}=\frac{\mathrm{OQ}}{\mathrm{OT}}$ होगा।
परिणाम - 1. दिए गए P-N संधि डायोड के अग्र बायस एवं उत्क्रम बायस में V-I वक्र चित्रानुसार (ग्राफ) प्राप्त हुए।
2. अग्रदिशिक अभिनति में प्रतिरोध $\mathrm{R}_{f}=$ \qquad Ω प्राप्त हुआ।
3. पश्चदिशिक अभिनति में प्रतिरोध $\mathrm{R}_{\mathrm{r}}=$ \qquad $\mathrm{K} \Omega / \mathrm{M} \Omega$ प्राप्त हुआ।
4. उत्क्रम भंजन विभव का मान $\mathrm{V}_{\mathrm{z}}=$ \qquad वोल्ट प्राप्त हुआ।

सावधानियां - 1. अग्रबायस एवं पश्च बायस दोनों में ही अत्यधिक धारा प्राप्त नहीं करें अन्यथा डायोड के क्षतिग्रस्त होने का खतरा होता है।
2. व्युत्क्रम/पश्च बायस में वोल्टमीटर एवं अमीटर उचित परास के प्रयुक्त करें।
3. डायोड के श्रेणी क्रम में उचित मान का कार्बन प्रतिरोध R_{p} प्रयुक्त करें।
4. पश्च विभव (उत्क्रम विभव) का मान भंजन विभव से अधिक नहीं लेना चाहिए।

मौखिक प्रश्न

प्र. 1 P-N संधि डायोड किसे कहते हैं?

उ. P -प्रकार तथा N -प्रकार के अर्धचालक से बनी युक्ति जिसमें एक संधि तथा दो इलेक्ट्रोड होते हैं।
2. अर्धचालक किसे कहते हैं?

उ. अर्धचालक वे पदार्थ हैं जिनमें मुक्त इलेक्ट्रोनों की संख्या चालकों में मुक्त इलेक्ट्रोन संख्या की तुलना में नगण्य होती है। इनकी चालकता,चालक एवं विद्युतरोधी के बीच की होती है।
3. \mathbf{P}-प्रकार एवं \mathbf{N}-प्रकार के अर्धचालक क्या होते हैं?

उ. शुद्ध अर्धचालक $(\mathrm{Ge}, \mathrm{Si})$ में किसी त्रि-संयोजी तत्व की अल्पमात्रा में अशुद्धि मिलाने से बने अर्धचालक को P -प्रकार तथा पंच संयोजी तत्व की अल्प अशुद्धि मिलाने पर बने अध fचालक को N -प्रकार का अर्धचालक कहते हैं।
4. P-N संधि डायोड में धारावाही कौन होते हैं?

उ. P-N संधि डायोड में मुक्त इलेक्ट्रोन एवं कोटर धारावाही होते हैं।
5. कोटर क्या होते हैं?

उ. किसी ठोस के अणु क्रिस्टलीय अवस्था में एक दूसरे के साथ बॉण्ड व्यवस्था से जुड़े होते हैं। ये बोण्ड इलेक्ट्रोन के आदान प्रदान से बनते हैं। जब कोई बॉण्ड व्यवस्था (संयोजी बॉण्ड) में एक रिक्ति (Vacancy) बन जाती है। इस रिक्ति को कोटर कहते हैं।
6. कोटर धारा प्रवाह में किस प्रकार योगदान करते हैं?

उ. अर्धचालक के सिरों पर विभवान्तर लगाने पर अन्दर विद्युत क्षेत्र स्थापित होता है। इलेक्ट्रोन विद्युत क्षेत्र के विपरीत दिशा में एक परमाणु से दूसरे परमाणु की रिक्ति की ओर जाते हैं। अतः हम कह सकते हैं कि रिक्ति वि. क्षेत्र की दिशा में गति करती है। चूंकि कोटर हर प्रकार से धन आवेश की भांति व्यवहार करता है, अतः कोटर धारा प्रवाह में योगदान देता है।
7. डायोड को विद्युत परिपथ में किस प्रकार संयोजित करते हैं?

उ. डायोग को अग्र बायस अथवा उत्क्रम बायस में संयोजित करते हैं।
8. अग्र बायस संयोजन किसे कहते हैं?

उ. जब डायोड के P भाग को बेटरी के धन टर्मिनल तथा N -भाग को बेटरी के ऋणटर्मिनल से संयोजित करते हैं तो इस प्रकार के संयोजन को अग्र बायस संयोजन कहते हैं।
9. अग्र बायस संयोजन में डायोड का व्यवहार किस प्रकार का होता है?

उ. अग्र बायस संयोजन में मुख्य धारावाही (P-भाग के कोटर एवं N -भाग के मुक्त इलेक्ट्रोन) संधि तल की ओर गमन करते हैं तथा संधि तल पर अवक्षय परत पतली हो जाती है। विभव अवरोध का मान घट जाता है। संधि तल चालक की तरह व्यवहार करता है।
10. उत्क्रम बायस/पश्च बायस में डायोड का व्यवहार किस प्रकार का होता है?

उ. उत्क्रम बायस में संधि डायोड कुचालक की तरह व्यवहार करता है। क्योंकि दोनों प्रकार के धारावाही संधि तल के परे गति करते हैं। अवक्षय परत की मोटाई तथा विभव अवरोधा

दोनों बढ़ जाते हैं।
11. उत्क्रम बायस में क्या धारा बिलकुल प्रवाहित नहीं होती?

उ. अत्यन्त अल्प धारा प्रवाहित होती है जो अल्प संख्यक धारावाही के कारण होती है।
12. अल्पसंख्यक धारावाही क्या होते हैं?

उ. P -प्रकार के अर्धचालक में मुक्त इलेक्ट्रोन तथा N -प्रकार के अर्धचालक में कोटर की संख्या नगण्य होती है इस लिए उन्हें अल्पसंख्यक धारावाही कहते हैं।
13. डायोड कितने प्रकार के होते हैं? नाम बताइये।

उ. 1. दिष्टकारी डायोड 2. फोटो डायोड 3. जेनर डायोड 4. प्रकाश उत्सर्जक डायोड (LED)
14. दिष्टकारी डायोड का क्या उपयोग है?

उ. दिष्टकारी डायोड से AC को DC में बदलते हैं।

प्रयोग सं. 9

उद्देश्य - जेनर डायोड के अभिलाक्षणिक वक्र खींचना तथा इसका भंजन विभव ज्ञात करना। उपकरण एवं सामग्री - एक P-N संधि जेनर डायोड (IN 758 या अन्य) $0-15 \mathrm{~V}$ का परिवर्तनशील DC स्रोत, वोल्टमीटर $(0-15 \mathrm{~V})$, माइक्रो अमीटर $(0-100 \mu \mathrm{~A}) \mathrm{R}=125 \Omega$ का कार्बन प्रतिरोध, धारा नियंत्रक, संयोजी तार एवं एकमार्गी कुंजी।
सिद्धांत - साधारण दिष्टकारी डायोड की तुलना में जेनर डायोड के P एवं N भाग में अशुद्धियों की मात्रा अधिक होती है। इस प्रकार के डायोड विभिन्न भंजन वोल्टता तथा शक्ति ह्यास के बनाए जाते हैं। इस प्रकार के डायोड को उत्क्रम बायस में, वोल्टता नियंत्रण के लिए प्रयुक्त किया जाता है।

चित्र 9.1
उत्क्रम वोल्टता लगाने पर भंजन दो प्रकार से होता है।

1. ऐवलांशी भंजन- उत्क्रम बायस की उच्च वोल्टता पर संधि तल पर विद्युत क्षेत्र का मान इतना अधिक हो जाता है कि ऊष्मीय विक्षोभ से उत्पन्न धारावाही के त्वरित होने से जालक से और अधिक धारावाही मुक्त होते हैं। ये मुक्त धारावाही भी त्वरित होकर मुक्त धारावाही की संख्या एकाएक अत्यधिक कर देते हैं। जिससे अत्यधिक धारा प्रवाहित होती है।
2. जेनर भंजन- P एवं N प्रकार में अशुद्धि की मात्रा बढ़ाने से अवक्षय परत बहुत ही पतली हो जाती है। जिससे कि संधि तल पर विद्युत क्षेत्र बहुत अधिक हो जाता है। इस अत्यधिक विद्युत क्षेत्र के कारण अवक्षय क्षेत्र के जालक से इलेक्ट्रोन मुक्त होकर धारावाहियों की संख्या बढ़ा देते हैं। जिससे अत्यधिक व्युत्क्रम धारा प्रवाहित होती है। इसे आंतरिक क्षेत्र उत्सर्जन भी कहते हैं।
जेनर डायोड को क्षतिग्रस्त होने से बचाने के लिए इसके श्रेणी क्रम में रक्षक प्रतिरोध R_{p} प्रयुक्त किया जाता है।
विधि -
3. चित्रानुसार जेनर डायोड को उत्क्रम/पश्च बायस में संयोजित करते हैं। इसके श्रेणी क्रम में एक रक्षक प्रतिरोध R_{p} प्रयुक्त होता है तथा उचित परास के वोल्टमीटर एवं माइक्रो अमीटर संयोजित करते हैं।

चित्र 9.2 जेनर डायोड अभिलाक्षणिक परिपथ
2. कम उत्क्रम वोल्टता पर धारा का मान $10^{-8} \mathrm{~A}$ की कोटि का होता है, अतः हमें $\mu \mathrm{A}$ में लगभग शून्य पाठयांक प्राप्त होता है।
3. उत्क्रम वोल्टता का मान 0.1 V के पदों में बढ़ाते जाए एवं धारा का मान ज्ञात कर सारिणीबद्ध करें।

प्रेक्षण-

1. वोल्टमीटर का परास $=0$ से V
2. वोल्टमीटर का अल्पतमांक $=$........ V
3. माइक्रो अमीटर का परास $=0$ से $\mu \mathrm{A}$
4. माइक्रो अमीटर का अल्पतमांक $=\ldots \ldots . . \mu \mathrm{A}$

जेनर डायोड का नम्बर-
प्रेक्षण सारिणी—

क्र.सं.	V	I
1	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots \ldots \mu \mathrm{A}$
2	$\ldots \ldots . \mathrm{V}$	$\ldots \ldots \ldots \mu \mathrm{A}$
3	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots \ldots \mu \mathrm{A}$
4	$\ldots \ldots \ldots \mathrm{~V}$	$\ldots \ldots \ldots \mu \mathrm{~A}$
5	$\ldots \ldots . . \mathrm{V}$	$\ldots \ldots \ldots \mathrm{A}$

गणना - 1. सारिणी से प्राप्त उत्क्रम वोल्टता एवं उत्क्रम धारा के मध्य उचित पैमाना मानते हुए ग्राफ खींचते हैं।
2. ग्राफ से उत्क्रम जेनर भंजन वोल्टता का मान चित्रानुसार (चित्र 9.3) V-I वक्र पर स्पर्श रेखा को आगे बढ़ाकर V अक्ष पर प्राप्त करते हैं।

परिणाम - दिए गए जेनर डायोड के लिए उत्त्रम जेनर भंजन वोल्टता का मान..... वोल्ट प्राप्त हुआ।
सावधानियां - 1. उचित अल्पतमांक एवं परास के वोल्टमीटर एवं अमीटर का ही चुनाव करें।
2. यदि वोल्टमीटर/अमीटर में कोई शून्यांक त्रुटि है तो उसे ठीक कर लें या पाठयांक लिखते समय संशोधन कर लें।
3. यदि जेनर डायोड के नम्बर ज्ञात हों तो उसके भंजन वोल्टता V_{Z} अधिकतम वोल्टता V एवं शक्ति ह्वास P_{z} के मान मेनुअल से ज्ञात करें तथा जेनर डायोड के श्रेणी क्रम में प्रयुक्त रक्षक प्रतिरोध R_{p} का मान निम्न सूत्र से ज्ञात करें एवं इस प्रतिरोध को प्रयोग में प्रयुक्त करें।

$$
\mathrm{R}_{\mathrm{P}}=\frac{\left(\mathrm{V}-\mathrm{V}_{\mathrm{Z}}\right) \mathrm{V}_{\mathrm{Z}}}{\mathrm{P}_{\mathrm{Z}}}
$$

4. DC स्त्रोत से विभव लगाते समय न्यूनतम विभव से ही प्रारम्भ करें।

मौखिक प्रश्न

प्र. 1 जेनर डायोड किसे कहते हैं?

उ. P एवं N प्रकार के अर्धचालकों में अशुद्धियों की नियंत्रित मात्रा मिलाने से बने, वांछित उत्क्रम भंजन वोल्टता के डायोड को जेनर डायोड कहते हैं।
2. एक निश्चित उत्क्रम वोल्टता पर धारा का मान एकाएक क्यों बढ़ जाता है?

उ. इस उत्क्रम वोल्टता पर संधि /अवक्षय परत पर जेनर भंजन या ऐवलांशी भंजन के कारण स्वतन्त्र धारावाही की संख्या बढ़ जाती है।
3. जेनर भंजन किसे कहते हैं?

उ. अशुद्धियों की मात्रा अधिक होने से अवक्षय परत के पतला होने तथा अवक्षय परत में अत्यधि कि विद्युत क्षेत्र होने से संयोजी कक्ष से इलेक्ट्रोन मुक्त होते हैं जिससे इलेक्ट्रोन कोटर युग्मों की संख्या बहुत अधिक बढ़ जाती है।
4. जेनर डायोड का क्या उपयोग है?

उ. जेनर डायोड का मुख्य उपयोग वोल्टता नियंत्रण में होता है।

प्रयोग सं. 10

उद्देश्य - उभयनिष्ट उत्सर्जक परिपथ में किसी P-N-P/N-P-N ट्रांजिस्टर के अभिलाक्षणिक वक्र का अध्ययन करना तथा धारा लाभ एवं वोल्टता लाभ के मान प्राप्त करना।

उपकरण एवं सामग्री - एक ट्रांजिस्टर (BC 147 या BC 177 या AC 128), माइक्रो एमीटर (0 $100 \mu \mathrm{~A})$ मिली एमीटर $(0-20 \mathrm{~mA}), 2$ वोल्टमीटर $(0-3 \mathrm{~V})$ तथा $(0-15 \mathrm{~V})$ दो उच्च प्रतिरोध वाले धारा नियंत्रक, $100 \mathrm{~K} \Omega$ मान का कार्बन प्रतिरोध, $0-3 \mathrm{~V}$ तथा $0-15 \mathrm{~V}$ के दो DC स्त्रोत एवं संयोजन तार।

सिद्धांत - दो P -प्रकार के अर्धचालकों के मध्य N -प्रकार के अर्धचालक की पतली परत होने पर $\mathrm{P}-\mathrm{N}-\mathrm{P}$ तथा दो N -प्रकार के अर्धचालकों के मध्य P -प्रकार की पतली परत होने पर N-P-N ट्रांजिस्टर बनता है। तीनों परतें तीन इलेक्ट्रोड से जुड़ी होती है। इन परतों के नाम क्रमशः उत्सर्जक E , आधार B एवं संग्राहक C होते हैं। उत्सर्जक में अशुद्धि की मात्रा सामान्य कोटि की होती है तथा आधार के साथ सम्पर्क क्षेत्रफल कम होता है। आधार में अशुद्धि की मात्रा अत्यन्त न्यून होती है तथा यह बहुत पतली परत के रूप में होता हैं।

संग्राहक में अशुद्धि की मात्रा उत्सर्जक से कम परन्तु आधार से अधिक होती है। यह भाग उत्सर्जक की अपेक्षा मोटा होता है। एवं आधार के साथ सम्पर्क क्षेत्रफल अधिक होता है।

अग्र बायस में उत्सर्जक, मुख्य धारावाही को आधार में भेजता है (inject करता है)। कुछ धारावाही आधार में संयुक्त होकर आधार धारा प्रदान करते हैं, जबकि अधिकांश धारावाही संग्राहक की उत्क्रम वोल्टता से आकर्षित होकर संग्राहक धारा प्रदान करते हैं। इस प्रकार से ट्रांजिस्टर एक परिपथ की धारा को दूसरे परिपथ में प्रवाहित करता है।

ट्रांजिस्टर विन्यास- ट्रांजिस्टर को परिपथ में संयोजित करते समय एक इलेक्ट्रोड निवेशी एवं निर्गत परिपथ के लिए उभयनिष्ठ होता है। इस दृष्टि से 3 प्रकार के संयोजन सम्भव है-

1. उभयनिष्ठ उत्सर्जक विन्यास
2. उभयनिष्ठ आधार विन्यास
3. उभयनिष्ठ संग्राहक विन्यास

उभयनिष्ठ उत्सर्जक अभिलाक्षणिक-
 c E

चित्र 10.1 ट्रांजिस्टर प्रतीक

चित्र 10.2 ट्रांजिस्टर अभिलक्षणणिक परिपथ

ट्रांजिस्टर का संयोजन चित्रानुसार(चित्र 10.2)किया जाता है। आधार निवेशी, उत्सर्जक उभयनिष्ठ एवं संग्राहक निर्गत का कार्य करता है।
(i) निवेशी अभिलाक्षणिक $-\mathrm{V}_{\mathrm{BE}}-\mathrm{I}_{\mathrm{B}}$ वक्र को निवेशी अभिलाक्षणिक कहते हैं। निर्गत विभव V_{CE} का मान नियत रख कर, V_{BE} एवं I_{B} में ग्राफ प्राप्त किया जाता है। जो चित्रानुसार (चित्र 10.3) प्राप्त होता है।

इस परिपथ में निवेशी प्रतिरोध का मान $\mathrm{r}_{\mathrm{i}}=\left(\frac{\Delta \mathrm{V}_{\mathrm{BE}}}{\Delta \mathrm{I}_{\mathrm{B}}}\right)_{\mathrm{V}_{\mathrm{CE}}=\text { निथत }}$ होता है। जो कि कुछ सौ ओम की कोटि का होता है।

(चित्र 10.3)
(ii) निर्गत अभिलाक्षणिक- $V_{C E}$ एवं I_{C} के मध्य वक्र को निर्गत अभिलाक्षणिक कहते हैं। इसके लिए ${ }_{\mathrm{B}} \mathrm{I}$ के एक नियत मान के लिए V_{E} एवं C के मान प्रयोग द्वारा प्राप्त कर $\mathrm{CE}^{-1}{ }_{\mathrm{C}} \mathrm{I}$ ग्राफ खींचा जाता है। इस प्रकार्${ }_{\mathrm{B}} \mathrm{I}$ के विभिन्न मानों के लिए $\mathrm{V}_{\mathrm{CE}}-\mathrm{I}_{\mathrm{C}}$ वक्र प्राप्त करते हैं जो चित्रानुसार चित्र 10.4 प्राप्त होते हैं। निर्गत

प्रतिरोध का मान सूत्र $\mathrm{r}_{0}=\left(\frac{\Delta \mathrm{V}_{\mathrm{CE}}}{\Delta \mathrm{I}_{\mathrm{C}}}\right)_{\mathrm{I}_{\mathrm{B}}=\text { तियत }}$ से ज्ञात करते हैं तथा $\mathrm{V}_{\mathrm{CE}}-\mathrm{I}_{\mathrm{C}}$ वक्र के ढाल के व्युत्त्रम के बराबर होता है।

चित्र 10.4 निर्गत अभिलाक्षणिक
(iii) ट्रांसफर अभिलाक्षणिक- एक नियत निर्गत विभव V_{CE} के लिए $\mathrm{I}_{\mathrm{B}}-\mathrm{I}_{\mathrm{C}}$ वक्र को ट्रांसफर अभिलाक्षणिक कहते हैं। इस विन्यास में धारा लाभ β निम्न सूत्र से प्राप्त करते हैं। $\beta=\left(\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}}\right)_{\mathrm{V}_{\mathrm{c}}=\text { सित्य }}$ इसे अग्रधारा लाभ भी कहते हैं।

विभव लाभ $\mathbf{A}_{\mathbf{v}}$ - यदि निवेशी विभव में परिवर्तन $\Delta \mathrm{V}_{\mathrm{i}}$ तथा इसका संगत निर्गत विभव में परिवर्तन $\Delta \mathrm{V}_{0}$ हो तो $\mathrm{A}_{\mathrm{V}}=\frac{\Delta \mathrm{V}_{0}}{\Delta \mathrm{~V}_{\mathrm{i}}}$ परन्तु ओम के नियम से $\Delta \mathrm{V}_{0}=\Delta \mathrm{I}_{\mathrm{C}} \times \mathrm{r}_{0}$ एवं $\Delta \mathrm{V}_{\mathrm{i}}=\Delta \mathrm{I}_{\mathrm{B}} \times \mathrm{r}_{\mathrm{i}}$

अतः विभव लाभ $\quad A_{v}=\beta \frac{r_{0}}{r_{i}}$
विधि - 1. यदि ट्रांजिस्टर NPN है तो चित्रानुसार (चित्र 10.2) परिपथ संयोजित करें। यदि ट्रांजिस्टर P-N-P है, तो दोनों बेटरियों तथा मीटर टर्मिनल विपरीत संयोजित करते हुए संयोजित करें। (उचित बायस में संयोजन करें)।
2. निवेशी अभिलाक्षणिक के लिए V_{CE} के एक नियत मान के लिए V_{BE} एवं I_{B} के मान प्राप्त करें तथा सारणीबद्ध करें।
3. V_{CE} के अन्य नियत मानों के लिए $\mathrm{V}_{\mathrm{BE}}-\mathrm{I}_{\mathrm{B}}$ के मान सारणीबद्ध करें।
4. इसी प्रकार निर्गत अभिलाक्षणिक के लिए I_{B} के लिए नियत मान के लिए V_{CE} $-\mathrm{I}_{\mathrm{C}}$ के मान प्राप्त करें एवं सारणीबद्ध करें।
5. I_{B} के अन्य मानों के लिए भी V_{CE} एवं I_{C} के मान प्राप्त करें एवं सारणीबद्ध करें।
6. $\mathrm{V}_{\mathrm{BE}}-\mathrm{I}_{\mathrm{B}}$ के मानों से निवेशी अभिलाक्षणिक, उचित पैमाने पर पर ग्राफ बनाकर प्राप्त करें।
7. इसी प्रकार $\mathrm{V}_{\mathrm{CE}}-\mathrm{I}_{\mathrm{C}}$ के विभिन्न मानों से उचित पैमाने पर निर्गत अभिलाक्षणिक प्राप्त करें।
8. ट्रांसफर अभिलाक्षणिक के लिए V_{CE} का मान नियत रख कर I_{B} के मान बदल कर संगत I_{C} के मान प्राप्त करें।
9. I_{B} को X -अक्ष पर I_{C} को Y -अक्ष पर लेते हुए उचित पैमाने पर ग्राफ बनाओ तथा ग्राफ का ढाल ज्ञात कर, β का मान प्राप्त करें।
(i) r_{i} की गणना - निवेशी अभिलाक्षणिक के उस भाग पर स्पर्श रेखा खींचो जो तेजी से बढ़ता हो। स्पर्श रेखा पर कोई दो बिन्दु P एवं Q चुनें तथा दोनों बिन्दुओं से $V_{B E}$ अक्ष एवं I_{B} अक्ष पर लम्ब डालें। इस प्रकार दोनों अक्षों से $\Delta V_{B E}$ एवं $\Delta \mathrm{I}_{\mathrm{B}}$ के मान प्राप्त कर, r_{i} की गणना निम्न सूत्र से करें $r_{i}=\left(\frac{\Delta V_{B E}}{\Delta I_{B}}\right)_{V_{c}=\text { लिपत }}$

चित्र 10.5 निवेशी अभिलक्षषणिक
(ii) निर्गत अभिलाक्षणिक के किसी एक वक्र के तीन बिन्दुओं A, B एवं C पर स्पर्श रेखा खींच कर r_{0} के मान उपरोक्त विधि से निम्न सूत्र द्वारा ज्ञात करें। इसे गतिक निर्गत प्रतिरोध कहते हैं।

$$
\mathrm{r}_{0}=\left(\frac{\Delta \mathrm{V}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{C}}}\right)_{\mathrm{I}_{\mathrm{B}}=\text { 月िस }}
$$

उपरोक्त गणनाओं से स्पष्ट हो जाता है r_{0} का मान क्रिया बिन्दुओं पर निर्भर करता है।

चित्र 10.6 ट्रांसफर अभिलाक्षणिक वक्र

चित्र 10.7 निर्गत अभिलाक्षणिक वक्र
(iii) ट्रांसफर अभिलाक्षणिक वक्र पर दो बिन्दु चुनें एवं I_{B} अक्ष एवं I_{C} अक्ष पर लम्ब डालकर $\Delta \mathrm{I}_{\mathrm{C}}$ एवं $\Delta \mathrm{I}_{\mathrm{B}}$ के मान प्राप्त करें। उपरोक्त मानों द्वारा धारा लाभ β का मान निम्न सूत्र द्वारा ज्ञात करें-

$$
\beta=\left(\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}}\right)_{\mathrm{v}_{\mathrm{CE}}=\text { नियत }}
$$

(vi) उपरोक्त विधि से प्राप्त $\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{0}$ एवं β के मानों का उपयोग करते हुए, सूत्र $\mathrm{A}_{\mathrm{V}}=\beta \times \frac{\mathrm{r}_{0}}{\mathrm{r}_{\mathrm{i}}}$ द्वारा ट्रांजिस्टर का विभव लाभ ज्ञात करो।
परिणाम - दिए गए ट्रांजिस्टर के लिए उभयनिष्ठ उत्सर्जक परिपथ में

1. ट्रांजिस्टर के विभिन्न अभिलाक्षणिक संलग्न लेखाचित्रों के अनुसार प्राप्त हुए।
2. एक नियत $\mathrm{V}_{\mathrm{CE}}=$ \qquad V के लिए निवेशी प्रतिरोध r_{i} का मान \qquad Ω प्राप्त हुआ।
3. एक नियत $I_{B}=\ldots \ldots . \mu \mathrm{A}$ के लिए निर्गत प्रतिरोध r_{0} का मान \qquad Ω प्राप्त हुआ।
4. धारा (प्रवर्धन लाभ) $\beta=$ \qquad (मात्रक हीन) प्राप्त हुआ।
5. वोल्टता लाभ \qquad (मात्रक हीन) प्राप्त हुआ।

प्रयोग 11

उद्देश्य -

प्रत्यावर्ती धारा परिपथ में प्रतिरोध एवं प्रेरण कुण्डली को श्रेणी क्रम में संयोजित कर धारा व वोल्टता में सम्बन्ध स्थापित करना।

उपकरण -
प्रत्यावर्ती धारा स्त्रोत या परिवर्ती वोल्टता (0.25 वोल्ट) एवं कम आवृति वाला परिवर्ती दोलित्र $(0-1 \mathrm{KHz})$, विभिन्न मान की प्रेरक कुण्डलियां (500 मिली हेनरी, 1 हेनरी, 2 हेनरी आदि), विभिन्न मान के कार्बन प्रतिरोध (100 ओम, 500 ओम, 1 किलो ओम, 2 किलो ओम आदि) या प्रतिरोध बॉक्स, AC अमीटर $(0-10 \mathrm{~mA})$ तथा AC वोल्टमीटर ($0-10$ वोल्ट) संयोजन तार इत्यादि।
परिपथ चित्र -

चित्र 11.1 - प्रत्यावर्ती धारा $\mathbf{R}-\mathbf{L}$ श्रेणी परिपथ
सिद्धान्त एवं सूत्र :
प्रतिरोध पर R वोल्टता $\mathrm{V}_{\mathrm{R}}=\mathrm{IR}$ \qquad
यहाँ I परिपथ में प्रवाहित धारा है जो V_{R} के साथ समान कला (In Phase) में होगी।
प्रेरक कुण्डली L पर वोल्टता $\mathrm{V}_{\mathrm{L}}=\mathrm{I} \omega \mathrm{L}=\mathrm{I} \times 2 \pi f \mathrm{~L}$
यहाँ f प्रत्यावर्ती स्त्रोत (या दोलित्र) की आवृति है।
V_{L} तथा $\mathrm{I}\left(\right.$ या $\left._{\mathrm{R}}\right)$ में $\pi / 2$ का कालान्तर होगा। एक शुद्ध प्रेरकत्व (जिसका स्वयं का प्रतिरोध शून्य हो) पर की वोल्टता V_{L}, बाहय प्रतिरोध पर की वोल्टता V_{R} (या परिपथ में प्रवाहित धारा I) से कलान्तर $\pi / 2$ से आगे रहती है। जैसा कि चित्र में दिखाया है-

चित्र 11.2 - धारा एवं वोल्टता में कला सम्बन्ध
यदि V_{RL} प्रतिरोध R एवं कुण्डली L दोनों पर एक साथ की वोल्टता है जो प्रयुक्त वोल्टता V_{o} के लगभग बराबर होगी तो हम पाते है कि-

$$
\begin{array}{ll}
& \mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{L}}>\mathrm{V}_{\mathrm{RL}} \\
\text { सदिश चित्र से } & \mathrm{V}_{\mathrm{R}}^{2}+\mathrm{V}_{\mathrm{L}}^{2}=\mathrm{V}_{\mathrm{RL}}^{2} \tag{iii}
\end{array}
$$

धारा I तथा प्रयुक्त वोल्टता $\mathrm{V}_{\mathrm{O}} \simeq \mathrm{V}_{\mathrm{RL}}$ के मध्य कला कोण ϕ का मान होगा।

$$
\begin{equation*}
\tan \phi=\frac{\omega L}{R}=\frac{2 \pi f L}{R} \tag{iv}
\end{equation*}
$$

विधि -

1. चित्र 11.2 में बताए अनुसार परिपथ बनाएं।
2. यदि दोलित्र का उपयोग कर रहे हैं तो उसकी आवृति f को निश्चित रखते हुए प्रयुक्त वोल्टता V_{o} को किसी निश्चित मान पर रखें। (जैसे 5 वोल्ट)
3. परिवर्ती प्रतिरोध बॉक्स में R का कुछ मान निकालें (जैसे 100 ओम) तथा प्रेरक कुण्डली 500 मिली हेनरी की लें।
4. परिपथ में प्रवाहित धारा का मान मिली अमीटर से नोट करें।
5. R, L तथा $\mathrm{R}-\mathrm{L}$ पर एक साथ की वोल्टताएं AC वोल्टमीटर VTVM या डिजीटल मल्टीमीटर द्वारा नोट करें। ये क्रमशः $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$ तथा V_{RL} होगी। एक ही वोल्टमीटर होने पर बारी-बारी से $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$ तथा V_{RL} के पाठ्यांक नोट करें।
6. R तथा L के अलग-अलग मान लेते हुए धारा I तथा वोल्टताएं $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$ तथा V_{RL} के अलग-अलग पाठ्यांक नोट करें।

नोट :- (1) प्रयोग को इस प्रकार भी किया जा सकता है कि R तथा L के कोई भी मान लेने के स्थान पर L के अलग-अलग मान लेकर R को इस तरह समायोजित करें कि परिपथ में धारा I का मान एक ही रखें। प्रत्येक स्थिति में $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$ तथा V_{RL} के पाठ्यांक नोट करें।
(2) दोलित्र का उपयोग करने पर दोलित्र की आवृति बदल कर $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$ तथा V_{RL} तथा I के विभिन्न पाठ्यांक लिये जा सकते हैं।
(3) परिवर्ती वोल्टता उपलब्ध होने पर उसका मान बदल कर R तथा L वहीं मान होने पर भी V_{O}, V एवं V_{o} तथा I का मान परिवर्तन कर सकते हैं।

प्रेक्षण -

मिली अमीटर का अल्पतमांक	$=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{mA}$
वोल्टमीटर का अल्पतमांक	$=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ वोल्ट
प्रयुक्त वोल्टता $\mathrm{V}_{\mathrm{O}}\left(=\mathrm{V}_{\mathrm{RL}}\right)$	$=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ वोल्ट
आवृति f	

$\begin{aligned} & \text { क्र. } \\ & \text { सं. } \end{aligned}$	प्रतिरोध R का मान (ओम)	प्रेरक \mathbf{L} का मान (हेनरी)	धारा I का मान (mA)	R पर वोल्टता V_{R} (वोल्ट)	L पर वोल्टता V_{L} (वोल्ट)	R तथा L पर एक साथ वोल्टता V_{RL} (वोल्ट)	$\begin{gathered} \mathrm{V}_{\mathrm{R}}^{2}+\mathrm{V}^{2}{ }_{\mathrm{L}} \\ \text { (वोल्ट) }^{2} \end{gathered}$	कला कोण (ϕ)
1.	\ldots HmAVVV	$\ldots V^{2}$rad
2.		mA		V	$\ldots V^{2}$rad
3.	\ldots	mAVVV	$\text { }{ }^{2}$rad
4.	\ldots	. HmAVVV	$\ldots V^{2}$rad
5. ΩHmAVVV	$\ldots V^{2}$rad

1. प्रत्येक पाठ्यांक से $\left(\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{L}}\right)$ की गणना करके यह दर्शाइये कि इसका मान V_{RL} या V_{O} के बराबर नहीं है बल्कि $\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{L}}>\mathrm{V}_{\mathrm{RL}}$ अतः V_{R} तथा V_{L} समान कला में नहीं है।
2. अब $\left(\mathrm{V}_{\mathrm{R}}{ }^{2}+\mathrm{V}_{\mathrm{L}}{ }^{2}\right)$ की गणना कीजिए तथा यह दर्शाइये कि यह $\mathrm{V}_{\mathrm{RL}}^{2}$ के लगभग बराबर है। इससे सिद्ध हुआ कि V_{R} तथा V_{L} में कलान्तर $\pi / 2$ है तथा उनकी परिणामी वोल्टता $\mathrm{V}_{\mathrm{RL}}=\mathrm{V}_{\mathrm{O}}$ के बराबर है।
3. उचित पैमाना मान कर $\mathrm{V}_{\mathrm{RL}}=\mathrm{AB}$ रेखा खींचिए (चित्र देखिये) इसे व्यास मान कर इस पर अर्द्ध वृत्त खींचिए।
4. A को केन्द्र मान कर $\mathrm{V}_{\mathrm{R}}=\mathrm{AD}$ के बराबर (Compass) परकार से वृत्त पर चाप काटे जो अर्द्ध वृत्त को बिन्दु D पर काटता है।
A को D से तथा D को B बिन्दु से जोडिए।

चित्र 11.3
5. BD का मान लिखिए। पैमाने से इसे वोल्टता में परिवर्तित करें। यह मान लगभग V_{L} के बराबर होगा।
6. चित्र से स्पष्ट है कि कोण $A D B$ अर्थात् V_{R} एवं V_{L} में कलान्तर $\pi / 2$ है।
7. कोण DAB को नापिए। यह धारा तथा प्रयुक्त वोल्टता में कलान्तर ϕ होगा।
8. R, L तथा f के मान ज्ञात है। अतः सूत्र (i), (ii) एवं (iv) से क्रमशः $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$ तथा ϕ के मान ज्ञात कीजिए एवं इन मानो की तुलना पूर्व में प्राप्त प्रायोगिक मानो से कीजिए एवं त्रुटि ज्ञात कीजिए जैसा कि सारणी में दर्शाया गया है-

भौतिक राशि	सैद्धान्तिक मान	प्रायोगिक मान	त्रुटि
$V_{\text {R }}$VVV
V_{L}VVV
ϕradradrad

परिणाम -

1. प्रतिरोध R पर वोल्टता एवं प्रेरकत्व L पर वोल्टता में कलान्तर लगभग $\pi / 2$ है।
2. प्रयुक्त वोल्टता एवं धारा में कलान्तर (ϕ) है जिसका मान $\pi / 2$ से कम है। $\mathrm{R}-\mathrm{L}$ परिपथ में वोल्टता धारा से ϕ कलान्तर से आगे है।

सावधानियां -

1. उचित वोल्टता एवं आवृति के दोलित्र का उपयोग करना चाहिए।
2. R एवं L के मान प्रामाणिक होने चाहिए।
3. R तथा L के मान इस प्रकार लेने चाहिए कि धारा $(0-10)$ मिली एम्पियर की परास में प्राप्त हो।
4. $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$ तथा V_{RL} के पाठ्यांक सावधानी पूर्वक सुग्राही वोल्टमीटर से लेने चाहिए।

मौखिक प्रश्न एवं उत्तर -
प्र. 1 प्रेरक कुण्डली क्या होती है?
उ. वह चालक कुण्डली जिसमें प्रत्यावर्ती धारा प्रवाहित करने पर वह धारा के प्रवाह का विरोध करें, प्रेरक कुण्डली कहलाती है।

प्र. 2 चोक कुण्डली क्या होती है?
उ. प्रत्यावर्ती धारा का नियंत्रण करने के लिए प्रयुक्त अधिक प्रेरकत्व तथा अल्प प्रतिरोध की प्रेरक कुण्डली को चोक कुण्डली कहते है।

प्र. 3 क्रोडित चोक कुण्डली क्या होती है?
उ. यदि कुण्डली का प्रेरकत्व कम है तथा प्रयुक्त प्रत्यावर्ती धारा की आवृति भी कम है, तो प्रेरक

कुण्डली को किसी कच्चे लोहे की छड़ पर लपेट देते हैं जिससे इसका प्रेरकत्व घट जाता है। इस प्रकार की कुण्डली क्रोडित कुण्डली कहलाती है।

प्र. 4 प्रतिघात किसे कहते है? इसका मात्रक क्या है?
उ. किसी प्रत्यावर्ती परिपथ में प्रेरक कुण्डली अथवा संधारित्र द्वारा उत्पन्न प्रभावी अवरोध को प्रतिघात (X) कहते है। इसका मात्रक ओम है।

प्र. 5 प्रेरक कुण्डली में प्रेरित वि.वा.ब. की दिशा किन कारकों पर निर्भर करती है।
उ. प्रेरक कुण्डली पर प्रेरित वि.वा.ब., चुम्बकीय फ्लक्स के परिवर्तन पर निर्भर करता है तथा इसकी दिशा चुम्बकीय फ्लक्स में परिवर्तन के बढ़ते व घटते क्रम पर निर्भर करती है।

प्र. 6 प्रेरक कुण्डली का प्रतिघात कितना होता है?
उ. प्रेरक कुण्डली का प्रतिघात जिसे प्रेरणिक प्रतिघात भी कहते है का मान $\omega \mathrm{L}$ के बराबर होता है जहां ω प्रत्यावर्ती धारा की कोणीय आवृति है।

प्रेरणिक प्रतिघात $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$
जहाँ कोणीय आवृति $\omega=2 \pi f$
$f=$ प्रत्यावर्ती धारा की आवृति है
प्र. 7 क्या कारण है कि एक प्रेरक कुण्डली दिष्ट धारा के प्रवहन के लिए मार्ग प्रशस्त करती है जबकि प्रत्यावर्ती धारा के लिए अवरोधित करती है?

उ. प्रेरक कुण्डली का प्रतिघात $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$ होता है तथा दिष्ट धारा के लिए $\omega=0$ । अतः दिष्ट धारा के लिए प्रेरणिक प्रतिघात अथवा प्रतिबाधा का मान भी शून्य होता है। इसी कारण दिष्टधारा का मार्ग प्रशस्त करती है। जबकि प्रत्यावर्ती धारा के लिए $\omega \neq 0$ अतः $X_{L} \neq 0$ यह अवरोधित करता है।

प्र. 8 कला कोण क्या होता है? $\mathrm{R}-\mathrm{L}$ परिपथ के लिए इसका मान क्या होता है?
उ. किसी सरल आवर्त गति करने वाले धारा एवं वोल्टताओं के सदिशों की कोणीय स्थिति को कला कोण से व्यक्त करते हैं। $\mathrm{R}-\mathrm{L}$ परिपथ में धारा के सापेक्ष, वि.वा. बल का कला कोण $\tan ^{-1}$ $\left(\frac{\omega \mathrm{L}}{\mathrm{R}}\right)$ होता है।

प्र. 9 शक्ति गुणांक क्या होता है? $\mathrm{R}-\mathrm{L}$ परिपथ के लिए इसका मान क्या होता है?
उ. प्रत्यावर्ती धारा परिपथ में प्रत्यावर्ती धारा प्रवाहित करने पर व्यय शक्ति के औसत मान तथा आभासी मान का अनुपात शक्ति गुणांक कहलाता है अथवा कला कोण (ϕ) की कोज्या $(\cos \phi)$ को शक्ति गुणांक कहते हैं। $\mathrm{R}-\mathrm{L}$ परिपथ में शक्ति गुणांक $\frac{\mathrm{R}}{\mathrm{Z}}$ के बराबर होता है जहां R प्रतिरोध तथा Z परिपथ की प्रतिबाधा है।

प्र. 10 यदि प्रत्यावर्ती परिपथ में दिष्टधारा मापने वाले अमीटर को जोड़ दिया जाए तो क्या यह विक्षेप देगा?

उ. अमीटर का संकेतक प्रत्यावर्ती धारा की आवृति से दोलन करेगा परन्तु आवृति उच्च होने एवं संकेतक का जड़त्व होने के कारण अमीटर का संकेतक दोलन नहीं कर पायेगा और शून्य रिथति में ही स्थिर दिखाई देगा अर्थात विक्षेप नहीं देगा।

प्र. 11 क्या $\mathrm{R}-\mathrm{L}$ परिपथ में अनुनाद की स्थिति प्राप्त की जा सकती है? यदि नहीं तो क्यों?
उ. नहीं क्योंकि अनुनाद के लिए $\omega \mathrm{L}$ को निष्प्रभावी, बिना संधारित्र की सहायता के नहीं कर सकते है।

प्र. 12 अनुनाद की क्या आवश्यक शर्त है?
उ. अनुनाद की अवस्था में परिणामी प्रतिघात शून्य होना चाहिए।
अर्थात $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$
या $\omega \mathrm{L}=\frac{1}{\omega \mathrm{C}}$
प्रेरणिक प्रतिघात, धारितीय प्रतिघात के बराबर हो जाता है।
प्र. 13 प्रत्यावर्ती धारा या वि.वा. बल के शिखर मान से आप क्या समझते है?
उ. प्रत्यावर्ती धारा की या वि.वा.ब. का अधिकतम मान ही शिखर मान कहलाता है।

प्रयोग 12

उद्देश्य -

प्रत्यावर्ती धारा परिपथ में प्रतिरोध एवं संधारित्र को श्रेणीक्रम में लगाकर धारा एवं वोल्टता में सम्बन्ध स्थापित करना।

उपकरण-
उपलब्ध उपकरण जिसमें विभिन्न मान के प्रतिरोध, संधारित्र, AC वोल्टमीटर, AC मिली अमीटर, AC स्त्रोत के लिए अपचायी ट्रांसफार्मर स्विच आदि लगे हों।

उपरोक्त उपकरण नहीं होने पर किसी भी $12^{\prime \prime} \mathrm{x} 12^{\prime \prime}$ के बिजली के बोर्ड पर टर्मिनल लगाकर, उपरोक्त उपकरणों से प्रयोग सम्पन्न हो सकता है।
परिपथ चित्र -

चित्र 12.1
सिद्धान्त -
किसी प्रतिरोधी AC परिपथ में तो विभव एवं धारा समान कला में होती है, परन्तु अन्य अवयवों से युक्त AC परिपथ में विभव एवं धारा के मध्य कलान्तर होता है। श्रेणी $\mathrm{R}-\mathrm{C}, \mathrm{AC}$ परिपथ में V_{c} धारा से $\pi / 2$ कलान्तर से पीछे, V_{R} एवं धारा समान कला में तथा V_{RC} धारा से $\phi<\pi / 2$ कलान्तर से पीछे रहता है।

तथा $\mathrm{V}_{\mathrm{RC}}=\sqrt{\mathrm{V}_{\mathrm{R}}^{2}+\mathrm{V}_{\mathrm{C}}^{2}}$ तथा परिणामी कलान्तर $\phi=\tan ^{-1}\left(\frac{1}{\omega \mathrm{CR}}\right)$
इसी प्रकार परिपथ की प्रतिबाधा $\mathrm{Z}=\frac{\mathrm{V}_{\mathrm{RC}}}{\mathrm{I}}$ होती है।
यहाँ $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{C}}$ तथा V_{RC} क्रमशः प्रतिरोध पर स्थापित वोल्टता, संधारित्र पर स्थापित वोल्टता एवं परिणामी वोल्टता है। ω, AC की कोणीय आवृति है $\omega=2 \pi f ; f=\mathrm{AC}$ की आवृति।

विधि -

1. अपचायी ट्रांसफर्मर की निर्गत वोल्टता के अनुसार उचित, परास के वोल्टमीटर, अमीटर, प्रतिरोध एवं संधारित्र का संयोजन चित्रानुसार करते हैं।
2. परिपथ को चालू करते हुए $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{RC}}$ तथा धारा का मान सारणीबद्ध करते हैं। ये सभी मान RMS मान होते हैं।
3. फेजर चित्र (देखिए चित्र 12.2)के लिए उचित पैमाने के द्वारा V_{RC} को सदिश AB से चित्रित करते हैं। AB के केन्द्र से $\frac{\mathrm{V}_{\mathrm{RC}}}{2}$ त्रिज्या का अर्धवृत चित्रानुसार बनाते हैं। इसी पैमाने पर V_{R} का बिन्दु A से तथा V_{C} का चाप बिन्दु B से बनाते चाप के कटान बिन्दु P से A एवं B को मिलाते हैं।
4. फेजर चित्र द्वारा प्राप्त आंकड़ों से Z तथा सिद्धान्त से प्राप्त $\mathrm{Z}=\frac{\mathrm{V}_{\mathrm{RC}}}{\left(\mathrm{R}^{2}+\frac{1}{\omega^{2} \mathrm{C}^{2}}\right.}=\frac{\mathrm{V}_{\mathrm{RC}}}{\mathrm{Z}}$ की तुलना करें।
5. R एवं C के मान बदल कर प्रयोग को दोहरावें।

प्रेक्षण -

1. ट्रांसफॉर्मर की वोल्टता $\mathrm{V}_{0}=\ldots \ldots \ldots \ldots \ldots$ वोल्ट
2. AC स्त्रोत की आवृति $f=50 \mathrm{H}_{z} ; \omega=2 \pi f$ प्रेक्षण सारणी-

क्र. सं.	$\begin{gathered} \text { प्रतिरोध } \\ \text { R } \end{gathered}$	धारिता $\mathbf{C} \mu \mathbf{F}$	धारा ImA	$\begin{gathered} \mathbf{V}_{\mathrm{R}} \\ \text { वोल्ट } \end{gathered}$	$\begin{gathered} \mathbf{V}_{\mathrm{c}} \\ \text { वोल्ट } \end{gathered}$	$\begin{aligned} & \mathbf{V}_{\mathrm{RC}} \\ & \text { वोल्ट } \end{aligned}$
1.	.. Ω	\ldotsmAवोल्टवोल्टवोल्ट
2. Ω	\ldotsmAवोल्टवोल्टवोल्ट
3.	\ldots	\ldotsmAवोल्टवोल्टवोल्ट
4.	\ldots	\ldotsmAवोल्टवोल्टवोल्ट
5.	. Ω	\ldotsmAवोल्टवोल्टवोल्ट

गणना के लिए सारणी -

$\begin{aligned} & \text { क्र. } \\ & \text { सं. } \end{aligned}$	प्रतिरोध R	धारिता $\mathbf{C} \mu \mathbf{F}$	$\begin{aligned} & \text { प्रतिबाधा } \\ & \mathrm{Z}=\frac{\mathrm{V}_{\mathrm{kc}}}{\mathrm{I}} \end{aligned}$	$\begin{gathered} \begin{array}{c} \mathbf{V}_{\mathrm{R}} \\ \text { वोल्ट } \end{array} \end{gathered}$	$v_{x}-\sqrt{v_{k}^{2}+v_{c}^{2}}$	फेजर से प्राप्त ϕ
1.	... Ω	\ldots	\ldotsवोल्टवोल्टडिग्री
2. Ω $\mu \mathrm{F}$ Ωवोल्टवोल्टडिग्री
3. Ω $\mu \mathrm{F}$ Ωवोल्टवोल्टडिग्री
4. Ω $\mu \mathrm{F}$ Ωवोल्टवोल्टडिग्री
5. Ω F Ωवोल्टवोल्टडिग्री

सैद्धान्तिक आधार पर \mathbf{Z} एवं ϕ ज्ञात करना -

क्र. सं. स.	प्रतिरोध R	$\begin{aligned} & \hline \text { धारिता } \\ & \mathrm{C} \mu \mathrm{~F} \end{aligned}$	$\left.\begin{array}{c} \text { प्रतिबाधा } \\ \mathrm{X}_{\mathrm{c}}=\left(\frac{1}{\omega \mathrm{C}}\right) \end{array}\right)$	$z=\sqrt{\left(R^{2}+\frac{1}{\omega^{2} C^{2}}\right)}$	$\phi=\tan ^{-1}\left(\frac{1}{\omega \mathrm{RCC}}\right)$
1.	.. Ω $\mu \mathrm{F}$	\ldots	$\ldots . . \Omega$.डिग्री
2. Ω	\ldots Ω	\ldotsडिग्री
3.	\ldots $\mu \mathrm{F}$	\ldots	\ldotsडिग्री
4. Ω	\ldots	\ldots	\ldotsडिग्री
5.	. Ω	\ldots Ω	\ldotsडिग्री

गणना -

1. R एवं C के प्रत्येक सेट के, V_{R}, V_{C} एवं $V_{R C}$ का फेजर चित्र 12.2 उचित पैमाने से कागज पर परकार से चाप काट कर बनाते हैं। V_{C} एवं V_{R} के मध्य कोण $\simeq \frac{\pi}{2}=\left(90^{\circ}\right)$ तथा V_{R} एवं V_{RC} के मध्य कोण का मापन करते हैं। फेजर से प्राप्त मानों की तुलना सैद्धान्तिक गणना से प्राप्त मानो से करते हैं।
 परिणाम -

RC श्रेणी AC परिपथ में आरोपित विभव एवं प्रवाहित धारा के मध्य कलान्तर ϕ का मान $\frac{\pi}{2}$ से कम होता है, जो कि गणना से प्राप्त मान के लगभग समान है।

सावधानियां -

1. R एवं C का चुनाव उपलब्ध वोल्टमीटर के परास के अनुसार ही करना चाहिए। अन्यथा अगले पाठयांक में मीटर बदलने से त्रुटियां सम्भव है।
2. आवश्यकता पड़ने पर AC स्त्रोत (अपचायी ट्रांसफार्मर) की निर्गत वोल्टता भी बदली जा सकती है।
3. फेजर चित्र ग्राफ के बजाए सादे कागज पर उपयुक्त स्केल से परकार द्वारा चाप काट कर बनाने चाहिए।

मौखिक प्रश्न -
प्र. 1 प्रत्यावर्ती धारा विभव किसे कहते हैं?
उ. वह धारा / विभव जिसका मान एवं दिशा समय के साथ परिवर्तित होती है।
प्र. 2 दिष्ट धारा (DC) विभव किसे कहते है?
उ. वह धारा/विभव जो एक दिशा में प्रवाहित हो, उसे DC कहते है। भले ही किसी कारण से उसका मान समय के साथ परिवर्तित हो जाए।

प्र. 3 आपके घर / प्रयोगशाला में प्रयुक्त विद्युत सप्लाई कौनसी है? AC या DC
उ. घर एवं प्रयोगशाला की विद्युत सप्लाई AC है।
प्र. 4 घर की विद्युत सप्लाई की वोल्टता एवं आवृति कितनी होती है?
उ. 220 वोल्ट RMS तथा 50 Hz आवृति।
प्र. 5 RMS वोल्टता क्या होती है?
उ. DC धारा/वोल्टता का मान जो किसी प्रतिरोध में समान समय में उतना ही ऊष्मीय प्रभाव उत्पन्न करे जितना AC करती है। जैसे किसी प्रतिरोध में 1 मिनट में 100 वोल्ट की AC जितनी ऊष्मा उत्पन्न करती है। उसी प्रतिरोध में 1 मिनट में 70.7 वोल्ट की DC उतनी ही ऊष्मा उत्पन्न करेगी अर्थात् 100 वोल्ट AC का RMS मान 70.7 वोल्ट है।

प्र. 6 प्रतिघात से आप क्या समझते है?
उ. किसी विद्युत अवयव का वह गुण जो प्रत्यावर्ती विद्युत धारा के मान एवं दिशा में किसी भी प्रकार का परिवर्तन करें।

प्र. 7 प्रतिघात उत्पन्न करने वाले कौन से अवयव है?
उ. शुद्ध प्रेरकत्व एवं शुद्ध संधारित्र।
प्र. 8 प्रतिबाधा किसे कहते हैं?
उ. प्रतिबाधा, प्रतिरोध एवं प्रतिघात का मिश्रित गुण है।
प्र. 9 RC श्रेणी AC परिपथ में प्रतिबाधा सूत्र क्या है?
उ. $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}^{2}}$ जहाँ $\mathrm{R}=$ प्रतिरोध

$$
\mathrm{X}_{\mathrm{c}}=\text { धारतीय प्रतिघात }
$$

प्र. 10 प्रतिरोध, प्रतिधात एवं प्रतिबाधा के मात्रक क्या है?
उ. इन सभी राशियों का मात्रक ओम है।
प्र. 11 उपरोक्त सभी राशियों का मात्रक ओम है तो इनमें क्या अन्तर है?
उ. किसी परिपथ पर आरोपित विभव एवं परिपथ में प्रवाहित धारा में उपस्थित कलान्तर के कारण ही ये तीनों राशियां भिन्न है। यदि V एवं I में कलान्तर $\phi=0$ तो प्रतिरोध होगा, $\phi= \pm \pi / 2$ होने पर प्रतिघात तथा $\phi \neq \pm \pi / 2,0$ तो प्रतिबाधा होगी।

उद्देश्य -
किसी LDR (प्रकाश संवेदी प्रतिरोध) के प्रतिरोध पर प्रकाश की तीव्रता के प्रभाव का स्रोत्र की दूरी में परिवर्तन करके अध्ययन करना।

उपकरण एवं सामग्री -
LDR, 12 वोल्ट का स्रोत (बेटरी / अन्य) प्रकाश स्रोत (बल्ब), वोल्टमीटर $(0-10 \mathrm{~V})$, मिली अमीटर $(0-500 \mathrm{~mA}) 47 \Omega$ का कार्बन प्रतिरोध, संयोजी तार, कुंजी एवं मीटर स्केल।
सिद्धान्त -
LDR अर्धचालक पदार्थ से बनी एक युक्ति है जिसमें प्रकाश सुग्राही पदार्थ (केडमियम सल्फाईड) का उपयोग होता है। $L D R$ का प्रतिरोध पूर्ण अंधकार में लाखों ओम ($\approx \mathrm{M} \Omega$) तथा तीव्र प्रकाश में कुछ सौ ओम का होता है। प्रतिरोध का मान ओम के नियम से ज्ञात कर सकते है। तथा प्रकाश की तीव्रता में परिवर्तन LDR एवं बल्ब के बीच की दूरी बदल कर किया जा सकता है। तीव्रता, दूरी के वर्ग के व्युत्क्रमानुपाती हाती है।
विधि -

1. चित्रानुसार परिपथ संयोजित करें।

2. प्रकाश स्त्रोत (बल्ब) को बंद करें।
3. कमरे के प्रकाश में परिपथ मे लगे वोल्टमीटर एवं मिली अमीटर के पाठ्यांक द्वारा संदर्भ प्रतिरोध R_{1} की गणना करें।
4. बल्ब को परिपथ में लगे LDR के ठीक ऊपर, कुछ दूरी पर लटकायें।
5. बल्ब की LDR से दूरी तथा बल्ब की चालू करने के बाद वोल्टमीटर एवं मिलीअमीटर का पाठ्यांक सारणीबद्ध करें।
6. बल्ब की LDR से दूरी बदलते हुऐ पांच पाठ्यांक लें।

क्र.सं.	LDR से बल्ब की दूरी	वोल्टमीटर पाठयांक V	मिली अमीटर पाठयांक I	$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$	LDR का वास्तविक प्रतिरोध $\left(\mathrm{R}+\mathrm{R}_{1}\right)$
1.mVmA	\ldots Ω
2.	VmA	\ldots Ω
3.m	..VmA Ω	\ldots
4.mVmA		$\ldots ~ \Omega ~$

प्रेक्षण एवं गणना -

1. वोल्टमीटर का अल्पतमांक $=\ldots V$
2. मिली अमीटर का अल्पतमांक $=$ \qquad mA
3. कमरे के प्रकाश पर वोल्टमीटर का पाठ्यांक $=$ \qquad . V , से अमीटर पाठ्यांक $=$ \qquad .mA प्रतिरोध $\mathrm{R}_{1}=$ \qquad
परिणाम -
LDR से बल्ब की दूरी बढ़ने से प्रकाश की तीव्रता कम होती है, जिससे LDR का प्रतिरोध बढ़ता है।

सावधानियॉ -

1. बल्ब का LDR के ठीक ऊपर ही रखें जिससे प्रकाश की किरणें सदैव LDR पर लम्बवत् गिरे।
2. बल्ब की दूरी मापन में सावधानी रखें। क्योंकि तीव्रता दूरी के वर्ग के व्युत्क्रमानुपाती होती है।
अतिरिक्त क्रिया कलाप -
3. LDR के साथ उचित प्रकार की रिले का उपयोग करते हुए, प्रकाश संवेदी स्विच का निर्माण एवं उपयोग।
4. साधारण बल्ब एवं CFL की दक्षता का तुलनात्मक अध्ययन।

मौखिक प्रश्न -
प्र.1. प्रकाश क्या है ?
उ. प्रकाश एक प्रकार की विकिरण ऊर्जा है। जो विद्युत चुम्बकीय तरंगो के रूप में संचरित होती है।

प्र.2. प्रकाश की तीव्रता का क्या अर्थ है ?
उ. एकांक क्षेत्रफल पर प्रति सेकेन्ड आपतित प्रकाश विकिरण ऊर्जा की मात्रा को प्रकाश की तीव्रता कहते है।

प्र.3. प्रकाश की तीव्रता का मात्रक क्या है?
उ. S.I. मात्रक में प्रकाश की तीव्रता का मात्रक केण्डेला (Cd) है।
प्र.4. प्रकाश की तीव्रता एवं स्त्रोत से दूरी में क्या सम्बन्ध है?
उ. प्रकाश की तीव्रता दूरी के वर्ग के व्युत्क्रमानुपाती होती है।
प्र.5. LDR क्या होता है?
उ. प्रकाश संवेदी प्रतिरोध को LDR कहते है।
प्र.6. यह कैसे बनाया जाता है?
उ. यह एक यौगिक अर्धचालक युक्ति है। (CdS केडमियम सल्फाइड एक उदाहरण है)
प्र.7. क्या इसे देखकर पहचान सकते है?
उ. हॉ। इसके ऊपर सर्पिल आकृति धारी के रूप में दिखाई देती है।
प्र.8. LDR कैसे कार्य करता है?
उ. CdS जैसे अर्धचालक पदार्थ में अधिकांश इलेक्ट्रान जालक की बोन्ड व्यवस्था में बंधे होते है। अतः अंधेरे में चालकता कम एवं प्रतिरोध अधिक ($\approx \mathrm{M} \Omega$) होता है। जब इस प्रकार के पदार्थ पर प्रकाश गिरता है तो प्रकाश के फोटोन की ऊर्जा से इलेक्ट्रोन — कोटर युग्म का उत्पादन होता है एवं चालकता बढ़ जाती है। प्रतिरोध कम हो जाता है।

प्र.9. LDR के व्यावहारिक उपयोग बताओ ?
उ. LDR के साथ उचित प्रकार की रिले का उपयोग करते हुए प्रकाश संवेदी स्विच बनाऐ जा सकते है।
प्र.10. विद्युत चुम्बकीय रिले क्या होती है?
उ. यह एक प्रकार का विद्युत चुम्बक है जिसके साथ सम्पर्क पत्तियां लगी होती है। जब इसमें विद्युतधारा प्रवाहित होती है तो चुम्बक बनने से दोनों पत्तियों के बीच सम्पर्क बनता / टूटता है। जिससे अन्य युक्ति को चालू या बंद किया जा सकता है।
प्र.11. LDR का पूरा नाम क्या है?
उ. LDR, Light Dependent Resistor का संक्षिप्त रूप है।

प्र.12. LDR का अर्थ क्या है?
उ. हिन्दी में इसे प्रकाश संवेदी प्रतिरोध कहते हैं। जिसका अर्थ है, प्रकाश से प्रतिरोध का मान बदलता है।

प्र.13. यह किस प्रकार कार्य करता है?
उ. यह अर्ध चालक युक्ति है, जिसमें यौगिक अर्धचालक जैसे CdS का उपयोग होता है। पूर्ण अंधकार में इस प्रकार के पदार्थ का प्रतिरोध बहुत अधिक होता है। परन्तु जब इस पर प्रकाश आपतित होता है तो प्रकाश के फोटोन की ऊर्जा से इलेक्ट्रोन कोटर युग्म बनते हैं। जिससे चालकता बढ़ती है तथा प्रतिरोध कम होता है।

प्र.14. क्या फोटो डायोड एवं LDR एक ही युक्ति होती है ?
उ. नहीं। फोटो डायोड एक $\mathrm{P}-\mathrm{N}$ संधि डायोड है जिसमें विशिष्ट अपद्रव्य प्रयुक्त होते है। जबकि LDR में $\mathrm{P}-\mathrm{N}$ संधि नहीं होती।
प्र.15. क्या सभी LDR में CdS ही प्रयुक्त होते है?
उ. नहीं। चूंकि CdS का आवृति के प्रति संवेदन मानव नेत्र की भांति ही होती है, अतः द्रश्य प्रकाश के संवेदन हेतु CdS का प्रयोग होता है। अवरक्त तथा अन्य विकिरणों के संवेदन हेतु दूसरे यौगिक अर्ध चालकों का प्रयोग होता है।

उद्देश्य -

डायोड, LED ट्रांजिस्टर,, IC, प्रतिरोध एवं संधारित्र के मिश्रण में से प्रत्येक की अलग-अलग पहचान करना।

उपकरण एवं सामग्री -
मल्टीमीटर, उपरोक्त सभी इलेक्ट्रोनिक युक्तियां।
सिद्धान्त -

1. डायोड में दो इलेक्ट्रोड होते है। डायोड अग्र बायस में चालक एवं व्युत्क्रम बायस में अचालक की तरह व्यवहार करता है।
2. LED दो टर्मिनल युक्ति होता है। सफेद पारदर्शी अथवा रंगीन पारदर्शी बॉडी होती है। अग्र बायस में चालन के समय प्रकाश का उत्सर्जन होता है। उत्क्रम बायस में उच्च प्रतिरोध होता है।
3. प्रतिरोध भी दो इलेक्ट्रोड वाली युक्ति है, परन्तु दोनों दिशाओं में समान धारा एवं प्रतिरोध होता है।
4. संधारित्र में भी दो इलेक्ट्रोड ही होते है। परन्तु किसी भी दिशा में धारा प्रवाहित नहीं करता है। परन्तु DC स्त्रोत से जोड़ने पर आवेशों का संग्रह करता है।
5. ट्रांजिस्टर तीन इलेक्ट्रोड वाली युक्ति है। कुछ ट्रांजिस्टरों में दो इलेक्ट्रोड होते है एवं उनकी Body स्वयं तीसरा इलेक्ट्रोड होता है।
6. IC (एकीकृत परिपथ) में कई इलेक्ट्रोड होते है, परन्तु कुछ विशेष IC $(7805,7806$, 7809,7912 आदि) में केवल तीन इलेक्ट्रोड ही होते है। - प्य
विधि -
सर्वप्रथम युक्ति की भौतिक बनावट एवं इलेक्ट्रोड संख्या के आधार पर पहचान करते हैं।
7. यदि युक्ति दो इलेक्ट्रोड वाली है तो वह प्रतिरोध/LED/संधारित्र या डायोड हो सकती है। तीन इलेक्ट्रोड होने पर ट्रांजिस्टर एवं अधिक इलेक्ट्रोड होने पर IC हो सकती है।
8. मल्टीमीटर से परीक्षण - मल्टीमीटर को प्रतिरोध मापन / संततता के लिए समंजित करें। दोनों ओर धारा प्रवाह होने पर - प्रतिरोध। एक तरफ धारा प्रवाहित परन्तु विपरीत दिशा में धारा प्रवाह नहीं - डायोड। एक तरफ धारा प्रवाह के साथ प्रकाश का उत्सर्जन LED ।
प्रतिरोध के रंग संकेत देखिए। तीन रंगीन बेण्ड के साथ चौथा बेण्ड सुनहरा अथवा चांदी जैसा

होने पर प्रतिरोध का मान भी ज्ञात किया जा सकता है।
दोनों इलक्ट्रोडों से जोड़ने पर भी मल्टीमीटर का विक्षेप शून्य हो, तो युक्ति संधारित्र हो सकती है। परन्तु संधारित्र की धारिता अधिक होने पर मल्टीमीटर क्षणिक विक्षेप दे सकता है। ट्रांजिस्टर (तीन इलेक्ट्रोड युक्ति) की पहचान हेतु मल्टीमीटर को उच्च प्रतिरोध मापन के लिए समंजित करें। मल्टीमीटर के एक इलेक्ट्रोड को युक्ति के बीच वाले इलेक्ट्रोड से तथा दूसरे इलेक्ट्रोड का बाहरी इलेक्ट्रोड से जोड़ने पर डायोड की भांति केवल एक दिशा में धारा प्रवाहित हो परन्तु विपरीत में नहीं। यही प्रक्रिया केन्द्रीय तथा अन्य तीसरे इलेक्ट्रोड के साथ अपनाने पर एक दिशीय धारा हो, तो युक्ति ट्रांजिस्टर ही है।

अपने प्रेक्षणों को निम्न सारणी में लिखो -
आपको दी गई युक्तियों पर $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ आदि अंकित होगा अतः हम उन्हें नामों से जानेंगे।

सारणी 2.1

क्र.सं.	युक्ति पर अंकित वर्ण	इलेक्ट्रोडों की संख्या	युक्ति का नाम
1.	A		
2.	B		
3.	C		
4.	D		

सारणी 2.2

क्र.सं.	मल्टीमीटर का विक्षेप	युक्ति का कोड A,B,C,D	युक्ति का नाम
1.	केवल एक दिशा में विक्षेप एवं प्रकाश उत्सर्जन नहीं		
2.	केवल एक दिशा में विक्षेप के साथ प्रकाश का उत्सर्जन		
3.	दोनों दिशाओं में विक्षेप		
4.	किसी भी दिशा में विक्षेप नहीं क्षणिक विक्षेप होने पर, विक्षेप तेजी से शून्य हो जाता है।		

परिणाम -
दी गई इलेक्ट्रोनिक युक्तियों की अलग - अलग पहचान की गई।
अतिरिक्त क्रिया-कलाप-
दी गई इलेक्ट्रोनिक युक्तियों जैसे-प्रतिरोध एवं संधारित्र की अधिक जानकारी।

1. प्रतिरोध -
(a) कुन्डलित तार प्रतिरोध - इस प्रकार के प्रतिरोध विशिष्ट प्रकार की मिश्रधातुओं (मेंगनिन, कांन्स्टेन्टन, नाईक्रोम आदि) के बने होते हैं। कुछ परिवर्ती प्रतिरोध Wire wound Potentiometer के रूप में भी प्रयुक्त होते है, जो DC स्रोत की वोल्टता बदलने में काम आते हैं।
(b) कार्बन प्रतिरोध - ग्रेफाइट एवं लाख के मिश्रण को गरम करते हुए छड़ के रूप में ढाल लेते हैं। ग्रेफाइट का अनुपात बदलते हुए विभिन्न मान (ओम) के प्रतिरोध प्राप्त किए जाते हैं।
(c) कार्बन फिल्म प्रतिरोध - किसी अचालक सतह पर धातु अथवा मिश्र धातु की बहुत कम अनुप्रस्थ काट की पतली फिल्म लगाने से प्राप्त होते हैं।
प्रतिरोध की सह्यता (Tolarance) - प्रतिरोध बनाने की प्रक्रिया के कारण / अन्य कारणों से प्रतिरोध के वास्तविक एवं दिए मान गए में कुछ अन्तर होता है। इस अन्तर को ही सह्यता कहते हैं।
प्रतिरोध का वॉटेज - प्रत्येक प्रतिरोध के लिए अधिकतम धारा / शक्ति की एक सुरक्षित सीमा होती है, जिसे वाट के रूप व्यक्त करते हैं। साधारणतया प्रतिरोध $1 / 8,1 / 2,1$ एवं 2 वाट के होते हैं। परन्तु अधिक वाट के प्रतिरोध भी बनाऐ जा सकते हैं।
प्रतिरोध का मान ज्ञात करना - कार्बन प्रतिरोध का मान निश्चित रंगों की धारियों के रूप में कोड (संकेत) के अनुसार प्रतिरोध पर लिखा होता है। जिसे पढ़ने की विधि निम्न हैं। प्रतिरोध को इस प्रकार पकड़े कि सुनहरी / चांदी रंग की धारी दांई ओर हो। बाई और की दोनों धारियों के अंक रंग संकेत के अनुसार लिखें तथा तीसरी धारी के रंग के अंक के बराबर संख्या में शून्य अंकित करें।

रंग संकेत -

B	B	R	O	Y	Great	Britain	Very	Good	
Wife									
काला	भूरा	लाल	नारंगी	पीला	हरा	नीला	बेंगनी	सलेटी	सफेद
0	1	2	3	4	5	6	7	8	9

संधारित्रों के प्रकार एवं पहचान -
प्रयुक्त अपघट्य के आधार पर संधारित्र निम्न प्रकार के होते हैं।

1. वायुसंधारित्र (परिवर्ती गेंग संधारित्र ट्रांजिस्टर रेडियो में ट्यूनिंग में प्रयुक्त)
2. अभ्रक संधारित्र (कमधारिता)
3. सिरेमिक संधारित्र (बहुत कम धारिता)
4. पेपर संधारित्र (कम धारिता)
5. प्लास्टिक संधारित्र
6. अपघट्य संधारित्र (मध्यमान कोटि की धारिता)
7. तेल युक्त संधारिता (उच्च धारिता)

मौखिक प्रश्न -
प्र.1. देखकर, डायोड की पहचान कैसे करेंगे?
उ. बेलनाकार, काली / हरी / अल्प पारदर्शी संरचना जिसे दोनो ओर एक टर्मिनल लगे हो तथा एक वलय अथवा बेलन एक सिरा अर्धगोलीय हो डायोड होता है।

प्र.2. प्रतिरोध की पहचान देखकर कैसे करते हैं ?
उ. बेलनाकार, दोनो ओर एक टर्मिनल पर रंगीन वलय प्रतिरोध की पहचान है।
प्र.3. संधारित्र की पहचान देखकर कैसे करते हैं ?
उ. संधारित्र की संरचना चित्रानुसार बेलनाकार/चपटी होती है। बेलन के एक ही सिरे पर दो टर्मिनल लगे होते है। तथा ऊपर धारिता का मान लिखा होता है। कुछ संधारित्र आयताकार चपटे

होते है एवं उन पर रंगीन धारियों के रूप में धारिता का मान अंकित होता है। कुछ संधारित्र चपटे वृताकार होते है एवं एक तरफ दोनों इलेक्ट्रोड लगे होते है। हरा/नीला/भूरा रंग वाली संरचना होती है।
प्र.4. ट्रांजिस्टर को देखकर कैसे पहचानेंगे?
उ. ट्रांजिस्टर तीन टर्मिनल वाली युक्ति होती है।
प्र.5. LED की पहचान, देखकर किस प्रकार करते है।
उ. दो इलेक्ट्रोड वाली पारदर्शी/रंगीन पारदर्शी युक्ति जिसके दोनो इलेक्ट्रोड एक और लगे होते हैं। अन्दर देखने पर दोनों इलेक्ट्रोडों के बीच थोडा अंतराल दिखाई देता है।

प्र.6. IC की पहचान देखकर कैसे करते है?
उ. सामान्यता IC में कई टर्मिनल होते है। यह एक आयताकार संरचना है जिसके दोनों और इलेक्ट्रोड लगे होते है। कुछ IC तीन टर्मिनल वाली भी होती है।

क्रियाकलाप -3

उद्देश्य - मल्टीमीटर के उपयोग से -

1. किसी डायोड के सही (Working) होने की जाँच करना।
2. किसी ट्रांजिस्टर के उत्सर्जन, आधार एवं संग्राहक की पहचान करना।
3. किसी ट्रांजिस्टर के N-P-N/P-N-P होने तथा सही (Working) होने की जॉच करना। उपकरण एवं सामग्री - मल्टीमीटर, डायोड, ट्राजिस्टर N-P-N/P-N-P आदि। सिद्धान्त -
4. एनालॉग मल्टीमीटर (संकेतक के विक्षेप पर आधारित) को जब प्रतिरोध मापन के लिए प्रयुक्त करते हैं तो निम्न परिपथ के अनुसार कार्य करता है। काली एवं लाल लीडों के प्रतिरोध के दोनों सिरों पर सम्पर्क कराने पर। गेल्वेनोमीटर का विक्षेप, प्रतिरोध के मान को प्रदर्शित करता है।
5. अग्रबायस में डायोड का प्रतिरोध कम, तथा उत्क्रम बायस में उच्च प्रतिरोध होता है।
6. ट्रांजिस्टर के तीन टर्मिनल (पिनें) होते हैं। कुछ ट्रांजिस्टरों में तीनों पिनें एक अर्धवृत में चित्रानुसार लगी होती है। इनमें किसी एक पिन (E) के पास एक धातु पत्ती अथवा डाट का चिन्ह लगा होता है। बीच वाली पिन B होती है। किसी भी ट्रांजिस्टर में अग्रबायस की अवस्था में E एवं B तथा B एवं C टर्मिनलों के मध्य प्रतिरोध कम तथा उत्क्रम बायस की अवस्था में बहुत अधिक होता है।
विधि -
7. डायोड के ठीक / सही (Working) होने की जॉच करना -
(a) मल्टीमीटर को प्रतिरोध मापन के लिए समंजित करों। दोनों लीडों को आपस में सम्पर्क कराते हुए विक्षेप को शून्य पर लावें।
(b) दोनों लीड़ो को डायोड के टर्मिनल से सम्पर्क कराते हुए प्रतिरोध का पाठ्यांक नोट करें।
(c) डायोड के दोनों टर्मिनलों को विपरीत दिशा में संयोजित कराते हुए पुनः प्रतिरोध का मापन करें। एक दिशा में प्रतिरोध कम (कुछ $\mathrm{K} \Omega$) तथा विपरीत दिशा में अधिक ($\mathrm{M} \Omega$) प्रतिरोध प्राप्त होने पर, डायोड ठीक (Working) है। डायोड की P एवं N टर्मिनलों की पहचान करें। दोनों दिशाओं में कम प्रतिरोध प्राप्त होने पर डायोड खराब है।
प्रेक्षण -
8. डायोड की लीडों को लीड 1 एवं 2 अंकित करें (एक लीड को मोड कर)
9. ट्रांजिस्टर के P-N-P/N-P-N होने तथा सही (Working) होने की जॉच। विधि -
10. ट्रांजिस्टर की Body की बनावट एवं उस पर लगी डॉट अथवा धातु की पत्ती को देखकर E, B एवं C की पहचान करें। आधार चित्र बनाकर तीनों पिनों को दर्शाओं।
11. मल्टीमीटर को प्रतिरोध का मापन के लिए समंजित करो।
12. मल्टीमीटर की $(+)$ लीड को B तथा $(-)$ लीड को E से सम्पर्क कराते हुए प्रतिरोध का मापन करें एवं सारणी में लिखें।
13. संयोजन को विपरीत करते हुए प्रतिरोध का मापन करें एवं लिखें।
14. इसी प्रकार (+) लीड को B तथा $(-)$ लीड को C से संयोजित करें एवं प्रतिरोध मापन करें तथा संयोजन को विपरीत करते हुए प्रतिरोध मापन कर सारणीबद्ध करें।

प्रेक्षण सारणी

क्र.सं.	$(+)$ लीड से संयोजित	$(-)$ लीड से संयोजित	प्रतिरोध	प्रकार PNP/NPN	ट्रांजिस्टर Working है
1.	B	E	$\ldots \ldots . . \Omega$		
2.	E	B	$\ldots \ldots . \Omega$		
3.	B	C	$\ldots \ldots . \Omega$		
4.	C	E	$\ldots \ldots . . \Omega$		

परिणाम -

1. डायोड की P तथा N पिनों की पहचान की गई।
2. डायोड को ठीक होने / नहीं होने की जॉच की गई।
3. ट्रांजिस्टर की तीनों पिनों की पहचान की गई।
4. ट्रांजिस्टर के PNP/NPN होने की जॉच की गई।
5. दिया गया ट्रांजिस्टर ठीक है / ठीक नहीं है।

सावधनियॉ -
मल्टीमीटर के उपयोग से पूर्व उसके विभिन्न मापन विधि एवं परास की जानकारी एवं पाठ्यांक के पठन की दक्षता प्राप्त करें।
मौखिक प्रश्न -
प्र.1. मल्टीमीटर से कौन कौन से मापन संभव है?

उ. मल्टीमीटर से सामान्यता प्रतिरोध, विभवान्तर तथा धारा का मापन किया जाता है। परिपथ की संततता का मापन शून्य प्रतिरोध/कम प्रतिरोध से ज्ञात होती है।
प्र.2. एनालोग एवं डिजिटल मल्टीमीटर में क्या अंतर है?
उ. एनालोग मल्टीमीटर में विक्षेप को डायल पर पढ़ कर राशि का मान ज्ञात किया जाता है। जबकि डिजिटल मल्टीमीटर में पर्दे पर पाठ्यांक अंको के रूप में पढा जाता है।

प्र.3. डायोड के परीक्षण के दौरान दोनों दिशाओं में धारा प्रवाह पाया गया। इस डायोड में क्या खराबी है।

उ. अत्यधिक धारा प्रवाह के कारण $\mathrm{P}-\mathrm{N}$ संधि स्थाई रूप से खराब हो चुकी है।
प्र.4. ट्रांजिस्टर का पिन चित्र उपलब्ध नहीं होने की स्थिति में कौनसा टर्मिनल आधार हो सकता है?
उ. बीच वाला टर्मिनल आधार हो सकता है।

क्रियाकलाप -4

उद्देश्य -
कॉच के आयताकार गट्टे द्वारा प्रकाश के अपवर्तन एवं विचलन का प्रेक्षण।
उपकरण एंव सामग्री -
भिन्न मोटाई है तो कॉच के गट्टे, ड्राईंग पिने। सेलो टेप, सफेद कागज, चॉदा, पेन्सिल, रबर, स्केल आलपिने ड्रांईग बोर्ड आदि।
सिद्धान्त -
जब प्रकाश की किरण किसी अपवर्तक सतह पर लम्बवत आपतित होती है तो वह बिना ,मड़े सीधी दूसरे माध्यम में चली जाती है। [$\angle i=0 ; \angle r=0]$ परन्तु जब प्रकाश की किरण अपर्वतक तल पर किसी कोण से आपतित होती है तो वह अपने पथ से मुड़ जाती है। कॉच के गट्टे पर आपतित किरण एवं निर्गत किरण की दिशा अपरिवर्तित रहेगी परन्तु उनके मध्य पार्श्व विस्थापन होगा। यह पार्श्व विस्थापन गट्टे की मोटाई के समानुपाती होता है। विधि -

1. सफेद कागज की शीट को ड्रांईग बोर्ड पर ड्रांईग पिन/सेलो टेप से लगावें। एक रेखा XY स्केल की सहायत से खींचे।
2. रेखा XY के किसी बिन्दु O , पर लम्ब डालें। कॉच के गट्टे को इस प्रकार रखें कि उसकी एक सतह रेखा XY के सम्पाति हो। गट्टे के चारों ओर पेंसिल से सीमांकन करें।
3. अभिलम्ब पर दो आलपिने P एवं Q चित्रानुसार अधिकतम दूरी पर गाड़े।

4. गट्टे के विपरीत फलक की ओर से देखते हुए दो आलपिने R एवं S इस प्रकार गाड़े कि पिन P एवं Q से उनका विस्थापनाभास दूर हो जाए, अर्थात सारी पिने एक सीध में दिखें (सारी पिने, पिन S के पीछे छिप जाए)
5. सभी पिनों एवं कॉच के गट्टे को हटा दे। पिन P एवं Q से गुजरती सरल रेखा गट्टे की सीमा बिन्दु तक खींचे। पिने P, Q, R एवं S एक सरल पर प्राप्त होती है।
6. XY के अन्य बिन्दु O_{1} पर लम्ब डाले तथ लम्ब से 60° का अपर्वतन कोण बनाते हुए सरल

रेखा खींचे । गट्टे को XY रेखा पर पूर्व की भांति रखें तथ सीमांकन करें लम्बन (Paralax) विधि से आलपिने $\mathrm{P}_{1}, \mathrm{Q}_{1}, \mathrm{R}_{1}$ तथा S_{1} चित्रानुसार गाडें।
7. सभी पिनों एवं गट्टे को हटावें। पिनों के स्थानों को पेन्सिल से अंकित करें। पिन $R_{1} S_{1}$ को मिलाती हुई सरल रेखा गट्टे की सीमा बिन्दु T_{1} तक खीचें। O_{1}, को T_{1} से मिलाती सरल रेखा खीचें।
8. रेखा $\mathrm{P}_{1}, \mathrm{Q}_{1}, \mathrm{O}_{1}$ को बिन्दु रेखा द्वारा आगे बढ़ावें। क्या यह बिन्दु रेखा $\mathrm{T}_{1}, \mathrm{Q}_{1}, \mathrm{R}_{1}, \mathrm{~S}_{1}$ रेखा (निर्गत किरण) के समान्तर है? इनके बीच की दूरी d का मापन कर सारणी में लिखें।
9. उपरोक्त क्रिया भिन्न मोटाई के दो अन्य गट्टों के साथ अपना कर प्रेक्षण सारणीबद्ध करें। दिए गए गट्टे की लम्बाई, चौडाई और मोटाई भिन्न हो तो उसी गट्टे के लिए तीन प्रेक्षण लिए जा सकते है।
10. गट्टे की मोटाई/लम्बाई/चौड़ाई का मान, पेंसिल से गट्टे के सीमांकन द्वारा ज्ञात किया जा सकता है।
11. अपर्वतन कोण का मान् चांदे से ज्ञात किया जा सकता है।

प्रेक्षण सारणी

क्र.सं.	कॉच के गट्टे की मोटाई	आपतन कोण i	निर्गत कोण $\angle e$	पार्श्व विस्थापन d
1.सेमी		सेमी
2.सेमी		सेमी
3.सेमी		सेमी

परिणाम -

1. जब प्रकाश की किरण गट्टे के फलक पर लम्बवत् आपतित होती है, तो सीधी निकल जाती है। पार्श्व विस्थापन नहीं होता है।
2. जब प्रकाश की किरण फलक पर तिरछी गिरती है, तो निर्गत किरण में पार्श्व विस्थापन होता है।
3. गट्टे से किरण का पार्श्व विस्थापन, गट्टे की मोटाई के समानुपाती होता है। सावधानियाँ -
4. पेंसिल नुकीली हो तथा सभी मापन शुद्धता से किए जाए।

अन्य क्रियाकलाप -

1. इस प्रयोग से स्नेल के नियम का सत्यापन किया जा सकता है।
2. आपतन कोण i अपवर्तन कोण r, निर्गत कोण e, तथा गट्टे के अन्दर आपतन कोण r, का मापन कर

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{ga}}=\frac{\operatorname{Sini}}{\operatorname{Sinr}} \quad \text { तथा } \quad \mathrm{n}_{\mathrm{ag}}=\frac{\operatorname{Sin} \mathrm{r}}{\operatorname{Sin} \mathrm{e}} \text { ज्ञात करे। } \\
& \text { तथा } \mathrm{n}_{\mathrm{ag}} \text { एवं } \mathrm{n}_{\mathrm{ga}} \text { में सम्बन्ध प्राप्त करें। }
\end{aligned}
$$

मौखिक प्रश्न -
प्र.1. अपवर्तन किसे कहते हैं ?
उ. तरंगों के एक माध्यम से दूसरे माध्यम मे जाने पर अपने मूल पथ से विचलन को अपवर्तन कहते है?
प्र.2. जब किरण सघन माध्यम से विरल माध्यम में प्रवेश करती है तो आपतन एवं अपवर्तन कोण में से कौनसा बड़ा होता है।
उ. $\angle \mathrm{r}>\angle \mathrm{i}$ अपवर्तन कोण का मान आपतन कोण से अधिक होता है।
प्र.3. उपरोक्त परिस्थिति में जब $\angle \mathrm{r}=90^{\circ}$ हो तो आपतन कोण का नाम क्या होगा?
उ. जब $\mathrm{r}=90^{\circ}$ तो संगत आपतन कोण को क्रांतिक कोण i_{c} कहते है।
प्र.4. कांच के गट्टे पर जब प्रकाश की किरण लम्बवत गिरती है तो अपवर्तित किरण एवं निर्गत किरण किस ओर मुड़ती है?
उ. इस स्थिति में अपवर्तित एवं निर्गत किरणें बिना मुड़े सीधी निकल जाती है।
प्र.5. पार्श्व विस्थापन किसे कहते है?
उ. निर्गत किरण एवं आपतित किरणें एक ही दिशा में होगी परन्तु इन दोनों के बीच कुछ दूरी हो जाती है। इस दूरी को पार्श्व विस्थापन कहते है।

क्रियाकलाप - 5

उद्देश्य -

पोलरॉईड की सहायता से प्रकाश के ध्रुवण का अध्ययन करना।
उपकरण एवं सामग्री -
दो पोलरॉर्ड शीट, प्रकाश स्रोत/सूर्य का प्रकाश, कार्ड बोर्ड केंची सफेद कागज, गोंद प्लास्टिक पाईप के दो टुकड़े लगभग 5 सेमी जो एक दूसरे में घूम सकें।
सिद्धान्त -
पोलरॉईड से अध्रुवित (साधारण) प्रकाश को गुजारने पर हमें समतल ध्रुवित प्रकाश प्राप्त होता है। प्रत्येक पोलरॉईड की एक पास अक्ष होती है। ध्रुवित प्रकाश E के कम्पन्न उसी पास अक्ष के समान्तर होते है। पास अक्ष के अभिलम्ब दिशा के कम्पन्नों को पोलरॉईड पूर्णतः रोक देता है।

दो पोलरॉईड शीट लें एवं उन्हें एक दूसरे के उपर रखते हुऐं, अध्रुवित प्रकाश को दोनों से गुजारें। एक पोलरॉईड को स्थिर रखते हुए दूसरे को पहले के सापेक्ष धुमाते हुए निर्गत प्रकाश की तीव्रता का प्रेक्षण लेने पर पोलरॉईड की एक अवस्था में अधिकतम तीव्रता तथा इस अवस्था के लम्बवत् अवस्था में न्यूनतम तीव्रता प्राप्त होती है। अधिकतम तीव्रता तब प्राप्त होती हैं जब दोनों पालराइडो के पास अक्ष एक दूसरे के समान्तर हो। न्यूनतम तीव्रता के समय दोनों के "पास अक्ष" एक दूसरे के लम्बवत होते हैं।

170

कोण मापन के लिए आशुरचित उपकरण बनाना -

1. प्लास्टिक के दोनों पाइपों के एक एक सिरें पर पोलरॉईड शीट को गोंद अथवा फेविकोल से चिपका देवें। छोटी पाइप पर लगे पोलरॉईड के पाईप के किनारे से बाहर के भाग को काट दें।
2. एक कार्ड बोर्ड लें तथा उसके बीच के भाग में बड़ी पाइप के व्यास से थोड़े कम व्यास का छेद करें एवं बड़े पाइप को उस छेद में चित्रानुसार लगाकर फेवीकोल से स्थिर कर दें।
3. इसी प्रकार की व्यवस्था छोटे पाइप के साथ करें परन्तु कार्ड बोर्ड वृताकार कटा हो तथा उस पर कोण के चिन्ह चित्रानुसार अंकित हों।
4. छोटे पाइप को बड़े पाइप में चित्रानुसार डाल देते हैं।
5. पोलरॉईड की ओर से नली में प्रकाश प्रवेश करावें एवं दूसरी तरफ से ऑख से प्रकाश की तीव्रता का अनुमान लगाते है। छोटे पाईप तथा उसके साथ वृताकार कोण वाले पैमाने को घुमाते है। जिस रिथति में प्रकाश की तीव्रता अधिकतम हो वही रूक जाते हैं। कोण वालें पैमाने के शून्य अंक की सीध में स्थिर कार्ड बोर्ड पर एक तीर का निशान चित्रानुसार लगा देते है। यह स्थिति दोनों पोलेरॉईडो के "पासअक्ष" के समान्तर होने की हैं।
पोलरॉईड कैसे प्राप्त करें -
LCD स्क्रीन वाले उपकरणों जैसे डिजिटल घड़ियॉ, केलकुलेटर, छोटे वीडियो गेम के स्क्रीन में पोलरॉईड का उपयोग होता है। अतः किसी भी खराब उपकरण से उन्हें प्राप्त किया जा सकता है।
प्रेक्षण
उपकरण द्वारा प्रकाश की प्रेक्षित तीव्रता
6. अधिकतम तीव्रता \qquad कोण पर प्राप्त हुई।
7. न्यूनतम तीव्रता \qquad कोण पर प्राप्त हुई।
परिणाम -
8. जब ध्रुवक एवं विश्लेषक पोलरॉइड की "पासअक्ष" के मध्य कोण O° अथवा 180° हो तो अधिकतम तीव्रता प्राप्त होती है।
9. जब ध्रुवण एवं विश्लेषक पोलरॉइड के "पास अक्ष" के मध्य कोण 90° अथवा 270° हो तो न्यूनतम तीव्रता प्राप्त होती है।

अन्य क्रिया कलाप -

1. प्रकाश की तीव्रता के मापन के लिए फोटो डायोड प्रयुक्त करते हुए मेलस के नियम का सत्यापन।

मौखिक प्रश्न -

प्र.1. प्रकाश का ध्रुवण क्या है?
उ. साधारण (अध्रुवित) प्रकाश में विद्युत क्षेत्र सदिश तथा चुम्बकीय क्षेत्र सदिश के कम्पन्न संचरण दिशा के लम्बवत तल में, सभी दिशाओं में होते है। जब इस प्रकार के प्रकाश को किसी युक्ति से गुजारने पर निर्गत प्रकाश के कम्पन्न केवल एक ही दिशा में सीमित रह जाऐं, तो इस घटना को ध्रुवण कहते है।

प्र.2. पोलरॉइड किसे कहते है?
उ. पोलरॉइड, ध्रुवित प्रकाश प्राप्त करने की एक सस्ती युक्ति है। पोलरॉइड एक व्यापारिक नाम है।
प्र.3. पोलरॉइड कैसे बनते है?
उ. प्रकाश का ध्रुवण करने वाले बड़े अणुओं को तोड़कर नाईट्रोसेलूलोस की फिल्म पर एक विशिष्ट दिशा में समंजित करते हुए स्थाई करने से पोलरॉइड बनते हैं।

प्र.4. क्या ध्वनि की तरंगो का ध्रुवण हो सकता है?
उ. नही ध्रुवण केवल अनुप्रस्थ तरंगों में ही संभव है। जबकि ध्वनि तरंगे अनुदैर्ध्य होती है।
प्र.5. साधारण प्रकाश की किरण जब किसी पोलरॉइड से गुजरती है तो निर्गत प्रकाश की तीव्रता कितनी हो जाती है?

उ. एक पोलरॉइड से गुजरने पर ध्रुवित प्रकाश प्राप्त होगा जिसकी तीव्रता साधारण प्रकाश की तीव्रता से आधी होगी।

प्र.6. ध्रुवक एवं विश्लेषक में क्या अन्तर है ?
उ. ध्रुवक एवं विश्लेषक दोनो एक जैसी युक्तियॉ है, जो अध्रुवित प्रकाश गुजारने पर ध्रुवित प्रकाश देती है उसे ध्रुवक कहते है। तथा इसी प्रकार की दूसरी युक्ति से ध्रुवित प्रकाश गुजारते हैं तो उसे विश्लेषक कहते हैं।
प्र.7. मेलस का नियम क्या है?
उ. ध्रुवक तथा विश्लेषक की अक्षों के बीच का कोण यदि θ है,तथा विश्लेषक पर आपतित प्रकाश

की तीव्रता I_{O} है तो निर्गत प्रकाश की तीव्रता $\mathrm{I}=\mathrm{I}_{\mathrm{O}} \operatorname{Cos}^{2} \theta$ होती है। यही मेलस का नियम है।

प्र.8. पोलरॉइड के क्या उपयोग होते हैं ?
उ. पोलराइड का उपयोग डिजिटल घड़ियों, केलकुलेटर एवं धूप के चश्मों में सर्वविदित है। इसके अतिरिक्त केमरे के आगे पोलराइड लगाने से प्राप्त फोटो ग्राफ में बहुत अच्छा विपर्यास (Contrast) होता है। कारों की हेड लाईट तथा ड्राईवर के सामने वाले कॉच पर पोलरॉइड की शीट को 45° के कोण पर लगाने से सामने से आने वाली गाड़ी के कारण चकाचौंध नहीं होती।
प्र.9. जब ध्रुवक एवं विश्लेषक की अक्षें एक दूसरे के लम्बवत हों तो निर्गत प्रकाश की तीव्रता कितनी होगी?
उ. निर्गत प्रकाश की तीव्रता शून्य होगी।

उद्देश्य - पतले रेखा छिद्र के कारण प्रकाश के विवर्तन का प्रेक्षण।
उपकरण एवं सामग्री -
कॉच की पट्टिका, दो रेजर ब्लेड, सेलोटेप, काला कागज, प्रकाश स्त्रोत (बल्ब) लेजर पेंसिल। सिद्धान्त-

जब प्रकाश की किरणें किसी छोटे अवरोधक से गुजरती है तो प्रकाश की किरणें अवरोधक की ज्यामितीय छाया में मुड़ जाती है। इस घटना को विवर्तन कहते हैं। विवर्तन सभी प्रकार की तरंगों का मुख्य लक्षण (गुणधर्म) है। स्पष्ट विवर्तन के लिए अवरोधक का आकार तरंग दैर्ध्य की कोटि का होना चाहिए।
दो रेजर ब्लेड़ों की तीखी धारों को पास में रख कर प्रकाश का विवर्तन देखा जा सकता है, पर्दे पर प्राप्त किया जा सकता है। बल्ब के प्रकाश के विवर्तन प्रतिरूप में एक केन्द्रीय चमकीली रेखा तथा दोनों तरफ काली एवं चमकीली रंगीन बेण्ड (धारियां) प्राप्त होती है। जबकि लेजर पेंसिल के प्रकाश से प्राप्त विवर्तन प्रतिरूप में केन्द्रीय चमकीली रेखा एवं दोनों ओर काली चमकीली रेखाऐं प्राप्त होती है।
विधि -

1. कॉच की पट्टिका पर काला कागज चिपकावें। काले कागज पर ब्लेड की सहायता से बाल के आकार की पतली झिरीं काटें। दोनों ब्लेडों की तीखी धारों का पास में लाते हुए झिरीं पर रखें, एवं ब्लेडो को टेप से चिपकाकर र्थिर करें। प्लेट के एक ओर सीधे तन्तु वाला विद्युत बल्ब रख कर प्रकाशित करें झिरी से निकलने वाली प्रकाश को देखने पर विवर्तन प्रतिरूप दिखाई देता है। इस प्रतिरूप को सफेद दीवार पर भी देखा जा सकता है। लेजर पेंसिल के प्रकाश से प्राप्त विवर्तन प्रतिरूप को केवल पर्दे पर ही देखना चाहिए। सीधा ऑख से झिरी की ओर देखने पर ऑखों के लिए खतरा होता है। पर्दे पर विवर्तन प्रतिरूप प्राप्त करते समय स्लिट की दीवार से दूरी बदलकर स्पष्ट प्रतिरूप प्राप्त करे।

परिणाम -

रेजर ब्लेड़ो से निर्मित झिरी यदि बहुत ही छोटी हो तो विवर्तन प्रतिरूप बहुत ही स्पष्ट प्राप्त होता है।
प्रस्तावित अन्य क्रियाकलाप -

1. बल्ब के आगे विभिन्न प्रकार फिल्टर रख कर भिन्न रंगो क बेण्ड प्राप्त करें तथा किसी एक बेण्ड की चौडाई एवं प्रकाश के रंग (तंरग दैधर्य) मं सम्बन्ध प्राप्त करें।
2. स्लिट की चौडाई बढाकर विवर्तन प्रतिरूप प्राप्त करें एवं व्याख्या करें।

मौखिक प्रश्न -
प्र.1 विवर्तन किसे कहते हैं?
उ. जब कोई तरंगाग्र किसी अवरोधक से गुजरता है तो वह अवरोधक की ज्यामितीय छाया में प्रसारित हो जाता है। इस घटना को विवर्तन कहते हैं।
प्र.2. स्पष्ट विवर्तन के लिए क्या शर्त है?
उ. अवरोधक का आकार गुजरने वाली तरंग की तरंग दैर्ध्य की कोटि का होना चाहिए।
प्र.3. क्या ध्वनि तरंगो का विवर्तन होता हैं?
उ. विवर्तन गुण सभी प्रकार की तरंगें प्रदर्शित करती है। दैनिक जीवन में ध्वनि तरंगों के विवर्तन का अनुभव कर सकते है। क्योंकि दरवाजे एवं खिडकियों का आकार ध्वनि की तरंग दैर्ध्य के लगभग बराबर होता है।
प्र.4. दैनिक जीवन में प्रकाश के विवर्तन का अनुभव क्यों नहीं हो पाता ?
उ. प्रकाश की तरंग दैर्घ्य बहुत ($\approx 10^{-7}$ मी./ $10^{-4} \mathrm{~mm}$) छोटी होती है। इतना छोटा अवरोधक उपलब्ध नही होने से दैनिक जीवन में प्रकाश के विवर्तन का अनुभव नहीं होता है। इसके लिए विशेष व्यवस्था करनी होती है।

प्र.5. विवर्तन प्रतिरूप कैसा दिखता है?
उ. यदि एकवर्णी प्रकाश को किसी वृताकार अवरोधक से गुजारा जाए तथा निर्गत प्रकाश को किसी पर्दे पर प्राप्त किया जाए तो पर्दे पर एक केन्द्रीय चमकीला वृताकार भाग तथा उसके बाहर ज्यामितीय छाया में काले चमकीले वृताकार वलय प्राप्त होते है।
प्र.6. विवर्तन क्यों होता है?
उ. तरंगो के अध्यारोपण के कारण विवर्तन होता है। यह भी एक प्रकार का व्यक्तिकरण ही है। एक ही तरंगाग्र के विभिन्न बिन्दुओं से आने वाली द्वितीयक तरंगिकाओं के अध्यारोण के कारण विवर्तन होता है।
प्र.7. श्वेत प्रकाश से प्राप्त विवर्तन प्रतिरूप कैसा होता है?
उ. मध्य चमकीला भाग श्वेत प्राप्त होता है। काली रेखाओं के बाद में चमकीली रेखाऐं रंगीन होगी इस रेखाओं में सभी रंग VIB GYOR के क्रम होगें।

क्रियाकलाप -7 (A)

उद्देश्य - मोमबती एवं पर्दे के उपयोग द्वारा अवतल दर्पण से बनने वाले प्रतिबिम्बों की प्रकृति एवं आकार का अध्ययन करना।

अपकरण एवं सामग्री -
मीटर स्केल, तीन स्टेण्ड, एक अवतल दर्पण, मोमबती, पर्दे के लिए कार्ड बोर्ड।
सिद्धान्त -

1. जब बिम्ब अनन्त पर हो तो प्रतिबिम्ब फोकस पर बनता है। प्रतिबिम्ब वास्तविक, उल्टा तथा बिन्दुवत होता है।
2. बिम्ब को फोकस की ओर लाने पर प्रतिबिम्ब अवतल दर्पण से दूर बनता है, प्रतिबिम्ब के आकार में वृद्धि होती जाती है। वास्तविक एवं उल्टा बनता है।
3. फोकस पर बिम्ब को रखने पर प्रतिबिम्ब अनंत पर बनता है। (+) ∞ पर बनने वाला प्रतिबिम्ब आभासी, सीधा एवं बहुत बडा बनता है। (-) ∞ पर बनने वला प्रतिबिम्ब वास्तविक, उल्टा एवं बहुत बडा होता है। पर्दे पर पूरा प्रतिबिम्ब हमें प्राप्त नही होता अतः हम यह निर्णय नहीं ले पाते कि प्रतिबिम्ब उल्टा है या सीधा।
4. बिम्ब को फोकस एवं दर्पण के मध्य रखने पर बनने वाला प्रतिबिम्ब आभासी होता है। दर्पण पूरा चमकीला दिखाई देता है पर पर्दे पर प्रतिबिम्ब प्राप्त नहीं होता।

विधि -

1. आशुरचित प्रकाशीय बेंच पर दर्पण वाले स्टेण्ड को स्केल के अंतिम सिरे (100 सेमी) पर रखते हैं। दर्पण के परावर्तक तल की ओर मोमबती स्टेण्ड एवं पर्दा स्टेण्ड रखते हैं।
2. मोमबती को जलाते हैं। मोमबती स्टेण्ड को बहुत दूर रखकर पर्दे की स्थिति एवं ऊँचाई में परिवर्तन करते हुए प्रतिबिम्ब प्राप्त करते हैं।
3. उत्तल लैंस वाले क्रिया कलाप की भांति छ: प्रेक्षण सारणीबद्ध करते हैं।
4. जब बिम्ब $2 f$ पर हो तो पर्दा स्टेण्ड भी $2 f$ पर ही होगा, दोनों स्टेण्ड एक ही स्थान पर कैसे रखेंगे?

प्रेक्षण -

1. अवतल दर्पण की अनुमानित फोकस दूरी $f=$ \qquad cm
2. जब मोमबती $2 f$ एवं अनन्त के बीच में हो तो प्रतिबिम्ब सदैव वास्तविक उल्टा एवं छोटा बनता है।
3. मोमबती $2 f$ पर होनें पर प्रतिबिम्ब भी $2 f$ पर बनता है। प्रतिबिम्ब वास्तविक समान आकार का एवं उल्टा होता है।
4. मोमबती को $2 f$ से f तक लाते समय प्रतिबिम्ब वास्तविक एवं उल्टा ही बनेगा परन्तु उसके आकार में वृद्धि होती जाती है।
5. बिम्ब (मोमबती) को f पर रखने पर मोमबती का प्रतिबिम्ब पर्दे पर बहुत बड़ा दिखाई देने के कारण आकार के बारे में अनिर्णय की स्थिति उत्पन्न होती है।
6. मोमबती को दर्पण एवं f के बीच रखने पर, पर्दे पर प्रतिबिम्ब प्राप्त नहीं होता परन्तु दर्पण पूरा चमकता हुआ दिखता है।

क्रियाकलाप - 7 (B)

उद्देश्य - मोमबती एवं पर्दे का उपयोग करते हुए उत्तल लैंस द्वारा बने प्रतिबिम्बों की प्रकृति एक आकार का अध्ययन करना।

1. उत्तल लैंस से विभिन्न दूरियों पर रखी मोमबती के प्रति बिम्बों की प्रकृति एवं आकार का अध्ययन |
उपकरण एवं सामग्री - मीटर स्केल, कार्ड बोर्ड, मोमबती, स्टेण्ड, उत्तल लैंस। सिद्धान्त -

उत्तल लैंस से विभिन्न दूरियों पर रखें बिम्बों के प्रतिबिम्ब चित्रानुसार प्राप्त होते हैं।

1. जब बिम्ब अनन्त पर हो तो प्रतिबिम्ब फोकस पर बनता है $(u=\infty ; v=f)$ बिम्ब वास्तविक, उल्टा एवं बिन्दुवत होगा।
2. जब बिम्ब $2 f$ से अधिक दूरी पर ले तो प्रतिबिम्ब फोकस एवं $2 f$ के बीच बनता है। ($u>2 f ; f<v<2 f$) प्रतिबिम्ब छोटा, उल्टा एवं वास्तविक होता है।
3. जब बिम्ब $2 f$ पर हो तो प्रति बिम्ब भी $2 f$ पर बनता है। $(u=2 f ; v=2 f)$ प्रतिबिम्ब उल्टा, वास्तविक एवं समान आकार का होता है।
4. जब बिम्ब लैंस के फोकस एवं $2 f$ के बीच स्थित हो तो प्रतिबिम्ब $2 f$ से परे बनता है। $f<u<2 f ; v>2 f$ प्रतिबिम्ब वास्तविक उल्टा एवं बडा होता है।
5. जब बिम्ब फोकस पर रखा हो तो दो प्रतिबिम्ब प्राप्त होते है। $(+) \infty$ पर बनने वाला प्रतिबिम्ब वास्तविक उल्टा एवं बहुत ही बड़ा होता है $(-) \infty$ पर बनने वाला प्रतिबिम्ब भी बहुत बडा (∞ अकार) का होता है परन्तु यह सीधा एवं आभासी होता है एवं पर्दे पर प्राप्त नहीं किया जा सकता है।
6. जब बिम्ब लैंस के प्रकाश केन्द्र एवं फोकस के बीच रखा हो तो बनने वाला प्रतिबिम्ब आभासी सीधा एवं बडा होता है। पर्दे पर प्राप्त नहीं किया जा सकता।
विधि -
7. एक मीटर स्केल को टेबल के किनारें स्क्रू द्वारा कस कर प्रकाशीय बेंच, तथा लकड़ी अथवा प्लाईवुड की स्टेण्ड तीन पट्टिकाऐं लेकर मोमबती, लैंस एवं पर्दे के लिए स्टेण्ड बनाऐ जा सकते है।
8. सूर्य के प्रकाश को लैंस द्वारा दीवार अथवा कॉपी पर फोकस करते हुए लैंस की अनुमानित फोकस दूरी ज्ञात करें।
9. मोमबती, लैंस एवं पर्दे को अपने अपने स्टेण्ड पर लगावें। लैंस स्टेण्ड को मीटर स्केल के ठीक बीच (50 समी पर) रखें। लैंस के एक ओर मोमबती तथा दूसरी ओर पर्दे वाला स्टेण्ड रखें।
10. मोमबती जलावें तथा ऊचाईयों को व्यवस्थित करते हुए पर्दे पर मोमबती का प्रति बिम्ब प्राप्त करें। (हथेली पर प्रतिबिम्ब प्राप्त करने करने से पर्दे की सही स्थिति का ज्ञान हो जाता है। प्रेक्षण - लैंस की अनुमानित फोकस दूरी $f=$ \qquad cm
प्रेक्षण सारिणी - मोमबती एवं पर्दे की स्थितियों को f के पदों में, तुलनात्मक रूप में लिखें। जैसे - $u>f ; u>2 f ; u=2 f$ आदि।

क्र.सं.	बिम्ब की स्थिति	प्रतिबिम्ब		
		स्थिति	प्रकृति	आकार
1.	अनन्त पर ($\mathrm{u}=\infty$)			
2.	2 f से दूर ($u>2 \mathrm{f}$)			
3.	2 f पर ($\mathrm{u}=2 \mathrm{f}$)			
4.	2 f व f के बीच में ($\mathrm{f}<\mathrm{u}<2 \mathrm{f}$)			
5.	फोकस पर ($u=f$)			
6.	फोकस व प्रकाश केन्द्र के बीच $(u<f)$			

निर्देश :- उपरोक्त तालिका के अनुसार प्रत्येक प्रेक्षण के लिए चित्र अपने रिकॉर्ड बुक में अंकित करें।

परिणाम :-

1. बिम्ब वास्तविक एवं उल्टे होते है।
2. जब मोमबत्ती फोकस पर होती है तो बहुत बड़ा प्रतिबिम्ब पर्दे पर होता है। हमें केवल उसका एक अंश ही दिखाई देता है।
3. मोमबत्ती को फोकस एवं लैंस के बीच रखने पर पर्दे पर प्रतिबिम्ब दिखाई नहीं देता। आंख से देखने पर जिस तरफ मोमबत्ती रखी है उसी तरफ मोमबत्ती का सीधा प्रतिबिम्ब दिखाई देता है, जो आभासी होता है।
मौखिक प्रश्न -
प्र.1. लैंस किसे कहते है?
उ. दो वक्र पृष्ठों से घिरे सभांगी माध्यम को लैंस कहते है।
प्र.2. उत्तल लैंस किसे कहते हैं?
उ. इस प्रकार के लैंस में दो में से एक सतह अथवा दोनों सतहें उभरी हुई होती है।
प्र.3. अवतल लैंस किसे कहते हैं?
उ. अवतल लैंस की दोनों अथवा एक सतह का तल धंसा होता है।
प्र.4. लैंस की फोकस दूरी क्या होती हैं?
उ. मुख्य अक्ष के समान्तर आने वाली किरणे लैंस से अपवर्तन के जिस बिन्दु पर मिलती है / मिलती हुई प्रतीत होती है इसे फोकस कहते हैं, तथा लैंस से फोकस के बीच की दूरी को फोकस दूरी कहते है।

प्र.5. क्या कांच की समतल पट्टिका को लैंस कह सकते है ?
उ. हॉ। कॉच की समतल पट्टिका एक ऐसा लैंस है जिसकी फोकस दूरी अनन्त होती है।
प्र 6 उत्तल एवं अवतल लैंसों के, उनके कार्य के अनुसार क्या नाम है?
उ. उत्तल लैंस समान्तर किरणों को एक बिन्दु पर एकत्रित करता है अतः इसे अभिसारी लैंस तथा अवतल लैंस समान्तर किरणों को फैलाता है अतः अपसारी लैंस कहलाता है।
प्र.7. किन दो बिन्दुओं के बीच, बिम्ब को कहीं पर रखने पर लैंस से बनने वाला प्रतिबिम्ब सदैव वास्तविक होगा?

उ. अनन्त एवं फोकस के बीच बिम्ब को कहीं रखें, लैंस से बनने वाला प्रतिबिम्ब सदैव वास्तविक होगा।

क्रियाकलाप - 8

उददेश्य -

दिए गए लैंस, किसी निश्चित फोकस दूरी के लिए लैंस संयोजन प्राप्त करना। उपकरण एवं सामग्री -

ज्ञात शक्ति के उत्तल लैंसो से, प्रकाशीय बेंच सम्पूर्ण उपकरण, समान्तर किरण पुन्ज का स्त्रोत। सिद्धान्त -

समान्तर किरण पुंज किसी उत्तल लैंस से गुजरने पर फोकस पर केन्द्रित होता है। किसी लैंस की शक्ति लैंस द्वारा किरणों को अभिसारित व अपसारित करने की क्षमता को व्यक्त करती है।
शक्ति, लैंस की फोकस दूरी के व्युत्क्रमानुपाती होती है।
लैंसों के संयोजन में संयुक्त लैंस की शक्ति $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$ जहॉ $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ अलग अलग लैंसो की शक्ति है।

विधि -

1. वांछित फोकस दूरी वाले संयोजन की शक्ति की गणना सूत्र -

$$
\mathrm{P}=\frac{100}{f(\mathrm{~cm})} \text { द्वारा करें। }
$$

2. दिए गए लैंसो में से उस लैंस को लीजिए जिसकी शक्ति संयोजन से कम हो। सूत्र $\mathrm{P}_{1}=\mathrm{P}_{1+} \mathrm{P}_{2}$ द्वारा संयोजन के लिए आवश्यक दूसरे लैंस की शक्ति एवं फोकस दूरी की गणना करे।
3. प्रकाशीय बेंच के एक सिरे पर समान्तर किरण पुन्ज का स्त्रोत, दूसरे सिरे पर पर्दा एवं बीच में संयुक्त लैंस को रख कर लैंस से पर्दे की दूरी को बदलते हुए पर्दे पर स्पष्ट प्रतिबिम्ब प्राप्त
```
    करें। संयुक्त लैंस को स्टेण्ड पर रखने की आशुरचित व्यवस्था करें। प्रेक्षणों को सारिणीबद्ध
    करें।
प्रेक्षण -
```

1. प्रथम लैंस की फोकस दूरी $f_{1}=$ \qquad cm
2. दूसरे लैंस की फोकस दूरी $f_{2}=$ \qquad cm
3. गणना से प्राप्त संयुक्त लैंस की फोकस दूरी

$$
\mathrm{F}=\frac{f_{1} f_{2}}{f_{1}+f_{2}}=\ldots \ldots \ldots \ldots \ldots \ldots \mathrm{cm}
$$

प्रेक्षण सारणी

क्र.सं.	प्रथम लैंस से पर्दे की दूरी	द्वितीय लैंस से पर्दे की दूरी	पर्दे से लैंसों की माध्य दूरी
1.	$\ldots \ldots \ldots \ldots . . \mathrm{cm}$	$\ldots \ldots \ldots \ldots . . \mathrm{cm}$	
2.	$\ldots \ldots \ldots \ldots . . \mathrm{cm}$	$\ldots \ldots \ldots \ldots \mathrm{cm}$	
3.	$\ldots \ldots \ldots \ldots . . \ldots m$	$\ldots \ldots \ldots \ldots \mathrm{~cm}$	

गणना - सभी पाठ्यांको की माध्य दूरियों से संयुक्त लैंस की फोकस दूरी ज्ञात करें।

परिणाम - प्रयोग द्वारा संयुक्त लैंस की फोकस का प्राप्त मान $f_{1}=\ldots \ldots \ldots \ldots \ldots \ldots \mathrm{cm}$ गणना द्वारा
फोकस दूरी एवं प्रयोग द्वारा प्राप्त फोकस दूरी में अन्तर $=\ldots \ldots \ldots \ldots \ldots . . \mathrm{cm}$ आया।

[^0]: परावर्तन कहते हैं एवं i_{c} को क्रांतिक कोण कहते हैं।
 प्र 8 क्या प्रिज्म के लिए अल्पतम विचलन कोण δ_{m} प्रकाश की तरंग दैर्ध्य पर निर्भर करता है? उ हां। भिन्न तरंगदैर्ध्य λ के लिए n भिन्न होने से विचलन कोण δ_{m} भिन्न होगा।
 प्र 9 यदि प्रिज्म से श्वेत प्रकाश गुजारा जाए तो क्या घटना होगी?
 उ चूंकि श्वेत प्रकाश कई रंगों (VIBGYOR)/तरंग दैर्ध्यों का मिश्रण है, अतः प्रिज्म से गुजरते समय अपने घटक रंग भिन्न विचलन कोणों से निर्गत होने के कारण सभी रंग अलग अलग
 (इन्द्रधनुष की भांति) नजर आते हैं। इस घटना को वर्ण विक्षेपण कहते हैं।

