office Coby Feformon Typeson 19/2/17

(ਨੌਵੀਂ ਸ਼੍ਰੇਣੀ ਲਈ)

ਇਹ ਪੁਸਤਕ ਪੰਜਾਬ ਸਰਕਾਰ ਦੁਆਰਾ ਮੁਫ਼ਤ ਦਿੱਤੀ ਜਾਣੀ ਹੈ ਅਤੇ ਵਿਕਾਉ ਨਹੀਂ ਹੈ।

ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ

ਸਾਹਿਬਜ਼ਾਦਾ ਅਜੀਤ ਸਿੰਘ ਨਗਰ

© ਪੰਜਾਬ ਸਰਕਾਰ

ਰਿਵਾਈਜ਼ਡ ਐਡੀਸ਼ਨ : 20161,53,000 ਕਾਪੀਆਂ

[This book has been adopted with the kind permission of the 파키 파이 National Council of Educational Research and Training, New Delhi]

ALC:

All rights, including those of translation, reproduction and annotation etc., are reserved by the Punjab Government

ਸੰਯੋਜਕ	8	ਉਪਨੀਤ ਕੌਰ ਗਰੇਵਾਲ, ਵਿਸ਼ਾ ਮਾਹਿਰ,
		ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ
		ਰਵਿੰਦਰ ਕੌਰ ਬਨਵੈਤ, ਵਿਸ਼ਾ ਮਾਹਿਰ,
		ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ
ਅਨੁਵਾਦਕ	42	ਸੱਤਪਾਲ ਸਿੰਘ, (ਰਿਟਾ. ਲੈਕਚਰਾਰ) ਪਟਿਆਲਾ ।
		ਜਸਵਿੰਦਰ ਕੌਰ, ਲੈਕਚਰਾਰ, ਸ. ਕੰਨਿਆ ਸੀ. ਸੈ. ਸ., ਕੁਰਾਲੀ ।
		ਨਵਿੰਦਰਜੀਤ ਕੌਰ, ਲੈਕਚਰਾਰ, ਸ. ਸੀ. ਸੈ. ਸ., ਡੇਰਾ ਬਸੀ।
ਚਿੱਤਰਕਾਰ	÷	ਮਨਜੀਤ ਸਿੰਘ ਢਿੱਲੋਂ

ਚੇਤਾਵਨੀ

- ਕੋਈ ਵੀ ਏਜੰਸੀ-ਹੋਲਡਰ ਵਾਧੂ ਪੈਸੇ ਵਸੂਲਣ ਦੇ ਮੰਤਵ ਨਾਲ ਪਾਠ-ਪੁਸਤਕਾਂ 'ਤੇ ਜਿਲਦ-ਸਾਜੀ ਨਹੀਂ ਕਰ ਸਕਦਾ।(ਏਜੰਸੀ-ਹੋਲਡਰਾਂ ਨਾਲ ਹੋਏ ਸਮਝੌਤੇ ਦੀ ਧਾਰਾ ਨੰ. 7 ਅਨੁਸਾਰ)
- ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਦੁਆਰਾ ਛਪਾਈਆਂ ਅਤੇ ਪ੍ਰਕਾਸ਼ਿਤ ਪਾਠ-ਪੁਸਤਕਾਂ ਦੇ ਜਾਅਲੀ ਨਕਲੀ ਪ੍ਰਕਾਸ਼ਨਾਂ (ਪਾਠ-ਪੁਸਤਕਾਂ) ਦੀ ਛਪਾਈ, ਪ੍ਰਕਾਸ਼ਨ, ਸਟਾਕ ਕਰਨਾ, ਜਮ੍ਹਾਂ-ਖੋਰੀ ਜਾਂ ਵਿਕਰੀ ਆਦਿ ਕਰਨਾ ਭਾਰਤੀ ਦੈਡ ਪ੍ਰਣਾਲੀ ਦੇ ਅੰਤਰਗਤ ਫ਼ੌਜਦਾਰੀ ਜੁਰਮ ਹੈ। (ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਦੀਆਂ ਪਾਠ-ਪੁਸਤਕਾਂ ਬੋਰਡ ਦੇ 'ਵਾਟਰ ਮਾਰਕ' ਵਾਲੇ ਕਾਗਜ਼ ਉੱਪਰ ਹੀ ਛਪਵਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ।)

ਇਹ ਪੁਸਤਕ ਵਿਕਰੀ ਲਈ ਨਹੀਂ ਹੈ।

ਸਕੱਤਰ, ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ, ਵਿੱਦਿਆ ਭਵਨ, ਫੇਜ਼-8 ਸਾਹਿਬਜ਼ਾਦਾ ਅਜੀਤ ਸਿੰਘ ਨਗਰ-160062 ਰਾਹੀਂ ਪ੍ਰਕਾਸ਼ਿਤ ਅਤੇ ਮੈਸ. ਹੋਲੀਫ਼ੇਥ ਇੰਟਰਨੈਸ਼ਨਲ ਪ੍ਰਾ. ਲਿ., C-57-58, ਫੋਕਲ ਪੁਆਇੰਟ, ਜਲੰਧਰ ਦੁਆਰਾ ਛਾਪੀ ਗਈ।

ਦੋ ਸ਼ਬਦ

ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਪਾਠ-ਪੁਸਤਕਾਂ ਅਤੇ ਪਾਠ-ਕ੍ਰਮ ਨੂੰ ਸੇਂਧਣ ਅਤੇ ਤਿਆਰ ਕਰਨ ਦੇ ਕੰਮ ਵਿੱਚ ਜੁਟਿਆ ਹੋਇਆ ਹੈ। ਅੱਜ ਜਿਸ ਦੌਰ ਵਿੱਚੋਂ ਅਸੀਂ ਲੰਘ ਰਹੇ ਹਾਂ ਉਸ ਵਿੱਚ ਬੱਚਿਆਂ ਨੂੰ ਸਹੀ ਵਿੱਦਿਆ ਦੇਣਾ ਮਾਪਿਆਂ ਅਤੇ ਅਧਿਆਪਕਾਂ ਦੀ ਸਾਂਝੀ ਜ਼ੁੰਮੇਵਾਰੀ ਬਣਦੀ ਹੈ। ਇਸੇ ਜ਼ੁੰਮੇਵਾਰੀ ਅਤੇ ਵਿੱਦਿਅਕ ਜ਼ਰੂਰਤ ਨੂੰ ਸਮਝਦਿਆਂ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦੀਆਂ ਪਾਠ-ਪੁਸਤਕਾਂ ਅਤੇ ਪਾਠ-ਕ੍ਰਮ ਵਿੱਚ ਨੈਸ਼ਨਲ ਕਰੀਕੁਲਮ ਫਰੇਮਵਰਕ-2005 ਅਨੁਸਾਰ ਕੁਝ ਮਹੱਤਵਪੂਰਨ ਪਰਿਵਰਤਨ ਕੀਤੇ ਜਾ ਰਹੇ ਹਨ।

ਸਕੂਲ ਕਰੀਕੁਲਮ ਵਿੱਚ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦਾ ਯੋਗਦਾਨ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਹੈ ਅਤੇ ਇਸਦੇ ਲੋੜੀਂ ਦੇ ਨਤੀਜੇ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਚੰਗੀ ਪਾਠ-ਪੁਸਤਕ ਦਾ ਹੋਣਾ ਪਹਿਲੀ ਜ਼ਰੂਰਤ ਹੈ। ਇਸ ਲਈ ਇਸ ਪਾਠ-ਪੁਸਤਕ ਵਿੱਚ ਵਿਸ਼ਾ-ਸਮੱਗਰੀ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਸਥਾਪਿਤ ਕੀਤਾ ਗਿਆ ਹੈ ਜਿਸ ਨਾਲ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਤਰਕ ਸ਼ਕਤੀ ਤਾਂ ਪ੍ਰਫ਼ੁਲਿਤ ਹੋਵੇਗੀ ਹੀ ਸਗੋਂ ਵਿਸ਼ੇ ਨੂੰ ਸਮਝਣ ਦੀ ਯੋਗਤਾਂ ਵਿੱਚ ਵੀ ਵਾਧਾ ਹੋਵੇਗਾ। ਅਭਿਆਸ ਦੇ ਪ੍ਰਸ਼ਨ ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਮਾਨਸਿਕ ਪੱਧਰ ਦੇ ਅਨੁਸਾਰ ਤਿਆਰ ਕੀਤੇ ਗਏ ਹਨ। ਇਹ ਖੁਸਤਕ ਰਾਸ਼ਟਰੀ ਵਿਦਿਆ ਖੋਜ ਅਤੇ ਸਿਖਲਾਈ ਸੰਸਥਾ (ਐਨ.ਸੀ.ਈ.ਆਰ.ਟੀ.) ਵੱਲੋਂ ਨੌਵੀਂ ਸ਼੍ਰੇਣੀ ਲਈ ਤਿਆਰ ਕੀਤੀ ਗਈ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਦੀ ਪੁਸਤਕ ਦੀ ਅਨੁਸਾਰਤਾ ਕਰਦੀ ਹੈ। ਇਹ ਮਹੱਤਵਪੂਰਨ ਕਦਮ ਵਿਗਿਆਨ ਵਿਸ਼ੇ ਵਿੱਚ ਇਕਸਾਰਤਾ ਲਿਆਉਣ ਲਈ ਚੁੱਕਿਆ ਗਿਆ ਹੈ ਤਾਂ ਜੋ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਰਾਸ਼ਟਰੀ ਪੱਧਰ ਦੇ ਇਮਤਿਹਾਨਾਂ ਵਿੱਚ ਕਿਸੇ ਵੀ ਤਰ੍ਹਾਂ ਦੀ ਔਕੜ ਨਾ ਆਵੇ।

2

ਇਸ ਪਾਠ-ਪੁਸਤਕ ਨੂੰ ਵਿਦਿਆਰਥੀਆਂ ਅਤੇ ਅਧਿਆਪਕਾਂ ਦੇ ਲਈ ਵੱਧ ਤੋਂ ਵੱਧ ਉਪਯੋਗੀ ਬਣਾਉਣ ਦਾ ਭਰਪੂਰ ਯਤਨ ਕੀਤਾ ਗਿਆ ਹੈ। ਪੁਸਤਕ ਨੂੰ ਹੋਰ ਚੰਗੇਰਾ ਬਣਾਉਣ ਲਈ ਖੇਤਰ ਵਿੱਚੋਂ ਆਏ ਸੁਝਾਵਾਂ ਦਾ ਸਤਿਕਾਰ ਕੀਤਾ ਜਾਵੇਗਾ।

ਚੇਅਰਪਰਸਨ

ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ

NCERT ਦੀ ਪਾਠ-ਪੁਸਤਕ ਤਿਆਰ ਕਰਨ ਵਾਲੀ ਕਮੇਟੀ

ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਦੀਆਂ ਪਾਠ-ਪੁਸਤਕਾਂ ਦੇ ਸਲਾਹਕਾਰ ਸਮੂਹ, ਚੇਅਰਮੈਨ

ਜੇ ਵੀ ਨਾਰਲੀਕਰ, ਏਮੇਰਿਟਸ ਪ੍ਰੋਫੈਸਰ, ਚੇਅਰਮੈਨ, ਐਡਵਾਈਜ਼ਰੀ ਕਮੇਟੀ ਅੰਤਰ-ਯੂਨੀਵਰਸਿਟੀ ਕੇਂਦਰ, ਖਗੋਲਵਿਗਿਆਨ ਅਤੇ ਖੁਗ਼ੋਲ੍ਹਡੇ[ਤਕੀ, (IUCCA), ਗਨੇਸ਼ਭਿੰਡ ਪੁਣੇ ਯੂਨੀਵਰਸਿਟੀ।

ਮੁੱਖ ਸਲਾਹਕਾਰ

ਰੁਪਾਮੰਜਰੀ ਘੋਸ਼, ਪ੍ਰੋਫੈਸਰ, ਸਕੂਲ ਆੱਫ ਫਿਜ਼ੀਕਲ ਸਾਇਸਿਜ਼, ਜਵਾਹਰ ਲਾਲ ਨਹਿਰੂ ਯੂਨੀਵਰਸਿਟੀ, ਨਵੀਂ ਦਿੱਲੀ। ਮੈਂਬਰ

- ਅੰਜਨੀ ਕੌਲ, ਲੈਕਚਰਾਰ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਸਿੱਖਿਆ ਵਿਭਾਗ, ਐਨ ਸੀ.ਈ.ਆਰ.ਟੀ., ਨਵੀਂ ਦਿੱਲੀ।
- ਅਨੁਪਮ ਪਚੌਰੀ, 1317, ਸੈਕਟਰ-37, ਫਰੀਦਾਬਾਦ, ਹਰਿਆਣਾ।
- ਅਨੂਰਾਧਾ ਗੁਲਾਟੀ, ਟੀ. ਜੀ. ਟੀ. , ਸੀ ਆਰ.ਪੀ ਐਫ. ਪਬਲਿਕ ਸਕੂਲ, ਰੋਹਿਣੀ, ਦਿੱਲੀ।
- ਅਸਫਾ ਐਮ ਯਾਸੀਨ, ਰੀਡਰ, ਪੰਡਤ ਸੁੰਦਰਲਾਲ ਸ਼ਰਮਾ ਕੇਂਦਰੀ ਵੋਕੇਸ਼ਨਲ ਸਿੱਖਿਆ ਸੰਸਥਾ, ਐਨ.ਸੀ.ਈ.ਆਰ.ਟੀ. ਭੋਪਾਲ।
- ਉਮਾ ਸੁਧੀਰ, ਏਕਲਵਯ, ਇੰਦੌਰ, ਮੱਧ ਪ੍ਰਦੇਸ਼।
- ਐਚ ਐਲ ਸ਼ਤੀਸ਼, ਲੈਕਚਰਾਰ, ਡੀ ਐਮ ਸਕੂਲ, ਖੇਤਰੀ ਸਿੱਖਿਆ ਸੰਸਥਾ, ਮੈਸੂਰ, ਕਰਨਾਟਕ।
- ਐਸ ਸੀ.ਜੈਨ, ਪ੍ਰੋਫੈਸਰ, ਡੀ.ਈ.ਐਸ.ਐਮ, ਐਨ.ਸੀ.ਈ.ਆਰ.ਟੀ., ਨਵੀਂ ਦਿੱਲੀ।
- ਐਸ ਕੇ ਦਾਸ, ਗੋਡਰ, ਡੀ ਈ ਐਸ ਐਮ, ਐਨ ਸੀ ਈ ਆਰ.ਟੀ., ਨਵੀਂ ਦਿੱਲੀ।
- ਐਸ.ਲਵਾਨਿਆ, ਗੋਡਰ, ਬਨਸਪਤੀ ਵਿਭਾਗ, ਲਖਨਉ ਯੂਨੀਵਰਸਿਟੀ, ਲਖਨਉ, ਉੱਤਰ ਪ੍ਰਦੇਸ਼।
- ਚਾਰੂ ਮੈਣੀ, ਪੀ.ਜੀ.ਟੀ., ਡੀ.ਏ.ਵੀ. ਸਕੂਲ, ਸੈਕਟਰ 14, ਗੁਡਗਾਂਵ, ਹਰਿਆਣਾ।
- ਦਿਨੇਸ਼ ਕੁਮਾਰ, ਗੇਡਰ, ਡੀ ਈ ਐਸ ਐਮ, ਐਨ ਸੀ ਈ ਆਰ ਟੀ., ਨਵੀਂ ਦਿੱਲੀ
- ਪੂਰਨ ਚੰਦ, ਸੰਯੁਕਤ ਨਿਰਦੇਸ਼ਕ, ਐਨ ਸੀ.ਈ ਆਰ.ਟੀ., ਨਵੀਂ ਦਿੱਲੀ।
- ਬ੍ਰਹਮ ਪ੍ਰਕਾਸ਼, ਪ੍ਰੋਫੈਸਰ, ਡੀ ਈ.ਐਸ.ਐਮ., ਐਨ.ਸੀ.ਈ.ਆਰ.ਟੀ., ਨਵੀਂ ਦਿੱਲੀ (ਸਹਿਯੋਗੀ ਅੰਗ੍ਰੇਜ਼ੀ ਐਡੀਸ਼ਨ)
- ਮਾਧੁਰੀ ਮਹਾਪਾੱਤਰਾ, ਰੀਡਰ, ਖੇਤਰੀ ਸਿੱਖਿਆ ਸੰਸਥਾ, ਭੁਵਨੇਸ਼ਵਰ, ਉਡੀਸ਼ਾ।
- ਸੁਜਾਤਾ ਜੀ ਡੀ, ਸਹਾਇਕ ਅਧਿਆਪਕਾ ਵੀ ਵੀ. ਐਸ. ਸਰਦਾਰ ਪਟੋਲ ਹਾਈ ਸਕੂਲ, ਰਾਜਾਜੀ ਨਗਰ, ਬੈਂਗਲੂਰੂ, ਕਰਨਾਟਕ।
- ਸੱਤਿਆਜੀਤ ਰੱਬ, ਵਿਗਿਆਨਕ, ਨੈਸ਼ਨਲ ਇੰਸਟੀਟਿਊਟ ਆਫ਼ ਇਮਿਊਨੋਲਜੀ, ਜੇ.ਐਨ.ਯੂ.ਕੈੱਪਸ, ਨਵੀਂ ਦਿੱਲੀ।
- ਸੁਖਵੀਰ ਸਿੰਘ, ਗੋਡਰ, ਡੀ ਈ ਐਸ ਐਮ , ਖੇਤਰੀ ਸਿੱਖਿਆ ਸੰਸਥਾ, ਅਜਮੇਰ, ਰਾਜਸਥਾਨ।

ਵਿਸ਼ਾ-ਸੂਚੀ

1.	ਸਾਡੇ ਆਲ਼ੇ-ਦੁਆਲ਼ੇ ਦੇ ਪਦਾਰਥ	ा हिसिही
2.	ਕੀ ਸਾਡੇ ਆਲ਼ੇ-ਦੁਆਲ਼ੇ ਦੇ ਪਦਾਰਥ ਸ਼ੁੱਧ ਹਨ ?	21 Same
3.	ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ	50 34 ¹
4.	ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ	52
5.	ਜੀਵਨ ਦੀ ਮੁੱਢਲੀ ਇਕਾਈ	64
6.	ទ្រីនិ	76
7.	ਸਜੀਵਾਂ ਵਿੱਚ ਵਿਭਿੰਨਤਾ	90
8.	ਗਤੀ	108
9.	ਬਲ ਅਤੇ ਗਤੀ ਦੇ ਨਿਯਮ	126
10.	ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ	145
11.	ਕਾਰਜ ਅਤੇ ਊਰਜਾ	162
12.	ਧੁਨੀ	179
13.	ਅਸੀਂ ਬਿਮਾਰ ਕਿਉਂ ਹੁੰਦੇ ਹਾਂ	198
14.	ਕੁਦਰਤੀ ਸੰਸਾਧਨ	213
15.	ਖਾਧ-ਪਦਾਰਥਾਂ ਦੇ ਸੰਸਾਧਨਾਂ ਵਿੱਚ ਸੁਧਾਰ	228

ਮੁੱਖ ਸੋਧਕ (ਵੈਟਰ) : ਸੰਜਿਵਨ ਸਿੰਘ ਡੱਡਵਾਲ

(त9) 19 ਸੋਧ ਕਮੇਟੀ

¥7

Sanjiwan Singh Dadhwal, Head Master	
Govt. High School, Patara-Jalandhar	
Rakesh Mehta, Science Master	
Govt. High School, Mehatpur, Jalandhar	
Sukhdev Singh, Science Master	
Govt. Sr. Sec. School, Bhalian Distt. Roop Nagar	
Shaminder Batra, Asstt. Distt. Science	
Supervisor o/o D.E.O.(S.E.) Sri Mukatsar Sahib	
Sidharath Chander, Science Master	
(State Awardee) Govt. Sr. Sec. School, Madhopur Cantt. Distt. Pathankot	
Jaswinder Kaur, Lecturer Physics	
Govt. Girls Senior Secondary School, Kurali	
Ranjit Singh Dhanoa, Retd. Science Master, H.No. 427, Phase IV, S.A.S. Nagar.	
Gulbarg Singh, lect. Biology, Govt. Sr. Sec. School, Kalaimpura, Amritsar.	
Rakesh Gautam, Science Master, Govt. Sr. Sec. School Gandhi camp, Jalandhar city.	
Satpal Singh, Retd. lect. House No5, Gali No1, Jujhar Nagar, Patiala.	
Jagatinder Singh Sohal, Eduset Coordinator, DEO Office Jalandhar.	
Sandeep Sagar, Govt. High School, Kakian wali (Jalandhar).	
	 Govt. High School, Patara-Jalandhar Rakesh Mehta, Science Master Govt. High School, Mehatpur, Jalandhar Sukhdev Singh, Science Master Govt. Sr. Sec. School, Bhalian Distt. Roop Nagar Shaminder Batra, Asstt. Distt. Science Supervisor o/o D.E.O.(S.E.) Sri Mukatsar Sahib Sidharath Chander, Science Master (State Awardee) Govt. Sr. Sec. School, Madhopur Cantt. Distt. Pathankot Jaswinder Kaur, Lecturer Physics Govt. Girls Senior Secondary School, Kurali Ranjit Singh Dhanoa, Retd. Science Master, H.No. 427, Phase IV, S.A.S. Nagar. Gulbarg Singh, lect. Biology, Govt. Sr. Sec. School, Kalaimpura, Amritsar. Rakesh Gautam, Science Master, Govt. Sr. Sec. School Gandhi camp, Jalandhar city. Satpal Singh, Retd. lect. House No5, Gali No1, Jujhar Nagar, Patiala. Jagatinder Singh Sohal, Eduset Coordinator, DEO Office Jalandhar.

গ্যায়পাছ 👤

ਸਾਡੇ ਆਲ੍ਹੇ-ਦੁਆਲ੍ਹੇ ਦੇ ਪਦਾਰਥ (Matter in Our Surroundings)

ਆਪਣੇ ਚਾਰੇ ਪਾਸੇ ਨਜ਼ਰ ਦੌੜਾਉਣ ਤੇ ਸਾਨੂੰ ਕਈ ਕਿਸਮ ਦੀਆਂ ਵਸਤੂਆਂ ਨਜ਼ਰ ਆਉਂਦੀਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਦਾ ਆਕਾਰ, ਸ਼ਕਲ ਅਤੇ ਬਨਾਵਟ ਵੱਖ-ਵੱਖ ਹੁੰਦੀ ਹੈ। ਇਸ ਸੰਸਾਰ ਵਿੱਚ ਹਰ ਵਸਤੂ ਜਿਸ ਸਮੱਗਰੀ ਤੋਂ ਬਣੀ ਹੈ ਉਸ ਨੂੰ ਵਿਗਿਆਨਕਾਂ ਨੇ 'ਪਦਾਰਥ' ਦਾ ਨਾਂ ਦਿੱਤਾ ਹੈ। ਜਿਸ ਹਵਾ ਵਿੱਚ ਅਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹਾਂ, ਜਿਹੜਾ ਭੋਜਨ ਅਸੀਂ ਖਾਂਦੇ ਹਾਂ, ਪੱਥਰ, ਬੱਦਲ, ਤਾਰੇ, ਪੌਦੇ ਅਤੇ ਪਸ਼ੂ, ਇੱਥੋਂ ਤੱਕ ਕਿ ਪਾਣੀ ਦੀ ਇਕ ਬੂੰਦ ਜਾਂ ਰੇਤ ਦਾ ਇੱਕ ਕਣ, ਇਹ ਸਾਰੇ ਪਦਾਰਥ ਹਨ। ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਵੀ ਹੈ ਕਿ ਉੱਪਰ ਲਿਖੀਆਂ ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਦਾ ਪੁੰਜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕੁੱਝ ਥਾਂ (ਆਇਤਨ*) ਘੇਰਦੀਆਂ ਹਨ।

ਪੁਰਾਤਨ ਕਾਲ ਤੋਂ ਹੀ ਮਨੁੱਖ ਆਪਣੇ ਆਲੇ-ਦੁਆਲੇ ਨੂੰ ਸਮਝਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦਾ ਰਿਹਾ ਹੈ। ਭਾਰਤ ਦੇ ਪੁਰਾਤਨ ਦਾਰਸ਼ਨਿਕਾਂ ਨੇ ਪਦਾਰਥ ਨੂੰ ਪੰਜ ਮੂਲ ਤੱਤਾਂ ਵਿੱਚ ਸ਼੍ਰੇਣੀਬੱਧ (ਵਰਗੀਕ੍ਰਿਤ) ਕੀਤਾ, ਜਿਸ ਨੂੰ ਪੰਜ ਤੱਤ ਕਿਹਾ ਗਿਆ। ਇਹ ਪੰਜ ਤੱਤ ਹਨ : ਹਵਾ, ਧਰਤੀ, ਅਗਨੀ, ਜਲ ਅਤੇ ਅਕਾਸ਼।ਉਨ੍ਹਾਂ ਅਨੁਸਾਰ, ਇਨ੍ਹਾਂ ਪੰਜਾਂ ਤੱਤਾਂ ਨਾਲ ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਬਣੀਆਂ ਹਨ। ਚਾਹੇ ਉਹ ਜੀਵ ਹੋਣ ਜਾਂ ਨਿਰਜੀਵ। ਉਸ ਸਮੇਂ ਦੇ ਯੂਨਾਨੀ ਵਿਗਿਆਨਕਾਂ ਨੇ ਵੀ ਪਦਾਰਥ ਦਾ ਇਸੇ ਤਰ੍ਹਾਂ ਵਰਗੀਕਰਨ ਕੀਤਾ ਸੀ।

ਅੱਜ ਦੇ ਵਿਗਿਆਨਕਾਂ ਨੇ ਪਦਾਰਥ ਨੂੰ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਦੋ ਤਰ੍ਹਾਂ ਨਾਲ ਸ਼੍ਰੇਣੀਬੱਧ ਕੀਤਾ ਹੈ।

ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਭੌਤਿਕ ਗੁਣਾਂ ਦੇ ਅਧਾਰ 'ਤੇ ਪਦਾਰਥ ਬਾਰੇ ਗਿਆਨ ਪ੍ਰਾਪਤ ਕਰਾਂਗੇ। ਪਦਾਰਥ ਦੇ ਰਸਾਇਣਿਕ ਪਹਿਲੂਆਂ ਨੂੰ ਅਗਲੇ ਅਧਿਆਇ ਵਿੱਚ ਪੜ੍ਹਾਂਗੇ। 1.1 ਪਦਾਰਥ ਦਾ ਭੌਤਿਕ ਸਰੂਪ (Physical Nature of Matter)

1.1.1 ਪਦਾਰਥ ਕਣਾਂ ਤੋਂ ਮਿਲ ਕੇ ਬਣਿਆ ਹੁੰਦਾ ਹੈ

ਬਹੁਤ ਸਮੇਂ ਤੱਕ ਪਦਾਰਥ ਦੇ ਸੁਭਾਅ ਬਾਰੇ ਦੋ ਵਿਚਾਰ-ਧਾਰਾਵਾਂ ਪ੍ਰਚੱਲਿਤ ਸਨ। ਇੱਕ ਵਿਚਾਰਧਾਰਾ ਦਾ ਇਹ ਮੰਨਣਾ ਸੀ ਕਿ ਪਦਾਰਥ ਲੱਕੜੀ ਦੇ ਟੁਕੜੇ ਦੀ ਤਰ੍ਹਾਂ ਨਿਰੰਤਰ ਹੁੰਦੇ ਹਨ। ਪਰੰਤੂ ਦੂਜੀ ਵਿਚਾਰਧਾਰਾ ਦਾ ਮੰਨਣਾ ਸੀ ਕਿ ਪਦਾਰਥ ਰੇਤ ਵਰਗੇ ਕਣਾਂ ਨਾਲ ਮਿਲ ਕੇ ਬਣੇ ਹਨ। ਆਓ ਇਕ ਕਿਰਿਆ ਦੇ ਰਾਹੀਂ ਪਦਾਰਥ ਦੇ ਸਰੂਪ ਬਾਰੇ ਇਹ ਨਿਰਣਾ ਕਰੀਏ ਕਿ ਇਹ ਨਿਰੰਤਰ ਹਨ ਜਾਂ ਕਣਾਂ ਦੇ ਬਣੇ ਹਨ।

ਕਿਰਿਆ _____

ਇਕ 100 mL ਦਾ ਬੀਕਰ ਲਓ। ਇਸ ਬੀਕਰ ਨੂੰ ਪਾਣੀ ਨਾਲ ਅੱਧਾ ਭਰ ਕੇ ਪਾਣੀ ਦੇ ਸਤਰ 'ਤੇ ਨਿਸ਼ਾਨ ਲਗਾ ਦਿਓ। ਇੱਕ ਚਮਚ ਵਿੱਚ ਨਮਕ ਜਾਂ ਚੀਨੀ ਲਓ। ਦਿੱਤੇ ਹੋਏ ਨਮਕ ਜਾਂ ਚੀਨੀ ਨੂੰ ਕੱਚ ਦੀ ਛੜ ਦੀ ਮਦਦ ਨਾਲ ਪਾਣੀ ਵਿੱਚ ਘੋਲ ਦਿਓ। ਪਾਣੀ ਦੇ ਪੱਧਰ ਵਿੱਚ ਆਏ ਬਦਲਾਅ 'ਤੇ ਧਿਆਨ ਦਿਓ।

1.1

- ਤੁਹਾਡੇ ਅਨੁਸਾਰ ਨਮਕ ਜਾਂ ਚੀਨੀ ਦਾ ਕੀ ਹੋਇਆ ?
- ਇਹ ਕਿੱਥੇ ਗਾਇਬ ਹੋ ਗਏ ?
- ਕੀ ਪਾਣੀ ਦੇ ਪੱਧਰ ਵਿੱਚ ਕੋਈ ਬਦਲਾਅ ਆਇਆ ?

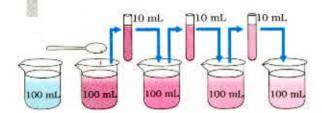
ਇਨ੍ਹਾਂ ਪ੍ਰਸ਼ਨਾਂ ਦਾ ਉੱਤਰ ਜਾਨਣ ਲਈ ਇਸ ਵਿਚਾਰ ਨੂੰ ਮੰਨਣਾ ਪਵੇਗਾ ਕਿ ਸਾਰੇ ਪਦਾਰਥ ਕਣਾਂ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਉਪਰੋਕਤ ਕਿਰਿਆ ਵਿੱਚ ਚਮਚੇ ਵਿੱਚ ਰੱਖਿਆ ਨਮਕ ਜਾਂ ਚੀਨੀ ਹੁਣ ਪੂਰੇ ਪਾਣੀ ਵਿੱਚ ਘੁਲ਼ ਗਈ ਹੈ। ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 1.1 ਵਿਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

• ਅੰਤਰ-ਰਾਸ਼ਟਰੀ ਮਾਪਕ ਪੱਧਤੀ ਅਨੁਸਾਰ ਆਇਤਨ ਦੀ ਇਕਾਈ (unit) (1) ਘਣਮੀਟਰ (m³) ਹੈ। ਦ੍ਵਾਂ ਦਾ ਆਇਤਨ ਮਾਪਣ ਦੀ ਸਧਾਰਣ ਇਕਾਈ ਲਿਟਰ ਹੈ।

 $1\ L=1\ dm^3,\ 1\ L=1000\ mL,\ 1\ mL=1\ cm^3\ l$

ਚਿੱਤਰ 1.1 : ਜਦੋਂ ਅਸੀਂ ਪਾਣੀ ਵਿੱਚ ਨਮਕ ਘੋਲ਼ਦੇ ਹਾਂ, ਤਾਂ ਨਮਕ ਦੇ ਕਣ ਪਾਣੀ ਦੇ ਕਣਾਂ ਵਿਚਲੀਆਂ ਬਾਲੀ ਬਾਵਾਂ ਵਿੱਚ ਸਮਾ ਜਾਂਦੇ ਹਨ।

1.1.2 ਪਦਾਰਥ ਦੇ ਇਹ ਕਣ ਕਿੰਨੇ ਛੋਟੇ ਹਨ ? (How small are these particle of matter ?)


ਕਿਰਿਆ_____1.2

ਪੋਟਾਸ਼ੀਅਮ ਪਰਮੈਂਗਨੇਟ ਦੇ ਦੋ ਜਾਂ ਤਿੰਨ ਕ੍ਰਿਸਟਲਾਂ ਨੂੰ 100 mL ਪਾਣੀ ਵਿੱਚ ਘੋਲ਼ ਦਿਓ।

ਇਸ ਘੋਲ ਵਿੱਚੋਂ ਲਗਭਗ 10 mL ਘੋਲ ਕੱਢ ਕੇ ਉਸ ਨੂੰ 90 mL ਪਾਣੀ ਵਿੱਚ ਮਿਲਾ ਦਿਓ।

ਫਿਰ ਇਸ ਉਪਰੋਕਤ ਘੋਲ਼ ਵਿੱਚੋਂ 10 mL ਕੱਢ ਕੇ ਉਸ ਨੂੰ ਵੀ 90 mL ਪਾਣੀ ਵਿੱਚ ਮਿਲਾ ਦਿਓ।

ਇਸ ਤਰ੍ਹਾਂ ਇਸ ਘੋਲ਼ ਨੂੰ 5 ਤੋਂ 8 ਵਾਰ ਪਤਲਾ ਕਰਦੇ ਰਹੇ। ਕੀ ਪਾਣੀ ਹੁਣ ਵੀ ਰੰਗੀਨ ਹੈ?

ਚਿੱਤਰ 1.2 : ਅੰਦਾਜ਼ਾ ਲਾਓ ਕਿ ਪਦਾਰਥ ਦੋ ਕਣ ਕਿੰਨੇ ਛੋਟੇ ਹਨ ? ਹਰ ਵਾਰ ਪਤਲਾ ਕਰਨ ਨਾਲ ਘੋਲ਼ ਦਾ ਰੈਗ ਹਲਕਾ ਹੋ ਜਾਂਦਾ ਹੈ, ਫਿਰ ਵੀ ਪਾਣੀ ਰੰਗੀਨ ਨਜ਼ਰ ਆਉਂਦਾ ਹੈ।

ਇਹ ਪ੍ਰਯੋਗ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਪੋਟਾਸ਼ੀਅਮ ਪਰਮੈਂਗਨੇਟ ਦੇ ਬਹੁਤ ਥੋੜ੍ਹੇ ਕ੍ਰਿਸਟਲਾਂ ਨਾਲ ਪਾਣੀ ਦੀ ਬਹੁਤ ਜ਼ਿਆਦਾ ਮਾਤਰਾ (1000 mL) ਵੀ ਰੰਗੀਨ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਤੋਂ ਅਸੀਂ ਇਹ ਨਤੀਜਾ ਕੱਢ ਸਕਦੇ ਹਾਂ ਕਿ ਪੋਟਾਸ਼ੀਅਮ ਪਰਮੈਂਗਨੇਟ ਦੇ ਸਿਰਫ਼ ਇੱਕ ਕ੍ਰਿਸਟਲ ਵਿੱਚ ਕਈ ਸੁਖਮ

2

ਕਣ ਹੋਣਗੇ। ਇਹ ਕਣ ਛੋਟੇ-ਛੋਟੇ ਕਣਾਂ ਵਿੱਚ ਵਿਭਾਜਿਤ ਹੁੰਦੇ ਰਹਿੰਦੇ ਹਨ। ਅਖੀਰ ਇੱਕ ਸਥਿਤੀ ਵਿੱਚ ਇਹ ਕਣ ਹੋਰ ਛੋਟੇ ਭਾਗਾਂ ਵਿੱਚ ਨਹੀਂ ਵੰਡੇ ਜਾ ਸਕਦੇ।

ਪੋਟਾਸ਼ੀਅਮ ਪਰਮੈਂਗਨੇਟ ਦੀ ਜਗ੍ਹਾ 2 mL ਡਿਟੋਲ ਨਾਲ ਵੀ ਅਸੀਂ ਇਹ ਕਿਰਿਆ ਕਰ ਸਕਦੇ ਹਾਂ। ਲਗਾਤਾਰ ਪਤਲਾ ਹੋਣ ਤੇ ਵੀ ਉਸ ਦੀ ਗੰਧ ਸਾਨੂੰ ਮਿਲਦੀ ਰਹਿੰਦੀ ਹੈ।

ਪਦਾਰਥ ਦੇ ਕਣ ਬਹੁਤ ਛੋਟੇ ਹੁੰਦੇ ਹਨ । ਇੰਨੇ ਛੋਟੇ ਕਿ ਅਸੀਂ ਕਲਪਨਾ ਵੀ ਨਹੀਂ ਕਰ ਸਕਦੇ ।

1.2 ਪਦਾਰਥ ਦੇ ਕਣਾਂ ਦੇ ਮੁੱਖ ਗੁਣ

(Characteristics of particles of Matter)

1.2.1 ਪਦਾਰਥ ਦੇ ਕਣਾਂ ਵਿੱਚ ਖਾਲੀ ਥਾਂ ਹੁੰਦੀ ਹੈ

ਕਿਰਿਆ 1.1 ਅਤੇ 1.2 ਵਿੱਚ ਨਮਕ ਚੀਨੀ, ਡਿਟੋਲ ਜਾਂ ਪੋਟਾਸ਼ੀਅਮ ਪਰਮੈਂਗਨੇਟ ਦੇ ਕਣ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਪਾਣੀ ਵਿੱਚ ਵੰਡੇ ਗਏ। ਇਸੇ ਤਰ੍ਹਾਂ ਜਦੋਂ ਅਸੀਂ ਚਾਹ, ਕੌਫ਼ੀ ਜਾਂ ਨਿੰਬੂ-ਪਾਣੀ ਬਣਾਉਂਦੇ ਹਾਂ ਤਾਂ ਇਕ ਪਦਾਰਥ ਦੇ ਕਣ ਦੂਜੇ ਪਦਾਰਥ ਦੇ ਕਣਾਂ ਦੇ ਖਾਲੀ ਥਾਵਾਂ ਵਿੱਚ ਸਮਾ ਜਾਂਦੇ ਹਨ। ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਪਦਾਰਥ ਦੇ ਕਣਾਂ ਵਿੱਚ ਕਾਫੀ ਖਾਲੀ ਥਾਂ ਹੁੰਦੀ ਹੈ।

1.2.2 ਪਦਾਰਥ ਦੇ ਕਣ ਨਿਰੰਤਰ ਗਤੀਸ਼ੀਲ ਹੁੰਦੇ ਹਨ

ਕਿਰਿਆ 1.3 • ਆਪਣੀ ਜਮਾਤ ਦੇ ਕਿਸੇ ਕੋਣੇ ਵਿੱਚ ਇਕ ਬੁਝੀ ਹੋਈ ਅਗਰਬੱਤੀ ਰੱਖ ਦਿਓ। ਇਸ ਦੀ ਮਹਿਕ ਲੈਣ ਲਈ ਤੁਹਾਨੂੰ ਇਸ ਦੇ ਕਿੰਨਾ ਨੇੜੇ ਜਾਣਾ ਪੈਂਦਾ ਹੈ ? • ਹੁਣ ਅਗਰਬੱਤੀ ਜਲਾ ਦਿਓ। ਕੀ ਹੁੰਦਾ ਹੈ ? ਕੀ ਦੂਰ ਤੋਂ ਹੀ ਇਸ ਦੀ ਮਹਿਕ ਤੁਹਾਨੂੰ ਮਿਲਦੀ ਹੈ ? • ਆਪਣੇ ਪ੍ਰੇਖਣ ਨੂੰ ਨੋਟ ਕਰੋ। ਕਿਰਿਆ 1.4 • ਪਾਣੀ ਨਾਲ ਭਰੇ ਦੋ ਗਿਲਾਸ ਜਾਂ ਦੋ ਬੀਕਰ ਲਓ। • ਪਹਿਲੇ ਬੀਕਰ ਦੇ ਇੱਕ ਸਿਰੇ 'ਤੇ ਸਾਵਧਾਨੀ ਨਾਲ ਇਕ ਬੁੰਦ ਲਾਲ ਜਾਂ ਨੀਲੀ ਸਿਆਹੀ ਦੀ ਪਾ ਦਿਓ ਅਤੇ ਦੂਜੇ ਵਿੱਚ ਸ਼ਹਿਦ ਪਾ ਦਿਓ।

ਇਨ੍ਹਾਂ ਨੂੰ ਆਪਣੇ ਘਰ ਜਾਂ ਜਮਾਤ ਦੇ ਕੋਣੇ ਵਿੱਚ ਰੱਖ ਦਿਓ।

ਵਿਗਿਆਨ

ਆਪਣੇ ਪ੍ਰੇਖਣ ਨੂੰ ਨੋਟ ਕਰੋ।

ਕਿਰਿਆ

ਸਿਆਹੀ ਦੀ ਬੂੰਦ ਪਾਉਣ ਉਪਰੰਤ ਤੁਸੀਂ ਕੀ ਦੇਖਿਆ ? ਸ਼ਹਿਦ ਦੀ ਬੂੰਦ ਪਾਉਣ ਦੇ ਤੋਰੰਤ ਬਾਅਦ ਤੁਸੀਂ ਕੀ ਵੇਖਿਆ ?

ਸਿਆਹੀ ਦਾ ਰੰਗ ਪੂਰੇ ਪਾਣੀ ਵਿੱਚ ਇਕ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਫੈਲਣ ਵਿੱਚ ਕਿੰਨੇ ਦਿਨ ਜਾਂ ਘੰਟੇ ਲੱਗਦੇ ਹਨ ?

1.5

ਇਕ ਗਿਲਾਸ ਗਰਮ ਪਾਣੀ ਨਾਲ ਅਤੇ ਦੂਜਾ ਠੈਡੇ ਪਾਣੀ ਨਾਲ ਭਰੋ। ਗਿਲਾਸ ਵਿੱਚ ਕਾੱਪਰ ਸਲਫੇਟ ਜਾਂ ਪੋਟਾਸ਼ੀਅਮ ਪਰਮੈਂਗਨੇਟ ਦਾ ਇਕ ਕ੍ਰਿਸਟਲ ਪਾਓ ਅਤੇ ਇੱਕ ਪਾਸੇ ਰੱਖਣ ਉਪਰੇਤ ਹਿਲਾਓ ਨਾ।

ਕ੍ਰਿਸਟਲ ਨੂੰ ਸਤ੍ਹਾ 'ਤੇ ਬੈਠਣ ਦਿਓ।

ਗਿਲਾਸ ਵਿੱਚ ਠੋਸ ਕ੍ਰਿਸਟਲ ਦੇ ਠੀਕ ਉੱਤੇ ਕੀ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ?

ਸਮਾਂ ਬੀਤਣ ਨਾਲ ਕੀ ਹੁੰਦਾ ਹੈ ?

ਇਸ ਨਾਲ ਠੋਸ ਅਤੇ ਦ੍ਵ ਦੇ ਕਣਾਂ ਦੇ ਬਾਰੇ ਕੀ ਪਤਾ ਲੱਗਦਾ ਹੈ?

ਕੀ ਤਾਪਮਾਨ ਦੇ ਨਾਲ ਮਿਸ਼ਰਤ ਹੋਣ ਦੀ ਦਰ ਬਦਲਦੀ ਹੈ ? ਕਿਉਂ ਅਤੇ ਕਿਵੇਂ ?

ਉਪਰੋਕਤ ਤਿੰਨਾਂ ਕਿਰਿਆਵਾਂ (1.3, 1.4 ਅਤੇ 1.5) ਤੋਂ ਅਸੀਂ ਹੇਠ ਲਿਖੇ ਨਤੀਜੇ ਕੱਢ ਸਕਦੇ ਹਾਂ :

ਪਦਾਰਥ ਦੇ ਕਣ ਨਿਰੰਤਰ ਗਤੀਸ਼ੀਲ ਹੁੰਦੇ ਹਨ, ਅਰਥਾਤ, ਉਨ੍ਹਾਂ ਵਿੱਚ ਗਤਿਜ ਊਰਜਾ (kinetic energy) ਹੁੰਦੀ ਹੈ। ਤਾਪਮਾਨ ਵਧਣ ਨਾਲ ਕਣਾਂ ਦੀ ਗਤੀ ਤੇਜ਼ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਤਾਪਮਾਨ ਵਧਣ ਨਾਲ ਕਣਾਂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਵੀ ਵੱਧ ਜਾਂਦੀ ਹੈ।

ਉਪਰੋਕਤ ਤਿੰਨਾਂ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਅਸੀਂ ਵੇਖਿਆ ਕਿ ਪਦਾਰਥ ਦੇ ਕਣ ਆਪਣੇ ਆਪ ਹੀ ਇਕ ਦੂਜੇ ਨਾਲ ਮਿਸ਼ਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਅਜਿਹਾ ਕਣਾਂ ਦੇ ਖਾਲੀ ਥਾਵਾਂ ਵਿੱਚ ਸਮਾਉਣ ਦੇ ਕਾਰਨ ਹੁੰਦਾ ਹੈ। ਦੋ ਵੱਖਰੇ ਪਦਾਰਥਾਂ ਦੇ ਕਣਾਂ ਦਾ ਆਪਣੇ ਆਪ ਮਿਲਣਾ ਹੀ ਵਿਸਰਣ ਜਾਂ ਪ੍ਰਸਰਣ (diffusion) ਅਖਵਾਉਂਦਾ ਹੈ। ਸਾਨੂੰ ਇਹ ਵੀ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਗਰਮ ਕਰਨ ਨਾਲ ਵਿਸਰਣ ਤੇਜ਼ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ?

1.2.3 ਪਦਾਰਥ ਦੇ ਕਣ ਇੱਕ ਦੂਜੇ ਨੂੰ ਆਕਰਸ਼ਿਤ ਕਰਦੇ ਹਨ

ਕਿਰਿਆ

1.6

ਇਸ ਖੇਡ ਨੂੰ ਇੱਕ ਮੈਦਾਨ ਵਿੱਚ ਖੇਡੋ। ਅੱਗੇ ਦੱਸੇ ਢੰਗ ਅਨੁਸਾਰ ਚਾਰ ਸਮੂਹ ਬਣਾ ਕੇ ਮਨੁੱਖੀ ਚੇਨ ਬਣਾਓ। ਪਹਿਲਾ ਸਮੂਹ 'ਬੀਹੂ ਨਰਤਕਾਂ ਦੀ ਤਰ੍ਹਾਂ' ਇੱਕ ਦੂਜੇ ਨੂੰ ਪਿੱਛੋਂ ਕੱਸ ਕੇ ਫੜ ਲਓ।

ਦੂਜਾ ਸਮੂਹ ਇੱਕ ਦੂਜੇ ਦਾ ਹੱਥ ਫੜ ਕੇ ਮਨੁੱਖੀ~ਚੇਨ ਬਣਾ ਲਓ।

ਤੀਜਾ ਸਮੂਹ ਸਿਰਫ਼ ਉੱਗਲੀ ਦੇ ਸਿਰੇ ਨਾਲ ਛੂਹ ਕੇ ਇਕ ਚੋਨ ਬਣਾ ਲਓ।

ਹੁਣ ਚੌਥਾ ਸਮੂਹ ਉਪਰੋਕਤ ਵਰਣਿਤ ਤਿੰਨਾਂ ਮਨੁੱਖੀ-ਚੇਨਾਂ ਨੂੰ ਤੋੜ ਕੇ ਛੋਟੇ ਸਮੂਹਾਂ ਵਿੱਚ ਵੰਡਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।

ਕਿਸ ਸਮੂਹ ਨੂੰ ਤੋੜਨਾ ਅਸਾਨ ਸੀ ਅਤੇ ਕਿਉਂ?

ਜੇ ਅਸੀਂ ਹਰ ਇੱਕ ਵਿਦਿਆਰਥੀ ਨੂੰ ਪਦਾਰਥ ਦਾ ਇੱਕ ਕਣ ਮੰਨੀਏ ਤਾਂ ਕਿਸ ਸਮੂਹ ਵਿੱਚ ਕਣਾਂ ਨੇ ਇੱਕ ਦੂਜੇ ਨੂੰ ਸਭ ਤੋਂ ਵੱਧ ਬਲ ਨਾਲ ਫੜਿਆ ਸੀ ?

ਕਿਰਿਆ

1.7

з

ਇੱਕ ਲੋਹੇ ਦਾ ਕਿੱਲ, ਇੱਕ ਚਾਕ ਦਾ ਟੁਕੜਾ ਅਤੇ ਇੱਕ ਰਬੜ-ਬੈਂਡ ਲਓ।

ਇਨ੍ਹਾਂ ਤੇ ਹਥੇਂੜਾ ਮਾਰ ਕੇ, ਕੱਟ ਕੇ ਜਾਂ ਖਿੱਚ ਕੇ ਉਨ੍ਹਾਂ ਨੂੰ ਤੇੜਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੇ।

ਇਨ੍ਹਾਂ ਤਿੰਨਾਂ ਵਿੱਚੋਂ ਕਿਸ ਦੇ ਕਣ ਵਧੇਰੇ ਬਲ ਨਾਲ ਇੱਕ ਦੂਜੇ ਨਾਲ ਜੁੜੇ ਹਨ ?

ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ

বিবিপা ______1.8

- ਪਾਣੀ ਦਾ ਨਲ ਖੋਲ ਕੇ ਪਾਣੀ ਦੀ ਧਾਰ ਨੂੰ ਆਪਣੀ ਉੱਗਲੀ
 - ਨਾਲ ਕੱਟਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੇ।
 - ਕੀ ਪਾਣੀ ਦੀ ਧਾਰ ਕੱਟਦੀ ਹੈ ?
 - ਪਾਣੀ ਦੀ ਧਾਰ ਨਾ ਕੱਟਣ ਦਾ ਕੀ ਕਾਰਣ ਹੈ ?

ਉਪਰੋਕਤ ਤਿੰਨੇ ਕਿਰਿਆਵਾਂ ਸੁਝਾਉਂਦੀਆਂ ਹਨ ਕਿ ਪਦਾਰਥ ਦੇ ਕਣਾਂ ਵਿੱਚ ਇੱਕ ਬਲ ਕੰਮ ਕਰਦਾ ਹੈ। ਇਹ ਬਲ ਕਣਾਂ ਨੂੰ ਇਕੱਠੇ ਰੱਖਦਾ ਹੈ। ਇਸ ਆਕਰਸ਼ਣ ਬਲ ਦੀ ਸਮਰੱਥਾ ਹਰੇਕ ਪਦਾਰਥ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਹੁੰਦੀ ਹੈ।

- ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਪਦਾਰਥ ਹਨ :
 - ਕੁਰਸੀ, ਹਵਾ, ਸਨੇਹ, ਗੈਧ, ਘਿਰਣਾ, ਬਦਾਮ, ਵਿਚਾਰ, ਠੰਡ, ਠੰਡਾ ਪਿਆਓ, ਇਤਰ ਦੀ ਗੇਧ।
- ਹੇਠ ਲਿਖੇ ਪ੍ਰੇਖਣ ਦੇ ਕਾਰਣ ਦਸੋ : ਗਰਮਾ ਗਰਮ ਭੋਜਨ ਦੀ ਮਹਿਕ ਕਈ ਮੀਟਰ ਦੂਰ ਤੋਂ ਹੀ ਤੁਹਾਡੇ ਕੋਲ ਪਹੁੰਚ ਜਾਂਦੀ ਹੈ ਪਰ ਠੰਡੇ ਭੋਜਨ ਦੀ ਮਹਿਕ ਲੈਣ ਲਈ ਤੁਹਾਨੂੰ ਉਸ ਦੇ ਕੋਲ ਜਾਣਾ ਪੈਂਦਾ ਹੈ।
- ਸਵਿਮਿੰਗ ਪੂਲ ਵਿੱਚ ਗੋਤਾ ਖੋਰ ਪਾਣੀ ਕੱਟ ਲੈਂਦਾ ਹੈ ਇਸ ਨਾਲ ਪਦਾਰਥ ਦਾ ਕਿਹੜਾ ਗੁਣ ਪ੍ਰੇਖਤ ਹੁੰਦਾ ਹੈ ?
- ਪਦਾਰਥ ਦੇ ਕਣਾਂ ਦੀਆਂ ਕੀ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ?

1.3 ਪਦਾਰਥ ਦੀਆਂ ਅਵਸਥਾਵਾਂ (States of Matter)

ਆਪਣੇ ਆਲ਼ੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥਾਂ ਨੂੰ ਧਿਆਨ ਨਾਲ ਵੇਖੋ। ਇਹ ਕਿੰਨੀ ਕਿਸਮ ਦੇ ਹਨ ? ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਪਦਾਰਥ ਆਪਣੀਆਂ ਤਿੰਨ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਹੁੰਦੇ ਹਨ- ਠੋਸ, ਦਵ ਅਤੇ ਗੈਸ। ਪਦਾਰਥ ਦੀਆਂ ਇਹ ਅਵਸਥਾਵਾਂ ਉਸ ਦੇ ਕਣਾਂ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦੇ ਕਾਰਣ ਹੁੰਦੀਆਂ ਹਨ।

ਹੁਣ ਅਸੀਂ ਪਦਾਰਥ ਦੀਆਂ ਤਿੰਨਾਂ ਅਵਸਥਾਵਾਂ ਦੇ ਗੁਣਾਂ ਦਾ ਵਿਸਥਾਰ ਪੂਰਵਕ ਅਧਿਐਨ ਕਰਾਂਗੇ।

1.3.1 ঠস সਵਸਥਾ (The Solid State)

ਕਿਰਿਆ

ਹੇਠ ਲਿਖੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਇਕੱਠਾ ਕਰੋ : ਪੈੱਨ, ਕਿਤਾਬ, ਸੂਈ ਅਤੇ ਲੱਕੜੀ ਦਾ ਡੈਡਾ ਇਨ੍ਹਾਂ ਵਸ਼ਤੂਆਂ ਦੋ ਚਾਰੇ ਪਾਸੇ ਪੈਂਨਸਿਲ ਘੁਮਾ ਕੇ ਇਨ੍ਹਾਂ ਦੇ ਅਕਾਰ ਦਾ ਰੇਖਾ-ਚਿੱਤਰ ਸ਼ਣਾਓ।

ਕੀ ਇਨ੍ਹਾਂ ਸਾਰਿਆਂ ਦਾ ਨਿਸ਼ਚਿਤ ਅਕਾਰ, ਸਪਸ਼ਟ ਸੀਮਾਵਾਂ ਅਤੇ ਸਥਿਰ ਆਇਤਨ ਹੈ ?

ਇਨ੍ਹਾਂ 'ਤੇ ਹਥੇੜ੍ਹਾ ਮਾਰਨ, ਖਿੱਚਣ ਜਾਂ ਡੇਗਣ ਨਾਲ ਕੀ ਹੁੰਦਾ ਹੈ ?

ਕੀ ਇਨ੍ਹਾਂ ਦਾ ਇਕ ਦੂਜੇ ਵਿੱਚ ਪ੍ਰਸਰਣ (diffusion) ਸੰਭਵ ਹੈ 7

ਬਲ ਲਾ ਕੇ ਇਨ੍ਹਾਂ ਨੂੰ ਨਪੀੜਨ (compress) ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ। ਕੀ ਇਨ੍ਹਾਂ ਦਾ ਨਪੀੜਨ ਹੁੰਦਾ ਹੈ ?

ਉਪਰੋਕਤ ਸਾਰੀਆਂ ਉਦਾਹਰਣਾਂ ਠੋਸ ਦੀਆਂ ਹਨ।ਅਸੀਂ ਵੇਖ ਸਕਦੇ ਹਾਂ ਕਿ ਇਨ੍ਹਾਂ ਸਾਰਿਆਂ ਵਿੱਚ ਇੱਕ ਨਿਸ਼ਚਿਤ ਆਕਾਰ, ਸਪਸ਼ਟ ਸੀਮਾਵਾਂ ਅਤੇ ਸਥਿਰ ਆਇਤਨ ਭਾਵ ਨਾਂ-ਮਾਤਰ ਨਪੀੜਨ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ।ਬਾਹਰੋਂ ਬਲ ਲਗਾਉਣ ਤੇ ਵੀ ਠੋਸ ਆਪਣੇ ਆਕਾਰ ਨੂੰ ਬਣਾ ਕੇ ਰੱਖਦੇ ਹਨ। ਬਲ ਲਗਾਉਣ ਨਾਲ ਠੋਸ ਟੁੱਟ ਸਕਦੇ ਹਨ ਪਰ ਇਨ੍ਹਾਂ ਦਾ ਆਕਾਰ ਨਹੀਂ ਬਦਲਦਾ। ਇਸ ਲਈ ਇਹ ਨਿੱਗਰ ਹੁੰਦੇ ਹਨ।

ਹੇਠ ਲਿਖਿਆਂ 'ਤੇ ਵਿਚਾਰ ਕਰੋ:

- (ੳ) ਰਬੜ-ਬੈਂਡ ਨੂੰ ਕੀ ਮੰਨਿਆ ਜਾਵੇਗਾ ? ਕੀ ਖਿੱਚ ਕੇ ਇਸ ਦਾ ਆਕਾਰ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ ? ਕੀ ਇਹ ਠੋਸ ਹੈ ?
- (ਅ) ਵੱਖ-ਵੱਖ ਆਕਾਰ ਦੇ ਬਰਤਨਾਂ ਵਿੱਚ ਰੱਖਣ ਤੇ ਚੀਨੀ ਅਤੇ ਨਮਕ ਉਨ੍ਹਾਂ ਬਰਤਨਾਂ ਦੇ ਆਕਾਰ ਲੈ ਲੈਂਦੇ ਹਨ। ਕੀ ਇਹ ਠੋਸ ਹਨ?
- (ੲ) ਸਪੰਜ ਕੀ ਹੈ ? ਇਹ ਠੋਸ ਹੈ ਪਰ ਫਿਰ ਵੀ ਇਸ ਦਾ ਨਪੀੜਨ (compression) ਸੰਭਵ ਹੈ। ਕਿਉਂ ?

ਇਹ ਸਾਰੇ ਠੋਸ ਹਨ, ਕਿਉਂਕਿ

- ਬਾਹਰੀ ਬਲ ਲਗਾਉਣ ਨਾਲ ਰਬੜ-ਬੈਂਡ ਦਾ ਅਕਾਰ ਬਦਲਦਾ ਹੈ ਅਤੇ ਬਲ ਹਟਾ ਲੈਣ ਨਾਲ ਇਹ ਦੁਬਾਰਾ ਆਪਣੇ ਮੂਲ ਆਕਾਰ ਵਿੱਚ ਆ ਜਾਂਦਾ ਹੈ। ਬਹੁਤ ਜ਼ਿਆਦਾ ਬਲ ਲਗਾਉਣ 'ਤੇ ਇਹ ਟੁੱਟ ਜਾਂਦਾ ਹੈ।
- ਭਾਵੇਂ ਅਸੀਂ ਚੀਨੀ ਜਾਂ ਨਮਕ ਨੂੰ ਆਪਣੇ ਹੱਥ ਵਿੱਚ ਲਈਏ ਜਾਂ ਕਿਸੇ ਪਲੇਟ ਜਾਂ ਜ਼ਾਰ ਵਿੱਚ, ਇਨ੍ਹਾਂ ਦੇ ਆਕਾਰ ਨਹੀਂ ਬਦਲਦੇ।
- ਸਪੰਜ ਵਿੱਚ ਬਹੁਤ ਛੋਟੇ-ਛੋਟੇ ਛੇਕ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਹਵਾ ਸਮਾਈ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਅਸੀਂ ਇਸ ਨੂੰ ਦਬਾਉਂਦੇ ਹਾਂ ਤਾਂ ਉਹ ਹਵਾ ਬਾਹਰ ਨਿਕਲਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਇਸ ਦਾ ਨਪੀੜਨ ਸੰਭਵ ਹੁੰਦਾ ਹੈ।

ਵਿਗਿਆਨ

1.9

1.3.2 ਦਵ ਅਵਸਥਾ (THE LIQUID STATE)

ਕਿਰਿਆ

1.10 THE REAL FOR

ਹੇਠ ਲਿਖੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਇਕੱਠਾ ਕਰੋ :

- (ੳ) ਪਾਣੀ, ਭੋਜਨ ਪਕਾਉਣ ਵਾਲਾ ਤੇਲ, ਦੁੱਧ, ਜੂਸ, ਠੰਡਾ ਪਿਆਓ (Cold Drink)।
- (ਅ) ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੇ ਬਰਤਨ। ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਦੇ ਇੱਕ ਮਾਪਕ ਸਿਲੰਡਰ ਦੀ ਮਦਦ ਨਾਲ ਇਨ੍ਹਾਂ ਬਰਤਨਾਂ ਤੇ 50 mL ਦੇ ਨਿਸ਼ਾਨ ਲਗਾਓ।

ਇਨ੍ਹਾਂ ਦਵਾਂ ਨੂੰ ਫਰਸ਼ ਤੇ ਡੋਲ੍ਹ ਦੇਣ ਨਾਲ ਕੀ ਹੋਵੇਗਾ?

ਕਿਸੇ ਇੱਕ ਦਵ ਦਾ 50 mL ਮਾਪ ਕੇ ਵੱਖ-ਵੱਖ ਬਰਤਨਾਂ ਵਿੱਚ ਕ੍ਰਮਵਾਰ ਇੱਕ-ਇੱਕ ਕਰਕੇ ਪਾਓ। ਕੀ ਹਰ ਵਾਰ ਆਇਤਨ ਬਰਾਬਰ ਰਹਿੰਦਾ ਹੈ ?

ਕੀ ਦ੍ਵਾਂ ਦਾ ਆਕਾਰ ਇੱਕ ਸਮਾਨ ਰਹਿੰਦਾ ਹੈ ?

ਦ੍ਵ ਨੂੰ ਇਕ ਬਰਤਨ ਤੋਂ ਦੂਜੇ ਬਰਤਨ ਵਿੱਚ ਉਲਟਾਉਣ ਨਾਲ ਕੀ ਇਹ ਅਸਾਨੀ ਨਾਲ ਵਹਿੰਦਾ ਹੈ ?

ਪ੍ਰੇਖਣ ਤੋਂ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਦ੍ਰਵ ਦਾ ਕੋਈ ਆਕਾਰ ਨਹੀਂ ਪਰ ਆਇਤਨ ਨਿਸ਼ਚਿਤ ਹੁੰਦਾ ਹੈ। ਜਿਸ ਬਰਤਨ ਵਿੱਚ ਇਨ੍ਹਾਂ ਨੂੰ ਰੱਖਿਆ ਜਾਵੇ, ਤਾਂ ਇਹ ਉਸੇ ਬਰਤਨ ਦਾ ਆਕਾਰ ਲੈ ਲੈਂਦੇ ਹਨ। ਦ੍ਵਾਂ ਵਿੱਚ ਵਹਿਣ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਨ੍ਹਾਂ ਦਾ ਆਕਾਰ ਬਦਲਦਾ ਹੈ ਇਸ ਲਈ ਇਹ ਨਿੱਗਰ ਨਹੀਂ ਤਰਲ ਹੁੰਦੇ ਹਨ।

ਕਿਰਿਆ 1.4 ਅਤੇ 1.5 ਦੀ ਰੋਸ਼ਨੀ ਵਿੱਚ ਅਸੀਂ ਵੇਖਿਆ ਕਿ ਠੋਸ ਅਤੇ ਦਵ ਦਾ ਪ੍ਰਸਰਣ ਦਵਾਂ ਵਿੱਚ ਸੰਭਵ ਹੈ।ਵਾਤਾਵਰਣ ਦੀਆਂ ਗੈਸਾਂ ਪ੍ਰਸਰਿਤ ਹੋ ਕੇ ਪਾਣੀ ਵਿੱਚ ਘੁਲ਼ ਜਾਂਦੀਆਂ ਹਨ। ਇਹ ਗੈਸਾਂ ਖਾਸ ਕਰਕੇ ਆੱਕਸੀਜਨ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਜਲ ਜੰਤੂਆਂ ਅਤੇ ਪੌਦਿਆਂ ਲਈ ਜ਼ਰੂਰੀ ਹੁੰਦੀਆਂ ਹਨ।

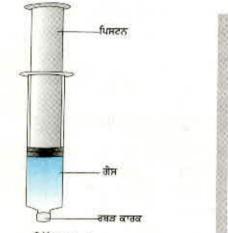
ਸਾਰੇ ਜੀਵਧਾਰੀ ਆਪਣੇ ਜੀਵਨ ਨਿਰਬਾਹ ਲਈ ਸਾਹ ਲੈਂਦੇ ਹਨ। ਜਲ-ਜੰਤੂ ਪਾਣੀ ਵਿੱਚ ਘੁਲ਼ੀ ਆੱਕਸੀਜਨ ਕਾਰਣ ਸਾਹ ਲੈਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਇਸ ਨਤੀਜੇ ਤੇ ਪੁਜਦੇ ਹਾਂ ਕਿ ਦ੍ਵ ਵਿੱਚ ਠੋਸ, ਦ੍ਵ ਅਤੇ ਗੈਸ ਤਿੰਨਾਂ ਦਾ ਪ੍ਰਸਰਣ ਹੁੰਦਾ ਹੈ। ਠੋਸਾਂ ਦੀ ਬਜਾਏ ਦ੍ਵਾਂ ਵਿੱਚ ਵਿਸਰਣ ਦੀ ਦਰ ਵਧੇਰੇ ਹੁੰਦੀ ਹੈ। ਇਹ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਪਦਾਰਥ ਦੇ ਕਣ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਗਤੀ ਕਰਦੇ ਹਨ ਅਤੇ ਠੋਸਾਂ ਦੀ ਬਜਾਏ ਦ੍ਵਾਂ ਦੇ ਕਣਾਂ ਵਿੱਚ ਖਾਲੀ ਥਾਵਾਂ ਵੀ ਵਧੇਰੇ ਹੁੰਦੀਆਂ ਹਨ।

ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ

1.3.3 ਗੈਸੀ ਅਵਸਥਾ (THE GASEOUS STATE)

ਕੀ ਤੁਸੀਂ ਕਦੇ ਉਸ ਗੁਬਾਰੇ ਵਾਲੇ ਵੱਲ ਧਿਆਨ ਦਿੱਤਾ ਹੈ ਜੋ ਗੈਸ ਦੇ ਇਕ ਹੀ ਸਿਲੰਡਰ ਵਿਚੋਂ ਬਹੁਤ ਸਾਰੇ ਗੁਬਾਰਿਆਂ ਵਿਚ ਹਵਾ ਭਰਦਾ ਹੈ? ਉਸ ਤੋਂ ਪਤਾ ਕਰੋ ਕਿ ਇੱਕ ਸਿਲੰਡਰ ਨਾਲ ਉਹ ਕਿੰਨੇ ਗੁਬਾਰੇ ਭਰਦਾ ਹੈ? ਉਸ ਨੂੰ ਪੁੱਛੋ ਕਿ ਸਿਲੰਡਰ ਵਿੱਚ ਕਿਹੜੀ ਗੈਸ ਹੈ?

ਕਿਰਿਆ_____1.11

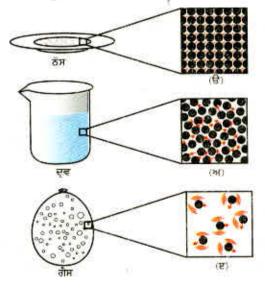

100 mL ਦੀਆਂ ਤਿੰਨ ਸਰਿਜਾਂ ਲਓ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਸਿਰੇ ਨੂੰ ਰਬੜ ਦੇ ਕਾਰਕ ਨਾਲ ਬੰਦ ਕਰ ਦਿਓ, ਜਿਵੇਂ ਚਿੱਤਰ 1.4 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਸਾਰੀਆਂ ਸਰਿਜਾਂ ਦੇ ਪਿਸਟਨਾਂ ਨੂੰ ਹਟਾ ਲਓ। ਪਹਿਲੀ ਸਰਿਜ ਵਿੱਚ ਹਵਾ ਰਹਿਣ ਦਿਓ, ਦੂਜੀ ਵਿੱਚ ਪਾਣੀ

ਅਤੇ ਤੀਜੀ ਵਿੱਚ ਚਾਕ ਦੇ ਟੁਕੜੇ ਭਰ ਦਿਓ।

ਪਿਸਟਨ ਨੂੰ ਵਾਪਸ ਸਰਿਜ ਵਿੱਚ ਲਗਾਓ। ਸਰਿਜ ਦੇ ਪਿਸਟਨ ਦੀ ਗਤੀਸ਼ੀਲਤਾ ਅਸਾਨ ਕਰਨ ਲਈ ਉਸ ਤੇ ਥੋੜ੍ਹੀ ਵੈਸਲੀਨ ਲਗਾ ਦਿਓ।

ਹੁਣ ਪਿਸਟਨ ਚਿੱਤਰ 1.4 ਨੂੰ ਸਰਿੰਜ ਵਿੱਚ ਪਾ ਕੇ ਨਪੀੜਨ (Compression) ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।


ਤੁਸੀਂ ਕੀ ਵੇਖਿਆ ? ਕਿਸ ਸਥਿਤੀ ਵਿੱਚ ਪਿਸਟਨ ਅਸਾਨੀ ਨਾਲ ਅੰਦਰ ਚਲਾ ਗਿਆ ?

ਆਪਣੇ ਪ੍ਰੇਖਣ ਤੋਂ ਤੁਸੀਂ ਕੀ ਅਨੁਮਾਨ ਲਗਾਇਆ ?

ਅਸੀਂ ਵੇਖਿਆ ਕਿ ਠੋਸਾਂ ਅਤੇ ਦ੍ਵਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਗੈਸਾਂ ਦਾ ਨਪੀੜਨ ਕਾਫ਼ੀ ਜ਼ਿਆਦਾ ਹੁੰਦਾ ਹੈ। ਸਾਡੇ ਘਰਾਂ ਵਿੱਚ ਖਾਣਾ ਬਨਾਉਣ ਵਿੱਚ ਵਰਤੀ ਜਾਣ ਵਾਲੀ ਗੈਸ ਦ੍ਵਿਤ ਪੈਟ੍ਰੋਲੀਅਮ ਗੈਸ (LPG) ਜਾਂ ਹਸਪਤਾਲਾਂ

ਵਿੱਚ ਦਿੱਤੀ ਜਾਣ ਵਾਲੀ ਆੱਕਸੀਜਨ ਸਿਲੰਡਰ ਵਿੱਚ ਨਪੀੜਤ ਗੈਸ ਹੁੰਦੀ ਹੈ।ਅੱਜ-ਕਲ੍ਹ ਵਾਹਨਾਂ ਵਿੱਚ ਬਾਲਣ ਦੇ ਰੂਪ ਵਿੱਚ ਨਪੀੜਤ ਕੁਦਰਤੀ ਗੈਸ (CNG) ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ। ਨਪੀੜਨ ਕਾਫ਼ੀ ਹੋਣ ਕਾਰਣ ਗੈਸ ਦੇ ਬਹੁਤ ਜ਼ਿਆਦਾ ਆਇਤਨ ਨੂੰ ਇੱਕ ਘੱਟ ਆਇਤਨ ਵਾਲੇ ਸਿਲੰਡਰ ਵਿੱਚ ਨਪੀੜਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਅਸਾਨੀ ਨਾਲ ਇੱਕ ਥਾਂ ਤੋਂ ਦੂਜੀ ਥਾਂ ਤੱਕ ਭੇਜਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਸਾਡੇ ਨੱਕ ਤੱਕ ਪਹੁੰਚਣ ਵਾਲੀ ਮਹਿਕ ਨੂੰ ਬਿਨਾਂ ਰਸੋਈ ਵਿੱਚ ਦਾਖਲ ਹੋਏ ਹੀ ਅਸੀਂ ਜਾਣ ਸਕਦੇ ਹਾਂ ਕਿ ਕਿਹੜਾ ਪਦਾਰਥ ਪਕਾਇਆ ਜਾ ਰਿਹਾ ਹੈ। ਇਹ ਮਹਿਕ ਸਾਡੇ ਤੱਕ ਕਿਵੇਂ ਪਹੁੰਚਦੀ ਹੈ? ਭੋਜਨ ਦੀ ਮਹਿਕ ਦੇ ਕਣ ਹਵਾ ਵਿੱਚ ਮਿਲ ਜਾਂਦੇ ਹਨ ਅਤੇ ਰਸੋਈ ਤੋਂ ਫੈਲ ਕੇ ਸਾਡੇ ਨੱਕ ਤੱਕ ਪਹੁੰਚ ਜਾਂਦੇ ਹਨ। ਇਹ ਮਹਿਕ ਦੇ ਕਣ ਹੋਰ ਵੀ ਦੂਰ ਜਾ ਸਕਦੇ ਹਨ। ਪਕੇ ਹੋਏ ਗਰਮ ਭੋਜਨ ਦੀ ਮਹਿਕ ਸਾਡੇ ਤੱਕ ਕੁਝ ਹੀ ਛਿਣਾਂ ਵਿੱਚ ਪਹੁੰਚ ਜਾਂਦੀ ਹੈ। ਇਸ ਦੀ ਤੁਲਨਾ ਠੋਸ ਅਤੇ ਦ੍ਵਾਂ ਦੇ ਪ੍ਰਸ਼ੇਣ ਨਾਲ ਕਰੋ। ਕਣਾਂ ਦੀ ਤੇਜ਼ ਗਤੀ ਅਤੇ ਬਹੁਤ ਜ਼ਿਆਦਾ ਖਾਲੀ ਥਾਵਾਂ ਦੇ ਕਾਰਣ ਗੈਸਾਂ ਦਾ ਦੂਜੀਆਂ ਗੈਸਾਂ ਵਿੱਚ ਵਿਸ਼ਰਣ ਬਹੁਤ ਤੇਜ਼ੀ ਨਾਲ ਹੁੰਦਾ ਹੈ।

ਚਿੱਤਰ 1.5 : ਓ, ਅ ਅਤੇ ੲ ਪਦਾਰਥ ਦੀਆਂ ਤਿੰਨਾਂ ਅਵਸਥਾਵਾਂ ਦੇ ਕਣਾਂ ਦਾ ਯੋਜਨਾਬੱਧ ਚਿਤਰਣ ਹੈ।ਤਿੰਨਾਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਕਣਾਂ ਦੀ ਗਤੀ ਨੂੰ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਤੁਲਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਕਣਾਂ ਦੀ ਗਤੀ ਅਨਿਯਮਿਤ ਅਤੇ ਬਹੁਤ ਤੇਜ਼ ਹੁੰਦੀ ਹੈ। ਇਸ ਅਨਿਯਮਿਤ ਗਤੀ ਦੇ ਕਾਰਣ ਇਹ ਕਣ ਆਪਸ ਵਿੱਚ ਅਤੇ ਬਰਤਨ ਦੀਆਂ ਦੀਵਾਰਾਂ ਨਾਲ ਟਕਰਾਉਂਦੇ ਹਨ। ਬਰਤਨ ਦੀ ਦੀਵਾਰ ਤੇ ਗੈਸ ਕਣਾਂ ਦੁਆਰਾ ਪ੍ਰਤੀ ਇਕਾਈ ਖੇਤਰ ਉੱਤੇ ਲੱਗੇ ਬਲ ਦੇ ਕਾਰਣ ਗੈਸ ਦਾ ਦਬਾਅ ਬਣਦਾ ਹੈ।

> ਸਨ 1. ਕਿਸੇ ਪੰਦਾਰਥ ਦੇ ਇਕਾਈ ਆਇਤਨ ਦੇ ਪੁੰਜ ਨੂੰ ਘਣਤਾ ਕਹਿੰਦੇ ਹਨ। (ਘਣਤਾ = ਪੁੰਜ/ਆਇਤਨ) ਵੱਧਦੀ ਹੋਈ ਘਣਤਾ ਦੇ ਕ੍ਰਮ ਵਿੱਚ ਹੇਠ ਲਿਖਿਆਂ

> > ਹਵਾ, ਚਿਮਨੀ ਦਾ ਧੂੰਆਂ, ਸ਼ਹਿਦ, ਪਾਣੀ, ਚਾਕ, ਰੂ ਅਤੇ ਲੋਹਾ।

- 2. (ੳ) ਪਦਾਰਥ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਅਵਸਥਾਵਾਂ ਦੇ ਗੁਣਾਂ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਔਤਰ ਨੂੰ ਸਾਰਣੀ ਬੱਧ ਕਰੋ।
 - (ਅ) ਹੇਠ ਲਿਖਿਆਂ ਤੇ ਟਿੱਪਣੀ ਕਰੋ:
 ਨਿੱਗਰਤਾ, ਦਬੀਣਯੋਗਤਾ, ਤਰਲਤਾ, ਬਰਤਨ ਵਿੱਚ ਗੈਸ ਦਾ ਭਰਨਾ, ਆਕਾਰ, ਗਤਿਜ ਉਰਜਾ ਅਤੇ ਘਣਤਾ।
- 3. ਕਾਰਣ ਦੱਸੋ-

ਨੂੰ ਦਰਸਾਓ:

- (ੳ) ਗੈਸ ਪੂਰੀ ਤਰ੍ਹਾਂ ਉਸ ਬਰਤਨ ਨੂੰ ਭਰ ਦਿੰਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਉਸ ਨੂੰ ਰਖਦੇ ਹਾਂ।
- (ਅ) ਗੈਸ ਬਰਤਨ ਦੀਆਂ ਦੀਵਾਰਾਂ 'ਤੇ ਦਬਾਅ ਪਾੳਂਦੀ ਹੈ।
- (ੲ) ਲੱਕੜ ਦੀ ਮੇਜ਼ ਠੱਸ ਅਖਵਾਉਂਦੀ ਹੈ।
- (ਸ) ਹਵਾ ਵਿੱਚ ਅਸੀਂ ਅਸਾਨੀ ਨਾਲ ਆਪਣਾ ਹੱਥ ਚਲਾ ਸਕਦੇ ਹਾਂ, ਪਰ ਇੱਕ ਠੋਸ ਲਕੜੀ ਦੇ ਟੁਕੜੇ ਵਿੱਚ ਹੱਥ ਚਲਾਉਣ ਲਈ ਸਾਨੂੰ ਕਰਾਟੇ ਦੇ ਵਿੱਚ ਮਾਹਰ ਹੋਣਾ ਪਵੇਗਾ।
- ਆਮ ਤੌਰ 'ਤੇ ਠੋਸ ਪਦਾਰਥ ਨਾਲੋਂ ਦਵਾਂ ਦੀ ਘਣਤਾ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਪਰ ਤੁਸੀਂ ਬਰਫ਼ ਦੇ ਟੁਕੜੇ ਨੂੰ ਪਾਣੀ ਉੱਤੇ ਤੈਰਦੇ ਵੇਖਿਆ ਹੋਵੇਗਾ। ਪਤਾ ਕਰੋ ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ?
- 1.4 ਕੀ ਪਦਾਰਥ ਆਪਣੀ ਅਵਸਥਾ ਨੂੰ ਬਦਲ ਸਕਦਾ ਹੈ ?(Can Matter Change Its State ?)

ਆਪਣੇ ਪ੍ਰੇਖਣ ਤੋਂ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪਾਣੀ ਤਿੰਨਾਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਰਹਿ ਸਕਦਾ ਹੈ :

ਵਿਗਿਆਨ

- ਠੋਸ, ਜਿਵੇਂ ਬਰਫ਼
- ਤਰਲ, ਜਿਵੇਂ ਪਾਣੀ
- ਗੈਂਸ, ਜਿਵੇਂ ਜਲ ਵਾਸ਼ਪ। ^{ਜਾਮਾ} ਤੋਡ

ਅਵਸਥਾ ਬਦਲਣ ਵੇਲੇ ਪਦਾਰਥ ਵਿੱਚ ਕੀ ਹੁੰਦਾ ਹੈ? ਅਵਸਥਾ ਪਰਿਵਰਤਨ ਨਾਲ ਪਦਾਰਥ ਦੇ ਕਣਾਂ 'ਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ? ਕੀ ਸਾਨੂੰ ਇਨ੍ਹਾਂ ਪ੍ਰਸ਼ਨਾਂ ਦਾ ਉੱਤਰ ਨਹੀਂ ਲੱਭਣਾ ਚਾਹੀਦਾ?

हिंगे देवता य

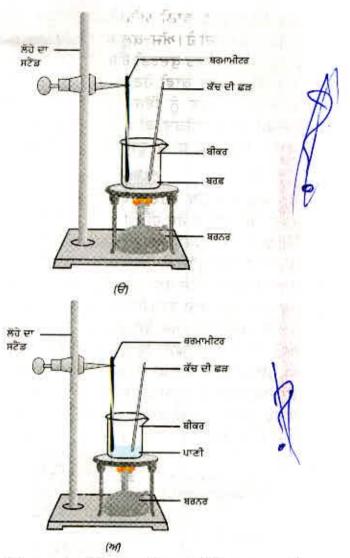
6 645 14

1.12

1.4.1 ਤਾਪਮਾਨ ਪਰਿਵਰਤਨ ਦਾ ਪ੍ਰਭਾਵ (Effect of

Change of Temperature)

ਕਿਰਿਆ_____


ਇਕ ਬੀਕਰ ਵਿੱਚ 150g ਬਰਫ਼ ਦਾ ਟੁਕੜਾ ਲਓ ਅਤੇ ਚਿੱਤਰ 1.6 ਅਨੁਸਾਰ ਉਸ ਵਿੱਚ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਥਰਮਾਮੀਟਰ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਟਕਾਓ ਕਿ ਬਰਮਾਮੀਟਰ ਦਾ ਬਲਬ ਬਰਫ਼ ਨੂੰ ਫ਼ੂਹ ਰਿਹਾ ਹੋਵੇ।

- ਘੱਟ ਸੇਕ ਤੇ ਬੀਕਰ ਨੂੰ ਗਰਮ ਕਰਨਾ ਸ਼ੁਰੂ ਕਰੋ। ਜਦੋਂ ਬਰਫ਼ ਪਿਘਲਣ ਲੱਗੇ ਤਾਂ ਤਾਪਮਾਨ ਨੇਟ ਕਰ ਲਓ।
- ਜਦੋਂ ਪੂਰੀ ਬਰਫ਼ ਪਾਣੀ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਵੇ ਤਾਂ ਫਿਰ ਤਾਪਮਾਨ ਨੋਟ ਕਰੋ।
- ਠੱਸ ਤੋਂ ਦ੍ਰਵ ਅਵਸਥਾ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਪਰਿਵਰਤਨ ਵਿੱਚ ਪ੍ਰੇਖਣ ਨੂੰ ਨੋਟ ਕਰੇ।

ਹੁਣ ਬੀਕਰ ਵਿੱਚ ਇੱਕ ਕੱਚ ਦੀ ਛੜ ਪਾਓ ਅਤੇ ਹਿਲਾਉਂਦੇ ਹੋਏ ਗਰਮ ਕਰੋ, ਜਦੋਂ ਤੱਕ ਪਾਣੀ ਉਬਲਣ ਨਾ ਲੱਗੇ। ਥਰਮਾਮੀਟਰ ਦੇ ਮਾਪ ਤੇ ਪੂਰੀ ਤਰ੍ਹਾਂ ਨਜ਼ਰ ਰੱਖੋ ਜਦ ਤਕ ਕਿ ਕਾਫ਼ੀ ਜਲਵਾਸ਼ਪ ਨਾ ਬਣ ਜਾਣ।

ਪਾਣੀ ਦੀ ਦ੍ਰਵ ਅਵਸਥਾ ਤੋਂ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਵਿੱਚ ਪ੍ਰੇਖਣ ਨੂੰ ਨੋਟ ਕਰੋ।

ਠੋਸ ਦੇ ਤਾਪਮਾਨ ਨੂੰ ਵਧਾਉਣ ਤੇ ਉਸਦੇ ਕਣਾਂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਗਤਿਜ ਊਰਜਾ ਵਧਣ ਨਾਲ ਕਣ ਵਧੇਰੇ ਤੇਜ਼ੀ ਨਾਲ ਕੰਬਣ ਲੱਗ ਪੈਂਦੇ ਹਨ। ਗਰਮੀ ਦੇ ਕਾਰਣ ਦਿੱਤੀ ਹੋਈ ਊਰਜਾ, ਕਣਾਂ ਦੇ ਵਿੱਚ ਆਕਰਸ਼ਣ ਬਲ ਨੂੰ ਪਾਰ ਕਰ ਲੈਂਦੀ ਹੈ। ਇਸ ਕਾਰਣ ਕਣ ਆਪਣੇ ਨਿਯਤ ਸਥਾਨ ਨੂੰ ਛੱਡ ਕੇ ਵਧੇਰੇ ਸੁਤੰਤਰ ਹੋ ਕੇ ਗਤੀ ਕਰਨ ਲੱਗ ਪੈਂਦੇ ਹਨ। ਇਕ ਅਵਸਥਾ ਅਜਿਹੀ ਆਉਂਦੀ ਹੈ, ਜਦੋਂ ਨੋਸ ਪਿਘਲ ਕੇ ਦ੍ਵ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਜਿਸ ਤਾਪਮਾਨ ਤੋ ਠੋਸ

ਚਿੱਤਰ 1.6 : (ੳ) ਬਰਫ਼ ਦੀ ਪਾਣੀ ਵਿੱਚ ਬਦਲਣ ਦੀ ਪ੍ਰਕਿਰਿਆ (ਅ) ਪਾਣੀ ਤੋਂ ਜਲ ਵਾਸ਼ਪ ਵਿੱਚ ਬਦਲਣ ਦੀ ਪ੍ਰਕਿਰਿਆ

ਪਿਘਲ ਕੇ ਦ੍ਰਵ ਬਣ ਜਾਂਦਾ ਹੈ, ਉਹ ਇਸ ਦਾ ਪਿਘਲਣ ਅੰਕ (melting point) ਅਖਵਾਉਂਦਾ ਹੈ।

ਕਿਸੇ ਠੋਸ ਦਾ ਪਿਘਲਣ ਔਕ (melting Point) ਉਸਦੇ ਕਣਾਂ ਵਿਚਲੇ ਆਕਰਸ਼ਣ ਬਲ ਦੀ ਮਜ਼ਬੂਤੀ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।

ਬਰਫ਼ ਦਾ ਪਿਘਲਣ ਦਰਜਾ 273.16 K^{*} ਹੈ। ਪਿਘਲਣ ਦੀ ਪ੍ਰਕਿਰਿਆ, ਭਾਵ ਠੋਸ ਤੋਂ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ

*ਨੋਟ :- ਤਾਪਮਾਨ ਦੀ ਅੰਤਰਰਾਸ਼ਟਰੀ (SI) ਇਕਾਈ ਕੈਲਵਿਨ (K) ਹੈ। 0⁴C = 273.16 K ਹੁੰਦਾ ਹੈ। ਸੁਵਿਧਾ ਲਈ ਅਸੀਂ ਦਸ਼ਮਲਵ ਦਾ ਪੂਰਣ ਅੰਕ ਬਣਾ ਕੇ 0⁴C = 273 K ਹੀ ਮੰਨਦੇ ਹਾਂ। ਤਾਪਮਾਨ ਦਾ ਮਾਪ ਕੈਲਵਿਨ ਤੋਂ ਸੈਲਸਿਅਸ ਵਿੱਚ ਬਦਲਣ ਲਈ ਦਿੱਤੇ ਹੋਏ ਤਾਪਮਾਨ ਵਿੱਚੋਂ 273 ਘਟਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਸੈਲਸਿਅਸ ਤੋਂ ਕੈਲਵਿਨ ਵਿੱਚ ਬਦਲਣ ਲਈ 273 ਜੋੜ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ।

ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ

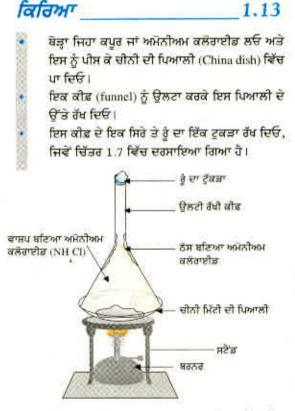
Downloaded from https:// www.studiestoday.cd

· · · · · · · · ·

ਪਰਿਵਰਤਨ ਨੂੰ ਪਿਘਲਣ (Melting) ਵੀ ਕਹਿੰਦੇ ਹਨ। ਕਿਸੇ ਠੋਸ ਦੇ ਪਿਘਲਣ ਦੀ ਪ੍ਰਕਿਰਿਆਂ ਸਮੇਂ ਤਾਪਮਾਨ ਸਮਾਨ ਰਹਿੰਦਾ ਹੈ, ਅਜਿਹੇ ਵਿੱਚ ਤਾਪ ਊਰਜਾ ਕਿੱਥੇ ਜਾਂਦੀ ਹੈ ?

ਪਿਘਲਣ ਦੇ ਪਯੋਗ ਦੀ ਪਕਿਰਿਆ ਦੌਰਾਨ ਤੁਸੀਂ ਧਿਆਨ ਦਿੱਤਾ ਹੋਵੇਗਾ ਕਿ ਪਿਘਲਣ ਦਰਜਾ ਪਹੁੰਚਣ ਤੋਂ ਬਾਅਦ, ਜਦ ਤੱਕ ਪੂਰੀ ਬਰਫ਼ ਪਿਘਲ ਨਹੀਂ ਜਾਂਦੀ, ਤਾਪਮਾਨ ਨਹੀਂ ਬਦਲਦਾ। ਬੀਕਰ ਨੂੰ ਤਾਪ ਪ੍ਰਦਾਨ ਕਰਨ ਦੇ ਬਾਵਜਦ ਵੀ ਤਾਪਮਾਨ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ। ਕਣਾਂ ਦੇ ਆਪਸੀ ਆਕਰਸ਼ਣ ਬਲ ਨੂੰ ਕਾਬ ਕਰਕੇ ਪਦਾਰਥ ਦੀ ਅਵਸਥਾ ਨੂੰ ਬਦਲਣ ਵਿੱਚ ਇਸ ਤਾਪ ਦਾ ਪਯੋਗ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਤਾਪਮਾਨ ਵਿੱਚ ਬਿਨਾ ਕਿਸੇ ਤਰ੍ਹਾਂ ਦਾ ਵਾਧਾ ਦਰਸਾਏ ਇਸ ਤਾਪ ਉਰਜਾ ਨੂੰ ਬਰਫ਼ ਸੋਖ ਲੈਂਦੀ ਹੈ, ਇਹ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਇਹ ਬੀਕਰ ਵਿੱਚ ਲਈ ਗਈ ਸਮੱਗਰੀ ਵਿੱਚ ਛਪੀ ਰਹਿੰਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਗੁਪਤ ਤਾਪ (latent heat) ਕਹਿੰਦੇ ਹਨ। ਇੱਥੇ ਗਪਤ ਦਾ ਭਾਵ ਛੁਪੀ ਹੋਈ ਤੋਂ ਹੈ। ਵਾਯਮੰਡਲੀ ਦਬਾਅ ਤੇ 1 ਕਿਲੋ ਠੋਸ ਨੂੰ ਉਸ ਦੇ ਪਿਘਲਣ ਦਰਜੇ ਤੇ ਦ੍ਵ ਵਿੱਚ ਬਦਲਣ ਲਈ ਜਿੰਨੀ ਤਾਪ ਉਰਜਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਉਸ ਨੂੰ ਪਿਘਲਣ ਦਾ ਗੁਪਤ ਤਾਪ ਕਹਿੰਦੇ ਹਨ, ਭਾਵ 0°C (273K) ਤੇ ਪਾਣੀ ਦੇ ਕਣਾਂ ਦੀ ਉਰਜਾ ਉਸੇ ਤਾਪਮਾਨ ਤੇ ਬਰਫ਼ ਦੇ ਕਣਾਂ ਦੀ ਉਰਜਾ ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ।

ਜਦੋਂ ਅਸੀਂ ਪਾਣੀ ਨੂੰ ਤਾਪ ਊਰਜਾ ਦਿੰਦੇ ਹਾਂ ਤਾਂ ਕਣ ਵਧੇਰੇ ਤੇਜ਼ੀ ਨਾਲ ਗਤੀ ਕਰਦੇ ਹਨ। ਇਕ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਤੇ ਪਹੁੰਚ ਕੇ ਕਣਾਂ ਵਿੱਚ ਇੰਨੀ ਊਰਜਾ ਆ ਜਾਂਦੀ ਹੈ ਕਿ ਉਹ ਆਪਸੀ ਆਕਰਸ਼ਣ ਬਲ ਨੂੰ ਤੋੜ ਕੇ ਸੁਤੰਤਰ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਤਾਪਮਾਨ ਤੇ ਦ੍ਵ ਗੈਸ ਵਿੱਚ ਬਦਲਣਾ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦਾ ਹੈ। ਵਾਯੂਮੰਡਲੀ ਦਬਾਅ ਤੇ ਉਹ ਤਾਪਮਾਨ ਜਿਸ ਤੇ ਦ੍ਵ ਉਬਲਣ ਲੱਗਦਾ ਹੈ ਉਸ ਨੂੰ **ਉਬਾਲ ਦਰਜਾ** (boiling point) ਆਖਦੇ ਹਨ। ਉਬਲਣਾ ਸਮਸ਼ਟੀ ਗੁਣ ਹੈ। ਦ੍ਵ ਦੇ ਸਾਰੇ ਕਣਾਂ ਨੂੰ ਇੰਨੀ ਊਰਜਾ ਮਿਲ ਜਾਂਦੀ ਹੈ ਕਿ ਉਹ ਵਾਸ਼ਪਾਂ ਵਿੱਚ ਬਦਲ ਜਾਂਦੇ ਹਨ।


ਪਾਣੀ ਦੇ ਲਈ ਇਹ ਤਾਪਮਾਨ 373 K (100 ℃ = 273 + 100 = 373 K) ਹੈ।

ਕੀ ਤੁਸੀਂ ਵਾਸ਼ਪੀਕਰਣ ਦੇ ਗੁਪਤ ਤਾਪ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹੋ? ਇਸ ਨੂੰ ਉਸੇ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ, ਜਿਵੇਂ ਅਸੀਂ ਪਿਘਲਣ ਦੇ ਗੁਪਤ ਤਾਪ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਹੈ। 373 K (100°C) ਤਾਪਮਾਨ ਤੇ ਭਾਫ਼ ਭਾਵ ਵਾਸ਼ਪ ਦੇ ਕਣਾਂ ਵਿੱਚ ਉਸੇ ਤਾਪਮਾਨ ਤੇ ਪਾਣੀ ਦੇ ਕਣਾਂ ਦੀ ਬਜਾਏ ਵਧੇਰੇ ਊਰਜਾ ਹੁੰਦੀ ਹੈ। ਇਹ ਇਸ ਲਈ ਹੈ, ਕਿਉਂਕਿ ਭਾਫ਼ ਦੇ ਕਣਾਂ ਨੇ ਵਾਸ਼ਪੀਕਰਣ ਦੇ ਗੁਪਤ ਤਾਪ ਦੇ ਰੂਪ ਵਿੱਚ ਵਾਧੂ ਤਾਪ ਸੋਖ ਲਿਆ ਹੈ।

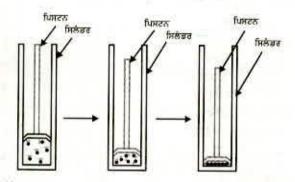
ਇਸ ਲਈ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਤਾਪਮਾਨ ਬਦਲ ਕੇ ਅਸੀਂ ਪਦਾਰਥ ਨੂੰ ਇਕ ਅਵਸਥਾ ਤੋਂ ਦੂਜੀ ਅਵਸਥਾ ਵਿੱਚ ਬਦਲ ਸਕਦੇ ਹਾਂ।

ਅਸੀਂ ਸਿੱਖਿਆ ਕਿ ਗਰਮ ਕਰਨ ਤੇ ਪਦਾਰਥ ਦੀ ਅਵਸਥਾ ਬਦਲ ਜਾਂਦੀ ਹੈ। ਗਰਮ ਹੋਣ ਤੇ ਇਹ ਠੋਸ ਤੋਂ ਦ੍ਵ ਅਤੇ ਦ੍ਵ ਤੋਂ ਗੈਸ ਬਣ ਜਾਂਦੇ ਹਨ। ਪਰ ਕੁਝ ਅਜਿਹੇ ਪਦਾਰਥ ਹਨ, ਜੋ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋਏ ਬਿਨਾਂ, ਠੋਸ ਅਵਸਥਾ ਤੋਂ ਸਿੱਧੇ ਗੈਸ ਵਿੱਚ ਅਤੇ ਵਾਪਸ ਠੋਸ ਵਿੱਚ ਬਦਲ ਜਾਂਦੇ ਹਨ।

ਚਿੱਤਰ 1.7 : ਅਮੋਨੀਅਮ ਕਲੌਰਾਈਡ ਦੇ ਜੌਹਰ ਉਡਾਉਣਾ (Sublimation of NH_Cl)

ਵਿਗਿਆਨ

*201121*C

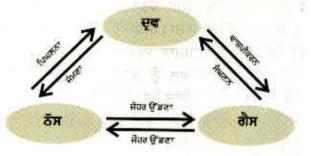

ਹੁਣ ਚੀਨੀ ਦੀ ਪਿਆਲੀ ਨੂੰ ਹੌਲ਼ੀ∽ਹੌਲ਼ੀ ਗਰਮ ਕਰੋ ਅਤੇ ਧਿਆਨ ਨਾਲ ਵੇਖੋ।

ਉਪਰੋਕਤ ਕਿਰਿਆ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹੋ ?

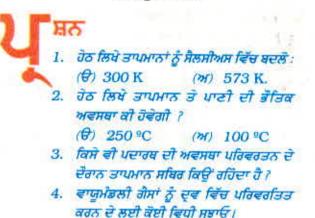
ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋਏ ਬਿਨਾਂ ਠੋਸ ਅਵਸਥਾ ਤੋਂ ਸਿੱਧੇ ਗੈਸ ਅਤੇ ਵਾਪਸ ਠੋਸ ਵਿੱਚ ਬਦਲਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਜੌਹਰ ਉਡਾਉਣ ਕਿਰਿਆ (sublimation) ਕਹਿੰਦੇ ਹਨ।

1.4.2 ਦਬਾਅ ਪਰਿਵਰਤਨ ਦਾ ਪ੍ਰਭਾਵ (Effect of Change of Pressure)

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਘਟਕ ਕਣਾਂ ਦੇ ਵਿਚਲੀ ਦੂਰੀ ਵਿੱਚ ਅੰਤਰ ਹੋਣ ਦੇ ਕਾਰਣ ਪਦਾਰਥਾਂ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਅੰਤਰ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਿਲੰਡਰ ਵਿੱਚ ਭਰੀ ਗੈਸ ਤੇ ਦਬਾਅ ਲਗਾਉਣ ਅਤੇ ਨਪੀੜਨ ਤੇ ਕੀ ਹੋਵੇਗਾ? ਕੀ ਇਸ ਦੇ ਕਣਾਂ ਵਿੱਚ ਦੂਰੀ ਘੱਟ ਹੋ ਜਾਵੇਗੀ? ਕੀ ਤੁਹਾਨੂੰ ਲੱਗਦਾ ਹੈ ਕਿ ਦਬਾਅ ਵਧਾਉਣ ਜਾਂ ਘਟਾਉਣ


ਚਿੱਤਰ 1.8 ਦਬਾਅ ਵਧਣ ਤੇ ਪਦਾਰਥ ਦੇ ਕਣਾਂ ਨੂੰ ਨੇੜੇ ਲਿਆਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਨਾਲ ਪਦਾਰਥ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋ ਸਕਦਾ ਹੈ ?


ਦਬਾਅ ਦੇ ਵਧਣ ਅਤੇ ਤਾਪਮਾਨ ਦੇ ਘਟਣ ਨਾਲ ਗੈਸ ਦ੍ਵ ਵਿੱਚ ਬਦਲ ਜਾਂਦੀ ਹੈ।

ਕੀ ਤੁਸੀਂ ਠੋਸ ਕਾਰਬਨ ਡਾਈਆਂਕਸਾਈਡ (CO₂) ਬਾਰੇ ਸੁਣਿਆ ਹੈ? ਇਸ ਨੂੰ ਉੱਚੇ ਦਬਾਅ ਤੇ ਸਟੋਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜਦੋਂ ਵਾਯੂਮੰਡਲੀ ਦਬਾਅ ਦਾ ਮਾਪ ਇੱਕ ਐਟਮਾਸਫੀਅਰ ਹੋਵੇ, ਤਾਂ ਠੋਸ CO₂ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਆਏ ਬਿਨ੍ਹਾਂ ਸਿੱਧੇ ਗੈਸ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਹੀ ਕਾਰਣ ਹੈ ਕਿ ਠੋਸ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਨੂੰ ਖੁਸ਼ਕ ਬਰਫ਼ (dry ice) ਕਹਿੰਦੇ ਹਨ।

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਪਦਾਰਥ ਦੀਆਂ ਅਵਸਥਾਵਾਂ ਭਾਵ ਠੋਸ ਦ੍ਵ ਅਤੇ ਗੈਸ, ਦਬਾਅ ਅਤੇ ਤਾਪਮਾਨ ਰਾਹੀਂ ਤੈਅ ਹੁੰਦੀਆਂ ਹਨ।

ਚਿੱਤਰ 1.9 : ਤਿੰਨਾਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਪਦਾਰਥ ਦਾ ਅੰਤਰ ਰੁਪਾਂਤਰਣ

400 C DCI 4CI Te4I <u>1</u>2-01

1.5 ਵਾਸ਼ਪੀਕਰਣ (Evaporisation)

ਪਦਾਰਥ ਦੀ ਅਵਸਥਾ ਬਦਲਣ ਲਈ ਕੀ ਹਮੇਸ਼ਾ ਤਾਪ ਦੇਣ ਜਾਂ ਦਬਾਅ ਬਦਲਣਾ ਜ਼ਰੂਰੀ ਹੈ? ਕੀ ਤੁਸੀਂ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚੋਂ ਕੋਈ ਅਜਿਹੀ ਉਦਾਹਰਣ ਦੇ ਸਕਦੇ ਹੋ ਜਿਸ ਵਿੱਚ ਬਿਨਾਂ ਉਬਾਲ ਦਰਜੇ ਤੇ ਪਹੁੰਚੇ ਹੋਏ ਕੋਈ ਦ੍ਵ ਵਾਸ਼ਪ ਅਵਸਥਾ ਵਿੱਚ ਬਦਲ ਜਾਂਦਾ ਹੈ। ਪਾਣੀ ਨੂੰ ਖੁੱਲ੍ਹਾ ਛੱਡਣ ਤੇ ਇਹ ਹੌਲ਼ੀ-ਹੌਲ਼ੀ ਵਾਸ਼ਪ ਵਿੱਚ

*ਨੋਟ:- ਐਂਟਮਾਸਫੀਅਰ ਗੈਸੀ ਦਬਾਅ ਦੇ ਮਾਪਨ ਦੀ ਇਕਾਈ ਹੈ। ਦਬਾਅ ਦੀ SI ਇਕਾਈ ਪਾਸਕਲ (Pa) ਹੈ। 1 atm = 1.01 x 10⁵ Pa1 ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਹਵਾ ਦਾ ਦਬਾਅ ਵਾਯੂਮੰਡਲੀ ਦਬਾਅ ਅਖਵਾਉਂਦਾ ਹੈ। ਸਮੁੰਦਰ ਦੇ ਤਲ ਦਾ ਵਾਯੂਮੰਡਲੀ ਦਬਾਅ ਇੱਕ ਐਟਮਾਸਫੀਅਰ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਨਾੱਰਮਲ (normal) ਦਬਾਅ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ

ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਗਿੱਲੇ ਕੱਪੜੇ ਸ਼ੁੱਕ ਜਾਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚ ਪਾਣੀ ਨੂੰ ਕੀ ਹੋਇਆ?

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪਦਾਰਥ ਦੇ ਕਣ ਹਮੇਸ਼ਾਂ ਗਤੀਸ਼ੀਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਕਦੇ ਰੁਕਦੇ ਨਹੀਂ। ਇੱਕ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਤੇ ਗੈਸ, ਦ੍ਵ ਜਾਂ ਗੈਸ ਦੇ ਕਣਾਂ ਵਿੱਚ ਵੱਖ ਵੱਖ ਮਾਤਰਾ ਵਿੱਚ ਗਤਿਜ ਊਰਜਾ ਹੁੰਦੀ ਹੈ । ਦ੍ਵ ਦੀ ਸਤ੍ਹਾ ਤੇ ਮੌਜੂਦ ਕਣਾਂ ਦੇ ਕੁਝ ਅੰਸ਼ਾਂ ਵਿੱਚ ਗਤਿਜ ਊਰਜਾ ਹੁੰਦੀ ਹੈ ਕਿ ਉਹ ਦੂਜੇ ਕਣਾਂ ਦੇ ਆਕਰਸ਼ਣ ਬਲ (force of attraction) ਤੋਂ ਮੁਕਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਉਬਾਲ ਦਰਜੇ ਤੋਂ ਘੱਟ ਤਾਪਮਾਨ ਤੇ ਦ੍ਵਾਂ ਦੇ ਵਾਸ਼ਪਾਂ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋਣ ਦੀ ਇਸ ਕਿਰਿਆ ਨੂੰ **ਵਾਸ਼ਪੀਕਰਣ** (Evaporisation) ਕਹਿੰਦੇ ਹਨ।

1.5.1 ਵਾਸ਼ਪੀਕਰਣ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੇ

ব'বব (Factors Affecting Evaporisation)

ਇੱਕ ਕਿਰਿਆ ਦੇ ਮਾਧਿਅਮ ਨਾਲ ਇਸ ਨੂੰ ਸਮਝਦੇ ਹਾਂ।

ਕਿਰਿਆ

1.14

ਇੱਕ ਪਰਖਨਲੀ ਵਿੱਚ 5mL ਪਾਣੀ ਲਓ ਅਤੇ ਇਸ ਨੂੰ ਖਿੜਕੀ ਦੇ ਕੋਲ ਜਾਂ ਪੱਖੇ ਦੇ ਥੱਲੇ ਰੱਖ ਦਿਓ।

ਖੁੱਲ੍ਹੀ ਰੱਖੀ ਚੀਨੀ ਮਿੱਟੀ ਦੀ ਪਿਆਲੀ ਵਿੱਚ 5mL ਪਾਣੀ ਪਾ ਕੇ ਉਸ ਨੂੰ ਆਪਣੀ ਜਮਾਤ ਦੀ ਕਿਸੇ ਅਲਮਾਰੀ ਦੇ ਅੰਦਰ ਰੱਖੋ।

- ਕਮਰੇ ਦਾ ਤਾਪਮਾਨ ਨੋਟ ਕਰੇ।
- ਇਨ੍ਹਾਂ ਸਾਰੀਆਂ ਹਾਲਤਾਂ ਵਿੱਚ ਵਾਸ਼ਪੀਕਰਣ ਵਿੱਚ ਲੱਗੇ ਸਮੇਂ ਜਾਂ ਦਿਨਾਂ ਨੂੰ ਵੀ ਨੋਟ ਕਰੋ।

ਬਰਸਾਤ ਦੇ ਦਿਨਾਂ ਵਿੱਚ ਵੀ ਇਨ੍ਹਾਂ ਕਿਰਿਆਵਾਂ ਨੂੰ ਕਰਕੇ ਆਪਣੇ ਪ੍ਰੇਖਣ ਲਿਖੇ।

ਵਾਸ਼ਪੀਕਰਣ ਦੇ ਹੇਠ ਲਿਖੇ ਤੱਥਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਅਨੁਮਾਨ ਲਾ ਸਕਦੇ ਹੋ ? ਤਾਪਮਾਨ ਦਾ ਪ੍ਰਭਾਵ, ਸਤ੍ਹਾ <mark>ਦਾ</mark> ਖੇਤਰਫਲ ਅਤੇ ਹਵਾ ਦੀ ਚਾਲ।

ਤੁਸੀਂ ਧਿਆਨ ਦਿੱਤਾ ਹੋਵੇਗਾ ਕਿ ਵਾਸ਼ਪੀਕਰਨ ਦੀ ਦਰ ਹੇਠ ਲਿਖਿਆਂ ਨਾਲ ਵਧਦੀ ਹੈ

 ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਵਧਣ ਨਾਲ : ਹੁਣ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਵਾਸ਼ਪੀਕਰਣ ਇਕ ਸਤਹੀ ਪ੍ਰਕਿਰਿਆ ਹੈ। ਸਤਹੀ ਖੇਤਰਫਲ (surface area) ਵਧਣ ਤੇ ਵਾਸ਼ਪੀਕਰਣ ਦੀ ਦਰ ਵੀ ਵਧ ਜਾਂਦੀ ਹੈ। ਜਿਵੇਂ ਕੱਪੜੇ ਸੁਕਾਉਣ ਲਈ ਅਸੀਂ ਉਨ੍ਹਾਂ ਨੂੰ ਖਿਲਾਰ ਦਿੰਦੇ ਹਾਂ।

- ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧਾ : ਤਾਪਮਾਨ ਵਧਣ ਤੇ ਵਧੇਰੇ ਕਣਾਂ ਨੂੰ ਗਤਿਜ ਊਰਜਾ, ਮਿਲਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਉਹ ਵਾਸ਼ਪੀਕਿਤ ਹੋ ਜਾਂਦੇ ਹਨ।
- ਹਵਾ ਦੀ ਨਮੀ ਵਿੱਚ ਕਮੀ : ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਜਲਵਾਸ਼ਪਾਂ ਦੀ ਮਾਤਰਾ ਨੂੰ ਨਮੀ (humidity) ਕਹਿੰਦੇ ਹਨ। ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਤੇ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੀ ਹਵਾ ਵਿੱਚ ਇੱਕ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਵਿੱਚ ਹੀ ਜਲ ਵਾਸ਼ਪ ਹੁੰਦੇ ਹਨ। ਜਦੋਂ ਹਵਾ ਵਿੱਚ ਪਾਣੀ ਦੇ ਕਣਾਂ ਦੀ ਮਾਤਰਾ ਪਹਿਲਾਂ ਹੀ ਜ਼ਿਆਦਾ ਹੋਵੇਗੀ, ਤਾਂ ਵਾਸ਼ਪੀਕਰਣ ਦੀ ਦਰ ਘੱਟ ਜਾਵੇਗੀ।
- ਹਵਾ ਦੀ ਗਤੀ ਵਿੱਚ ਵਾਧਾ : ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਤੇਜ਼ ਹਵਾ ਵਿੱਚ ਕੱਪੜੇ ਜਲਦੀ ਸ਼ੁੱਕ ਜਾਂਦੇ ਹਨ। ਹਵਾ ਦੇ ਤੇਜ਼ ਹੋਣ ਨਾਲ ਜਲ ਵਾਸ਼ਪ ਦੇ ਕਣ ਹਵਾ ਨਾਲ ਉੱਡ ਜਾਂਦੇ ਹਨ ਜਿਸ ਨਾਲ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਜਲ ਵਾਸ਼ਪਾਂ ਦੀ ਮਾਤਰਾ ਘੱਟ ਜਾਂਦੀ ਹੈ।

1.5.2 ਵਾਸ਼ਪੀਕਰਣ ਦੇ ਕਾਰਣ ਠੰਡਕ ਕਿਵੇਂ ਹੁੰਦੀ ਹੈ ?

ਖੁੱਲ੍ਹੇ ਬਰਤਨ ਵਿੱਚ ਰੱਖੇ ਦ੍ਵ ਵਿੱਚ ਨਿਰੰਤਰ ਵਾਸ਼ਪੀਕਰਣ ਹੁੰਦਾ ਰਹਿੰਦਾ ਹੈ।ਵਾਸ਼ਪੀਕਰਣ ਦੌਰਾਨ ਘੱਟ ਹੋਈ ਊਰਜਾ ਨੂੰ ਦੁਬਾਰਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਦ੍ਵ ਦੇ ਕਣ ਆਪਣੇ ਆਲ਼ੇ-ਦੁਆਲ਼ੇ ਤੋਂ ਊਰਜਾ ਸੋਖ ਲੈਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਆਸ਼-ਪਾਸ ਤੋਂ ਊਰਜਾ ਸੋਖਣ ਨਾਲ ਠੰਡ ਹੋ ਜਾਂਦੀ ਹੈ।

ਜਦੋਂ ਤੁਸੀਂ ਐਸੀਟੋਨ (ਜਾਂ ਨਹੂੰਆਂ ਤੋਂ ਪਾਲਿਸ਼ ਹਟਾਉਣ ਵਾਲੇ ਦ੍ਵ) ਨੂੰ ਆਪਣੀ ਹਥੇਲੀ 'ਤੇ ਪਾਉਂਦੇ ਹੋ ਤਾਂ ਕੀ ਹੁੰਦਾ ਹੈ ? ਇਸ ਦੇ ਕਣ ਤੁਹਾਡੀ ਹਥੇਲੀ ਜਾਂ ਉਸ ਦੇ ਆਲੇ ਦੁਆਲੇ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦੇ ਹਨ ਅਤੇ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੇ ਹਨ ਜਿਸ ਨਾਲ ਹਥੇਲੀ 'ਤੇ ਠੰਡਕ ਮਹਿਸਸ ਹੰਦੀ ਹੈ।

ਤੇਜ਼ ਧੁੱਪ ਵਾਲੇ ਗਰਮ ਦਿਨ ਦੇ ਬਾਅਦ ਲੋਕ ਆਪਣੀ ਛੱਤ ਜਾਂ ਖੁੱਲ੍ਹੇ ਥਾਂ ਤੇ ਪਾਣੀ ਛਿੜਕਦੇ ਹਨ। ਕਿਉਂਕਿ ਪਾਣੀ ਦੇ ਵਾਸ਼ਪੀਕਰਣ ਦਾ ਗੁਪਤ ਤਾਪ ਗਰਮ ਸਤ੍ਹਾ ਨੂੰ ਠੰਡਾ ਬਣਾਉਂਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਵਾਸ਼ਪੀਕਰਣ ਦੇ ਕਾਰਣ ਠੰਡੇ ਹੋਣ ਦੇ ਹੋਰ ਉਦਾਹਰਣ ਦੇ ਸਕਦੇ ਹੋ?

ਗਰਮੀਆਂ ਵਿੱਚ ਸਾਨੂੰ ਸੂਤੀ ਕੱਪੜੇ ਕਿਉਂ ਪਹਿਨਣੇ ਚਾਹੀਦੇ ਹਨ ?

ਸਰੀਰਕ ਕਿਰਿਆ ਕਾਰਣ ਗਰਮੀਆਂ ਵਿੱਚ ਸਾਨੂੰ ਜ਼ਿਆਦਾ ਪਸੀਨਾ ਆਉਂਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਸਾਨੂੰ ਠੰਡਕ

ਵਿਗਿਆਨ

10

ਹੁਣ ਵਿਗਿਆਨੀ ਪਦਾਰਥ ਦੀਆਂ ਪੰਜ ਅਵਸਥਾਵਾਂ ਦੀ ਚਰਚਾ ਕਰ ਰਹੇ ਹਨ; ਬੋਸ ਆਈਂਸਟਾਈਨ ਕੰਡਨਸੇਟ (BEC) ਠੋਸ, ਦਵ, ਗੈਸ, ਪਲਾਜ਼ਮਾ।

ਪਲਾਜ਼ਮਾ - ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਕਣ ਬਹੁਤ ਜ਼ਿਆਦਾ ਊਰਜਾ ਵਾਲੇ ਅਤੇ ਵਧੇਰੇ ਉਤੇਜਿਤ ਹੁੰਦੇ ਹਨ। ਇਹ ਕਣ ਆਇਨੀਕ੍ਰਿਤ ਗੈਸ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਫਲੋਰੇਸੈਂਟ ਟਿਊਬ ਅਤੇ ਨੀਆੱਨ ਬਲਬ ਵਿੱਚ ਪਲਾਜ਼ਮਾ ਹੁੰਦਾ ਹੈ। ਨੀਆੱਨ ਬਲਬ ਦੇ ਅੰਦਰ ਨੀਆੱਨ ਗੈਸ ਅਤੇ ਫਲੋਰੇਸੈਂਟ ਟਿਊਬ ਦੇ ਅੰਦਰ ਹੀਲੀਅਮ ਜਾਂ ਕੋਈ ਹੋਰ ਅਕਿਰਿਆਸ਼ੀਲ ਗੈਸ ਹੁੰਦੀ ਹੈ। ਬਿਜਲਈ ਊਰਜਾ ਲੰਘਣ ਨਾਲ ਇਹ ਗੈਸ ਆਇਨੀਕ੍ਰਿਤ ਭਾਵ ਚਾਰਜਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਚਾਰਜਿਤ ਹੋਣ ਨਾਲ ਟਿਊਬ ਜਾਂ ਬਲੂਬ ਦੇ ਅੰਦਰ ਚਮਕੀਲਾ ਪਲਾਜ਼ਮਾ ਤਿਆਰ ਹੁੰਦਾ ਹੈ। ਗੈਸ ਦੇ ਸੁਭਾਅ ਅਨੁਸਾਰ ਇਸ ਪਲਾਜ਼ਮਾਂ ਵਿੱਚ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਰੰਗ ਦੀ ਚਮਕ ਹੁੰਦੀ ਹੈ। ਪਲਾਜ਼ਮਾ ਦੇ ਕਾਰਣ ਹੀ ਸੂਰਜ ਅਤੇ ਤਾਰਿਆਂ ਵਿੱਚ ਵੀ ਚਮਕ ਹੁੰਦੀ ਹੈ। ਉੱਚੇ ਤਾਪਮਾਨ ਦੇ ਕਾਰਣ ਹੀ ਤਾਰਿਆਂ ਵਿੱਚ ਪਲਾਜ਼ਮਾ ਬਣਦਾ ਹੈ।

ਬਸ-ਆਈਂਸਟਾਈਨ ਕੰਡਨਸੇਟ— ਸੰਨ 1920 ਵਿੱਚ ਭਾਰਤੀ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਸਤਯੇਂਦਰ ਨਾਥ ਬੋਸ ਨੇ

ਐਲਬਰਟ

ਐਸ.ਐਨ. ਬੋਸ (1894 - 1974)

ਇਸਨੂੰ ਵੀ ਜਾਣੇ

ਐਲਬਰਟ ਆਈਸਟਾਈਨ (1879 - 1955) ਪਦਾਰਥ ਦੀ ਪੰਜਵੀਂ ਅਵਸਥਾ ਦੇ ਲਈ ਗਣਨਾਵਾਂ ਕੀਤੀਆਂ ਸਨ। ਉਨ੍ਹਾਂ ਗਣਨਾਵਾਂ ਦੇ ਅਧਾਰ ਤੇ ਅਲਬਰਟ ਆਈਂਸਟਾਈਨ ਨੇ ਪਦਾਰਥ ਦੀ ਇੱਕ ਨਵੀਂ ਅਵਸਥਾ ਦੀ ਭਵਿੱਖਬਾਣੀ ਕੀਤੀ ਜਿਸ ਨੂੰ ਬੋਸ ਆਈਂਸਟਾਈਨ ਕੰਡਨਸੇਟ (BEC) ਕਿਹਾ ਗਿਆ। ਸੰਨ 2001 ਵਿੱਚ ਅਮਰੀਕਾ ਦੇ ਏਰਿਕ ਏ ਕਾੱਰਨੇਲ, ਉਲਫਗੈਂਗ ਕੇਟਰਲੇ ਅਤੇ ਕਾਰਲ ਈ. ਵੇਮੈਨ ਨੂੰ "ਬੋਸ ਆਈਂਸਟਾਈਨ ਕੰਡਨਸੇਸ਼ਨ ਦੀ ਅਵਸਥਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਭੌਤਿਕੀ ਵਿੱਚ ਨੋਬਲ ਪੁਰਸਕਾਰ ਨਾਲ ਸਨਮਾਨਿਤ ਕੀਤਾ ਗਿਆ। ਸਧਾਰਨ ਹਵਾ ਦੀ ਘਣਤਾ ਦੇ ਇੱਕ ਲੱਖਵੇਂ ਭਾਗ ਜਿਨੀ ਘੱਟ ਘਣਤਾ

ਗੈਂਸ ਨੂੰ ਬਹੁਤ ਹੀ ਘੱਟ ਤਾਪਮਾਨ ਤੇ ਠੰਡਾ ਕਰਨ ਨਾਲ BEC ਤਿਆਰ ਹੁੰਦਾ ਹੈ। www.chem4kids.com ਤੇ ਲਾੱਗ ਆੱਨ ਕਰਕੇ ਪਦਾਰਥ ਦੀ ਚੌਥੀ ਅਤੇ ਪੰਜਵੀਂ ਅਵਸਥਾ ਦੇ ਬਾਰੇ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।"

HO

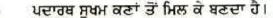
ਮਿਲਦੀ ਹੈ। ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ, ਵਾਸ਼ਪੀਕਰਣ ਦੇ ਦੌਰਾਨ ਦ੍ਵ ਦੀ ਸਤ੍ਹਾ ਦੇ ਕਣ ਸਾਡੇ ਸਰੀਰ ਜਾਂ ਆਲੇ ਦੁਆਲੇ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਕੇ ਵਾਸ਼ਪ ਵਿੱਚ ਬਦਲ ਜਾਂਦੇ ਹਨ। ਵਾਸ਼ਪੀਕਰਣ ਦੇ ਗੁਪਤ ਤਾਪ ਦੇ ਬਰਾਬਰ ਤਾਪ ਊਰਜਾ ਸਾਡੇ ਸਰੀਰ ਤੋਂ ਸੋਖਿਤ (absorb) ਹੋ ਜਾਂਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਸਾਡਾ ਸਰੀਰ ਠੰਡਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਸੂਤੀ ਕਪੜਿਆਂ ਵਿੱਚ ਪਾਣੀ ਦਾ ਸੋਖਣ ਵਧੇਰੇ ਹੁੰਦਾ ਹੈ, ਇਸ ਲਈ ਸਾਡਾ ਪਸੀਨਾ ਇਸ ਵਿੱਚ ਸੋਖਿਤ ਹੋ ਕੇ ਵਾਯੂ ਮੰਡਲ ਵਿੱਚ ਅਸਾਨੀ ਨਾਲ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

ਬਰਫ਼ ਵਾਲੇ ਪਾਣੀ ਨਾਲ ਭਰੇ ਗਿਲਾਸ ਦੀ ਬਾਹਰੀ ਸਤ੍ਹਾ ਤੇ ਪਾਣੀ ਦੀਆਂ ਬ੍ਰੈਦਾਂ ਕਿਉਂ ਨਜ਼ਰ ਆਉਂਦੀਆਂ ਹਨ ?

ਕਿਸੇ ਬਰਤਨ ਵਿੱਚ ਅਸੀਂ ਬਰਫ ਵਾਲਾ ਪਾਣੀ ਰੱਖਦੇ ਹਾਂ।ਜਲਦੀ ਹੀ ਬਰਤਨ ਦੀ ਬਾਹਰੀ ਸਤ੍ਹਾ ਉੱਤੇ ਸਾਨੂੰ ਪਾਣੀ ਦੀਆਂ ਬੂੰਦਾਂ ਨਜ਼ਰ ਆਉਣ ਲੱਗ ਪੈਣਗੀਆਂ। ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਜਲਵਾਸ਼ਪ ਦੀ ਉਰਜਾ ਠੰਡੇ ਪਾਣੀ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆ ਕੇ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਹ ਦੁਵ ਅਵਸਥਾ ਵਿੱਚ ਬਦਲ ਜਾਂਦਾ ਹੈ, ਜਿਹੜਾ ਸਾਨੂੰ ਪਾਣੀ ਦੀਆਂ ਬੂੰਦਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਨਜ਼ਰ ਆਉਂਦਾ ਹੈ।

> ਗਰਮ ਖ਼ੁਸ਼ਕ ਦਿਨ ਵਿੱਚ ਕੂਲਰ ਵਧੇਰੇ ਠੰਡਾ ਕਿਉਂ ਕਰਦਾ ਹੈ ?

- ਗਰਮੀਆਂ ਵਿੱਚ ਘੜੇ ਦਾ ਪਾਣੀ ਠੰਡਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ?
- ਐਸੀਟੋਨ/ਪੈਟਰੋਲ ਜਾਂ ਸੈਂਟ ਪਾਉਣ ਤੇ ਸਾਡੀ ਹਥੇਲੀ ਠੈਡੀ ਕਿਉਂ ਹੋ ਜਾਂਦੀ ਹੈ ?
- ਕੱਪ ਦੀ ਬਜਾਏ ਪਲੇਟ ਵਿੱਚ ਅਸੀਂ ਗਰਮ ਦੁੱਧ ਜਾਂ ਚਾਹ ਜਲਦੀ ਕਿਉਂ ਪੀ ਲੈਂਦੇ ਹਾਂ ?
- ਗਰਮੀਆਂ ਵਿੱਚ ਸਾਨੂੰ ਕਿਸ ਕਿਸਮ ਦੇ ਕੱਪੜੇ ਪਹਿਨਣੇ ਚਾਹੀਦੇ ਹਨ ?

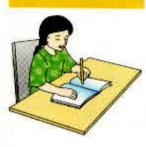

11

ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ

12

ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਪਦਾਰਥ ਤਿੰਨ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ, ਠੋਸ, ਦ੍ਵ ਅਤੇ ਗੈਸ।

150

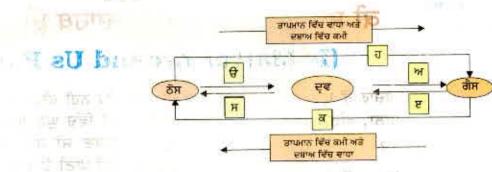

- ਠੋਸ ਦੇ ਕਣਾਂ ਵਿੱਚ ਆਕਰਸ਼ਣ ਬਲ ਸਭ ਤੋਂ ਵੱਧ, ਗੈਸ ਦੇ ਕਣਾਂ ਵਿੱਚ ਸਭ ਤੋਂ ਘੱਟ ਅਤੇ ਦਵ ਦੇ ਕਣਾਂ ਵਿੱਚ ਇਨ੍ਹਾਂ ਦੋਹਾਂ ਦੇ ਵਿਚਕਾਰ ਹੁੰਦਾ ਹੈ।
- ਠੋਸ ਦੇ ਕਣਾਂ ਵਿੱਚ ਠੋਸਾਂ ਨੂੰ ਬਣਾਉਣ ਵਾਲੇ ਕਣਾਂ ਦੇ ਵਿੱਚ ਖਾਲੀ ਥਾਂ ਅਤੇ ਗਤਿਜ ਊਰਜਾ ਸਭ ਤੋਂ ਘੱਟ, ਗੈਸਾਂ ਲਈ ਇਹ ਸਭ ਤੋਂ ਵੱਧ ਪਰ ਦ੍ਵਾਂ ਲਈ ਵਿਚਕਾਰ ਹੁੰਦੀ ਹੈ।
- ਠੋਸਾਂ ਵਿੱਚ ਕਣਾਂ ਦੀ ਵਿਵਸਥਾ ਵਧੇਰੇ ਤਰਤੀਬ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਦ੍ਵਾਂ ਵਿੱਚ ਕਣਾਂ ਦੀਆਂ ਪਰਤਾਂ ਇੱਕ ਦੂਜੇ ਉੱਤੇ ਫਿਸਲ ਅਤੇ ਸਰਕ (slip and slide) ਸਕਦੀਆਂ ਹਨ। ਗੈਸਾਂ ਵਿੱਚ ਕੋਈ ਤਰਤੀਬ ਨਹੀਂ ਹੁੰਦੀ ਅਤੇ ਇਨ੍ਹਾਂ ਦੇ ਕਣ ਅਨਿਯਮਿਤ ਰੂਪ ਵਿੱਚ ਚੱਲਦੇ ਹਨ।
- ਪਦਾਰਥ ਦੀਆਂ ਅਵਸਥਾਵਾਂ ਅੰਤਰ-ਪਰਿਵਰਤਿਤ (interconvertible) ਹੁੰਦੀਆਂ ਹਨ। ਪਦਾਰਥ ਦੀਆਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਤਾਪਮਾਨ ਅਤੇ ਦਬਾਅ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੁਆਰਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- ਜੌਹਰ ਉਡਾਉਣ ਵਿਧੀ ਵਿੱਚ ਠੋਸ ਪਦਾਰਥ ਦਵ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋਏ ਬਿਨਾਂ ਸਿੱਧਾ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਗੈਸੀ ਅਵਸਥਾ ਤੋਂ ਸਿੱਧਾ ਠੋਸ ਅਵਸਥਾ ਵਿੱਚ ਆ ਜਾਂਦਾ ਹੈ।
- ਉਬਲਣਾ ਇਕ ਖੰਪ (bulk) ਘਟਨਾ ਹੈ। ਸਤ੍ਹਾ ਦੇ ਕਣ ਲੋੜੀਂਦੀ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਕੇ ਉਨ੍ਹਾਂ ਵਿਚਲੇ ਪਰਸਪਰ ਆਕਰਸ਼ਣ ਬਲਾਂ ਨੂੰ ਪਾਰ ਕਰ ਲੈਂਦੇ ਹਨ ਅਤੇ ਦ੍ਵ ਨੂੰ ਵਾਸ਼ਪ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਕਰ ਦਿੰਦੇ ਹਨ।
- ਵਾਸ਼ਪੀਕਰਣ ਦੀ ਦਰ ਹੇਠ ਲਿਖੇ ਕਾਰਕਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ: ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਜਿਹੜਾ ਵਾਯੂਮੰਡਲ ਦੇ ਪ੍ਰਤੀ ਖੁੱਲ੍ਹਾ ਛੱਡਿਆ ਹੁੰਦਾ ਹੈ, ਤਾਪਮਾਨ, ਹਵਾ ਵਿੱਚ ਨਮੀ ਅਤੇ ਹਵਾ ਦੀ ਗਤੀ।
- ਵਾਸ਼ਪੀਕਰਣ ਤੋਂ ਠੰਡਕ ਪੈਦਾ ਹੁੰਦੀ ਹੈ।
- ਵਾਸ਼ਪੀਕਰਣ ਦਾ 'ਗੁਪਤ ਤਾਪ', ਤਾਪ ਦੀ ਉਹ ਮਾਤਰਾ ਹੈ ਜਿਹੜੀ 1 kg ਦ੍ਵ ਨੂੰ ਵਾਯੂਮੰਡਲੀ ਦਬਾਅ ਉੱਤੇ ਦ੍ਵ ਦੇ ਉਬਾਲ ਦਰਜੇ ਤੇ ਗੈਸੀ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਰਨ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ।
- ਪਿਘਲਣ ਦਾ ਗੁਪਤ ਤਾਪ, ਊਰਜਾ ਦੀ ਉਹ ਮਾਤਰਾ ਹੈ ਜਿਹੜੀ 1 kg ਠੋਸ ਨੂੰ ਵਾਯੂਮੰਡਲੀ ਦਬਾਅ ਉੱਤੇ ਠੋਸ ਨੂੰ ਪਿਘਲਣ ਦਰਜੇ (melting point) ਤੇ ਦ੍ਵ ਅਵਸਥਾ ਵਿੱਚ ਲਿਆਉਣ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ।

ਵਿਗਿਆਨ

ਕੁਝ ਮਾਪਣ ਯੋਗ ਰਾਸ਼ੀਆਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀਆਂ ਇ<mark>ਕਾਈ</mark>ਆਂ <mark>ਜਿਨ੍ਹਾਂ</mark> ਦਾ ਸਾਨੂੰ ਗਿਆਨ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

ਰਾਸ਼ੀ	ਇਕਾਈ	ਸ਼ਕੇਤ
ਤਾਪਮਾਨ	ਕੈਲਵਿਨ	K
ਲੰਬਾਈ	ਮੀਟਰ	m
ਪੁੰਜ	ਕਿਲੋਗਰਾਮ	kg
ਭਾਰ	নিষ্টুহন	N
ਆਇਤਨ	ਘਣ ਮੀਟਰ	m ³
ਘਣਤਾ	ਕਿਲੋਗਰਾਮ ਪ੍ਰਤੀ ਘਣਮੀਟਰ	kg m ^{-a}
ਦਬਾਅ	ਪਾਸਕਲ	Pa

ਅਭਿਆਸ



- ਹੇਠ ਲਿਖੇ ਤਾਪਮਾਨਾਂ ਨੂੰ ਸੈਲਸੀਅਸ ਇਕਾਈ ਵਿੱਚ ਬਦਲ : (ੳ) 300 K (ਅ) 573 K.
- ਹੇਠ ਲਿਖੇ ਤਾਪਮਾਨਾਂ ਨੂੰ ਕੈਲਵਿਨ ਇਕਾਈ ਵਿੱਚ ਬਦਲੋ : (ੳ) 25 °C (ਅ) 373 °C.
- 3. ਹੇਠ ਲਿਖੇ ਪ੍ਰੇਖਣਾਂ ਲਈ ਕਾਰਣ ਲਿਖੋ :
 - (ੳ) ਨੈਫਥਲੀਨ ਨੂੰ ਰੱਖਣ ਤੋਂ ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਇਹ ਕੁਝ ਵੀ ਠੋਸ ਪਦਾਰਥ ਛੱਡੇ ਬਿਨਾਂ ਅਦਿੱਖ ਹੋ ਜਾਂਦੀ ਹੈ।
 - (ਅ) ਸਾਨੂੰ ਇਤਰ ਦੀ ਖ਼ੁਸ਼ਬੂ ਬਹੁਤ ਦੂਰ ਬੈਠੇ ਹੋਏ ਹੀ ਪਹੁੰਚ ਜਾਂਦੀ ਹੈ।
- ਹੇਠ ਲਿਖੇ ਪਦਾਰਥਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਕਣਾਂ ਦੇ ਵਿੱਚ ਵਧਦੇ ਹੋਏ ਆਕਰਸ਼ਣ ਦੇ ਅਨੁਸਾਰ ਤਰਤੀਬ ਵਿੱਚ ਕਰੋ :
 - (ੳ) ਪਾਣੀ (ਅ) ਚੀਨੀ (ੲ) ਆੱਕਸੀਜਨ
- ਹੇਠ ਲਿਖੇ ਤਾਪਮਾਨਾਂ ਤੇ ਪਾਣੀ ਦੀ ਭੌਤਿਕ ਅਵਸਥਾ ਕੀ ਹੈ :
 - (ੳ) 25 °C (ਅ) 0 °C (ੲ) 100 °C ?
- ਪੁਸ਼ਟੀ ਲਈ ਕਾਰਣ ਦਿਓ :
 - (ੳ) ਪਾਣੀ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਦ੍ਵ ਹੈ।
 - (ਅ) ਲੋਹੇ ਦੀ ਅਲਮਾਰੀ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਠੋਸ ਹੈ।
- 7. 273 K ਤੇ ਬਰਫ ਨੂੰ ਠੰਡਾ ਕਰਨ ਤੇ ਅਤੇ ਪਾਣੀ ਨੂੰ ਇਸੇ ਤਾਪਮਾਨ ਤੇ ਠੰਡਾ ਕਰਨ ਤੇ ਠੰਡਕ ਦਾ ਪ੍ਰਭਾਵ ਵਧੇਰੇ ਕਿਉਂ ਹੁੰਦਾ ਹੈ ?
- ਉਬਲਦੇ ਹੋਏ ਪਾਣੀ ਜਾਂ ਭਾਫ਼ ਵਿਚੋਂ ਜਲਣ ਦੀ ਤੀਬਰਤਾ ਕਿਸ ਵਿੱਚ ਵਧੇਰੇ ਮਹਿਸੂਸ ਹੁੰਦੀ ਹੈ ?

ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ

13

 ਹੇਠ ਲਿਖੇ ਚਿੱਤਰ ਦੇ ਲਈ ਓ, ਅ, ੲ, ਸ, ਹ ਅਤੇ ਕ ਦੀ ਅਵਸਥਾ ਪਰਿਵਰਤਨ ਨੂੰ ਨਾਂ ਦਿਓ :

ਸਮੂਹ ਲਈ ਕਿਰਿਆ

14


ਠੋਸਾਂ, ਦ੍ਰਵਾਂ ਅਤੇ ਗੈਸਾਂ ਵਿੱਚ ਕਣਾਂ ਦੀ ਗਤੀਸ਼ੀਲਤਾ ਦਰਸਾਉਣ ਦੇ ਲਈ ਇੱਕ ਮਾਡਲ ਬਣਾਓ।

ਇਸ ਨੂੰ ਬਨਾਉਣ ਲਈ ਤੁਹਾਨੂੰ ਇਨ੍ਹਾਂ ਦੀ ਜ਼ਰੂਰਤ ਪਵੇਗੀ

- ਇੱਕ ਪਾਰਦਰਸ਼ੀ (transparent) ਜ਼ਾਰ
- ਇੱਕ ਵੱਡਾ ਰਬੜ ਦਾ ਗੁਬਾਰਾ ਜਾਂ ਖਿੱਚੀ ਜਾਣ ਵਾਲੀ ਰਬੜ ਦੀ ਇੱਕ ਸ਼ੀਟ
- ਇੱਕ ਤਾਰ
- ਕੁਝ ਕੁੱਕੜਾਂ ਨੂੰ ਪਾਉਣ ਵਾਲੇ ਦਾਣੇ ਜਾਂ ਕਾਲੇ ਛੋਲੇ ਜਾਂ ਸੁੱਕੇ ਹਰੇ ਦਾਣੇ।

ਮਾਡਲ ਦਾ ਨਿਰਮਾਣ ਕਿਵੇਂ ਕੀਤਾ ਜਾਏ ?

- ਦਾਣਿਆਂ ਨੂੰ ਜ਼ਾਰ ਵਿੱਚ ਪਾਓ।
- ਤਾਰ ਨੂੰ ਰਬੜ ਸ਼ੀਟ ਦੇ ਵਿਚਕਾਰ ਪਿਰੋ ਦਿਓ ਅਤੇ ਇਸ ਨੂੰ ਸੁਰੱਖਿਆ ਪੱਖੋਂ ਟੇਪ ਨਾਲ ਕੱਸ ਕੇ ਬੰਨ੍ਹੋ।
- ਹੁਣ ਰਬੜ ਸ਼ੀਟ ਨੂੰ ਖਿੱਚੋ, ਇਸ ਨੂੰ ਜ਼ਾਰ ਦੇ ਮੂੰਹ `ਤੇ ਬੰਨ੍ਹ ਦਿਓ।
- ਤੁਹਾਡਾ ਮਾਡਲ ਤਿਆਰ ਹੈ।ਹੁਣ ਆਪਣੀ ਉਂਗਲੀ ਨਾਲ ਤਾਰ ਨੂੰ ਉਪਰ-ਹੇਠਾਂ ਹੌਲੀ ਜਾਂ ਤੇਜ਼ੀ ਨਾਲ ਖਿੱਚ ਸਕਦੇ ਹੈ।

ਚਿੱਤਰ 1.10 ਠੋਸ ਤੋਂ ਦ੍ਵ ਅਤੇ ਦ੍ਵ ਤੋਂ ਗੈਸ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਲਈ ਇੱਕ ਮਾਡਲ

ਵਿਗਿਆਨ

ਕੀ ਸਾਡੇ ਆਲ਼ੇ-ਦੁਆਲ਼ੇ ਦੇ ਪਦਾਰਥ ਸ਼ੁੱਧ ਹਨ ? Is Matter Around Us Pure?)

ਅਸੀਂ ਕਿਵੇਂ ਜਾਣ ਸਕਦੇ ਹਾਂ ਕਿ ਬਜ਼ਾਰ ਤੋਂ ਖਰੀਦਿਆ ਇਆ ਦੁੱਧ, ਘਿਉ, ਮੱਖਣ, ਮਸਾਲਾ, ਖਣਿਜ ਪਾਣੀ mineral water) ਜਾਂ ਜਸ ਸ਼ੱਧ ਹੈ?

ਅਧਿਆਇ 2

ਚਿੱਤਰ 2.1 : ਰਸੋਈ ਵਿੱਚ ਵਰਤੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਕੁੱਝ ਵਸਤੂਆਂ

ਕੀ ਤੁਸੀਂ ਇਨ੍ਹਾਂ ਖਾਣ ਵਾਲੇ ਪਦਾਰਥਾਂ ਦੇ ਡੱਬਿਆਂ ਤੋਂਤੇ ਲਿਖੇ 'ਸ਼ੁੱਧ' ਸ਼ਬਦ ਵੱਲ ਧਿਆਨ ਦਿੱਤਾ ਹੈ? ਇੱਕ ਸਧਾਰਣ ਵਿਅਕਤੀ ਦੇ ਲਈ ਸ਼ੁੱਧ ਦਾ ਅਰਥ ਹੁੰਦਾ ਕਿ ਪਦਾਰਥ ਵਿੱਚ ਕੋਈ ਮਿਲਾਵਟ ਨਾ ਹੋਵੇ, ਪਰ ਵਗਿਆਨਕਾਂ ਦੇ ਲਈ ਇਹ ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਵੱਖ-ਵੱਖ ਪਦਾਰਥਾਂ ਦੇ ਮਿਸ਼ਰਣ ਹਨ, ਭਾਵ ਸ਼ੁੱਧ ਨਹੀਂ ਨ।ਉਦਾਹਰਣ ਵਜੋਂ ਦੁੱਧ, ਪਾਣੀ, ਚਰਬੀ (fat), ਪ੍ਰੋਟੀਨ ਸਾਦਿ ਦਾ ਮਿਸ਼ਰਣ ਹੈ। ਜਦੋਂ ਇੱਕ ਵਿਗਿਆਨਕ ਕਿਸੇ ਦਾਰਥ ਨੂੰ ਸ਼ੁੱਧ ਕਹਿੰਦਾ ਹੈ ਤਾਂ ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਤੇਸ ਪਦਾਰਥ ਵਿੱਚ ਮੌਜੂਦ ਸਾਰੇ ਕਣ ਸਮਾਨ ਰਸਾਇਣਿਕ ਭਾਅ ਦੇ ਹਨ। ਇੱਕ ਸ਼ੁੱਧ ਪਦਾਰਥ ਇੱਕ ਹੀ ਤਰ੍ਹਾਂ ਦੇ ਣਾਂ ਨਾਲ ਮਿਲ ਕੇ ਬਣਿਆ ਹੁੰਦਾ ਹੈ।

ਜਦੋਂ ਅਸੀਂ ਚਾਰੇ ਪਾਸੇ ਵੇਖਦੇ ਹਾਂ ਤਾਂ ਲੱਗਦਾ ਹੈ ਕਿ ਸਰੇ ਪਦਾਰਥ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਸ਼ੁੱਧ ਪਦਾਰਥਾਂ ਨਾਲ਼ ਮੇਲ ਕੇ ਬਣੇ ਹਨ।ਉਦਾਹਰਣ ਵਜੋਂ, ਸਮੁੰਦਰ ਦਾ ਪਾਣੀ, ਇਣਜ, ਮਿੱਟੀ ਆਦਿ ਸਾਰੇ ਮਿਸ਼ਰਣ ਹਨ।

2.1 ਮਿਸ਼ਰਣ ਕੀ ਹੈ ? (What is Mixture ?)

ਮੇਸ਼ਰਣ ਜਿਸ ਨੂੰ ਪਦਾਰਥ ਆਖਦੇ ਹਨ, ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਸ਼ੁੱਧ ਤੱਤਾਂ ਜਾਂ ਯੋਗਿਕਾਂ ਨਾਲ਼ ਮਿਲ ਕੇ ਬਣਿਆ ਼ੇਦਾ ਹੈ। ਕਿਸੇ ਪਦਾਰਥ ਨੂੰ ਹੋਰ ਪ੍ਰਕਾਰ ਦੇ ਤੱਤਾਂ ਵਿੱਚ

ਹੀ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ ਸ਼ੁੱਧ ਹਨ

ਭੌਤਿਕ ਵਿਧੀਆਂ ਨਾਲ਼ ਵੱਖ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਪਾਣੀ ਵਿੱਚ ਘੁਲ਼ੇ ਹੋਏ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਨੂੰ ਵਾਸ਼ਪੀਕਰਣ ਜਾਂ ਕਸ਼ੀਦਣ ਵਿਧੀ (distillation method) ਰਾਹੀਂ ਪਾਣੀ ਤੋਂ ਵੱਖ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਭਾਵੇਂ, ਸੋਡੀਅਮ ਕਲੋਹਾਈਡ ਆਪਣੇ ਆਪ ਵਿੱਚ ਇੱਕ ਪਦਾਰਥ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਭੌਤਿਕ ਵਿਧੀ ਨਾਲ਼ ਇਸ ਦੇ ਰਸਾਇਣਿਕ ਭਾਗਾਂ (components) ਵਿੱਚ ਵੱਖ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਇਸੇ ਤਰ੍ਹਾਂ ਚੀਨੀ ਇਕ ਪਦਾਰਥ ਹੈ ਕਿਉਂਕਿ ਇਹ ਇਕ ਹੀ ਤਰ੍ਹਾਂ ਦਾ ਸ਼ੁੱਧ ਪਦਾਰਥ ਰੱਖਦਾ ਹੈ ਅਤੇ ਇਸ ਦਾ ਭੌਤਿਕ ਯੋਗਿਕ ਸਮਾਨ ਰਹਿੰਦਾ ਹੈ।

ਪੀਣ ਯੋਗ ਪਦਾਰਥ ਅਤੇ ਮਿੱਟੀ ਵਿੱਚ ਇਕ ਸਮਾਨ ਕਣ ਨਹੀਂ ਹਨ। ਕਿਸੇ ਵੀ ਸਰੋਤ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਣ ਵਾਲੇ ਕਿਸੇ ਇੱਕ ਪਦਾਰਥ ਦੇ ਮੁੱਖ ਗੁਣ (characteristic properties) ਇਕ ਸਮਾਨ ਹੋਣਗੇ।

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਮਿਸ਼ਰਣ ਵਿੱਚ ਇੱਕ ਤੋਂ ਵੱਧ ਪਦਾਰਥ ਹੁੰਦੇ ਹਨ।

2.1.1 ਮਿਸ਼ਰਣ ਦੀਆਂ ਕਿਸਮਾਂ (Types of Mixture)

ਭਾਗਾਂ ਦੇ ਸੁਭਾਅ ਅਨੁਸਾਰ ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੇ ਮਿਸ਼ਰਣਾਂ ਦਾ ਨਿਰਮਾਣ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਮਿਸ਼ਰਣ ਦੀਆਂ ਕਈ ਕਿਸਮਾਂ ਹੁੰਦੀਆਂ ਹਨ।

ਕਿਰਿਆ ______ 2.1

- ਜਮਾਤ ਨੂੰ ਅ, ਬ, ਸ ਅਤੇ ਦ ਸਮੂਹਾਂ ਵਿੱਚ ਵੱਡੋ। ਸਮੂਹ 'ਅ' ਨੂੰ ਇੱਕ ਬੀਕਰ ਜਿਸ ਵਿੱਚ 50 mL ਪਾਣੀ ਅਤੇ ਇੱਕ ਚਮਚ ਕਾਪਰ ਸਲਫੇਟ ਪਾਉਡਰ ਦਿਓ।
- ਸਮੂਹ 'ਬ' ਨੂੰ ਇੱਕ ਬੀਕਰ ਵਿੱਚ 50 mL ਪਾਣੀ ਅਤੇ ਦੇ ਚਮਚੇ ਕਾਪਰ ਸਲਫੇਟ ਪਾਉਡਰ ਦਿਓ।
- ਕਾਪਰ ਸਲਫੇਟ ਅਤੇ ਪੋਟਾਸ਼ੀਅਮ ਪਰਮੈਂਗਨੇਟ ਜਾਂ ਸਧਾਰਣ ਨਮਕ (ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ) ਸਮੂਹ 'ਸ' ਅਤੇ 'ਦ' ਨੂੰ ਦਿਓ (ਦੋਵਾਂ ਨੂੰ ਭਾਗਾਂ ਦੀ ਵੱਖ-ਵੱਖ ਮਾਤਰਾ ਦਿਓ)।

15

ਹੁਣ ਵੱਖ-ਵੱਖ ਸਮੂਹਾਂ ਦੇ ਉਨ੍ਹਾਂ ਭਾਗਾਂ ਨੂੰ ਮਿਲਾ ਕੇ ਮਿਸ਼ਰਣ ਤਿਆਰ ਕਰੇ।

ਸਮੂਹ 'ਅ' ਅਤੇ 'ਬ' ਨੂੰ ਇੱਕ ਮਿਸ਼ਰਣ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ਜਿਸ ਦੀ ਬਣਾਵਟ ਇੰਕਸਮਾਨ (uniform) ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਅਸੀਂ ਸਮਅੰਗੀ (homogenous) ਮਿਸ਼ਰਣ ਜਾਂ ਘੱਲ ਕਹਿੰਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਮਿਸ਼ਰਣ ਦੀਆਂ ਕੁਝ ਹੋਰ ਉਦਾਹਰਣਾਂ ਹਨ- ਪਾਣੀ ਵਿੱਚ ਨਮਕ ਅਤੇ ਪਾਣੀ ਵਿੱਚ ਚੀਨੀ। ਦੋਹਾਂ ਸਮੂਹਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਘੱਲਾਂ ਦੇ ਰੇਗਾਂ ਦੀ ਤੁਲਨਾ ਕਰੋ। ਭਾਵੇਂ ਦੋਹਾਂ ਸਮੂਹਾਂ ਕੋਲ ਕਾਪਰ ਸਲਫੇਟ ਦਾ ਘੱਲ ਹੈ, ਪਰ ਉਨ੍ਹਾਂ ਦੋਹਾਂ ਘੱਲਾਂ ਦੇ ਰੇਗਾਂ ਦੀ ਤੀਬਰਤਾ ਵੱਖ-ਵੱਖ ਹੈ। ਇਹ ਵਿਖਾਉਂਦਾ ਹੈ ਕਿ ਸਮਅੰਗੀ ਮਿਸ਼ਰਣ ਵੱਖ-ਵੱਖ ਰਚਨਾ ਰੱਖ ਸਕਦੇ ਹਨ।

ਸਮੂਹ 'ਸ' ਅਤੇ 'ਦ' ਨੇ ਜਿਹੜਾ ਮਿਸ਼ਰਣ ਪ੍ਰਾਪਤ ਕੀਤਾ ਹੈ ਉਨ੍ਹਾਂ ਦੇ ਅੰਸ਼ ਭੌਤਿਕ ਦ੍ਰਿਸ਼ਟੀ ਤੋਂ ਵੱਖ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਵਿਖ਼ਮਅੰਗੀ (heterogeneous) ਮਿਸ਼ਰਣ ਕਹਿੰਦੇ ਹਨ। ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਲੋਹ ਚੂਰਣ, ਨਮਕ ਅਤੇ ਸਲਫਰ, ਪਾਣੀ ਅਤੇ ਤੇਲ ਵਿਖ਼ਮ ਅੰਗੀ ਮਿਸ਼ਰਣ ਦੀਆਂ ਹੋਰ ਉਦਾਹਰਣਾਂ ਹਨ।

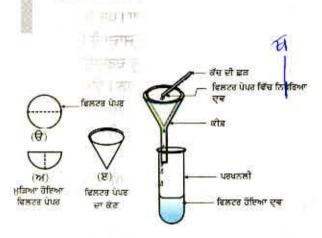
ਕਿਰਿਆ

2.2

- ਆਓ ਦੁਬਾਰਾ ਜਮਾਤ ਨੂੰ ਚਾਰ ਸਮੂਹਾਂ ਅ, ਬ, ਸ ਅਤੇ ਦ ਵਿੱਚ ਵੰਡੀਏ।
- ਹਰ ਸਮੂਹ ਨੂੰ ਹੇਠ ਦਿੱਤੇ ਹੋਏ ਨਮੂਨਿਆਂ ਵਿੱਚੋਂ ਇੱਕ ਦਿਓ –
 - ਸਮੂਹ 'ਅ' ਨੂੰ ਕਾਪਰ ਸਲਫੋਟ ਦੇ ਕੁੱਝ ਕ੍ਰਿਸਟਲ ਦਿਓ।
- ਸਮੁਹ 'ਬ' ਨੂੰ ਇੱਕ ਚਮਚ ਕਾੱਪਰ ਸਲਫੋਟ ਦਿਓ।
- ਸਮੂਹ 'ਸ' ਨੂੰ ਚਾਕ ਦਾ ਪਾਊਡਰ ਜਾਂ ਕਣਕ ਦਾ ਆਟਾ ਦਿਓ।
- ਸਮੂਹ 'ਦ' ਨੂੰ ਦੁੱਧ ਜਾਂ ਸਿਆਹੀ ਦੀਆਂ ਕੁਝ ਬੁੰਦਾਂ ਦਿਓ।

ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਕੱਚ ਦੀ ਛੜ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਨਮੂਨਿਆਂ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਮਿਲਾਉਣ ਲਈ ਕਹੋ। ਕੀ ਕਣ ਪਾਣੀ ਵਿੱਚ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ ?

ਹੁਣ ਟਾਰਚ ਨਾਲ਼ ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਣ (beam) ਨੂੰ ਬੀਕਰ ਤੇ ਪਾਓ ਅਤੇ ਇਸ ਨੂੰ ਸਾਹਮਣੇ ਤੋਂ ਵੇਖੋ। ਕੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਣ ਦਾ ਰਾਹ ਵਿਖਾਈ ਦਿੰਦਾ ਹੈ ?


ਹੁਣ ਮਿਸ਼ਰਣ ਨੂੰ ਕੁਝ ਸਮੇਂ ਲਈ ਸ਼ਾਂਤ ਛੱਡ ਦਿਓ। ਇਸ ਦੌਰਾਨ ਮਿਸ਼ਰਣ ਫਿਲਟਰ ਕਰਨ ਵਾਲੇ ਉਪਕਰਣ ਨੂੰ ਤਿਆਰ ਕਰ ਲਓ। ਕੀ ਮਿਸ਼ਰਣ ਸਥਿਰ ਹੈ ਜਾਂ ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਉਸਦੇ ਕਣ ਹੇਠਾਂ ਬੈਠਣਾ ਸ਼ੁਰੂ ਕਰਦੇ ਹਨ ? ਮਿਸ਼ਰਣ ਨੂੰ ਫ਼ਿਲਟਰ ਕਰ ਲਓ। ਕੀ ਫ਼ਿਲਟਰ ਪੇਪਰ ਤੇ ਕੁਝ ਬਾਕੀ ਬਚਿਆ ਹੈ ?

ਜਮਾਤ ਵਿੱਚ ਨਤੀਜਿਆਂ ਤੇ ਚਰਚਾ ਕਰਕੇ ਇਸ ਕਿਰਿਆ ਤੇ ਇੱਕ ਮੱਤ ਬਣਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।

ਸਮੂਹ 'ਅ' ਅਤੇ 'ਬ' ਨੂੰ ਇੱਕ ਘੋਲ਼ (solution) ਮਿਲਿਆ ਹੈ।

ਸਮੂਹ 'ਸ' ਨੂੰ ਇੱਕ ਨਿਲੇਬਨ (suspension) ਮਿਲਿਆ ਹੈ।

ਸਮੂਹ 'ਕ' ਨੂੰ ਇੱਕ ਕੋਲਾਇਡਲ ਘੋਲ਼ (colloidal solution) ਮਿਲਿਆ ਹੈ।

ਚਿੱਤਰ 2.2 : ਫਿਲਟਰੀਕਰਣ (ਫਿਲਟਰਣ ਦੀ ਪ੍ਰਕਿਰਿਆ)

ਹੁਣ ਅਸੀਂ ਘੋਲ਼ਾਂ, ਨਿਲੰਬਣਾਂ ਅਤੇ ਕੋਲਾਇਡਲ ਘੋਲ਼ਾਂ ਬਾਰੇ ਪੜ੍ਹਾਂਗੇ।

ਸਨ 1. ਸ਼ੁੱਧ ਪਦਾਰਥ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ? 2. ਸਮਅੰਗੀ ਅਤੇ ਬਿਖਮਅੰਗੀ ਮਿਸ਼ਰਣਾਂ ਵਿੱਚ ਅੰਤਰ ਦੱਸੇ।

2.2 ਘੋਲ਼ (Solution) ਕੀ ਹੈ ?

ਘੋਲ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਪਦਾਰਥਾਂ ਦਾ ਸਮਅੰਗੀ ਮਿਸ਼ਰਣ ਹੈ। ਤੁਸੀਂ ਹਰ ਰੋਜ਼ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਘੋਲ਼ਾਂ ਨੂੰ ਵੇਖਦੇ ਹੋਵੋਗੇ। ਨਿੰਬੂ ਪਾਣੀ, ਸੋਡਾ ਪਾਣੀ ਆਦਿ ਘੋਲ਼ਾਂ ਦੇ ਉਦਾਹਰਣ ਹਨ। ਆਮ ਤੌਰ 'ਤੇ ਅਸੀਂ ਇੱਕ ਘੋਲ਼ ਨੂੰ ਅਜਿਹੇ ਤਰਲ ਪਦਾਰਥ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ ਜਿਸ ਵਿੱਚ ਠੋਸ, ਦਵ ਜਾਂ ਗੈਸ ਮਿਲੇ ਹੋਣ। ਕੁਦਰਤ ਵਿੱਚ ਠੋਸ ਘੋਲ਼

ਵਿਗਿਆਨ

16

(ਮਿਸ਼ਰਣ ਧਾਤ) ਅਤੇ ਗੈਸੀ ਘੋਲ਼ (ਹਵਾ) ਵੀ ਹੁੰਦੇ ਹਨ। ਇੱਕ ਘੋਲ਼ ਦੇ ਕਣਾਂ ਵਿੱਚ ਸਮਅੰਗਤਾ (homogeneity) ਹੁੰਦੀ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ ਨਿੰਬੂ ਪਾਣੀ ਦਾ ਸਵਾਦ ਹਮੇਸ਼ਾਂ ਸਮਾਨ ਰਹਿੰਦਾ ਹੈ। ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਇਸ ਘੋਲ਼

ਇਸ ਨੂੰ ਵੀ ਜਾਣੋ :

ਮਿਸ਼ਰ ਧਾਤਾਂ (Alloys) : ਇਹ ਧਾਤਾਂ ਦੇ ਸਮਅੰਗੀ ਮਿਸ਼ਰਣ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਭੌਤਿਕ ਕਿਰਿਆ ਰਾਹੀਂ ਵੱਖ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਪਰ ਫਿਰ ਵੀ ਮਿਸ਼ਰ ਧਾਤਾਂ ਨੂੰ ਮਿਸ਼ਰਣ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਆਪਣੇ ਘਟਕਾਂ ਦੇ ਗੁਣਾਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ ਅਤੇ ਵੱਖ-ਵੱਖ ਸੰਘਟਨ ਰੱਖਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਪਿੱਤਲ, ਜ਼ਿੰਕ (ਲਗਭਗ 30%) ਅਤੇ ਕਾੱਪਰ (ਲਗਭਗ 70%) ਦਾ ਮਿਸ਼ਰਣ ਹੈ।

ਵਿੱਚ ਚੀਨੀ ਅਤੇ ਨਮਕ ਦੇ ਕਣ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਵੰਡੇ (distributed) ਹੁੰਦੇ ਹਨ।

ਕਿਸੇ ਘੋਲ਼ (solution) ਨੂੰ ਦੋ ਭਾਗਾਂ ਘੋਲ਼ਕ (solvent) ਅਤੇ ਘੁਲਿਤ (solute) ਵਿੱਚ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ। ਘੋਲ਼ ਦਾ ਉਹ ਭਾਗ (ਜਿਸਦੀ ਮਾਤਰਾ ਦੂਜੇ ਨਾਲ਼ੋਂ ਵਧੇਰੇ ਹੁੰਦੀ ਹੈ) ਜੋ ਦੂਜੇ ਭਾਗ ਨੂੰ ਘੋਲ਼ ਵਿੱਚ ਮਿਲਾਉਂਦਾ ਹੈ, ਉਸ ਨੂੰ ਘੋਲ਼ਕ ਕਹਿੰਦੇ ਹਨ।

ਉਦਾਹਰਣ ਵਜੋਂ :

- (i) ਚੀਨੀ ਅਤੇ ਪਾਣੀ ਦਾ ਘੋਲ਼ ਇੱਕ ਦ੍ਰਵ ਘੋਲ਼ ਵਿੱਚ ਠੋਸ ਦੀ ਉਦਾਹਰਣ ਹੈ। ਇਸ ਵਿੱਚ ਚੀਨੀ ਘੁਲਿਤ ਅਤੇ ਪਾਣੀ ਘੋਲਕ ਹੈ।
- (ii) ਆਇਓਡੀਨ ਅਤੇ ਐਲਕੋਹਲ ਦਾ ਘੋਲ, ਜਿਸ ਨੂੰ ਟਿੰਕਚਰ ਆਇਓਡੀਨ ਦੇ ਨਾਂ ਨਾਲ਼ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਇਸ ਵਿੱਚ ਆਇਓਡੀਨ ਘੁਲਿਤ ਹੈ ਅਤੇ ਐਲਕੋਹਲ ਘੋਲਕ ਹੈ।
- (iii) ਜਿਵੇਂ ਸੋਡਾ ਪਾਣੀ, ਕੋਕ ਆਦਿ ਦ੍ਵ ਘੋਲ਼ ਵਿੱਚ ਗੈਸ ਦੇ ਰੂਪ ਵਿੱਚ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਗੈਸ ਘੁਲਿਤ ਅਤੇ ਪਾਣੀ ਘੋਲਕ ਹੈ।
- (iv) ਹਵਾ ਗੈਸ ਵਿੱਚ ਗੈਸ ਦਾ ਘੋਲ਼ ਹੈ। ਇਹ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਦੋ ਪਦਾਰਥਾਂ ਆਕਸੀਜਨ (21%) ਅਤੇ

ਕੀ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ ਸ਼ੁੱਧ ਹਨ

ਨਾਈਟ੍ਰੋਜਨ (78%) ਦਾ ਸਮਅੰਗੀ ਮਿਸ਼ਰਣ ਹੈ। ਨਾਈਟ੍ਰੋਜਨ ਨੂੰ ਹਵਾ ਦਾ ਘੋਲ਼ਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਹਵਾ ਵਿੱਚ ਦੂਜੀਆਂ ਗੈਸਾਂ ਬਹੁਤ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ।

백ਲ ਦੇ ਗੁਣ (Characteristics of Solution)

- ਘੋਲ਼ ਇਕ ਸਮਅੰਗੀ ਮਿਸ਼ਰਣ ਹੈ।
- ਘੋਲ਼ ਦੇ ਕਣ ਵਿਆਸ ਵਿੱਚ 1 nm (10⁻⁹meter) ਤੋਂ ਵੀ ਛੋਟੇ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਉਹ ਨੰਗੀ ਅੱਖ ਨਾਲ਼ ਨਹੀਂ ਵੇਖੇ ਜਾ ਸਕਦੇ।
- ਆਪਣੇ ਛੋਟੇ ਅਕਾਰ ਦੇ ਕਾਰਣ ਘੋਲ ਦੇ ਕਣ, ਲੰਘ ਰਹੀ ਪ੍ਰਕਾਸ਼ ਦੇ ਬੀਮ ਨੂੰ ਖਿਲਾਰਦੇ ਨਹੀਂ। ਇਸ ਲਈ ਘੋਲ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦਾ ਮਾਰਗ ਵਿਖਾਈ ਨਹੀਂ ਦਿੰਦਾ।
- ਫਿਲਟਰਨ ਵਿਧੀ ਨਾਲ਼ ਘੁਲਿਤ ਦੇ ਕਣਾਂ ਨੂੰ ਘੋਲ਼ ਵਿੱਚੋਂ ਵੱਖ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ।ਘੋਲ਼ ਨੂੰ ਸ਼ਾਂਤ ਛੱਡਣ ਤੇ ਵੀ ਘੁਲਿਤ ਦੇ ਕਣ ਹੇਠਾਂ ਨਹੀਂ ਬੈਠਦੇ, ਭਾਵ ਘੋਲ਼ ਸਥਾਈ ਹੈ।
- 2.2.1 ਘੋਲ਼ ਦੀ ਸੰਘਣਤਾ (Concentration of Solution)

ਕਿਰਿਆ 2.2 ਵਿੱਚ ਅਸੀਂ ਵੇਖਿਆ ਕਿ ਸਮੂਹ 'ਅ' ਅਤੇ ਸਮੂਹ 'ਬ' ਦੇ ਨਾਲ਼ ਇੱਕ ਹੀ ਪਦਾਰਥ ਦੇ ਵੱਖ-ਵੱਖ ਗਹਿਰਾਈ ਦੇ ਰੰਗਾਂ ਦੇ ਘੋਲ਼ ਹਨ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਘੋਲ਼ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਮਾਤਰਾ ਵਿੱਚ ਘੋਲ਼ਕ ਅਤੇ ਘੁਲਿਤ ਪਦਾਰਥ ਹੁੰਦੇ ਹਨ। ਘੋਲ਼ ਵਿੱਚ ਮੌਜੂਦ ਘੁਲਿਤ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਦੇ ਅਧਾਰ ਤੇ ਇਸ ਨੂੰ ਪਤਲਾ, ਗਾੜ੍ਹਾ ਜਾਂ ਸੰਤ੍ਰਿਪਤ ਘੋਲ਼ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ। ਪਤਲਾ ਅਤੇ ਗਾੜ੍ਹਾ ਤੁਲਨਾਤਮਕ ਸ਼ਬਦ ਹਨ। ਕਿਰਿਆ 2.2 ਵਿੱਚ ਸਮੂਹ 'ਅ' ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਘੋਲ਼ ਸਮੂਹ 'ਬ' ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਹਲਕਾ ਹੈ।

বিবিন্স ______2.3

ਦੋ ਵੱਖ-ਵੱਖ ਬੀਕਰਾਂ ਵਿੱਚ 50 mL ਪਾਣੀ ਲਓ। ਇੱਕ ਬੀਕਰ ਵਿੱਚ ਨਮਕ ਅਤੇ ਦੂਜੇ ਵਿੱਚ ਚੀਨੀ ਜਾਂ ਬੇਰੀਅਮ ਕਲੋਰਾਈਡ ਮਿਲਾ ਕੇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਮਿਲਾਓ। ਜਦੋਂ ਘੁਲਿਤ ਪਦਾਰਥ ਹੋਰ ਨਾ ਘੁਲੇ ਤਾਂ ਬੀਕਰ ਨੂੰ ਗਰਮ ਕਰੋ।

17

ਘੁਲਿਤ ਪਦਾਰਥ ਨੂੰ ਦੁਬਾਰਾ ਮਿਲਾਉਣਾ ਸ਼ੁਰੂ ਕਰੇ।

ਹੱਲ :

ਕੀ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਤਾਪਮਾਨ ਤੋਂ ਚੀਨੀ, ਨਮਕ ਜਾਂ ਬੇਰੀਅਮ ਕਲੋਰਾਈਡ ਦੀਆਂ ਪਾਣੀ ਵਿੱਚ ਘੋਲੀਆਂ ਗਈਆਂ ਮਾਤਰਾਵਾਂ ਬਰਾਬਰ ਹਨ ?

ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਤੇ ਉਨਾ ਹੀ ਘਲਿਤ ਪਦਾਰਥ ਘਲ ਸਕਦਾ ਹੈ ਜਿੰਨੀ ਕਿ ਘੋਲ ਦੀ ਸਮਰੱਥਾ ਹੁੰਦੀ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਦਿੱਤੇ ਗਏ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਤੇ ਜੇ ਘੋਲ ਵਿੱਚ ਘਲਿਤ ਪਦਾਰਥ ਨਹੀਂ ਘਲਦਾ ਤਾਂ ਉਸ ਨੂੰ ਸੰਤਿਪਤ ਘੋਲ (saturated solution) ਕਹਿੰਦੇ ਹਨ। ਘੁਲਿਤ ਦੀ ਉਹ ਮਾਤਰਾ ਜੋ ਇਸ ਤਾਪਮਾਨ ਤੇ ਸੰਤਿਪਤ ਘੋਲ ਵਿੱਚ ਮੌਜਦ ਹੈ, ਉਸ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ (solubility) ਅਖਵਾੳਂਦੀ ਹੈ।

ਜੇ ਇਕ ਘੋਲ ਵਿੱਚ ਘਲਿਤ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਸੰਤਿਪਤਾ ਤੋਂ ਘੱਟ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਅਸੰਤਿਪਤ ਘੋਲ (Unsaturated solution) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਜੇ ਘੋਲ ਵਿੱਚ ਘਲਿਤ ਪਦਾਰਥ ਦੀ ਸੰਘਣਤਾ ਸੰਤ੍ਰਿਪਤ ਸਤਰ ਤੋਂ ਘੱਟ ਹੋਵੇ ਤਾਂ ਉਸ ਨੂੰ ਅਸੰਤ੍ਰਿਪਤ (unsaturated) ਘੋਲ ਕਹਿੰਦੇ ਹਨ।

ਜੇ ਤਸੀਂ ਕਿਸੇ ਖਾਸ ਤਾਪਮਾਨ ਤੇ ਇੱਕ ਸੰਤਿਪਤ ਘੋਲ ਲਓ ਅਤੇ ਉਸ ਨੂੰ ਹੌਲੀ-ਹੌਲੀ ਠੰਡਾ ਕਰੋ ਤਾਂ ਕੀ ਹੋਵੇਗਾ ?

ਉਪਰੋਕਤ ਕੀਤੀ ਗਈ ਕਿਰਿਆ ਤੋਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਦਿੱਤੇ ਹੋਏ ਇੱਕ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਤੇ ਵੱਖ-ਵੱਖ ਪਦਾਰਥਾਂ ਦੀ ਘੋਲ ਸਮਰੱਥਾ ਵੱਖ-ਵੱਖ ਹੁੰਦੀ ਹੈ।

ਘੋਲ ਦੀ ਮਾਤਰਾ (ਪੰਜ ਜਾਂ ਆਇਤਨ) ਵਿੱਚ ਘਲੇ ਹੋਏ ਘੁਲਿਤ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਨੂੰ ਜਾਂ ਘੁਲਿਤ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਜੋ ਘੋਲ਼ ਦੇ ਕਿਸੇ ਦਿੱਤੀ ਗਈ ਮਾਤਰਾ ਜਾਂ ਆਇਤਨ ਵਿੱਚ ਮੌਜੂਦ ਹੋਵੇ, ਉਸ ਨੂੰ ਘੋਲ ਦੀ ਸੰਘਣਤਾ ਕਹਿੰਦੇ ਹਨ।

	ਘੁਲਿਤ ਦੀ ਮਾਤਰਾ
ਘੋਲ਼ ਦੀ ਸੰਘਣਤਾ =	ਘੋਲ਼ ਦੀ ਮਾਤਰਾ
	ਘੁਲਿਤ ਦੀ ਮਾਤਰਾ
ਜਾਂ ਘੋਲ਼ ਦੀ ਸੰਘਣਤਾ =	ਘੋਲਕ ਦੀ ਮਾਤਰਾ

ਘੋਲ ਦੀ ਸੰਘਣਤਾ ਨੂੰ ਦਰਸਾਉਣ ਦੀਆਂ ਅਨੇਕਾਂ ਵਿਧੀਆਂ ਹਨ ਪਰ ਅਸੀਂ ਸਿਰਫ਼ ਦੋ ਵਿਧੀਆਂ ਦੇ ਬਾਰੇ ਹੀ ਚਰਚਾ ਕਰਾਂਗੇ।

(i) ਪੰਜ/ਘੋਲ ਦੇ ਪੰਜ ਪਤੀਸ਼ਤ ਘਲਿਤ ਪਦਾਰਥ ਦਾ ਪੁੰਜ x 100 ਘੋਲ ਦਾ ਪੰਜ (ii) ਪੂੰਜ/ਘੋਲ ਦੇ ਆਇਤਨ ਪਤੀਸ਼ਤ ਘੁਲਿਤ ਪਦਾਰਥ ਦਾ ਪੁੰਜ x 100 ਘੋਲ ਦਾ ਆਇਤਨ

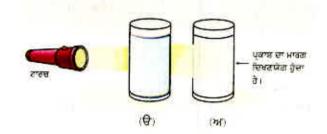
ਉਦਾਹਰਣ 2.1 : ਇੱਕ ਘੋਲ ਦੇ 320 ਗ੍ਰਾਮ ਘੋਲਕ ਜਲ ਵਿੱਚ 40 ਗ੍ਰਾਮ ਸਧਾਰਣ ਨਮਕ ਘੁਲਿਤ ਹੈ। ਘੋਲ ਦੀ ਸੰਘਣਤਾ ਦਾ ਮੁਲਾਂਕਨ ਕਰੋ। ਘੁਲਿਤ (ਨਮਕ) ਦਾ ਪੁੰਜ = 40 ਗ੍ਰਾਮ ਘੋਲਕ (ਪਾਣੀ) ਦਾ ਪੰਜ = 320 ਗਾਮ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਘੋਲ ਦਾ ਪੰਜ = ਘੋਲਿਤ ਦਾ ਪੂੰਜ + ਘੋਲਕ ਦਾ ਪੰਜ = 40 g + 320 g= 360 g ਘੋਲ ਦਾ ਪੰਜ ਪਤੀਸ਼ਤ ਘਲਿਤ ਪਦਾਰਥ ਦਾ ਪੁੰਜ x 100 ਘੋਲ ਦਾ ਪੰਜ $=\frac{40}{360} \times 100 = 11.1\%$

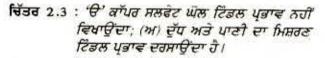
2.2.2 ਨਿਲੰਬਨ (Suspension) ਕੀ ਹੈ ?

ਕਿਰਿਆ 2.2 ਵਿੱਚ ਸਮਹ 'ਸ' ਦੇ ਰਾਹੀਂ ਪਤਾ ਲੱਗਿਆ ਕਿ ਬਿਖਮਅੰਗੀ ਘੋਲ ਜੋ ਠੋਸ ਦਵ ਵਿੱਚ ਖਿੱਲਰ (disperse) ਜਾਂਦਾ ਹੈ, ਨਿਲੰਬਨ ਅਖਵਾਉਂਦਾ ਹੈ। ਨਿਲੰਬਨ ਇੱਕ ਬਿਖਮਅੰਗੀ ਮਿਸ਼ਰਣ ਹੈ, ਜਿਸ ਵਿੱਚ ਘਲਿਤ ਪਦਾਰਥ ਦੇ ਕਣ ਘੁਲਦੇ ਨਹੀਂ। ਇਹ ਕਣ ਪੂਰੇ ਮਾਧਿਅਮ ਦੇ ਵਿੱਚ ਨਿਲੰਬਿਤ ਰਹਿੰਦੇ ਹਨ। ਇਹ ਨਿਲੰਬਿਤ ਕਣ ਅੱਖਾਂ ਨਾਲ ਵੇਖੇ ਜਾ ਸਕਦੇ ਹਨ।

ਵਿਗਿਆਨ

18


ਨਿਲੰਬਨ ਦੇ ਗੁਣ


- ਇਹ ਇੱਕ ਬਿਖਮਅੰਗੀ ਮਿਸ਼ਰਣ ਹੈ।
- ਇਹ ਕਣ ਅੱਖ ਨਾਲ ਵੇਖੇ ਜਾ ਸਕਦੇ ਹਨ।
- ਇਹ ਨਿਲੰਬਿਤ ਕਣ ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਣ ਨੂੰ ਫੈਲਾ ਦਿੰਦੇ ਹਨ, ਜਿਸ ਨਾਲ ਉਸਦਾ ਮਾਰਗ ਦਿਖਣਯੋਗ ਹੋ ਜਾਂਦਾ ਹੈ।
- ਜਦੋਂ ਇਸ ਨੂੰ ਸ਼ਾਂਤ ਛੱਡ ਦਿੰਦੇ ਹਾਂ ਤਾਂ ਇਹ ਕਣ ਹੇਠਾਂ ਵੱਲ ਬੈਠ ਜਾਂਦੇ ਹਨ ਭਾਵ ਨਿਲੰਬਨ ਅਸਥਾਈ ਹੁੰਦਾ ਹੈ। ਫਿਲਟਰੇਸ਼ਨ ਵਿਧੀ ਰਾਹੀਂ ਇਨ੍ਹਾਂ ਕਣਾਂ ਨੂੰ ਮਿਸ਼ਰਣ ਤੋਂ ਨਿਖੇੜਿਆ ਜਾ ਸਕਦਾ ਹੈ।

2.2.3 ਕੋਲਾਇਡਲ ਘੋਲ਼ (Colloidal solution) ਕੀ ਹੈ ?

ਕਿਰਿਆ 2.2 ਵਿੱਚ ਸਮੂਹ 'ਦ' ਦੇ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਮਿਸ਼ਰਣ ਨੂੰ ਕੋਲਾਇਡ ਜਾਂ ਕੋਲਾਇਡਲ ਘੋਲ਼ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਕੋਲਾਇਡ ਦੇ ਕਣ ਘੋਲ਼ ਵਿੱਚ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਫੈਲੇ ਹੁੰਦੇ ਹਨ। ਨਿਲ਼ੰਬਨ ਦੀ ਬਜਾਏ ਕਣਾਂ ਦਾ ਅਕਾਰ ਛੋਟਾ ਹੋਣ ਦੇ ਕਾਰਣ ਇਹ ਮਿਸ਼ਰਣ ਸਮਅੰਗੀ ਜਾਪਦਾ ਹੈ।

ਕੋਲਾਇਡਲ ਕਣਾਂ ਦੇ ਛੋਟੇ ਅਕਾਰ ਦੇ ਕਾਰਣ ਅਸੀਂ ਇਸ ਨੂੰ ਅੱਖ ਨਾਲ਼ ਨਹੀਂ ਵੇਖ ਸਕਦੇ ਪਰ ਇਹ ਕਣ ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਣ ਨੂੰ ਅਸਾਨੀ ਨਾਲ਼ ਖ਼ਿਲਾਰ ਦਿੰਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਕਿਰਿਆ 2.2 ਵਿੱਚ ਵੇਖਿਆ ਹੈ। ਪ੍ਰਕਾਸ਼ ਦੀ ਕਿਰਣ ਨੂੰ ਫੈਲਾਉਣ ਨੂੰ ਟਿੰਡਲ ਪ੍ਰਭਾਵ (Tyndall effect) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਟਿੰਡਲ ਨਾਮਕ ਵਿਗਿਆਨਕ ਨੇ ਇਹ ਖੋਜ ਕੀਤੀ ਸੀ। ਇੱਕ ਕਮਰੇ ਵਿੱਚ ਛੋਟੇ ਛੇਕ ਵਿੱਚੋਂ ਜਦੋਂ ਪ੍ਰਕਾਸ਼ ਦਾ ਬੀਮ ਆਉਂਦਾ ਹੈ ਤਾਂ ਉੱਥੇ ਅਸੀਂ ਟਿੰਡਲ ਪ੍ਰਭਾਵ ਵੇਖ ਸਕਦੇ ਹਾਂ। ਇਹ ਕਮਰੇ ਵਿੱਚ ਮੌਜੂਦ ਧੂੜ ਅਤੇ ਕਾਰਬਨ ਦੇ ਕਣਾਂ ਦੁਆਰਾ ਪ੍ਰਕਾਸ਼ ਦੇ ਫੈਲਣ ਦੇ ਕਾਰਣ ਹੁੰਦਾ ਹੈ।

ਜਦੋਂ ਇੱਕ ਸੰਘਣੇ ਜੰਗਲ ਦੇ ਅਛਾਦਨ ਵਿੱਚੋਂ ਸੂਰਜ ਦੀਆਂ ਕਿਰਣਾਂ ਲੰਘਦੀਆਂ ਹਨ ਉੱਥੇ ਅਸੀਂ ਟਿੰਡਲ ਪ੍ਰਭਾਵ ਨੂੰ ਵੇਖ ਸਕਦੇ ਹਾਂ। ਜੰਗਲ ਦੇ ਕੋਹਰੇ ਵਿੱਚ ਛੋਟੇ-ਛੋਟੇ ਪਾਣੀ ਦੇ ਕਣ ਹੁੰਦੇ ਹਨ ਜਿਹੜੇ ਕੋਲਾਇਡ ਕਣਾਂ ਦੇ ਸਮਾਨ ਵਿਹਾਰ ਕਰਦੇ ਹਨ।

19

ਸਾਰਣੀ 2.1 ਕੋਲਾਇਡਾਂ ਦੇ ਉਦਾਹਰਣ			
ਪਰਿਖਿਪਤ ਫੇਜ਼	ਪਰਿਖਿਪਤ ਮਾਧਿਅਮ	ਕਿਸਮ	ਉਦਾਹਰਣ
स् द	ਗੈਸ	ਏਰੋਸੋਲ	ਧੁੰਦ, ਬੱਦਲ
ਠੋਸ	ਗੈਸ	ਏਰੋਸੋਲ	ਧੂੰਆਂ, ਸਵੈਚਲਿਤ ਵਾਹਨ ਵਿੱਚੋਂ ਨਿਕਲੀਆਂ ਗੈਸਾਂ
ਗੈਸ	र् द	ਫੋਮ	ਸ਼ੇਵਿੰਗ ਕਰੀਮ
ट् द	स् द	ਇਮਲਸ਼ਨ	ਦੁੱਧ, ਫੇਸ ਕਰੀਮ
ਠੋਸ	स् द	ਸੋਲ	ਮੈਗਨੀਸ਼ੀਆ-ਮਿਲਕ, ਚਿੱਕੜ
ਗੈਸ	ਠੋਸ	ਫੋਮ ਸੋਲ	ਫੋਮ, ਰਬੜ, ਸਪੰਜ, ਪਿਊਮਿਸ
ਦ੍ਰਵ	ਠੋਸ	ਜੈੱਲ	ਜੈਲੀ, ਪਨੀਰ, ਮੱਖਣ
ਠੋਸ	ਠੋਸ	ਠੋਸ ਸੋਲ	ਰੰਗੀਨ ਰਤਨ ਪੱਥਰ, (ਦੂਧੀਆ) ਕੱਚ

ਕੀ ਸਾਡੇ ਆਲ਼ੇ-ਦੁਆਲ਼ੇ ਦੇ ਪਦਾਰਥ ਸ਼ੁੱਧ ਹਨ

ਚਿੱਤਰ 2.4 : ਟਿੰਡਲ ਪ੍ਰਭਾਵ

ਕੋਲਾਇਡ ਦੇ ਗੁਣ

20

- ਇਹ ਇੱਕ ਬਿਖ਼ਮਔਗੀ ਮਿਸ਼ਰਣ ਹੈ।
- ਕੋਲਾਇਡ ਦੇ ਕਣਾਂ ਦਾ ਆਕਾਰ ਇੰਨਾ ਛੋਟਾ ਹੁੰਦਾ ਹੈ ਕਿ ਇਹ ਵੱਖ ਰੂਪ ਵਿੱਚ ਅੱਖਾਂ ਨਾਲ਼ ਨਹੀਂ ਵੇਖੇ ਜਾ ਸਕਦੇ।
- ਇਹ ਇੰਨੇ ਵੱਡੇ ਹੁੰਦੇ ਹਨ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੇ ਬੀਮ ਨੂੰ ਫੈਲਾਉਂਦੇ ਹਨ ਅਤੇ ਉਸਦੇ ਮਾਰਗ ਨੂੰ ਦ੍ਰਿਸ਼ਟੀਗੋਚਰ ਬਣਾਉਂਦੇ ਹਨ।
 - ਜਦੋਂ ਇਨ੍ਹਾਂ ਨੂੰ ਸ਼ਾਂਤ ਛੱਡ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਹ ਕਣ ਤਲ ਤੇ ਨਹੀਂ ਬੈਠਦੇ ਭਾਵ ਇਹ ਸਥਾਈ ਹੁੰਦੇ ਹਨ।
 - ਇਹ ਫਿਲਟਰੇਸ਼ਨ ਵਿਧੀ ਦੁਆਰਾ ਮਿਸ਼ਰਣ ਵਿੱਚੋਂ ਵੱਖ ਨਹੀਂ ਕੀਤੇ ਜਾ ਸਕਦੇ। ਪਰ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਵਿਧੀ ਅਪਕੇਂਦਰੀਕਰਣ (centrifugation) ਤਕਨੀਕ (ਕਿਰਿਆ 2.5) ਨਾਲ਼ ਵੱਖ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ।

ਕੋਲਾਇਡਲ ਘੋਲ ਪਰਿਖਿਪਤ ਫੇਜ਼ ਅਤੇ ਪਰਿਖੇਪਣ ਮਾਧਿਅਮ ਤੋਂ ਬਣਦਾ ਹੈ। ਘੁਲਿਤ ਪਦਾਰਥ ਦੀ ਤਰ੍ਹਾਂ ਦਾ ਘਟਕ ਜਾਂ ਪਰਿਖਿਪਤ ਕਣ ਜਿਹੜਾ ਕੋਲਾਇਡਲ ਰੂਪ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ ਉਸ ਨੂੰ ਪਰਿਖਿਪਤ ਫੇਜ਼ (dispersed phase) ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਉਹ ਘਟਕ ਜਿਸ ਵਿੱਚ ਪਰਿਖਿਪਤ ਫੇਜ਼ ਨਿਲੰਬਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਉਸ ਨੂੰ ਪਰਿਖੇਪਣ ਮਾਧਿਅਮ ਕਹਿੰਦੇ ਹਨ। ਕੋਲਾਇਡਲ ਘੋਲ ਨੂੰ ਪਰਿਖੇਪਣ ਸਾਧਿਅਮ (ਠੱਸ, ਦ੍ਵ ਜਾਂ ਗੈਸ) ਦੀ ਅਵਸਥਾ ਅਤੇ ਪਰਿਖਿਪਤ ਫੇਜ਼ ਦੇ ਅਨੁਸਾਰ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸਾਰਣੀ 2.1 ਵਿੱਚ ਕੁਝ ਉਦਾਹਰਣ ਦਿੱਤੇ ਗਏ ਹਨ।

ਸ਼ਨ

- ਉਦਾਹਰਣ ਸ਼ਹਿਤ ਸਮਅੰਗੀ ਅਤੇ ਬਿਖ਼ਮਔਗੀ ਮਿਸ਼ਰਣਾਂ ਵਿੱਚ ਅੰਤਰ ਕਰੋ।
- ਘੋਲ, ਨਿਲੈਬਨ ਅਤੇ ਕੋਲਾਇਡ ਇੱਕ ਦੂਜੇ ਤੋਂ ਕਿਵੇਂ ਭਿੰਨ ਹਨ?
- ਇੱਕ ਸੈਤ੍ਰਿਪਤ ਘੋਲ਼ ਬਣਾਉਣ ਲਈ 36 ਗ੍ਰਾਮ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਨੂੰ 100 ਗ੍ਰਾਮ ਪਾਣੀ ਵਿੱਚ 293 k ਤੇ ਘੋਲਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਾਪਮਾਨ ਤੇ ਇਸ ਦੀ ਸੰਘਣਤਾ ਪਤਾ ਕਰੋ।

2.3 ਮਿਸ਼ਰਣ ਦੇ ਘਟਕਾਂ ਦਾ ਨਿਖੇੜਨ

ਅਸੀਂ ਪੜ੍ਹ ਚੁਕੇ ਹਾਂ ਕਿ ਆਮ ਤੌਰ 'ਤੇ ਕੁਦਰਤੀ ਪਦਾਰਥ ਰਸਾਇਣਿਕ ਤੌਰ 'ਤੇ ਸ਼ੁੱਧ ਨਹੀਂ ਹੁੰਦੇ। ਮਿਸ਼ਰਣ ਵਿੱਚੋਂ ਘਟਕਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ ਕਈ ਪ੍ਰਕਾਰ ਦੀਆਂ ਵਿਧੀਆਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਵੱਖ ਕਰਨ ਨਾਲ਼ ਮਿਸ਼ਰਣ ਦੇ ਹਰੇਕ ਘਟਕ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਨਾ ਅਤੇ ਵਰਤਣਾ ਅਸਾਨ ਹੋ ਜਾਂਦਾ ਹੈ।

ਬਿਖ਼ਮਅੰਗੀ ਮਿਸ਼ਰਣ ਨੂੰ ਸਧਾਰਣ ਭੌਤਿਕ ਕਿਰਿਆ ਦੁਆਰਾ ਵੱਖ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਿਵੇਂ ਹੱਥ ਨਾਲ਼ ਚੁਣ ਕੇ, ਛਾਨਣੀ ਨਾਲ਼ ਛਾਣ ਕੇ, ਜਿਹੜੇ ਅਸੀਂ ਹਰ ਰੋਜ਼ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਉਂਦੇ ਹਾਂ। ਕਦੇ-ਕਦੇ ਮਿਸ਼ਰਣ ਵਿੱਚੋਂ ਘਟਕਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ ਵਿਸ਼ੇਸ਼ ਤਕਨੀਕਾਂ ਨੂੰ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਂਦਾ ਜਾਂਦਾ ਹੈ।

2.3.1 ਰੰਗ ਵਾਲ਼ੇ ਘਟਕ (ਡਾਈ) ਨੂੰ ਨੀਲੇ ਜਾਂ ਕਾਲੇ ਰੰਗ ਦੀ ਸਿਆਹੀ ਤੋਂ ਕਿਵੇਂ ਵੱਖ ਕਰ ਸਕਦੇ ਹਾਂ ?

ਕਿਰਿਆ__

_2.4

- 🔹 ਅੱਧਾ ਬੀਕਰ ਪਾਣੀ ਲਓ।
 - ਬੀਕਰ ਦੇ ਮੂੰਹ ਤੇ ਵਾਚ-ਗਲਾਸ ਰੱਖੋ (ਚਿੱਤਰ 2.5)।
 - ਕੁਝ ਬੂੰਦਾਂ ਸਿਆਹੀ ਵਾਚ-ਗਿਲਾਸ ਤੇ ਪਾ ਦਿਓ।
 - ਹੁਣ ਬੀਕਰ ਨੂੰ ਗਰਮ ਕਰਨਾ ਸ਼ੁਰੂ ਕਰ ਦਿਓ। ਅਸੀਂ ਸਿਆਹੀ ਨੂੰ ਸਿੱਧਾ ਗਰਮ ਨਹੀਂ ਕਰਨਾ ਚਾਹੁੰਦੇ। ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਵਾਚ-ਗਲਾਸ ਤੋਂ ਵਾਸ਼ਪੀਕਰਣ ਹੋ ਰਿਹਾ ਹੈ।
 - ਅਸੀਂ ਵਾਸ਼ਪੀਕਰਣ ਹੋਣ ਤੱਕ ਗਰਮ ਕਰਨਾ ਜਾਗੇ ਰੱਖਦੇ ਹਾਂ

ਵਿਗਿਆਨ

50000 NO

ਜਦੋਂ ਵਾਚ-ਗਲਾਸ ਤੇ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਦਿੱਸਦਾ ਤਾਂ ਉਸ ਨੂੰ ਗਰਮ ਕਰਨਾ ਬੇਦ ਕਰ ਦਿੰਦੇ ਹਾਂ। ਇਸ ਨੂੰ ਧਿਆਨ ਨਾਲ ਵੇਖੋ ਅਤੇ ਪ੍ਰੇਖਣ ਨੂੰ ਨੋਟ ਕਰੋ।

ਚਿੱਤਰ 2.5 : ਵਾਸ਼ਪੀਕਰਣ

ਹੁਣ ਉੱਤਰ ਦਿਓ-

ਤੁਹਾਡੇ ਵਿਚਾਰ ਨਾਲ, ਕਿਸ ਦਾ ਵਾਸ਼ਪੀਕਰਣ ਹੋਇਆ ? ਕੀ ਵਾਚ-ਗਲਾਸ ਤੇ ਕੁਝ ਰਹਿੰਦ-ਖੂੰਹਦ (residue) ਬਚਿਆ ਹੈ ?

ਤੁਸੀਂ ਕੀ ਵਿਆਖਿਆ ਕਰੋਗੇ? ਕੀ ਸਿਆਹੀ ਇੱਕ ਸ਼ੁੱਧ ਪਦਾਰਥ ਹੈ ਜਾਂ ਮਿਸ਼ਰਣ ਹੈ?

ਸਾਨੂੰ ਪਤਾ ਲੱਗਿਆ ਹੈ ਕਿ ਸਿਆਹੀ ਪਾਣੀ ਵਿੱਚ ਰੰਗਾਂ ਦਾ ਇੱਕ ਮਿਸ਼ਰਣ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਘੋਲ਼ ਵਿੱਚੋਂ ਘੁਲਿਤ ਪਦਾਰਥ ਨੂੰ ਵਾਸ਼ਪੀਕਰਣ ਦੀ ਵਿਧੀ ਨਾਲ਼ ਵੱਖ ਕਰ ਸਕਦੇ ਹਾਂ।

2.3.2 ਦੁੱਧ ਤੋਂ ਕਰੀਮ ਨੂੰ ਕਿਵੇਂ ਵੱਖ ਕਰ ਸਕਦੇ ਹਾਂ?

ਅੱਜ-ਕਲ੍ਹ ਅਸੀਂ ਬਜ਼ਾਰ ਤੋਂ ਸੰਪੂਰਣ (ਫੁੱਲ) ਕਰੀਮ, ਸਪਰੇਟਾ (toned), ਦੋਹਰੀ ਵਾਰ ਕਰੀਮ ਕੱਢਿਆ ਦੁੱਧ ਪੋਲੀ ਪੈਕ ਜਾਂ ਟੈਟਰਾ ਪੈਕ ਵਿੱਚ ਲੈਂਦੇ ਹਾਂ। ਦੁੱਧ ਦੀਆਂ ਇਨ੍ਹਾਂ ਕਿਸਮਾਂ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਮਾਤਰਾ ਵਿੱਚ ਚਰਬੀ (fat) ਹੁੰਦੀ ਹੈ।

ਕਿਰਿਆ

ਇੱਕ ਪਰਖਨਲੀ ਵਿੱਚ ਸੰਪੂਰਣ ਕਰੀਮ ਵਾਲ਼ਾ ਦੁੱਧ ਲਓ।

2.5

ਕੀ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ ਸ਼ੁੱਧ ਹਨ

ਅਪਕੇਂਦਰੀ ਯੰਤਰ (centrifugal machine) ਨਾਲ਼ ਇਸਨੂੰ ਦੋ ਮਿੰਟ ਤੱਕ ਅਪਕੇਂਦਰਿਤ ਕਰੋ। ਜੇ ਸਕੂਲ ਵਿੱਚ ਇਹ ਯੰਤਰ ਉਪਲਬਧ ਨਹੀਂ ਹੈ, ਤਾਂ ਇਹ ਪ੍ਰਯੋਗ ਤੁਸੀਂ ਘਰ ਵਿੱਚ ਰਸੋਈ ਵਿੱਚ ਵਰਤੀ ਜਾਣ ਵਾਲੀ ਮਧਾਣੀ ਜਾਂ ਮਿਕਸੀ ਨਾਲ ਵੀ ਕਰ ਸਕਦੇ ਹੋ।

ਜੇ ਨੇੜੇ ਕੋਈ ਦੱਧ ਡੇਅਰੀ ਹੈ ਤਾਂ ਉੱਥੇ ਜਾਓ ਅਤੇ ਪੁੱਛੋ (i) ਉਹ ਕਰੀਮ ਨੂੰ ਦੁੱਧ ਤੋਂ ਕਿਵੇਂ ਵੱਖ ਕਰਦੇ ਹਨ? (ii) ਉਹ ਦੁੱਧ ਤੋਂ ਪਨੀਰ ਕਿਵੇਂ ਬਣਾਉਂਦੇ ਹਨ?

ਹੁਣ ਉੱਤਰ ਦਿਓ-

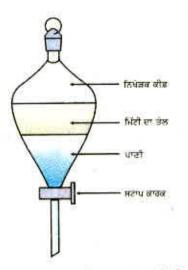
ਦੁੱਧ ਨੂੰ ਰਿੜਕਣ ਤੇ ਤੁਸੀਂ ਕੀ ਵੇਖਿਆ? ਦੁੱਧ ਵਿਚੋਂ ਕਰੀਮ ਨੂੰ ਵੱਖ ਕਿਵੇਂ ਕਰਦੇ ਹਨ?

ਕਦੇ-ਕਦੇ ਦ੍ਵ ਵਿੱਚ ਮੌਜੂਦ ਠੋਸ ਕਣ ਇੰਨੇ ਛੋਟੇ ਹੁੰਦੇ ਹਨ ਕਿ ਇਹ ਫਿਲਟਰ ਪੇਪਰ ਵਿੱਚੋਂ ਬਾਹਰ ਨਿਕਲ ਜਾਂਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਕਣਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ ਫ਼ਿਲਟਰੇਸ਼ਨ ਵਿਧੀ ਦਾ ਪ੍ਰਯੋਗ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ। ਅਜਿਹੇ ਮਿਸ਼ਰਣਾਂ ਨੂੰ ਅਪਕੇਂਦਰਣ ਉੱ ਦੁਆਰਾ ਵੱਖ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਸਿਧਾਂਤ ਦੇ ਅਧਾਰ ਤੇ ਜਦੋਂ ਇਸ ਨੂੰ ਤੇਜ਼ੀ ਨਾਲ਼ ਘੁਮਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਭਾਰੀ ਕਣ ਹੇਠਾਂ ਬੈਠ ਜਾਂਦੇ ਹਨ ਅਤੇ ਹਲਕੇ ਕਣ ਉੱਤੇ ਹੀ ਰਹਿ ਜਾਂਦੇ ਹਨ।

ਰਤ

- ਜਾਂਚ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਖੂਨ ਅਤੇ ਪੇਸ਼ਾਬ ਦੀ ਜਾਂਚ ਵਿੱਚ।
- ਡੇਅਰੀ ਅਤੇ ਘਰ ਵਿੱਚ ਮੱਖਣ ਕੱਢਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ।
- ਕੱਪੜੇ ਧੋਣ ਵਾਲੀ ਮਸ਼ੀਨ ਵਿੱਚ ਭਿੱਜੇ ਹੋਏ ਕੱਪੜਿਆਂ ਵਿੱਚੋਂ ਪਾਣੀ ਨਿਚੋੜਨ ਵਿੱਚ।
- 2.3.3 ਦੋ ਅਘੁਲਣਸ਼ੀਲ ਦ੍ਰਵਾਂ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਕਿਵੇਂ ਵੱਖ ਕਰ ਸਕਦੇ ਹਾਂ ?

ਕਿਰਿਆ


ਆਓ ਨਿਖੇੜਕ ਕੀਫ਼ (separating funnel) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮਿੱਟੀ ਦੇ ਤੇਲ (kerosene oil) ਨੂੰ ਪਾਣੀ ਵਿੱਚੋਂ ਵੱਖ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੀਏ।

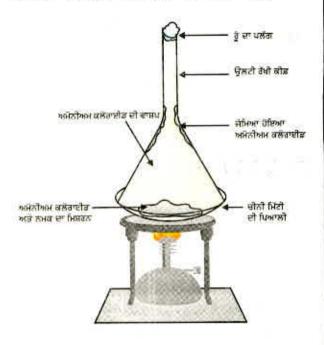
2.6

21

ਮਿੱਟੀ ਦੇ ਤੇਲ ਅਤੇ ਪਾਣੀ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਇੱਕ ਨਿਖੇੜਕ ਕੀਫ਼ (separating funnel) ਵਿੱਚ ਪਾਓ। ਕੁਝ ਦੇਰ ਤੱਕ ਇਸ ਨੂੰ ਸ਼ਾਂਤ ਛੱਡ ਦਿਓ ਤਾਂ ਕਿ ਪਾਣੀ ਅਤੇ ਤੇਲ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਪਰਤਾਂ ਤਿਆਰ ਹੋ ਜਾਣ। ਨਿਖੇੜਨ ਕੀਫ਼ ਦੇ ਸਟਾਪ ਕਾਰਕ ਨੂੰ ਖੋਲ੍ਹੋ ਅਤੇ ਸਾਵਧਾਨੀ ਨਾਲ ਹੇਠਾਂ ਵਾਲੇ ਪਾਣੀ ਦੀ ਪਰਤ ਨੂੰ ਕੱਢ ਲਓ। ਜਿਵੇਂ ਹੀ ਤੇਲ ਹੇਠਾਂ ਪਹੁੰਚੇ ਸਟਾਪ ਕਾਰਕ ਨੂੰ ਬੇਂਦ ਕਰ ਦਿਓ।

ਚਿੱਤਰ 2.6 : ਅਘੁਲਣਸ਼ੀਲ ਦ੍ਰਵਾਂ ਦਾ ਨਿਖੇੜਨ

ਵਰਤੋਂ


22

- ਤੇਲ ਅਤੇ ਪਾਣੀ ਦੇ ਅਘੁਲਣਸ਼ੀਲ ਮਿਸ਼ਰਣ ਨੂੰ ਨਿਖੇੜਨ ਲਈ।
- ਧਾਤਸ਼ੋਧਨ ਦੇ ਦੌਰਾਨ ਲੋਹੇ ਨੂੰ ਵੱਖ ਕਰਨ ਵਿੱਚ। ਇਸ ਵਿਧੀ ਰਾਹੀਂ ਹਲਕੇ ਸਲੈਗ (ਧਾਤ ਮੈਲ) ਨੂੰ ਉਪਰੋਂ ਹਟਾ ਲਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਭੱਠੀ ਦੀ ਹੇਠਲੀ ਸਤ੍ਹਾ ਤੇ ਪਿਘਲਿਆ ਹੋਇਆ ਲੋਹਾ ਬਾਕੀ ਰਹਿ ਜਾਂਦਾ ਹੈ।

ਸਿਧਾਂਤ ਦੇ ਅਨੁਸਾਰ, ਆਪਸ ਵਿੱਚ ਨਾ ਮਿਲਣ ਵਾਲੇ ਦ੍ਰਵ ਆਪਣੀ ਘਣਤਾ ਅਨੁਸਾਰ ਵੱਖ-ਵੱਖ ਪਰਤਾਂ ਵਿੱਚ ਵੱਖ ਹੋ ਜਾਂਦੇ ਹਨ।

2.3.4 ਨਮਕ ਅਤੇ ਅਮੋਨੀਅਮ ਕਲੋਚਾਈਡ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਕਿਵੇਂ ਨਿਖੇੜ ਸਕਦੇ ਹਾਂ ?

ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਪੜ੍ਹਿਆ ਹੈ ਕਿ ਅਮੋਨੀਅਮ ਕਲੋਰਾਈਡ ਨੂੰ ਗਰਮ ਕਰਨ ਤੇ ਉਹ ਠੋਸ ਅਵਸਥਾ ਤੋਂ ਸਿੱਧੇ ਗੈਸ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਉਨ੍ਹਾਂ ਮਿਸ਼ਰਣਾਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਜੌਹਰ ਉੱਡਣ ਯੋਗ (sublimable) ਘਟਕ ਹੋਣ, ਨੂੰ ਜੌਹਰ ਨਾ ਉੱਡਣ ਵਾਲੀਆਂ ਅਸ਼ੁੱਧੀਆਂ (ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਨਮਕ) ਤੋਂ ਵੱਖ ਕਰਨ ਲਈ ਜੌਹਰ ਉਡਾਉਣ (sublimation) ਦੀ ਪ੍ਰਕਿਰਿਆ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ।ਅਮੋਨੀਅਮ ਕਲੋਰਾਈਡ, ਕਪੂਰ, ਨੈਫਥਾਲੀਨ ਅਤੇ ਐਂਥਰਾਸੀਨ ਆਦਿ ਜੌਹਰ ਉੱਡਣ ਯੋਗ ਠੋਸ ਪਦਾਰਥਾਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਹਨ।

ਚਿੱਤਰ 2.7 : ਜੌਹਰ ਉਡਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨਾਲ਼ ਅਮੋਨੀਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਨਮਕ ਦਾ ਨਿਖੇੜਨ।

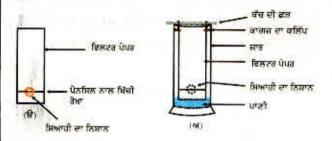
2.3.5 ਕੀ ਕਾਲੀ ਸਿਆਹੀ ਵਿੱਚ ਡਾਈ ਇਕ ਹੀ ਰੰਗ ਹੈ?

ਕਿਰਿਆ_____2.7

ਫਿਲਟਰ ਪੇਪਰ ਦੀ ਇੱਕ ਪਤਲੀ ਪਰਤ ਲਓ। ਇਸ ਦੇ ਹੇਠਲੇ ਸਿਰੇ ਤੋਂ 3 ਸੈਂ ਮੀ. ਉੱਤੇ ਪੈਨਸਿਲ ਨਾਲ

ਇੱਕ ਰੇਖਾ ਖਿੱਚ ਲਓ।(ਚਿੱਤਰ 2.8 ੳ)।

ਉਸ ਰੇਖਾ ਉੱਤੇ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਕਾਲੀ ਸਿਆਹੀ ਦੀ ਇੱਕ ਬੁੰਦ ਲਗਾਓ। ਇਸ ਨੂੰ ਸ਼ੱਕਣ ਦਿਓ।


ਜ਼ਾਰ, ਬੀਕਰ ਜਾਂ ਪਰਖਨਲੀ ਵਿੱਚ ਪਾਣੀ ਲਓ, ਇਸ ਵਿੱਚ ਇਸ ਫਿਲਟਰ ਪੇਪਰ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਰੱਖੋ ਕਿ ਉਹ

ਪਾਣੀ ਦੀ ਸਤ੍ਹਾ ਤੋਂ ਠੀਕ ਉੱਤੇ ਰਹੇ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 2.8 (ਅ) ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ। ਹੁਣ ਇਸ ਨੂੰ ਸ਼ਾਂਤ ਛੱਡ ਦਿਓ।

ਜਿਉਂ ਹੀ ਪਾਣੀ ਫਿਲਟਰ ਪੇਪਰ ਤੇ ਉੱਪਰ ਵੱਲ ਉੱਠੇ, ਸਾਵਧਾਨੀ ਨਾਲ ਵੇਖੋ। ਪ੍ਰੇਖਣ ਨੂੰ ਲਿਖੋ।

ਚਿੱਤਰ 2.8 : ਕਰੋਮੈਟੋਗਰਾਫ਼ੀ ਦੁਆਰਾ ਕਾਲੀ ਸਿਆਹੀ ਵਿੱਚ ਮੌਜੂਦ ਡਾਈਆਂ ਦਾ ਨਿਖੇੜਨ

ਹੁਣ ਉੱਤਰ ਦਿਓ-

- ਜਿਵੇਂ-ਜਿਵੇਂ ਪਾਣੀ ਉੱਪਰ ਵੱਲ ਉੱਠਦਾ ਹੈ, ਤੁਸੀਂ ਫਿਲਟਰ ਪੇਪਰ ਤੇ ਕੀ ਵੇਖਿਆ ?
- ਕੀ ਤੁਸੀਂ ਫਿਲਟਰ ਪੇਪਰ ਦੇ ਟੁਕੜੇ ਤੋਂ ਵੱਖ-ਵੱਖ ਰੋਗ ਪ੍ਰਾਪਤ ਕੀਤੇ ?
- ਭੁਹਾਡੇ ਅਨੁਸਾਰ, ਰੰਗ ਵਾਲੀ ਥਾਂ ਦਾ ਫਿਲਟਰ ਪੇਪਰ ਉੱਪਰ ਉੱਠਣ ਦਾ ਕੀ ਕਾਰਣ ਹੈ?

ਜਿਹੜੀ ਸਿਆਹੀ ਅਸੀਂ ਵਰਤੀ ਸੀ, ਉਸ ਵਿੱਚ ਪਾਣੀ ਘੋਲਕ ਦੇ ਰੂਪ ਵਿੱਚ ਹੈ ਅਤੇ ਡਾਈ ਘੁਲਿਤ ਦੇ ਰੂਪ ਵਿੱਚ। ਜਿਉਂ ਹੀ ਪਾਣੀ ਫਿਲਟਰ ਪੇਪਰ ਤੇ ਉੱਪਰ ਦੀ ਦਿਸ਼ਾ ਵੱਲ ਵਧਦਾ ਹੈ ਇਹ ਡਾਈ ਦੇ ਕਣਾਂ ਨੂੰ ਵੀ ਆਪਣੇ ਨਾਲ਼ ਲੈ ਲੈਂਦਾ ਹੈ। ਅਕਸਰ ਡਾਈ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਰੰਗਾਂ ਦਾ ਮਿਸ਼ਰਣ ਹੁੰਦਾ ਹੈ। ਰੰਗ ਵਾਲਾ ਘਟਕ ਜਿਹੜਾ ਪਾਣੀ ਵਿੱਚ ਵਧੇਰੇ ਘੁਲਣਸ਼ੀਲ ਹੈ, ਤੇਜ਼ੀ ਨਾਲ਼ ਉੱਪਰ ਉੱਠਦਾ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਰੰਗਾਂ ਦਾ ਨਿਖੇੜਨ ਸੰਭਵ ਹੋ ਜਾਂਦਾ ਹੈ।

ਮਿਸ਼ਰਣ ਵਿੱਚੋਂ ਘਟਕਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਦੀ ਇਸ ਵਿਧੀ ਨੂੰ ਕਰੋਮੈਟੋਗਰਾਫ਼ੀ (chromatography) ਕਹਿੰਦੇ ਹਨ। ਯੂਨਾਨੀ ਭਾਸ਼ਾ ਵਿੱਚ ਕਰੋਮਾ (kroma) ਦਾ ਭਾਵ ਰੰਗ ਹੁੰਦਾ ਹੈ। ਇਸ ਵਿਧੀ ਨੂੰ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਰੰਗਾਂ ਨੂੰ ਨਿਖੇੜਨ ਲਈ ਵਰਤਿਆ ਗਿਆ ਸੀ ਇਸ ਲਈ ਇਸ ਦਾ ਨਾਂ ਕਰੋਮੈਟੋਗਰਾਫ਼ੀ ਪਿਆ। ਇਹ ਇੱਕ ਅਜਿਹੀ ਵਿਧੀ ਹੈ ਜਿਸ ਦੀ ਵਰਤੋਂ ਉਨ੍ਹਾਂ ਘੁਲਿਤ ਪਦਾਰਥਾਂ ਨੂੰ ਨਿਖੇੜਨ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਜਿਹੜੇ ਇਕ ਹੀ ਕਿਸਮ ਦੇ ਘੋਲ਼ਕ ਵਿੱਚ ਘੁਲੇ ਹੁੰਦੇ ਹਨ।

ਤਕਨੀਕੀ ਵਿਕਾਸ ਦੇ ਨਾਲ਼ ਹੀ ਕਰੋਮੈਟੋਗਰਾਫ਼ੀ ਵਿੱਚ ਨਵੀਆਂ ਤਕਨੀਕਾਂ ਦਾ ਵਿਕਾਸ ਹੋਇਆ, ਜਿਸ ਦੇ ਬਾਰੇ ਤੁਸੀਂ ਵੱਡੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਪੜ੍ਹੋਗੇ।

ਵਰਤੋਂ

- ਡਾਈ ਵਿੱਚੋਂ ਰੰਗਾਂ ਨੂੰ ਨਿਖੇੜਨ ਵਿੱਚ।
- ਕੁਦਰਤੀ ਰੰਗਾਂ ਵਿੱਚੋਂ ਵਰਣਕਾਂ (pigments) ਨੂੰ ਨਿਖੇੜਨ ਵਿੱਚ।
- ਖ਼ੂਨ ਵਿੱਚੋਂ ਨਸ਼ੀਲੋਂ ਪਦਾਰਥਾਂ (drugs) ਨੂੰ ਨਿਖੇੜਨ ਵਿੱਚ।

2.3.6 ਦੋ ਘੁਲਣਸ਼ੀਲ ਦ੍ਰਵਾਂ ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਕਿਵੇਂ ਨਿਖੇੜ ਸਕਦੇ ਹਾਂ ?

ਕਿਰਿਆ

ਆਓ ਅਸੀਂ ਐਸੀਟੋਨ ਅਤੇ ਪਾਣੀ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਮਿਸ਼ਰਣ ਵਿੱਚੋਂ ਨਿਖੇੜਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੀਏ।

2.8

23

ਮਿਸ਼ਰਣ ਨੂੰ ਕਸ਼ੀਦਣ ਫਲਾਸਕ (distillation flask) ਵਿੱਚ ਲਓ। ਇਸ ਵਿੱਚ ਥਰਮਾਮੀਟਰ ਲਗਾਓ।

ਉਪਕਰਣ ਨੂੰ ਦਿੱਤੇ ਗਏ ਚਿੱਤਰ 2.9 ਦੇ ਅਨੁਸਾਰ ਫਿੱਟ ਕਰੇ।

ਚਿੱਤਰ 2.9 : ਦੋ ਘੁਲਣਸ਼ੀਲ ਦ੍ਰਵਾਂ ਦਾ ਕਸ਼ੀਦਣ ਵਿਧੀ ਰਾਹੀਂ ਨਿਖੇੜਨ

ਕੀ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ ਸ਼ੁੱਧ ਹਨ

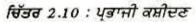
ਮਿਸ਼ਹਣ ਨੂੰ ਹੌਲੀ-ਹੌਲੀ ਗਰਮ ਕਰੋ ਅਤੇ ਸਾਵਧਾਨੀ ਨਾਲ ਬਰਮਾਮੀਟਰ ਨੂੰ ਵੋਖੋ। ਐਸੀਟੋਨ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦ੍ਵਿਤ (condense)

ਹੋ ਕੇ ਦ੍ਵਣ ਯੰਤਰ (condenser) ਰਾਹੀਂ ਬਾਹਰ ਨਿਕਲਣ ਤੇ ਇਸ ਨੂੰ ਬਰਤਨ ਵਿੱਚ ਇਕੱਠਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਜਲ ਕਸ਼ੀਦਣ ਫਲਾਸਕ ਵਿੱਚ ਬਾਕੀ ਰਹਿ ਜਾਂਦਾ ਹੈ।

ਹੁਣ ਉੱਤਰ ਦਿਓ-

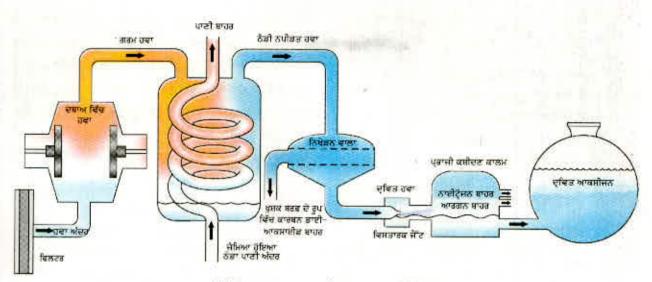
ਜਦੋਂ ਤੁਸੀਂ ਮਿਸ਼ਰਣ ਨੂੰ ਗਰਮ ਕਰਨਾ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕੀ ਪ੍ਰੇਖਣ (observe) ਕਰਦੇ ਹੋ ? ਕੁਝ ਸਮੇਂ ਲਈ ਕਿਸ ਤਾਪਮਾਨ ਤੇ ਬਰਮਾਮੀਟਰ ਦੀ ਰੀਡਿੰਗ ਸਥਿਰ ਹੋ ਜਾਂਦੀ ਹੈ ? ਐਸੀਟੋਨ ਦਾ ਉਬਾਲ ਦਰਜਾ ਕੀ ਹੈ ?


ਦੋਵਾਂ ਘਟਕਾਂ ਨੂੰ ਅਸੀਂ ਨਿਖੇੜ ਸਕਦੇ ਹਾਂ, ਕਿਉਂ ?

ਇਸ ਵਿਧੀ ਨੂੰ ਕਸ਼ੀਦਣ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਸਦੀ ਵਰਤੋਂ ਅਜਿਹੇ ਮਿਸ਼ਰਣ ਨੂੰ ਨਿਖੇੜਨ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਜੋ ਵਿਘਟਿਤ (decompose) ਹੋਏ ਬਿਨਾਂ ਉਬਲਦੇ ਹਨ ਅਤੇ ਜਿਨ੍ਹਾਂ ਦੇ ਘਟਕਾਂ ਦੇ ਉਬਾਲ ਦਰਜਿਆਂ ਵਿੱਚ ਵਧੇਰੇ ਅੰਤਰ ਹੰਦਾ ਹੈ।

ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਘੁਲਣਸ਼ੀਲ ਦ੍ਵਾਂ ਜਿਨ੍ਹਾਂ ਦੇ ਉਬਾਲ ਦਰਜਿਆਂ ਵਿੱਚ ਅੰਤਰ 25 K ਤੋਂ ਘੱਟ ਹੁੰਦਾ ਹੈ, ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਨਿਖੋੜਨ ਲਈ ਅੰਸ਼ਿਕ ਕਸ਼ੀਦਣ ਵਿਧੀ (fractional distillation method) ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ, ਹਵਾ ਵਿਚੋਂ ਵੱਖ-ਵੱਖ ਗੈਸਾਂ ਦਾ ਨਿਖੇੜਨ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਉਪਜਾਂ ਤੋਂ ਉਨ੍ਹਾਂ ਦੇ ਵੱਖ-ਵੱਖ ਘਟਕਾਂ ਦਾ ਨਿਖੇੜਨ। ਇਸ ਦਾ ਉਪਕਰਣ ਸਧਾਰਨ ਕਸ਼ੀਦਣ ਵਿਧੀ ਦੇ ਸਮਾਨ ਹੀ ਹੁੰਦਾ ਹੈ। ਸਿਰਫ਼ ਕਸ਼ੀਦਣ ਫਲਾਸਕ ਅਤੇ ਦ੍ਵਣ ਯੰਤਰ ਦੇ ਵਿੱਚ ਇੱਕ ਪ੍ਰਭਾਜੀ ਸਤੰਭ (fractionating column) ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਸਧਾਰਣ ਪ੍ਰਭਾਜੀ ਸਤੰਭ ਇੱਕ ਨਲੀ ਹੁੰਦੀ ਹੈ ਜੋ ਕੱਚ ਦੇ ਗੁਟਕਿਆਂ ਨਾਲ਼ ਭਰੀ ਹੁੰਦੀ ਹੈ। ਇਹ ਗੁਟਕੇ ਵਾਸ਼ਪਾਂ ਨੂੰ ਠੰਡਾ ਅਤੇ ਦ੍ਵਿਤ ਹੋਣ ਦੇ ਲਈ ਸਤ੍ਹਾ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 2.10 ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।


2.3.7 ਹਵਾ ਵਿੱਚੋਂ ਗੈਂਸਾਂ ਨੂੰ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹੋ?

ਹਵਾ ਇੱਕ ਸਮਅੰਗੀ ਮਿਸ਼ਰਣ ਹੈ ਅਤੇ ਇਸ ਦੇ ਘਟਕਾਂ ਨੂੰ ਪ੍ਰਭਾਜੀ ਕਸ਼ੀਦਣ ਰਾਹੀਂ ਨਿਖੇੜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰਵਾਹ ਚਿੱਤਰ (2.11) ਇਸ ਵਿਧੀ ਦੇ ਵੱਖ-ਵੱਖ ਪੜਾਵਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।

ਚਿੱਤਰ 2.11 : ਹਵਾ ਵਿੱਚੋਂ ਗੈਸਾਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਪ੍ਰਵਾਹ ਚਿੱਤਰ

ਵਿਗਿਆਨ

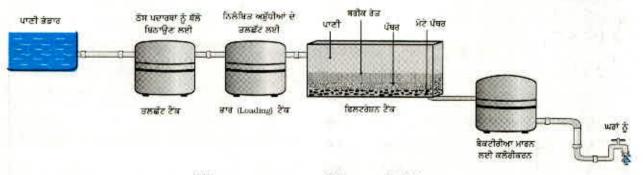
ਚਿੱਤਰ 2.12 : ਹਵਾ ਦੇ ਘਟਕਾਂ ਦਾ ਨਿਖੇੜਨ

ਜੇ ਅਸੀਂ ਹਵਾ ਵਿੱਚੋਂ ਆਕਸੀਜਨ ਗੈਸ (ਚਿੱਤਰ 2.12) ਪ੍ਰਾਪਤ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਦੂਜੀਆਂ ਗੈਸਾਂ ਨੂੰ ਵੱਖ ਕਰਨਾ ਹੋਵੇਗਾ। ਦ੍ਰਵਿਤ ਹਵਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਪਹਿਲਾਂ ਹਵਾ ਤੇ ਦਬਾਅ ਵਧਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਫਿਰ ਤਾਪਮਾਨ ਨੂੰ ਘਟਾ ਕੇ ਉਸ ਨੂੰ ਠੰਡਾ ਕਰਕੇ, ਉਸ ਨੂੰ ਨਪੀੜਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਦ੍ਰਵਿਤ ਗੈਸ ਨੂੰ ਪ੍ਰਭਾਜੀ ਕਸ਼ੀਦਣ ਸਤੰਭ ਵਿੱਚ ਹੌਲ਼ੀ-ਹੌਲ਼ੀ ਗਰਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੇ ਸਾਰੀਆਂ ਗੈਸਾਂ ਵੱਖ-ਵੱਖ ਉਚਾਈਆਂ ਤੇ ਆਪਣੇ ਉਬਾਲ ਦਰਜੇ ਦੇ ਅਨੁਸਾਰ ਨਿੱਖੜ ਜਾਂਦੀਆਂ ਹਨ। ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 2.12 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਉੱਤਰ ਦਿਓ :

 ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਗੈਸਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਵਧਦੇ ਹੋਏ ਉਬਾਲ ਦਰਜੇ ਦੇ ਅਨੁਸਾਰ ਵਿਵਸਥਿਤ ਕਰੋ। ਜਦੋਂ ਹਵਾ ਨੂੰ ਠੰਡਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਕਿਹੜਾ ਘਟਕ ਪਹਿਲਾਂ ਦਵ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੁੰਦਾ ਹੈ ?

2.3.8 ਕਿਸੇ ਅਸ਼ੁੱਧ ਨਮੂਨੇ ਵਿੱਚੋਂ ਸ਼ੁੱਧ ਕਾਪਰ ਸਲਫੇਟ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ ?


ਕਿਰਿਆ

ਇਕ ਚੀਨੀ ਮਿੱਟੀ ਦੀ ਪਿਆਲੀ ਵਿੱਚ ਲਗਭਗ 5 ਗ੍ਰਾਮ ਅਸ਼ੁੱਧ ਕਾਪਰ ਸਲਫੇਟ ਲਓ।

2.9

25

- ਪਾਣੀ ਦੀ ਘੱਟ ਤੋਂ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਇਸ ਨੂੰ ਘੋਲ਼ ਦਿਓ। ਅਸ਼ੁੱਧੀਆਂ ਨੂੰ ਫਿਲਟਰ ਕਰ ਲਓ।
- ਸੇਤ੍ਰਿਪਤ ਘੋਲ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਪਾਣੀ ਨੂੰ ਕਾੱਪਰ ਸਲਫੇਟ ਦੇ ਘੋਲ ਵਿੱਚੋਂ ਵਾਸ਼ਪੀਕ੍ਰਿਤ ਕਰੋ।

ਚਿੱਤਰ 2.13 : ਜਲ ਘਰ ਵਿੱਚ ਜਲ ਸ਼ੁੱਧੀ ਸਿਸਟਮ

ਕੀ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ ਸ਼ੁੱਧ ਹਨ

ਘੋਲ ਨੂੰ ਫਿਲਟਰ ਪੇਪਰ ਨਾਲ਼ ਢੱਕ ਦਿਓ ਅਤੇ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਇਸ ਨੂੰ ਪੂਰਾ ਦਿਨ ਠੰਡਾ ਹੋਣ ਲਈ ਸ਼ਾਂਤ ਛੱਡ ਦਿਓ।

ਤੁਸੀਂ ਕਾਪਰ ਸਲਫੇਟ ਦੇ ਕ੍ਰਿਸਟਲਾਂ ਨੂੰ ਚੀਨੀ ਮਿੱਟੀ ਦੀ ਪਿਆਲੀ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕਰੋਗੇ।

ਇਸ ਕਿਰਿਆ ਨੂੰ ਕ੍ਰਿਸਟਲੀਕਰਣ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਹੁਣ ਉੱਤਰ ਦਿਓ-

- ਚੀਨੀ ਮਿੱਟੀ ਦੀ ਪਿਆਲੀ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਪ੍ਰੇਖਿਤ ਕਰਦੇ ਹੋ?
- ਕੀ ਕ੍ਰਿਸਟਲ ਇੱਕ ਸਮਾਨ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ?
- ਚੀਨੀ ਮਿੱਟੀ ਦੀ ਪਿਆਲੀ ਵਿੱਚ ਰੱਖੇ ਦਵ ਵਿੱਚੋਂ ਕ੍ਰਿਸਟਲਾਂ ਨੂੰ ਕਿਵੇਂ ਵੱਖ ਕਰੋਗੇ ?

ਕ੍ਰਿਸਟਲੀਕਰਣ ਵਿਧੀ ਦੀ ਵਰਤੋਂ ਠੋਸ ਪਦਾਰਥਾਂ ਨੂੰ ਸ਼ੁੱਧ ਕਰਨ ਲਈ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ, ਸਮੁੰਦਰ ਦੇ ਪਾਣੀ ਤੋਂ ਜਿਹੜਾ ਨਮਕ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ਉਸ ਵਿੱਚ ਕਈ ਅਸ਼ੁੱਧੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਅਸ਼ੁੱਧੀਆਂ ਨੂੰ ਦੂਰ ਕਰਨ ਲਈ ਕ੍ਰਿਸਟਲੀਕਰਣ ਵਿਧੀ ਵਰਤੀ ਜਾਂਦੀ ਹੈ। ਕ੍ਰਿਸਟਲੀਕਰਣ ਉਹ ਵਿਧੀ ਹੈ ਜਿਸ ਦੀ ਵਰਤੋਂ ਨਾਲ ਕ੍ਰਿਸਟਲ ਦੇ ਰੂਪ ਵਿੱਚ ਸ਼ੁੱਧ ਠੋਸ ਨੂੰ ਘੋਲ ਵਿੱਚੋਂ ਵੱਖ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕ੍ਰਿਸਟਲੀਕਰਣ ਵਿਧੀ ਸਧਾਰਣ ਵਾਸ਼ਪੀਕਰਣ ਵਿਧੀ ਤੋਂ ਹੇਠ ਲਿਖੇ ਕਾਰਣਾਂ ਕਰਕੇ ਉੱਤਮ ਹੁੰਦੀ ਹੈ -

- ਕੁਝ ਠੋਸ ਅਪਘਟਿਤ ਹੋ ਜਾਂਦੇ ਹਨ ਜਾਂ ਕੁਝ ਚੀਨੀ ਵਾਂਗ ਗਰਮ ਕਰਨ ਤੇ ਝੁਲਸ ਜਾਂਦੇ ਹਨ।
- ਫਿਲਟਰ ਕਰਨ ਬਾਅਦ ਵੀ ਅਸ਼ੁੱਧ ਘੁਲਿਤ ਪਦਾਰਥ ਨੂੰ ਘੋਲਕ ਵਿੱਚ ਘੋਲਣ ਤੇ ਘੋਲ ਵਿੱਚ ਕੁਝ ਅਸ਼ੁੱਧੀਆਂ ਰਹਿ ਸਕਦੀਆਂ ਹਨ। ਵਾਸ਼ਪੀਕਰਣ ਤੋਂ ਬਾਅਦ ਇਹ ਅਸ਼ੁੱਧੀਆਂ ਠੋਸ ਨੂੰ ਦੂਸ਼ਿਤ ਕਰ ਸਕਦੀਆਂ ਹਨ।

ਵਰਤੋਂ

26

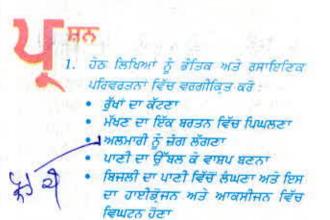
- ਸਮੁੰਦਰੀ ਪਾਣੀ ਤੋਂ ਪ੍ਰਾਪਤ ਨਮਕ ਨੂੰ ਸ਼ੁੱਧ ਕਰਨ ਵਿੱਚ।
- ਅਸ਼ੁੱਧ ਨਮੁਨੇ ਤੋਂ ਫਿਟਕੜੀ ਨੂੰ ਵੱਖ ਕਰਨ ਵਿੱਚ।

ਇਸ ਤਰ੍ਹਾਂ ਮਿਸ਼ਰਣ ਦੇ ਸੁਭਾਅ ਅਨੁਸਾਰ ਉੱਪਰ ਦਿੱਤੀਆਂ ਵਿਧੀਆਂ ਵਿੱਚੋਂ ਕਿਸੇ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਸੀਂ ਸ਼ੁੱਧ ਪਦਾਰਥ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਤਕਨੀਕੀ ਵਿਕਾਸ ਦੇ ਨਾਲ ਕਈ ਹੋਰ ਨਿਖੇੜਨ ਵਾਲੀਆਂ ਵਿਧੀਆਂ ਦੀ ਖੋਜ ਹੋ ਚੁੱਕੀ ਹੈ। ਸ਼ਹਿਰਾਂ ਵਿੱਚ ਜਲਘਰ ਤੋਂ ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਦੀ ਪੂਰਤੀ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਜਲਘਰ ਦਾ ਇੱਕ ਰੇਖਾ-ਚਿੱਤਰ 2.13 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਜਲ ਘਰ ਤੋਂ ਆਪਣੇ ਘਰ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੋਣ ਵਾਲੇ ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਦੇ ਵੱਖ-ਵੱਖ ਪੜਾਵਾਂ ਦੀ ਆਪਣੀ ਜਮਾਤ ਵਿੱਚ ਚਰਚਾ ਕਰੋ।

ਸ਼ਨ

- ਪੈਟ੍ਰੇਲ ਅਤੇ ਮਿੱਟੀ ਦਾ ਤੇਲ ਜੋ ਕਿ ਆਪਸ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲ ਹਨ, ਦੇ ਮਿਸ਼ਰਣ ਨੂੰ ਤੁਸੀਂ ਕਿਵੇਂ ਨਿਖੇੜੋਗੇ ? ਪੈਟ੍ਰੋਲ ਅਤੇ ਮਿੱਟੀ ਦੇ ਤੇਲ ਦੇ ਉਬਾਲ ਦਰਜਿਆਂ ਵਿੱਚ 25° ਸੈ. ਤੋਂ ਵੱਧ ਅੰਤਰ ਹੈ।
 - ਨਿਖੇੜਨ ਦੀਆਂ ਆਮ ਵਿਧੀਆਂ ਦੇ ਨਾਂ ਦਿਓ -(i) ਦਹੀਂ ਤੋਂ ਮੱਖਣ
 - (ii) ਸਮੁੰਦਰ ਦੇ ਪਾਣੀ ਤੋਂ ਨਮਕ
 - (iii) ਨਮਕ ਤੋਂ ਕਪੂਰ।
 - ਕ੍ਰਿਸਟਲੀਕਰਣ ਵਿਧੀ ਦੇ ਨਾਲ ਕਿਸ ਤਰ੍ਹਾਂ ਦੇ ਮਿਸ਼ਰਣਾਂ ਦਾ ਨਿਖੋੜਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ?

2.4 ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ


ਸ਼ੁੱਧ ਪਦਾਰਥ ਅਤੇ ਮਿਸ਼ਰਣ ਵਿੱਚ ਅੰਤਰ ਸਮਝਣ ਲਈ ਆਓ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨਾਂ ਵਿੱਚ ਅੰਤਰ ਨੂੰ ਸਮਝੀਏ। ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਪਦਾਰਥ ਦੇ ਭੌਤਿਕ ਗੁਣਾਂ ਦੇ ਬਾਰੇ ਅਧਿਐਨ ਕੀਤਾ ਹੈ। ਅਜਿਹੇ ਗੁਣ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਅਸੀਂ ਪ੍ਰੇਖਣ ਅਤੇ ਵਰਨਣ ਕਰ ਸਕਦੇ ਹਾਂ, ਜਿਵੇਂ ਕਿ ਰੰਗ, ਕਠੋਰਤਾ, ਨਿੱਗਰਤਾ, ਬਹਾਅ, ਘਣਤਾ, ਪਿਘਲਣ ਦਰਜਾ ਅਤੇ ਉਬਾਲ ਦਰਜਾ ਆਦਿ ਨੂੰ ਭੌਤਿਕ ਗੁਣ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਅਵਸਥਾਵਾਂ ਦਾ ਅੰਤਰ ਰੂਪਾਂਤਰਣ ਇੱਕ ਭੌਤਿਕ ਪਰਿਵਰਤਨ ਹੈ ਕਿਉਂਕਿ ਇਹ ਪਰਿਵਰਤਨ ਪਦਾਰਥਾਂ ਦੀ ਬਣਤਰ ਵਿੱਚ ਬਿਨਾਂ ਪਰਿਵਰਤਨ ਕੀਤੇ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿੱਚ ਵੀ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੁੰਦਾ। ਭਾਵੇਂ ਬਰਫ਼, ਪਾਣੀ ਅਤੇ ਜਲਵਾਸ਼ਪ ਵੱਖ-ਵੱਖ ਦਿੱਸਦੇ ਹਨ ਅਤੇ ਇਹ ਵੱਖ-ਵੱਖ ਭੌਤਿਕ ਗੁਣ ਦਰਸਾਉਂਦੇ ਹਨ, ਪਰ ਇਹ ਰਸਾਇਣਿਕ ਰੂਪ ਵਿੱਚ ਸਮਾਨ ਹੁੰਦੇ ਹਨ।

ਵਿਗਿਆਨ

ਪਾਣੀ ਅਤੇ ਭੋਜਨ ਪਕਾਉਣ ਵਾਲੇ ਤੇਲ ਦੋਵੇਂ ਦ੍ਵ ਹਨ, ਪਰ ਇਨ੍ਹਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣ ਵੱਖ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਗੰਧ ਅਤੇ ਜਲਣਸ਼ੀਲਤਾ ਵਿੱਚ ਅੰਤਰ ਹੈ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਤੇਲ ਹਵਾ ਵਿੱਚ ਜਲਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਪਾਣੀ ਅੱਗ ਨੂੰ ਬੁਝਾਉਂਦਾ ਹੈ। ਤੇਲ ਦਾ ਇਹ ਰਸਾਇਣਿਕ ਗੁਣ ਪਾਣੀ ਨਾਲੋਂ ਇਸ ਨੂੰ ਵੱਖ ਕਰਦਾ ਹੈ। ਜਲਣਾ ਇੱਕ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਹੈ। ਜਲਣ ਦੀ ਪ੍ਰਕਿਰਿਆ, ਇੱਕ ਪਦਾਰਥ ਦੂਜੇ ਨਾਲ਼ ਕਿਰਿਆ ਕਰਕੇ ਆਪਣੀ ਰਸਾਇਣਿਕ ਬਣਤਰ ਵਿੱਚ ਪਰਿਵਰਤਨ ਲਿਆਉਂਦਾ ਹੈ। ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਪਦਾਰਥ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ ਲਿਆਉਂਦਾ ਹੈ ਅਤੇ ਅਸੀਂ ਨਵਾਂ ਪਦਾਰਥ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ। ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਨੂੰ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਮੋਮਬੱਤੀ ਦੇ ਜਲਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਦੋਵੇਂ ਪਰਿਵਰਤਨ ਆਉਂਦੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਇਸ ਦੀ ਪਹਿਚਾਣ ਕਰ ਸਕਦੇ ਹੋ?

- ਪਾਣੀ ਵਿੱਚ ਸਧਾਰਣ ਨਮਕ ਦਾ ਘੁਲਣਾ
- ਫਲਾਂ ਤੋਂ ਸਲਾਦ ਬਣਾਉਣਾ
- ਲੱਕੜੀ ਅਤੇ ਕਾਗਜ਼ ਦਾ ਜਲਣਾ।
- ਆਪਣੇ ਆਲੇ-ਦੁਆਲੇ ਦੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਸ਼ੁੱਧ ਪਦਾਰਥ ਜਾਂ ਮਿਸ਼ਰਣ ਵਿੱਚ ਵੰਡਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।

2.5 ਸ਼ੁੱਧ ਪਦਾਰਥਾਂ ਦੀਆਂ ਕਿਹੜੀਆਂ ਕਿਸਮਾਂ ਹਨ ?

ਪਦਾਰਥਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਰਸਾਇਣਿਕ ਬਣਤਰ ਦੇ ਅਧਾਰ ਤੇ ਤੱਤਾਂ ਅਤੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

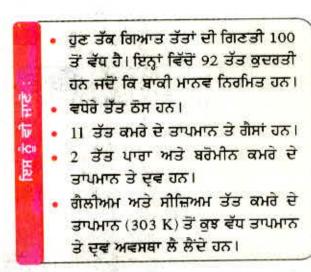
2.5.1 ਤੱਤ

ਰਾਬਰਟ ਬਾੱਯਲ (Robert Boyle) ਪਹਿਲੇ ਵਿਗਿਆਨਕ ਸਨ, ਜਿਹਨਾਂ ਨੇ ਸੰਨ 1661 ਵਿੱਚ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਤੱਤ ਸ਼ਬਦ ਦੀ ਵਰਤੋਂ ਕੀਤੀ। ਫਰਾਂਸ ਦੇ ਰਸਾਇਣ ਵਿਗਿਆਨੀ ਐਂਟਨੀ ਲਾੱਰੈਂਟ ਲਵਾਏਜ਼ਿਏ (ਸੰਨ 1743-ਸੇਨ 1794) ਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਤੱਤ ਦੀ ਪਰੀਭਾਸ਼ਾ ਨੂੰ ਪ੍ਰਯੋਗ ਰਾਹੀਂ ਪ੍ਤੀਪਾਦਤ ਕੀਤਾ। ਉਸ ਦੇ ਅਨੁਸਾਰ ਤੱਤ ਪਦਾਰਥ ਦਾ ਉਹ ਮੂਲ ਰੂਪ ਹੈ ਜਿਸ ਨੂੰ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਨਾਲ਼ ਹੋਰ ਪਦਾਰਥਾਂ ਵਿੱਚ ਵੰਡਿਆ ਨਹੀਂ ਜਾ ਸਕਦਾ।

ਤੱਤਾਂ ਨੂੰ ਆਮ ਤੌਰ 'ਤੇ ਧਾਤ, ਅਧਾਤ ਅਤੇ ਉਪਧਾਤ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਧਾਤਾਂ ਅਕਸਰ ਹੇਠਾਂ ਦਿੱਤੇ ਗੁਣਾਂ ਵਿੱਚੋਂ ਸਭ ਨੂੰ ਜਾਂ ਕੁਝ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ :

- ਇਹ ਚਮਕੀਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।
- ਇਹ ਚਾਂਦੀ ਵਰਗੀਆਂ ਸਫ਼ੇਦ ਜਾਂ ਸੋਨੇ ਵਰਗੀਆਂ ਪੀਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।
- ਇਹ ਤਾਪ ਅਤੇ ਬਿਜਲੀ ਦੀਆਂ ਸੁਚਾਲਕ ਹੁੰਦੀਆਂ ਹਨ।
- ਇਹ ਖਿੱਚਣਯੋਗ (ductile) ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਤਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਖਿੱਚਿਆ ਜਾ ਸਕਦਾ ਹੈ।
- ਇਹ ਕੁਟੀਣਯੋਗ (malleable) ਹੁੰਦੀਆਂ ਹਨ।
 ਇਨ੍ਹਾਂ ਨੂੰ ਕੁੱਟ ਕੇ ਪਤਲੀਆਂ ਚਾਦਰਾਂ ਵਿੱਚ ਢਾਲਿਆ ਜਾ ਸਕਦਾ ਹੈ।
- ਇਹ ਆਵਾਜ਼ ਪੈਂਦਾ ਕਰਦੀਆਂ ਹਨ।


ਸੋਨਾ, ਚਾਂਦੀ, ਤਾਂਬਾ, ਲੋਹਾ, ਸੋਡੀਅਮ, ਪੋਟਾਸ਼ੀਅਮ ਆਦਿ ਧਾਤਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ। ਪਾਰਾ ਧਾਤ ਹੁੰਦੇ ਹੋਏ ਵੀ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਦ੍ਰਵ ਹੈ। ਅਧਾਤਾਂ ਆਮ ਤੌਰ 'ਤੇ ਹੇਠਾਂ ਦਿੱਤੇ ਗੁਣਾਂ ਵਿੱਚੋਂ ਸਭ ਨੂੰ ਜਾਂ ਕੁੱਝ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ।

- ਇਹ ਵੱਖ-ਵੱਖ ਰੰਗਾਂ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।
- ਇਹ ਤਾਪ ਅਤੇ ਬਿਜਲੀ ਦੀਆਂ ਕੁਚਾਲਕ ਹੁੰਦੀਆਂ ਹਨ।
- ਇਹ ਚਮਕੀਲੀਆਂ, ਖਿੱਚਣਯੋਗ, ਪ੍ਰਤੀਧੁਨੀਪੂਰਣ ਅਤੇ ਕੁਟੀਣਯੋਗ ਨਹੀਂ ਹੁੰਦੀਆਂ।

ਹਾਈਡ੍ਰੋਜਨ, ਆਕਸੀਜਨ, ਕਾਰਬਨ (ਕੌਲਾ, ਕੋਕ), ਬਰੋਮੀਨ, ਕਲੋਰੀਨ ਆਦਿ ਅਧਾਤਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ। ਕੁਝ ਤੱਤ ਧਾਤਾਂ ਅਤੇ ਅਧਾਤਾਂ ਵਿਚਲੇ ਗੁਣਾਂ ਨੰ

ਕੀ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ ਸ਼ੱਧ ਹਨ

27

ਦਰਸਾਉਂਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਉਪਧਾਤ (metalloid) ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜਿਵੇਂ ਬੋਰਾੱਨ, ਸਿਲੀਕਾਨ, ਜਰਮੇਨੀਅਮ ਆਦਿ।

2.5.2 ਯੋਗਿਕ

ਇੱਕ ਯੋਗਿਕ ਉਹ ਪਦਾਰਥ ਹੈ ਜੋ ਕਿ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਤੱਤਾਂ ਦੇ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਵਿੱਚ ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਤੋਂ ਬਣਿਆ ਹੈ।

ਜਦੋਂ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਤੱਤ ਆਪਸ ਵਿੱਚ ਮਿਲਦੇ ਹਨ ਤਾਂ ਅਸੀਂ ਕੀ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ?

2.10

ਜਮਾਤ ਨੂੰ ਦੋ ਗਰੁੱਪਾਂ ਵਿੱਚ ਵੈਡੋ। ਦੋਹਾਂ ਗਰੁੱਪਾਂ ਨੂੰ 50 ਗ੍ਰਾਮ ਲੋਹ ਚੂਰਣ ਅਤੇ 3 ਗ੍ਰਾਮ ਸਲਫਰ, ਇੱਕ ਚੀਨੀ ਦੀ ਪਿਆਲੀ ਵਿੱਚ ਦਿਓ।

ਗਰੁੱਪ I

ਲੋਹ ਚੁਰਣ ਅਤੇ ਸਲਫਰ ਨੂੰ ਪੀਸ ਕੇ ਮਿਲਾਓ।

ਗਰੁੱਪ II

28

ਲੋਹ ਚੂਰਣ ਅਤੇ ਸਲਫਰ ਨੂੰ ਪੀਸ ਕੇ ਮਿਲਾਓ। ਮਿਸ਼ਰਣ ਨੂੰ ਤੀਬਰ ਤਾਪ ਤੇ ਲਾਲ ਹੋਣ ਤੱਕ ਗਰਮ ਕਰੇ।ਹੁਣ ਅੱਗ ਨੂੰ ਹਟਾ ਲਓ ਅਤੇ ਮਿਸ਼ਰਣ ਨੂੰ ਠੰਡਾ ਹੋਣ ਦਿਓ।

ਗਰੁੱਪ I ਅਤੇ II

ਪ੍ਰਾਪਤ ਸਮੱਗਰੀ ਵਿੱਚ ਚੁੰਬਕੀ ਗੁਣਾਂ ਦੀ ਪਰਖ ਕਰੇ।

ਸਮੱਗਰੀ ਦੇ ਨੇੜੇ ਇੱਕ ਚੁੰਬਕ ਲਿਆਓ। ਜਾਂਚ ਕਰੋ ਕਿ ਕੀ ਸਮੱਗਰੀ ਚੰਬਕ ਵੱਲ ਅਕਰਸ਼ਿਤ ਹੁੰਦੀ ਹੈ ?

ਦੋਵਾਂ ਗਰੁੱਪਾਂ ਦੀ ਪ੍ਰਾਪਤ ਸਮੱਗਰੀ ਦੇ ਰੰਗ ਅਤੇ ਬਣਾਵਟ ਦੀ ਤੁਲਨਾ ਕਰੋ।

- ਪ੍ਰਾਪਤ ਸਮੱਗਰੀ ਦੇ ਇੱਕ ਭਾਗ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਸਲਫਾਈਡ ਮਿਲਾਓ। ਮਿਸ਼ਰਣ ਚੈਗੀ ਤਰ੍ਹਾਂ ਮਿਲਾਓ ਅਤੇ ਫਿਲਟਰ ਕਰੋ।
- ਪ੍ਰਾਪਤ ਪਦਾਰਥ ਦੇ ਦੂਜੇ ਭਾਗ ਵਿੱਚ ਪਤਲਾ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਜਾਂ ਪਤਲਾ ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ ਮਿਲਾਓ। ਇਸ ਕਿਰਿਆ ਲਈ ਅਧਿਆਪਕ ਦਾ ਨਿਰਦੇਸ਼ਨ ਜ਼ਰੂਰੀ ਹੈ।
- ਇਸ ਕਿਰਿਆ ਨੂੰ ਲੋਹਾ ਅਤੇ ਸਲਫਰ ਤੱਤਾਂ ਦੇ ਨਾਲ ਵੱਖ-ਵੱਖ ਦਹਰਾਓ।ਪ੍ਰੇਖਣ ਨੂੰ ਨੋਟ ਕਰੋ।

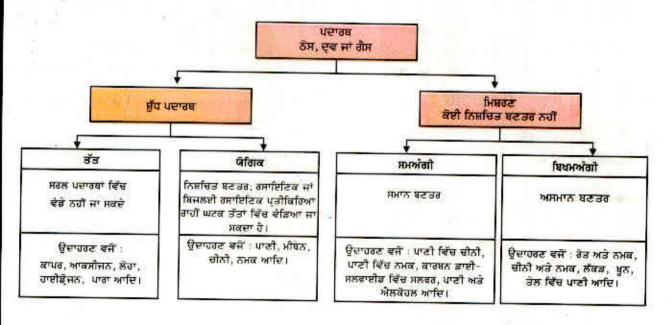
ਹੁਣ ਉੱਤਰ ਦਿਓ

- ਕੀ ਦੋਹਾਂ ਗਰੁੱਪਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਸਮੱਗਰੀ ਵੇਖਣ ਵਿੱਚ ਇੱਕ ਸਮਾਨ ਹੈ ?
- ਕਿਸ ਗਰੁੱਪ ਤੋਂ ਪ੍ਰਾਪਤ ਸਮੱਗਰੀ ਵਿੱਚ ਚੁੰਬਕੀ ਗੁਣ ਮੌਜੂਦ ਹੈ ?
- ਕੀ ਪਤਲਾ ਸਲਫਿਊਰਿਕ ਐਸਿਡ ਜਾਂ ਪਤਲਾ ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ ਸਮੱਗਰੀ ਵਿੱਚ ਪਾਉਣ ਨਾਲ ਦੋਹਾਂ ਗਰੁੱਪਾਂ ਨੂੰ ਗੈਸ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ ? ਕੀ ਦੋਹਾਂ ਹਾਲਤਾਂ ਵਿੱਚ ਪ੍ਰਾਪਤ ਗੈਧ ਸਮਾਨ ਹੈ ਜਾਂ ਵੱਖ-ਵੱਖ ਹੈ ?

ਗਰੁੱਪ–1 ਨੂੰ ਪ੍ਰਾਪਤ ਗੈਸ ਹਾਈਡ੍ਰੋਜਨ ਹੈ। ਇਹ ਰੰਗਹੀਣ, ਗੰਧਹੀਣ ਅਤੇ ਜਲਣਸ਼ੀਲ ਹੈ। ਇਸਦੀ ਜਲਣਸ਼ੀਲਤਾ ਦੀ ਪਰਖ ਜਮਾਤ ਵਿੱਚ ਨਾ ਕਰੋ।

ਗਰੁੱਪ-II ਨੂੰ ਪ੍ਰਾਪਤ ਗੈਸ ਹਾਈਡ੍ਰੋਜਨ ਸਲਫਾਈਡ ਹੈ। ਇਹ ਰੰਗਹੀਣ ਗੈਸ ਹੈ ਅਤੇ ਇਸਦੀ ਗੰਧ ਸੜੇ ਆਂਡੇ ਜਿਹੀ ਹੈ।

ਤੁਸੀਂ ਵੇਖਿਆ ਕਿ ਦੋਹਾਂ ਗਰੁੱਪਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਪਦਾਰਥ ਭਿੰਨ ਗੁਣਾਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। ਭਾਵੇਂ ਸ਼ੁਰੂ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਪਦਾਰਥ ਸਮਾਨ ਸਨ, ਗਰੁੱਪ-1 ਦੀ ਕਿਰਿਆ ਦੇ ਫਲਸਰੂਪ ਭੌਤਿਕ ਪਰਿਵਰਤਨ ਹੋਇਆ ਜਦੋਂ ਕਿ ਗਰੁੱਪ-II ਦੀ ਕਿਰਿਆ ਦੇ ਫਲਸਰੂਪ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਹੋਇਆ।


ਵਿਗਿਆਨ

ਮਿਸ਼ਰਵ	जीताय
 ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਤੱਤ ਜਾਂ ਯੋਗਿਕ ਕੇਵਲ ਮਿਸ਼ਰਣ ਬਣਾਉਣ ਦੇ ਲਈ ਮਿਲਦੇ ਹਨ। ਪਰ ਕਿਸੇ ਨਵੇਂ ਯੋਗਿਕ ਦਾ ਨਿਰਮਾਣ ਨਹੀਂ ਕਰਦੇ। 	 ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਤੱਤ ਇੱਕ ਖਾਸ ਅਨੁਪਾਤ ਵਿੱਚ ਕਿਰਿਆ ਕਰਕੇ ਨਵੇਂ ਯੋਗਿਕ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ।
 ਮਿਸ਼ਰਣ ਦੀ ਬਣਤਰ ਬਦਲਦੀ ਰਹਿੰਦੀ ਹੈ। 	 ਨਵੇਂ ਪਦਾਰਥ ਦੀ ਬਣਤਰ ਹਮੇਸ਼ਾਂ ਸਥਾਈ ਹੁੰਦੀ ਹੈ।
 ਮਿਸ਼ਰਣ ਉਸ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਘਟਕਾਂ ਦੇ ਗੁਣਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। 	 ਨਵੇਂ ਬਣੇ ਪਦਾਰਥ ਦੇ ਗੁਣ ਪੂਰੀ ਤਰ੍ਹਾਂ ਅਲੱਗ ਹੁੰਦੇ ਹਨ।
4, ਘਟਕਾਂ ਨੂੰ ਭੌਤਿਕ ਵਿਧੀਆਂ ਰਾਹੀਂ ਅਸਾਨੀ ਨਾਲ਼ ਨਿਖੇੜਿਆ ਜਾ ਸਕਦਾ ਹੈ।	 ਘਟਕਾਂ ਨੂੰ ਕੇਵਲ ਰਸਾਇਣਿਕ ਜਾਂ ਬਿਜਲਈ ਰਸਾਇਣਿਕ ਪ੍ਰਤੀਕਿਰਿਆ ਰਾਹੀਂ ਹੀ ਨਿਖੇੜਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਮਿਸ਼ਰਣ ਦੇ ਗੁਣ ਉਸ ਵਿਚਲ ਘਟਕਾਂ ਵਾਲੇ ਹੀ ਹਨ। ਗਰੁੱਪ-II ਤੋਂ ਮਿਲਣ ਵਾਲੀ ਸਮੱਗਰੀ ਯੋਗਿਕ ਹੈ।

ਅਲੰਗ ਹਨ।

29

ਕੀ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ ਸ਼ੁੱਧ ਹਨ

- ਮਿਸ਼ਰਣ ਵਿੱਚ ਇੱਕ ਤੋਂ ਵੱਧ ਪਦਾਰਥ (ਤੱਤ ਜਾਂ/ਅਤੇ ਯੋਗਿਕ) ਕਿਸੇ ਵੀ ਅਨੁਪਾਤ ਵਿੱਚ ਮਿਲੇ ਹੁੰਦੇ ਹਨ।
- ਮਿਸ਼ਰਣਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ ਢੁੱਕਵੀਆਂ ਵਿਧੀਆਂ ਨਾਲ਼ ਸ਼ੁੱਧ ਪਦਾਰਥਾਂ ਵਿੱਚ ਵੱਖ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- ਘੋਲ ਦੇ ਜਾਂ ਦੇ ਤੋਂ ਵੱਧ ਪਦਾਰਥਾਂ ਦਾ ਸਮਅੰਗੀ ਮਿਸ਼ਰਣ ਹੈ। ਘੋਲ ਦੇ ਵਧੇਰੇ ਭਾਗ ਨੂੰ ਘੋਲਕ ਅਤੇ ਘੱਟ ਭਾਗ ਨੂੰ ਘੁਲਿਤ ਕਹਿੰਦੇ ਹਨ।
- ਘੋਲ ਦੀ ਸੰਘਣਤਾ ਉਸਦੇ ਇਕਾਈ ਆਇਤਨ ਜਾਂ ਘੋਲਕ ਦੇ ਇਕਾਈ ਪੁੰਜ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਘਲਿਤ ਦੀ ਮਾਤਰਾ ਹੈ।
- ਉਹ ਪਦਾਰਥ ਜਿਹੜਾ ਘੋਲਕ ਵਿੱਚ ਅਘੁਲਣਸ਼ੀਲ ਅਤੇ ਅੱਖਾਂ ਨਾਲ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਨਿਲੰਬਨ (suspension) ਕਹਾਉਂਦਾ ਹੈ। ਨਿਲੰਬਨ ਇੱਕ ਬਿਖਮਅੰਗੀ ਮਿਸ਼ਰਣ ਹੋਦਾ ਹੈ।
 - ਕੋਲਾਇਡ ਇੱਕ ਬਿਖਮਅੰਗੀ ਮਿਸ਼ਰਣ ਹੈ, ਜਿਸ ਦੇ ਕਣਾਂ ਦਾ ਅਕਾਰ ਇੰਨਾ ਛੋਟਾ ਹੈ ਕਿ ਉਸ ਨੂੰ ਅਸਾਨੀ ਨਾਲ਼ ਵੇਖਿਆ ਨਹੀਂ ਜਾ ਸਕਦਾ, ਪਰ ਇੰਨਾ ਵੱਡਾ ਹੈ ਕਿ ਇਹ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਖਿਲਾਰਨ ਦੇ ਸਮਰੱਥ ਹੁੰਦੇ ਹਨ। ਕੋਲਾਇਡ ਉਦਯੋਗਾਂ ਅਤੇ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਮਹੱਤਵਪੂਰਣ ਹਨ। ਘੁਲਿਤ ਕਣਾਂ ਨੂੰ ਪਰਿਖਿਪਤ ਫੇਜ਼ ਅਤੇ ਘੋਲਕ ਜਿਸ ਵਿੱਚ ਇਹ ਪੂਰੀ ਤਰ੍ਹਾਂ ਵੰਡੇ ਹੁੰਦੇ ਹਨ ਉਸਨੂੰ ਪਰਿਖੇਪਣ ਮਾਧਿਅਮ ਕਹਿੰਦੇ ਹਨ।
 - ਸ਼ੁੱਧ ਪਦਾਰਥ ਤੱਤ ਜਾਂ ਯੋਗਿਕ ਹੋ ਸਕਦੇ ਹਨ। ਤੱਤ ਪਦਾਰਥ ਦਾ ਮੂਲ ਰੂਪ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਰਾਹੀਂ ਸਰਲ ਪਦਾਰਥਾਂ ਵਿੱਚ ਵੰਡਿਆ ਨਹੀਂ ਜਾ ਸਕਦਾ। ਯੋਗਿਕ ਉਹ ਪਦਾਰਥ ਹੈ ਜੋ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਤੱਤਾਂ ਦੇ ਸਥਿਰ ਅਨੁਪਾਤ ਵਿੱਚ ਰਸਾਇਣਿਕ ਰੂਪ ਵਿੱਚ ਸੰਯੋਜਨ ਤੋਂ ਬਣਦਾ ਹੈ।
 - ਯੋਗਿਕਾਂ ਦੇ ਗੁਣ ਉਨ੍ਹਾਂ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਤੱਤਾਂ ਤੋਂ ਵੱਖਰੇ ਹੁੰਦੇ ਹਨ, ਜਦੋਂ ਕਿ ਮਿਸ਼ਰਣ ਵਿੱਚ ਮੌਜੂਦ ਤੱਤ ਅਤੇ ਯੋਗਿਕ ਆਪਣੇ-ਆਪਣੇ ਗੁਣਾਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। - 1203/mi

30

ਅਭਿਆਸ

- ਹੇਠ ਲਿਖਿਆਂ ਨੂੰ ਨਿਖੇੜਨ ਲਈ ਤੁਸੀਂ ਕਿਹੜੀਆਂ ਵਿਧੀਆਂ ਨੂੰ ਅਪਣਾਓਗੇ ? 1.
 - ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਨੂੰ ਪਾਣੀ ਦੇ ਘੋਲ਼ ਵਿੱਚ ਵੱਖ ਕਰਨ ਲਈ। (😌)
 - ਅਮੋਨੀਅਮ ਕਲੋਰਾਈਡ ਨੂੰ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਅਤੇ ਅਮੋਨੀਅਮ ਕਲੋਰਾਈਡ (**M**) ਦੇ ਮਿਸ਼ਰਣ ਵਿੱਚ ਵੱਖ ਕਰਨ ਲਈ।
 - ਧਾਤ ਦੇ ਛੋਟੇ ਟੁਕੜੇ ਨੂੰ ਕਾਰ ਦੇ ਇੰਜਨ ਆਇਲ ਵਿਚੋਂ ਵੱਖ ਕਰਨ ਲਈ। (**छ**)
 - ਦਹੀਂ ਵਿੱਚੋਂ ਮੱਖਣ ਕੱਢਣ ਲਈ। (**म**)
 - ਪਾਣੀ ਵਿੱਚੋਂ ਤੇਲ ਵੱਖ ਕਰਨ ਲਈ। (**ਹ**)

ਵਿਗਿਆਨ

- (ਕ) ਚਾਹ ਵਿੱਚੋਂ ਚਾਹ-ਪੱਤੀ ਵੱਖ ਕਰਨ ਲਈ।
- (ਖ) ਰੇਤ ਵਿੱਚੋਂ ਲੋਹੇ ਦੀਆਂ ਪਿੰਨਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ।
- (ਗ) ਤੂੜੀ ਵਿੱਚੋਂ ਕਣਕ ਦੇ ਦਾਣਿਆਂ ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ।
- (ਘ) ਪਾਣੀ ਵਿੱਚੋਂ ਤਰਦੇ ਹੋਏ ਬਾਰੀਕ ਮਿੱਟੀ ਦੇ ਕਣਾਂ ਨੂੰ ਪਾਣੀ ਤੋਂ ਵੱਖ ਕਰਨ ਲਈ।
- (ਙ) ਫੁੱਲਾਂ ਦੀਆਂ ਪੱਤੀਆਂ ਦੇ ਨਿਚੋੜ ਵਿੱਚੋਂ ਵੱਖ-ਵੱਖ ਵਰਣਕਾਂ (pigments) ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ।
- ਚਾਹ ਤਿਆਰ ਕਰਨ ਲਈ ਤੁਸੀਂ ਕਿਹੜੇ-ਕਿਹੜੇ ਪੜਾਵਾਂ ਦੀ ਵਰਤੋਂ ਕਰੋਗੇ। ਘੋਲ, ਘੋਲਕ, ਘੁਲਿਤ, ਘੁਲਣਸ਼ੀਲ, ਅਘੁਲਣਸ਼ੀਲ, ਫਿਲਟਰੇਟ ਅਤੇ ਰਹਿੰਦ-ਖੂੰਹਦ ਸ਼ਬਦਾਂ ਦੀ ਵਰਤੋਂ ਕਰੋ।
- 3. ਸੀਮਾ ਨੇ ਤਿੰਨ ਵੱਖ-ਵੱਖ ਪਦਾਰਥਾਂ ਦੀਆਂ ਘੁਲਣਸ਼ੀਲਤਾਵਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਤਾਪਮਾਨ ਤੇ ਪਰਖਿਆ ਅਤੇ ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਔਕੜੇ ਪ੍ਰਾਪਤ ਕੀਤੇ। ਮਿਲਣ ਵਾਲੇ ਨਤੀਜਿਆਂ ਨੂੰ 100 ਗ੍ਰਾਮ ਪਾਣੀ ਵਿੱਚ ਘੁਲਿਤ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ, ਜਿਹੜੀ ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਬਣਾਉਣ ਲਈ ਕਾਫ਼ੀ ਹੈ, ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ-

ਘੁਲਿਤ ਪਦਾਰਥ		ਤਾ	чнъ к	ਵਿੱਚ	
(ਗ੍ਰਾਮ ਵਿੱਚ)	283	293	313	333	353
ਪੋਟਾਸ਼ੀਅਮ ਨਾਈਟ੍ਰੇਟ	21	32	62	106	167
ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ	36	36	36	37	37
ਪੋਟਾਸ਼ੀਅਮ ਕਲੋਰਾਈਡ	35	35	40	46	54
ਅਮੋਨੀਅਮ ਕਲੋਰਾਈਡ	24	37	41	55	66

- (ੳ) 50 ਗ੍ਰਾਮ ਪਾਣੀ ਵਿੱਚ 313 K ਤੇ ਪੋਟਾਸ਼ੀਅਮ ਨਾਈਟ੍ਰੇਟ ਦੇ ਸੰਤ੍ਰਿਪਤ ਘੋਲ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕਿੰਨੇ ਗਰਾਮ ਪੋਟਾਸ਼ੀਅਮ ਨਾਈਟ੍ਰੇਟ ਦੀ ਲੋੜ ਹੋਵੇਗੀ ?
- (ਅ) ਸੀਮਾ 353 K ਤੇ ਪੋਟਾਸ਼ੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਇੱਕ ਸੰਤ੍ਰਿਪਤ ਘੋਲ਼ ਤਿਆਰ ਕਰਦੀ ਹੈ ਅਤੇ ਉਸ ਘੋਲ਼ ਨੂੰ ਕਮਰੇ ਦੇ ਤਾਪਮਾਨ ਤੇ ਠੰਡਾ ਹੋਣ ਲਈ ਛੱਡਿਆ ਤਾਂ ਉਹ ਕੀ ਪ੍ਰੇਖਣ ਕਰੇਗੀ ? ਸਪਸ਼ਟ ਕਰੋ।
- (ੲ) 293 K ਤੋਂ ਹਰੇਕ ਨਮਕ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਦੀ ਗਣਨਾ ਕਰੋ। ਇਸ ਤਾਪਮਾਨ ਤੇ ਕਿਹੜਾ ਨਮਕ ਸਭ ਤੋਂ ਵੱਧ ਘੁਲਣਸ਼ੀਲ ਹੋਵੇਗਾ ?
- (ਸ) ਤਾਪਮਾਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨਾਲ਼ ਨਮਕ ਦੀ ਘੁਲਣਸ਼ੀਲਤਾ ਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ ?

31

- 4. ਹੇਠ ਲਿਖਿਆਂ ਦੀ ਉਦਾਹਰਣ ਸਹਿਤ ਵਿਆਖਿਆ ਕਰੋ :
 - (ੳ) ਸੰਤ੍ਰਿਪਤ ਘੋਲ
 - (ਅ) ਸ਼ੁੱਧ ਪਦਾਰਥ
 - (ੲ) ਕੋਲਾਇਡ
 - (ম) ਨਿਲੰਬਨ

ਕੀ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ ਸ਼ੁੱਧ ਹਨ

- ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਹਰ ਇੱਕ ਨੂੰ ਸਮਅੰਗੀ ਅਤੇ ਬਿਖਮਅੰਗੀ ਵਿੱਚ ਸ਼੍ਰੇਣੀਬੱਧ ਕਰੋ : ਸੋਡਾ ਪਾਣੀ, ਲੱਕੜੀ, ਬਰਫ਼, ਹਵਾ, ਮਿੱਟੀ, ਸਿਰਕਾ, ਫਿਲਟਰ ਕੀਤੀ ਹੋਈ ਚਾਹ।
- 6. ਤੁਸੀਂ ਕਿਵੇਂ ਪੁਸ਼ਟੀ ਕਰੋਗੇ ਕਿ ਦਿੱਤਾ ਹੋਇਆ ਰੰਗਹੀਣ ਦਵ ਸ਼ੁੱਧ ਪਾਣੀ ਹੈ?
- 7. ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੀਆਂ ਵਸਤੂਆਂ ਸ਼ੁੱਧ ਪਦਾਰਥ ਹਨ ?
 - (ੳ) ਬਰਫ਼
 - (꺼) ਦੁੱਧ
 - (ੲ) ਲੋਹਾ
 - (ਸ) ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ
 - (ਹ) ਕੈਲਸ਼ੀਅਮ ਆਕਸਾਈਡ
 - (ਕ) ਪਾਰਾ
 - (ਖ) ਇੱਟ
 - (ਗ) ਲੱਕੜੀ
 - (ਘ) ਹਵਾ
- ਹੇਠ ਲਿਖੇ ਮਿਸ਼ਰਣਾਂ ਵਿੱਚੋਂ ਘੋਲ ਦੀ ਪਹਿਚਾਣ ਕਰੋ।
 - (ੳ) ਮਿੱਟੀ
 - (ਅ) ਸਮੁੰਦਰੀ ਪਾਣੀ
 - (ੲ) ਹਵਾ
 - (ਸ) ਕੋਲਾ
 - (ਹ) ਸੋਡਾ ਪਾਣੀ
- 9. ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਟਿੰਡਲ ਪ੍ਰਭਾਵ ਨੂੰ ਦਰਸਾਏਗਾ ?
 - (ੳ) ਨਮਕ ਦਾ ਘੋਲ਼
 - (ਅ) ਦੁੱਧ
 - (ੲ) ਕਾਪਰ ਸਲਫੇਟ ਦਾ ਘੋਲ਼
 - (ਸ) ਸਟਾਰਚ ਦਾ ਘੋਲ਼
- ਹੇਠ ਲਿਖਿਆਂ ਨੂੰ ਤੱਤ, ਯੋਗਿਕ ਅਤੇ ਮਿਸ਼ਰਣ ਵਿੱਚ ਸ਼੍ਰੇਣੀਬੱਧ ਕਰੋ।
 - (ੳ) ਸੋਡੀਅਮ
 - (ਅ) ਮਿੱਟੀ
 - (ੲ) ਚੀਨੀ ਦਾ ਘੋਲ
 - (ਸ) ਚਾਂਦੀ
 - (ਹ) ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ
 - (ਕ) ਟਿਨ
 - (ਖ) ਸਿਲੀਕਾਨ
 - (ਗ) ਕੋਲਾ
 - (ਘ) ਹਵਾ

32

ਵਿਗਿਆਨ

- (ਙ) ਸਾਬਣ
- (ਚ) ਮੀਥੇਨ
- (ਛ) ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ
- (ন) ধুਨ
- 11. ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੇ-ਕਿਹੜੇ ਪਰਿਵਰਤਨ ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ ਹਨ?
 - (ੳ) ਪੌਦਿਆਂ ਦਾ ਵਧਣਾ
 - (ਅ) ਲੋਹੇ ਨੂੰ ਜ਼ੰਗ ਲੱਗਣਾ
 - (ੲ) ਲੋਹ ਚੂਰਣ ਅਤੇ ਰੇਤ ਨੂੰ ਮਿਲਾਉਣਾ
 - (ਸ) ਭੋਜਨ ਪਕਾਉਣਾ
 - (ਹ) ਭੋਜਨ ਦਾ ਪਾਚਨ
 - (ਕ) ਪਾਣੀ ਦਾ ਬਰਫ਼ ਬਣਨਾ
 - (ਖ) ਮੋਮਬੱਤੀ ਦਾ ਜਲਣਾ

ਸਮੂਹ ਲਈ ਕਿਰਿਆ

ਇੱਕ ਮਿੱਟੀ ਦਾ ਘੜਾ, ਰੇਤ ਅਤੇ ਕੁਝ ਰੋੜੇ ਲਓ। ਮਟਮੈਲੇ ਪਾਣੀ ਨੂੰ ਸਾਫ਼ ਕਰਨ ਲਈ ਛੋਟੇ ਪੱਧਰ ਤੇ ਫਿਲਟਰੇਸ਼ਨ ਪਲਾਂਟ ਦਾ ਡਿਜ਼ਾਈਨ ਬਣਾਓ।

ਕੀ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਪਦਾਰਥ ਸ਼ੁੱਧ ਹਨ

ਪੁਰਾਤਨ ਭਾਰਤੀ ਅਤੇ ਯੂਨਾਨੀ ਦਾਰਸ਼ਨਿਕ ਪਦਾਰਥ ਦੇ ਅਗਿਆਤ ਅਤੇ ਅਦਿੱਖ ਰੂਪਾਂ ਤੋਂ ਹਮੇਸ਼ਾਂ ਹੈਰਾਨ ਹੁੰਦੇ ਰਹੇ। ਪਦਾਰਥ ਦੀ ਵੰਡ ਦੇ ਵਿਸ਼ੇ ਬਾਰੇ ਭਾਰਤ ਵਿੱਚ ਬਹੁਤ ਸਮਾਂ ਪਹਿਲਾਂ, ਲਗਪਗ 500 ਈ. ਸਦੀ ਪਹਿਲਾਂ, ਵਿਚਾਰ ਪੇਸ਼ ਕੀਤਾ ਗਿਆ।

ਭਾਰਤੀ ਦਾਰਸ਼ਨਿਕ ਮਹਾਂਰਿਸ਼ੀ ਕਨਾਡ (Maharishi Kanad) ਨੇ ਇਹ ਨੁਕਤਾ ਦਿੱਤਾ ਸੀ ਕਿ ਜੇ ਅਸੀਂ ਪਦਾਰਥ ਨੂੰ ਵੰਡਦੇ ਜਾਈਏ ਤਾਂ ਸਾਨੂੰ ਛੋਟੇ-ਛੋਟੇ ਕਣ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਜਾਣਗੇ ਅਤੇ ਅੰਤ ਵਿੱਚ ਇੱਕ ਸੀਮਾ ਆਵੇਗੀ ਜਦੋਂ ਪ੍ਰਾਪਤ ਕਣ ਨੂੰ ਹੋਰ ਵੰਡਿਆ ਨਹੀਂ ਜਾ ਸਕੇਗਾ ਭਾਵ ਉਹ ਸੂਖ਼ਮਤਮ ਕਣ ਅਣਵੰਡਿਆ ਰਹੇਗਾ। ਇਸ ਨਾ-ਵੰਡਣਯੋਗ ਸੂਖ਼ਮਤਮ ਕਣ ਨੂੰ ਉਨ੍ਹਾਂ ਨੇ ਪਰਜਾਣੂ (Atom) ਕਿਹਾ। ਇੱਕ ਹੋਰ ਭਾਰਤੀ ਦਾਰਸ਼ਨਿਕ ਪਕੁਧਾ ਕਾਤਯਾਯਾਮ (Pakudha Katyayama) ਨੇ ਇਸ ਮਤ ਨੂੰ ਵਿਸਥਾਰ ਨਾਲ ਸਮਝਾਇਆ ਅਤੇ ਕਿਹਾ ਕਿ ਇਹ ਕਣ ਆਮ ਤੌਰ ਤੇ ਸੰਯੁਕਤ ਰੂਪ ਵਿੱਚ ਮਿਲਦੇ ਹਨ, ਜੋ ਸਾਨੂੰ ਪਦਾਰਥ ਦੇ ਵੱਖ ਵੱਖ ਰੂਪਾਂ ਨੂੰ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

ਲਗਭਗ ਇਸ ਸਮੇਂ ਗਰੀਕ ਦਾਰਸ਼ਨਿਕ ਡੇਮੋਕ੍ਰਿਟਸ (Democritus) ਅਤੇ ਲਿਯੁਸਿਪਸ (Leucippus) ਨੇ ਸੁਝਾਅ ਦਿੱਤਾ ਸੀ ਕਿ ਜੇ ਅਸੀਂ ਪਦਾਰਥ ਨੂੰ ਵੰਡਦੇ ਜਾਈਏ, ਤਾਂ ਇੱਕ ਅਜਿਹੀ ਸਥਿਤੀ ਆਵੇਗੀ ਜਦੋਂ ਪ੍ਰਾਪਤ ਕਣ ਨੂੰ ਹੋਰ ਵੰਡਿਆ ਨਹੀਂ ਜਾ ਸਕੇਗਾ। ਉਨ੍ਹਾਂ ਨੇ ਇਨ੍ਹਾਂ ਨਾ-ਵੰਡਣਯੋਗ ਕਣਾਂ ਨੂੰ ਪਰਮਾਣੂ ਨਾ-ਵੰਡਣਯੋਗ ਕਿਹਾ ਸੀ। ਇਹ ਸਾਰੇ ਸੁਝਾਅ ਦਾਰਸ਼ਨਿਕ ਵਿਚਾਰਾਂ ਤੇ ਅਧਾਰਿਤ ਸਨ। ਇਨ੍ਹਾਂ ਵਿਚਾਰਾਂ ਦੀ ਸਚਾਈ ਸਿੱਧ ਕਰਨ ਲਈ 18ਵੀਂ ਸਦੀ ਤੱਕ ਕੋਈ ਵਧੇਰੇ ਪ੍ਯੋਗੀ ਕੰਮ ਨਹੀਂ ਹੋਏ ਸਨ।

18ਵੀਂ ਸਦੀ ਦੇ ਅੰਤ ਤਕ ਵਿਗਿਆਨਕਾਂ ਨੇ ਤੱਤਾਂ ਅਤੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਅੰਤਰ ਨੂੰ ਸਮਝਿਆ ਅਤੇ ਸੁਭਾਵਿਕ

ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ (Atoms and Molecules)

ਰੂਪ ਵਿੱਚ ਇਹ ਪਤਾ ਕਰਨ ਦੇ ਇੱਛੁਕ ਹੋਏ ਕਿ ਤੱਤ ਕਿਵੇਂ ਅਤੇ ਕਿਉਂ ਸੰਜੋਗ ਕਰਦੇ ਹਨ। ਜਦੋਂ ਤੱਤ ਆਪਸ ਵਿੱਚ ਸੰਜੋਗ ਕਰਦੇ ਹਨ, ਤਾਂ ਕੀ ਹੁੰਦਾ ਹੈ ?

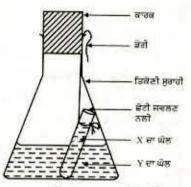
ਵਿਗਿਆਨਕ ਐਨਟੋਨੀ ਐਲ. ਲੈਵੋਜ਼ੀਅਰ (Antonie L. Lavoisier) ਨੇ ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਦੋ ਮਹੱਤਵਪੂਰਣ ਨਿਯਮਾਂ ਨੂੰ ਸਥਾਪਿਤ ਕੀਤਾ ਜਿਸ ਨੇ ਰਸਾਇਣ ਵਿਗਿਆਨ ਨੂੰ ਮਹੱਤਵਪੂਰਣ ਅਧਾਰ ਦਿੱਤਾ।

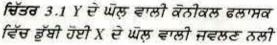
3.1 ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਨਿਯਮ (Laws of Chemical Combination)

ਲੈਵੇਜ਼ੀਅਰ ਅਤੇ ਜੋਜਫ਼ ਐੱਲ. ਪ੍ਰਾਊਸਟ (Joseph L. Proust) ਨੇ ਬਹੁਤ ਸਾਰੇ ਪ੍ਰਯੋਗੀ ਕਾਰਜਾਂ ਦੇ ਬਾਅਦ ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਹੇਠ ਲਿਖੇ ਨਿਯਮ ਸਥਾਪਿਤ ਕੀਤੇ।

3.1.1 ਪੁੰਜ ਸੁਰੱਖਿਅਣ (Law of Conservation of Mass) ਦਾ ਨਿਯਮ

ਜਦੋ' ਰਸਾਇਣਿਕ ਪਰਿਵਰਤਨ (ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ) ਪੂਰੀ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਕੀ ਪੁੰਜ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ?


3.1


ਕਿਰਿਆ

ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਸੋਡੀਅਮ ਸਲਫੇਟ
ਸੋਡੀਅਮ ਸਲਫੇਟ
ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ
ਜੇ ਇਕ ਸੈੱਟ ਦੇ ਰਸਾਇਰ
ਜ ਤਿਆਰ ਕਰੋ।

ਮਾਤਰਾ ਨੂੰ ਇਕ ਤਿਕੋਣੀ ਸੁਰਾਹੀ (Conical Flash) ਵਿੱਚ ਲਓ ਅਤੇ X ਦੇ ਘੋਲ ਦੀ ਕੁਝ ਮਾਤਰਾ ਨੂੰ ਇਕ ਬਾਲੋਣ ਨਲੀ ਵਿੱਚ ਲਓ।

ਬਾਲਣ ਨਲੀ (ignition tube) ਨੂੰ ਫਲਾਸਕ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਲਟਕਾਓ ਤਾਂ ਜੋ ਦੋਵੇਂ ਘੋਲ ਆਪਸ ਵਿੱਚ ਮਿਸ਼ਰਤ ਨਾ ਹੋਣ। ਉਸ ਤੋਂ ਬਾਅਦ ਫਲਾਸਕ ਦੇ ਮੂੰਹ ਵਿੱਚ ਇਕ ਕਾਰਕ ਚਿੱਤਰ 3.1 ਵਾਂਗ ਲਗਾਓ।

ਅੰਤਰ ਵਸਤੂ ਯੁਕਤ ਫਲਾਸਕ ਨੂੰ ਸਾਵਧਾਨੀ ਨਾਲ ਤੋਲ ਲਓ। ਹੁਣ ਫਲਾਸਕ ਨੂੰ ਝੁਕਾਅ ਕੇ ਇਸ ਤਰ੍ਹਾਂ ਘੁਮਾਓ ਜਿਸ ਨਾਲ X ਅਤੇ Y ਦੇ ਘੋਲ ਆਪਸ ਵਿੱਚ ਮਿਸ਼ਰਤ ਹੋ ਜਾਣ।

- ਹੁਣ ਇਸ ਫਲਾਸਕ ਨੂੰ ਦੁਬਾਰਾ ਤੋਲ ਲਓ।
- ਤਿਕੌਣੀ ਸੁਰਾਹੀ ਵਿੱਚ ਕੀ ਪ੍ਰਤੀਕਿਰਿਆ ਹੋਈ ?
- ਕੀ ਤੁਸੀਂ ਸੋਚਦੇ ਹੋ ਕਿ ਕੋਈ ਰਸਾਇਣਿਕ ਕਿਰਿਆ ਹੋਈ ?
- ਫਲਾਸਕ ਦੇ ਮੂੰਹ ਤੇ ਕਾਰਕ ਕਿਉਂ ਲਗਾਉਂਦੇ ਹਨ ?
- ਕੀ ਫਲਾਸਕ ਦੋ ਪੁੰਜ ਅਤੇ ਇਸ ਵਿਚਲੀਆਂ ਵਸਤੂਆਂ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਹੋਇਆ ?

ਪੁੰਜ ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ ਕਿਸੇ ਰਸਾਇਣਿਕਾਂ ਪ੍ਰਤਿਕਿਰਿਆ ਵਿੱਚ ਪੁੰਜ ਦਾ ਨਾ ਤਾਂ ਸਿਰਜਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਵਿਨਾਸ਼।

3.1.2 ਸਥਿਰ ਅਨੁਪਾਤ ਦਾ ਨਿਯਮ (Law of Constant Proportions)

ਲੈਵੋਜ਼ੀਅਰ ਅਤੇ ਹੋਰ ਵਿਗਿਆਨਕਾਂ ਨੇ ਇਸ ਗੱਲ ਤੇ ਚਾਨਣਾ ਪਾਇਆ ਕਿ ਕੋਈ ਵੀ ਯੋਗਿਕ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਤੱਤਾਂ ਤੋਂ ਨਿਰਮਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਯੋਗਿਕ ਵਿੱਚ, ਇਨ੍ਹਾਂ ਤੱਤਾਂ ਦਾ ਅਨੁਪਾਤ ਸਥਿਰ ਹੁੰਦਾ ਹੈ ਚਾਹੇ ਉਸ ਨੂੰ ਕਿਸੇ ਥਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਗਿਆ ਹੋਵੇ

ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

ਜਾਂ ਕਿਸੇ ਨੇ ਵੀ ਇਸ ਨੂੰ ਬਣਾਇਆ ਹੋਵੇ।

ਯੋਗਿਕ ਪਾਣੀ ਵਿੱਚ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਆੱਕਸੀਜਨ ਦੇ ਪੁੰਜਾਂ ਦਾ ਅਨੁਪਾਤ 1:8 ਹੁੰਦਾ ਹੈ ਭਾਵੇਂ ਪਾਣੀ ਦਾ ਸਰੋਤ ਕੋਈ ਵੀ ਹੋਵੇ। ਇਸ ਤਰ੍ਹਾਂ 9g ਪਾਣੀ ਦਾ ਅਪਘਟਣ ਕਰੀਏ ਤਾਂ ਹਮੇਸ਼ਾਂ 1g ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ 8g ਆਕਸੀਜਨ ਹੀ ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ। ਇਸੇ ਤਰ੍ਹਾਂ ਅਮੋਨੀਆ (NH₃) ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਪੁੰਜਾਂ ਅਨੁਸਾਰ ਹਮੇਸ਼ਾਂ 14:3 ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਭਾਵੇਂ ਅਮੋਨੀਆ ਕਿਸੇ ਵੀ ਵਿਧੀ ਨਾਲ ਤਿਆਰ ਹੋਈ ਹੋਵੇ ਭਾਵ ਕਿਸੇ ਵੀ ਸਰੋਤ ਤੋਂ ਲਈ ਗਈ ਹੋਵੇ।

ਉਪਰੋਕਤ ਉਦਾਹਰਣਾਂ ਤੋਂ ਸਥਿਰ ਅਨੁਪਾਤ ਦੇ ਨਿਯਮ ਦੀ ਵਿਆਖਿਆ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨੂੰ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਦਾ ਨਿਯਮ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਪ੍ਰਾਊਸਟ ਨੇ ਇਸ ਨਿਯਮ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਦਿੱਤਾ "ਕਿਸੇ ਵੀ ਯੋਗਿਕ ਵਿੱਚ ਤੱਤ ਹਮੇਸ਼ਾਂ ਇਕ ਨਿਸ਼ਚਿਤ ਪੂੰਜ ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ।"

ਵਿਗਿਆਨਕਾਂ ਦੀ ਅਗਲੀ ਸਮੱਸਿਆ ਇਨ੍ਹਾਂ ਨਿਯਮਾਂ ਦੀ ਉਚਿੱਤ ਵਿਆਖਿਆ ਕਰਨ ਦੀ ਸੀ। ਅੰਗਰੇਜ਼

ਜਾੱਨ ਡਾਲਟਨ ਦਾ ਜਨਮ ਸੰਨ 1766 ਵਿੱਚ ਇੰਗਲੈਂਡ ਦੇ ਇੱਕ ਗਰੀਬ ਜੁਲਾਹਾ ਪਰਿਵਾਰ ਵਿੱਚ ਹੋਇਆ ਸੀ। ਬਾਰਾਂ ਵਰ੍ਹੇ ਦੀ ਉਮਰ ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਇਕ ਅਧਿਆਪਕ ਦੇ ਰੂਪ ਵਿੱਚ ਆਪਣੀ ਜੀਵਿਕਾ ਸ਼ੁਰੂ ਕੀਤੀ।ਸੱਤ ਸਾਲ ਬਾਅਦ ਉਹ ਇੱਕ ਸਕੁਲ ਦੇ ਪਿੰਸੀਪਲ ਬਣ ਗਏ। ਸੰਨ

ਜਾੱਨ ਡਾਲਟਨ

1793 ਵਿਚ ਜਾੱਨ ਡਾਲਟਨ ਕਾਲਜ ਵਿੱਚ ਗਣਿਤ, ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣ ਵਿਗਿਆਨ ਪੜ੍ਹਾਉਣ ਲਈ ਮੈਨਚੈਸਟਰ ਚਲੇ ਗਏ।ਉੱਥੇ ਉਨ੍ਹਾਂ ਨੇ ਆਪਣੇ ਜੀਵਨ ਦਾ ਵਧੇਰੇ ਸਮਾਂ ਪੜ੍ਹਾਉਣ ਅਤੇ ਖੋਜ ਵਿੱਚ ਬਿਤਾਇਆ। ਸੰਨ 1808 ਵਿੱਚ ਇਨ੍ਹਾਂ ਨੇ ਆਪਣੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਨੂੰ ਪੇਸ਼ ਕੀਤਾ ਜੋ ਪਦਾਰਥਾਂ ਦੇ ਅਧਿਐਨ ਲਈ ਮਹੱਤਵਪੂਰਣ ਸਿੱਧ ਹੋਇਆ।

ਰਸਾਇਣ ਵਿਗਿਆਨੀ, ਜਾੱਨ ਡਾਲਟਨ ਨੇ ਪਦਾਰਥਾਂ ਦੇ ਸੁਭਾਅ ਬਾਰੇ ਇੱਕ ਅਧਾਰਭੂਤ ਸਿਧਾਂਤ ਪੇਸ਼ ਕੀਤਾ। ਡਾਲਟਨ ਨੇ ਪਦਾਰਥਾਂ ਦੀ ਵਿਭਾਜਿਤਾ ਦਾ ਵਿਚਾਰ ਦਿੱਤਾ

35

ਜਿਸ ਨੂੰ ਉਸ ਸਮੇਂ ਤੱਕ ਦਾਰਸ਼ਨਿਕ ਮੰਨਿਆ ਜਾਂਦਾ ਸੀ। ਗਰੀਕ ਦਾਰਸ਼ਨਿਕਾਂ ਦੁਆਰਾ ਪਦਾਰਥਾਂ ਦੇ ਸੂਖ਼ਮਤਮ ਨਾ-ਵੈਡਣਯੋਗ ਕਣ, ਜਿਸ ਨੂੰ ਪਰਮਾਣੂ ਨਾਂ ਦਿੱਤਾ ਸੀ, ਉਸ ਨੂੰ ਡਾਲਟਨ ਨੇ ਵੀ ਪਰਮਾਣੂ ਨਾਂ ਦਿੱਤਾ। ਡਾਲਟਨ ਦਾ ਇਹ ਸਿਧਾਂਤ ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਨਿਯਮਾਂ ਤੇ ਅਧਾਰਿਤ ਸੀ। ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਨੇ ਪੁੰਜ ਦੇ ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮ ਅਤੇ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਦੇ ਨਿਯਮ ਦੀ ਯੁਕਤੀ ਸੰਗਤ ਵਿਆਖਿਆ ਕੀਤੀ।

ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਅਨੁਸਾਰ ਸਾਰੇ ਪਦਾਰਥ ਭਾਵੇਂ ਤੱਤ, ਯੋਗਿਕ ਜਾਂ ਮਿਸ਼ਰਣ ਹੋਣ, ਸੂਖਮ ਕਣਾਂ ਤੋਂ ਬਣੇ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਪਰਮਾਣੂ ਕਹਿੰਦੇ ਹਨ। ਡਾਲਟਨ ਦੇ ਸਿਧਾਂਤ ਦੀ ਵਿਆਖਿਆ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਕਰ ਸਕਦੇ ਹਾਂ:

- (i) ਸਾਰੇ ਪਦਾਰਥ ਪਰਮਾਣੂਆਂ ਤੋਂ ਬਣਦੇ ਹਨ।
- (ii) ਪਰਮਾਣੂ ਨਾ-ਵੰਡਣਯੋਗ ਸੂਖਮਤਮ ਕਣ ਹੁੰਦੇ ਹਨ ਜੋ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਨਾ ਤਾਂ ਸਿਰਜਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਨਾ ਹੀ ਉਨ੍ਹਾਂ ਦਾ ਵਿਨਾਸ਼ ਹੁੰਦਾ ਹੈ।
- (iii) ਦਿੱਤੇ ਗਏ ਤੱਤ ਦੇ ਸਾਰੇ ਪਰਮਾਣੂਆਂ ਦਾ ਪੁੰਜ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣ ਸਮਾਨ ਹੁੰਦੇ ਹਨ।
- (iv) ਵੱਖ-ਵੱਖ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਪੁੰਜ ਅਤੇ ਰਸਾਇਣਿਕ ਗੁਣ ਵੱਖ-ਵੱਖ ਹੁੰਦੇ ਹਨ।
- (v) ਵੱਖ-ਵੱਖ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਆਪਸ ਵਿੱਚ ਇਕ ਛੋਟੀ ਪੂਰਣ ਸੰਖਿਆ ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਸੰਜੋਗ ਕਰਕੇ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ।
- (vi) ਕਿਸੇ ਵੀ ਯੋਗਿਕ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸਾਪੇਖ ਸੰਖਿਆ ਅਤੇ ਕਿਸਮਾਂ ਨਿਸ਼ਚਿਤ ਹੁੰਦੀਆਂ ਹਨ।

36

ਇੱਕ ਕਿਰਿਆ ਵਿੱਚ 5.3 g ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਅਤੇ 6.0 g ਈਬੋਨੋਇਕ ਐਸਿਡ ਕਿਰਿਆ ਕੇਰਦੇ ਹਨ।2.2 g ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ, 8.2 g ਸੋਡੀਅਮ ਈਬੋਨੋਏਟ ਅਤੇ 0.9 g ਪਾਣੀ ਉਪਜਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਇਸ ਪ੍ਰਤੀਕਿਰਿਆ ਦੁਆਰਾ ਵਿਖਾਓ ਕਿ ਇਹ ਪਰੀਖਣ ਪੁੰਜ ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮ ਦੇ ਅਨੁਰੂਪ ਹੈ।

- ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਆਕਸੀਜਨ ਪੁੰਜ ਅਨੁਸਾਰ
 8 ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਸੰਜੋਗ ਕਰਕੇ ਪਾਣੀ ਨਿਰਮਿਤ ਕਰਦੇ ਹਨ। 3 g ਹਾਈਡ੍ਰੋਜਨ ਗੈਸ ਦੇ ਨਾਲ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਸੰਜੋਗ ਕਰਨ ਲਈ ਕਿੰਨੀ ਆੱਕਸੀਜਨ ਗੈਸ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ ?
- ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਦਾ ਕਿਹੜਾ ਨੁਕਤਾ ਪੁੱਜ ਦੇ ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮ ਦਾ ਨਤੀਜਾ ਹੈ।
- ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਦਾ ਕਿਹੜਾ ਨੁਕਤਾ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਦੇ ਨਿਯਮ ਦੀ ਵਿਆਖਿਆ ਕਰਦਾ ਹੈ?

3.2 ਪਰਮਾਣੂ ਕੀ ਹੁੰਦਾ ਹੈ ? (What is an Atom ?)

ਕੀ ਤੁਸੀਂ ਕਦੇ ਕਿਸੇ ਇਮਾਰਤ ਦੀ ਦੀਵਾਰ ਬਣਦੀ ਵੇਖੀ ਹੈ ? ਇਨ੍ਹਾਂ ਦੀਵਾਰਾਂ ਨਾਲ ਇਕ ਕਮਰਾ ਜਾਂ ਕਈ ਕਮਰਿਆਂ ਦੇ ਸਮੂਹਾਂ ਨਾਲ ਇਕ ਇਮਾਰਤ ਤਿਆਰ ਹੁੰਦੀ ਹੈ। ਉਸ ਵਿਸ਼ਾਲ ਇਮਾਰਤ ਦੀ ਰਚਨਾਤਮਕ ਇਕਾਈ ਕੀ ਹੈ ? ਕਿਸੇ ਸਿਓਂਕ ਦੀ ਪਹਾੜੀ (Ant Hill) ਦੀ ਰਚਨਾਤਮਕ ਇਕਾਈ ਕੀ ਹੁੰਦੀ ਹੈ ? ਇਹ ਰੇਤ ਦਾ ਛੋਟਾ ਜਿਹਾ ਕਣ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਸਾਰੇ ਪਦਾਰਥ ਦੀ ਰਚਨਾਤਮਕ ਇਕਾਈ ਪਰਮਾਣੂ ਹੁੰਦੀ ਹੈ।

ਪਰਮਾਣੂ ਕਿੰਨੇ ਵੱਡੇ ਹੁੰਦੇ ਹਨ ? (How Big Are Atoms ?)

ਪਰਮਾਣੂ ਬਹੁਤ ਛੋਟੇ ਹੁੰਦੇ ਹਨ। ਇਹ ਕਿਸੇ ਵੀ ਵਸਤੂ ਜਿਸ ਦੀ ਅਸੀਂ ਕਲਪਨਾ ਜਾਂ ਤੁਲਨਾ ਕਰ ਸਕਦੇ ਹਾਂ, ਤੋਂ ਵੀ ਛੋਟੇ ਹੁੰਦੇ ਹਨ। ਲੱਖਾਂ ਪਰਮਾਣੂਆਂ ਨੂੰ ਜਦੋਂ ਇੱਕ ਦੇ ਉੱਪਰ ਇੱਕ ਚੱਠੇ ਦੇ ਰੂਪ ਵਿੱਚ ਰੱਖੀਏ, ਤਾਂ ਬੜੀ ਮੁਸ਼ਕਿਲ ਨਾਲ ਕਾਗਜ਼ ਦੀ ਇੱਕ ਸ਼ੀਟ ਜਿੰਨੀ ਮੋਟੀ ਪਰਤ ਬਣ ਸਕੇਗੀ।

ਪਰਮਾਣੂ ਅਰਧ ਵਿਆਸ (atomic radius) ਨੂੰ ਨੈਨੋਸ਼ੀਟਰ (nm) ਵਿੱਚ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ। 10⁻⁹ m = 1nm 1m = 10⁹ nm

ਵਿਗਿਆਨ

ਸਾਪੇਖ ਅਕਾਰ		
ਅਰਧਵਿਆਸ (ਮੀਟਰਾਂ ਵਿੱਚ)	ਉਦਾਹਰਣ	
10-10	ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ	
10 ⁻⁹	ਜਲ ਅਣੂ	
10-8	ਹੀਮੋਗਲੋਬਿਨ ਅਣੂ	
10-4	ਰੇਤ ਕਣ	
10-2	ਕੀੜੀ	
10-1	ਤਰਬੁਜ਼	

ਜਦੋਂ ਪਰਮਾਣੂ ਦਾ ਅਕਾਰ ਐਨਾ ਛੋਟਾ ਹੈ ਤਾਂ ਅਸੀਂ ਇਸ ਨੂੰ ਨਾਂ-ਮਾਤਰ ਮੰਨ ਸਕਦੇ ਹਾਂ, ਤਾਂ ਇਸ ਦੇ ਬਾਰੇ ਕਿਓਂ ਸੋਚੀਏ ? ਅਸੀਂ ਇਸ ਦੇ ਬਾਰੇ ਇਸ ਲਈ ਸੋਚਦੇ ਹਾਂ ਕਿਉਂ ਕਿ ਸਾਡਾ ਪੂਰਾ ਵਿਸ਼ਵ ਹੀ ਪਰਮਾਣੂਆਂ ਤੋਂ ਬਣਿਆ ਹੈ। ਭਾਵੇਂ ਅਸੀਂ ਉਨ੍ਹਾਂ ਨੂੰ ਵੇਖ ਨਹੀਂ ਸਕਦੇ, ਫਿਰ ਵੀ ਉਹ ਇੱਥੇ ਮੌਜੂਦ ਹਨ ਅਤੇ ਸਾਡੀਆਂ ਸਭ ਕਿਰਿਆਵਾਂ ਤੇ ਉਨ੍ਹਾਂ ਦਾ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਰਹਿੰਦਾ ਹੈ। ਹੁਣ ਅਸੀਂ ਆਧੁਨਿਕ ਤਕਨੀਕਾਂ ਦੀ ਮਦਦ ਨਾਲ ਤੱਤਾਂ ਦੀ ਸਤ੍ਹਾ ਦੇ ਵੱਡਦਰਸ਼ੀ ਪ੍ਰਤੀਬਿੰਬਾਂ ਨੂੰ ਵਿਖਾ ਸਕਦੇ ਹਾਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਮੌਜੂਦ ਪਰਮਾਣੂ ਸਪਸ਼ਟ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ।

ਚਿੱਤਰ 3.2 ਸਿਲੀਕਾੱਨ ਸਤ੍ਹਾ ਦਾ ਪ੍ਰਤੀਬਿੰਬ 3.2<mark>11 ਵੱਖ-ਵੱਖ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਆਧੁਨਿਕ</mark> ਸੰਕੇਤ ਕੀ ਹਨ ? ਡਾਲਟਨ ਅਜਿਹੇ ਪਹਿਲੇ ਵਿਗਿਆਨ<mark>ਕ</mark> ਸਨ, ਜਿਨ੍ਹਾਂ ਨੇ

ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

ਤੱਤਾਂ ਦੇ ਸੰਕੇਤਾਂ ਦੀ ਵਰਤੋਂ ਅਤਿਅੰਤ ਵਿਸ਼ਿਸਟ ਅਰਥ ਵਿੱਚ ਕੀਤੀ, ਤਾਂ ਇਹ ਸੰਕੇਤ ਤੱਤ ਦੇ ਇਕ ਪਰਮਾਣੂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਸੀ।ਬਰਜ਼ੀਲਿਅਸ ਨੇ ਤੱਤਾਂ ਦੇ ਅਜਿਹੇ ਸੰਕੇਤ ਦਾ ਸੁਝਾਅ ਦਿੱਤਾ, ਜੋ ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਨਾਵਾਂ ਦੇ ਇਕ ਜਾਂ ਦੋ ਅੱਖਰਾਂ ਤੋਂ ਪ੍ਰਦਰਸ਼ਿਤ ਹੁੰਦਾ ਸੀ।

ਸ਼ੁਰੂ ਵਿੱਚ ਤੱਤਾਂ ਦੇ ਨਾਵਾਂ ਦੀ ਵਿਉਂਤਪਤੀ ਉਨ੍ਹਾਂ

ਚਿੱਤਰ 3.3: ਡਾਲਟਨ ਦੁਆਰਾ ਸੁਝਾਏ ਗਏ ਕੁੱਝ ਤੱਤਾਂ ਦੇ ਚਿੰਨ੍ਹ

ਸਥਾਨਾਂ ਦੇ ਨਾਵਾਂ ਤੋਂ ਕੀਤੀ ਗਈ ਜਿੱਥੋਂ ਉਹ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਮਿਲੇ ਸਨ।ਉਦਾਹਰਣ ਵਜੋਂ ਕਾੱਪਰ (copper) ਦਾ ਨਾਂ ਸਾਈਪ੍ਸ (Cyprus) ਤੋਂ ਲਿਆ ਗਿਆ। ਕੁਝ ਤੱਤਾਂ ਦੇ ਨਾਵਾਂ ਨੂੰ ਵਿਸ਼ਿਸ਼ਟ ਰੰਗਾਂ ਤੋਂ ਲਿਆ ਗਿਆ। ਉਦਾਹਰਣ ਵਜੋਂ, ਸੋਨਾ (gold) ਦਾ ਨਾਂ ਅੰਗਰੇਜ਼ੀ ਦੇ ਉਸ ਸ਼ਬਦ ਤੋਂ ਲਿਆ ਗਿਆ ਜਿਸ ਦਾ ਅਰਥ ਹੁੰਦਾ ਹੈ ਪੀਲਾ।

ਅੱਜਕਲ੍ਹ ਇੰਟਰਨੈਸ਼ਨਲ ਯੂਨੀਅਨ ਆੱਫ ਪਿਓਰ ਐਂਡ ਅਪਲਾਈਡ ਕੈਮਿਸਟਰੀ (IUPAC) ਤੱਤਾਂ ਦੇ ਨਾਵਾਂ ਨੂੰ ਮਨਜ਼ੂਰੀ ਦਿੰਦੀ ਹੈ। ਆਮ ਤੌਰ 'ਤੇ ਤੱਤਾਂ ਦੇ ਸੰਕੇਤ ਉਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਅੰਗਰੇਜ਼ੀ ਨਾਵਾਂ ਦੇ ਇੱਕ ਜਾਂ ਦੋ ਅੱਖਰਾਂ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਕਿਸੇ ਸੰਕੇਤ ਦੇ ਪਹਿਲੇ ਅੱਖਰ ਨੂੰ ਹਮੇਸ਼ਾਂ ਵੱਡਾ ਅੱਖਰ (Capital Letter) ਵਿੱਚ ਅਤੇ ਦੂਜੇ ਅੱਖਰ ਨੂੰ ਛੋਟੇ ਅੱਖਰ (small letter) ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।

37

ਉਦਾਹਰਣ ਵਜੋਂ

- (i) ਹਾਈਡ੍ਰੋਜਨ, H
- (ii) ਐਲੂਮੀਨਿਅਮ, Al ਨਾ ਕਿ AL
- (iii) ਕੋਬਾਲਟ, Co ਨਾ ਕਿ CO

ਕੁਝ ਤੱਤਾਂ ਦੇ ਸੈਕੇਤ ਉਨ੍ਹਾਂ ਦੇ ਅੰਗਰੇਜ਼ੀ ਨਾਵਾਂ ਦੇ ਪਹਿਲੇ ਅੱਖਰ ਦੇ ਬਾਅਦ ਵਿੱਚ ਆਉਣ ਵਾਲੇ ਕਿਸੇ ਅੱਖਰ ਨੂੰ ਜੋੜ ਕੇ ਬਣਾਉਂਦੇ ਹਨ। ਉਦਾਹਰਣ (i) ਕਲੋਕੀਨ, Cl (ii) ਜ਼ਿੰਕ Zn, ਆਦਿ।

ਹੋਰ ਤੱਤਾਂ ਦੇ ਸੈਕੇਤਾਂ ਨੂੰ ਲੈਟਿਨ, ਜਰਮਨ ਜਾਂ ਗਰੀਕ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੇ ਨਾਵਾਂ ਤੋਂ ਬਣਾਣਿਆਂ ਗਿਆ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਲੋਹਾ (Iron) ਦਾ ਸੰਕੇਤ Fe ਹੈ ਜੋ ਉਸ ਦੇ ਲੈਟਿਨ ਨਾਂ ਫੈਰਮ ਤੋਂ ਬਣਾਇਆ ਗਿਆ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਸੋਡੀਅਮ ਦਾ ਸੰਕੇਤ Na ਅਤੇ ਪੋਟਾਸ਼ੀਅਮ ਦਾ ਸੰਕੇਤ K ਕ੍ਰਮਵਾਰ ਨੈਟ੍ਰਿਅਮ ਅਤੇ ਕੈਲਿਅਮ ਤੋਂ ਬਣੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਹਰ ਇੱਕ ਤੱਤ ਦਾ ਇੱਕ ਨਾਂ ਅਤੇ ਇੱਕ ਵਿਲੱਖਣ ਰਸਾਇਣਿਕ ਸੰਕੇਤ ਹੁੰਦਾ ਹੈ।

3.2.2 ਪਰਮਾਣੂ ਪੁੰਜ (Atomic Mass)

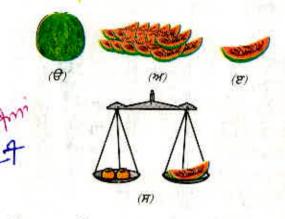
ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਦੀ ਵਿਸ਼ਿਸ਼ਟ ਸੈਕਲਪਨਾ ਪਰਮਾਣੂ ਪੁੰਜ ਦੀ ਸੀ। ਉਨ੍ਹਾਂ ਅਨੁਸਾਰ ਹਰੇਕ ਤੱਤ ਦਾ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਪਰਮਾਣੂ ਪੁੰਜ ਹੁੰਦਾ ਹੈ। ਡਾਲਟਨ ਦਾ ਸਿਧਾਂਤ ਸਥਿਰ ਅਨੁਪਾਤ ਦੇ ਨਿਯਮ ਨੂੰ ਐਨੀ ਡਲੀ ਭਾਂਤ ਸਮਝਾਉਣ ਵਿੱਚ ਸਮਰੱਥ ਸੀ ਕਿ ਵਿਗਿਆਨਲੇ ਇਸ ਤੋਂ ਪ੍ਰੇਰਿਤ ਹੋ ਕੇ ਪਰਮਾਣੂ ਪੁੰਜ ਨੂੰ ਮਾਪਨ ਵੱਲ ਅੱਗੇ ਵਧੇ। ਕਿਉਂਕਿ ਇੱਕ ਪਰਮਾਣੂ ਦੇ ਪੁੰਜ ਨੂੰ ਪਤਾ ਕਰਨਾ ਸਮਝਣ ਤੋਂ ਵੱਧ ਮੁਸ਼ਕਿਲ ਕੰਮ ਸੀ ਇਸ ਲਈ ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਨਿਯਮਾਂ ਦੀ ਵਰਤੋਂ ਅਤੇ ਉਪਜੇ ਯੋਗਿਕਾਂ ਦੇ ਦੁਆਰਾ ਸਾਪੇਖ ਪਰਮਾਣੂ ਪੁੰਜਾਂ ਨੂੰ ਪਤਾ ਕੀਤਾ ਗਿਆ।

ਸ਼ਾਰਟੀ 3.1		Service and Letters and Service	and the second		
ਤੱਤ	ਸੈਕੇਤ	ਤੱ ਰ	ਸੈਕੋਰ	ਤੱਤ	ਸੈਕੇਤ
ਐਲੁਮੀਨੀਅਮ	Al	ਕਾੱਪਰ	Cu	ਨਾਈਟ੍ਰੋਜਨ	N
ਅਰਗਾੱਨ	Ar	ਫਲੋਰੀਨ	F	ਆੱਕਸੀਜਨ	0
ਬੇਰੀਅਮ	Ba	ਗੋਲਡ	Au	ਪੋਟਾਸ਼ੀਅਮ	К
ਬੋਰਾੱਨ	В	ਹਾਈਡ੍ਰੋਜਨ	Н	ਸਿਲੀਕਾੱਨ	• Si
ਬਰੋਮੀਨ	Br	ਆਇਓਡੀਨ	1	ਚਾਂਦੀ	Ag
ਕੈਲਸ਼ੀਅਮ	Ca	ਆਇਰਨ	Fe	ਸ਼ੋਡੀਅਮ	Na
ਕਾਰਬਨ	С	ਲੈੱਡ	Pb	ਸਲਫਰ	S
ਕਲੋਰੀਨ	Cl	ਮੈਗਨੀਸ਼ੀਅਮ	Mg	ਯੂਰੇਨੀਅਮ	U
ਕੋਬਾਲਟ	Co	ਨੀਆੱਨ	Ne	ਜ਼ਿੰਕ	Zn

(ਜਦ ਵੀ ਤੁਸੀਂ ਤੱਤਾਂ ਦਾ ਅਧਿਐਨ ਕਰੋ, ਤਾਂ ਤੁਹਾਡੇ ਹਵਾਲੇ ਦੇ ਲਈ ਉਪਰੋਕਤ ਸਾਰਣੀ ਦਿੱਤੀ ਗਈ ਹੈ। ਇਸ ਪੂਰੀ ਸਾਰਣੀ ਨੂੰ ਇੱਕ ਵਾਰ ਵਿੱਚ ਯਾਦ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਨਹੀਂ ਹੈ। ਸਮੇਂ ਸਮੇਂ ਤੇ ਅਤੇ ਬਾਰ-ਬਾਰ ਵਰਤਣ ਤੇ ਤੁਸੀਂ ਆਪਣੇ ਆਪ ਹੀ ਇਨ੍ਹਾਂ ਸੰਕੇਤਾਂ ਨੂੰ ਨਿਰਮਿਤ ਕਰਨਾ ਸਿੱਖ ਜਾਓਗੇ।)

38

ਅਸੀਂ ਇੱਥੋਂ ਇਕ ਯੋਗਿਕ, ਕਾਰਥਨ ਮੋਨੋਆਕਸਾਈਡ (CO) ਦੀ ਉਦਾਹਰਣ ਲੈਂਦੇ ਹਾਂ ਜਿਹੜਾ ਕਾਰਥਨ ਅਤੇ ਆਕਸੀਜਨ ਦੁਆਰਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਯੋਗਿਕ ਤੌਰ 'ਤੇ ਇਹ ਨਿਰੀਖਤ ਕੀਤਾ ਗਿਆ ਕਿ 3 g ਕਾਰਥਨ-ਅਤੇ 4 g ਆਕਸੀਜਨ ਦੇ ਸੰਯੋਜਨ ਤੋਂ ਕਾਰਥਨ ਮੋਨੋਆਕਸਾਈਡ ਬਣੀ ਹੋਈ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਕਾਰਥਨ ਆਪਣੇ 4/3 ਗਣਾ ਵੱਧ ਪੰਜ ਵਾਲੇ


ਵਿਗਿਆਨ

ਆਕਸੀਜਨ ਨਾਲ ਸੰਯੋਜਨ ਕਰਦੀ ਹੈ। ਮੰਨ ਲਓ, ਅਸੀਂ ਪਰਮਾਣ ਪੁੰਜ ਦੀ ਇਕਾਈ ਨੂੰ ਇੱਕ ਕਾਰਬਨ ਪਰਮਾਣ ਪੁੰਜ ਦੇ ਬਰਾਬਰ ਮੰਨਦੇ ਹਾਂ ਤਾਂ ਕਾਰਬਨ ਪਰਮਾਣੂ ਨੂੰ 1.0u ਅਤੇ ਆਕਸੀਜਨ ਪਰਮਾਣੂ ਪੁੰਜ ਨੂੰ 1.33u ਦਰਸਾਵਾਂਗੇ । (ਸ਼ੁਰੂ ਵਿੱਚ ਪਰਮਾਣੂ ਪੂੰਜ ਨੂੰ a.m.u. ਦੁਆਰਾ ਸੰਖੇਪ ਵਿੱਚ ਲਿਖਦੇ ਸਨ ਪਰ ਅੱਜ-ਕਲ੍ਹ IUPAC ਦੇ ਨਵੀਨ ਸਿਫਾਰਿਸ਼ਾਂ ਦੁਆਰਾ ਇਸ ਨੂੰ 'u' ਯੂਨੀਫਾਈਡ ਪੰਜ ਦੁਆਰਾ ਪਦਰਸ਼ਿਤ ਕਰਦੇ ਹਨ) ਪਰ ਪੁੰਜਾਂ ਦੀ ਇਕਾਈ ਨੂੰ ਜਿੱਥੋਂ ਤੱਕ ਹੋ ਸਕੇ, ਪੂਰਣ ਅੰਕ ਜਾਂ ਲਗਪਗ ਪੂਰਣ ਅੰਕ ਵਿੱਚ ਵਿਅਕਤ ਕਰਨਾ ਜ਼ਿਆਦਾ ਸੌਖ਼ਾ ਹੈਦਾ ਹੈ। ਅੱਗੇ ਚੱਲ ਕੇ ਵਿਗਿਆਨਕਾ ਨੇ ਪਰਮਾਣੂ ਪੂੰਜਾਂ ਨੂੰ ਭਿੰਨ-ਭਿੰਨ ਇਕਾਈਆਂ ਦੇ ਬਾਰ ਵਿਚਾਰ ਪਗਟ ਕੀਤੇ। ਵਿਗਿਆਨਕ ਜਦੋਂ ਵੱਖ-ਵੱਖ ਪਰਮਾਣ ਪੰਜਾਂ ਦੀਆਂ ਇਕਾਈਆਂ ਦੇ ਬਾਰੇ ਖੋਜ ਕਰ ਰਹੇ ਸਨ ਤਾਂ ਉਨ੍ਹਾਂ ਸ਼ੁਰੂ ਵਿੱਚ ਕੁਦਰਤੀ ਮਿਲਦੀ ਆਕਸੀਜਨ ਪਰਮਾਣੂ ਦੇ ਪੁੰਜ ਦੇ 1/16 ਭਾਗ ਨੂੰ ਇਕਾਈ ਦੇ ਰੁਪ ਵਿੱਚ ਲਿਆ। ਇਹ ਦੋ ਕਾਰਣਾਂ ਨਾਲ ਢਕਵਾਂ ਸਮਝਿਆ ਗਿਆ।

- ਆਕਸੀਜਨ ਅਨੇਕ ਤੱਤਾਂ ਨਾਲ ਕਿਰਿਆ ਕਰਕੇ ਯੋਗਿਕ ਬਣਾਉਂਦੀ ਹੈ।
- ਇਸ ਪਰਮਾਣੂ ਪੁੰਜ ਇਕਾਈ (a.m.u.) ਨਾਲ ਵਧੇਰੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਪੂਰਣ ਅੰਕ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।

ਫਿਰ 1961 ਵਿੱਚ ਪਰਮਾਣੂ ਪੁੰਜਾਂ ਨੂੰ ਪਤਾ ਕਰਨ ਲਈ ਪਰਮਾਣੂ ਪੁੰਜ ਇਕਾਈ ਕਾਰਬਨ-12-ਸਮਸਥਾਨਿਕ (ਆਈਸੋਟੋਪ) ਮਾਨਕ ਸੰਦਰਭ ਦੇ ਰੂਪ ਵਿੱਚ ਸਰਵਵਿਆਪਕ ਰੂਪ ਨਾਲ ਸਵੀਕਾਰ ਕੀਤਾ ਗਿਆ ਸੀ। ਕਾਰਬਨ 12 ਸਮਸਥਾਨਿਕ ਦੇ ਇੱਕ ਪਰਮਾਣੂ ਪੁੰਜ ਦੇ 1/12 ਵੇਂ ਭਾਗ ਨੂੰ ਮਾਨਕ ਪਰਮਾਣੂ ਪੁੰਜ ਇਕਾਈ ਦੇ ਰੂਪ ਵਿੱਚ ਲੈਂਦੇ ਹਨ। ਕਾਰਬਨ-12 ਸਮਸਥਾਨਿਕ ਦੇ ਇਕ ਪਰਮਾਣੂ ਪੁੰਜ ਦੇ ਸਾਪੇਖ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜ ਪ੍ਰਾਪਤ ਕੀਤੇ ਗਏ।

ਕਲਪਨਾ ਕਰੋ ਕਿ ਇਕ ਫਲ ਵੇਚਣ ਵਾਲਾ ਬਿਨਾਂ ਮਾਨਕ ਭਾਰ ਦੇ ਫਲ ਵੇਚ ਰਿਹਾ ਹੈ। ਉਹ ਇੱਕ ਤਰਬੂਜ਼ ਲੈ ਕੇ ਕਹਿੰਦਾ ਹੈ ਕਿ "ਇਸ ਦਾ ਪੁੰਜ 12 ਇਕਾਈ ਹੈ।" (12 ਤਰਬੂਜੀ ਇਕਾਈ ਜਾਂ 12 ਫਲ ਪੁੰਜ ਇਕਾਈ)। ਉਹ ਤਰਬੂਜ਼ ਦੇ 12 ਬਰਾਬਰ ਟੁਕੜੇ ਕਰਦਾ ਹੈ ਅਤੇ ਸਮਝਦਾ ਹੈ ਕਿ ਉਸ ਦੇ ਦੁਆਰਾ ਵੇਚੇ ਜਾ ਰਹੇ ਹਰੇਕ ਫਲ ਦਾ ਪੁੰਜ ਤਰਬੁਜ਼ ਦੇ ਇੱਕ ਟੁਕੜੇ ਦੇ ਪੁੰਜ ਦੇ ਸਾਪੇਖ ਹੈ। ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 3.4 ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ।ਹੁਣ ਉਹ ਫਲਾਂ ਨੂੰ ਸਾਪੇਖ ਫਲ ਪੁੰਜ ਇਕਾਈ (fmu) ਵਿੱਚ ਵੇਚਦਾ ਹੈ।

ਚਿੱਤਰ 3.4 (ੳ) ਤਰਬੂਜ਼ (ਅ) 12 ਟੁਕੜੇ (ੲ) ਤਰਬੂਜ਼ ਦਾ 1/12ਵਾਂ ਭਾਗ (ਸ) ਤਰਬੂਜ਼ ਦੇ ਟੁਕੜਿਆਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਉਹ ਫਲ ਵਿਕਰੇਤਾ ਫਲਾਂ ਨੂੰ ਕਿਵੇਂ ਤੋਲ ਸਕਦਾ ਹੈ।

ਕਿਸੇ ਤੱਤ ਦੇ ਸਾਪੇਖਕ ਪਰਮਾਣੂ ਪੁੰਜ ਨੂੰ ਉਸ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਔਸਤ ਪੁੰਜ ਦਾ ਕਾਰਬਨ 12 ਪਰਮਾਣੂ ਦੇ ਪੁੰਜ ਦੇ 1/12ਵੇਂ ਭਾਗ ਦੇ ਅਨੁਪਾਤ ਨਾਲ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਤੱਤ	ਪਰਮਾਣੂ ਪੁੰਜ (u)
ਹਾਈਡ੍ਰੋਜਨ	1 575
ਕਾਰਬਨ	12
ਨਾਈਟ੍ਰੋਜਨ	14
ਆਕਸੀਜਨ	16 7
ਸੋਡੀਅਮ	23 7 5
ਮੈਗਨੀਸ਼ੀਅਮ	24 SOTA
ਸਲਫ਼ਰ	32 815
ਕਲੋਰੀਨ	35.5
ਕੈਲਸ਼ੀਅਮ	40

39

ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

3.2.3 ਪਰਮਾਣੂ ਕਿਸ ਤਰ੍ਹਾਂ ਦੀ ਹੋਂਦ ਰੱਖਦੇ ਹਨ ?

ਵਧੇਰੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਹੋਂਦ ਵਿੱਚ ਨਹੀਂ ਰਹਿ ਸਕਦੇ। ਪਰਮਾਣੂ, ਅਣੂ ਅਤੇ ਆਇਨ ਬਣਾਉਂਦੇ ਹਨ। ਇਹ ਅਣੂ ਅਤੇ ਆਇਨ ਬਹੁਤ ਜ਼ਿਆਦਾ ਸੰਖਿਆ ਵਿੱਚ ਇੱਕਠੇ ਹੋ ਕੇ ਉਹ ਪਦਾਰਥ ਬਣਾਉਂਦੇ ਹਨ ਜਿਸ ਨੂੰ ਅਸੀਂ ਦੇਖ ਸਕਦੇ ਹਾਂ, ਅਨੁਭਵ ਕਰ ਸਕਦੇ ਹਾਂ ਅਤੇ ਛੁਹ ਸਕਦੇ ਹਾਂ।

ਸਨ 1. ਪਰਮਾਣੂ ਪੁੰਜ ਇਕਾਈ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ। 2. ਇਕ ਪਰਮਾਣੂ ਨੂੰ ਅੱਖਾਂ ਨਾਲ ਵੇਖਣਾ ਕਿਉਂ ਸੰਭਵ ਨਹੀਂ ਹੁੰਦਾ?

3.3. ਅਣੂ (Molecule) ਕੀ ਹੈ ?

ਆਮ ਤੌਰ 'ਤੇ ਅਣੂ ਅਜਿਹੇ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਪਰਮਾਣੂਆਂ ਦਾ ਸਮੂਹ ਹੁੰਦਾ ਹੈ ਜੋ ਆਪਸ ਵਿੱਚ ਰਸਾਇਣਿਕ ਬੰਧਨ ਨਾਲ ਜੁੜੇ ਹੁੰਦੇ ਹਨ ਜਾਂ ਇਹ ਆਪਸ ਵਿੱਚ ਅਕਰਸ਼ਣ ਬਲ ਦੁਆਰਾ ਕੱਸ ਕੇ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। ਅਣੂ ਨੂੰ ਕਿਸੇ ਤੱਤ ਜਾਂ ਯੋਗਿਕ ਦੇ ਸੂਖ਼ਮਤਮ ਕਣ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ ਜੋ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਹੋਂਦ ਰੱਖ ਸਕਦਾ ਹੈ ਅਤੇ ਜੋ ਉਸ ਯੋਗਿਕ ਦੇ ਸਾਰੇ ਗੁਣਾਂ ਨੂੰ ਵਿਖਾਉਂਦਾ ਹੈ। ਇਕ ਹੀ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਜਾਂ ਵੱਖ ਵੱਖ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਆਪਸ ਵਿੱਚ ਸੰਜੋਗ ਕਰਕੇ ਅਣੂ ਬਣਾਉਂਦੇ ਹਨ।

3.3.1 ਤੱਤਾਂ ਦੇ ਅਣੂ (Molecules of elements)

ਕਿਸੇ ਤੱਤ ਦੇ ਅਣੂ ਇੱਕ ਹੀ ਕਿਸਮ ਦੇ ਪਰਮਾਣੂਆਂ ਦੁਆਰਾ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਆਰਗਨ (Ar), ਹੀਲੀਅਮ (He) ਆਦਿ ਵਰਗੇ ਅਨੇਕ ਤੱਤਾਂ ਦੇ ਅਣੂ ਉਸੇ ਤੱਤ ਦੇ ਸਿਰਫ਼ ਇਕ ਪਰਮਾਣੂ ਦੁਆਰਾ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਪਰ ਵਧੇਰੇ ਅਧਾਤਾਂ ਵਿੱਚ ਅਜਿਹਾ ਨਹੀਂ ਹੁੰਦਾ। ਉਦਾਹਰਣ ਵਜੋਂ, ਆਕਸੀਜਨ ਅਣੂ ਦੇ ਆਕਸੀਜਨ ਪਰਮਾਣੂਆਂ ਤੋਂ ਬਣਦਾ ਹੈ। ਇਸ ਲਈ ਇਸ ਨੂੰ ਦੋ-ਪਰਮਾਣੂ (O₂) ਕਹਿੰਦੇ ਹਨ। ਜੇ 2 ਦੀ ਥਾਂ 3 ਆਕਸੀਜਨ ਪਰਮਾਣੂ ਆਪਸ ਵਿੱਚ ਸੰਜੋਗ ਕਰਦੇ ਹਨ ਤਾਂ ਸਾਨੂੰ ਓਜ਼ੋਨ (O₂) ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਅਣੂ

40

ਦੀ ਬਣਤਰ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਪਰਮਾਣੂਤਾ (atomicity) ਕਹਿੰਦੇ ਹਨ।

ਧਾਤ ਅਣੂਆਂ ਅਤੇ ਕੁਝ ਹੋਰ ਤੱਤਾਂ ਦੇ ਅਣੂਆਂ ਜਿਵੇਂ ਕਾਰਬਨ ਦੇ ਅਣੂਆਂ ਦੀ ਸਰਲ ਬਣਤਰ ਨਹੀਂ ਹੁੰਦੀ ਪਰ ਉਨ੍ਹਾਂ ਦੇ ਅਣੂਆਂ ਵਿੱਚ ਅਸੀਮਤ ਪਰਮਾਣੂ ਆਪਸ ਵਿੱਚ ਬੰਨ੍ਹੇ ਹੁੰਦੇ ਹਨ।

ਆਓ ਕੁਝ ਤੱਤਾਂ ਦੀ ਪਰਮਾਣੂਤਾ ਵੱਲ ਝਾਤੀ ਮਾਰੀਏ।

ਸਾਰਣੀ 3.3 ਕੁਝ ਤੱਤਾਂ ਦੀ ਪਰਮਾਣੂਤਾ				
ਤੱਤ ਦੀ ਕਿਸਮ	ਨਾਂ	ਪਰਮਾਣੂਤਾ		
ਅਧਾਤ	ਆਰਗਨ	ਇੱਕ ਪਰਮਾਣਵੀਂ		
	ਹੀਲੀਅਮ	ਇੱਕ ਪਰਮਾਣਵੀਂ		
	ਆਕਸੀਜਨ	ਦੋਂ ਪਰਮਾਣਵੀਂ		
	ਹਾਈਡ੍ਰੋਜਨ	ਦੋ ਪਰਮਾਣਵੀਂ		
	ਨਾਈਟ੍ਰੋਜਨ	ਦੋਂ ਪਰਮਾਣਵੀਂ		
	ਕਲੋਰੀਨ	ਦੋ ਪਰਮਾਣਵੀਂ		
	ਫਾਸਫੋਰਸ	ਚਾਰ ਪਰਮਾਣਵੀਂ		
	ਸਲਫਰ	ਅੱਠ ਪਰਮਾਣਵੀਂ		
ਧਾਤ	ਸੋਡੀਅਮ	ਇੱਕ ਪਰਮਾਣਵੀਂ		
	ਆਇਰਨ	ਇੱਕ ਪਰਮਾਣਵੀਂ		
	ਐਲੂਮੀਨਿਅਮ	ਇੱਕ ਪਰਮਾਣਵੀਂ		
	ਕਾੱਪਰ	ਇੱਕ ਪਰਮਾਣਵੀਂ		

3.3.2 ਯੋਗਿਕਾਂ ਦੇ ਅਣੂ (Molecules of Compounds) ਭਿੰਨ-ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਇੱਕ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਵਿੱਚ ਆਪਸ ਵਿੱਚ ਜੁੜ ਕੇ ਯੋਗਿਕਾਂ ਦੇ ਅਣੂ ਬਣਾਉਂਦੇ ਹਨ। ਸਾਰਣੀ 3.4 ਵਿੱਚ ਕੁਝ ਉਦਾਹਰਣ ਦਿੱਤੇ ਗਏ ਹਨ।

ਵਿਗਿਆਨ

ਸਾਰਣੀ 3.4 ਕੁਝ ਯੋਗਿਕਾਂ ਦੇ ਅਣੂ				
ਯੋਗਿਕ	ਸੰਯੁਕਤ ਤੱਤ	ਪੁੰਜ ਅਨੁਪਾਤ		
ਪਾਣੀ ਅਮੋਨੀਆ	ਹਾਈਡ੍ਰੋਜਨ, ਆੱਕਸੀਜਨ ਨਾਈਟ੍ਰੋਜਨ, ਹਾਈਡ੍ਰੋਜਨ	1:8 14:3		
ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ	ਕਾਰਬਨ, ਆਕਸੀਜਨ	3:8		

ਕਿਰਿਆ______3.2

ਅਣੂਆਂ ਵਿੱਚ ਮੌਜੂਦ ਪਰਮਾਣੂਆਂ ਦੇ ਪੁੰਜ ਅਨੁਪਾਤਾਂ ਦੇ ਲਈ ਸਾਰਣੀ 3.4 ਅਤੇ ਰੱਤਾਂ ਦੇ ਪਰਮਾਣੂ ਪੁੰਜਾਂ ਲਈ ਸਾਰਣੀ 3.2 ਵੇਖੋ।ਸਾਰਣੀ 3.4 ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਯੋਗਿਕਾਂ ਦੇ ਅਣੂਆਂ ਵਿੱਚ ਮੌਜੂਦ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਅਨੁਪਾਤਾਂ ਬਾਰੇ ਪਤਾ ਕਰੋ।

ਪਾਣੀ ਦੇ ਅਣੂ ਵਿੱਚ ਮੌਜੂਦ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦਾ ਅਨੁਪਾਤ ਹੇਠ ਅਨੁਸਾਰ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ :

ਤੱਤ	ਪੁੰਜ ਅਨੁਪਾਤ	ਪਰਮਾਣੂ ਪੁੰਜ (u)	ਪੁੰਜ ਅਨੁਪਾਤ⁄ ਪਰਮਾਣੂ ਪੁੰਜ	ਸਰਲਤਮ ਅਨੁਪਾਤ
н	1	1	$\frac{1}{1} = 1$	2
о	8	16	$\frac{8}{16} = \frac{1}{2}$	1

ਇਸ ਤਰ੍ਹਾਂ ਪਾਣੀ ਦੇ ਕਣ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਰਮਾਣੂਆਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦਾ ਅਨੁਪਾਤ, H:O = 2:1

3.3.3 ਆਇਨ ਕੀ ਹੁੰਦਾ ਹੈ ?(What is an ion ?)

ਧਾਤ ਅਤੇ ਅਧਾਤ ਯੁਕਤ ਯੋਗਿਕ ਚਾਰਜਿਤ ਕਣਾਂ ਤੋਂ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਚਾਰਜਿਤ ਕਣਾਂ ਨੂੰ ਆਇਨ ਕਹਿੰਦੇ ਹਨ ਪ੍ਰਆਇਨ ਚਾਰਜਿਤ ਕਣ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਉੱਤੇ ਰਿਣ ਜਾਂ ਧਨ ਚਾਰਜ ਹੁੰਦਾ ਹੈ। ਰਿਣ ਚਾਰਜਿਤ ਕਣ ਨੂੰ ਰਿਣ ਆਇਨ (anion) ਅਤੇ ਧਨ ਚਾਰਜਿਤ ਕਣ ਨੂੰ ਧਨ

ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

ਆਇਨ (cation) ਕਹਿੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਨੂੰ ਲਓ। ਇਸ ਵਿੱਚ ਧਨਾਤਮਕ ਸੋਡੀਅਮ ਆਇਨ (Na⁺) ਅਤੇ ਰਿਣਾਤਮਕ ਕਲੋਰਾਈਡ ਆਇਨ (Cl) ਸੰਘਟਕ ਕਣ ਦੇ ਰੂਪ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਆਇਨ ਇੱਕ ਚਾਰਜਿਤ ਪਰਮਾਣੂ ਜਾਂ ਪਰਮਾਣੂਆਂ ਦਾ ਇਕ ਅਜਿਹਾ ਸਮੂਹ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਨੈੱਟ ਚਾਰਜ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ। ਪਰਮਾਣੂਆਂ ਦੇ ਸਮੂਹ ਜਿਨ੍ਹਾਂ ਤੇ ਨੈੱਟ ਚਾਰਜ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ। ਪਰਮਾਣੂਆਂ ਦੇ ਸਮੂਹ ਜਿਨ੍ਹਾਂ ਤੇ ਨੈੱਟ ਚਾਰਜ ਮੌਜੂਦ ਹੋਵੇ ਉਸ ਨੂੰ ਬਹੁ ਪਰਮਾਣਵੀਂ (ploy atomic) ਆਇਨ ਕਹਿੰਦੇ ਹਨ। ਅਸੀਂ ਆਇਨਾਂ ਦੇ ਨਿਰਮਾਣ ਦੇ ਬਾਰੇ ਅਧਿਆਇ 4 ਵਿੱਚ ਹੋਰ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਾਂਗੇ।

ਸਾਰਟੀ 3.5 ਕੁਝ ਆਇਨਿਕ ਯੋਗਿਕ				
ਆਇਨਿਕ ਯੋਗਿਕ	ਸੰਘਟਕ ਪੁੰਜ ਤੱਤ ਅਨੁਪਾ			
ਕੈਲਸ਼ੀਅਮ ਆਕਸਾਈਡ	ਕੈਲਸ਼ੀਅਮ ਅਤੇ ਆੱਕਸੀਜਨ	5:2		
ਮੈਗਨੀਸ਼ੀਅਮ ਸਲਫਾਈਡ	ਮੈਗਨੀਸ਼ੀਅਮ ਅਤੇ ਸਲਫਰ	3:4		
ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ	ਸੋਡੀਅਮ ਅਤੇ ਕਲੋਰੀਨ	23:35.5		

3.4 ਰਸਾਇਣਿਕ ਸੂਤਰ ਲਿਖਣਾ (Writing

Chemical formulae)

ਕਿਸੇ ਯੋਗਿਕ ਦਾ ਰਸਾਇਣਿਕ ਸੂਤਰ ਉਸਦੇ ਸੰਘਟਕ ਦਾ ਸੰਕੇਤਕ ਨਿਰੂਪਣ ਹੁੰਦਾ ਹੈ। ਵੱਖ-ਵੱਖ ਯੋਗਿਕਾਂ ਦੇ ਰਸਾਇਣਿਕ ਸੂਤਰ ਸਰਲਤਾ ਪੂਰਵਕ ਲਿਖੇ ਜਾ ਸਕਦੇ ਹਨ। ਇਸ ਅਭਿਆਸ ਦੇ ਲਈ ਸਾਨੂੰ ਤੱਤਾਂ ਦੇ ਸੰਕੇਤ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀਆਂ ਸੰਯੋਜਨ ਸਮਰੱਥਾ ਦਾ ਪਤਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

ਕਿਸੇ ਤੱਤ ਦੀ ਸੰਯੋਜਨ ਸ਼ਕਤੀ (ਜਾਂ ਸਮਰੱਥਾ) ਉਸ ਤੱਤ ਦੀ ਸੰਯੋਜਕਤਾ (valency) ਅਖਵਾਉਂਦੀ ਹੈ। ਕਿਸੇ ਇੱਕ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਦੂਜੇ ਤੱਤ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਲ ਕਿਸ ਤਰ੍ਹਾਂ ਜੁੜ ਕੇ ਇੱਕ ਰਸਾਇਣਿਕ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਨੂੰ ਜਾਣਨ ਲਈ ਸੰਯੋਜਕਤਾ ਨੂੰ ਉਸਦੇ ਹੱਥ ਜਾਂ ਭੁਜਾ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਚਾਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

41

-	ਸਾਰਟੀ 3 5 : ਕੁਝ ਸਰਲ ਅਤੇ ਬਹੁ ਪਰਮਾਟਵੀ ਆਇਨ					
ਸੰਯੋਜ- ਕਤਾ	ਆਇਨ ਦਾ ਨਾਂ	ਸ਼ੋਕੋਤ	ਅਧਾਤਵਿਕ ਤੱਤ	ਸ਼ੇਕੇਤ	ਬਹੁ ਪਰਮਾਣਵੀਂ ਆਇਨ	ਸੈਕੋਤ
1.	ਸੋਡੀਅਮ ਪੋਟਾਸ਼ੀਅਮ ਸਿਲਵਰ ਕਾੱਪਰ (I)*	Na* K* Ag+ Cu*	ਹਾਈਡ੍ਰੋਜਨ ਹਾਈਡ੍ਰਾਈਡ ਕਲੋਰਾਈਡ ਬਰੋਮਾਈਡ	H† H ⁺ CF Br	ਅਮੋਨੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਨਾਈਟ੍ਰੋਟ ਹਾਈਡ੍ਰੋਜਨ	NH4 ⁺ OH NO3 ⁻
2.	ਮੈਗਨੀਸ਼ੀਅਮ ਕੈਲਸ਼ੀਅਮ ਜ਼ਿੰਕ ਆਇਰਨ (II)*	Mg ²⁺ Ca ²⁺ Zn ²⁺ Fe ²⁺	ਆਇਓਡਾਈਡ ਆਕਸਾਈਡ ਸਲਫਾਈਡ	Г О ²⁻ S ²⁻	ਕਾਰਬੋਨੇਟ ਕਾਰਬੋਨੇਟ ਸਲਫਾਈਟ ਸਲਫੇਟ	HCO ₃ ⁻ CO ₃ ²⁻ SO ₃ ²⁻ SO ₄ ²⁻
3.	ਕਾਪਰ (II)* ਐਲੂਮੀਨੀਅਮ ਆਇਰਨ (III)*	Cu ²⁺ Al ³⁺ Fe ³⁺	ਨਾਈਟ੍ਰਾਈਡ	N ³⁻	ਫਾਸਫੇਟ	PO ₄ ³⁻

* ਕੁੱਝ ਤੱਤ ਇੱਕ ਤੋਂ ਵੱਧ ਸੰਯੋਜਕਤਾ ਦਰਸਾਉਂਦੇ ਹਨ। ਸੰਯੋਜਕਤਾ ਨੂੰ ਬਰੈਕਟਾਂ ਵਿੱਚ ਰੋਮਨ ਸੰਖਿਆ ਅੰਕ ਨਾਲ ਵਿਖਾਉਂਦੇ ਹਨ।

ਮਨੁੱਖ ਦੀਆਂ ਦੋ ਭੁਜਾਵਾਂ ਅਤੇ ਆੱਕਟੋਪੱਸ ਦੀਆਂ ਅੱਠ ਭੁਜਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਆੱਕਟੋਪੱਸ ਦੀ ਇਕ ਭੁਜਾ ਮਨੁੱਖ ਦੀ ਇੱਕ ਭੁਜਾ ਫੜ ਸਕਦੀ ਹੈ। ਜੋ ਇੱਕ ਆੱਕਟੋਪੱਸ ਨੇ ਕੁਝ ਮਨੁੱਖਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਫੜਨਾ ਹੈ ਕਿ ਉਸ ਦੀਆਂ ਅੱਠ ਭੁਜਾਵਾਂ ਮਨੁੱਖਾਂ ਦੀਆਂ ਦੋਵਾਂ ਭੁਜਾਵਾਂ ਦੇ ਨਾਲ ਵਰਤੀਆਂ ਜਾਣ ਤਾਂ ਤੁਹਾਡੇ ਵਿਚਾਰ ਵਿੱਚ ਆੱਕਟੋਪੱਸ ਕੁੱਲ ਕਿੰਨੇ ਮਨੁੱਖਾਂ ਨੂੰ ਫੜ ਸਕਦਾ ਹੈ? ਹੁਣ ਆੱਕਟੋਪੱਸ ਨੂੰ O ਤੇ ਮਨੁੱਖ ਨੂੰ H ਨਾਲ ਵਿਖਾਓ। ਤੁਸੀਂ ਕੀ ਇਸ ਸੰਯੋਜਨ ਦੇ ਸੂਤਰ ਨੂੰ ਲਿਖ ਸਕਦੇ ਹੋ? ਕੀ ਤੁਸੀਂ OH, ਨੂੰ ਸੂਤਰ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕਰੋਗੇ? ਪਦ- ਅੰਕ 4 ਆੱਕਟੋਪੱਸ ਦੁਆਰਾ ਫੜੇ ਗਏ ਮਨੁੱਖਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ?

ਸਾਰਣੀ 3.6 ਵਿੱਚ ਕੁਝ ਸਰਲ ਅਤੇ ਬਹੁ ਪਰਮਾਣਵੀਂ ਆਇਨਾਂ ਦੀਆਂ ਸੰਯੋਜਕਤਾਵਾਂ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ। ਸੰਯੋਜਕਤਾ ਦੇ ਬਾਰੇ ਅਸੀਂ ਹੋਰ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਅਗਲੇ ਅਧਿਆਇ ਵਿਚ ਪ੍ਰਾਪਤ ਕਰਾਂਗੇ। ਰਸਾਇਣਿਕ ਸੂਤਰ ਲਿਖਦੇ ਸਮੇਂ ਤੁਹਾਨੂੰ ਹੇਠ ਲਿਖੇ ਨਿਯਮਾਂ ਦੀ ਪਾਲਣਾ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ:

42

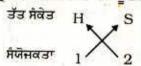
- ਆਇਨ ਦੀ ਸੰਯੋਜਕਤਾ ਜਾਂ ਚਾਰਜ ਸੰਤੁਲਿਤ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।
- ਜਦੋਂ ਇੱਕ ਯੋਗਿਕ ਕਿਸੇ ਧਾਤ ਅਤੇ ਅਧਾਤ ਦੇ ਸੰਯੋਗ ਨਾਲ ਬਣਦਾ ਹੈ ਤਾਂ ਧਾਤ ਦੇ ਨਾਂ ਜਾਂ ਉਸ ਦੇ ਸੈਕੇਤ ਨੂੰ ਰਸਾਇਣਿਕ ਸੂਤਰ ਵਿੱਚ ਪਹਿਲਾਂ ਲਿਖਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ: ਕੈਲਸ਼ੀਅਮ ਆੱਕਸਾਈਡ (CaO), ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ (NaCl), ਆਇਰਨ ਸਲਫਾਈਡ (FeS), ਕਾੱਪਰ ਆੱਕਸਾਈਡ (CuO) ਆਦਿ। ਜਿੱਥੇ ਆੱਕਸੀਜਨ, ਕਲੋਰੀਨ, ਸਲਫਰ ਅਧਾਤਾਂ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਲਿਖਦੇ ਹਨ ਜਦ ਕਿ ਕੈਲਸ਼ੀਅਮ, ਸੋਡੀਅਮ, ਆਇਰਨ ਅਤੇ ਕਾਪਰ ਧਾਤਾਂ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਖੱਬੇ ਪਾਸੇ ਲਿਖਦੇ ਹਨ।
- ਬਹੁ ਪਰਮਾਣਵੀਂ ਆਇਨਾਂ ਦੁਆਰਾ ਬਣੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਆਇਨ ਨੂੰ ਪਹਿਲਾਂ ਬਰੈਕਟ ਵਿੱਚ ਰੱਖਦੇ ਹਨ। ਉਸ ਉਪਰੰਤ ਅਨੁਪਾਤਾਂ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੀ ਸੰਖਿਆ ਨੂੰ ਲਿਖਦੇ ਹਨ।

ਵਿਗਿਆਨ

3.4.1 ਸਰਲ ਯੋਗਿਕਾਂ ਦੇ ਸੂਤਰ (Formulae of

Simple Compounds)

ਦੋਂ ਵੱਖ-ਵੱਖ ਤੱਤਾਂ ਤੋਂ ਬਣੇ ਸਰਲਤਮ ਯੋਗਿਕ ਨੂੰ ਦੋ ਅੰਗੀ ਯੋਗਿਕ ਕਹਿੰਦੇ ਹਨ। ਸਾਰਣੀ 3.6 ਵਿੱਚ ਕੁਝ ਆਇਨਾਂ ਦੀਆਂ ਸੰਯੋਜਕਤਾਵਾਂ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ। ਤੁਸੀਂ ਇਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਯੋਗਿਕਾਂ ਦੇ ਸੁਤਰਾਂ ਨੂੰ ਲਿਖਣ ਲਈ ਕਰ ਸਕਦੇ ਹੋ।

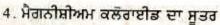

ਅਣਵੀਂ ਯੋਗਿਕਾਂ ਦੇ ਰਸਾਇਣਿਕ ਸੂਤਰ ਲਿਖਦੇ ਸਮੇਂ ਅਸੀਂ ਪਹਿਲਾਂ ਯੋਗਿਕ ਨੂੰ ਬਨਾਉਣ ਵਾਲੇ ਤੱਤਾਂ ਦੇ ਸੰਕੇਤ ਲਿਖ ਕੇ ਉਨ੍ਹਾਂ ਦੀਆਂ ਸੰਯੋਜਕਤਾਵਾਂ ਲਿਖਦੇ ਹਾਂ ਜਿਵੇਂ ਹੇਠਾਂ ਲਿਖੀਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।ਉਸ ਤੋਂ ਬਾਅਦ ਜੁੜਨ ਵਾਲੇ ਪਰਮਾਣੁਆਂ ਦੀ ਸੰਯੋਜਕਤਾ ਨੂੰ ਕਰਾੱਸ ਕਰਕੇ (Crossover) ਅਣੂ ਸੂਤਰ ਲਿਖਦੇ ਹਨ।

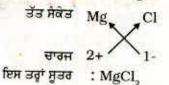
ਉਦਾਹਰਣ

- 1. ਹਾਈਡ੍ਰੋਜਨ ਕਲੋਰਾਈਡ ਦਾ ਸੂਤਰ ਤੱਤ ਸੈਕੇਤ H Cl

ਇਸ ਤਰ੍ਹਾਂ ਹਾਈਡ੍ਰੋਜਨ ਕਲੋਰਾਈਡ ਦਾ ਰਸਾਇਣਿਕ ਸਤਰ HCI ਹੈ।

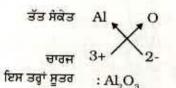
ਹਾਈਡ੍ਰੋਜਨ ਸਲਫਾਈਫ ਦਾ <mark>ਸੂ</mark>ਤਰ 2.


ਇਸ ਤਰ੍ਹਾਂ ਹਾਈਡ੍ਰੋਜਨ ਸਲਫਾਈਡ ਦਾ ਸੂਤਰ H,S ਹੈ।


ਕਾਰਬਨ ਟੈਟ੍ਰਾਕਲੋਰਾਈਡ ਦਾ ਸੂਤਰ 3. ਤੱਤ ਸੈਕੇਤ C Cl

ਇਸ ਤੌਰ੍ਹਾਂ ਕਾਰਬਨ ਟੈਟ੍ਰਾਕਲੋਰਾਈਡ ਦਾ ਸੂਤਰ CCl₄ ਹੈ।

ਮੈਗਨੀਸ਼ੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਸੂਤਰ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਪਹਿਲਾਂ ਅਸੀਂ ਧਨ-ਆਇਨ ਦਾ ਸੰਕੇਤ (Mg²⁺) ਲਿਖਦੇ ਹਾਂ ਇਸ ਤੋਂ ਬਾਅਦ ਰਿਣ ਆਇਨ ਕਲੋਰਾਈਡ (CI-) ਲਿਖਦੇ ਹਾਂ। ਇਸ ਉਪਰੰਤ ਇਨ੍ਹਾਂ ਦੇ ਚਾਰਜਾਂ ਨੰ ਟੇਢਾ-ਤਿਰਛਾ(Criss-Cross) ਕਰਕੇ ਅਸੀਂ ਸੂਤਰ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ।


ਪਰਮਾਣ ਅਤੇ ਅਣ

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਮੈਗਨੀਸ਼ੀਅਮ ਕਲੋਰਾਈਡ ਦੇ ਅਣੂ ਵਿੱਚ ਦੋ ਕਲੋਰਾਈਡ ਆਇਨ (Cl[.]) ਹਰੇਕ ਮੈਗਨੀਸ਼ੀਅਮ ਆਇਨ (Mg²⁺) ਦੇ ਲਈ ਹੁੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਆਇਨਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ ਧਨਾਤਮਕ ਅਤੇ ਰਿਣਾਤਮਕ ਚਾਰਜਾਂ ਦਾ ਸੰਤੁਲਨ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਸੰਪੂਰਣ ਬਨਾਵਟ ਉਦਾਸੀਨ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਹੈ ਕਿ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਸੁਤਰਾਂ ਵਿੱਚ ਆਇਨ ਦੇ ਚਾਰਜਾਂ ਨੂੰ ਨਹੀਂ ਦਰਸਾਇਆ ਜਾਂਦਾ।

5. ਐਲੂਮੀਨੀਅਮ ਆੱਕਸਾਈਡ ਦਾ ਸੂਤਰ

6. ਕੈਲਸ਼ੀਅਮ ਆੱਕਸਾਈਡ ਸੂਤਰ

ਇੱਥੇ ਦੋਵਾਂ ਤੱਤਾਂ ਦੀਆਂ ਸੰਯੋਜਕਤਾਵਾਂ ਸਮਾਨ ਹਨ। ਇਸ ਲਈ ਇਸ ਦਾ ਸੂਤਰ Ca₂O₂ ਹੋਵੇਗਾ, ਪਰ ਅਸੀਂ ਇਸ ਸੁਤਰ ਨੂੰ ਸਰਲ ਕਰਕੇ CaO ਲਿਖਦੇ ਹਾਂ।

ਬਹੁਪਰਮਾਣਵੀਂ ਆਇਨਾਂ ਵਾਲੇ ਯੋਗਿਕ

ਸੋਡੀਅਮ ਨਾਈਟ੍ਰੇਟ ਦਾ ਸੂਤਰ :

ਤੱਤ ਸੈਕੇਤ Na NO, ਚਾਰਜ 1+ X₁₋ ਇਸ ਤਰ੍ਹਾਂ ਸੂਤਰ : NaNO₃ ਕੈਲਸ਼ੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦਾ ਸੂਤਰ SIPIC ਤੱਤ ਸੈਕੇਂਤ Ca OH ਸੂਤਰ ਚਾਰਜ 2+ X1-

ਇਸ ਤਰ੍ਹਾਂ ਸੂਤਰ: Ca (OH),

Downloaded from https:// www.studiestoday.com

43

ਧਿਆਨ ਯੋਗ ਗੱਲ ਇਹ ਹੈ ਕਿ ਕੈਲਸ਼ੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਦਾ ਸੂਤਰ Ca (OH), ਹੈ ਨਾ ਕਿ CaOH, I ਜਦੋਂ ਸੂਤਰ ਵਿੱਚ ਇੱਕ ਹੀ ਆਇਨ ਦੇ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਆਇਨ ਹੁੰਦੇ ਹਨ ਤਾਂ ਅਸੀਂ ਉਨ੍ਹਾਂ ਲਈ ਬਰੈਕਟ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ। ਇਥੇ OH ਨੂੰ ਬਰੈਕਟ ਵਿੱਚ ਰੱਖ ਕੇ ਪਦ ਅੰਕ 2 ਲਗਾਉਂਦੇ ਹਾਂ ਜੋ ਇਹ ਦੱਸਦਾ ਹੈ ਕਿ ਇੱਕ ਕੈਲਸ਼ੀਅਮ ਪਰਮਾਣੂ ਦੇ ਨਾਲ ਦੋ ਹਾਈਡੋਕਸਾਈਲ ਗਰੁੱਪ ਜੁੜੇ ਹਨ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਕੈਲਸ਼ੀਅਮ ਹਾਈਡੋ੍ਕਸਾਈਡ ਵਿੱਚ ਆਕਸੀਜਨ ਅਤੇ ਹਾਈਡੋ੍ਜਨ ਹਰੇਕ ਦੇ ਦੋ-ਦੋ ਪਰਮਾਣੂ ਹਨ।

ਸੋਡੀਅਮ ਕਾਰਬੋਨੇਟ ਦਾ ਸੁਤਰ :

ਤੱਤ ਸੈਕੇਤ Na COa ਸੂਤਰ ਚਾਰਜ 1+ 2-

ਇਸ ਤਰ੍ਹਾਂ ਸੂਤਰ : Na2CO3

ਉਪਰੋਕਤ ਉਦਾਹਰਣ ਵਿੱਚ ਬਰੈਕਟ ਦੀ ਵਰਤੋਂ ਦੀ ਜ਼ਰੂਰਤ ਨਹੀਂ ਹੈ ਕਿਉਂਕਿ ਬਹੁ ਪਰਮਾਣਵੀਂ ਆਇਨ ਕਾਰਬੋਨੇਟ ਦਾ ਇਕ ਹੀ ਆਇਨ ਮੌਜੂਦ ਹੈ।

ਅਮੋਨੀਅਮ ਸਲਫੇਟ ਦਾ ਸੂਤਰ

ਤੱਤ ਸੈਕੇਤ NH, SO, ਚਾਰਜ 1+ 2-

ਇਸ ਤਰ੍ਹਾਂ ਸੂਤਰ : (NH₄)₂ SO₄

ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਸੁਤਰ ਲਿਖੋ : ਸੰਡੀਅਮ ਆੱਕਸਾਈਡ (i) (ii) ਐਲਮੀਨੀਅਮ ਕਲੋਰਾਈਡ ਸੋਡੀਅਮ ਸਲਫਾਈਡ (iii) ਮੈਗਨੀਸ਼ੀਅਮ ਹਾਈਡ੍ਰੋਕਸਾਈਡ ਹੇਠ ਲਿਖੇ ਸੁਤਰਾਂ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਯੋਗਿਕਾਂ ਦੇ ਨਾਂ ਲਿਬੋ : (i) $Al_{2}(SO_{4})_{3}$ (iii) CaCL, (iii) K,SO, KNO, (iv)(v) CaCO,

- 3. ਰਸਾਇਣਿਕ ਸੂਤਰ ਦਾ ਕੀ ਭਾਵ ਹੈ ?
- ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਕਿੰਨੇ ਪਰਮਾਣੂ ਹਨ:
 (i) H₂S ਅਣੂ ਅਤੇ
 (ii) PO,³⁻ ਆਇਨ ?

3.5 ਅਣਵੀਂ ਪੁੰਜ ਅਤੇ ਮੋਲ ਸੰਕਲਪ

(Molecular Mass and Mole Concept)

3.5.1 ਅਣਵੀਂ ਪੁੰਜ (Molecular Mass)

ਭਾਗ 3.2.2 ਵਿੱਚ ਅਸੀਂ ਪਰਮਾਣੂ ਪੁੰਜ ਦੇ ਸੈਕਲਪ ਦੀ ਵਿਆਖਿਆ ਕਰ ਚੁਕੇ ਹਾਂ। ਇਸ ਸੈਕਲਪ ਦਾ ਵਿਸਥਾਰ ਅਣਵੀਂ ਪੁੰਜਾਂ ਨੂੰ ਗਣਨਾ ਕਰਨ ਦੇ ਲਈ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਪਦਾਰਥ ਦਾ ਅਣਵੀਂ ਪੁੰਜ ਉਸ ਦੇ ਸਾਰੇ ਮੌਜੂਦ ਪਰਮਾਣੂਆਂ ਦੇ ਪੁੰਜਾਂ ਦਾ ਯੋਗ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਅਣੂ ਦਾ ਉਹ ਸਾਪੇਖ ਪੁੰਜ ਹੈ ਜਿਸ ਨੂੰ ਪਰਮਾਣੂ ਪੁੰਜ ਇਕਾਈ (u) ਨਾਲ ਪ੍ਰਗਟਾਇਆ ਜਾਂਦਾ ਹੈ।

- ਉਦਾਹਰਣ 3.1 (ੳ) ਪਾਣੀ (H₂O) ਦੇ ਸਾਪੇਖ ਅਣਵੀਂ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕਰੋ।
- (ਅ) ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ (HNO₃) ਦੇ ਅਣਵੀਂ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕਰੋ।
- ਹੱਲ : (ੳ) ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 1 u ਅਤੇ ਆਕਸੀਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 16 u ਹੈ। ਕਿਉਂਕਿ ਪਾਣੀ, ਜਿਸ ਵਿੱਚ ਦੋ ਪਰਮਾਣੂ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਇੱਕ ਪਰਮਾਣੂ ਆਕਸੀਜਨ ਹੁੰਦੇ ਹਨ, ਦਾ ਅਣਵੀਂ ਪੁੰਜ

= 2 × 1+ 1×16 = 18 u ਹੋਵੇਗਾ।

(b) ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ (HNO₃) ਦਾ ਅਣਵੀਂ ਪੁੰਜ = H ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ + N ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ +3×O ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ

ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 1 u

ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 14 u ਅਤੇ

ਆਕਸੀਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 16 u

ਇਸ ਤਰ੍ਹਾਂ HNO, ਦਾ ਅਣਵੀਂ ਪੁੰਜ

 $= 1 u + 14 u + 3 \times 16 u$

= 63 u ਹੈ।

ਵਿਗਿਆਨ

3.5.2 ਸੂਤਰ ਇਕਾਈ ਪੁੰਜ (Formula Unit Mass) ਕਿਸੇ ਪਦਾਰਥ ਦਾ ਸੂਤਰ ਇਕਾਈ ਪੁੰਜ ਉਸ ਦੇ ਸਾਰੇ ਮੌਜੂਦ ਪਰਮਾਣੂਆਂ ਦੇ ਪੁੰਜਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਸੂਤਰ ਪੁੰਜ ਦੀ ਗਣਨਾ ਉਸੇ ਤਰ੍ਹਾਂ ਕਰਦੇ ਹਨ ਜਿਵੇਂ ਅਸੀਂ ਅਣਵੀਂ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕੀਤੀ ਹੈ। ਅੰਤਰ ਸਿਰਫ਼ ਐਨਾ ਹੁੰਦਾ ਹੈ ਕਿ ਇੱਥੇ ਅਸੀਂ ਉਸ ਪਦਾਰਥ ਲਈ ਸੂਤਰ ਇਕਾਈ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ ਜਿਸ ਦੇ ਸੰਘਟਕ ਆਇਨ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ: ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ ਇਕਾਈ ਸੂਤਰ (NaCl) ਇਸ ਦੇ ਇਕਾਈ ਸੂਤਰ ਪੁੰਜ ਦੀ ਗਣਨਾ ਹੇਠ ਅਨੁਸਾਰ ਕਰਦੇ ਹਾਂ

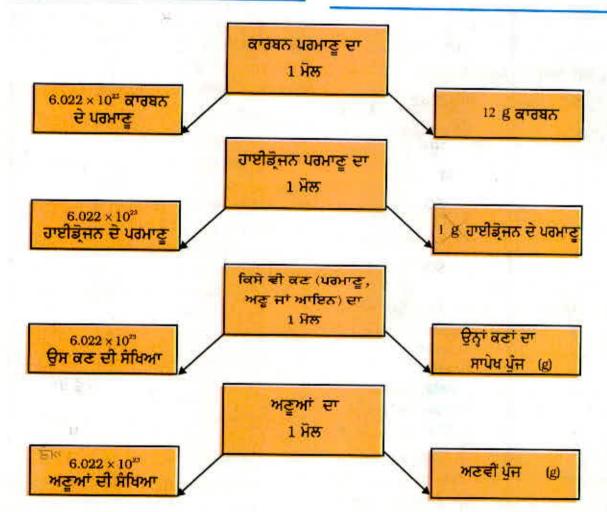
 $1 \times 23 u + 1 \times 35.5 u = 58.5 u$

ਉਦਾਹਰਣ 3.2 CaCl₂ ਦੇ ਸੂਤਰ ਇਕਾਈ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕਰੋ।

ਹੱਲ :

ਕੈਲਸ਼ੀਅਮ ਕਲੋਰਾਈਡ ਦਾ ਸੂਤਰ ਇਕਾਈ ਪੁੰਜ CaCl, ਹੈ।

ਕੈਲਸ਼ੀਅਮ Ca ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 40u


ਕਲੋਰੀਨ (Cl) ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 35.5 u

ਇਸ ਲਈ CaCl₂ ਦਾ ਸੂਤਰ ਇਕਾਈ ਪੁੰਜ

 $= 1 \times 40 u + 2 \times 35.5 u$

= 40 u + 71 u

= 111 u

ਚਿੱਤਰ 3.5: ਮੌਲ, ਆਵੋਗਾਦਰੋ ਸੰਖਿਆ ਅਤੇ ਪੂੰਜ ਵਿੱਚ ਸਬੰਧ

ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

Downloaded from https:// www.studiestoday.cc

45

ਹੇਠ ਦਿੱਤੇ ਯੋਗਿਕਾਂ ਦੇ ਅਣਵੀਂ ਪੁੰਜਾਂ ਦੀ ਗਣਨਾ ad : H., O., CL, CO, CH, C2H, C2H, NH, MS CH,OH ਹੇਠਾਂ ਦਿੱਤੇ ਯੋਗਿਕਾਂ ਦੇ ਸੁਤਰ ਇਕਾਈ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕਰੋ : ZnO, Na20 ਅਤੇ K2CO F ਦਿੱਤਾ ਗਿਆ ਹੈ। Zn ਦਾ ਪਰਮਾਣ ਪੇਜ = 65 u = 23 u Na ਦਾ ਪਰਮਾਣ ਪੰਜ K ਦਾ ਪਰਮਾਣ ਪੰਜ = 39 u. = 12 u ਅਤੇ C ਦਾ ਪਰਮਾਣ ਪੇਜ = 16 u J1 0 ਦਾ ਪਰਮਾਣ ਪੁੰਜ

3.5.3 ਮੋਲ ਸੰਕਲਪ (Mole Concept)

ਇੱਥੇ ਅਸੀਂ ਹਾਈਡ੍ਰੋਜਨ ਅਤੇ ਆਕਸੀਜਨ ਦੀ ਇੱਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਉਦਾਹਰਣ ਲੈਂਦੇ ਹਾਂ ਜਿਸ ਵਿੱਚ ਪਾਣੀ ਉਪਜਦਾ ਹੈ।

 $2H_2 + O_2 \rightarrow 2H_2O$

ਉਪਰੋਕਤ ਪ੍ਰਤੀਕਿਰਿਆ ਇਹ ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ

- ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਦੋ ਅਣੂ ਆਕਸੀਜਨ ਦੇ ਇੱਕ ਅਣੂ ਦੇ ਨਾਲ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਕੇ ਪਾਣੀ ਦੇ ਦੋ ਅਣੂ ਬਣਾਉਂਦੇ ਹਨ, ਅਤੇ
- (ii) ਹਾਈਡ੍ਰੋਜਨ ਅਣੂ ਦੇ 4 u ਆਕਸੀਜਨ ਅਣੂ ਦੇ 32 u ਦੇ ਨਾਲ ਸੰਜੋਗ ਕਰਕੇ 36 u ਜਲ ਅਣੂ ਬਣਾਉਂਦੇ ਹਨ।

ਉਪਰੋਕਤ ਸਮੀਕਰਣ ਤੋਂ ਇਹ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹਾਂ ਕਿ ਅਸੀਂ ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਉਸ ਦੇ ਪੂੰਜ ਤੋਂ ਉਸ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦਾ ਨਿਰਧਾਰਨ ਕਰ ਸਕਦੇ ਹਨ। ਪਰ ਇਕ ਰਸਾਇਣਿਕ ਪ੍ਤੀਕਿਰਿਆ ਸਮੀਕਰਣ ਤੋਂ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈਣ ਵਾਲੇ ਪਰਮਾਣੂਆਂ ਜਾਂ ਅਣੂਆਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਸਿੱਧੀਆਂ ਪ੍ਰਾਪਤ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਪਦਾਰਥਾਂ ਦੀਆਂ ਮਾਤਰਾਵਾਂ ਦਾ ਗਿਆਨ, ਉਨ੍ਹਾਂ ਦੇ ਪੁੰਜਾਂ ਦੇ ਅਧਾਰ ਦੀ ਬਜਾਏ ਉਨ੍ਹਾਂ ਦੇ ਅਣੂਆਂ ਜਾਂ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਅਧਾਰ ਤੇ ਪ੍ਰਾਪਤ ਕਰਨਾ ਵਧੇਰੇ ਸੁਵਿਧਾਜਨਕ ਰਹਿੰਦਾ ਹੈ। ਇਸ ਲਈ ਇੱਕ ਨਵੀਂ ਇਕਾਈ ਮੋਲ (Mole) ਸੁਝਾਈ ਗਈ। ਕਿਸੇ ਸਪੀਸੀਜ਼ (ਪਰਮਾਣੂ, ਅਣੂ, ਆਇਨ ਜਾਂ ਕਣ) ਦੇ ਇੱਕ ਮੋਲ ਵਿੱਚ ਪਦਾਰਥ ਦੀ ਮਾਤਰਾ ਦੀ ਉਹ ਸੰਖਿਆ ਹੈ ਜੋ ਗਰਾਮ ਵਿੱਚ ਉਸ ਦੇ ਪਰਮਾਣੂ ਜਾਂ ਅਣਵੀਂ ਪੁੰਜ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।

ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਇੱਕ ਮੋਲ ਵਿੱਚ ਕਣਾਂ (ਪਰਮਾਣੂ, ਅਣੂ ਜਾਂ ਆਇਨ) ਦੀ ਸੰਖਿਆ ਨਿਸ਼ਚਿਤ ਹੁੰਦੀ ਹੈ ਜਿਸ ਦਾ ਮਾਨ 6.022×10²³ ਹੁੰਦਾ ਹੈ। ਇਹ ਮਾਨ ਪ੍ਯੋਗਿਕ ਵਿਧੀ ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਸ ਨੂੰ ਆਵੋਗਾਦਰੋ ਸਥਿਰ ਅੰਕ (Avogadro number) ਕਹਿੰਦੇ ਹਨ ਜਿਸ ਨੂੰ N₀ ਨਾਲ ਦਰਸਾਉਂਦੇ ਹਨ। ਇਹ ਨਾਂ ਇਤਾਲਵੀ ਵਿਗਿਆਨਲ ਏਮੀਡੀਓ ਆਵੋਗਾਦਰੋ (Amedeo Avogadro) ਦੇ ਸਨਮਾਨ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ।

1 ਮੋਲ (ਕਿਸੇ ਪਦਾਰਥ ਦਾ) 6.022×10²³ ਸੰਖਿਆ ਵਿੱਚ

ਜਿਵੇਂ 1 ਦਰਜਨ = 12 1 ਗਰਸ = 144

ਭਾਵੇਂ ਮੋਲ ਇੱਕ ਸੰਖਿਆ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ, ਪਰ ਦਰਜ਼ਨ ਜਾਂ ਗੁਰਸ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਇਸ ਦਾ ਇਕ ਹੋਰ ਲਾਭ ਹੈ।ਉਹ ਇਹ ਹੈ ਕਿ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਪਦਾਰਥ ਦੇ ਇੱਕ ਮੋਲ ਵਿੱਚ ਪੁੰਜ ਨਿਸ਼ਚਿਤ ਹੁੰਦਾ ਹੈ।

ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਇਕ ਮੋਲ ਦਾ ਪੁੰਜ ਉਸ ਦੇ ਸਾਪੇਖ ਪਰਮਾਣੂ ਜਾਂ ਅਣਵੀਂ ਪੁੰਜ (ਗਰਾਮ ਵਿੱਚ) ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਤੱਤ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ, ਉਸ ਤੱਤ ਦੇ ਪੁੰਜ ਨੂੰ ਪਰਮਾਣੂ ਪੁੰਜ ਇਕਾਈ (u) ਵਿਚ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਕਿਸੇ ਤੱਤ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਇਕ ਮੋਲ ਦਾ ਪੁੰਜ ਜਿਸ ਨੂੰ ਮੋਲਰ ਪੁੰਜ (molar mass) ਕਹਿੰਦੇ ਹਨ, ਸਾਨੂੰ ਉਸੇ ਸੰਖਿਆਤਮਕ ਮਾਨ ਨੂੰ ਲੈਣਾ ਪਵੇਗਾ ਪਰ ਇਕਾਈ ਨੂੰ u ਨਾਲ ਜਾਂ g ਵਿਚ ਪਰਿਵਰਤਿਤ ਕਰਨਾ ਹੋਵੇਗਾ। ਪਰਮਾਣੂਆਂ ਦੇ ਮੋਲਰ ਪੁੰਜ ਨੂੰ ਗਰਾਮ ਪਰਮਾਣੂ ਪੁੰਜ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਲਈ ਹਾਈਡ੍ਰੋਜਨ ਦਾ ਗਰਮਿਖ਼ਰਮਾਣੂ ਪੁੰਜ = 1 g ਹੋਵੇਗਾ।

lu ਹਾਈਡ੍ਰੋਜਨ ਵਿੱਚ ਸਿਰਫ਼ ਇਕ ਹਾਈਡ੍ਰੋਜਨ ਪ੍ਰਸਾਣੂ ਹੁੰਦਾ ਹੈ ਅਤੇ 1 g ਹਾਈਡ੍ਰੋਜਨ ਵਿੱਚ ਉਸ ਦੇ 1 ਮੋਲ ਪਰਮਾਣੂ ਹੁੰਦੇ ਹਨ ਅਰਥਾਤ ਉਸ ਵਿੱਚ 6.022×10²³ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਪਰਮਾਣੂ ਹੋਣਗੇ।

46

ਵਿਗਿਆਨ

ਇਸੇ ਤਰ੍ਹਾਂ 16u ਆਕਸੀਜਨ ਵਿੱਚ ਸਿਰਫ਼ ਇੱਕ ਆਕਸੀਜਨ ਪਰਮਾਣੂ ਹੁੰਦਾ ਹੈ ਅਤੇ 16g ਆਕਸੀਜਨ ਵਿੱਚ ਉਸ ਦੇ ਇੱਕ ਮੋਲ ਪਰਮਾਣੂ ਹੋਣਗੇ ਭਾਵ ਉਸ ਵਿੱਚ 6.022×10²³ ਆਕਸੀਜਨ ਦੇ ਪਰਮਾਣੂ ਹੋਣਗੇ।

ਕਿਸੇ ਅਣੂ ਦੇ ਗਰਾਮ ਅਣੂ ਪੁੰਜ (gram molecular mass) ਜਾਂ ਮੋਲਰ ਪੁੰਜ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ ਉਸ ਦੇ ਸੰਖਿਆਤਮਕ ਮਾਨ, ਜੋ ਉਸ ਦੇ ਅਣੂ ਪੁੰਜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ, ਨੂੰ ਉਪਰੋਕਤ ਦੀ ਤਰ੍ਹਾਂ ਰੱਖਦੇ ਹਾਂ। ਪਰੰਤੂ ਸਾਨੂੰ ਇਕਾਈ ਨੂੰ u ਤੋਂ g ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਰਨਾ ਹੋਵੇਗਾ।

ਉਦਾਹਰਣ ਵਜੋਂ: ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਪਾਣੀ (H₂O) ਦੇ ਅਣਵੀਂ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕਰ ਚੁੱਕੇ ਹਾਂ ਜਿਸ ਦਾ ਮਾਨ 18u ਹੁੰਦਾ ਹੈ। ਇੱਥੋਂ ਅਸੀਂ ਇਹ ਸਮਝਦੇ ਹਾਂ ਕਿ 18u ਪਾਣੀ ਵਿੱਚ ਪਾਣੀ ਦਾ ਸਿਰਫ਼ ਇੱਕ ਅਣੂ ਹੁੰਦਾ ਹੈ। 18 ਗਰਾਮ ਪਾਣੀ ਵਿੱਚ ਪਾਣੀ ਦੇ 1 ਸੋਲ ਅਣੂ ਹੁੰਦੇ ਹਨ ਭਾਵ ਉਸ ਵਿੱਚ 6.022×10²³ ਪਾਣੀ ਦੇ ਅਣੂ ਹੁੰਦੇ ਹਨ।

ਰਸਾਇਣ ਵਿਗਿਆਨੋਕ ਨੂੰ ਪ੍ਰਤੀਕਿਰਿਆ ਨੂੰ ਕਰਨ ਦੇ ਲਈ ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਉਨ੍ਹਾਂ ਦੇ ਪੁੰਜਾਂ ਨੂੰ ਗਰਾਮਾਂ ਵਿੱਚ ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਸੰਬੰਧਿਤ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਹੇਠ ਅਨੁਸਾਰ ਕਰਦੇ ਹਨ :

- 1 ਮੌਲ = 6.022 × 10²³
 - = ਗਰਾਮ ਸਾਪੇਖ ਪੁੰਜ

ਇਸ ਤਰ੍ਹਾਂ ਰਸਾਇਣ ਵਿਗਿਆਨੀਆ<mark>ਂ</mark> ਦੀ ਗਣਨਾ ਦੀ ਇਕਾਈ ਮੋਲ ਹੋਈ।

ਸੰਨ 1896 ਵਿੱਚ ਵਿਲਹੇਲਮ ਉਸਟਵਾਲਡ (Wilhelm Ostwald) ਨੇ ਮੋਲ ਸ਼ਬਦ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਸੀ ਜੋ ਇਕ ਲੈਟਿਨ ਸ਼ਬਦ ਮੋਲਸ (Moles) ਤੋਂ ਲਿਆ ਗਿਆਪੋਜ਼ਿਸ ਦਾ ਅਰਥ ਹੁੰਦਾ ਹੈ ਢੇਰ (heap or pile) । ਕਿਸੇ ਪੋਦਾਰਥ ਨੂੰ ਪਰਮਾਣੂਆਂ ਜਾਂ ਅਣੂਆਂ ਦੇ ਢੇਰ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਚਾਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸੰਨ 1967 ਵਿੱਚ ਮੋਲੇ ਇਕਾਈ ਸਵੀਕਾਰ ਕਰ ਲਈ ਗਈ, ਜੋ ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਦੀ ਵੱਡੀ ਸੰਖਿਆ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਸਰਲਤਮ ਉਪਾਅ ਹੈ।

ਉਦਾਹਰਣ 3.3

- ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ :
 - (i) 52 ਗਰਾਮ ਹੀਲੀਅਮ (ਪੁੰਜ ਤੋਂ ਮੋਲ ਪ੍ਰਾਪਤ ਕਰੋ)।
 - (ii) 12.044 × 10²³ ਹੀਲੀਅਮ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ (ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਤੋਂ ਮੋਲ ਪ੍ਰਾਪਤ ਕਰੋਪ

ਮੋਲ	ਾਂ ਦੀ ਸੰਖਿਆ	=	n	
ਦਿੱ:	ਤਾ ਗਿਆ ਪੁੰਜ	=	m	
ਮੋਲ	ਰ ਪੁੰਜ	=	М	
ਦਿੱਤ	ਤੇ ਗਏ ਕਣਾਂ ਦੀ ਸੰਖਿਆ	=	N	
ਕਣ	ਾਂ ਦੀ ਆਵੰਗਾਦਰੋ ਸੰਖਿਆ	=	No	
(i)	He ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ	=	4 u	
	He ਦਾ ਮੋਲਰ ਪੁੰਜ	=	4 g	

ਇਸ ਲਈ ਮੋਲਾਂ ਦੀ ਸ਼ੱਖਿਆ = $\frac{\text{[test] finwr yn}}{\text{ਮੋਲਡ yn}}$ $\Rightarrow n = \frac{m}{M} = \frac{52}{4} = 13$ (ii) ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ = 1 ਮੋਲ = 6.022×10^{23} ਮੇਲਾਂ ਦੀ ਸ਼ੱਖਿਆ - $\frac{\text{[test] fitwr}}{\text{[test] fitwr}}$

No. El Mid	े उन	n	ਮਾਵੋਗਾਦਰ ਸੰਖਿਆ
3	DE		RN
b)c	[파크웨이	N	12.044×10 ²³
THE	⇒n-	N	6.022×10 ¹ = 2
ਵਾਲੇ	2 (F=)		ট স্ত

ਉਦਾਹਰਣ 3.4 ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕਰੋ : (i) 0.5 ਮੋਲ N, ਗੈਸ (ਅਣੂ ਦੇ ਮੋਲ ਤੋਂ ਪੁੰਜ)

ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

- (ii) 0.5 ਮੌਲ N ਪਰਮਾਣੂ (ਪਰਮਾਣੂ ਦੇ ਮੋਲ ਤੋਂ ਪੁੰਜ)
- (iii) 3.011 × 10²³ N ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ (ਸੰਖਿਆ ਤੋਂ ਪੁੰਜ)
- (iv) $6.022 \times 10^{23} \,\mathrm{N_2}$ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ (ਸੰਖਿਆ ਤੋਂ ਪੁੰਜ)

ਹੱਲ :

- (i) ਪੁੰਜ = ਮੋਲਰ ਪੁੰਜ × ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ⇒m=M×n=28×0.5=14 g
- (ii) ਪੁੰਜ = ਮੋਲਰ ਪੁੰਜ × ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ ⇒ m = M × n = 14 × 0.5 = 7 g
- (iii) ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ n

ਦਿੱਤੇ ਗਏ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਆਵੋਗਾਦਰੋ ਸੰਖਿਆ = <u>N</u> ₀

$$=\frac{3.011\times10^{23}}{6.022\times10^{23}}$$

$$\Rightarrow m = M \times n = 14 \times \frac{3.011 \times 10^{23}}{6.022 \times 10^{23}}$$

$$= 14 \times 0.5 = 7$$
 g

(iv)
$$n = \frac{N}{N_0}$$

 $\Rightarrow m = M \times \frac{N}{N_0} = 28 \times \frac{6.022 \times 10^{23}}{6.022 \times 10^{23}}$
 $= 28 \times 1 = 28 \text{ g}$

ਉਦਾਹਰਣ 3.5 ਹੇਠ ਲਿਖੇ ਹਰੇਕ ਵਿੱਚ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ :

- (i) 46 g ਸੰਡੀਅਮ ਪਰਮਾਣੂ (ਪੁੰਜ ਤੋਂ ਸੰਖਿਆ)
- (ii) 8 g ਆਕਸੀਜਨ ਅਣੂ (ਪੁੰਜ ਤੋਂ ਸੰਖਿਆ)
- (iii) 0.1 ਮੋਲ ਕਾਰਬਨ ਪਰਮਾਣੂ (ਮੋਲ ਤੋਂ ਸੰਖਿਆ)

48

ਹੱਲ :

(i) ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ

ਦਿੱਤੇ ਗਏ ਦ੍ਵਮਾਨ ਮੋਲਰ ਦ੍ਵਮਾਨ

$$\Rightarrow N = \frac{m}{M} \times N_o$$
$$\Rightarrow N = \frac{46}{23} \times 6.022 \times 10^{23}$$
$$\Rightarrow N = 12.044 \times 10^{23}$$

- (ii) ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ
- ਦਿੱਤੇ ਗਏ ਦ੍ਰਵਮਾਨ ਮੋਲਰ ਦ੍ਰਵਮਾਨ

$$\Rightarrow$$
 N = $\frac{m}{M} \times N_0$

ਆਕਸੀਜਨ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 16 u

∴ ਆਕਸੀਜਨ ਅਣੂਆਂ ਦਾ ਮੋਲਰ ਪੁੰਜ

 $= 16 \times 2 = 32$ g

$$\Rightarrow N = \frac{8}{32} \times 6.022 \times 10^{23}$$
$$\Rightarrow N = 1.5055 \times 10^{23}$$
$$N = 1.51 \times 10^{23}$$

 (iii) ਕਣਾਂ (ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ - ਕਣਾਂ ਦੇ ਮੋਲਾਂ ਦੀ ਸੰਖਿਆ × ਆਵੋਗਾਦਰੋ ਸੰਖਿਆ)

$$\begin{split} N &= n \times N_0 = 0.1 \times 6.022 \times 10^{23} \\ &= 6.022 \times 10^{22} \end{split}$$

ਸ਼ਨ

- ਜੇ ਕਾਰਬਨ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਇੱਕ ਮੋਲ ਦਾ ਪੁੰਜ
 12g ਹੈ ਤਾਂ ਕਾਰਬਨ ਦੇ ਇਕ ਪ੍ਰਮਾਣੂ ਦਾ ਪੁੰਜ ਕੀ ਹੋਵੇਗਾ?
 - ਕਿਸ ਵਿੱਚ ਵਧੇਰੇ ਪਰਮਾਣੂ ਹੋਣਗੇ: 100g ਸ਼ੋਡੀਅਮ ਜਾਂ 100g ਲੋਹਾ? (Na ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 23u, 6g ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 56u)

ਵਿਗਿਆਨ

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ

- ਕਿਸੇ ਵੀ ਪ੍ਤੀਕਿਰਿਆ ਵਿੱਚ, ਪ੍ਤੀਕਾਰਕਾਂ ਅਤੇ ਉਪਜਾਂ ਦੇ ਪੁੰਜਾਂ ਦਾ ਜੋੜ ਅਪਰਿਵਰਤਨੀ ਹੁੰਦਾ ਹੈ। ਇਹ ਪੁੰਜ ਸੁਰੱਖਿਅਣ ਦਾ ਨਿਯਮ ਅਖਵਾਉਂਦਾ ਹੈ।
- ਇੱਕ ਸ਼ੁੱਧ ਰਸਾਇਣਿਕ ਯੋਗਿਕ ਵਿੱਚ ਤੱਤ ਹਮੇਸ਼ਾ ਪੁੰਜਾਂ ਦੇ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਇਸ ਨੂੰ ਨਿਸ਼ਚਿਤ ਅਨੁਪਾਤ ਦਾ ਨਿਯਮ ਕਹਿੰਦੇ ਹਨ।
- ਤੱਤ ਦਾ ਸੂਖਮਤਮ ਕਣ ਪਰਮਾਣੂ ਹੁੰਦਾ ਹੈ, ਜਿਹੜਾ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਰਹਿ ਵੀ ਸਕਦਾ ਅਤੇ ਨਹੀਂ ਵੀ। ਇਹ ਤੱਤ ਦੇ ਸਾਰੇ ਗੁਣਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।
- ਅਣੂ ਕਿਸੇ ਤੱਤ ਜਾਂ ਯੋਗਿਕ ਦਾ ਉਹ ਸੂਖਮਤਮ ਕਣ ਹੁੰਦਾ ਹੈ, ਜੋ ਹਮੇਸ਼ਾਂ ਸੁਤੰਤਰ ਰਹਿ ਸਕਦਾ ਹੈ। ਇਹ ਪਦਾਰਥ ਦੇ ਸਾਰੇ ਗੁਣਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।
- ਕਿਸੇ ਯੋਗਿਕ ਦਾ ਰਸਾਇਣਿਕ ਸੂਤਰ ਉਸ ਵਿੱਚ ਸਾਰੇ ਘਟਕ ਤੱਤਾਂ ਅਤੇ ਸੈਯੋਗ ਕਰਨ ਵਾਲੇ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦਰਸਾਉਂਦਾ ਹੈ।
 - ਪਰਮਾਣੂਆਂ ਦਾ ਉਹ ਸਮੂਹ ਜੋ ਆਇਨ ਦੀ ਤਰ੍ਹਾਂ ਵਿਹਾਰ ਕਰਦਾ ਹੈ, ਉਸ ਨੂੰ ਬਹੁ ਪਰਮਾਣਵੀਂ ਆਇਨ ਕਹਿੰਦੇ ਹਨ।ਉਨ੍ਹਾਂ ਉੱਤੇ ਇਕ ਨਿਸ਼ਚਿਤ ਚਾਰਜ ਹੁੰਦਾ ਹੈ।
 - ਅਣਵੀਂ ਯੋਗਿਕਾਂ ਦੇ ਰਸਾਇਣਿਕ ਸੂਤਰ ਹਰੇਕ ਤੱਤ ਦੀ ਸੰਯੋਜਕਤਾ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ ਹੁੰਦੇ ਹਨ।
- ਆਇਨਿਕ ਯੋਗਿਕਾਂ ਵਿੱਚ, ਹਰੇਕ ਆਇਨ ਉੱਤੇ ਚਾਰਜਾਂ ਦੀ ਸੰਖਿਆ ਦੁਆਰਾ ਯੋਗਿਕਾਂ ਦੇ ਰਸਾਇਣਿਕ ਸੂਤਰ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ।
- ਵਿਗਿਆਨਕ ਭਿੰਨ-ਭਿੰਨ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਪੁੰਜਾਂ ਦੀ ਤੁਲਨਾ ਕਰਨ ਲਈ ਸਾਪੇਖ ਪਰਮਾਣੂ ਪੁੰਜ ਸਕੇਲ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ। ਕਾਰਬਨ-12 ਸਮਸਥਾਨਕ (Isotope) ਦੇ ਪਰਮਾਣੂ ਦਾ ਸਾਪੇਖ ਪੁੰਜ 12 ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਬਾਕੀ ਸਾਰੇ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦਾ ਸਾਪੇਖ ਪੁੰਜ ਕਾਰਬਨ-12 ਪਰਮਾਣੂ ਦੇ ਪੁੰਜ ਨਾਲ ਤੁਲਨਾ ਕਰਕੇ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ।
- 6.022 × 10²³ ਆਵੇਗਾਦਰੋ ਸਥਿਰ ਅੰਕ ਹੈ ਜਿਹੜਾ 12 g ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨ 12 ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਖਿਆ ਹੈ।
- ਮੋਲ ਪਦਾਰਥ ਦੀ ਉਹ ਮਾਤਰਾ ਹੈ ਜਿਸ ਵਿੱਚ ਕਣਾਂ ਦੀ ਸੰਖਿਆ (ਪਰਮਾਣੂ, ਆਇਨ, ਅਣੂ ਜਾਂ ਸੂਤਰ ਇਕਾਈ ਆਦਿ) ਕਾਰਬਨ-12 ਦੇ ਠੀਕ 12 g ਵਿੱਚ ਮੌਜੂਦੂ ਪੂਰਮਾਣੂਆਂ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। (Trob

49

ਪਦਾਰਥ ਦੇ ਇੱਕ ਮੋਲ ਅਣੂਆਂ ਦਾ ਪੁੰਜ ਉਸ ਦਾ ਮੋਲਰ ਪੁੰਜ ਅਖਵਾਉਂਦਾ ਹੈ।

ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

THO OF

ਤ ਦਾ ਪੰਜ

গঁৱন

50

ਅਭਿਆਸ

- 0.24 g ਆਕਸੀਜਨ ਅਤੇ ਬੋਰਾੱਨ ਯੁਕਤ ਯੋਗਿਕ ਦੇ ਨਮੂਨੇ ਵਿੱਚ ਵਿਸ਼ਲੇਸ਼ਣ ਦੁਆਰਾ ਇਹ ਵੇਖਿਆ ਗਿਆ ਕਿ ਇਸ ਵਿੱਚ 0.096 g ਬੋਰਾੱਨ ਅਤੇ 0.144 g ਆੱਕਸੀਜਨ ਹੈ। ਉਸ ਯੋਗਿਕ ਦੇ ਪ੍ਰਤੀਸ਼ਤ ਬਣਤਰ ਦੀ ਭਾਰ ਰੂਪ ਵਿੱਚ ਗਣਨਾ ਕਰੋ।
- 2. 3.0 g ਕਾਰਬਨ 8.00 g ਆਕਸੀਜਨ ਵਿੱਚ ਜਲ ਕੇ 11.00 g ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਜਦੋਂ 3.0 g ਕਾਰਬਨ, 50.00 g ਆਕਸੀਜਨ ਵਿੱਚ ਜਲਾਵਾਂਗੇ ਤਾਂ ਕਿੰਨੇ ਗਰਾਮ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਉਪਜੇਗੀ ? ਤੁਹਾਡਾ ਉੱਤਰ ਰਸਾਇਣਿਕ ਸੰਯੋਜਨ ਦੇ ਕਿਸ ਨਿਯਮ ਤੇ ਅਧਾਰਿਤ ਹੋਵੇਗਾ ?
- ਬਹੁ-ਪਰਮਾਣਵੀਂ ਆਇਨ ਕੀ ਹੁੰਦੇ ਹਨ ? ਉਦਾਹਰਣਾਂ ਦਿਓ।
- 4. ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਰਸਾਇਣਿਕ ਸੂਤਰ ਲਿਖੋ :
 - (ੳ) ਮੈਗਨੀਸ਼ੀਅਮ ਆਕਸਾਈਡ
 - (ਅ) ਕੈਲਸ਼ੀਅਮ ਕਲੋਰਾਈਡ
 - (ੲ) ਕਾਪਰ ਨਾਈਟ੍ਰੇਟ
 - (ਸ) ਐਲੂਮੀਨੀਅਮ ਕਲੋਰਾਈਡ
 - (ਹ) ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ
- 5. ਹੇਠ ਲਿਖੇ ਯੋਗਿਕਾਂ ਵਿੱਚ ਮੌਜੂਦ ਤੱਤਾਂ ਦੇ ਨਾਂ ਦਿਓ :
 - (ੳ) ਬੁੱਝਿਆ ਹੋਇਆ ਚੁਨਾ
 - (ਅ) ਹਾਈਡ੍ਰੋਜਨ ਬ੍ਰੋਮਾਈਡ
 - (ੲ) ਬੇਕਿੰਗ ਪਾਉਡਰ
 - (ਸ) ਪੋਟਾਸ਼ੀਅਮ ਸਲਫੇਟ
- 6. ਹੇਠ ਲਿਖੇ ਪਦਾਰਥਾਂ ਦੇ ਮੋਲਰ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕਰੋ :
 - (ੳ) **ਈਥਾਈਨ**, C,H,
 - (ਅ) ਸਲਫਰ ਅਣੂ, S₈
 - (ੲ) ਫਾਸਫੋਰਸ ਅਣੂ, P, (ਫਾਸਫੋਰਸ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 31)
 - (ਸ) ਹਾਈਡ੍ਰੋਕਲੋਰਿਕ ਐਸਿਡ, HCl
 - (ਹ) ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ, HNO,
- 7. ਹੇਠ ਲਿਖਿਆਂ ਦਾ ਪੁੰਜ ਕੀ ਹੋਵੇਗਾ :
 - (ੳ) 1 ਮੌਲ ਨਾਈਟ੍ਰੋਜਨ ਪਰਮਾਣੂ ?
 - (ਅ) 4 ਮੋਲ ਐਲੂਮੀਨੀਅਮ ਪਰਮਾਣੂ (ਐਲੂਮੀਨੀਅਮ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ= 27)

ਕਰਿਕ ਅੰ

ਵਿਗਿਆਨ

(ੲ) 10 ਮੋਲ ਸੋਡੀਅਮ ਸਲਫਾਈਟ (Na,SO,)?

- 8. ਮੋਲ ਵਿੱਚ ਬਦਲੋ :
 - (ੳ) 12 g ਆਕਸੀਜਨ ਗੈਂਸ
 - (ਅ) 20 g ਪਾਣੀ
 - (ੲ) 22 g ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ
- 9. ਹੇਠ ਲਿਖਿਆਂ ਦਾ ਪੁੰਜ ਕੀ ਹੋਵੇਗਾ :
 - (ੳ) 0.2 ਮੋਲ ਆਕਸੀਜਨ ਪਰਮਾਣੂ
 - (ਅ) 0.5 ਮੋਲ ਜਲ ਅਣੂ ?
- 10. 16 g ਠੌਸ ਸਲਫਰ ਵਿੱਚ ਸਲਫਰ (S_s) ਦੇ ਅਣੂਆਂ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।
- 0.051 g ਐਲੂਮੀਨੀਅਮ ਆਕਸਾਈਡ (Al₂O₃) ਵਿੱਚ ਐਲੂਮੀਨੀਅਮ ਆਇਨ ਦੀ ਸੰਖਿਆ ਦੀ ਗਣਨਾ ਕਰੋ।

(ਸੰਕੇਤ : ਕਿਸੇ ਆਇਨ ਦਾ ਪੁੰਜ ਉਨਾਂ ਹੀ ਹੁੰਦਾ ਹੈ ਜਿੰਨਾ ਕਿ ਉਸੇ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ ਹੁੰਦਾ ਹੈ।ਐਲੂਮੀਨੀਅਮ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ = 27u ਹੈ।)

编辑

开西

162

1200


2010

ਸਮੂਹ ਕਿਰਿਆ

ਸੂਤਰ ਲਿਖਣ ਲਈ ਇੱਕ ਖੇਡ ਖੇਡੋ

- ਉਦਾਹਰਣ 1: ਤੱਤਾਂ ਦੇ ਸੰਕੇਤਾਂ ਅਤੇ ਸੰਯੋਜਕਤਾਵਾਂ ਨਾਲ ਯੁਕਤ ਵੱਖ-ਵੱਖ ਤਾਸ਼ ਦੇ ਪੱਤੇ ਬਣਾਓ। ਹਰੇਕ ਵਿਦਿਆਰਥੀ ਦੋ ਤਾਸ਼ ਦੇ ਪੱਤਿਆਂ ਨੂੰ ਜਿਸ ਵਿੱਚੋਂ ਇੱਕ ਸੰਕੇਤ ਯੁਕਤ ਤਾਸ਼ ਦੇ ਪੱਤੇ ਨੂੰ ਸੱਜੇ ਹੱਥ ਅਤੇ ਦੂਜਾ ਸੰਯੋਜਕਤਾ ਯੁਕਤ ਤਾਸ਼ ਦੇ ਪੱਤੇ ਨੂੰ ਖੱਬੇ ਹੱਥ ਵਿੱਚ ਲਓ। ਸੰਕੇਤਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ ਆਪਣੇ ਤਾਸ਼ ਦੇ ਪੱਤਿਆਂ ਨੂੰ ਟੇਢਾ ਤਿਰਛਾ (Criss Cross) ਕਰਵੇ ਯੋਗਿਕ ਦਾ ਸੂਤਰ ਬਨਾਉਣਗੇ।
- ਉਦਾਹਰਣ 2: ਸੂਤਰ ਲਿਖਣ ਦਾ ਇੱਕ ਸਸਤਾ ਮਾਡਲ : ਦਵਾਈਆਂ ਦੇ ਉਸ ਪੈਕ ਨੂੰ ਜਿਸ ਵਿਚੋਂ ਗੋਲੀਆਂ ਕੱਢ ਲਈਆਂ ਹੋਣ ਲਓ।ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ, ਤੱਤ ਦੀ ਸੰਯੋਜਕਤਾ ਅਨੁਸਾਰ ਉਸਨੂੰ ਸਮੂਹ ਵਿੱਚ ਕੱਟ ਲਓ।ਹੁਣ ਤੁਸੀਂ ਇੱਕ ਕਿਸਮ ਦੇ ਆਇਨ ਨੂੰ ਦੂਜੇ ਕਿਸਮ ਦੇ ਆਇਨਾਂ ਨਾਲ ਲਗਾ ਕੇ ਸੂਤਰ ਬਣਾ ਸਕਦੇ ਹੋ।

ਉਦਾਹਰਣ ਵਜੋਂ :

ਸੋਡੀਅਮ ਸਲਫੇਟ ਦੇ ਸੂਤਰ ਲਈ :

2 ਸੋਡੀਅਮ ਆਇਨਾਂ ਨੂੰ ਇੱਕ ਸਲਫੇਟ ਆਇਨ ਤੇ ਲਗਾਓ। ਇਸ ਤਰ੍ਹਾਂ ਸੂਤਰ Na₂SO₄ ਹੋਵੇਗਾ। ਆਪਣੇ ਆਪ ਕਰੋ : ਸੋਡੀਅਮ ਫਾਸਫੇਟ ਦਾ ਸੂਤਰ ਲਿਖੋ।

ਪਰਮਾਣੂ ਅਤੇ ਅਣੂ

51

Downloaded from https:// www.studiestoday.com

र्ग्स् च हि गोठी अंध

ਅਧਿਆਇ 4

ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ

ਅਧਿਆਇ 3 ਵਿੱਚ ਅਸੀਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ ਕਿ ਪਦਾਰਥ, ਪਰਮਾਣੂਆਂ ਅਤੇ ਅਣੂਆਂ ਤੋਂ ਮਿਲ ਕੇ ਬਣੇ ਹਨ। ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੇ ਪਦਾਰਥਾਂ ਦੀ ਹੋਂਦ ਉਨ੍ਹਾਂ ਪਰਮਾਣੂਆਂ ਦੇ ਕਾਰਣ ਹੁੰਦੀ ਹੈ ਜਿਨ੍ਹਾਂ ਤੋਂ ਉਹ ਬਣੇ ਹਨ। ਹੁਣ ਪ੍ਰਸ਼ਨ ਉੱਠਦਾ ਹੈ ਕਿ : (i) ਕਿਸੇ ਇੱਕ ਤੱਤ ਦਾ ਪਰਮਾਣੂ ਦੂਜੇ ਤੱਤ ਦੇ ਪਰਮਾਣੂਆਂ ਤੋਂ ਭਿੰਨ ਕਿਉਂ ਹੁੰਦਾ ਹੈ ? ਅਤੇ (ii) ਕੀ ਪਰਮਾਣੂ ਅਸਲ ਵਿੱਚ ਅਵਿਭਾਜ (non-divisible) ਹੁੰਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਡਾਲਟਨ ਨੇ ਸੁਝਾਅ ਦਿੱਤਾ ਸੀ ਜਾਂ ਪਰਮਾਣੂ ਦੇ ਅੰਦਰ ਹੋਰ ਘਟਕ ਵੀ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ ? ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਸਾਨੂੰ ਇਸ ਪ੍ਰਸ਼ਨ ਦਾ ਉੱਤਰ ਮਿਲੇਗਾ। ਅਸੀਂ ਅਵਪਰਮਾਣੁਕ ਕਣਾਂ (subatomic particles) ਅਤੇ ਪਰਮਾਣੂ ਦੇ ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੇ ਮਾਡਲਾਂ ਦੇ ਬਾਰੇ ਪੜ੍ਹਾਂਗੇ, ਜਿਨ੍ਹਾਂ ਤੋਂ ਇਹ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਇਹ ਕਣ ਪਰਮਾਣੂ ਦੇ ਅੰਦਰ ਕਿਸ ਤਰ੍ਹਾਂ ਤਰਤੀਬ ਵਿੱਚ ਹੁੰਦੇ ਹਨ।

19ਵੀਂ ਸ਼ਤਾਬਦੀ ਦੇ ਅੰਤ ਵਿੱਚ ਵਿਗਿਆਨਕੇ ਦੇ ਸਾਹਮਣੇ ਸਭ ਤੋਂ ਵੱਡੀ ਚੁਣੌਤੀ ਸੀ, ਪਰਮਾਣੂ ਦੀ ਸੰਰਚਨਾ ਅਤੇ ਉਸ ਦੇ ਗੁਣਾਂ ਦੇ ਬਾਰੇ ਪਤਾ ਲਗਾਉਣਾ। ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਰਚਨਾ ਨੂੰ ਅਨੇਕਾਂ ਪ੍ਰਯੋਗਾਂ ਦੇ ਅਧਾਰ ਤੇ ਸਮਝਾਇਆ ਗਿਆ ਹੈ।

ਪਰਮਾਣੂਆਂ ਦੇ ਅਵਿਭਾਜਨ ਹੋਣ ਦੇ ਦੋ ਸੈਕੇਤਾਂ ਵਿੱਚੋਂ ਇੱਕ ਸੰਕੇਤ ਸਥਿਰ ਬਿਜਲੀ (static electricity) ਅਤੇ ਵੱਖ-ਵੱਖ ਪਦਾਰਥਾਂ ਦੁਆਰਾ ਬਿਜਲਈ ਚਾਲਨ ਦੀਆਂ ਪਰਿਸਬਿਤੀਆਂ ਦੇ ਅਧਿਐਨ ਤੋਂ ਮਿਲਿਆ।

4.1 ਪਦਾਰਥਾਂ ਵਿੱਚ ਚਾਰਜਿਤ ਕਣ

(Charged Particle in Matter)

ਪਦਾਰਥਾਂ ਵਿੱਚ ਚਾਰਜਿਤ ਕਣਾਂ ਦੇ ਸੁਭਾਅ ਨੂੰ ਜਾਨਣ ਦੇ ਲਈ ਅਸੀਂ ਹੇਠਲੀ ਕਿਰਿਆ ਕਰੀਏ :

ਕਿਰਿਆ

4.1

A. ਸ਼ੁੱਕੇ ਵਾਲਾਂ ਤੇ ਕੰਘੀ ਕਰੋ। ਕੀ ਕੰਘੀ ਕਾਗਜ਼ ਦੇ ਛੋਟੇ−ਛੋਟੇ ਟੁਕੜਿਆਂ ਨੂੰ ਆਕਰਸ਼ਿਤ ਕਰਦੀ ਹੈ ?

(Structure of the Atom)

B. ਕੱਚ ਦੀ ਇੱਕ ਛੜ ਨੂੰ ਸਿਲਕ ਦੇ ਕੱਪੜੇ ਤੇ ਰਗੜੋ ਅਤੇ ਇਸ ਛੜ ਨੂੰ ਹਵਾ ਨਾਲ ਭਰੇ ਗੁਬਾਰੇ ਦੇ ਨੇੜੇ ਲਿਆਓ।ਕੀ ਹੁੰਦਾ ਹੈ, ਧਿਆਨ ਨਾਲ ਵੇਖੋ।

ਇਨ੍ਹਾਂ ਕਿਰਿਆਵਾਂ ਤੋਂ ਕੀ ਅਸੀਂ ਇਹ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹਾਂ ਕਿ ਦੋ ਵਸਤੂਆਂ ਨੂੰ ਆਪਸ ਵਿੱਚ ਰਗੜਨ ਨਾਲ਼ ਉਨ੍ਹਾਂ ਵਿੱਚ ਬਿਜਲਈ ਚਾਰਜ ਆ ਜਾਂਦਾ ਹੈ? ਇਹ ਚਾਰਜ ਕਿੱਥੋਂ ਆਉਂਦਾ ਹੈ? ਇਸਦਾ ਉੱਤਰ ਓਦੋਂ ਮਿਲਿਆ ਜਦੋਂ ਇਹ ਪਤਾ ਲੱਗਿਆ ਕਿ ਪਰਮਾਣੂ ਵਿਭਾਜ (divisible) ਹੈ ਅਤੇ ਉਹ ਚਾਰਜਿਤ ਕਣਾਂ ਤੋਂ ਬਣਿਆ ਹੈ।

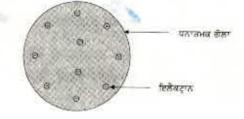
ਪਰਮਾਣੂ ਵਿੱਚ ਮੌਜੂਦ ਚਾਰਜਿਤ ਕਣਾਂ ਦਾ ਪਤਾ ਲਗਾਉਣ ਵਿੱਚ ਕਈ ਵਿਗਿਆਨਕਾਂ ਨੇ ਯੋਗਦਾਨ ਪਾਇਆ।

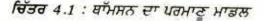
19ਵੀਂ ਸਦੀ ਤੱਕ ਇਹ ਜਾਣ ਲਿਆ ਗਿਆ ਸੀ ਕਿ ਪਰਮਾਣੂ ਸਧਾਰਣ ਅਤੇ ਅਵਿਭਾਜ ਕਣ ਨਹੀਂ ਹੈ, ਬਲਕਿ ਇਸ ਵਿੱਚ ਘੱਟ ਤੋਂ ਘੱਟ ਇਕ ਅਵਪਰਮਾਣੁਕ ਕਣ ਇਲੈਕਟ੍ਰਾੱਨ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਦਾ ਪਤਾ ਜੇ.ਜੇ. ਟਾੱਮਸਨ ਨੇ ਲਾਇਆ ਸੀ। ਇਲੈਕਟਾੱਨ ਦੇ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪਾਪਤ ਹੋਣ ਤੋਂ ਪਹਿਲਾਂ ਈ. ਗੋਲਡਸਟੀਨ ਨੇ 1886 ਵਿੱਚ ਇੱਕ ਨਵੀਂ ਵਿਕਿਰਣ ਦੀ ਖੋਜ ਕੀਤੀ. ਜਿਸ ਨੂੰ ਉਸਨੇ "ਕੈਨਾਲ ਰੇਜ਼" ਦਾ ਨਾਂ ਦਿੱਤਾ। ਇਹ ਕਿਰਣਾਂ ਧਨ ਚਾਰਜਿਤ ਵਿਕਿਰਣਾਂ ਸਨ, ਜਿਸ ਰਾਹੀਂ ਬਾਅਦ ਵਿੱਚ ਦੂਜੇ ਅਵਪਰਮਾਣੁਕ ਕਣਾਂ ਦੀ ਖੋਜ ਹੋਈ। ਇਨ੍ਹਾਂ ਕਣਾਂ ਦਾ ਚਾਰਜ ਇਲੈਕਟਾਨ ਦੇ ਚਾਰਜ ਦੇ ਬਰਾਬਰ, ਪਰ ਉਲਟ ਸੀ। ਇਨ੍ਹਾਂ ਦਾ ਪੂੰਜ ਇਲੈਕਟ੍ਰਾੱਨ ਨਾਲੋਂ ਲਗਭਗ 2000 ਗੁਣਾ ਵੱਧ ਹੁੰਦਾ ਹੈ। ਉਨ੍ਹਾਂ ਨੂੰ ਪ੍ਰੋਟਾੱਨ ਨਾਂ ਦਿੱਤਾ ਗਿਆ। ਆਮ ਤੌਰ 'ਤੇ ਇਲੈਕਟਾੱਨ ਨੂੰ e⁻ ਅਤੇ ਪ੍ਰੋਟਾਨ ਨੂੰ p⁺ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਪੋਟਾਨ ਦਾ ਪੁੰਜ ਇਕਾਈ ਅਤੇ ਇਸ ਦਾ ਚਾਰਜ +1 ਲਿਆ ਜਾਂਦਾ ਹੈ। ਇਲੈਕਟਾੱਨ ਦਾ ਪੰਜ ਨਾਂ-ਮਾਤਰ ਅਤੇ ਚਾਰਜ -1 ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ।

ਅਜਿਹਾ ਮੰਨਿਆ ਗਿਆ ਕਿ ਪਰਮਾਣੂ ਪ੍ਰੋਟਾੱਨ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨ ਤੋਂ ਬਣੇ ਹਨ ਜਿਹੜੇ ਆਪਸ ਵਿੱਚ ਚਾਰਜਾਂ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਦੇ ਹਨ। ਇਹ ਵੀ ਪਤਾ ਲੱਗਿਆ ਕਿ ਪ੍ਰੋਟਾੱਨ ਪਰਮਾਣੂ ਦੇ ਸਭ ਤੋਂ ਅੰਦਰਲੇ ਭਾਗ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਲੈਕਟ੍ਰਾੱਨ ਨੂੰ ਅਸਾਨੀ ਨਾਲ਼ ਕੱਢਿਆ ਜਾ ਸਕਦਾ ਹੈ ਪਰ ਪ੍ਰੋਟਾਨਾਂ ਨੂੰ ਨਹੀਂ। ਹੁਣ ਸਭ ਤੋਂ ਵੱਡਾ ਪ੍ਰਸ਼ਨ ਇਹ ਸੀ ਕਿ ਕਣ ਪਰਮਾਣੂ ਦੀ ਰਚਨਾ ਕਿਵੇਂ ਕਰਦੇ ਹਨ ? ਸਾਨੂੰ ਇਸ ਪ੍ਰਸ਼ਨ ਦਾ ਉੱਤਰ ਹੇਠਾਂ ਮਿਲੇਗਾ।

4.2 ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ (The Structure

of an Atom)


ਅਸੀਂ ਅਧਿਆਇ 3 ਵਿੱਚ ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਦੇ ਬਾਰੇ ਪੜ੍ਹਿਆ ਹੈ, ਜਿਸ ਦੇ ਅਨੁਸਾਰ ਪਰਮਾਣੂ ਅਵਿਭਾਜ ਹੈ ਅਤੇ ਅਵਿਨਾਸੀ ਵੀ। ਪਰ ਪਰਮਾਣੂ ਦੇ ਅੰਦਰ ਦੋ ਮੂਲ ਕਣਾਂ, ਇਲੈਕਟ਼ਾੱਨ ਅਤੇ ਪ੍ਰੋਟਾੱਨ ਦੀ ਖੋਜ ਨੇ ਡਾਲਟਨ ਦੇ ਪਰਮਾਣੂ ਸਿਧਾਂਤ ਦੀ ਇਸ ਧਾਰਣਾ ਨੂੰ ਗਲਤ ਸਾਬਤ ਕਰ ਦਿੱਤਾ। ਹੁਣ ਇਹ ਜਾਣਨਾ ਜ਼ਰੂਰੀ ਸੀ ਕਿ ਇਲੈਕਟ਼ਾਂਨ ਅਤੇ ਪ੍ਰੋਟਾੱਨ ਪਰਮਾਣੂ ਦੇ ਅੰਦਰ ਕਿਸ ਤਰ੍ਹਾਂ ਵਿਵਸਥਿਤ ਹਨ ਅਹੇ ਇਸਨੂੰ ਸਮਝਾਉਣ ਦੇ ਲਈ ਵੱਖ-ਵੱਖ ਵਿਗਿਆਨਕਾ ਨੇ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੇ ਮਾਡਲਾਂ ਨੂੰ ਪੇਸ਼ ਕੀਤਾ। ਜੇ.ਜੇ. ਥੱਮਸਨ ਪਹਿਲੇ ਵਿਗਿਆਨਕਾ ਸਡਲ ਪੇਸ਼ ਕੀਤਾ। ਦੇ ਬਣਤਰ ਨਾਲ਼ ਸੰਬੰਧਿਤ ਪਹਿਲਾ ਮਾਡਲ ਪੇਸ਼ ਕੀਤਾ।


4.2.1 ਥਾੱਮਸਨ ਦਾ ਪਰਮਾਣੂ ਮਾਡਲ

ਥਾੱਮਸਨ ਨੇ ਪਰਮਾਣੂਆਂ ਦੀ ਬਣਤਰ ਨਾਲ਼ ਸਬੰਧਿਤ ਇੱਕ ਮਾਡਲ ਪੇਸ਼ ਕੀਤਾ, ਜੋ ਕ੍ਰਿਸਮਸ ਕੇਕ ਵਾਂਗ ਸੀ। ਇਨ੍ਹਾਂ ਦੇ ਅਨੁਸਾਰ ਪਰਮਾਣੂ ਇੱਕ ਧਨ-ਚਾਰਜਿਤ ਗੋਲਾ ਸੀ, ਜਿਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨ ਕ੍ਰਿਸਮਸ ਕੇਕ ਵਿੱਚ ਲੱਗੇ ਸੁੱਕੇ ਮੇਵਿਆਂ ਦੀ ਤਰ੍ਹਾਂ ਸਨ। ਤਰਬੂਜ਼ ਦੀ ਉਦਾਹਰਣ ਵੀ ਲੈ ਸਕਦੇ ਹਾਂ, ਜਿਸ ਦੇ ਅਨੁਸਾਰ ਪਰਮਾਣੂ ਵਿੱਚ ਧਨ ਚਾਰਜ ਤਰਬੂਜ਼ ਦੇ ਖਾਣ ਵਾਲ਼ੇ ਲਾਲ ਭਾਗ ਵਾਂਗ ਖਿੱਲਰਿਆ

ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ

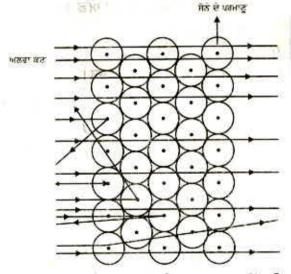
ਹੈ, ਜਦ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਧਨ ਚਾਰਜਿਤ ਗੋਲੇ ਵਿੱਚ ਤਰਬੂਜ਼ ਦੇ ਬੀਜ ਵਾਂਗ ਖੁੱਭੇ ਹਨ (ਚਿੱਤਰ 4.1)।

ਬ੍ਰਿਟਿਸ਼ ਭੌਤਿਕ ਸ਼ਾਸਤਰੀ ਜੇ ਜ਼ੇਤ ਥਾੱਮਸਨ (1856-1940) ਦਾ ਜਨਮ 18 ਦਸੰਬਰ, 1856 ਨੂੰ ਮੈਨਚੈਸਟਰ ਦੇ ਕੀਥਮ ਹਿੱਲ ਖੇਤਰ ਵਿੱਚ ਹੋਇਆ ਸੀ। ਇਲੈਕਟ੍ਰਾਨ ਦੀ ਖੋਜ ਦੇ ਕਾਰਣ 1906 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੂੰ ਨੱਬਲ

ਪੁਰਸਕਾਰ ਮਿਲਿਆ। 35 ਵਰ੍ਹੇ ਉਹ ਕੈਂਬਰਿਜ ਵਿਖੇ ਕੈਵੈਂਡਿਸ਼ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਦੇ ਨਿਰਦੇਸ਼ਕ ਰਹੇ ਸਨ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਖੋਜ ਦੇ ਸੱਤ ਸਹਿਯੋਗੀਆਂ ਨੂੰ ਵੀ ਅੱਗੇ ਚੱਲ ਕੇ ਨੌਬਲ ਪੁਰਸਕਾਰ ਮਿਲਿਆ।

ਥਾੱਮਸਨ ਨੇ ਸੁਝਾਅ ਦਿੱਤਾ ਕਿ :

- (i) ਪਰਮਾਣੂ ਧਨ ਚਾਰਜਿਤ ਗੋਲੇ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ
 ਅਤੇ ਰਿਣ ਚਾਰਜਿਤ ਇਲੈਕਟ੍ਰਾੱਨ ਉਸ ਵਿੱਚ ਖੁੱਭੇ
 ਹੁੰਦੇ ਹਨ।
- (ii) ਰਿਣਾਤਮਕ ਅਤੇ ਧਨਾਤਮਕ ਚਾਰਜ ਮਾਤਰਾ ਵਿੱਚ ਸਮਾਨ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਪਰਮਾਣੂ ਬਿਜਲਈ ਰੂਪ ਵਿੱਚ ਉਦਾਸੀਨ ਹੁੰਦੇ ਹਨ।


ਭਾਵੇਂ ਥਾੱਮਸਨ ਦੇ ਮਾਡਲ ਤੋਂ ਪਰਮਾਣੂ ਦੇ ਉਦਾਸੀਨ ਹੋਣ ਦੀ ਵਿਆਖਿਆ ਹੋ ਗਈ। ਪਰ ਦੂਜੇ ਵਿਗਿਆਨਕਾਂ ਸਾਂ ਦੁਆਰਾ ਕੀਤੇ ਗਏ ਪ੍ਯੋਗਾਂ ਦੇ ਨਤੀਜਿਆਂ ਨੂੰ ਇਸ ਮਾਡਲ ਦੇ ਰਾਹੀਂ ਸਮਝਾਇਆ ਨਹੀਂ ਜਾ ਸਕਿਆ, ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਅੱਗੇ ਵੇਖਾਂਗੇ।

53

4.2.2 ਰਦਰਫੋਰਡ ਦਾ ਪਰਮਾਣੂ ਮਾਡਲ (Rutherfords's model of an Atom)

ਅਰਨੈਸਟ ਰਦਰਫੋਰਡ ਇਹ ਜਾਣਨ ਦੇ ਇੱਛੁਕ ਸਨ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਪਰਮਾਣੂ ਦੇ ਅੰਦਰ ਕਿਵੇਂ ਵਿਵਸਥਿਤ ਹਨ। ਉਨ੍ਹਾਂ ਨੇ ਇਕ ਪ੍ਰਯੋਗ ਕੀਤਾ। ਇਸ ਪ੍ਰਯੋਗ ਵਿੱਚ ਤੇਜ਼ ਗਤੀ ਵਿੱਚ ਚੱਲ ਰਹੇ ਐਲਫ਼ਾ (ਕ) ਕਣਾਂ ਨੂੰ ਸੋਨੇ ਦੀ ਪੱਤੀ ਤੇ ਟਕਰਾਇਆ ਗਿਆ।

- ਇਨ੍ਹਾਂ ਨੇ ਸੋਨੇ ਦੀ ਪੱਤੀ ਇਸ ਲਈ ਚੁਣੀ ਕਿਉਂਕਿ ਉਹ ਬਹੁਤ ਪਤਲੀ ਪਰਤ ਚਾਹੁੰਦੇ ਸਨ। ਇਹ ਸੋਨੇ ਦੀ ਪੱਤੀ 1000 ਪਰਮਾਣੂਆਂ ਦੇ ਬਰਾਬਰ ਮੋਟੀ ਸੀ।
- ਐਲਫਾ (α) ਕਣ ਦੋ-ਚਾਰਜਿਤ ਹੀਲੀਅਮ ਕਣ ⁴/₂He ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਹ ਧਨ-ਚਾਰਜਿਤ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਦਾ ਪੁੰਜ 4 u ਹੁੰਦਾ ਹੈ ਇਸ ਲਈ ਤੇਜ਼ ਗਤੀ ਵਿੱਚ ਚੱਲ ਰਹੇ ਇਨ੍ਹਾਂ ਐਲਫਾ ਕਣਾਂ ਵਿੱਚ ਕਾਫ਼ੀ ਊਰਜਾ ਹੁੰਦੀ ਹੈ।
- ਇਹ ਅੰਦਾਜ਼ਾ ਸੀ ਕਿ ਐਲਫਾ ਕਣ ਸੋਨੇ ਦੇ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਮੌਜੂਦ ਅਵਪਰਮਾਣੁਕ ਕਣਾਂ ਦੁਆਰਾ ਵਿਖੇਪਿਤ ਹੋਣਗੇ। ਕਿਉਂਕਿ ਐਲਫਾ ਕਣ ਪ੍ਰੋਟਾੱਨ ਤੋਂ ਵੱਧ ਭਾਰੇ ਸਨ, ਇਸ ਲਈ ਉਨ੍ਹਾਂ ਨੇ ਇਨ੍ਹਾਂ ਦੇ ਵਧੇਰੇ ਵਿਖੇਪਨ ਦੀ ਆਸ ਨਹੀਂ ਕੀਤੀ ਸੀ।

ਪਰ ਐਲਫਾ ਕਣ ਖਿੰਡਾਊ ਪ੍ਰਯੋਗ (α-particle scattering experiment) ਨੇ ਆਸ ਤੋਂ ਬਿਲਕੁਲ ਉਲਟਾ ਸਿੱਟਾ ਦਿੱਤਾ (ਚਿੱਤਰ 4.2)। ਇਸ ਤੋਂ ਹੇਠ ਲਿਖੇ ਸਿੱਟੇ ਮਿਲੇ :

 (i) ਤੇਜ਼ ਗਤੀ ਨਾਲ਼ ਚੱਲ ਰਹੇ ਵਧੇਰੇ ਐਲਫਾ-ਕਣ ਸੋਨੇ ਦੀ ਪੱਤੀ ਵਿੱਚੋਂ ਸਿੱਧੇ ਨਿਕਲ ਗਏ।

54

- (ii) ਕੁਝ ਐਲਫਾ ਕਣ ਪੱਤੀ ਦੇ ਦੁਆਰਾ ਬਹੁਤ ਛੋਟੇ-ਛੋਟੇ ਕੋਣ ਨਾਲ ਵਿਖੇਪਿਤ ਹੋਏ।
- (iii) ਹੈਰਾਨੀਜਨਕ ਰੂਪ ਨਾਲ ਹਰੇਕ 12000 ਕਣਾਂ ਵਿੱਚੋਂ ਇੱਕ ਕਣ ਵਾਪਸ ਆ ਗਿਆ।

ਰਦਰਫੋਰਡ ਦੇ ਅਨੁਸਾਰ ਇਹ ਸਿੱਟਾ ਉਸੇ ਤਰ੍ਹਾਂ ਯਕੀਨਯੋਗ ਨਹੀਂ ਸੀ, ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ ਇੱਕ 15 ਇੰਚ ਦੇ ਤੋਪ ਦੇ ਗੋਲੇ ਨੂੰ ਟਿਸ਼ੂ ਪੇਪਰ ਦੇ ਟੁਕੜੇ ਤੇ ਮਾਰਦੇ ਹੋ ਅਤੇ ਉਹ ਵਾਪਸ ਤੁਹਾਨੂੰ ਹੀ ਸੱਟ ਪਹੁੰਚਾਉਂਦਾ ਹੈ।

ਈ. ਰਦਰਫੋਰਡ (1871-1937) ਦਾ ਜਨਮ 30 ਅਗਸਤ 1871 ਵਿੱਚ ਸਪਰਿੰਗ ਗਰੋਵ ਵਿੱਚ ਹੋਇਆ ਸੀ। ਉਨ੍ਹਾਂ ਨੂੰ ਨਾਭਿਕੀ ਭੌਤਿਕੀ ਦਾ ਜਨਕ ਮੰਨਿਆ ਜਾਂਦਾ ਸੀ। ਰੇਡੀਓ-ਐਕਟਿਵਤਾ ਤੇ ਆਪਣੇ

ਯੋਗਦਾਨ ਅਤੇ ਸੋਨੇ ਦੀ ਪੱਤੀ ਦੇ ਰਾਹੀਂ ਪਰਮਾਣੂ ਦੇ ਨਾਭਿਕ ਦੀ ਖੋਜ ਲਈ ਉਹ ਬਹੁਤ ਪ੍ਰਸਿੱਧ ਹੋਏ।1908 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੂੰ ਨੋਬਲ ਪੁਰਸਕਾਰ ਮਿਲਿਆ।

ਇਸ ਪ੍ਰਯੋਗ ਦੇ ਸਿੱਟੇ ਨੂੰ ਸਮਝਣ ਲਈ ਇਕ ਖੁੱਲ੍ਹੇ ਮੈਦਾਨ ਵਿੱਚ ਇੱਕ ਕਿਰਿਆ ਕਰਦੇ ਹਾਂ। ਮੰਨ ਲਓ ਕਿ ਇੱਕ ਬੱਚਾ ਆਪਣੀਆਂ ਅੱਖਾਂ ਨੂੰ ਬਂਦ ਕਰਕੇ ਇਕ ਦੀਵਾਰ ਦੇ ਸਾਹਮਣੇ ਖੜਾ ਹੈ। ਉਸ ਨੂੰ ਦੀਵਾਰ ਤੇ ਕੁੱਝ ਦੂਰੀ ਤੋਂ ਪੱਥਰ ਮਾਰਨ ਲਈ ਕਹੋ। ਹਰੇਕ ਪੱਥਰ ਦੇ ਦੀਵਾਰ ਨਾਲ ਟਕਰਾਉਣ ਦੇ ਨਾਲ ਉਹ ਇੱਕ ਅਵਾਜ਼ ਸੁਣੇਗਾ। ਜੇ ਉਹ ਇਸ ਨੂੰ ਦਸ ਵਾਰ ਦੋਹਰਾਵੇਗਾ ਤਾਂ ਉਹ ਦਸ ਵਾਰ ਅਵਾਜ਼ ਸੁਣੇਗਾ। ਪਰ ਜੇ ਅੱਖ ਬੰਦ ਕੀਤੇ ਹੋਏ ਬੱਚਾ ਤਾਰ ਨਾਲ ਘਿਰੀ ਹੋਈ ਚਾਰ ਦੀਵਾਰੀ ਤੇ ਪੱਥਰ ਮਾਰੇਗਾ ਤਾਂ ਵਧੇਰੇ ਪੱਥਰ ਉਸ ਘੇਰੇ ਤੇ ਨਹੀਂ ਟਕਰਾਉਣਗੇ ਅਤੇ ਕੋਈ ਅਵਾਜ਼ ਸੁਣਾਈ ਨਹੀਂ ਦੇਵੇਗੀ। ਕਿਉਂਕਿ ਘੇਰੇ ਦੇ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਖਾਲੀ ਥਾਵਾਂ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚੋਂ ਪੱਥਰ ਨਿਕਲ ਜਾਂਦਾ ਹੈ।

ਇਸੇ ਤਰਕ ਦੇ ਅਨੁਸਾਰ, ਐਲਫਾ ਕਣ ਖਿੰਡਾਊ ਪ੍ਰਯੋਗ ਦੇ ਅਧਾਰ ਤੇ ਰਦਰਫੋਰਡ ਨੇ ਹੇਠ ਲਿਖੇ ਸਿੱਟੇ ਕੱਢੇ:-

 (i) ਪਰਮਾਣੂ ਦੇ ਅੰਦਰ ਦਾ ਵਧੇਰੇ ਭਾਗ ਖਾਲੀ ਹੈ ਕਿਉਂਕਿ ਵਧੇਰੇ ਐਲਫਾ-ਕਣ ਬਿਨਾਂ ਮੁੜੇ ਹੋਏ ਸੋਨੇ ਦੀ ਪੱਤੀ ਤੋਂ ਬਾਹਰ ਨਿਕਲ ਜਾਂਦੇ ਹਨ।

ਵਿਗਿਆਨ

- (ii) ਬਹੁਤ ਘੱਟ ਐਲਫਾ ਕਣ ਆਪਣੇ ਮਾਰਗ ਤੋਂ ਮੁੜੇ ਹੁੰਦੇ ਹਨ, ਜਿਸ ਤੋਂ ਇਹ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਪਰਮਾਣੂ ਵਿੱਚ ਧਨ ਚਾਰਜਿਤ ਭਾਗ ਬਹੁਤ ਘੱਟ ਹੈ।
- (iii) ਬਹੁਤ ਘੱਟ ਐਲਫਾ ਕਣ 180° ਤੇ ਮੁੜੇ ਹੋਏ ਸਨ, ਜਿਸ ਤੋਂ ਇਹ ਸੰਕੇਤ ਮਿਲਦਾ ਹੈ ਕਿ ਸੋਨੇ ਦੇ ਪਰਮਾਣੂ ਦਾ ਪੂਰਣ ਧਨ ਚਾਰਜਿਤ ਭਾਗ ਅਤੇ ਪੁੰਜ ਪਰਮਾਣੂ ਦੇ ਅੰਦਰ ਬਹੁਤ ਘੱਟ ਆਇਤਨ ਵਿੱਚ ਸੀਮਿਤ ਹੈ। ਪ੍ਰਾਪਤ ਅੰਕੜਿਆਂ ਦੇ ਅਧਾਰ ਤੇ ਉਨ੍ਹਾਂ ਨੇ ਨਤੀਜਾ

ਕੱਢਿਆ ਕਿ ਨਾਭਿਕ ਦਾ ਅਰਧ ਵਿਆਸ ਪਰਮਾਣੂ ਦੇ ਅਰਧ ਵਿਆਸ ਤੋਂ 10⁵ ਗੁਣਾ ਛੋਟਾ ਹੈ।

ਆਪਣੇ ਪ੍ਰਯੋਗਾਂ ਦੇ ਅਧਾਰ ਤੇ ਰਦਰਫੋਰਡ ਨੇ ਪਰਮਾਣੂ ਦਾ ਨਾਭਿਕੀ ਮਾਡਲ ਪੇਸ਼ ਕੀਤਾ, ਜਿਸ ਦੇ ਹੇਠ ਲਿਖੇ ਲੱਛਣ ਸਨ :

- ਪਰਮਾਣੂ ਦਾ ਕੇਂਦਰ ਧਨ ਚਾਰਜਿਤ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਨਾਭਿਕ (nucleus) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਪਰਮਾਣੂ ਦਾ ਲਗਭਗ ਸਾਰਾ ਪੁੰਜ ਨਾਭਿਕ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
- (ii) ਇਲੈਕਟ੍ਰਾੱਨ ਨਾਭਿਕ ਦੇ ਆਲ਼ੇ-ਦੁਆਲ਼ੇ ਅਤੇ ਨਿਸ਼ਚਿਤ ਆੱਰਬਿਟ (orbit) ਵਿੱਚ ਚੱਕਰ ਲਾਉਂਦੇ ਹਨ।
- (iii) ਨਾਭਿਕ ਦਾ ਅਕਾਰ ਪਰਮਾਣੂ ਦੇ ਅਕਾਰ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਕਾਫ਼ੀ ਘੱਟ ਹੁੰਦਾ ਹੈ।

ਰਦਰਫੋਰਡ ਦੇ ਪਰਮਾਣੂ ਮਾਡਲ ਦੀਆਂ ਖਾਮੀਆਂ

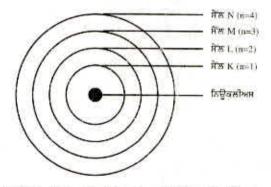
ਕੋਈ ਵੀ ਚਾਰਜਿਤ ਕਣ ਗੋਲਾਕਾਰ ਆਰਬਿਟ (circular orbit) ਵਿੱਚ ਸਥਾਈ ਨਹੀਂ ਹੁੰਦਾ। ਪ੍ਰਵੇਗ (acceleration) ਦੇ ਦੌਰਾਨ ਚਾਰਜਿਤ ਕਣਾਂ ਤੋਂ ਊਰਜਾ ਦਾ ਵਿਕਿਰਣ ਹੋਵੇਗਾ ਅਤੇ ਨਾਭਿਕ ਨਾਲ਼ ਟਕਰਾ ਜਾਵੇਗਾ। ਜੇ ਅਜਿਹਾ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਪਰਮਾਣੂ ਅਸਥਿਰ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪਰਮਾਣੂ ਸਥਾਈ ਹੁੰਦੇ ਹਨ।

4.2.3 ਬੋਹਰ ਦਾ ਪਰਮਾਣੂ ਮਾਡਲ (Bohr's Model of Atom)

ਰਦਰਫੋਰਡ ਦੇ ਮਾਡਲ ਦੀਆਂ ਖ਼ਾਮੀਆਂ ਨੂੰ ਦੂਰ ਕਰਨ ਦੇ ਲਈ, ਨੀਲਸ ਬੋਹਰ ਨੇ ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ ਦੇ ਬਾਰੇ ਵਿੱਚ ਹੇਠ ਲਿਖੀਆਂ ਸੋਧਾਂ ਪੇਸ਼ ਕੀਤੀਆਂ -

ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ

- (i) ਇਲੈਕਟ੍ਰਾੱਨ ਕੇਵਲ ਕੁੱਝ ਨਿਸ਼ਚਿਤ ਆੱਰਬਿਟਾਂ ਵਿੱਚ ਹੀ ਚੱਕਰ ਲਗਾ ਸਕਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਇਲੈਕਟ੍ਰਾਨ ਦੇ ਵਿਸ਼ੇਸ਼ ਪੱਥ (discrete orbits) ਕਹਿੰਦੇ ਹਨ।
- (ii) ਜਦੋਂ ਇਲੈਂਕਟ੍ਰਾਨ ਇਸ ਵਿਸ਼ੇਸ਼ ਪੱਥ ਵਿੱਚ ਚੱਕਰ ਲਾਉਂਦੇ ਹਨ ਤਾਂ ਉਨ੍ਹਾਂ ਦੀ ਊਰਜਾ ਦਾ ਵਿਕਿਰਣ ਨਹੀਂ ਹੁੰਦਾ।


ਨੀਲਸ ਬੋਹਰ (1885–1962) ਦਾ ਜਨਮ 7 ਅਕਤੂਬਰ 1885 ਵਿੱਚਰਾ ਕੈਪਨਹੇਗਨ ਵਿੱਚ ਹੋਇਆ ਸੀ। 1916 ਵਿੱਚ ਕੋਪਨਹੇਗਨ ਯੂਨੀਵਰਸਿਟੀ ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੂੰ ਭੌਤਿਕ ਸ਼ਾਸਤਰ ਦਾ ਪ੍ਰੋਫੈਸਰ ਨਿਯੁਕਤ ਕੀਤਾ ਗਿਆ। 1922

ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੂੰ ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ ਤੇ ਆਪਣੇ ਯੋਗਦਾਨ ਦੇ ਲਈ ਨੋਬਲ ਪੁਰਸਕਾਰ ਮਿਲਿਆ। ਪ੍ਰੋਫੈਸਰ ਬੋਹਰ ਦੇ ਅਨੇਕਾਂ ਲੇਖਾਂ ਤੇ ਅਧਾਰਿਤ ਤਿੰਨ ਕਿਤਾਬਾਂ ਛਪੀਆਂ-

- (i) ਦਿ ਥਿਊਰੀ ਆੱਫ ਸਪੈਕਟਰਾ ਐਂਡ ਅਟਾੱਮਿਕ ਕਾਂਸਟੀਟਿਊਸ਼ਨ
- (ii) ਅਟਾੱਮਿਕ ਬਿਊਰੀ
- (iii) ਦਿ ਡਿਸਕਰਿਪਸ਼ਨ ਆੱਫ ਨੇਚਰ।

ਇਨ੍ਹਾਂ ਆੱਰਬਿਟਾਂ ਜਾਂ ਸ਼ੈੱਲਾਂ (shells) ਨੂੰ ਊਰਜਾ ਪੱਧਰ (energy levels) ਕਹਿੰਦੇ ਹਨ। ਚਿੱਤਰ 4.3 ਵਿੱਚ ਇਕ ਪਰਮਾਣੂ ਦੇ ਊਰਜਾ ਪੱਧਰਾਂ ਨੂੰ ਵਿਖਾਇਆ ਗਿਆ ਹੈ।

ਚਿੱਤਰ 4.3 : ਕਿਸੇ ਪਰਮਾਣੂ ਵਿੱਚ ਕੁੱਝ ਉਰਜਾ ਪੱਧਰ

ਇਹ ਆਰਬਿਟ (ਜਾਂ ਕੋਸ਼) K, L, M, N.... ਜਾਂ ਸੰਖਿਆਵਾਂ 1, 2, 3, 4.... ਦੇ ਦੁਆਰਾ ਵਿਖਾਏ ਜਾਂਦੇ ਹਨ।

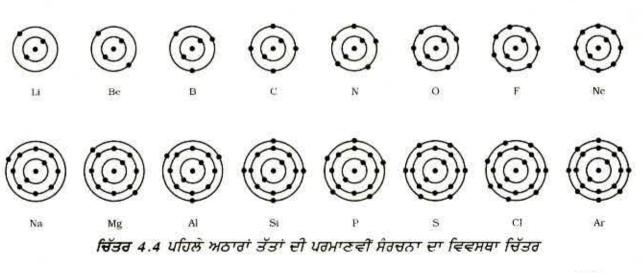
55

।. ਪਰਮਾਣੂ ਉਦਾਸੀਨ ਹੈ, ਇਸ ਤੱਥ ਨੂੰ ਥਾੱਮਸਨ ਦੇ ਮਾਡਲ ਦੇ ਅਧਾਰ ਤੇ ਸਪਸ਼ਟ ਕਰੋ।

- ਰਦਰਫ਼ੋਰਡ ਦੇ ਪਰਮਾਣੂ ਮਾਡਲ ਅਨੁਸਾਰ, ਪਰਮਾਣੂ ਦੇ ਨਾਭਿਕ ਵਿੱਚ ਕਿਹੜਾ ਅਵਪਰਮਾਣੁਕ ਕਣ ਮੌਜੂਦ ਹੈ?
- 3. ਤਿੰਨ ਆਰਬਿਟਾਂ ਵਾਲੇ ਬੋਹਰ ਦੇ ਪਰਮਾਣੂ ਮਾਡਲ ਦਾ ਚਿੱਤਰ ਬਣਾਓ।
- 4. ਕੀ ਐਲੋਫਾ-ਕਣਾਂ ਦਾ ਖਿੰਡਾਊ ਪ੍ਰਯੋਗ ਸੋਨੇ ਤੋਂ ਇਲੀਵਾਂ ਦੂਜੀ ਧਾਤ ਦੀ ਪੱਤੀ ਨਾਲ ਸੰਭਵ ਹੋਵੇਗਾ?

4.2.4 ਨਿਊਟ੍ਰਾਨ (Neutrons)

16


1932 ਵਿੱਚ ਜੇ. ਚੈਡਵਿੱਕ ਨੇ ਇੱਕ ਹੋਰ ਪਰਮਾਣੂ ਦੇ ਨਿਕੜੇ ਕਣ ਨੂੰ ਖੋਜ ਕੱਢਿਆ, ਜੋ ਚਾਰਜ ਰਹਿਤ ਅਤੇ ਪੁੰਜ ਵਿੱਚ ਪ੍ਰੋਟਾੱਨ ਦੇ ਬਰਾਬਰ ਸੀ। ਇਸ ਲਈ ਇਸ ਦਾ ਨਾਂ ਨਿਊਟ੍ਰਾੱਨ ਪਿਆ। ਹਾਈਡ੍ਰੋਜਨ ਨੂੰ ਛੱਡ ਕੇ ਇਹ ਸਭ ਪਰਮਾਣੂਆਂ ਦੇ ਨਾਭਿਕ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਆਮ ਤੌਰ 'ਤੇ ਨਿਊਟ੍ਰਾੱਨ ਨੂੰ 'n' ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ ਨਾਭਿਕ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਰੋਟਾੱਨ ਅਤੇ ਨਿਊਟ੍ਰਾੱਨ ਦੇ ਪੁੰਜ ਦੇ ਜੋੜ ਦੁਆਰਾ ਪ੍ਰਗਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਪ੍ਰਿਸ਼ਨ

 ਪਰਮਾਣੂ ਦੇ ਤਿੰਨ ਨਿਕੜੇ ਕਣਾਂ ਦੇ ਨਾਂ ਲਿਖੇ।
 ਹੀਲੀਅਮ ਪਰਮਾਣੂ ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ 4 ॥ ਹੈ ਅਤੇ ਉਸਦੇ ਨਾਭਿਕ ਵਿੱਚ ਦੋ ਪ੍ਰੋਟਾੱਨ ਹੁੰਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਕਿੰਨੇ ਨਿਊਟਾੱਨ ਹੋਣਗੇ ?

4.3 ਵੱਖ-ਵੱਖ ਪਥਾਂ (Orbits) ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਕਿਵੇਂ ਵੰਡੇ ਹੁੰਦੇ ਹਨ ?

ਪਰਮਾਣੂਆਂ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਪੱਥਾਂ (orbits) ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਵੰਡ ਲਈ ਬੋਹਰ ਅਤੇ ਬਰੀ (Bohr and Bury) ਨੇ ਕੁਝ ਨਿਯਮਾਂ ਦੇ ਸੁਝਾਅ ਦਿੱਤੇ।

(i) ਇਨ੍ਹਾਂ ਨਿਯਮਾਂ ਅਨੁਸਾਰ ਕਿਸੇ ਆਰਬਿਟ ਵਿੱਚ ਮੌਜੂਦ ਵੱਧ ਤੋਂ ਵੱਧ ਇਲੈਕਟ਼ਾਂਨਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਸੂਤਰ 2n² ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੇ 'n' ਆਰਬਿਟ ਦੀ ਸੰਖਿਆ ਜਾਂ ਊਰਜਾ ਪੱਧਰ ਹੈ। ਇਸ ਲਈ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਸੰਖਿਆ ਪਹਿਲੇ ਆਰਬਿਟ ਜਾਂ K ਆਰਬਿਟ ਵਿੱਚ ਹੋਵੇਗੀ = 2×1²= 2, ਦੂਜੇ ਆਰਬਿਟ ਵਿੱਚ ਹੋਵੇਗੀ = 2×2²= 2, ਦੂਜੇ ਆਰਬਿਟ ਵਿੱਚ ਜਾਂ L ਆਰਬਿਟ ਵਿੱਚ ਹੋਵੇਗੀ = 2 × 2² = 8, ਤੀਜੇ ਆਰਬਿਟ ਵਿੱਚ ਜਾਂ M ਆਰਬਿਟ ਵਿੱਚ ਹੋਵੇਗੀ = 2 × 3² = 18, ਚੌਥੇ ਆਰਬਿਟ ਜਾਂ N ਆਰਬਿਟ ਵਿੱਚ ਹੋਵੇਗੀ = 2 × 4² = 32 ।

- (ii) ਸਭ ਤੋਂ ਬਾਹਰੀ ਆਰਬਿਟ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਸੰਖਿਆ 8 ਹੋ ਸਕਦੀ ਹੈ।
- (iii) ਕਿਸੇ ਪਰਮਾਣੂ ਦੇ ਦਿੱਤੇ ਗਏ ਆੱਰਬਿਟ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਉਦੋਂ ਤੱਕ ਥਾਂ ਨਹੀਂ ਲੈਂਦੇ ਜਦ ਤਕ ਕਿ ਉਸ ਤੋਂ ਪਹਿਲੇ ਵਾਲੇ ਅੰਦਰਲੇ ਆਰਬਿਟ ਪੂਰੀ ਤਰ੍ਹਾਂ ਭਰ ਨਹੀਂ ਜਾਂਦੇ। ਇਸ ਤੋਂ ਸਪਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ਆਰਬਿਟ ਕ੍ਰਮ ਅਨੁਸਾਰ ਭਰਦੇ ਹਨ।

ਪਹਿਲੇ ਅਠਾਰਾਂ ਤੱਤਾਂ ਦੀ ਪਰਮਾਣੂ ਬਣਤਰ ਚਿੱਤਰ 4.4 ਵਿੱਚ ਵਿਖਾਈ ਗਈ ਹੈ।

विविभरत

orbits)

ਸਥਾਈ ਪਰਮਾਣਵਿਕ ਮਾਡਲ ਤਿਆਰ ਕਰੋ ਅਤੇ ਪਹਿਲੇ ਅਠਾਰਾਂ ਤੱਤਾਂ ਦੇ ਇਲੈਕਟ੍ਰਾਂਨਿਕ ਤਰਤੀਬ ਨੂੰ ਵਿਖਾਓ। ਪਹਿਲੇ ਅਠਾਰਾਂ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੀ ਸੰਯੋਜਨ ਸਾਰਣੀ 4.1 ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਹੈ।

4.2

ਸ਼ਨ

।. ਕਾਰਥਨ ਅਤੇ ਸ਼ੋਡੀਅਮ ਦੇ ਪਰਮਾਣੂਆਂ ਲਈ ਤਾਇਲੈਕਟ੍ਰਾਨ ਵੰਡ ਲਿਖੋ।

2.= ਜੇ ਕਿਸੇ ਪਰਮਾਣੂ ਦਾ K ਅਤੇ L ਸ਼ੈੱਲ ਭਰਿਆ ਹੈ, ਤਾਂ ਉਸ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੱਖਿਆ ਕੀ ਹੋਵੇਗੀ ?

4.4 ਸੰਯੋਜਕਤਾ (Valency)

ਅਸੀਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ ਕਿ ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਆਰਬਿਟਾਂ (ਜਾਂ ਸ਼ੈੱਲਾਂ) ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਕਿਵੇਂ ਤਰਤੀਬ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਕਿਸੇ ਪਰਮਾਣੂ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰਲੇ ਸ਼ੈੱਲ ਵਿੱਚ ਮੌਜੂਦ ਇਲੈਕਟ੍ਰਾਨਾਂ ਨੂੰ ਸੰਯੋਜਕਤਾ-ਇਲੈਕਟ੍ਰਾਨ (valence electrons) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

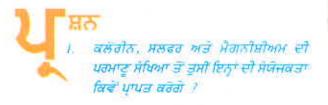
ਬੋਹਰ-ਬਰੀ ਸਕੀਮ ਤੋਂ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਪਰਮਾਣੂ ਦਾ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵੱਧ ਤੋਂ ਵੱਧ 8 ਇਲੈਕਟ੍ਰਾੱਨ ਰੱਖ ਸਕਦਾ ਹੈ। ਇਹ ਵੇਖਿਆ ਗਿਆ ਸੀ ਕਿ ਜਿਨ੍ਹਾਂ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣੂਆਂ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਭਰੇ ਹੁੰਦੇ ਹਨ, ਉਹ ਰਸਾਇਣਿਕ ਰੂਪ ਵਿੱਚ ਕਿਰਿਆਸ਼ੀਲ ਨਹੀਂ ਹੁੰਦੇ।ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਉਨ੍ਹਾਂ ਦੀ ਸੰਯੋਜਨ ਸ਼ਕਤੀ ਜਾਂ ਸੰਯੋਜਕਤਾ ਸਿਫਰ ਹੁੰਦੀ ਹੈ।

ਇਨ੍ਹਾਂ ਅਕਿਰਿਆਸ਼ੀਲ ਤੱਤਾਂ ਵਿੱਚੋਂ ਹੀਲੀਅਮ ਪਰਮਾਣ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਆੱਰਬਿਟ ਵਿੱਚ ਦੋ (2) ਇਲੈਕਟ਼ਾਨ ਹੁੰਦੇ ਹਨ ਅਤੇ ਦੁਜਿਆਂ ਵਿੱਚ ਅੱਠ (8) ਹੁੰਦੇ ਹਨ। ਕਿਰਿਆਸ਼ੀਲ ਤੱਤਾਂ ਦੇ ਪਰਮਾਣਆਂ ਦੀ ਸੰਯੋਜਨ-ਸ਼ਕਤੀ ਜਾਂ ਆਪਣੇ ਹੀ ਜਾਂ ਕਿਸੇ ਹੋਰ ਤੱਤ ਦੇ ਪਰਮਾਣੂਆਂ ਨਾਲ ਮਿਲ ਕੇ ਅਣੂ ਬਨਾਉਣ ਦੀ ਪਰਵਿਰਤੀ ਆਪਣੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਨੂੰ ਪੂਰਣ ਰੂਪ ਵਿੱਚ ਭਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਮੰਨੀ ਜਾਂਦੀ ਹੈ। ਅੱਠ ਇਲੈਕਟ੍ਰਾੱਨ ਵਾਲੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਨੂੰ ਅਸ਼ਟਕ (Ociel) ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਪਰਮਾਣ ਆਪਣੇ ਅੰਤਿਮ ਸ਼ੈੱਲ ਵਿੱਚ ਅਸ਼ਟਕ ਪਾਪਤ ਕਰਨ ਲਈ ਕਿਰਿਆ ਕਰਦੇ ਹਨ। ਇਹ ਆਪਸ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸਾਂਝੇਦਾਰੀ ਕਰਨ, ਉਨ੍ਹਾਂ ਨੂੰ ਗ੍ਰਹਿਣ ਕਰਨ ਜਾਂ ਉਨ੍ਹਾਂ ਦਾ ਤਿਆਗ ਕਰਨ ਨਾਲ਼ ਹੁੰਦਾ ਹੈ। ਪਰਮਾਣੂ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈਲ ਵਿੱਚ ਇਲੈਕਟਾੱਨਾਂ ਦੇ ਅਸ਼ਟਕ ਬਨਾਉਣ ਦੇ ਲਈ ਜਿੰਨੀ ਸੰਖਿਆ ਵਿੱਚ ਇਲੈਕਟਾੱਨਾਂ ਦੀ ਸਾਂਝੇਦਾਰੀ ਜਾਂ ਸਥਾਨ-ਅੰਤਰਨ ਹੁੰਦਾ ਹੈ, ਉਹੀ ਉਸ ਤੱਤ ਦੀ ਸੰਯੋਜਕਤਾ ਸ਼ੁਕਤੀ ਜਾਂ ਸੰਯੋਜਕਤਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਦੀ ਚਰਚਾ ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਕੀਤੀ ਗਈ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਹਾਈਡੋਜਨ. ਲਿਬਿਅਮ ਜਾਂ ਸੋਡੀਅਮ ਹਰੇਕ ਦੇ ਪਰਮਾਣਆਂ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ ਇੱਕ-ਇੱਕ ਇਲੈਕਟਾੱਨ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਹ ਇੱਕ ਇਲੈਕਟਾੱਨ ਦਾ ਤਿਆਗ ਕਰ ਸਕਦੇ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਦੀ ਸੰਯੋਜਕਤਾ ਇੱਕ (1) ਕਹੀ ਜਾਂਦੀ ਹੈ। ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਮੈਗਨੀਸ਼ੀਅਮ ਅਤੇ ਐਲਮੀਨੀਅਮ ਦੀ ਸੰਯੋਜਕਤਾ ਕਿੰਨੀ ਹੈ? ਇਹ ਕ੍ਰਮਵਾਰ 2 ਅਤੇ 3 ਹੈ ਕਿਉਂਕਿ ਮੈਗਨੀਸ਼ੀਅਮ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ 2 ਅਤੇ ਐਲੂਮੀਨੀਅਮ ਦੇ 3 ਇਲੈਕਟਾੱਨ ਹੁੰਦੇ ਹਨ।

ਜੇ ਕਿਸੇ ਪਰਮਾਣੂ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਉਸ ਦੀ ਸਮਰੱਥਾ ਦੇ ਅਨੁਸਾਰ ਲਗਭਗ ਪੂਰੀ ਹੈ ਤਾਂ ਸੰਯੋਜਕਤਾ ਇਕ ਵੱਖਰੀ ਤਰ੍ਹਾਂ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ, ਫਲੋਰੀਨ ਪਰਮਾਣੂ ਦੇ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ ਸੱਤ (7) ਇਲੈਕਟ੍ਰਾੱਨ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਸਦੀ ਸੰਯੋਜਕਤਾ ਸੱਤ (7) ਹੋ ਸਕਦੀ ਹੈ ਪਰ ਸਭ ਤੋਂ ਬਾਹਰੀ ਸ਼ੈੱਲ ਵਿੱਚ ਅਸ਼ਟਕ ਬਨਾਉਣ ਦੇ ਲਈ ਫਲੋਰੀਨ ਲਈ 7 ਇਲੈਕਟ੍ਰਾਂਨਾਂ ਦਾ ਤਿਆਗ ਕਰਨ ਦੀ ਬਜਾਏ ਇੱਕ (1) ਇਲੈਕਟ੍ਰਾਂਨ ਪ੍ਰਾਪਤ ਕਰਨਾ ਵਧੇਰੇ ਅਸਾਨ ਹੈ। ਇਸ ਲਈ ਇਸਦੀ ਸੰਯੋਜਕਤਾ

57

ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ


ਸਾਰਣੀ 4.1: ਵੱਖ-ਵੱਖ ਬੈੱਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਵੇਡ ਦੇ ਨਾਲ ਪਹਿਲੇ ਅਨਾਰਾਂ ਤੱਤਾਂ ਦੇ ਪਰਮਾਟੂਆਂ ਦਾ ਸੇਯੋਜਨ										
ਤੱਤ ਦਾ ਨਾਂ	ਸ਼ੰਕੇਤ	ਪਰਮਾਣੂ ਸੰਖਿਆ	ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਦੀ	ਨਿਊਟ਼ਾੱਨਾਂ ਇਲੈਕਟ਼ਾਂਨਾਂ ਦੀ ਦੀ		ਇਲੈਕਟ੍ਰਾੱਨਾਂ ਦੀ ਵੰਡ			ਸੰਯੋ- ਜਕਤਾ	
			ਸੰਖਿਆ	ਸੰਖਿਆ	ਸੰਖਿਆ	K	L	M	N	
ਹਾਈਡ੍ਰੋਜਨ	Н	1	1	-	1	1		140	240	I
ਹੀਲੀਅਮ	He	2	2	2	2	2	-	1	86	0
ਲਿਬਿਅਮ	Li	3	3	4	3	2	1	-	ক্টিন	1
ਬੈਰੀਲਿਅਮ	Be	4	4	5	4	2	2		SH3	-
ਬੋਰਾੱਨ	В	5	5	6	5	2	3	-	A	3
ਕਾਰਬਨ	С	6	6	6	6	2	4	-	-	4
ਨਾਈਟ੍ਰੋਜਨ	N	7	7	7	7	2	5	-	-	3
ਆਕਸੀਜਨ	0	8	8	8	8	2	6		÷	2
ਫਲੋਰੀਨ	F	9	9	10	9	2	7	-	-	1
ਨੀਓਨ	Ne	10	10 _{sī}	10	10	2	8	-	1146	0
ਸੋਡੀਅਮ	Na	11	11	12	11	2	8	1	TRAN	1
ਮੈਗਨੀਸ਼ੀਅਮ	Mg	12	12	12	12	2	8	2	2	2
ਐਲੂਮੀਨੀਅਮ	Al	13	13	14	13	2	8	3	구별기	3
ਸਿਲੀਕਾੱਨ	Si	14	14	14	14	2	8	4	an	4
ਫਾੱਸਫੋਰਸ	Р	15	15	16	15	2	8	5	ant.	3,5
ਸਲਫਰ	S	16	16	16	16	2	8	6	-	2
ਕਲੋਰੀਨ	CI	17	17	18	17	2	8	7	-	1
ਆਰਗੱਨ	Ar	18	18	22	18	2	8	8		0

ਅਸ਼ਟਕ ਵਿੱਚੋਂ ਸੱਤ (7) ਘਟਾ ਕੇ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਫਲੋਰੀਨ ਦੀ ਸੰਯੋਜਕਤਾ ਇੱਕ (1) ਹੈ। ਆਕਸੀਜਨ ਦੀ ਸੰਯੋਜਕਤਾ ਦੀ ਗਣਨਾ ਵੀ ਇਸੇ ਤਰ੍ਹਾਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਸ ਗਣਨਾ ਨਾਲ਼ ਆਕਸੀਜਨ ਦੀ ਸੰਯੋਜਕਤਾ ਕਿੰਨੀ ਹੋਵੇਗੀ ?

ਇਸ ਤਰ੍ਹਾਂ ਹਰੇਕ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਦੀ ਇਕ ਨਿਸ਼ਚਿਤ ਸੰਯੋਜਨ ਸ਼ਕਤੀ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਸੰਯੋਜਕਤਾ

58

ਕਹਿੰਦੇ ਹਨ। ਪਹਿਲੇ 18 ਤੱਤਾਂ ਦੀ ਸੰਯੋਜਕਤਾ ਸਾਰਣੀ 4.1 ਦੇ ਅੰਤਿਮ ਕਾਲਮ ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਹੈ।

ਵਿਗਿਆਨ

4.5 ਪਰਮਾਣੂ ਸੰਖਿਆ ਅਤੇ ਪੁੰਜ ਸੰਖਿਆ

4.5.1 ਪਰਮਾਣੂ ਸੰਖਿਆ (Atomic Number)

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪਰਮਾਣੂ ਦੇ ਨਾਭਿਕ ਵਿੱਚ ਪ੍ਰੋਟਾੱਨ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇੱਕ ਪਰਮਾਣੂ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਰੋਟਾਂਨਾਂ ਦੀ ਸੰਖਿਆ ਉਸ ਦੀ ਪਰਮਾਣੂ ਸੰਖਿਆ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਇਸ ਨੂੰ Z ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਕਿਸੇ ਤੱਤ ਦੇ ਸਾਰੇ ਪਰਮਾਣੂਆਂ ਦੀ ਪਰਮਾਣੂ ਸੰਖਿਆ (Z) ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ। ਅਸਲ ਵਿੱਚ ਤੱਤਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ ਨਾਲ਼ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਲਈ Z =1, ਕਿਉਂਕਿ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਦੇ ਨਾਭਿਕ ਵਿੱਚ ਸਿਰਫ ਇੱਕ ਪ੍ਰੋਟਾਂਨ ਹੁੰਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਕਾਰਬਨ ਦੇ ਲਈ Z=6। ਇਸ ਤਰ੍ਹਾਂ ਇਕ ਪਰਮਾਣੂ ਦੇ ਨਾਭਿਕ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਨੂੰ ਪਰਮਾਣੂ ਸੰਖਿਆ ਕਹਿੰਦੇ ਹਨ।

4.5.2 ਪੁੰਜ ਸੰਖਿਆ (Mass Number)

ਇੱਕ ਪਰਮਾਣੂ ਦੇ ਅਵਪਰਮਾਣੁਕ ਕਣਾਂ ਦੇ ਅਧਿਐਨ ਦੇ ਬਾਅਦ ਅਸੀਂ ਇਸ ਸਿੱਟੇ ਤੇ ਪਹੁੰਚ ਸਕਦੇ ਹਾਂ ਕਿ ਵਿਹਾਰਿਕ ਰੂਪ ਵਿੱਚ ਪਰਮਾਣੂ ਦਾ ਪੁੰਜ ਉਸ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਰੋਟਾਨਾਂ ਅਤੇ ਨਿਊਟ੍ਰਾਨਾਂ ਦੇ ਪੁੰਜਾਂ ਕਾਰਣ ਹੁੰਦਾ ਹੈ। ਇਹ ਪਰਮਾਣੂ ਦੇ ਨਾਭਿਕ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਨੂੰ ਨਿਊਕਲੀਓਨ (nucleon) ਵੀ ਕਹਿੰਦੇ ਹਨ। ਪਰਮਾਣੂ ਦਾ ਲਗਭਗ ਸੰਪੂਰਣ ਪੁੰਜ ਉਸ ਦੇ ਨਾਭਿਕ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ, ਕਾਰਬਨ ਦਾ ਪੁੰਜ 12 u ਹੈ ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ 6 ਪ੍ਰੋਟਾੱਨ ਅਤੇ 6 ਨਿਊਟ੍ਰਾੱਨ ਹੁੰਦੇ ਹਨ, 6 u + 6 u = 12 u l ਇਸੇ ਤਰ੍ਹਾਂ ਐਲੂਮੀਨੀਅਮ ਦਾ ਪੁੰਜ 27 u ਹੈ (13 ਪ੍ਰੋਟਾਨ + 14 ਨਿਊਟ੍ਰਾੱਨ)। ਇੱਕ ਪਰਮਾਣੂ ਦੇ ਨਾਭਿਕ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਰੋਟਾਨਾਂ ਅਤੇ ਨਿਊਟ੍ਰਾਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਦੇ ਜੋੜ ਨੂੰ ਪੁੰਜ ਸੰਖਿਆ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਕਿਸੇ ਪਰਮਾਣੂ ਨੂੰ ਦਰਸਾਉਣ ਦੇ ਲਈ ਪਰਮਾਣੂ ਸੈਖਿਆ, ਪੁੰਜ ਸੰਖਿਆ ਅਤੇ ਤੱਤ ਦਾ ਸੈਕੇਤ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ -

ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ

ਉਦਾਹਰਣ ਵਜੋਂ, ਨਾਈਟ੍ਰੋਜਨ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ, ¹⁴N

ਸਨ 1. ਜੇ ਕਿਸ਼ੇ ਪਰਮਾਣੂ ਵਿੱਚ ਇਲੰਕਟ੍ਰਾਂਨਾਂ ਦੀ ਸੋਖਿਆ 8 ਹੈ ਅਤੇ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੋਖਿਆ ਵੀ 8 ਹੈ ਤਾਂ ਉਸ ਪਰਮਾਣੂ ਦੀ ਪਰਮਾਣੂ ਸੋਖਿਆ ਕੀ ਹੈ ? 2. ਸਾਰਣੀ 4.1 ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਆਕਸੀਜਨ ਅਤੇ ਸਲਫਰ ਪਰਮਾਣੂ ਦੀ ਪੁੰਜ ਸੋਖਿਆ ਗਿਆਤ ਕਰੋ।

4.6 সমসধানক (Isotopes)

ਕੁਦਰਤ ਵਿੱਚ ਕੁੱਝ ਤੱਤਾਂ ਦੀ ਪਛਾਣ ਕੀਤੀ ਗਈ ਹੈ ਜਿਨ੍ਹਾਂ ਦੀ ਪਰਮਾਣੂ ਸੰਖਿਆ ਸਮਾਨ ਪਰ ਪੁੰਜ ਸੰਖਿਆ ਵੱਖ-ਵੱਖ ਹੁੰਦੀ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ ਹਾਈਡ੍ਰੋਜਨ ਪਰਮਾਣੂ ਨੂੰ ਲਓ।ਇਸ ਦੇ ਤਿੰਨ ਪਰਮਾਣਵੀਂ ਸਪੀਸ਼ੀਜ਼ ਹੁੰਦੇ ਹਨ: ਪਰੋਟੀਅਮ ¦H, ਡਿਊਟੀਰੀਅਮ ¦H (ਜਾਂ D) ਅਤੇ ਟ੍ਰਿਟੀਅਮ ¦H (ਜਾਂ T)। ਹਰੇਕ ਦੀ ਪਰਮਾਣੂ ਸੰਖਿਆ ਬਰਾਬਰ ਹੈ ਪਰ ਪੁੰਜ ਸੰਖਿਆ ਕ੍ਰਮਵਾਰ 1, 2 ਅਤੇ 3 ਹੈ।ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਹੋਰ ਉਦਾਹਰਣ ਹਨ - (1) ਕਾਰਬਨ ¹ਟੂC ਅਤੇ ¹⁴C, (2) ਕਲੋਰੀਨ ³⁵₁₇CI ਅਤੇ ³⁷₁₇CI ।

ਇਨ੍ਹਾਂ ਉਦਾਹਰਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਸਮਸਥਾਨਕਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇੱਕ ਹੀ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਜਿਨ੍ਹਾਂ ਦੀ ਪਰਮਾਣੂ ਸੰਖਿਆ ਸਮਾਨ ਪਰ ਪੁੰਜ ਸੰਖਿਆ ਭਿੰਨ ਹੁੰਦੀ ਹੈ।" ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਹਾਈਡੋ੍ਰਜਨ ਪਰਮਾਣੂ ਦੇ ਤਿੰਨ ਸਮਸਥਾਨਕ ਪ੍ਰੋਟੀਅਮ, ਡਿਊਟੀਰੀਅਮ ਅਤੇ ਟ੍ਰਿਟੀਅਮ ਹੁੰਦੇ ਹਨ।

ਕਈ ਤੱਤਾਂ ਵਿੱਚ ਸਮਸਥਾਨਕਾਂ ਦਾ ਮਿਸ਼ਰਣ ਵੀ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਤੱਤ ਦਾ ਹਰੇਕ ਸਮਸਥਾਨਕ ਸ਼ੁੱਧ ਪਦਾਰਥ ਹੁੰਦਾ ਹੈ। ਸਮਸਥਾਨਕਾਂ ਦੇ ਰਸਾਇਣਿਕ ਗੁਣ ਸਮਾਨ ਪਰ ਭੌਤਿਕ ਗੁਣ ਵੱਖ-ਵੱਖ ਹੁੰਦੇ ਹਨ।

ਕੁਦਰਤ ਵਿੱਚ ਕਲੋਰੀਨ ਦੋ ਸਮਸਥਾਨਕ ਰੂਪਾਂ ਵਿੱਚ ਮਿਲਦੀ ਹੈ, ਜਿਸ ਦਾ ਪੁੰਜ 35 u ਅਤੇ 37 u ਹੁੰਦਾ ਹੈ ਜੋ 3:1 ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਹੁਣ ਇਹ ਪ੍ਰਸ਼ਨ

59

ਉੱਠਦਾ ਹੈ ਕਿ ਕਿਸ ਪੂੰਜ ਨੂੰ ਕਲੋਰੀਨ ਦਾ ਪੂੰਜ ਮੰਨਣਾ ਚਾਹੀਦਾ ਹੈ। ਆਓ ਇਸਦਾ ਪਤਾ ਲਾਈਏ।

ਕਿਸੇ ਕਦਰਤੀ ਤੱਤ ਦੇ ਇੱਕ ਪਰਮਾਣੂ ਦਾ ਪੂੰਜ ਉਸ ਤੱਤ ਵਿੱਚ ਮੌਜਦ ਸਾਰੇ ਕੁਦਰਤੀ ਰੂਪ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਪਰਮਾਣੂਆਂ ਦੇ ਔਸਤ ਪੁੰਜ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਜੇ ਕਿਸੇ ਇੱਕ ਤੱਤ ਦਾ ਕੋਈ ਸਮਸਥਾਨਕ ਨਹੀਂ ਹੈ ਤਾਂ ਪਰਮਾਣ ਪੁੰਜ ਉਸ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਰੋਟਾੱਨਾਂ ਅਤੇ ਨਿਊਟ਼ਾੱਨਾਂ ਦੇ ਪੁੰਜ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ ਪਰ ਜੇ ਇੱਕ ਤੱਤ ਸਮਸਥਾਨਕ ਰੂਪ ਵਿੱਚ ਮੌਜਦ ਹੁੰਦਾ ਹੈ ਤਾਂ ਸਾਨੂੰ ਹਰ ਇੱਕ ਸਮਸਥਾਨਕ ਰੂਪ ਦਾ ਪ੍ਰਤੀਸ਼ਤ ਜਾਨਣਾ ਪਵੇਗਾ ਅਤੇ ਔਸਤ ਪੁੰਜ ਦੀ ⁵ 5**4.6.1 ਸਮਤਾਰਿਕ** (Isobars) ਗਣਨਾ ਕਰਨੀ ਹੋਵੇਗੀ।

ਕਲੋਰੀਨ ਦਾ ਔਸਤ ਪੂੰਜ ਹੋਵੇਗਾ,

$$\left[\left(35 \times \frac{75}{100} + 37 \times \frac{25}{100} \right) \right]$$
$$= \left(\frac{105}{4} + \frac{37}{4} \right) = \frac{142}{4} = 35.5 \text{ u}$$

ਇਸ ਦਾ ਭਾਵ ਇਹ ਨਹੀਂ ਹੈ ਕਿ ਕਲੋਰੀਨ ਦੇ ਪਰਮਾਣੂ ਦਾ ਪੰਜ ਇੱਕ ਭਿੰਨਾਤਮਕ ਸੰਖਿਆ 35.5 u ਹੈ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੋਇਆ ਕਿ ਜੇ ਤਸੀਂ ਕਲੌਰੀਨ ਦੀ ਕਝ ਮਾਤਰਾ ਲੈਂਦੇ ਹੋ ਤਾਂ ਇਸ ਵਿੱਚ ਕਲੋਗੀਨ ਦੇ ਸਮਸਥਾਨਕ ਹੋਣਗੇ ਅਤੇ ਔਸਤ ਪੂੰਜ 35.5 u ਹੋਵੇਗਾ।

ਸਮਸਥਾਨਕਾਂ ਦੀ ਵਰਤੋਂ (Uses of Isotopes)

ਕਝ ਸਮਸਥਾਨਕਾਂ ਦੇ ਵਿਸ਼ੇਸ਼ ਗੁਣ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਅਸੀਂ ਵੱਖ-ਵੱਖ ਖੇਤਰਾਂ ਵਿੱਚ ਕਰਦੇ ਹਾਂ ਉਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁਝ ਹੇਠ ਲਿਖੀਆਂ ਹਨ :

- (i) ਯਰੇਨਿਅਮ ਦੇ ਇੱਕ ਸਮਸਥਾਨਕ ਦੀ ਵਰਤੋਂ ਪਰਮਾਣੂ ਭੱਠੀ (atomic reactor) ਵਿੱਚ ਬਾਲਣ ਦੇ ਰਪ ਵਿੱਚ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
- (ii) ਕੈਂਸਰ ਦੇ ਇਲਾਜ ਵਿੱਚ ਕੋਬਾਲਟ ਦੇ ਸਮਸਥਾਨਕ ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ।
- (iii) ਬਾਇਰਾੱਇਡ ਰੋਗ ਦੇ ਇਲਾਜ ਵਿੱਚ ਆਇਓਡੀਨ ਦੇ ਸਮਸਥਾਨਕ ਦੀ ਵਰਤੋਂ ਹੋਦੀ ਹੈ।

ਦੋ ਤੱਤਾਂ-ਕੈਲਸ਼ਿਅਮ ਪਰਮਾਣੂ ਸੰਖਿਆ 20 ਅਤੇ ਆਰਗਨ ਪਰਮਾਣ ਸੰਖਿਆ 18 ਦੇ ਬਾਰੇ ਵਿਚਾਰ ਕਰੋ। ਪਰਮਾਣੂਆਂ ਵਿੱਚ ਇਲੈਕਟਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਭਿੰਨ-ਭਿੰਨ ਹੈ। ਦੋਵਾਂ ਤੱਤਾਂ ਦੀ ਪੰਜ ਸੰਖਿਆ 40 ਹੈ। ਭਾਵ, ਤੱਤਾਂ ਦੇ ਇਸ ਜੋੜੇ ਦੇ ਅਣਆਂ ਵਿੱਚ ਕੁੱਲ ਨਿਊਕਲਿਆੱਨਾਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਹੈ। ਵੱਖ-ਵੱਖ ਪਰਮਾਣੂ ਸੰਖਿਆ ਵਾਲੇ ਤੱਤਾਂ ਨੂੰ ਜਿਨ੍ਹਾਂ ਦੀ ਪੂੰਜ ਸੰਖਿਆ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ, ਸਮਭਾਰਿਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

Яð

- 1. ਚਿੰਨ H,D ਅਤੇ T ਦੇ ਲਈ ਹਰੇਕ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਤਿੰਨ ਅਵਪਰਮਾਣਕ ਕਣਾਂ ਨੂੰ ਸਾਰਣੀਬੱਧ ਕਰੇ।
- ਸਮਸਥਾਨਕ ਅਤੇ ਸਮਭਾਰਕ ਦੇ ਕਿਸੇ ਇੱਕ ਜੋੜੇ ਦੀ ਇਲੈਕਟਾੱਨਿਕ ਤਰਤੀਬ ਲਿਖੇ।

- ਇਲੈਕਟ੍ਰਾੱਨ ਅਤੇ ਪ੍ਰੋਟਾਨ ਦੀ ਖੋਜ ਕ੍ਰਮਵਾਰ ਜੇ.ਜੇ. ਥਾੱਮਸਨ ਅਤੇ ਈ.ਗੋਲਡਸਟੀਨ ਨੇ ਕੀਤੀ।
- ਜੇ, ਜੇ, ਥਾੱਮਸਨ ਨੇ ਇਹ ਸਝਾਅ ਦਿੱਤਾ ਸੀ ਕਿ ਇਲੈਕਟਾਨ ਧਨ ਚਾਰਜਿਤ ਗੋਲੇ ਵਿੱਚ ਖੱਭੇ ਹੁੰਦੇ ਹਨ।

- ਰਦਰਫੋਰਡ ਦੇ ਐਲਫਾ ਕਣਾਂ ਦੇ ਖਿੰਡਾਊ ਪ੍ਰਯੋਗ ਨੇ ਪਰਮਾਣੂ ਦੇ ਨਿਊਕਲੀਅਸ ਦੀ ਖੋਜ ਕੀਤੀ।
- ਰਦਰਫੋਰਡ ਦੇ ਪਰਮਾਣੂ ਮਾਡਲ ਨੇ ਸੁਝਾਅ ਦਿੱਤਾ ਕਿ ਪਰਮਾਣੂ ਦੇ ਅੰਦਰ ਬਹੁਤ ਛੋਟਾ ਨਿਊਕਲੀਅਸ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਕਲੀਅਸ ਦੇ ਆਲ੍ਹੇ-ਦੁਆਲ੍ਹੇ ਤੇ ਘੁੰਮਦੇ ਹਨ। ਪਰਮਾਣੂ ਦੀ ਸਥਿਰਤਾ ਦੀ ਇਸ ਮਾਡਲ ਨਾਲ ਵਿਆਖਿਆ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕੀ।
- ਨੀਲ ਬੋਹਰ ਦੁਆਰਾ ਦਿੱਤਾ ਗਿਆ ਪਰਮਾਣੂ ਦਾ ਮਾਡਲ ਵਧੇਰੇ ਸਫਲ ਸੀ। ਉਨ੍ਹਾਂ ਨੇ ਸੁਝਾਅ ਦਿੱਤਾ ਕਿ ਇਲੈਕਟ੍ਰਾੱਨ ਨਿਊਕਲੀਅਸ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਨਿਸ਼ਚਿਤ ਊਰਜਾ ਦੇ ਨਾਲ ਵੱਖ-ਵੱਖ ਸ਼ੈਲਾਂ ਵਿੱਚ ਵੰਡੇ ਹਨ। ਜੇ ਪਰਮਾਣੂ ਦੇ ਸਭ ਤੋਂ ਬ੍ਰਾਹਰੀ ਸ਼ੈਲ ਭਰ ਜਾਂਦੇ ਹਨ, ਤਾਂ ਪਰਮਾਣੂ ਸਥਿਰ ਹੋਵੇਗਾ ਅਤੇ ਘੱਟ ਕਿਰਿਆਸ਼ੀਲ ਹੋਵੇਗਾ।

ਜੇ ਚੈਡਵਿਕ ਨੇ ਪਰਮਾਣੂ ਦੇ ਅੰਦਰ ਨਿਊਟ੍ਰਾਨ ਦੀ ਮੌਜੂਦਗੀ ਦੀ ਖੋਜ ਕੀਤੀ। ਇਸ ਤਰ੍ਹਾਂ ਪਰਮਾਣੂ ਦੇ ਤਿੰਨ ਅਵਪਰਮਾਣੁਕ ਕਣ ਹਨ—ਇਲੈਕਟ੍ਰਾੱਨ, ਪ੍ਰੋਟਾਨ ਅਤੇ ਨਿਊਟ੍ਰਾਨ। ਇਲੈਕਟ੍ਰਾੱਨ ਰਿਣ ਚਾਰਜਿਤ ਹੁੰਦੇ ਹਨ, ਪ੍ਰੋਟਾਨ ਧਨ ਚਾਰਜਿਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਨਿਊਟ੍ਰਾੱਨ

ਅਣ-ਚਾਰਜਿਤ ਹੁੰਦੇ ਹਨ। ਇਲੈਕਟ੍ਰਾੱਨ ਦਾ ਪੁੰਜ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਪੁੰਜ ਦਾ $rac{1}{1837}$ ਗੁਣਾ ਹੁੰਦਾ ਹੈ। ਪ੍ਰੋਟਾਨ ਅਤੇ ਨਿਊਟ੍ਰਾਨ ਹਰੇਕ ਦਾ ਪੁੰਜ ਇੱਕ ਇਕਾਈ ਲਿਆ ਜਾਂਦਾ ਹੈ।

ਪਰਮਾਣੂ ਸ਼ੈੱਲਾਂ ਨੂੰ K, L, M, N ਨਾਂ ਦਿੱਤੇ ਗਏ ਹਨ।

- ਸੰਯੋਜਕਤਾ ਪਰਮਾਣੂ ਸੈਯੋਜਨ ਸ਼ਕਤੀ ਹੈ।
- ਇੱਕ ਤੱਤ ਦੀ ਪਰਮਾਣੂ ਸੰਖਿਆ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਮੌਜੂਦ ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
- ਪਰਮਾਣੂ ਦੀ ਪੁੰਜ ਸੰਖਿਆ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਮੌਜੂਦ ਨਿਊਕਲੀਓਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
- ਸਮਸਥਾਨਕ ਇੱਕ ਹੀ ਤੱਤ ਦੇ ਪਰਮਾਣੂ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਪੁੰਜ ਸੰਖਿਆ ਵੱਖ-ਵੱਖ ਹੁੰਦੀ ਹੈ।
- ਸਮਭਾਰਕ ਉਹ ਪਰਮਾਣੂ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਪੁੰਜ ਸੰਖਿਆ ਬਰਾਬਰ ਪਰ ਪਰਮਾਣੂ ਸੰਖਿਆ ਵੱਖ−ਵੱਖ ਹੁੰਦੀ ਹੈ।
- ਤੱਤਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਪ੍ਰੋਟਾੱਨਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਅਧਾਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

TKT

- ਅਭਿਆਸ
 - ਇਲੈਕਟ੍ਰਾੱਨ, ਪ੍ਰੋਟਾੱਨ ਅਤੇ ਨਿਊਟ੍ਰਾੱਨ ਦੇ ਗੁਣਾਂ ਦੀ ਤੁਲਨਾ ਕਰੇ।
 - ਜੇ.ਜੇ.ਬਾੱਮਸਨ ਦੇ ਪਰਮਾਣੂ ਮਾਡਲ ਦੀਆਂ ਕੀ ਖਾਮੀਆਂ ਹਨ ?
 - 3. ਰਦਰਫੋਰਡ ਦੇ ਪਰਮਾਣੂ ਮਾਡਲ ਦੀਆਂ ਕੀ ਖਾਮੀਆਂ ਹਨ ?
 - ਬੋਹਰ ਦੇ ਪਰਮਾਣੂ ਮਾਡਲ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
 - ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਸਾਰੇ ਪਰਮਾਣੂ ਮਾਡਲਾਂ ਦੀ ਤੁਲਨਾ ਕਰੋ।
 - ਪਹਿਲੇ ਅਠਾਰਾਂ ਤੱਤਾਂ ਦੇ ਵੱਖ-ਵੱਖ ਸ਼ੈੱਲਾਂ ਵਿੱਚ ਇਲੈਕਟ੍ਰਾੱਨ ਵੰਡ ਦੇ ਨਿਯਮ ਨੂੰ ਲਿਖੋ।

61

ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ

- ਸਿਲੀਕਾੱਨ ਅਤੇ ਆਕਸੀਜਨ ਦੀ ਉਦਾਹਰਣ ਲੈ ਕੇ ਸੰਜੋਯਕਤਾ ਦੀ ਪਰੀਭਾਸ਼ਾ ਦਿਓ।
- 8. ਉਦਾਹਰਣ ਸਹਿਤ ਵਿਆਖਿਆ ਕਰੋ—ਪਰਮਾਣੂ ਸੰਖਿਆ, ਪੁੰਜ, ਸੰਖਿਆ, ਸਮਸਥਾਨਕ
- ਅਤੇ ਸਮਭਾਰਕ। ਸਮਸਥਾਨਕਾਂ ਦੇ ਕੋਈ ਦੋ ਲਾਭ ਲਿਖੋ।
- 9. Na⁺ ਦੇ ਪੂਰੀ ਤਰ੍ਹਾਂ ਭਰੇ ਹੋਏ K ਅਤੇ L ਸ਼ੈੱਲ ਹੁੰਦੇ ਹਨ। ਵਿਆਖਿਆ ਕਰੇ।
 - 10. ਜੇ ਬਰੋਮੀਨ ਪਰਮਾਣੂ ਦੋ ਸਮਸਥਾਨਕਾਂ ⁷⁹ Br(49.7%) ਅਤੇ ⁸¹ Br(50.3%) ਦੇ ਰੂਪ ਵਿੱਚ ਹਨ, ਤਾਂ ਬਰੋਮੀਨ ਪਰਮਾਣੂ ਦੇ ਔਸਤ ਪਰਮਾਣੂ ਪੁੰਜ ਦੀ ਗਣਨਾ ਕਰੋ।
 - 11. ਇੱਕ ਤੱਤ X ਦਾ ਪਰਮਾਣੂ ਪੁੰਜ 16.2 u ਹੈ ਤਾਂ ਇਸਦੇ ਇੱਕ ਨਮੂਨੇ ਵਿੱਚ ਸਮਸਥਾਨਕ ¹₉X ਅਤੇ ¹⁸X ਦਾ ਪ੍ਰਤੀਸ਼ਤ ਕੀ ਹੋਵੇਗਾ ?
 - 12. ਜੇ ਤੱਤ ਦਾ Z=3 ਹੋਵੇ ਤਾਂ ਤੱਤ ਦੀ ਸੰਯੋਜਕਤਾ ਕੀ ਹੋਵੇਗੀ ? ਤੱਤ ਦਾ ਨਾਂ ਵੀ ਲਿਖੋ।
 - 13. ਦੋ ਪਰਮਾਣੂ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਨਿਊਕਲਿਅਸਾਂ ਦੀ ਬਣਤਰ ਹੇਠਾਂ ਦਿੱਤੀ ਗਈ ਹੈ -

	Х	Y
ਪ੍ਰੋਟਾੱਨ	6	6
ਨਿਊਟ਼ਾੱਨ	6	8

X ਅਤੇ Y ਦੀ ਪੁੰਜ ਸੰਖਿਆ ਪਤਾ ਕਰੋ। ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਸਪੀਸ਼ੀਜ ਵਿੱਚ ਕੀ ਸਬੰਧ ਹੈ ?

- 14. ਹੇਠ ਲਿਖੇ ਕਬਨ ਵਿੱਚ ਗ਼ਲਤ ਲਈ F ਅਤੇ ਸਹੀ ਲਈ T ਲਿਖੋ।
 - (ੳ) ਜੇ.ਜੇ. ਥਾੱਮਸਨ ਨੇ ਸੁਝਾਅ ਦਿੱਤਾ ਸੀ ਕਿ ਪਰਮਾਣੂ ਦੇ ਨਿਊਕਲੀਅਸ ਵਿੱਚ ਸਿਟਫ ਨਿਊਕਲੀਓਨਜ਼ ਹੁੰਦੇ ਹਨ।
 - (ਅ) ਇੱਕ ਇਲੈਕਟ੍ਰਾੱਨ ਅਤੇ ਪ੍ਰੋਟਾੱਨ ਮਿਲ ਕੇ ਨਿਊਟ੍ਰਾਨ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ ਇਸ ਲਈ ਇਹ ਅਣਚਾਰਜਿਤ ਹੁੰਦਾ ਹੈ।
 - (ੲ) ਇਲੈਕਟ੍ਰਾਨ ਦਾ ਪੁੰਜ ਪ੍ਰੋਟਾਨ ਨਾਲੋਂ ਲਗਭਗ 1 1837 ਗੁਣਾ ਹੁੰਦਾ ਹੈ।
 - (ਸ) ਆਇਓਡੀਨ ਦੇ ਸਮਸਥਾਨਕ ਦੀ ਵਰਤੋਂ ਟਿੰਕਚਰ ਆਇਓਡੀਨ ਬਨਾਉਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਇਸ ਦੀ ਵਰਤੋਂ ਦਵਾਈ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਪ੍ਰਸ਼ਨ ਸੰਖਿਆ 15, 16 ਅਤੇ 17 ਵਿੱਚ ਸਹੀ ਦੇ ਸਾਹਮਣੇ (ノ) ਦਾ ਚਿੰਨ੍ਹ ਅਤੇ ਗਲਤ ਦੇ ਸਾਹਮਣੇ (×) ਦਾ ਚਿੰਨ੍ਹ ਲਗਾਓ।

(**M**)

- 15. ਰਦਰਫੋਰਡ ਦਾ ਐਲਫਾ ਕਣ ਖਿੰਡਾਊ ਪ੍ਰਯੋਗ ਕਿਸ ਦੀ ਖੋਜ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਸੀ -
 - (ੳ) ਪਰਮਾਣੂ ਨਿਊਕਲੀਅਸ (ਅ) ਇਲੈਕਟ੍ਰਾਂਨ
 - (ੲ) ਪ੍ਰੋਟਾੱਨ
 (ਸ਼) ਨਿਊਟ੍ਰਾੱਨ
- 16. ਇੱਕ ਤੱਤ ਦੇ ਸਮਸਥਾਨਕ ਵਿੱਚ ਹੁੰਦੇ ਹਨ-
 - (ੳ) ਸਮਾਨ ਭੌਤਿਕ ਗੁਣ

62

(ੲ) ਨਿਊਟ੍ਰਾਂਨਾਂ ਦੀ ਵੱਖ-ਵੱਖ ਸੰਖਿਆ (ਸ) ਭਿੰਨ ਪਰਮਾਣੂ ਸੰਖਿਆ

ਵਿਗਿਆਨ

ਭਿੰਨ ਰਸਾਇਣਿਕ ਗੁਣ

17. Cl⁻ ਆਇਨ ਵਿੱਚ ਸੰਯੋਜਕਤਾ-ਇਲੈਂਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ ਹੈ (ੳ) 16
 (ਅ) 8
 (ੲ) 17
 (ਸ) 18

SHK

- 18. ਸੋਡੀਅਮ ਦੀ ਸਹੀ ਇਲੈਕਟ੍ਰਾੱਨ ਵੰਡ ਹੇਠ ਦਿੱਤੀਆਂ ਵਿਚੋਂ ਕਿਹੜੀ ਹੈ ?

 (ੳ) 2,8
 (ਅ) 8,2,1
 (ੲ) 2,1,8
 (ਸ਼) 2,8,1
- 19. ਹੋਠ ਲਿਖੀ ਸਾਰਣੀ ਨੂੰ ਪੂਰਾ ਕਰੋ –

ਪਰਮਾਣੂ ਸੰਖਿਆ	ਪੁੰਜ ਸੰਖਿਆ	ਨਿਊਟ੍ਰਾੱਨਾਂ ਦੀ ਸੰਖਿਆ	ਪ੍ਰੋਟਾਨਾਂ ਦੀ ਸੰਖਿਆ	ਇਲੈਕਟ੍ਰਾਨਾਂ ਦੀ ਸੰਖਿਆ	ਪਰਮਾਣੂ ਸਪੀਸ਼ੀਜ
9	-	10	-	-	-
16	32	-	-		ਸਲਵਰ
	24	-	12	1.12	-
-	2	-	1		
-	- 1	0	1	0	

ਦਾ ਨਾਂ ਵੀ

51

OT b

ਪਰਮਾਣੂ ਦੀ ਬਣਤਰ

Downloaded from https:// www.studiestoday.c

63

ਜੀਵਨ ਦੀ ਮੁੱਢਲੀ ਇਕਾਈ (The Fundamental Unit of Life)

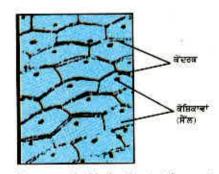
ਕਾਰਕ ਦੀ ਪਤਲੀ ਕਾਟ ਦਾ ਨਿਰੀਖਣ ਕਰਦਿਆਂ ਰਾਬਰਟ ਹੁੱਕ ਨੇ ਦੇਖਿਆ ਕਿ ਇਸ ਵਿੱਚ ਅਨੇਕ ਛੋਟੇ-ਛੋਟੇ ਖਾਨੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਰਚਨਾਂ ਮਧੂ-ਮੱਖੀ ਦੇ ਛੱਤੇ ਵਰਗੀ ਪ੍ਰਤੀਤ ਹੁੰਦੀ ਹੈ। ਕਾਰਕ ਇੱਕ ਪਦਾਰਥ ਹੈ ਜੋ ਦਰੱਖਤ ਦੀ ਛਿੱਲ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਸੰਨ 1665 ਵਿੱਚ ਹੁੱਕ ਨੇ ਇਸਨੂੰ ਸਵੈ-ਨਿਰਮਾਨਿਤ (Self designed) ਸੂਖਮਦਰਸ਼ੀ ਵਿੱਚ ਵੇਖਿਆ ਸੀ। ਰਾਬਰਟ ਹੁੱਕ ਨੇ ਇਨ੍ਹਾਂ ਡੱਬੇ-ਨੁਮਾ ਖਾਨਿਆਂ ਨੂੰ ਕੋਸ਼ਿਕਾ (Cell) ਕਿਹਾ। ਕੋਸ਼ਿਕਾ ਦਾ ਅਰਥ ਹੈ ਕੋਠੜੀ।

ਉਪਰੋਕਤ ਘਟਨਾ ਭਾਵੇਂ ਛੋਟੀ ਅਤੇ ਅਰਥਹੀਣ ਲੱਗਦੀ ਹੋਵੇ ਪਰੰਤੂ ਵਿਗਿਆਨ ਦੇ ਇਤਿਹਾਸ ਵਿੱਚ ਇਹ ਇਕ ਬਹੁਤ ਹੀ ਮਹੱਤਵਪੂਰਨ ਘਟਨਾ ਸੀ। ਇਸ ਤਰ੍ਹਾਂ ਕਿਸੇ ਨੇ ਪਹਿਲੀ ਵਾਰ ਵੇਖਿਆ ਕਿ ਸਜੀਵ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਇਕਾਈਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਇਕਾਈਆਂ ਦਾ ਵਰਨਣ ਕਰਨ ਲਈ ਜੀਵ-ਵਿਗਿਆਨ ਵਿੱਚ ਕੋਸ਼ਿਕਾ ਸ਼ਬਦ ਦੀ ਵਰਤੋਂ ਅੱਜ ਤੱਕ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਆਉ ਕੋਸ਼ਿਕਾ ਬਾਰੇ ਹੋਰ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੀਏ।

5.1 ਸਜੀਵ ਕਿਸਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ ?

ਕਿਰਿਆ


5.1

ਪਿਆਜ਼ ਦਾ ਇਕ ਛੋਟਾ ਜਿਹਾ ਟੁਕੜਾ ਲਓ। ਚਿਮਟੀ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਅਸੀਂ ਪਿਆਜ਼ ਦੀ ਅੰਦਰੂਨੀ ਅਵਤਲ ਸਤ੍ਹਾ ਤੋਂ ਝਿੱਲੀ ਉਤਾਰ ਸਕਦੇ ਹਾਂ। ਇਸ ਝਿੱਲੀ ਨੂੰ ਪਾਣੀ ਨਾਲ ਭਰੇ ਵਾਚ-ਗਲਾਸ ਵਿੱਚ ਰੱਖ ਦਿਓ। ਇਸ ਨਾਲ ਇਹ ਝਿੱਲੀ ਮੁੜਨ ਜਾਂ ਸ਼ੁੱਕਣ ਤੋਂ ਬਚ ਜਾਂਦੀ ਹੈ। ਅਸੀਂ ਇਸ ਝਿੱਲੀ ਦਾ ਕੀ ਕਰੀਏ?

ਇਕ ਕੱਚ ਦੀ ਸਲਾਈਡ ਲਵੇ। ਇਸ ਉਤੇ ਪਾਣੀ ਦੀ ਇਕ ਬੂੰਦ ਪਾਓ। ਹੁਣ ਵਾਚ-ਗਲਾਸ ਵਿੱਚ ਰੱਖੇ ਝਿੱਲੀ ਦੇ ਟੁਕੜੇ ਵਿੱਚੋਂ ਛੋਟੇ ਜਿਹੇ ਟੁਕੜੇ ਨੂੰ ਸਲਾਈਡ ਤੇ ਰੱਖ ਦਿਓ। ਇਹ ਧਿਆਨ ਰੱਖੋ ਕਿ ਝਿੱਲੀ ਬਿਲਕੁਲ ਸਿੱਧੀ ਹੋਵੇ। ਇਕ ਪਤਲਾ ਪੇਂਟ ਬੁਰਸ਼ ਝਿੱਲੀ ਨੂੰ ਸਲਾਈਡ ਤੇ ਰੱਖਣ ਵਿੱਚ ਤੁਹਾਡੀ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ। ਹੁਣ ਇਸ ਉਤੇ ਇਕ ਬੰਦ ਸੈਫਰਲਿਨ ਘੋਲ ਦੀ ਪਾਓ ਅਤੇ ਇਸਨੂੰ ਕਵਰ-ਸਲਿੱਪ ਨਾਲ ਢੱਕ ਦਿਓ। ਕਵਰ-ਸਲਿੱਪ ਨੂੰ ਸੂਈ (Mounting Needle) ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਇਸ ਤਰੀਕੇ ਨਾਲ ਰੱਖੋ ਕਿ ਇਸ ਵਿੱਚ ਹਵਾ ਦੇ ਬੁਲਬੁਲੇ ਨਾ ਜਾਣ। ਆਪਣੇ ਅਧਿਆਪਕ ਦੀ ਸਹਾਇਤਾ ਲਓ।ਅਸੀਂ ਪਿਆਜ਼ ਦੀ ਤਿੱਲੀ ਦੀ ਅਸਥਾਈ ਸਲਾਈਡ ਬਣਾਈ ਹੈ। ਹੁਣ ਅਸੀਂ ਇਸਨੂੰ ਪਹਿਲਾਂ ਘੱਟ ਸ਼ਕਤੀ ਵਾਲੇ, ਫਿਰ ਉਸ ਤੋਂ ਬਾਅਦ ਉੱਚ-ਸ਼ਕਤੀ ਵਾਲੇ ਸੰਯੁਕਤ ਸੂਖਮਦਰਸ਼ੀ (Compound Microscope) ਨਾਲ ਵੇਖਦੇ ਹਾਂ।

ਚਿੱਤਰ 5.1 : ਸੰਯੁਕਤ ਸੂਖਮਦਰਸ਼ੀ ਤੁਸੀਂ ਕੀ ਵੇਖਿਆ ? ਕੀ ਅਸੀਂ ਜੋ ਸੰਰਚਨਾ ਸੂਖਮਦਰਸ਼ੀ ਦੁਆਰਾ ਵੇਖਦੇ ਹਾਂ ਉਸਨੂੰ ਕਾਗਜ਼ ਤੇ ਬਣਾ ਸਕਦੇ ਹਾਂ ? ਕੀ ਇਹ ਚਿੱਤਰ 5.2 ਵਰਗੀ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ ?

ਚਿੱਤਰ 5.2 : ਪਿਆਜ਼ ਦੀ ਝਿੱਲੀ ਦੀਆਂ ਕੋਸ਼ਿਕਾਵਾਂ

ਜਾਣੋ

Tr

81

ਹੁਣ ਅਸੀਂ ਵੱਖ-ਵੱਖ ਅਕਾਰ ਵਾਲੀਆਂ ਪਿਆਜ਼ ਦੀਆਂ ਝਿੱਲੀਆਂ ਦੀ ਅਸਥਾਈ ਸਲਾਈਡ ਬਣਾਵਾਂਗੇ।ਅਸੀਂ ਕੀ ਦੇਖਦੇ ਹਾਂ, ਕੀ ਅਸੀਂ ਇਕ ਸਮਾਨ ਰਚਨਾ ਦੇਖਦੇ ਹਾਂ ਜਾਂ ਵੱਖ-ਵੱਖ?

ਇਹ ਸੰਰਚਨਾਵਾਂ ਕੀ ਹਨ ?

ਇਹ ਸਭ ਸੰਰਚਨਾਵਾਂ ਇਕੋ ਜਿਹੀਆਂ ਦਿਖਾਈ ਦਿੰਦੀਆਂ ਹਨ। ਇਹ ਸਭ ਮਿਲ ਕੇ ਇਕ ਵੱਡੀ ਸੰਰਚਨਾ ਬਣਾਉਂਦੀਆਂ ਹਨ ਜਿਵੇਂ ਕਿ ਪਿਆਜ਼। ਇਸ ਕਿਰਿਆ ਤੋਂ ਸਾਨੂੰ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਵੱਖ-ਵੱਖ ਆਕਾਰ ਦੇ ਪਿਆਜ਼ ਦੇ ਟੁਕੜਿਆਂ ਨੂੰ ਸੂਬਮਦਰਸ਼ੀ ਦੁਆਰਾ ਦੇਖਣ ਤੇ ਇਕੋ ਜਿਹੀਆਂ ਰਚਨਾਵਾਂ ਦਿਖਾਈ, ਦਿੰਦੀਆਂ ਹਨ। ਪਿਆਜ਼ ਦੀ ਝਿੱਲੀ ਦੀਆਂ ਕੋਸ਼ਿਕਾਵਾਂ (ਸੈੱਲ) ਇੱਕ ਸਮਾਨ ਹਨ। ਪਿਆਜ਼ ਦੇ ਆਕਾਰ ਨਾਲ ਇਸਦਾ ਕੋਈ ਸੰਬੰਧ ਨਹੀਂ।

ਇਹ ਛੋਟੀਆਂ-ਛੋਟੀਆਂ ਰਚਨਾਵਾਂ ਜੋ ਅਸੀਂ ਦੇਖ ਰਹੇ ਹਾਂ ਇਹ ਪਿਆਜ਼ (onion Bulb) ਦੀਆਂ ਮੂਲ ਇਕਾਈਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਰਚਨਾਵਾਂ ਨੂੰ ਕੋਸ਼ਿਕਾਵਾਂ (cell) ਕਹਿੰਦੇ ਹਨ। ਨਾ ਕੇਵਲ ਪਿਆਜ਼ ਬਲਕਿ ਜਿੰਨੇ ਵੀ ਜੀਵ-ਜੰਤੂ ਅਸੀਂ ਆਪਣੇ ਆਲੇ-ਦੁਆਲੇ ਦੇਖਦੇ ਹਾਂ ਇਹ ਸਭ ਕੋਸ਼ਿਕਾਵਾਂ ਤੋਂ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਕੁੱਝ ਕੁ ਜੀਵ ਇਕ-ਸੈੱਲੀ ਵੀ ਹੁੰਦੇ ਹਨ।

ਵੱਡ ਦਰਸ਼ੀ ਲੈੱਨਜ਼ ਦੀ ਖੋਜ ਤੋਂ ਬਾਅਦ ਸੂਖਮਦਰਸ਼ੀ ਹੋਂਦ ਵਿੱਚ ਆਇਆ। ਇਹ ਵੀ ਪਤਾ ਲੱਗਾ ਹੈ ਕਿ ਇੱਕ ਕੋਸ਼ਿਕਾ ਆਪਣੇ-ਆਪ ਹੀ ਇਕ ਸੰਪੂਰਣ ਜੀਵ ਜਿਵੇਂ ਅਮੀਬਾ, ਕਲੈਮਾਈਡਮੋਨਾਸ, ਪੈਰਾਮੀਸ਼ੀਅਮ ਜਾਂ ਬੈਕਟੀਰੀਆ ਹੋ ਸਕਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਜੀਵਾਂ ਵਿੱਚ ਅਨੇਕ ਸੈੱਲ ਇਕੱਠੇ ਹੋ ਕੇ ਵੱਖ-ਵੱਖ ਕਾਰਜ ਨੇਪਰੇ ਚਾੜ੍ਹਨ ਲਈ, ਵੱਖ-ਵੱਖ ਅੰਗਾਂ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ ਉੱਲੀ, ਪੌਦੇ ਅਤੇ ਜੰਤੂ। ਕੀ ਅਸੀਂ ਕੁਝ ਹੋਰ ਇਕ-ਸੈੱਲੀ ਜੀਵਾਂ ਬਾਰੇ ਪਤਾ ਲਗਾ ਸਕਦੇ ਹਾਂ?

ਹਰ ਇਕ ਬਹੁ-ਸੈੱਲੀ ਜੀਵ ਇਕ ਸੈੱਲ ਤੋਂ ਹੀ ਵਿਕਸਿਤ ਹੋਇਆ ਹੈ। ਕਿਵੇਂ? ਸੈੱਲ ਵਿਭਾਜਿਤ ਹੋ ਕੇ ਆਪਣੇ ਵਰਗੇ ਹੀ ਹੋਰ ਸੈੱਲ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਸਾਰੇ ਸੈੱਲ ਪਹਿਲਾਂ ਹੋਂਦ ਵਿੱਚ ਆਏ ਸੈੱਲਾਂ (pre-existing cells) ਤੋਂ ਹੀ ਉਤਪੰਨ ਹੁੰਦੇ ਹਨ।

ਜੀਵਨ ਦੀ ਮੌਲਿਕ ਇਕਾਈ

ਕੋਸ਼ਿਕਾ ਸੈੱਲ (cell) ਦਾ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਪਤਾ ਰਾਬਰਟ ਹੁੱਕ ਨੇ 1665 ਵਿੱਚ ਲਗਾਇਆ ਸੀ। ਉਸਨੇ ਕੋਸ਼ਿਕਾ ਨੂੰ ਕਾਰਕ ਦੀ ਪਤਲੀ ਕਾਟ ਵਿੱਚੋਂ ਮੁਢਲੇ ਸੁਖਮਦਰਸ਼ੀ ਰਾਹੀਂ ਵੇਖਿਆ ਸੀ। ਲਿਉਵਨਹਾਕ ਨੇ 1674 ਵਿੱਚ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਇਕ ਉੱਨਤ ਸੁਖਮਦਰਸ਼ੀ ਰਾਹੀਂ ਛੱਪੜ ਦੇ ਪਾਣੀ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਸੁਤੰਤਰ ਜੀਵਿਤ ਸੈੱਲਾਂ ਦਾ ਪਤਾ ਲਗਾਇਆ। ਰਾਬਰਟ ਬਾਊਨ ਨੇ 1831 ਵਿੱਚ ਸਿੱਲ ਦੇ ਕੇਂਦਰਕ ਦਾ ਪਤਾ ਲਗਾਇਆ।ਜੇ. ਈ. ਪੁਰਕਿੰਜੇ ਨੇ 1839 ਵਿੱਚ ਸੈੱਲ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਤਰਲ ਜੈਵਿਕ ਪਦਾਰਥ ਨੂੰ ਜੀਵ-ਦ੍ਵ (cytoplasm) ਦਾ ਨਾਮ ਦਿੱਤਾ। ਦੋ ਜੀਵ-ਵਿਗਿਆਨੀਆਂ ਐਮ. ਸ਼ਲੀਡਨ (1838) ਅਤੇ ਟੀ ਸ਼ਵਾਨ (1839) ਨੇ ਸੈੱਲ-ਸਿਧਾਂਤ ਬਾਰੇ ਦੱਸਿਆ। ਇਸ ਸਿਧਾਂਤ ਅਨੁਸਾਰ ਸਾਰੇ ਪੌਦੇ ਅਤੇ ਜੰਤੂ ਕੋਸ਼ਿਕਾਵਾਂ ਦੇ ਬਣੇ ਹਨ ਅਤੇ ਇਹ ਕੋਸ਼ਿਕਾਵਾਂ ਜੀਵਨ ਦੀ ਮੂਲ ਇਕਾਈ ਹਨ। ਵਿਰਚੋ (1855) ਨਾਮ ਦੇ ਵਿਗਿਆਨੀ ਨੇ ਸੈੱਲ ਸਿਧਾਂਤ ਨੂੰ ਹੋਰ ਅੱਗੇ ਵਧਾਇਆ ਅਤੇ ਦੱਸਿਆ ਕਿ ਸਾਰੇ ਸੈੱਲ, ਪਹਿਲਾਂ ਹੋਂਦ ਵਿੱਚ ਆਏ ਸੈੱਲਾਂ ਤੋਂ ਬਣਦੇ ਹਨ। 1940 ਵਿੱਚ ਇਲੈਕਟਾਨ-ਸਖਮਦਰਸ਼ੀ ਦੀ ਖੋਜ ਤੋਂ ਬਾਅਦ ਸੈੱਲ ਦੀ ਗੁੰਝਲਦਾਰ ਰਚਨਾ ਅਤੇ ਇਸਦੇ ਨਿਕੜੇ ਅੰਗਾਂ ਬਾਰੇ ਸਮਝਣਾ ਸੰਭਵ ਹੋਇਆ।

ਕਿਰਿਆ

5.2

ਅਸੀਂ ਪੱਤੇ ਦੀ ਝਿੱਲੀ, ਪਿਆਜ਼ ਦੀਆਂ ਜੜ੍ਹਾਂ ਦੇ ਸਿਰੇ ਅਤੇ ਵੱਖ-ਵੱਖ ਆਕਾਰ ਦੇ ਪਿਆਜ਼ਾਂ ਦੀ ਝਿੱਲੀ ਦੀ ਅਸਥਾਈ ਸਲਾਈਡ ਬਣਾ ਸਕਦੇ ਹਾਂ।

181

ਉਪਰੋਕਤ ਕਿਰਿਆ ਕਰਨ ਤੋਂ ਬਾਅਦ ਹੇਠ ਲਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ।

- (i) ਕੀ ਸਾਰੀਆਂ ਕੋਸ਼ਿਕਾਵਾਂ ਆਕਾਰ ਅਤੇ ਆਕ੍ਰਿਤੀ ਪੱਖੋਂ ਇਕੋ ਜਿਹੀਆਂ ਵਿਖਾਈ ਦਿੰਦੀਆਂ ਹਨ?
- (ii) ਕੀ ਸਾਰੀਆਂ ਕੋਸ਼ਿਕਾਵਾਂ ਦੀ ਬਣਤਰ ਇਕ ਜਿਹੀ ਵਿਖਾਈ ਦਿੰਦੀ ਹੈ?
- (iii) ਕੀ ਪੈਂਦੇ ਦੇ ਭਿਨ-ਭਿੰਨ ਅੰਗਾਂ ਵਿੱਚ ਪਾਈਆਂ ਜਾਣ ਵਾਲੀਆਂ ਕੋਸ਼ਿਕਾਵਾਂ ਵਿੱਚ ਕੋਈ ਅੰਤਰ ਹੈ ?
- (iv) ਸਾਨੂੰ ਕੋਸ਼ਿਕਾਵਾਂ ਵਿੱਚ ਕੀ ਸਮਾਨਤਾ ਨਜ਼ਰ ਆਉਂਦੀ ਹੈ?

65

ਕੁਝ ਜੀਵਾਂ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੇ ਸੈੱਲ ਵੀ ਹੋ ਸਕਦੇ ਹਨ। ਹੇਠ ਦਿੱਤੀਆਂ ਤਸਵੀਰਾਂ ਨੂੰ ਦੇਖੋ। ਇਹ ਮਨੁੱਖੀ ਸਰੀਰ ਦੇ ਕੁੱਝ ਸੈੱਲ ਹਨ।

ਚਿੱਤਰ 5 3 ਮਨੁੱਖੀ ਸਰੀਰ ਦੇ ਵੱਖ-ਵੱਖ ਸੈੱਲ

ਕੋਸ਼ਿਕਾਵਾਂ ਦੀ ਆਕ੍ਰਿਤੀ ਅਤੇ ਆਕਾਰ ਉਨ੍ਹਾਂ ਦੁਆਰਾ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਕੰਮਾਂ ਦੇ ਅਨੁਰੂਪ ਹੁੰਦੇ ਹਨ। ਕੁੱਝ ਸੈੱਲ ਆਪਣਾ ਆਕਾਰ ਬਦਲਦੇ ਰਹਿੰਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਇਕ ਸੈੱਲ ਜੀਵ ਅਮੀਬਾ। ਕੁੱਝ ਜੀਵਾਂ ਵਿੱਚ ਸੈੱਲਾਂ ਦਾ ਆਕਾਰ ਲਗਭਗ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ ਅਤੇ ਹਰ ਪ੍ਰਕਾਰ ਦੇ ਸੈੱਲ ਲਈ ਨਿਯਤ ਹੁੰਦਾ ਹੈ, ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ ਨਾੜੀ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲ।

ਹਰ ਜੀਵਿਤ ਸੈੱਲ ਵਿੱਚ ਕੁਝ ਮੂਲ ਕਾਰਜ ਕਰਨ ਦੀ ਸਮਰਥਾ ਹੁੰਦੀ ਹੈ ਜੋ ਕਿ ਸਾਰੇ ਸਜੀਵਾਂ ਦਾ ਗੁਣ ਹੈ। ਇਕ ਜੀਵਿਤ ਕੋਸ਼ਿਕਾ ਇਹ ਮੂਲ ਕਾਰਜ ਕਿਸ ਤਰ੍ਹਾਂ ਕਰਦੀ ਹੈ? ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਬਹੁ-ਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਸੈੱਲਾਂ ਵਿੱਚ ਕੰਮ-ਵੰਡ ਹੁੰਦੀ ਹੈ ਜਿਵੇਂ ਕਿ ਮਨੁੱਖਾਂ ਵਿੱਚ। ਇਸਦਾ ਮਤਲਬ ਹੈ ਕਿ ਸਰੀਰ ਦੇ ਵੱਖ-ਵੱਖ ਅੰਗ ਵੱਖ-ਵੱਖ ਕਾਰਜ ਕਰਦੇ ਹਨ। ਜਿਸ ਤਰ੍ਹਾਂ ਮਨੁੱਖੀ ਸਰੀਰ ਵਿੱਚ ਦਿਲ ਲਹੂ ਨੂੰ ਪੰਪ ਕਰਨ ਦਾ ਕੰਮ ਕਰਦਾ ਹੈ ਅਤੇ ਮਿਹਦਾ ਭੋਜਨ ਦਾ ਪਾਚਨ ਆਦਿ। ਇਸ ਤਰ੍ਹਾਂ ਇਕ-ਸੈੱਲ ਵਿੱਚ ਵੀ ਕੰਮ ਵੰਡ ਹੁੰਦੀ ਹੈ। ਅਸਲ ਵਿੱਚ ਹਰ ਅਜਿਹੇ ਸੈੱਲ ਵਿੱਚ ਕੁੱਝ ਖਾਸ ਘਟਕ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਨਿਕੜੇ-ਅੰਗ (cell organelles) ਕਹਿੰਦੇ ਹਨ। ਹਰ ਨਿਕੜਾ ਅੰਗ ਇਕ ਵਿਸ਼ੇਸ਼ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਜਿਸ ਤਰ੍ਹਾਂ ਸੈੱਲ ਵਿੱਚ ਨਵੇਂ ਪਦਾਰਥ ਦਾ ਨਿਰਮਾਣ, ਵਾਧੂ

66

ਪਦਾਰਥਾਂ ਦਾ ਨਿਕਾਸ ਆਦਿ। ਇਨ੍ਹਾਂ ਨਿਕੜੇ ਅੰਗਾਂ ਦੇ ਕਾਰਣ ਹੀ ਇਕ ਸੈੱਲ ਜੀਵਿਤ ਰਹਿੰਦਾ ਹੈ ਅਤੇ ਸਾਰੇ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਇਹ ਨਿਕੜੇ ਅੰਗ ਮਿਲ ਕੇ ਇਕ ਮੂਲ ਇਕਾਈ ਬਣਾਉਂਦੇ ਹਨ ਜਿਸਨੂੰ ਕੋਸ਼ਿਕਾ (cell) ਕਹਿੰਦੇ ਹਨ। ਇਹ ਬੜੀ ਰੋਚਕ ਗੱਲ ਹੈ ਕਿ ਸਾਰੇ ਸੈੱਲਾਂ ਵਿੱਚ ਇੱਕੋ ਤਰ੍ਹਾਂ ਦੇ ਨਿਕੜੇ ਅੰਗ ਹੁੰਦੇ ਹਨ। ਇਸ ਦਾ ਕੋਈ ਫਰਕ ਨਹੀਂ ਪੈਂਦਾ ਕਿ ਉਸਦਾ ਕੰਮ ਕੀ ਹੈ ਅਤੇ ਉਹ ਕਿਸ ਜੀਵ ਵਿੱਚ ਪਾਇਆ ਜਾਂਦਾ ਹੈ।

HO

 ਸੈੱਲ ਦੀ ਖੋਜ ਕਿਸਨੇ ਅਤੇ ਕਿਵੇਂ ਕੀਤੀ?
 ਸੈੱਲ ਨੂੰ ਜੀਵਨ ਦੀ ਸੰਰਚਨਾਤਮਕ ਅਤੇ ਕਿਰਿਆਤਮਕ ਇਕਾਈ ਕਿਉਂ ਕਹਿੰਦੇ ਹਨ?

5.2 ਸੈੱਲ ਕਿਸਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ ? ਸੈੱਲ ਦਾ ਰਚਨਾਤਮਕ ਸੰਗਠਨ ਕੀ ਹੈ ?

ਅਸੀਂ ਦੇਖਿਆ ਕਿ ਸੈੱਲ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ ਘਟਕ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਨਿਕੜੇ ਅੰਗ ਕਹਿੰਦੇ ਹਨ? ਸੈੱਲ ਕਿਸ ਤਰ੍ਹਾਂ ਸੰਗਠਿਤ ਹੁੰਦਾ ਹੈ?

ਜੇਕਰ ਅਸੀਂ ਸੈੱਲ ਦਾ ਅਧਿਐਨ ਸੂਖਮਦਰਸ਼ੀ ਥੱਲੇ ਕਰੀਏ ਤਾਂ ਸਾਨੂੰ ਹਰ ਸੈੱਲ ਦੇ ਤਿੰਨ ਭਾਗ ਦਿਖਾਈ ਦੇਣਗੇ, ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ, ਕੇਂਦਰਕ ਅਤੇ ਸੈੱਲ-ਦ੍ਵ। ਸੈੱਲ ਦੇ ਅੰਦਰ ਹੋਣ ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ ਅਤੇ ਸੈੱਲ ਦੀਆਂ ਬਾਹਰਲੇ ਵਾਤਾਵਰਣ ਨਾਲ ਪਰਸਪਰ ਕਿਰਿਆਵਾਂ, ਸੈੱਲ ਦੇ ਇਨ੍ਹਾਂ ਭਾਗਾਂ ਕਰਕੇ ਹੀ ਸੰਭਵ ਹੈ। ਆਉ ਦੇਖੀਏ ਕਿਵੇਂ ?

5.2.1 ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ ਜਾਂ ਸੈੱਲ-ਝਿੱਲੀ (Plasma

Membrane or Cell Membrane)

ਇਹ ਸੈੱਲ ਦੀ ਸਭ ਤੋਂ ਬਾਹਰੀ ਪਰਤ ਹੈ ਜੋ ਸੈੱਲ ਦੇ ਘਟਕਾਂ ਨੂੰ ਬਾਹਰੀ ਵਾਤਾਵਰਣ ਤੋਂ ਵੱਖ ਕਰਦੀ ਹੈ। ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ ਕੁੱਝ ਪਦਾਰਥਾਂ ਨੂੰ ਅੰਦਰ ਜਾਂ ਬਾਹਰ ਆਣ-ਜਾਣ ਦਿੰਦੀ ਹੈ। ਇਹ ਦੂਜੇ ਕੁੱਝ ਪਦਾਰਥਾਂ ਦੀ ਗਤੀ ਨੂੰ ਵੀ ਰੋਕਦੀ ਹੈ। ਇਸ ਲਈ ਸੈੱਲ-ਝਿੱਲੀ ਨੂੰ ਝਿੱਲੀ ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਸੈੱਲ ਵਿੱਚ ਪਦਾਰਥਾਂ ਦੀ ਗਤੀ ਕਿਸ ਤਰ੍ਹਾਂ ਹੁੰਦੀ ਹੈ ? ਪਦਾਰਥ ਸੈੱਲ ਤੋਂ ਬਾਹਰ ਕਿਸ ਤਰ੍ਹਾਂ ਆਉਂਦੇ ਹਨ ?

ਕੁੱਝ ਪਦਾਰਥ ਜਿਵੇਂ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਜਾਂ

ਵਿਗਿਆਨ

ਆਕਸੀਜਨ ਸੈੱਲ-ਝਿੱਲੀ ਦੇ ਆਰ-ਪਾਰ ਪਰਸਰਣ ਕਿਰਿਆ ਦੁਆਰਾ ਆ ਜਾ ਸਕਦੇ ਹਨ। ਅਸੀਂ ਪਿਛਲੇ ਪਾਠਾਂ ਵਿੱਚ ਪਰਸਰਣ (osmosis) ਦੀ ਪ੍ਰਕਿਰਿਆ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ। ਅਸੀਂ ਦੇਖਿਆ ਕਿ ਪਦਾਰਥਾਂ ਦੀ ਗਤੀ ਜ਼ਿਆਦਾ ਸੰਘਣਤਾ ਵਾਲੇ ਖੇਤਰ ਤੋਂ ਘੱਟ ਸੰਘਣਤਾ ਵਾਲੇ ਖੇਤਰ ਵੱਲ ਹੁੰਦੀ ਹੈ।

ਕੁਝ ਇਸੇ ਤਰ੍ਹਾਂ ਦੀ ਪ੍ਰਕਿਰਿਆ ਸੈੱਲ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਲਈ ਜਦੋਂ ਕੁਝ ਪਦਾਰਥ ਜਿਵੇਂ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ (CO₂) ਜੋ ਕਿ ਸੈੱਲ ਦਾ ਇਕ ਵਿਅਰਥ ਪਦਾਰਥ ਹੈ ਅਤੇ ਜਿਸਦਾ ਨਿਕਾਸ ਹੋਣਾ ਸੈੱਲ ਵਿੱਚੋਂ ਜ਼ਰੂਰੀ ਹੈ, ਸੈੱਲ ਵਿੱਚ ਇਕੱਠੀ ਹੋ ਜਾਂਦੀ ਹੈ ਤਾਂ ਇਸਦੀ ਸੰਘਣਤਾ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਸੈੱਲ ਦੇ ਬਾਹਰੀ ਵਾਤਾਵਰਣ ਵਿੱਚ CO₂ ਦੀ ਸੰਘਣਤਾ, ਸੈੱਲ ਵਿਚਲੀ CO₂ ਨਾਲੋਂ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਜਿਉਂ ਹੀ ਸੈੱਲ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰ CO₂ ਦੀ ਸੰਘਣਤਾ ਖੇਤਰ ਵੱਲੋਂ, ਘੱਟ ਸੰਘਣਤਾ ਖੇਤਰ ਵੱਲ ਪਰਸਰਣ ਕਿਰਿਆ ਦੁਆਰਾ CO₂ ਸੈੱਲ ਤੋਂ ਬਾਹਰ ਨਿਕਲ ਜਾਂਦੀ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਜਦੋਂ ਸੈੱਲ ਵਿੱਚ ਆਕਸੀਜਨ ਦੀ ਸੰਘਣਤਾ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ ਤਾਂ ਆਕਸੀਜਨ ਬਾਹਰੋਂ ਸੈੱਲ ਵਿੱਚ ਪਰਸਰਣ ਕਿਰਿਆ ਦੁਆਰਾ ਅੰਦਰ ਆ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਸੈੱਲ ਅਤੇ ਬਾਹਰੀ ਵਾਤਾਵਰਣ ਵਿੱਚ ਗੈਸਾਂ ਦੇ ਆਦਾਨ-ਪ੍ਰਦਾਨ ਵਿੱਚ ਪਰਸਰਣ ਇਕ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦਾ ਹੈ।

ਪਾਣੀ ਵੀ ਪਰਸਰਣ ਕਿਰਿਆ ਦੇ ਨਿਯਮਾਂ ਅਨੁਸਾਰ ਵਿਵਹਾਰ ਕਰਦਾ ਹੈ। ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੀ ਗਤੀ ਜਦੋਂ ਝਿੱਲੀ ਵਿੱਚੋਂ ਹੁੰਦੀ ਹੈ ਤਾਂ ਇਸਨੂੰ ਪਰਸਰਣ (osmosis) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ ਵਿੱਚੋਂ ਪਾਣੀ ਦੇ ਅਣੂਆਂ ਦੀ ਗਤੀ ਪਾਣੀ ਵਿੱਚ ਘੁਲੇ ਹੋਏ ਪਦਾਰਥਾਂ ਦੀ ਮਾਤਰਾ ਨਾਲ ਵੀ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਸ ਵਿੱਚ ਪਾਣੀ ਦੇ ਅਣੂ ਝਿੱਲੀ ਦੁਆਰਾ ਪਾਣੀ ਦੀ ਉੱਚ ਸੰਘਣਤਾ ਤੋਂ ਪਾਣੀ ਦੀ ਘੱਟ ਸੰਘਣਤਾ ਵੱਲ ਜਾਂਦੇ ਹਨ।

ਜੇਕਰ ਅਸੀਂ ਕਿਸੇ ਜੰਤੂ ਸੈੱਲ ਜਾਂ ਪੌਦਾ ਸੈੱਲ ਨੂੰ ਖੰਡ ਜਾਂ ਨਮਕ ਦੇ ਘੋਲ਼ ਵਿੱਚ ਰੱਖੀਏ ਤਾਂ ਕੀ ਹੋਵੇਗਾ ? ਹੇਠ ਲਿਖੀਆਂ ਤਿੰਨ ਘਟਨਾਵਾਂ ਵਿੱਚੋਂ ਕੋਈ ਇਕ ਵਾਪਰ ਸਕਦੀ ਹੈ–

 ਜੇਕਰ ਸੈੱਲ ਨੂੰ ਪਾਣੀ ਦੀ ਉੱਚ ਸੰਘਣਤਾ ਵਾਲੇ ਮਾਧਿਅਮ ਭਾਵ ਖੰਡ ਜਾਂ ਨਮਕ ਦੇ ਪਾਣੀ 'ਚੋਂ ਪਤਲੇ ਘੋਲ਼ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਪਰਸਰਣ ਵਿਧੀ ਦੁਆਰਾ ਪਾਣੀ ਸੈੱਲ ਦੇ ਅੰਦਰ ਚਲਾ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੇ ਘੋਲ਼ ਨੂੰ ਘੱਟ ਘਣਤਾ ਵਾਲ਼ਾ ਘੋਲ਼ (hypotonic solution) ਕਹਿੰਦੇ ਹਨ। ਪਾਣੀ ਦੇ

ਜੀਵਨ ਦੀ ਮੌਲਿਕ ਇਕਾਈ

ਸੈੱਲ ਝਿੱਲੀ ਦੇ ਦੋਨੋਂ ਪਾਸੇ ਅਣੂ ਗਤੀ ਕਰਨ ਲਈ ਸੁਤੰਤਰ ਹੁੰਦੇ ਹਨ। ਪਰੰਤੂ ਸੈੱਲ ਦੇ ਅੰਦਰ ਜਾਣ ਵਾਲੇ ਪਾਣੀ ਦੀ ਮਾਤਰਾ ਸੈੱਲ ਤੋਂ ਬਾਹਰ ਆਉਣ ਵਾਲੇ ਪਾਣੀ ਦੀ ਮਾਤਰਾ ਤੋਂ ਜ਼ਿਆਦਾ ਹੋਵੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਤੱਖ ਨਤੀਜਾ ਇਹ ਹੋਇਆ ਕਿ ਪਾਣੀ ਸੈੱਲ ਦੇ ਅੰਦਰ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਸੈੱਲ ਫੁੱਲਣ ਲੱਗੇਗਾ।

 ਜੇਕਰ ਸੈੱਲ ਨੂੰ ਅਜਿਹੇ ਮਾਧਿਅਮ ਵਿੱਚ ਰੱਖਿਆ ਜਾਵੇ ਜਿਸ ਦੀ ਸੰਘਣਤਾ ਸੈੱਲ ਵਿਚਲੇ ਦ੍ਵ ਦੀ ਸੰਘਣਤਾ ਦੇ ਬਰਾਬਰ ਹੋਵੇ ਤਾਂ ਸੈੱਲ ਦੀ ਝਿੱਲੀ ਵਿੱਚੋਂ ਪਾਣੀ ਦਾ ਕਿਸੇ ਪਾਸੇ ਵਹਾਅ ਨਹੀਂ ਹੋਵੇਗਾ। ਅਜਿਹੇ ਮਾਧਿਅਮ ਨੂੰ ਸਮਪਰਸਰੀ ਘੋਲ (isotonic solution) ਕਹਿੰਦੇ ਹਨ।

ਪਾਣੀ ਸੈੱਲ-ਝਿੱਲੀ ਦੇ ਦੋਨੋਂ ਪਾਸੇ ਆਉਂਦਾ-ਜਾਂਦਾ ਹੈ ਪਰੰਤੂ ਪਾਣੀ ਦੀ ਜਿੰਨੀ ਮਾਤਰਾ ਅੰਦਰ ਗਈ, ਉਨੀ ਹੀ ਬਾਹਰ ਆ ਜਾਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸਲ ਰੂਪ ਵਿੱਚ ਪਾਣੀ ਦੀ ਕੋਈ ਗਤੀ ਨਹੀਂ ਹੋਈ। ਇਸ ਲਈ ਸੈੱਲ ਦੇ ਆਕਾਰ ਵਿੱਚ ਕੋਈ ਅੰਤਰ ਨਹੀਂ ਆਉਂਦਾ।

 ਜੇਕਰ ਸੈੱਲ ਦੇ ਬਾਹਰ ਵਾਲਾ ਘੋਲ, ਅੰਦਰ ਦੇ ਘੋਲ਼ ਤੋਂ ਜ਼ਿਆਦਾ ਗਾੜ੍ਹਾ ਹੈ ਤਾਂ ਪਾਣੀ ਪਰਸਰਣ ਕਿਰਿਆ ਦੁਆਰਾ ਮੈਲ ਤੋਂ ਬਾਹਰ ਆ ਜਾਏਗਾ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਘੋਲ਼ ਨੂੰ ਵੱਧ ਗਾੜ੍ਹਾ ਘੋਲ (hyertonic solution) ਕਹਿੰਦੇ ਹਨ।

ਹੁਣ ਵੀ ਪਾਣੀ ਸੈੱਲ ਝਿੱਲੀ ਦੇ ਦੋਨੋਂ ਪਾਸੇ ਆਉਂਦਾ-ਜਾਂਦਾ ਹੈ ਪਰ ਇਸ ਵਾਰ ਸੈੱਲ ਵਿੱਚੋਂ ਜ਼ਿਆਦਾ ਪਾਣੀ ਬਾਹਰ ਆਵੇਗਾ ਅਤੇ ਘੱਟ ਪਾਣੀ ਅੰਦਰ ਜਾਵੇਗਾ। ਇਸ ਲਈ ਸੈੱਲ ਸ਼ੁੰਗੜ ਜਾਵੇਗਾ।

ਪਰਸਰਣ ਇਸ ਲਈ ਵਹਾਅ ਦੀ ਇੱਕ ਖਾਸ ਕਿਸਮ ਹੈ ਜਿਸ ਵਿੱਚ ਚੁਨਣਯੋਗ ਮੁਸਾਮਦਾਰ (selective permeable) ਪਰਤ ਦੁਆਰਾ ਗਤੀ ਹੁੰਦੀ ਹੈ। ਆਉ ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਕਰੀਏ।

ਕਿਰਿਆ____

ਅੰਡੇ ਵਿੱਚ ਪਰਸਰਣ

(1) ਅੰਡੇ ਨੂੰ ਹਾਈਡੋਂਕਲਰਿਕ ਅਮਲ (ਲੂਣ ਦਾ ਤੇਜ਼ਾਬ) ਦੇ ਪਤਲੇ ਘੋਲ ਵਿੱਚ ਰੱਖ ਕੇ ਇਸਦਾ ਖੋਲ ਉਤਾਰ ਦਿਓ। ਇਸਦਾ ਖੋਲ ਜ਼ਿਆਦਾਤਰ ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ। ਇਕ ਪਤਲੀ ਬਾਹਰੀ ਚਮੜੀ (ਝਿੱਲੀ)

67

ਨੇ ਚੁਣ ਐਡੇ ਨੂੰ ਘੇਰਿਆ ਹੋਇਆ ਹੈ। ਹੁਣ ਐਡੇ ਨੂੰ ਸ਼ੂੱਧ ਪਾਣੀ ਵਿੱਚ ਰੱਖੋ ਅਤੇ 5 ਮਿੰਟਾਂ ਬਾਅਦ ਇਸਦਾ ਪ੍ਰੇਖਣ ਕਰੋ। ਅਸੀਂ ਕੀ ਦੇਖਦੇ ਹਾਂ? ਐਡਾ ਫੁੱਲ ਜਾਂਦਾ ਹੈ ਕਿਉਂਕਿ ਪਰਸਰਣ ਵਿਧੀ ਦੁਆਰਾ ਪਾਣੀ ਐਡੇ ਦੇ ਅੰਦਰ ਚਲਾ ਜਾਂਦਾ ਹੈ।

(2) ਇਸੇ ਤਰ੍ਹਾਂ ਦਾ ਇਕ ਖੋਲ ਤੋਂ ਬਿਨਾਂ ਇਕ ਐਡਾ ਨਮਕ ਦੇ ਗਾੜ੍ਹੇ ਘੋਲ ਵਿੱਚ ਰੱਖੋਂ ਅਤੇ 5 ਮਿੰਟ ਤੱਕ ਉਸਦਾ ਪ੍ਰੇਖਣ ਕਰੋ। ਐਡਾ ਸ਼ੁੰਗੜ ਜਾਂਦਾ ਹੈ। ਕਿਉਂ? ਪਾਣੀ ਐਡੇ ਵਿੱਚੋਂ ਬਾਹਰ ਆ ਕੇ ਨਮਕ ਦੇ ਘੋਲ ਵਿੱਚ ਮਿਲ ਜਾਂਦਾ ਹੈ ਕਿਉਂਕਿ ਨਮਕ ਦਾ ਘੋਲ ਜਿਆਦਾ ਗਾੜ੍ਹਾ ਹੈ।

ਇਸੇ ਤਰ੍ਹਾਂ ਦੀ ਇਕ ਹੋਰ ਕਿਰਿਆ ਅਸੀਂ ਸ਼ੁੱਕੀ ਸੌਗੀ ਜਾਂ ਖਰਮਾਨੀ ਨਾਲ ਵੀ ਕਰਨ ਦਾ ਯਤਨ ਕਰ ਸਕਦੇ ਹਾਂ।

ਕਿਰਿਆ_____5.4

ਸ਼ੁੱਕੀ ਸ਼ੌਗੀ ਜਾਂ ਖੁਰਮਾਨੀ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਰੱਖੋ ਅਤੇ ਕੁੱਝ ਸਮੇਂ ਲਈ ਛੱਡ ਦਿਓ। ਫਿਰ ਇਨ੍ਹਾਂ ਨੂੰ ਖੇਡ ਜਾਂ ਨਮਕ ਦੇ ਗਾੜ੍ਹੇ ਘੋਲ਼ ਵਿੱਚ ਰੱਖੇ। ਤੁਸੀਂ ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ ਨੋਟ ਕਰੋਗੇ।

- (ਕ) ਜਦੋਂ ਉਨ੍ਹਾਂ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ, ਦੇਖੋ ਪਾਣੀ ਚੁਸ ਕੇ ਫੁੱਲ ਗਈਆਂ।
- (ਖ) ਜਦੋਂ ਉਨ੍ਹਾਂ ਨੂੰ ਗਾੜ੍ਹੇ ਘੋਲ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਤਾਂ ਪਾਣੀ ਬਾਹਰ ਨਿਕਲ ਕੇ ਸ਼ੁੰਗੜ ਗਈਆਂ।

ਇਕ ਸੈੱਲੀ ਤਾਜ਼ੇ ਪਾਣੀ ਦੇ ਜੀਵ ਅਤੇ ਬਹੁਤ ਸਾਰੇ ਪੌਦਾ ਸੈੱਲ ਪਰਸਰਣ ਕਿਰਿਆ ਰਾਹੀਂ ਪਾਣੀ ਅੰਦਰ ਲੈ ਜਾਂਦੇ ਹਨ। ਪੌਦਿਆਂ ਦੀਆਂ ਜੜ੍ਹਾਂ ਦੁਆਰਾ ਪਾਣੀ ਸੋਖਣਾ ਵੀ ਪਰਸਰਣ ਦੀ ਹੀ ਕਿਰਿਆ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਦ੍ਵ ਵਹਾਅ, ਸੈੱਲ ਦੇ ਜੀਵਨ ਵਿੱਚ ਪਾਣੀ ਅਤੇ ਗੈਸਾਂ ਦੇ ਅਦਾਨ-ਪ੍ਰਦਾਨ ਲਈ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਵਹਾਅ ਰਾਹੀਂ ਪੌਦੇ ਦੇ ਸੈੱਲ ਵਾਤਾਵਰਣ ਵਿੱਚੋਂ ਪੋਸ਼ਣ ਵੀ ਲੈਂਦੇ ਹਨ। ਸੈੱਲ ਵਿੱਚੋਂ ਵੱਖ-ਵੱਖ ਅਣੂਆਂ ਦਾ ਅੰਦਰ ਜਾਣਾ ਅਤੇ ਬਾਹਰ ਆਉਣਾ ਵੀ ਵਹਾਅ ਰਾਹੀਂ ਹੀ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਸੰਚਾਰ ਲਈ ਊਰਜਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।

ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ ਲਚਕੀਲੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਕਾਰਬਨਿਕ ਅਣੂਆਂ ਜਿਵੇਂ ਕਿ ਚਰਬੀ ਅਤੇ ਪ੍ਰੋਟੀਨ ਦੀ ਬਣੀ ਹੁੰਦੀ ਹੈ। ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ ਦੀ ਰਚਨਾ ਅਸੀਂ ਸਿਰਫ ਇਲੈਕਟ੍ਰਾਨ ਸੁਖਮਦਰਸ਼ੀ ਨਾਲ ਦੇਖ ਸਕਦੇ ਹਾਂ।

ਸੈੱਲ ਝਿੱਲੀ ਦਾ ਲਚਕੀਲਾਪਣ, ਇਕ ਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਸੈੱਲ ਦੇ ਬਾਹਰੀ ਵਾਤਾਵਰਣ ਤੋਂ ਆਪਣਾ ਭੋਜਨ

68

ਅਤੇ ਹੋਰ ਪਦਾਰਥ ਗ੍ਰਹਿਣ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਅੰਤਰਗ੍ਰਹਿਣ (endocytosis) ਕਹਿੰਦੇ ਹਨ। ਅਮੀਬਾ ਆਪਣਾ ਭੋਜਨ ਇਸੇ ਪ੍ਰਕਿਰਿਆ ਦੁਆਰਾ ਪਾਪਤ ਕਰਦਾ ਹੈ।

ਕਿਰਿਆ_____5.5

ਸਕੂਲ ਵਿੱਚ ਲਾਇਬ੍ਰੇਰੀ ਜਾਂ ਇੰਟਰਨੈੱਟ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਇਲੈਕਟ੍ਰਾਨ ਸੂਖਮਦਰਸ਼ੀ ਬਾਰੇ ਪਤਾ ਕਰੋ। ਇਸ ਵਿਸ਼ੇ ਤੇ ਆਪਣੇ ਅਧਿਆਪਕ ਨਾਲ ਚਰਚਾ ਕਰੋ।

 CO₂ ਅਤੇ ਪਾਣੀ ਵਰਗੇ ਪਦਾਰਥ ਕਿਸ ਤਰ੍ਹਾਂ ਸੈੱਲ ਦੇ ਅੰਦਰ-ਬਾਹਰ ਆਉਂਦੇ-ਜਾਂਦੇ ਹਨ। ਇਸ ਦੀ ਚਰਚਾ ਕਰੋ।

 ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ ਨੂੰ ਚੁਣਨ ਯੋਗ ਮੁਸਾਮਦਾਰ ਪਰਤ ਕਿਉਂ ਕਹਿੰਦੇ ਹਨ?

5.2.2 ਸੈੱਲ-ਕੰਧ (ਸੈੱਲ ਭਿੱਤੀ) (Plasma Wall)

ਪੌਦਾ ਸੈੱਲਾਂ ਵਿੱਚ ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ (plasma membrane) ਤੋਂ ਇਲਾਵਾ ਸੈੱਲ-ਭਿੱਤੀ (cell wall) ਵੀ ਹੁੰਦੀ ਹੈ। ਪੌਦਾ ਸੈੱਲ ਦੀ ਭਿੱਤੀ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਸ਼ੈਲੂਲੋਜ ਦੀ ਬਣੀ ਹੁੰਦੀ ਹੈ। ਸ਼ੈਲੂਲੋਜ਼ ਇਕ ਬਹੁਤ ਜਟਿਲ ਪਦਾਰਥ ਹੈ ਅਤੇ ਇਹ ਪੌਦਿਆਂ ਨੰ ਸੰਰਚਨਾਤਮਕ ਦ੍ਰਿੜ੍ਹਤਾ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।

ਜਦੋਂ ਕਿਸੇ ਪੌਦਾ ਸੈੱਲ ਵਿੱਚੋਂ ਪਰਸਰਣ ਵਿਧੀ ਦੁਆਰਾ ਪਾਣੀ ਨਿਕਲ ਜਾਂਦਾ ਹੈ ਸੈੱਲ ਝਿੱਲੀ ਸਮੇਤ ਸੈੱਲ ਦੇ ਅੰਦਰੂਨੀ ਪਦਾਰਥ ਵੀ ਸ਼ੰਗੜ ਕੇ ਸੈੱਲ ਭਿੱਤੀ ਤੋਂ ਦੂਰ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਘਟਨਾ ਨੂੰ ਪਲਾਜ਼ਮੋਲਾਇਸਸ (plasmolysis) ਕਹਿੰਦੇ ਹਨ। ਅਸੀਂ ਇਸ ਘਟਨਾ ਨੂੰ ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਦੁਆਰਾ ਦੇਖ ਸਕਦੇ ਹਾਂ।

ਕਿਰਿਆ_____5.6

ਰੀਉ ਪੈਂਦੇ ਦੀ ਪੱਤੀ ਦੀ ਝਿੱਲੀ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਰੱਖ ਕੇ ਇਕ ਸਲਾਈਡ ਬਣਾਓ। ਇਸ ਨੂੰ ਉੱਚ ਸ਼ਕਤੀ ਵਾਲੇ ਸੂਖਮਦਰਸ਼ੀ ਵਿੱਚ ਦੇਖੋ। ਛੋਟੇ-ਛੋਟੇ ਹਰੇ ਕਣ ਦਿਖਾਈ ਦੇਣਗੇ। ਇਨ੍ਹਾਂ ਨੂੰ ਕਲੋਰੋਪਲਾਸਟ (chloroplasts) ਕਹਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਇਕ ਹਰਾ ਪਦਾਰਥ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਕਲੋਰੋਫਿਲ (chlorophyl) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਸਲਾਈਡ ਉੱਤੇ ਖੇਡ ਜਾਂ ਨਮਕ ਦਾ ਗਾੜ੍ਹਾ ਘੋਲ ਪਾਓ। ਇਕ ਮਿੰਟ ਉਡੀਕ ਕਰੋ ਅਤੇ ਇਸ ਨੂੰ ਸੂਖਮਦਰਸ਼ੀ ਰਾਹੀਂ ਦੇਖੋ। ਅਸੀਂ ਕੀ ਦੇਖਦੇ ਹਾਂ ?

ਵਿਗਿਆਨ

ਹੁਣ ਰੀਉ ਦੀਆਂ ਪੱਤੀਆਂ ਨੂੰ ਕੁੱਝ ਮਿੰਟਾਂ ਤੱਕ ਪਾਣੀ ਵਿੱਚ ਉਬਾਲੇ। ਇਸ ਨਾਲ ਪੱਤੀਆਂ ਦੇ ਸਾਰੇ ਸੈੱਲ ਮਰ ਜਾਣਗੇ। ਹੁਣ ਇਕ ਪੱਤੀ ਨੂੰ ਸਲਾਈਡ ਉੱਤੇ ਰੱਖੋ ਅਤੇ ਉਸਨੂੰ ਸੂਖਮਦਰਸ਼ੀ ਨਾਲ ਦੇਖੋ। ਸਲਾਈਡ ਉੱਤੇ ਰੱਖੀ ਇਸ ਪੱਤੀ ਉਪਰ ਖੰਡ ਜਾਂ ਨਮਕ ਦਾ ਗਾੜ੍ਹਾ ਘੋਲ ਪਾਉ। ਇਕ ਮਿੰਟ ਉਡੀਕ ਕਰੋ ਅਤੇ ਦੁਬਾਰਾ ਸੂਖਮਦਰਸ਼ੀ ਵਿੱਚ ਦੇਖੋ। ਅਸੀਂ ਕੀ ਦੇਖਦੇ ਹਾਂ ? ਕੀ ਹੁਣ ਵੀ ਪਲਾਜ਼ਮੋਲਾਇਸਸ ਹੋਇਆ ?

ਇਸ ਕਿਰਿਆ ਤੋਂ ਕੀ ਨਤੀਜਾ ਨਿਕਲਦਾ ਹੈ? ਇਸ ਤੋਂ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਕੇਵਲ ਜੀਵਿਤ ਸੈੱਲਾਂ ਵਿੱਚ ਹੀ ਪਰਸਰਣ ਦੁਆਰਾ ਪਾਣੀ ਸੋਖਣ/ਛੱਡਣ ਦੀ ਸਮਰੱਥਾ ਹੁੰਦੀ ਹੈ ਨਾ ਕਿ ਮ੍ਰਿਤਕ ਸੈੱਲਾਂ ਵਿੱਚ।

ਸੈੱਲ ਭਿੱਤੀ ਪੌਦੇ, ਉੱਲੀ ਅਤੇ ਜੀਵਾਣੂਆਂ ਦੇ ਸੈੱਲਾਂ ਨੂੰ ਬਹੁਤ ਘੱਟ ਸੰਘਣਤਾ (hypotonic solution) ਵਾਲੇ ਬਾਹਰੀ ਮਾਧਿਅਮ ਵਿੱਚ ਬਿਨ੍ਹਾਂ ਫਟੇ ਰਹਿਣ ਦੇ ਯੋਗ ਬਣਾਉਂਦੀ ਹੈ।ਅਜਿਹੇ ਮਾਧਿਅਮ ਵਿੱਚ ਸੈੱਲ, ਪਰਸਰਣ ਕਿਰਿਆ ਰਾਹੀਂ ਪਾਣੀ ਸੋਖਦਾ ਹੈ। ਸੈੱਲ ਫੁੱਲ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸੈੱਲ ਭਿੱਤੀ ਉਤੇ ਦਬਾਉ ਬਣਾਉਂਦਾ ਹੈ।ਸੈੱਲ ਭਿੱਤੀ ਫੁੱਲੇ ਹੋਏ ਸੈੱਲ ਉਤੇ ਬਰਾਬਰ ਦਾ ਅਤੇ ਉਲਟੀ ਦਿਸ਼ਾ ਵੱਲ ਦਬਾਉ ਪਾਉਂਦੀ ਹੈ। ਆਪਣੀਆਂ ਸੈੱਲ ਭਿੱਤੀਆਂ ਕਰਕੇ ਅਜਿਹੇ ਸੈੱਲ, ਜੰਤੂ ਸੈੱਲਾਂ ਦੇ ਮੁਕਾਬਲੇ ਬਾਹਰੀ ਮਾਧਿਅਮ ਵਿੱਚ ਵੱਡੀਆਂ ਤਬਦੀਲੀਆਂ ਸ਼ਹਿਣ ਦੇ ਯੋਗ ਹੁੰਦੇ ਹਨ।

5.2.3 ਕੇਂਦਰਕ (Nucleus)

ਤੁਹਾਨੂੰ ਯਾਦ ਹੋਵੇਗਾ ਕਿ ਅਸੀਂ ਪਿਆਜ਼ ਦੀ ਝਿੱਲੀ ਦੀ ਅਸਥਾਈ ਸਲਾਈਡ ਬਣਾਈ ਸੀ। ਅਸੀਂ ਇਸ ਝਿੱਲੀ ਉਤੇ ਆਇਓਡੀਨ ਦੇ ਘੋਲ਼ ਦੀਆਂ ਬੂੰਦਾਂ ਪਾਈਆਂ ਸਨ। ਕਿਉਂਕਿ ਜੇਕਰ ਅਸੀਂ ਬਿਨ੍ਹਾਂ ਆਇਓਡੀਨ ਤੋਂ ਸਲਾਈਡ ਦੇਖੀਏ ਤਾਂ ਅਸੀਂ ਕੀ ਦੇਖਾਂਗੇ? ਕੋਸ਼ਿਸ਼ ਕਰੋ ਅਤੇ ਦੇਖੋ ਕੀ ਅੰਤਰ ਹੈ। ਜਦੋਂ ਅਸੀਂ ਆਇਓਡੀਨ ਦਾ ਘੋਲ਼ ਪਾਇਆ ਤਾਂ ਕੀ ਹਰੇਕ ਸੈੱਲ ਸਮਾਨ ਰੂਪ ਵਿੱਚ ਰੰਗੀਨ ਹੋ ਗਿਆ ?

ਸੈੱਲ ਦੇ ਵੱਖ-ਵੱਖ ਭਾਗ ਰਸਾਇਣਿਕ ਰਚਨਾ ਦੇ ਅਧਾਰ ਤੇ ਵੱਖ-ਵੱਖ ਰੰਗਾਂ ਨਾਲ ਰੰਗੇ ਜਾਂਦੇ ਹਨ। ਕੁਝ ਖੇਤਰ ਬਹੁਤੇ ਗਹਿਰੇ ਰੰਗਾਂ ਦੇ ਦਿਸਦੇ ਹਨ ਅਤੇ ਕੁੱਝ ਘੱਟ। ਸੈੱਲਾਂ ਨੂੰ ਰੰਗਣ ਲਈ ਅਸੀਂ ਆਇਓਡੀਨ ਦੇ ਘੋਲ਼ ਤੋਂ ਬਿਨ੍ਹਾਂ, ਸੈਫ਼ਰਾਨਿਨ ਜਾਂ ਮੈਥੀਲੀਨ ਬਲਿਊ ਦਾ ਘੋਲ਼ ਵੀ ਵਰਤ ਸਕਦੇ ਹਾਂ।

ਜੀਵਨ ਦੀ ਮੌਲਿਕ ਇਕਾਈ

ਅਸੀਂ ਪਿਆਜ਼ ਦੇ ਸੈੱਲ ਨੂੰ ਦੇਖਿਆ ਹੈ, ਆਓ ਹੁਣ ਅਸੀਂ ਆਪਣੇ ਸਰੀਰ ਤੋਂ ਲਏ ਗਏ ਸੈੱਲਾਂ ਨੂੰ ਦੇਖੀਏ।

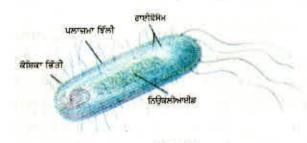
5.7

ਕਿਰਿਆ

ਕੱਚ ਦੀ ਇਕ ਸਲਾਈਡ ਲਓ ਅਤੇ ਉਸ ਉੱਤੇ ਇਕ ਬੂੰਦ ਪਾਣੀ ਰੱਖੋ। ਆਈਸਕ੍ਰੀਮ ਖਾਣ ਵਾਲੇ ਚਮਚ ਨਾਲ ਆਪਣੇ ਗੱਲ੍ਹ ਦੀ ਅੰਦਰਲੀ ਚਮੜੀ ਨੂੰ ਹੌਲ਼ੀ ਜਿਹੇ ਖੁਰਚੋ। ਕੀ ਚਮਚ ਉਤੇ ਕੋਈ ਪਦਾਰਥ ਚਿਪਕ ਗਿਆ ਹੈ ? ਸੂਈ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਇਸ ਨੂੰ ਸਲਾਈਡ ਉਤੇ ਬਰਾਬਰ ਫੈਲਾਅ ਦਿਓ। ਇਸ ਨੂੰ ਰੈਗਣ ਲਈ ਇਕ ਬੂੰਦ ਸੈਫਰਾਨਿਨ ਦੇ ਘੋਲ ਦੀ ਪਾਓ। ਸੂਖਮਦਰਸ਼ੀ ਰਾਹੀਂ ਪ੍ਰੇਖਣ ਲਈ ਸਲਾਈਡ ਤਿਆਰ ਹੈ। ਇਸ ਉਤੇ ਕਵਰ ਸਲਿੱਪ ਰੱਖਣਾ ਨਾ ਭੁੱਲੋ। ਅਸੀਂ ਕੀ ਦੇਖਦੇ ਹਾਂ ? ਸੈੱਲਾਂ ਦੀ ਬਨਾਵਟ ਕਿਹੋ ਜਿਹੀ ਹੈ ? ਇਸ ਨੂੰ ਇਕ ਕਾਗਜ਼ (paper) ਤੇ ਬਣਾਓ।

ਕੀ ਤੁਸੀਂ ਸੈੱਲ ਦੇ ਅੰਦਰ ਇਕ ਗੂੜ੍ਹੇ ਰੈਗ ਦੀ ਗੋਲਾਕਾਰ ਜਾਂ ਅੰਡਾਕਾਰ ਬਿੰਦੀ ਵਰਗੀ ਰਚਨਾ ਦੇਖ ਰਹੇ ਹੋ ? ਇਸ ਰਚਨਾ ਨੂੰ ਕੇਂਦਰਕ ਕਹਿੰਦੇ ਹਨ। ਕੀ ਇਸੇ ਤਰ੍ਹਾਂ ਦੀ ਰਚਨਾ ਪਿਆਜ਼ ਦੀ ਝਿੱਲੀ ਵਿੱਚ ਵੀ ਸੀ ?

ਕੇਂਦਰਕ ਦੁਆਲੇ ਇਕ ਦੋਹਰੀ (nuclear membrane) ਝਿੱਲੀ ਹੈ, ਜਿਸ ਨੂੰ ਕੇਂਦਰਕ ਝਿੱਲੀ ਕਹਿੰਦੇ ਹਨ। ਕੇਂਦਰਕ ਝਿੱਲੀ ਵਿੱਚ ਛੋਟੇ-ਛੋਟੇ ਛੇਕ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਰਾਹੀਂ ਕੇਂਦਰਕ ਦੇ ਅੰਦਰਲਾ ਦ੍ਵ ਕੇਂਦਰਕ ਦੇ ਬਾਹਰ ਭਾਵ ਸੈੱਲ ਦਵ ਵਿੱਚ ਆ ਜਾਂਦਾ ਹੈ। ਸੈੱਲ ਦ੍ਵ ਦੇ ਬਾਰੇ ਅਸੀਂ – 5.2.4 ਵਿੱਚ ਪੜ੍ਹਾਂਗੇ।


ਕੇਂਦਰਕ ਵਿੱਚ ਗੁਣਸੂਤਰ (chromosomes) ਹੁੰਦੇ ਹਨ ਜਿਹੜੇ ਸਿਰਫ਼ ਸੈੱਲ ਵਿਭਾਜਨ ਸਮੇਂ ਛੜਾਂ ਵਰਗੇ ਦਿਖਾਈ ਦਿੰਦੇ ਹਨ। ਗੁਣਸੂਤਰਾਂ ਵਿੱਚ ਮਾਪਿਆਂ ਤੋਂ ਅਗਲੀ ਪੀੜ੍ਹੀ ਵਿੱਚ ਜਾਣ ਵਾਲੇ ਅਨੁਵੰਸ਼ਿਕ ਗੁਣ ਡੀ.ਐਨ.ਏ. (Deoxyribo-Nucleic Acid) ਦੇ ਅਣੂ ਵਿੱਚ ਜਾਣਕਾਰੀ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਗੁਣਸੂਤਰ ਡੀ.ਐਨ.ਏ. ਅਤੇ ਪ੍ਰੋਟੀਨ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਗੁਣਸੂਤਰ ਡੀ.ਐਨ.ਏ. ਅਤੇ ਪ੍ਰੋਟੀਨ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਡੀ.ਐਨ.ਏ. ਅਣੂ ਵਿੱਚ ਸੈੱਲ ਦੇ ਨਿਰਮਾਣ ਅਤੇ ਸੰਗਠਨ ਦੀ ਸਾਰੀ ਜ਼ਰੂਰੀ ਜਾਣਕਾਰੀ ਹੁੰਦੀ ਹੈ। ਡੀ.ਐਨ.ਏ. ਦੇ ਕਿਰਿਆਤਮਕ ਭਾਗ ਨੂੰ ਜੀਨ (Gene) ਕਹਿੰਦੇ ਹਨ। ਜਿਹੜਾ ਸੈੱਲ ਵਿਭਾਜਿਤ ਨਹੀਂ ਹੋ ਰਿਹਾ ਹੁੰਦਾ ਉਸ ਵਿੱਚ ਇਹ ਡੀ.ਐਨ.ਏ. ਕ੍ਰੋਮਾਟਿਨ ਪਦਾਰਥ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਕ੍ਰੋਮਾਟਿਨ ਪਦਾਰਥ ਧਾਗੇ ਵਰਗੀਆਂ ਰਚਨਾਵਾਂ ਦਾ ਇਕ ਜਾਲ਼ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਵੀ ਸੈੱਲ ਵੰਡ ਹੋਣੀ ਹੁੰਦੀ ਹੈ ਤਾਂ ਇਹ ਕ੍ਰੋਮਾਟਿਨ ਪਦਾਰਥ, ਗੁਣਸੂਤਰਾਂ ਵਿੱਚ ਬਦਲ ਜਾਂਦਾ ਹੈ।

69

ਕੇਂਦਰਕ, ਸੈੱਲ ਦੀ ਜਣਨ ਕਿਰਿਆ (cell reproduction)ਵਿੱਚ ਮੁੱਖ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦਾ ਹੈ। ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਇਕ ਸੈੱਲ ਵਿਭਾਜਿਤ ਹੋ ਕੇ ਦੋ ਨਵੇਂ ਸੈੱਲ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਬਾਹਰੀ ਵਾਤਾਵਰਣ ਦੇ ਨਾਲ-ਨਾਲ ਸੈੱਲ ਦੀਆਂ ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਨੂੰ ਕੰਟਰੋਲ ਕਰਕੇ, ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਇਹ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ ਕਿ ਸੈੱਲ ਪੂਰੀ ਤਰ੍ਹਾਂ ਵਿਕਾਸ ਕਰੇਗਾ ਅਤੇ ਵਿਕਾਸ ਉਪਰੰਤ ਕੀ ਕਾਰਜ ਕਰੇਗਾ।

ਬੈਕਟੀਰੀਆ ਵਰਗੇ ਕੁੱਝ ਸੂਖਮ ਜੀਵਾਂ ਵਿੱਚ ਕੋਸ਼ਿਕਾ ਦਾ ਨਾਭਿਕੀ ਖੇਤਰ ਬਹੁਤ ਘੱਟ ਸਪਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਨਾਭਿਕੀ ਝਿੱਲੀ ਨਹੀਂ ਹੁੰਦੀ। ਅਜਿਹੇ ਧੁੰਦਲੇ ਨਾਭਿਕੀ ਖੇਤਰ ਵਿੱਚ ਕੇਵਲ ਕ੍ਰੋਮਾਟਿਵ ਪਦਾਰਥ ਹੁੰਦਾ ਹੈ।ਅਜਿਹੇ ਖੇਤਰ ਨੂੰ ਕੇਂਦਰ ਕਾਯਾ ਜਾਂ ਨਿਊਕਲੀਉਲਸ (nucleolus) ਕਹਿੰਦੇ ਹਨ। ਅਜਿਹੇ ਜੀਵ ਜਿਨ੍ਹਾਂ ਦੀਆਂ ਕੋਸ਼ਿਕਾਵਾਂ ਵਿੱਚ ਨਾਭਿਕੀ ਝਿੱਲੀ ਨਹੀਂ ਹੁੰਦੀ, ਉਹਨਾਂ ਨੂੰ ਪ੍ਰੋਕੈਰੀਓਟ (pro–ਅਰਭੈਕ ਅਤੇ karyote–ਨਾਭਿਕ) ਕਹਿੰਦੇ ਹਨ।

ਪ੍ਰੋਕੈਰੀਉਟ ਸੈੱਲਾਂ ਵਿੱਚ (ਚਿੱਤਰ 5.4) ਹੋਰ ਵੀ ਅਜਿਹੇ ਬਹੁਤ ਸਾਰੇ ਨਿਕੜੇ ਅੰਗ ਨਹੀਂ ਮਿਲਦੇ ਜੋ ਯੂਕੈਰੀਉਟ ਸੈੱਲਾਂ ਦੇ ਸੈੱਲ ਦ੍ਵ (cytoplasm) ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਨਿਕੜੇ ਅੰਗਾਂ ਦੇ ਅਨੇਕ ਕੰਮ ਵੀ ਸੈੱਲ-ਪਦਾਰਥ ਦੇ ਅਸੰਗਠਿਤ ਭਾਗਾਂ ਦੁਆਰਾ ਹੀ ਕੀਤੇ ਜਾਂਦੇ ਹਨ। (ਸੈਕਸ਼ਨ 5.2.4 ਪੜ੍ਹੋ) ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ੀ ਜੀਵਾਣੂਆਂ ਵਿੱਚ ਕਲੋਰੋਫਿਲ ਝਿਲੀਦਾਰ ਬੈਲੀਆਂ (membranous sacs) ਵਿੱਚ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਕਿ ਯੂਕੈਰਿਉਟ ਸੈੱਲਾਂ ਵਿੱਚ ਕਲੋਰੋਫਿਲ ਪਲਾਸਟਿਡ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।

ਚਿੱਤਰ 5.4 ਪ੍ਰੋਕੈਰੀਓਟਿਕ ਸੈੱਲ

5.2.4 ਸੈੱਲ-ਦ੍ਰਵ (ਸੈੱਲ ਪਦਾਰਥ Cytoplasm)

ਜਦੋਂ ਅਸੀਂ ਪਿਆਜ਼ ਦੀ ਝਿੱਲੀ ਦੀ ਜਾਂ ਮਨੁੱਖੀ ਗਲ੍ਹ ਦੀ ਅਸਥਾਈ ਸਲਾਈਡ ਦੇਖਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਹਰੇਕ ਸੈੱਲ ਵਿੱਚ ਇਕ ਵੱਡਾ ਖੇਤਰ ਦਿਸਦਾ ਹੈ ਜੋ ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ ਨਾਲ

70

ਘਿਰਿਆ ਹੋਇਆ ਹੈ। ਇਸ ਖੇਤਰ ਨੂੰ ਬਹੁਤ ਹਲਕਾ ਰੈਗ ਚੜ੍ਹਦਾ ਹੈ। ਇਸਨੂੰ ਸੈੱਲ ਦਵ ਜਾਂ ਸਾਈਟੋਪਲਾਜ਼ਮ (cytoplasm) ਕਹਿੰਦੇ ਹਨ। ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ ਦੇ ਅੰਦਰ ਸੈੱਲ ਦਵ ਇਕ ਤਰਲ ਪਦਾਰਥ ਹੈ। ਇਸ ਵਿੱਚ ਬਹੁਤ ਸਾਰੇ ਖਾਸ ਨਿਕੜੇ ਅੰਗ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਹਰ ਨਿਕੜਾ ਅੰਗ ਸੈੱਲ ਲਈ ਇਕ ਖਾਸ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਸੈੱਲ ਪਦਾਰਥ ਅਤੇ ਕੇਂਦਰਕ ਰਲ ਕੇ ਜੀਵ-ਦੂਵ (protoplasm) ਬਣਾਉਂਦੇ ਹਨ।

ਸੈੱਲ ਦੇ ਨਿਕੜੇ ਅੰਗ ਵੀ ਝਿੱਲੀਆਂ ਦੁਆਰਾ ਘਿਰੇ ਹੁੰਦੇ ਹਨ।ਪ੍ਰੋਕੈਰੀਉਟਾਂ ਵਿੱਚ ਸਪਸ਼ਟ ਨਿਊਕਲੀਆਈ ਖੇਤਰ ਦੇ ਇਲਾਵਾ ਝਿੱਲੀ ਨਾਲ ਘਿਰੇ ਨਿਕੜੇ ਅੰਗ ਵੀ ਨਹੀਂ ਹੁੰਦੇ। ਦੂਜੇ ਪਾਸੇ ਯੂਕੈਰਿਉਟੀ ਸੈੱਲਾਂ ਵਿੱਚ ਕੇਂਦਰਕ ਝਿੱਲੀ ਅਤੇ ਝਿੱਲੀ ਨਾਲ ਘਿਰੇ ਨਿਕੜੇ ਅੰਗ ਵੀ ਹੁੰਦੇ ਹਨ।

ਝਿੱਲੀ ਦਾ ਮਹੱਤਵ ਵਿਸ਼ਾਣੂ ਦੀ ਉਦਾਹਰਣ ਨਾਲ ਸਪਸ਼ਟ ਕਰ ਸਕਦੇ ਹਾਂ। ਵਿਸ਼ਾਣੂ ਵਿੱਚ ਕਿਸੇ ਵੀ ਤਰ੍ਹਾਂ ਦੀ ਝਿੱਲੀ ਨਹੀਂ ਹੁੰਦੀ ਅਤੇ ਇਸ ਲਈ ਇਸ ਵਿੱਚ ਜੀਵਨ ਦੇ ਗੁਣ ਉਦੋਂ ਤੱਕ ਪ੍ਰਗਟ ਨਹੀਂ ਹੁੰਦੇ ਜਦੋਂ ਤੱਕ ਇਹ ਕਿਸੇ ਸਜੀਵ ਦੇ ਸਰੀਰ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਕੇ, ਸੈੱਲ ਦੀ ਮਸ਼ੀਨਰੀ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆ ਕੇ ਬਹੁਖੰਡਿਤ (multiply) ਨਹੀਂ ਹੋ ਜਾਂਦਾ।

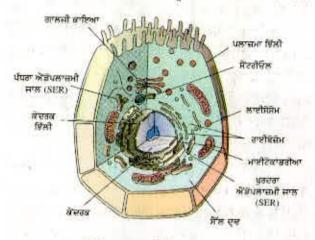
> ਕੀ ਹੁਣ ਤੁਸੀਂ ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਵਿੱਚ ਖਾਲੀ ਥਾਵਾਂ ਭਰ ਸਕਦੇ ਹੋ? ਜਿਸ ਤੋਂ ਕਿ ਪ੍ਰੋਕੈਰਿਊਟੀ ਅਤੇ ਯੂਕੈਰੀਓਟੀ ਸੈੱਲਾਂ ਦਾ ਅੰਤਰ ਸਪਸ਼ਟ ਹੋ ਸਕੇ।

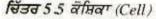
ਪ੍ਰੋਕੈਰੀਓਟੀ ਕੋਸ਼ਿਕਾ	ਯੂਕੈਰੀਓਟੀ ਕੋਸ਼ਿਕਾ		
1. ਆਕਾਰ ਆਮ ਤੌਰ ਤੇ ਛੋਟਾ (1 – 10 μm) 1 μm = 10 ⁻⁶ m	1. ਆਕਾਰ ਆਮ ਤੌਰ ਤੇ ਵੱਡਾ (5 – 100 μm)		
2. ਕੇਂਦਰੀ ਖੇਤਰ	2. ਕੇਂਦਰੀ ਖੇਤਰ		
3. ਗੁਣਸੂਤਰ : ਇੱਕ	3. ਗੁਣਸੂਤਰ : ਇੱਕ ਤੋਂ ਜ਼ਿਆਦਾ		
4. ਝਿੱਲੀ ਨਾਲ ਘਿਰੇ ਸੈੱਲ ਦੇ ਨਿਕੜੇ ਅੰਗ ਨਹੀਂ ਹੁੰਦੇ	4		

ਵਿਗਿਆਨ

5.2.5 ਸੈੱਲ ਦੇ ਨਿਕੜੇ ਅੰਗ (Cell Organelles)

ਹਰੇਕ ਸੈੱਲ ਦੁਆਲੇ ਇਕ ਝਿੱਲੀ ਹੁੰਦੀ ਹੈ ਤਾਂ ਕਿ ਸੈੱਲ ਵਿਚਲੇ ਪਦਾਰਥ ਬਾਹਰੀ ਵਾਤਾਵਰਣ ਤੋਂ ਅਲੱਗ ਰਹਿਣ। ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਦੇ ਸੈੱਲਾਂ ਸਮੇਤ, ਵੱਡੇ ਅਤੇ ਗੁੰਝਲਦਾਰ ਸੈੱਲਾਂ ਨੂੰ ਆਪਣੀ ਗੁੰਝਲਦਾਰ ਸੰਰਚਨਾ ਅਤੇ ਕਾਰਜ ਨੂੰ ਬਰਕਰਾਰ ਰੱਖਣ ਲਈ ਬਹੁਤ ਸਾਰੀਆਂ ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਕਰਨ ਦੀ ਲੋੜ ਪੈਂਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਵੱਖ-ਵੱਖ ਕਿਰਿਆਵਾਂ ਨੂੰ ਇਕ ਦੂਜੇ ਤੋਂ ਵੱਖ-ਵੱਖ ਰੱਖਣ ਲਈ, ਇਹ ਸੈੱਲ ਆਪਣੇ ਅੰਦਰ ਝਿੱਲੀਆਂ ਦੁਆਰਾ ਘਿਰੇ ਹੋਏ ਨਿਕੜੇ ਅੰਗਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ। ਇਹ ਯੂਕੈਰੀਓਟੀ ਸੈੱਲਾਂ ਦਾ ਇਕ ਅਜਿਹਾ ਗੁਣ ਹੈ ਜੋ ਉਨ੍ਹਾਂ ਨੂੰ ਪ੍ਰੋਕੈਰੀਓਟੀ ਸੈੱਲਾਂ ਤੋਂ ਅਲੱਗ ਕਰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁਝ ਨਿਕੜੇ ਅੰਗ ਸਿਰਫ ਇਲੈਕਟਾਨ ਸੂਖਮਦਰਸ਼ੀ ਨਾਲ ਹੀ ਵੇਖੇ ਜਾ ਸਕਦੇ ਹਨ।


ਅਸੀਂ ਪਿਛਲੇ ਭਾਗ ਵਿੱਚ ਨਾਵਿਕ ਬਾਰੇ ਪੜ੍ਹਿਆ ਹੈ। ਕੁੱਝ ਮਹੱਤਵਪੂਰਨ ਨਿਕੜੇ ਅੰਗ ਜਿਨ੍ਹਾਂ ਬਾਰੇ ਅਸੀਂ ਹੁਣ ਪੜ੍ਹਾਂਗੇ, ਉਹ ਹਨ—ਐਂਡੋਪਲਾਜ਼ਮੀ ਜਾਲ, ਗਾਲਜੀ ਕਾਇਆ, ਲਾਈਸੋਸੋਮ, ਮਾਈਟੋਕਾਂਡਰੀਆ, ਪਲਾਸਟਿਡ ਅਤੇ ਰਸਦਾਰੀਆਂ। ਇਹ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਹਨ ਕਿਉਂਕਿ ਇਹ ਸਿੱਲਾਂ ਵਿੱਚ ਕੁੱਝ ਬਹੁਤ ਵੱਡੇ ਮੂਲ ਕਾਰਜ ਕਰਦੇ ਹਨ।


- 5.2.5 (i) ਐਂਡੋਪਲਾਜ਼ਮੀ ਜਾਲ (ER)
- 2) (Endoplasmic Reticulum)

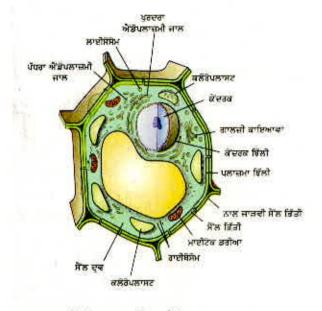
ਐਂਡੋਪਲਾਜ਼ਮੀ ਜਾਲ ਝਿੱਲੀ ਦੁਆਰਾ ਘਿਰੀਆਂ ਹੋਈਆਂ ਕੁੱਝ ਟਿਊਬਾਂ ਜਾਂ ਤਹਿਆਂ ਦਾ ਇਕ ਜਾਲ ਹੈ। ਇਹ ਲੰਬੀਆਂ ਨਲੀਆਂ ਜਾਂ ਗੋਲ ਜਾਂ ਆਇਤਾਕਾਰ ਬੈਲੀਆਂ ਵਰਗੀ ਦਿਖਾਈ ਦਿੰਦੀ ਹੈ। ਐਂਡੋਪਲਾਜ਼ਮੀ ਜਾਲ ਦੀ ਰਚਨਾ ਵੀ ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ ਦੇ ਸਮਰੂਪ ਹੁੰਦੀ ਹੈ। ਐਂਡੋਪਲਾਜ਼ਮੀ ਜਾਲ ਦੋ ਤਰ੍ਹਾਂ ਦਾ ਹੁੰਦਾ ਹੈ।ਖੁਰਦਰਾ ਐਂਡੋਪਲਾਜ਼ਮੀ ਜਾਲ (Rough Endoplasmic Reticulum) (RER) ਅਤੇ ਪੱਧਰਾ ਐਂਡੋਪਲਾਜ਼ਮੀ ਜਾਲ (Smooth Endoplasmic Reticulum) (SER) ਸੂਖਮਦਰਸ਼ੀ ਰਾਹੀਂ ਦੇਖਣ ਤੇ ਖੁਰਦਰਾ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ ਕਿਉਂਕਿ ਇਸ ਉਤੇ ਰਾਈਬੋਸ਼ੋਮ ਲੱਗੇ ਹੁੰਦੇ ਹਨ।

ਰਾਈਬੋਸੋਮ ਜੋ ਕਿ ਸਾਰੇ ਚੁਸਤ ਸੈੱਲਾਂ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਪ੍ਰਕਾਸ਼-ਸੰਸ਼ਲੇਸ਼ਣ ਕਰਨ ਵਿੱਚ ਸਹਾਈ ਹੁੰਦੇ ਹਨ। ਫਿਰ ਇਹੀ ਸੰਸ਼ਲਿਸ਼ਤ ਪ੍ਰੋਟੀਨ, ਸੈੱਲ ਦੇ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ ਵਿੱਚ ਜਿੱਥੇ ਇਨ੍ਹਾਂ ਦੀ ਲੋੜ ਹੋਵੇ, ਐਂਡੋਪਲਾਜ਼ਮੀ ਜਾਲ ਦੁਆਰਾ ਭੇਜ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ। SER ਚਰਬੀ ਜਾਂ ਲਿਪਿਡ ਦੇ ਅਣੂ ਬਣਾਉਂਦੀ ਹੈ ਜਿਹੜੇ ਕਿ ਸੈੱਲ ਦੀਆਂ ਕਿਰਿਆਵਾਂ ਲਈ ਜ਼ਰੂਰੀ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਪ੍ਰੋਟੀਨ ਅਤੇ ਚਰਬੀ ਪਲਾਜ਼ਮਾ ਝਿਲੀ ਬਣਾਉਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੇ ਹਨ। ਇਸ ਕਿਰਿਆ ਨੂੰ ਝਿੱਲੀ ਜਣਨ (membrane biogenesis) ਕਹਿੰਦੇ ਹਨ। ਕੁੱਝ ਹੋਰ ਪ੍ਰੋਟੀਨ ਅਤੇ ਚਰਬੀ ਦੇ ਅਣੂ ਐਨਜਾਈਮ ਜਾਂ ਹਾਰਮੋਨ ਦੇ ਤੌਰ ਤੇ ਕੰਮ ਕਰਦੇ ਹਨ। ਭਾਵੇਂ ਐਂਡੋਪਲਾਜ਼ਮੀ ਜਾਲ ਦਿੱਖ ਪੱਖੋਂ ਵੱਖ-ਵੱਖ ਸੈੱਲਾਂ ਵਿੱਚ ਵੱਖ ਨਜ਼ਰ ਆਉਂਦਾ ਹੈ ਪਰ ਇਹ ਹਮੇਸ਼ਾ ਜਾਲ-ਰੂਪੀ ਨਜ਼ਰ ਆਉਂਦਾ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ER ਦਾ ਇੱਕ ਕੰਮ ਤਾਂ ਸੈੱਲ ਪਦਾਰਥ ਦੇ ਵੱਖ-ਵੱਖ ਹਿੱਸਿਆਂ ਵਿੱਚ ਜਾਂ ਸੈੱਲ ਪਦਾਰਥ ਤੋਂ ਕੇਂਦਰਕ ਤੱਕ ਪਦਾਰਥਾਂ ਦੀ ਖਾਸ ਤੌਰ ਤੇ ਪ੍ਰੋਟੀਨਾਂ ਦੀ ਢੋਆ-ਢੋਆਈ

ਦੇ ਤੌਰ 'ਤੇ ਵੀ ਕੰਮ ਕਰਦਾ ਹੈ ਅਤੇ ਜੈਵਿਕ ਕਿਰਿਆਵਾਂ ਲਈ ਸਤ੍ਹਾ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦਾ ਹੈ। ਰੀੜ੍ਹਧਾਰੀ ਜੰਤੂਆਂ ਦੇ ਜਿਗਰ ਸੈੱਲਾਂ (ਦੇਖੋ ਪਾਠ 7) ਵਿੱਚ SER ਕਈ ਜ਼ਹਿਰੀਲੇ ਪਦਾਰਥਾਂ ਅਤੇ ਨਸ਼ੀਲੀਆਂ ਦਵਾਈਆਂ ਨੂੰ ਜ਼ਹਿਰ-ਮੁਕਤ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ।

5.2.5 (ii) ਗਾਲਜੀ ਕਾਇਆਵਾਂ (Golgi Apparatus) ਗਾਲਜੀ ਕਾਇਆਵਾਂ ਦਾ ਖੁਲਾਸਾ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਕੈਮਿਲੋ ਗਾਲਜੀ ਨੇ ਕੀਤਾ ਸੀ। ਗਾਲਜੀ ਕਾਇਆਵਾਂ ਝਿੱਲੀ ਨਾਲ ਘਿਰੀਆਂ ਕੁੱਝ ਥੈਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਇਕ ਦੂਜੇ ਉੱਪਰ ਸਮਾਂਤਰ ਰੂਪ ਵਿੱਚ ਪਈਆਂ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਸਿਸਟਰਨੀ (cisternae) ਕਹਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੀਆਂ ਝਿੱਲੀਆਂ ਆਮ ਤੌਰ 'ਤੇ ER ਦੀਆਂ ਝਿੱਲੀਆਂ ਨਾਲ ਜੁੜੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਇਸ ਲਈ ਗੁੰਝਲਦਾਰ ਸੈੱਲ-ਤੰਤਰ (Complex Cellular Membrane System) ਦਾ ਇੱਕ ਹੋਰ ਹਿੱਸਾ ਬਣਾਉਂਦੇ ਹਨ।


ER ਦੇ ਨੇੜੇ ਸੰਸਲਿਸ਼ਤ ਪਦਾਰਥ ਗਾਲਜੀ ਕਾਇਆਵਾਂ

71

ਜੀਵਨ ਦੀ ਮੌਲਿਕ ਇਕਾਈ

ਰਾਹੀਂ ਸੰਗ੍ਰਹਿਤ ਹੋ ਕੇ ਸੈੱਲ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰ ਵੱਖ-ਵੱਖ ਠਿਕਾਣਿਆਂ ਤੇ ਭੇਜ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ। ਪਦਾਰਥਾਂ ਨੂੰ ਜਮਾਂ ਕਰਨਾ, ਰੂਪਾਂਤਰ ਕਰਨਾ ਅਤੇ ਥੈਲੀਆਂ 'ਚ ਬੰਦ ਕਰਕੇ

ਵਿੱਤਰ 5.6 ਪੌਦਾ ਸੈੱਲ (Plant Cell)

ਭੇਜਣਾ ਇਸਦੇ ਕੰਮਾਂ ਵਿੱਚ ਸ਼ਾਮਲ ਹੈ। ਕਈ ਵਾਰੀ ਗਾਲਜੀ ਕਾਇਆਵਾਂ ਖੰਡ ਦੇ ਸਰਲ ਅਣੂਆਂ ਤੋਂ ਖੰਡ ਦੇ ਗੁੰਝਲਦਾਰ ਅਣੂ ਬਣਾਉਣ ਦਾ ਕੰਮ ਵੀ ਕਰਦੀਆਂ ਹਨ। ਇਹ ਲਾਈਸੋਸੋਮ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰਦੀਆਂ ਹਨ। 5.2.5 (iii) ਲਾਈਸੋਸੋਮ (Lysosome)

ਲਾਈਸੋਸੋਮ, ਸੈੱਲ ਦਾ ਮਲ-ਤਿਆਗ ਤੰਤਰ ਹੈ। ਲਾਈਸੋਸੋਮ ਸੈੱਲ ਦੇ ਟੁੱਟੇ-ਫੁੱਟੇ ਨਿਕੜੇ ਅੰਗ ਅਤੇ ਸੈੱਲ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕੀਤੇ ਬਾਹਰੀ ਪਦਾਰਥਾਂ ਨੂੰ ਹਜ਼ਮ ਕਰਕੇ ਸੈੱਲ ਨੂੰ ਸ਼ਾਫ ਰੱਖਦੇ ਹਨ। ਸੈੱਲ ਦੇ ਅੰਦਰ ਆਉਣ ਵਾਲੇ ਬਾਹਰੀ ਪਦਾਰਥ ਜਿਵੇਂ ਜੀਵਾਣੂ ਅਤੇ ਭੋਜਨ ਅਤੇ ਪੁਰਾਣੇ ਹੋ ਚੁੱਕੇ ਨਿਕੜੇ ਅੰਗ, ਲਾਈਸੋਸੋਮਾਂ ਦੋ ਅੰਦਰ ਚਲੇ ਜਾਂਦੇ ਹਨ। ਲਾਈਸੋਸੋਮ ਇਹ ਸਭ ਕਰਨ ਦੇ ਤਾਂ ਹੀ ਯੋਗ ਹੁੰਦੇ ਹਨ ਕਿਉਂਕਿ ਉਨ੍ਹਾਂ ਵਿੱਚੋਂ ਬਹੁਤ ਸ਼ਕਤੀਸ਼ਾਲੀ ਪਾਚਨਕਾਰੀ ਐਨਜ਼ਾਈਮ ਹੁੰਦੇ ਹਨ ਜੋ ਸਾਰੇ ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਨੂੰ ਤੋੜ ਸਕਦੇ ਹਨ। ਸੈੱਲ ਦੀਆਂ ਜੈਵਿਕ ਕਿਰਿਆਵਾਂ (metabolism) ਵਿੱਚ ਰੁਕਾਵਟ ਪੈਣ ਕਾਰਨ ਜੇਕਰ ਸੈੱਲ ਦੀ ਟੁੱਟ-ਭੱਜ ਹੋ ਜਾਵੇ ਤਾਂ ਲਾਈਸੋਸੋਮ ਫੱਟ ਜਾਂਦੇ ਹਨ ਅਤੇ ਉਸਦੇ ਐਨਜ਼ਾਈਮ ਆਪਣੇ ਹੀ ਸੈੱਲ

72

ਨੂੰ ਹਜ਼ਮ ਕਰ ਜਾਂਦੇ ਹਨ। ਇਸ ਲਈ ਲਾਈਸੋਸੋਮ ਨੂੰ ਸੈੱਲ ਦੀ ''ਆਤਮਘਾਤੀ ਪੋਟਲੀ'' (suicidal bags) ਵੀ ਕਹਿੰਦੇ ਹਨ। ਬਣਤਰ ਪੱਖੋਂ ਲਾਈਸੋਸੋਮ ਵਿੱਚ ਝਿੱਲੀ ਨਾਲ ਘਿਰੀ ਬੈਲੀ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਪਾਚਨ ਐਨਜ਼ਾਈਮ ਹੁੰਦੇ ਹਨ। ਖੁਰਦਰਾ ਐਂਡੋਪਲਾਜ਼ਮਿਕ ਜਾਲ਼ (RER) ਇਨ੍ਹਾਂ ਐਨਜ਼ਾਈਮਾਂ ਨੂੰ ਬਣਾਉਂਦੇ ਹਨ।

ਕੈਮਿਲੋਂ ਗਾਲਜੀ ਦਾ ਜਨਮ 7 ਜੁਲਾਈ 1843 ਨੂੰ ਬ੍ਰੇਸਿਕਾ ਦੇ ਨੇੜੇ ਕੋਰਟਨੋ ਵਿੱਚ ਹੋਇਆ ਸੀ। ਉਸਨੇ ਪਾਵਿਆ ਯੂਨੀਵਰਸਿਟੀ ਵਿੱਚ ਮੈਡੀਸਨ ਦੇ ਖੇਤਰ ਵਿੱਚ ਪੜ੍ਹਾਈ ਕੀਤੀ। 1865 ਵਿੱਚ ਗਰੈਜੂਏਸ਼ਨ ਕਰਨ ਤੋਂ ਬਾਅਦ ਉਸਨੇ ਪਾਵਿਆ

ਦੇ ਸੇਂਟ ਮੋਟਿਊ ਹਸਪਤਾਲ ਵਿੱਚ ਕੰਮ ਜਾਰੀ ਰੱਖਿਆ। ਉਸ ਸਮੇਂ ਉਸਦੀ ਸਾਰੀ ਖੋਜ ਨਾੜੀ ਤੰਤਰ ਨਾਲ ਸੰਬੰਧਿਤ ਸੀ। 1872 ਵਿੱਚ ਉਸਨੇ ਐਬਿਏਟਗ੍ਰਾਸੋ ਦੇ ਗੰਭੀਰ ਰੋਗਾਂ ਦੇ ਹਸਪਤਾਲ ਵਿੱਚ ਮੱਖ ਸਿਹਤ ਅਧਿਕਾਰੀ ਦੇ ਤੌਰ ਤੇ ਅਹੁਦਾ ਸੰਭਾਲਿਆ। ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਉਸਨੇ ਨਾੜੀ ਤੰਤਰ ਤੇ ਆਪਣੀ ਖੋਜ ਹਸਪਤਾਲ ਦੀ ਇੱਕ ਛੋਟੀ ਕਿਚਨ ਤੋਂ ਸ਼ੁਰੂ ਕੀਤੀ ਜਿਸ ਨੂੰ ਉਸਨੇ ਬਾਅਦ ਵਿੱਚ ਪਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਬਦਲ ਦਿੱਤਾ। ਉਸਦਾ ਸਭ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਕੰਮ ਇਹ ਸੀ ਕਿ ਉਸਨੇ ਇਕੱਲੀ ਨਾੜੀ ਅਤੇ ਸੈੱਲ ਸੰਰਚਨਾਵਾਂ ਨੂੰ ਰੰਗ ਦੇਣ ਦੀ ਕਾਂਤੀਕਾਰੀ ਵਿਧੀ ਇਜ਼ਾਦ ਕੀਤੀ। ਇਸ ਵਿਧੀ ਨੂੰ "ਬਲੈਕ ਰਿਐਕਸ਼ਨ" ਦੇ ਨਾਂ ਨਾਲ ਜਾਣਿਆ ਗਿਆ। ਇਸ ਵਿਧੀ ਵਿੱਚ ਸਿਲਵਰ ਨਾਈਟੇਟ ਦਾ ਪਤਲਾ ਘੋਲ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਖਾਸ ਕਰਕੇ ਇਹ ਸੈੱਲ ਦੀਆਂ ਬਰੀਕ ਸ਼ਾਖਾਵਾਂ ਅਤੇ ਕਿਰਿਆਵਾਂ ਦੇ ਰਸਤੇ ਪਤਾ ਕਰਨ ਲਈ ਮਹੱਤਵਪੂਰਨ ਸੀ। ਸਾਰਾ ਜੀਵਨ ਉਹ ਇਸੇ ਦਿਸ਼ਾ ਵਿੱਚ ਕੰਮ ਕਰਦਾ ਰਿਹਾ ਅਤੇ ਇਸ ਵਿਧੀ ਵਿੱਚ ਸੁਧਾਰ ਕਰਦਾ ਰਿਹਾ। ਗਾਲਜੀ ਨੇ ਆਪਣੇ ਇਸ ਕੰਮ ਲਈ ਉੱਚ ਸਨਮਾਨ ਤੇ ਇਨਾਮ ਪ੍ਰਾਪਤ ਕੀਤੇ। ਸੰਨ 1905 ਵਿੱਚ ਉਸਨੂੰ ਸੈਂਟਿਆਗੋ ਰੈਮੋਨੀ ਕੈਜ਼ਲ ਨਾਲ ਸੰਯੁਕਤ ਰੂਪ ਵਿੱਚ ਨਾਤੀ ਤੰਤਰ ਦੀ ਸੰਰਚਨਾ ਦਾ ਕੰਮ ਕਰਨ ਲਈ ਨੋਬਲ ਪਰਸਕਾਰ ਨਾਲ ਸਨਮਾਨਿਤ ਕੀਤਾ ਗਿਆ।

ਵਿਗਿਆਨ

5.2.5 (iv) ਮਾਈਟੋਕਾਂਡਰੀਆ (Mitochondria)

ਮਾਈਟੋਕਾਂਡਰੀਆ (Mitochondria) ਨੂੰ ਸੈੱਲ ਦਾ ਸ਼ਕਤੀਘਰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜੀਵਨ ਲਈ ਜ਼ਰੂਰੀ ਵੱਖ-ਵੱਖ ਰਸ਼ਾਇਣਕ ਕਿਰਿਆਵਾਂ ਨੂੰ ਕਰਨ ਲਈ ਮਾਈਟੋਕਾਂਡਰੀਆ ATP (ਐਡੀਨੋਸੀਨ-ਟ੍ਰਾਈਫਾਸਫੇਟ) ਦੇ ਰੂਪ ਵਿੱਚ ਊਰਜਾ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ATP ਸੈੱਲ ਦਾ ਊਰਜਾ ਸ੍ਰੋਤ ਹੈ। ਸਰੀਰ ਨਵੇਂ ਰਸਾਇਣਕ ਯੋਗਿਕ ਬਣਾਉਣ ਲਈ ਅਤੇ ਯੰਤਰਿਕ ਕੰਮਾਂ ਲਈ ATP ਵਿੱਚ ਜਮਾਂ ਕੀਤੀ ਊਰਜਾ ਨੂੰ ਵਰਤਦਾ ਹੈ। ਮਾਈਟੋਕਾਂਡਰੀਆ (Mitochondria) ਇਕ ਦੀ ਬਜਾਏ ਦੋ ਝਿੱਲੀਆਂ ਨਾਲ ਢੱਕਿਆ ਹੁੰਦਾ ਹੈ। ਬਾਹਰਲੀ ਝਿੱਲੀ ਬਹੁਤ ਹੀ ਮੁਸ਼ਾਮਦਾਰ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਕਿ ਅੰਦਰਲੀ ਝਿੱਲੀ ਬਹੁਤ ਵਲੇਵੇਂਦਾਰ ਹੁੰਦੀ ਹੈ। ਰਸਾਇਣਿਕ ਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਊਰਜਾ ਪੈਦਾ ਕਰਨ ਲਈ ਇਹ ਵਲੇਵੇਂ ਵੱਧ ਸਤ੍ਹਾ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ।

ਮਾਈਟੋਕਾਂਡਰੀਆ ਅਦਭੁਤ ਨਿਕੜਾ ਅੰਗ ਹੈ ਜਿਸ ਵਿੱਚ ਆਪਣਾ ਡੀ.ਐਨ.ਏ. ਅਤੇ ਰਾਈਬੋਸੋਮ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਮਾਈਟੋਕਾਂਡਰੀਆ ਆਪਣੇ ਕੁੱਝ ਰਾਈਬੋਸੋਮ ਹੁੰਦੇ ਹਨ।ਇਸ ਲਈ ਮਾਈਟੋਕਾਂਡਰੀਆ ਆਪਣੇ ਕੁੱਝ ਪ੍ਰੋਟੀਨ ਬਣਾਉਣ ਦੇ ਆਪ ਹੀ ਸਮਰੱਥ ਹੁੰਦੇ ਹਨ।

5.2.5 (v) ਪਲਾਸਟਿਡਸ (Plastids)

ਪਲਾਸਟਿਡ ਸਿਰਫ਼ ਪੌਦਾ ਸੈੱਲਾਂ ਵਿੱਚ ਹੀ ਹੁੰਦੇ ਹਨ। ਪਲਾਸਟਿਡ ਦੋ ਬਰ੍ਹਾਂ ਦੇ ਹੁੰਦੇ ਹਨ। ਕ੍ਰੋਮੋਪਲਾਸਟ (ਰੈਗੀਨ ਪਲਾਸਟਿਡ) ਅਤੇ ਲਿਊਕੋਪਲਾਸਟ (ਸਫੈਦ ਜਾਂ ਰੈਗਹੀਣ ਪਲਾਸਟਿਡ) ਕਲੋਰੋਫਿਲ ਵਰਣਕ ਵਾਲੇ ਪਲਾਸਟਿਡ ਨੂੰ ਕਲੋਰੋਪਲਾਸਟ (chloroplast) ਕਹਿੰਦੇ ਹਨ। ਕਲੋਰੋਪਲਾਸਟ ਵਿੱਚ ਕਲੋਰੋਫਿਲ ਤੋਂ ਬਿਨ੍ਹਾਂ ਬਹੁਤ ਸਾਰੇ ਪੀਲੇ ਅਤੇ ਸੰਤਰੀ ਰੈਗ ਦੇ ਵਰਣਕ ਵੀ ਹੁੰਦੇ ਹਨ। ਲਿਊਕੋਪਲਾਸਟ ਮੁੱਖ ਤੌਰ ਤੇ ਉਹ ਨਿਕੜਾ ਅੰਗ ਹੈ ਜਿਸ ਵਿੱਚ ਸਟਾਰਚ, ਤੇਲ ਅਤੇ ਪ੍ਰੋਟੀਨ ਵਰਗੇ ਪਦਾਰਥ ਜਮ੍ਹਾਂ ਰਹਿੰਦੇ ਹਨ। ਅ

ਪਲਾਸਟਿਡ ਦੀ ਅੰਦਰੂਨੀ ਰਚਨਾ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਝਿੱਲੀਆਂ ਵਾਲੀਆਂ ਪਰਤਾਂ ਹੁੰ ਦੀਆਂ ਹਨ ਜੋ ਕਿ ਸਟ੍ਰੋਮਾ (stroma) ਨਾਂ ਦੇ ਪਦਾਰਥ ਵਿੱਚ ਪਈਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਬਾਹਰੀ ਰਚਨਾ ਤੋਂ ਪਲਾਸਟਿਡ ਮਾਈਟੋਕਾਂਡਰੀਆ ਵਰਗੇ ਹੁੰਦੇ ਹਨ। ਮਾਈਟੋਕਾਂਡਰੀਆ ਵਾਂਗ ਹੀ ਪਲਾਸਟਿਡ ਵਿੱਚ ਵੀ ਆਪਣਾ DNA ਅਤੇ ਰਾਈਬੋਸੋਮ ਹੁੰਦੇ ਹਨ।

ਜੀਵਨ ਦੀ ਮੌਲਿਕ ਇਕਾਈ

5.2.5 (vi) ਰਸਧਾਨੀਆਂ (Vacuoles)

ਰਸਧਾਨੀਆਂ ਠੋਸ ਅਤੇ ਤਰਲ ਪਦਾਰਥਾਂ ਨੂੰ ਜਮਾਂ ਕਰਨ ਵਾਲੀਆਂ ਥੈਲੀਆਂ ਹਨ। ਜੰਤੂ-ਸੈੱਲਾਂ ਵਿੱਚ ਰਸਧਾਨੀਆਂ ਛੋਟੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਜਦੋਂ ਕਿ ਪੌਦਾ ਸੈੱਲਾਂ ਵਿੱਚ ਰਸਧਾਨੀਆਂ ਬਹੁਤ ਵੱਡੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਕੁੱਝ ਪੌਦਾ ਸੈੱਲਾਂ ਦੀ ਕੇਂਦਰੀ ਰਸਧਾਨੀ ਦਾ ਮਾਪ ਸੈੱਲ ਦੇ ਆਇਤਨ ਦਾ 50% ਤੋਂ 90% ਤੱਕ ਹੁੰਦਾ ਹੈ।

ਪੌਦਾ ਸੈੱਲਾਂ ਦੀਆਂ ਰਸਧਾਨੀਆਂ ਵਿੱਚ ਸੈੱਲ-ਦ੍ਵ ਭਰਿਆ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਹ ਸੈੱਲ ਨੂੰ ਸਫੀਤੀ ਅਤੇ ਕਠੋਰਤਾ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਪੌਦਾ ਸੈੱਲਾਂ ਲਈ ਜ਼ਰੂਰੀ ਬਹੁਤ ਸਾਰੇ ਪਦਾਰਥ ਇਨ੍ਹਾਂ ਰਸਧਾਨੀਆਂ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਅਮੀਨੋ ਐਸਿਡ ਖੰਡ, ਕਈ ਕਾਰਬਨਿਕ ਐਸਿਡ ਅਤੇ ਕੁੱਝ ਪ੍ਰੋਟੀਨ ਸ਼ਾਮਿਲ ਹਨ। ਇੱਕ ਸੈੱਲੇ ਜੀਵਾਂ ਜਿਵੇਂ ਅਮੀਬਾ ਵਿੱਚ ਭੋਜਨ ਰਸਧਾਨੀ (food vacuole) ਵਿੱਚ ਅਮੀਬਾ ਦੁਆਰਾ ਖਾਧੇ ਗਏ ਭੋਜਨ-ਪਦਾਰਥ ਹੁੰਦੇ ਹਨ। ਕੁੱਝ ਇਕ ਸੈੱਲੇ ਜੀਵਾਂ ਵਿੱਚ ਖਾਸ ਰਸਧਾਨੀਆਂ ਵਾਧੂ ਪਾਣੀ ਅਤੇ ਵਿਅਰਥ ਪਦਾਰਥਾਂ ਨੂੰ ਸਰੀਰ ਤੋਂ ਬਾਹਰ ਕੱਢਣ ਦਾ ਮਹੱਤਵਪੂਰਨ ਕੰਮ ਕਰਦੀਆਂ ਹਨ।

ਸ਼ਨ

- ਕੀ ਤੁਸੀਂ ਦੋ ਅਜਿਹੇ ਨਿਕੜੇ ਅੰਗਾਂ ਦੇ ਨਾਂ ਦੱਸ ਸਕਦੇ ਹੋ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਆਪਣਾ ਅਨੁਵੰਸ਼ਿਕ ਪਦਾਰਥ ਹੁੰਦਾ ਹੈ ?
- ਜੇਕਰ ਕਿਸੇ ਸੈੱਲ ਦਾ ਸੰਗਠਨ ਕਿਸੇ ਭੋਤਿਕ ਜਾਂ ਰਸਾਇਣਿਕ ਪ੍ਰਭਾਵ ਦੇ ਕਾਰਨ ਨਸ਼ਟ ਹੋ ਜਾਂਦਾ ਹੈ ਤਾਂ ਕੀ ਹੋਵੇਗਾ ?
- ਲਾਈਸੋਸੋਮ ਨੂੰ ਆਤਮਘਾਤੀ ਪੋਟਲੀ ਕਿਉਂ ਕਹਿੰਦੇ ਹਨ ?
- ਸੈੱਲ ਦੇ ਅੰਦਰ ਪ੍ਰੋਟੀਨ-ਸੈਂਬਲੇਸ਼ਣ ਕਿੱਥੇ ਹੁੰਦਾ ਹੈ ?

ਹਰ ਸੈੱਲ ਆਪਣੇ ਨਿਕੜੇ ਅੰਗਾਂ ਅਤੇ ਝਿੱਲੀਆਂ ਦੇ ਸੰਗਠਨ ਦੀ ਖਾਸ ਬਣਤਰ ਕਰਕੇ ਆਪਣੀ ਰਚਨਾ ਅਤੇ ਕੰਮ ਕਰਨ ਦੀ ਸਮਰਥਾ ਅਖਤਿਆਰ ਕਰਦਾ ਹੈ। ਇਸ ਕਰਕੇ ਸੈੱਲ ਦੀ ਇਕ ਖਾਸ ਰਚਨਾ ਹੁੰਦੀ ਹੈ ਜਿਸ ਦੁਆਰਾ ਉਹ ਸਾਹ ਕਿਰਿਆ, ਪੋਸ਼ਣ ਅਤੇ ਮਲ-ਤਿਆਗ ਅਤੇ ਨਵੇਂ ਪ੍ਰੋਟੀਨ ਬਣਾਉਣ ਵਰਗੀਆਂ ਕਿਰਿਆਵਾਂ ਕਰ ਸਕਦਾ ਹੈ। ਇਸ ਲਈ "ਸੈੱਲ ਸਜੀਵਾਂ ਦੀ ਮੂਲ ਰਚਨਾਤਮਕ ਅਤੇ ਕਿਰਿਆਤਮਕ ਇਕਾਈ ਹੈ।"

73

74

- ਸੈੱਲ ਜੀਵਨ ਦੀ ਮੂਲ ਰਚਨਾਤਮਕ ਇਕਾਈ ਹੈ।
- ਸੈੱਲ ਦੇ ਚਾਰੇ ਪਾਸੇ ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ ਹੁੰਦੀ ਹੈ ਜਿਹੜੀ ਕਿ ਲਿਪਿਡ ਅਤੇ ਪ੍ਰੋਟੀਨ ਦੀ ਬਣੀ ਹੁੰਦੀ ਹੈ।
- ਸੈੱਲ ਝਿੱਲੀ ਸੈੱਲ ਦਾ ਇਕ ਫੁਰਤੀਲਾ ਭਾਗ ਹੈ। ਇਹ ਪਦਾਰਥਾਂ ਦੀ ਗਤੀ ਨੂੰ ਸੈੱਲ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰੀ ਵਾਤਾਵਰਣ ਵਿੱਚ ਨਿਯਮਿਤ ਕਰਦੀ ਹੈ।
- ਪੌਦਾ ਸੈੱਲ ਵਿੱਚ ਸੈੱਲ ਝਿੱਲੀ ਦੇ ਦੁਆਲੇ ਇਕ ਸੈੱਲ ਭਿੱਤੀ ਹੁੰਦੀ ਹੈ। ਸੈੱਲ ਭਿੱਤੀ ਸੈਲੁਲੋਜ਼ ਦੀ ਬਣੀ ਹੁੰਦੀ ਹੈ।
 - ਸੈੱਲ ਭਿੱਤੀ ਕਰਕੇ ਪੌਦਾ, ਉੱਲੀ ਅਤੇ ਜੀਵਾਣੂਆਂ ਦੇ ਸੈੱਲ ਘੱਟ ਬਣਤਾ ਵਾਲੇ ਦਵ (Hypotonic Solution) ਵਿੱਚ ਬਿਨਾਂ ਫਟੇ ਜੀਵਿਤ ਰਹਿ ਸਕਦੇ ਹਨ।
 - ਯੂਕੈਰੀਊਟ ਵਿੱਚ ਕੇਂਦਰਕ ਦੋਹਰੀ ਝਿੱਲੀ ਦੁਆਰਾ ਸੈੱਲ ਪਦਾਰਥ ਤੋਂ ਅਲੱਗ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਸੈੱਲ ਨੂੰ ਜੀਵਨ-ਕਿਰਿਆਵਾਂ ਲਈ ਨਿਰਦੇਸ਼ ਦਿੰਦਾ ਹੈ।
- ER ਸੈੱਲ ਦੇ ਅੰਦਰ ਪਦਾਰਥਾਂ ਦਾ ਸੰਚਾਰ ਅਤੇ ਉਤਪਾਦਨ ਸਤ੍ਹਾ ਪ੍ਰਦਾਨ ਕਰਨ ਦਾ ਕੰਮ ਕਰਦਾ ਹੈ।
 - ਗਾਲਜੀ ਕਾਇਆਵਾਂ ਝਿੱਲੀਆਂ ਦੁਆਰਾ ਘਿਰੀਆਂ ਹੋਈਆਂ ਥੈਲੀਆਂ ਦਾ ਸੰਗ੍ਰਹਿ ਹੈ। ਇਹ ਸੈੱਲ ਦੁਆਰਾ ਬਣਾਏ ਹੋਏ ਪਦਾਰਥਾਂ ਨੂੰ ਜਮਾਂ ਕਰਨ, ਰੁਪਾਂਤਰਣ ਕਰਨ ਤੇ ਸੰਗ੍ਰਹਿਤ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ।
- ਜ਼ਿਆਦਾਤਰ ਪੌਦਾ ਸੈੱਲਾਂ ਵਿੱਚ ਵੱਡੇ ਝਿੱਲੀ-ਯੁਕਤ ਨਿਕੜੇ ਅੰਗ ਪਲਾਸਟਿਡ ਹੁੰਦੇ ਹਨ। ਇਹ ਦੋ ਕਿਸਮ ਦੇ ਹਨ - ਕ੍ਰੋਮੋਪਲਾਸਟ ਅਤੇ ਲਿਊਕੋਪਲਾਸਟ।
- ਜਿਹੜੇ ਪਲਾਸਟਿਡਾਂ ਵਿੱਚ ਕਲੋਰੋਫਿਲ ਹੁੰਦੀ ਹੈ, ਉਨ੍ਹਾਂ ਨੂੰ ਕਲੋਰੋਪਲਾਸਟ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਪ੍ਰਕਾਸ਼ ਸੰਸ਼ਲੇਸ਼ਣ ਕਰਦੇ ਹਨ।
- ਲਿਊਕੋਪਲਾਸਟਾਂ ਦਾ ਮੱਖ ਕੰਮ ਸਟੋਰੇਜ ਹੈ।
- ਜ਼ਿਆਦਾਤਰ ਪ੍ਰੌੜ ਪੌਦਾ ਸੈੱਲਾਂ ਵਿੱਚ ਇਕ ਵੱਡੀ ਕੇਂਦਗੇ ਰਸਧਾਨੀ ਹੁੰਦੀ ਹੈ ਜਿਹੜੀ ਸੈੱਲ ਦੇ ਸਫੀਤੀ ਤਣਾਉ (Turgor Pressure) ਨੂੰ ਬਰਕਰਾਰ ਰੱਖਦੀ ਹੈ ਅਤੇ ਵਿਅਰਥ ਪਦਾਰਥਾਂ ਸਮੇਤ ਕੁਝ ਮਹੱਤਵਪੂਰਨ ਪਦਾਰਥਾਂ ਨੂੰ ਆਪਣੇ ਵਿੱਚ ਜਮਾਂ ਰੱਖਦੀ ਹੈ।
- ਪੋਕੈਗੇਊਟੀ ਸੈੱਲਾਂ ਵਿੱਚ ਕੋਈ ਵੀ ਝਿੱਲੀ-ਭੁਕਤ ਨਿਕੜਾ ਅੰਗ ਨਹੀਂ ਹੁੰਦਾ। ਉਨ੍ਹਾਂ ਦੇ ਗੁਣਸੂਤਰਾਂ ਵਿੱਚ ਸਿਰਫ ਨਿਊਕਲੀਆਈ ਤੇਜ਼ਾਬ ਹੁੰਦਾ ਹੈ। ਉਨ੍ਹਾਂ ਵਿੱਚ ਸਿਰਫ ਬਹੁਤ ਛੋਟੇ ਰਾਈਬੋਸ਼ੋਮ ਨਿਕੜੇ ਅੰਗਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ।

ਵਿਗਿਆਨ

ਅਭਿਆਸ

- ਪੌਦਾ ਸੈੱਲ ਅਤੇ ਜੰਤੂ ਸੈੱਲ ਦੀ ਤੁਲਨਾ ਕਰੋ।
- ਪ੍ਰੋਕੈਗੋਊਟੀ ਸੈੱਲ, ਯੂਕੈਗੋਊਟੀ ਸੈੱਲਾਂ ਤੋਂ ਕਿਵੇਂ ਵੱਖ ਹੁੰਦੇ ਹਨ?
- 3. ਜੇਕਰ ਪਲਾਜ਼ਮਾ ਝਿੱਲੀ ਫੱਟ ਜਾਵੇ ਜਾਂ ਟੁੱਟ ਜਾਵੇ ਤਾਂ ਕੀ ਹੋਵੇਗਾ ?
- 4. ਜੇਕਰ ਗਾਲਜੀ ਕਾਇਆਵਾਂ ਨਾ ਹੋਣ ਤਾਂ ਸੈੱਲ ਦੇ ਜੀਵਨ ਦਾ ਕੀ ਹੋਵੇਗਾ?
- 5. ਸੈੱਲ ਦਾ ਕਿਹੜਾ ਨਿਕੜਾ ਅੰਗ ਸ਼ਕਤੀਘਰ (power house) ਹੈ ? ਅਤੇ ਕਿਉਂ ?
- 6. ਸੈੱਲ-ਝਿੱਲੀ ਨੂੰ ਬਣਾਉਣ ਵਾਲੇ ਲਿਪਿਡ ਅਤੇ ਪ੍ਰੋਟੀਨ ਦਾ ਸੰਸਲੇਸ਼ਣ ਕਿੱਥੇ ਹੁੰਦਾ ਹੈ?
- 7. ਅਮੀਬਾ ਆਪਣਾ ਭੋਜਨ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ?

ਹੇਠ ਦਿੱਤੀ ਪਰਸਰਣ ਕਿਰਿਆ ਦਾ ਪ੍ਰਯੋਗ ਕਰੋ।

8. ਪਰਸਰਣ ਕੀ ਹੈ?

1JA

ਛਿੱਲੇ ਹੋਏ ਅੱਧੇ-ਅੱਧੇ ਆਲੂ ਦੇ ਚਾਰ ਟੁਕੜੇ ਲਓ। ਇਨ੍ਹਾਂ ਚਾਰਾਂ ਭਾਗਾਂ ਨੂੰ ਖੋਖਲਾ ਕਰ ਲਓ ਤਾਂ ਕਿ ਆਲੂ ਦੇ ਕੱਪ ਬਣ ਜਾਣ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਇਕ ਕੱਪ ਉਬਲੇ ਹੋਏ ਆਲੂ ਦਾ ਬਣਾਉਣਾ ਹੈ। ਆਲੂ ਦੇ ਹਰ ਕੱਪ ਨੂੰ ਪਾਣੀ ਵਾਲੇ ਬਰਤਨ ਵਿੱਚ ਰੱਖੋ। ਹੁਣ—

- (ਕ) ਕੱਪ "A" ਨੂੰ ਖਾਲੀ ਰੱਖੋ।
- (ਖ) ਕੱਪ "B" ਵਿੱਚ ਇਕ ਚਮਚ ਖੰਡ ਪਾਓ।
- (ਗ) ਕੱਪ "C" ਵਿੱਚ ਇਕ ਚਮਚ ਨਮਕ ਪਾਓ।
- (ਘ) ਉਬਲੇ ਆਲੂ ਤੋਂ ਬਣਾਏ ਕੱਪ "D" ਵਿੱਚ ਇਕ ਚਮਚ ਖੰਡ ਪਾਓ।

ਆਲੂ ਦੇ ਇਨ੍ਹਾਂ ਚਾਰਾਂ ਕੱਪਾਂ ਨੂੰ ਦੋ ਘੰਟੇ ਤੱਕ ਰੱਖਣ ਤੋਂ ਬਾਅਦ ਉਨ੍ਹਾਂ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ ਅਤੇ ਹੇਠ ਦਿੱਤੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ।

- (i) "B" ਅਤੇ "C" ਦੇ ਖਾਲੀ ਭਾਗ ਵਿੱਚ ਪਾਣੀ ਕਿਉਂ ਇਕੱਠਾ ਹੋ ਗਿਆ ? ਇਸਦਾ ਵਰਨਣ ਕਰੋ।
- (ii) "A" ਆਲੂ ਇਸ ਪ੍ਰਯੋਗ ਲਈ ਕਿਉਂ ਮਹੱਤਵਪੂਰਣ ਹੈ ?
- (iii) "A" ਅਤੇ "D" ਆਲੂ ਦੇ ਖਾਲੀ ਭਾਗ ਵਿੱਚ ਪਾਣੀ ਇਕੱਠਾ ਕਿਉਂ ਨਹੀਂ ਹੋਇਆ ? ਇਸਦਾ ਵਰਨਣ ਕਰੋ।

ਜੀਵਨ ਦੀ ਮੌਲਿਕ ਇਕਾਈ

75

ਅਧਿਆਇ 6

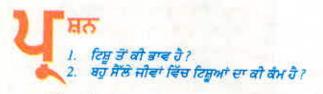
ਪਿਛਲੇ ਅਧਿਆਇ ਤੋਂ ਸਾਨੂੰ ਚੇਤੇ ਹੋਵੇਗਾ ਕਿ ਸਾਰੇ ਸਜੀਵ ਸੈੱਲਾਂ ਤੋਂ ਬਣੇ ਹੋਏ ਹਨ। ਇੱਕ ਸੈਲੀ ਜੀਵਾਂ ਵਿੱਚ ਇਕੋ ਹੀ ਸੈੱਲ ਜੀਵਨ ਦੀਆਂ ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ ਕਰਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ ਅਮੀਬਾ ਵਿੱਚ ਇੱਕ ਹੀ ਸੈੱਲ ਚੱਲਣ-ਫਿਰਨ ਲਈ, ਭੋਜਨ ਗ੍ਰਹਿਣ ਕਰਨ ਲਈ, ਗੈਸਾਂ ਦੇ ਆਦਾਨ-ਪ੍ਰਦਾਨ ਲਈ ਅਤੇ ਮਲ-ਤਿਆਗ ਕਿਰਿਆ ਕਰਨ ਦਾ ਕੰਮ ਕਰਦਾ ਹੈ। ਪਰੰਤੂ ਬਹੁ ਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਕਰੋੜਾਂ ਹੀ ਸੈੱਲ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਬਹੁਤੇ ਸੈੱਲ ਕੋਈ ਖਾਸ ਕਾਰਜ ਕਰਨ ਲਈ ਸਪੈਸ਼ਲ ਕਿਸਮ ਦੇ ਹਨ। ਹਰ ਖਾਸ ਕੰਮ ਨੂੰ ਨੇਪਰੇ ਚਾੜਨ ਲਈ ਸੈੱਲਾਂ ਦਾ ਇਕ ਖਾਸ ਸਮੂਹ ਕੈਮ ਕਰਦਾ ਹੈ। ਕਿਉਂਕਿ ਸੈੱਲਾਂ ਦਾ ਇਹ ਸਮੂਹ ਇਕ ਖਾਸ ਕੰਮ 'ਚ ਜਟਿਆ ਹੈ, ਇਸ ਲਈ ਇਹ ਇਸ ਨੂੰ ਬਹੁਤ ਹੀ ਸੁਯੋਗਤਾ ਨਾਲ ਪਰਾ ਕਰਦਾ ਹੈ। ਮਨੁੱਖਾਂ ਵਿੱਚ ਪੱਠਿਆਂ ਦੇ ਸੈੱਲ ਗਤੀ ਲਈ ਸ਼ੁੰਗੜਨ ਤੇ ਫੈਲਣ ਦਾ ਕੰਮ, ਨਾੜੀ ਸੈੱਲ ਸੰਦੇਸ਼ ਪਹੁੰਚਾਉਣ ਦਾ ਕੰਮ ਅਤੇ ਲਹੂ ਸੰਚਾਰ ਆਕਸੀਜਨ ਗੈਸ, ਭੋਜਨ, ਹਾਰਮੋਨਾਂ ਅਤੇ ਮਲ ਤਿਆਗ ਵਾਲੇ ਪਦਾਰਥਾਂ ਦੀ ਢੋਆ-ਢਆਈ ਦਾ ਕੰਮ ਕਰਦੇ ਹਨ।ਪੌਦਿਆਂ ਵਿੱਚ ਵਹਿਣੀ ਟਿਸ਼ ਪੌਦੇ ਦੇ ਇੱਕ ਹਿੱਸੇ ਤੋਂ ਦੂਜੇ ਹਿੱਸੇ ਤੱਕ ਭੋਜਨ ਅਤੇ ਪਾਣੀ ਢੋਣ ਦਾ ਕੰਮ ਕਰਦੇ ਹਨ। ਇਸ ਲਈ ਬਹ ਸੈੱਲੀ ਜੀਵ ਆਪਸੀ ਕੰਮ-ਵੰਡ ਦਿਖਾਉਂਦੇ ਹਨ। ਇੱਕ ਖਾਸ ਕੰਮ ਲਈ ਅਨੁਕੂਲਿਤ ਸੈੱਲ ਆਮ ਤੌਰ `ਤੇ ਇਕ ਖਾਸ ਸਮੂਹ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਸ ਦਾ ਮਤਲਬ ਹੈ ਕਿ ਕਿਸੇ ਖਾਸ ਕੰਮ ਨੂੰ ਨੇਪਰੇ ਚਾੜਨ ਵਾਲੇ ਸੈੱਲਾਂ ਦਾ ਸਮੂਹ ਸਰੀਰ ਵਿੱਚ ਇਕ ਖਾਸ ਥਾਂ ਤੇ ਮਿਲਦਾ ਹੈ, ਸੈੱਲਾਂ ਦੇ ਇਸ ਖਾਸ ਸਮੂਹ ਨੂੰ ਟਿਸ਼ੂ ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਇਹ ਇਸ ਢੰਗ ਨਾਲ ਵਿਉਂਤ ਬੈਦ ਹੁੰਦਾ ਹੈ ਕਿ ਇਹ ਆਪਣੇ ਕੰਮ ਨੂੰ ਬੜੀ ਉਤਸਾਹ ਨਾਲ ਸਿਰੇ ਚਾੜਦਾ ਹੈ। ਲਹੁ, ਫਲੋਇਮ ਅਤੇ ਪੱਠੇ ਸਾਰੇ ਟਿਸ਼ੂਆਂ ਦੇ ਉਦਾਹਰਣ ਹਨ।

म्नूर्डी हिंस मुर्ठी उत्तर से (Tissues)

6.1 ਕੀ ਪੌਦੇ ਅਤੇ ਜੰਤੂ ਇੱਕੋ ਕਿਸਮ ਦੇ ਟਿਸ਼ੂਆਂ ਤੋਂ ਬਣੇ ਹਨ ? (Are Plants and Animals Made of Same Types of Tissues?)

ਆਓ ਅਸੀਂ ਇਨ੍ਹਾਂ ਦੀ ਬਣਤਰ ਅਤੇ ਕੰਮਾਂ ਦਾ ਮੁਕਾਬਲਾ ਕਰੀਏ। ਕੀ ਪੌਦੇ ਅਤੇ ਜੰਤੂਆਂ ਦੀ ਬਣਤਰ ਇਕੋ ਜਿਹੀ ਹੈ? ਕੀ ਇਹ ਇਕੋ ਜਿਹੇ ਕੰਮ ਕਰਦੇ ਹਨ?

ਇਨ੍ਹਾਂ ਦੋਹਾਂ ਵਿੱਚ ਧਿਆਨ ਵਿੱਚ ਆਉਣ ਵਾਲੇ ਐਤਰ ਹਨ। ਪੌਦੇ ਇਕ ਥਾਂ ਤੇ ਖੜੇ ਹਨ ਅਤੇ ਧਰਤੀ ਵਿੱਚ ਗੋਡੇ ਹੋਏ ਹਨ। ਭਾਵ ਚਲਦੇ ਨਹੀਂ। ਉਨ੍ਹਾਂ ਵਿਚਲੇ ਬਹੁਤੇ ਟਿਸ਼ੂ ਉਨ੍ਹਾਂ ਨੂੰ ਮਜ਼ਬੂਤੀ ਤੇ ਤਾਕਤ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ ਅਤੇ ਮ੍ਰਿਤਕ ਸੈੱਲਾਂ ਦੇ ਬਣੇ ਹੋਏ ਹਨ ਕਿਉਂਕਿ ਮ੍ਰਿਤਕ ਸੈੱਲ ਵੀ ਓਨੀ ਹੀ ਮਜ਼ਬੂਤੀ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ ਜਿੰਨੀ ਕਿ ਜੀਵਿਤ ਸੈੱਲ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਸਾਂਭ ਵੀ ਘੱਟ ਕਰਨੀ ਪੈਂਦੀ ਹੈ।


ਦੂਜੇ ਪਾਸੇ ਜੰਤੂ ਭੋਜਨ ਦੀ ਭਾਲ ਵਿੱਚ, ਸਾਥੀ ਦੀ ਅਤੇ ਰਹਿਣ ਲਈ ਆਸਰੇ ਦੀ ਭਾਲ ਵਿੱਚ ਤੁਰਦੇ-ਫਿਰਦੇ ਹਨ। ਇਹ ਪੌਦਿਆਂ ਨਾਲੋਂ ਜ਼ਿਆਦਾ ਊਰਜਾ ਦੀ ਖਪਤ ਕਰਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦੇ ਜ਼ਿਆਦਾਤਰ ਟਿਸ਼ੂ ਜੀਵਿਤ ਸੈੱਲਾਂ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ।

ਪੌਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਵਿੱਚ ਦੂਜਾ ਅੰਤਰ ਉਨ੍ਹਾਂ ਦੇ ਵਾਧੇ ਦੇ ਆਧਾਰ ਤੇ ਹੈ। ਪੌਦਿਆਂ ਵਿੱਚ ਵਾਧਾ ਕੁੱਝ ਸੀਮਿਤ ਥਾਵਾਂ ਤੇ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਜੰਤੂਆਂ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਨਹੀਂ ਹੈ। ਪੌਦਿਆਂ ਵਿੱਚ ਕੁੱਝ ਟਿਸ਼ੂ ਅਜਿਹੇ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸਾਰੀ ਉਮਰ ਸੈੱਲ-ਵੰਡ ਹੁੰਦੀ ਰਹਿੰਦੀ ਹੈ। ਇਹ ਟਿਸ਼ੂ ਕੁੱਝ ਸੀਮਿਤ ਥਾਵਾਂ ਤੇ ਸਥਿਤ ਹੁੰਦੇ ਹਨ। ਸੈੱਲ-ਵੰਡ ਦੀ

ਸਮਰੱਥਾ ਦੇ ਆਧਾਰ ਤੇ ਪੌਦਾ ਟਿਸ਼ੂਆਂ ਨੂੰ ਅਸਥਾਈ ਟਿਸ਼ੂ (ਵਾਧਾ ਟਿਸ਼ੂ) ਅਤੇ ਸਥਾਈ ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ। ਜੰਤੂਆਂ ਵਿੱਚ ਸੈੱਲ ਵਾਧਾ ਬਹੁਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਜੰਤੂਆਂ ਵਿੱਚ ਕੋਈ ਸੈੱਲ-ਵੰਡ ਅਤੇ ਸੈੱਲ-ਵੰਡ ਨਾ ਹੋਣ ਵਾਲੇ ਖੇਤਰਾਂ ਦੀ ਭਿੰਨਤਾ ਨਹੀਂ ਹੈ।

ਉੱਚ ਸ਼੍ਰੇਣੀ ਦੇ ਜੰਤੂਆਂ ਵਿੱਚ ਅੰਗ ਅਤੇ ਅੰਗ-ਪ੍ਰਣਾਲੀਆਂ ਦੀ ਸਥਿਤੀ ਅਤੇ ਬਣਤਰ, ਉੱਚ ਸ਼੍ਰੇਣੀ ਪੌਦਿਆਂ ਨਾਲੋਂ ਕਿਤੇ ਵੱਧ ਗੁੰਝਲਦਾਰ ਹੈ। ਇਸ ਮੁੱਖ ਅੰਤਰ ਤੋਂ ਹੀ ਸਜੀਵਾਂ ਦੇ ਇਹ ਦੋ ਮੁੱਖ ਸਮੂਹ ਪੌਦੇ ਅਤੇ ਜੰਤੂ ਕਿਸ ਤਰ੍ਹਾਂ ਦਾ ਜੀਵਨ-ਢੰਗ ਖਾਸ ਤੌਰ 'ਤੇ ਭੋਜਨ ਲੈਣ ਲਈ ਅਪਣਾਉਂਦੇ ਹਨ, ਵਿਚਲੇ ਅੰਤਰ ਦਾ ਪਤਾ ਲੱਗਦਾ ਹੈ। ਪੌਦੇ ਇਕੋ ਥਾਂ ਉੱਗੇ ਹੋਣ ਅਤੇ ਜੰਤੂਆਂ ਵਿੱਚ ਚਲਣ-ਫਿਰਨ ਦੀ ਆਦਤ ਹੋਣ ਕਰਕੇ ਉਹ ਭਿੰਨ-ਭਿੰਨ ਤਰੀਕਿਆਂ ਨਾਲ ਅਨੁਕੂਲਿਤ ਹਨ ਅਤੇ ਉਸੇ ਕਰਕੇ ਉਨ੍ਹਾਂ ਦੀਆਂ ਅੰਗ ਪ੍ਰਣਾਲੀਆਂ ਅਲੱਗ-ਅਲੱਗ ਤਰ੍ਹਾਂ ਦੀਆਂ ਹਨ।

ਅਸੀਂ ਜੰਤੂਆਂ ਅਤੇ ਪੌਦਿਆਂ ਦੀ ਗੁੰਝਲਦਾਰ ਬਣਤਰ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਟਿਸ਼ੂਆਂ ਬਾਰੇ ਵਿਸਥਾਰ ਸ਼ਹਿਤ ਪੜ੍ਹਾਂਗੇ।

6.2 ਪੌਦਾ ਟਿਸ਼ੂ (Plant Tissues)

6.2.1 ਅਸਥਾਈ ਟਿਸ਼ੂ (Meristematic Tissue)

ਜ਼ਾਰ-1 ਜ਼ਾਰ-2 **ਰਿੱਤਰ 6.1** ਪਿਆਜ਼ ਦੀਆਂ ਜੜ੍ਹਾਂ ਵਿੱਚ ਵਾਧਾ

ਕਿਰਿਆ

6.1

ਦੋਂ ਕੱਚ ਦੇ ਜ਼ਾਰ ਲਓ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਪਾਣੀ ਨਾਲ ਭਰੇ।

ਹੁਣ ਦੋ ਪਿਆਜ਼ ਲਓ ਤੇ ਚਿੱਤਰ ਵਿੱਚ ਦਿਖਾਏ ਅਨੁਸਾਰ ਹਰ ਇਕ ਜ਼ਾਰ ਤੇ ਇਕ ਪਿਆਜ਼ ਰੱਖੋ।

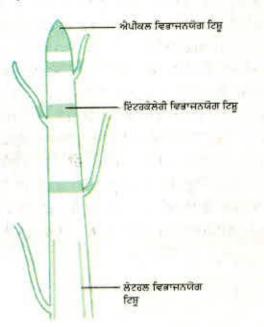
ਦੋਨੋਂ ਪਿਆਜ਼ਾਂ ਦੀਆਂ ਜੜ੍ਹਾਂ ਦਾ ਵਾਧਾ ਕੁੱਝ ਦਿਨ ਲਈ ਨੋਟ ਕਰੋ।

ਜੜ੍ਹਾਂ ਦੀ ਲੰਬਾਈ ਪਹਿਲੋ, ਦੂਜੇ ਅਤੇ ਤੀਜੇ ਦਿਨ ਨਾਪੋ।

ਚੌਥੇ ਦਿਨ ਜ਼ਾਰ ਨੰ-2 ਵਿੱਚ ਪਿਆਜ਼ ਦੀਆਂ ਜੜ੍ਹਾਂ ਦੇ ਸਿਰੇ 1 (ਸੈ.ਮ.) ਕੱਟ ਦਿਓ। ਇਸ ਤੋਂ ਬਾਅਦ ਦੋਨੋਂ ਜ਼ਾਰਾਂ ਵਿੱਚ ਜੜ੍ਹਾਂ ਦਾ ਵਾਧਾ ਨੋਟ ਕਰੋ ਅਤੇ ਪੰਜ ਹੋਰ ਦਿਨਾਂ ਤੱਕ ਹਰ ਰੋਜ਼ ਉਨ੍ਹਾਂ ਦੀ ਲੰਬਾਈ ਨਾਪੋ ਅਤੇ ਹੇਠ ਦਿੱਤੇ ਅਨੁਸਾਰ ਆਪਣੀ ਪੜ੍ਹਤ ਨੋਟ ਕਰੋ।

ਲੰਬਾਈ	ਦਿਨ ।	ਦਿਨ 2	ਦਿਨ 3	ਦਿਨ 4	ਦਿਨ 5
ਜ਼ਾਰ-1		12.			
ਜ਼ਾਰ-2				1.16	

ਉਪਰ ਲਿਖੀ ਪੜ੍ਹਤ ਅਨੁਸਾਰ ਹੇਠ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ।


- ਦੋਨਾਂ ਪਿਆਜ਼ਾਂ ਵਿੱਚੋਂ ਕਿਸ ਪਿਆਜ਼ ਦੀਆਂ ਜੜ੍ਹਾਂ ਲੰਬੀਆਂ ਹਨ ਤੇ ਕਿਉਂ?
- ਕੀ ਜੜ੍ਹਾਂ ਦੇ ਸਿਰੇ ਕੋਟ ਦੇਣ ਤੋਂ ਬਾਅਦ ਵੀ ਉਹ ਵਧਦੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ?
- ਜ਼ਾਰ ਨੈ-2 ਵਿੱਚ ਜੜ੍ਹਾਂ ਦੇ ਸਿਰੇ ਕੱਟਣ ਤੋਂ ਬਾਅਦ ਉਨ੍ਹਾਂ ਦਾ ਵਾਧਾ ਰੁਕ ਕਿਉਂ ਜਾਂਦਾ ਹੈ?

ਪੌਦਿਆਂ ਵਿੱਚ ਵਾਧਾ ਪੌਦੇ ਦੇ ਕੁੱਝ ਸੀਮਿਤ ਥਾਵਾਂ ਤੇ ਹੁੰਦਾ ਹੈ। ਇਸੇ ਕਰਕੇ ਵੰਡਣਯੋਗ ਟਿਸ਼ੂ ਜੋ ਇਨ੍ਹਾਂ ਸੀਮਿਤ ਥਾਵਾਂ ਤੇ ਸਥਿਤ ਹੈ, ਨੂੰ ਅਸੀਂ ਅਸਥਾਈ ਟਿਸ਼ੂ (Meristematic Tissue) ਕਹਿੰਦੇ ਹਾਂ। ਪੌਦੇ ਵਿੱਚ ਜਿਸ ਥਾਂ ਤੇ ਇਹ ਟਿਸ਼ੂ ਹੈ, ਉਸ ਹਿਸਾਬ ਨਾਲ ਅਸੀਂ ਇਸ ਨੂੰ ਐਪੀਕਲ (ਸਿਖਰੀ) ਲੋਟਰਲ (ਬਗਲੀ) ਅਤੇ ਇੰਟਰਕੇਲੇਰੀ (ਅੰਤਰਵੇਸ਼ੀ) ਕਹਿੰਦੇ ਹਾਂ। ਵਿਭਾਜਨਯੋਗ ਟਿਸ਼ੂ ਦੁਆਰਾ ਪੈਦਾ ਕੀਤੇ ਨਵੇਂ ਸੈੱਲ ਪਹਿਲਾਂ-ਪਹਿਲ ਇਹਦੇ ਵਰਗੇ ਹੀ ਦਿਸਦੇ ਹਨ ਪਰ ਬਾਅਦ ਵਿੱਚ ਵੱਧਣ ਅਤੇ ਪ੍ਰੌੜ ਹੋਣ ਤੋਂ ਬਾਅਦ ਹੌਲੀ-ਹੌਲੀ ਉਨ੍ਹਾਂ ਦੇ ਗੁਣ ਬਦਲ ਜਾਂਦੇ ਹਨ ਅਤੇ ਉਹ ਦੂਜੇ ਟਿਸ਼ੂਆਂ ਦੇ ਵਿੱਚ ਤਥਦੀਲ ਹੋ ਜਾਂਦੇ ਹਨ।

77

ਟਿਸ਼ੂ

ਚਿੱਤਰ 6.2 ਪੌਦੇ ਵਿੱਚ ਦੇ ਐਪੀਕਲ ਵਿਭਾਜਨ ਯੋਗ ਟਿਸ਼ੂ ਜੜ੍ਹ ਅਤੇ ਤਣੇ ਵੱਧਦੇ ਹੋਏ ਸਿਰਿਆਂ ਤੇ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਲੰਬਾਈ ਵਧਾਉਂਦਾ ਹੈ। ਜੜ੍ਹ ਅਤੇ ਤਣੇ ਦੀ

ਚਿੱਤਰ 6 2 : ਪੌਦਾ ਸੈੱਲ ਵਿੱਚ ਅਸਥਾਈ (ਮੈਰੀਸਟੇਮੈਟਿਕ) ਟਿਸ਼ੂ

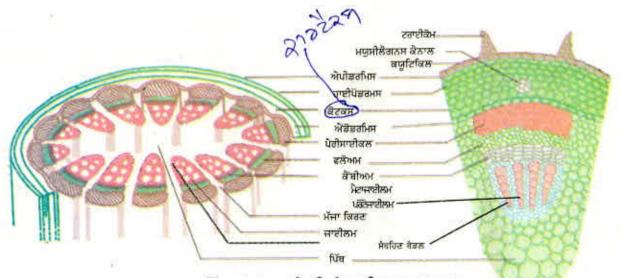
ਮੋਟਾਈ ਲੇਟਰਲ ਵਿਭਾਜਨਯੋਗ ਟਿਸ਼ੂ (ਕੈਂਬੀਅਮ) ਕਰਕੇ ਵੱਧਦੀ ਹੈ।ਇੰਟਰਕੇਲੇਰੀ ਵਿਭਾਜਨਯੋਗ ਟਿਸ਼ੂ ਪੱਤਿਆਂ ਅਤੇ ਟਾਹਣੀਆਂ ਦੀਆਂ ਪੋਰੀਆਂ (Internodes) ਦੇ ਥੱਲੇ ਹੁੰਦਾ ਹੈ।

78

ਕਿਉਂਕਿ ਇਸ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲ ਬਹੁਤ ਫੁਰਤੀਲੇ ਹੁੰਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਦਾ ਸੈੱਲ ਪਦਾਰਥ ਬਹੁਤ ਗਾੜ੍ਹਾ ਹੁੰਦਾ ਹੈ। ਸ਼ੈਲੂਲੋਜ ਦੀਆਂ ਸੈੱਲ ਕੰਧਾਂ ਪਤਲੀਆਂ ਅਤੇ ਕੇਂਦਰਕ ਸਪਸ਼ਟ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਰਸਧਾਨੀਆਂ ਨਹੀਂ ਹੁੰਦੀਆਂ (ਤੁਸੀਂ ਕੋਸ਼ਿਕਾਵਾਂ (ਸੈੱਲ) ਵਾਲੇ ਪਾਠ ਵਿੱਚ ਰਸਧਾਨੀਆਂ ਦੇ ਕੰਮ ਬਾਰੇ ਜਾਨਣਾ ਚਾਹੋਗੇ।)

6.2.2 ਸਥਾਈ ਟਿਸ਼ੂ (Permanent Tissue)

ਮੈਰੀਸਟੇਮੈਟਿਕ ਟਿਸ਼ੂ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਸੈੱਲਾਂ ਨਾਲ ਕੀ ਵਾਪਰਦਾ ਹੈ ? ਉਹ ਵਿਭਾਜਨ ਦੀ ਸਮਰਥਾ ਖੋ ਬੈਠਦੇ ਹਨ ਅਤੇ ਇੱਕ ਖਾਸ ਕੰਮ ਦਾ ਜਿੰਮਾ ਲੈ ਲੈਂਦੇ ਹਨ। ਇਸ ਤਰੀਕੇ ਨਾਲ ਉਹ ਸਥਾਈ ਟਿਸ਼ੂ ਬਣ ਜਾਂਦੇ ਹਨ। ਇਕ ਪੱਕਾ ਆਕਾਰ, ਦਿੱਖ ਅਤੇ ਕੰਮ ਲੈ ਲੈਣ ਦੀ ਕਿਰਿਆ ਨੂੰ Differentiation ਕਹਿੰਦੇ ਹਨ। ਵਿਭਾਜਨਯੋਗ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲ ਹੋ ਕੇ ਭਿਨ-ਭਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਸਥਾਈ ਟਿਸ਼ੁ ਬਣਾਉਂਦੇ ਹਨ।


ਕਿਰਿਆ

ਇੱਕ ਪੌਦੇ ਦਾ ਤਣਾ ਲੈ ਕੇ ਆਪਣੇ ਅਧਿਆਪਕ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਇਸ ਦੇ ਬਹੁਤ ਬਰੀਕ-ਬਰੀਕ ਹਿੱਸੇ (sections) ਕੋੱਟੋ।

6.2

ਵਿਗਿਆਨ

ਹੁਣ ਸੈਫਰਾਨਿਨ ਦੇ ਘੋਲ (ਸਟੇਨ) ਨਾਲ ਇਨ੍ਹਾਂ ਰਿੱਸਿਆਂ ਨੂੰ ਰੰਗ ਦਿਓ। ਸਫਾਈ ਨਾਲ ਕੱਟੇ ਹੋਏ ਇਕ ਸ਼ੈਂਕਸ਼ਨ ਨੂੰ ਸਲਾਈਡ ਤੇ ਰੱਖੋਂ ਅਤੇ ਗਲਿਸਗੈਨ ਦਾ ਇਕ ਤੁਪਕਾ ਪਾਉ।

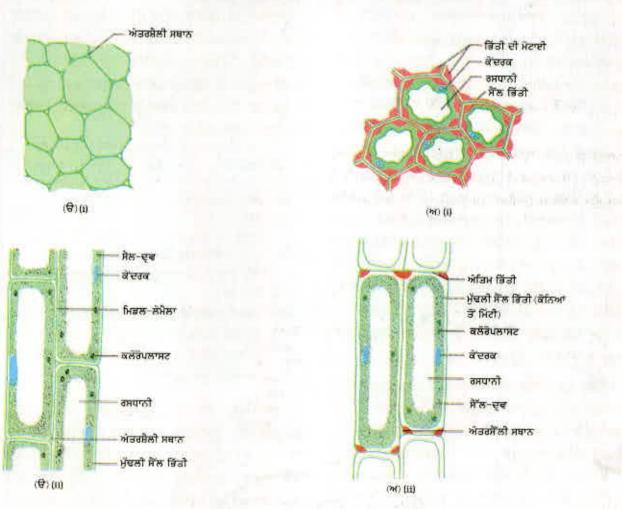
ਚਿੱਤਰ 63 : ਤਣੇ ਦੀ ਅੰਦਰੂਨੀ ਬਣਤਰ (ਕਾਟ)

ਇਸ ਨੂੰ ਕਵਰਸਲਿੱਪ ਨਾਲ ਢੱਕ ਦਿਓ ਅਤੇ ਸੂਖਮਦਰਸ਼ੀ ਥੱਲੇ ਵੇਖੋ। ਭਿੰਨ-ਭਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਸੈੱਲਾਂ ਨੂੰ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਤਰਤੀਬ ਨੂੰ ਵੇਖੋ ਅਤੇ ਚਿੱਤਰ 6.3 ਨਾਲ ਮਿਲਾਨ ਕਰੋ।

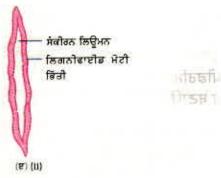
ਹੁਣ ਆਪਣੀ ਪੜ੍ਹਤ ਦੇ ਆਧਾਰ ਤੇ ਹੇਠ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿੱਉ।

- ਕੀ ਸਾਰੇ ਸੈੱਲ ਇਕੋ ਜਿਹੀ ਬਣਤਰ ਦੇ ਹਨ?
- 2. ਕਿੰਨੀ ਤਰ੍ਹਾਂ ਦੇ ਸੈੱਲ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ?

ਟਿਸ਼ੂ


 ਕੀ ਅਸੀਂ ਇਸ ਦੇ ਕਾਰਨਾਂ ਬਾਰੇ ਸੋਚ ਸਕਦੇ ਹਾਂ ਕਿ ਇੰਨੀ ਤਰ੍ਹਾਂ ਦੇ ਸੈੱਲ ਕਿਉਂ ਦਿਖਦੇ ਹਨ ?

ਅਸੀਂ ਪੌਦੇ ਦੀਆਂ ਜੜ੍ਹਾਂ ਦੇ ਸ਼ੈਕਸਨ ਵੀ ਕੱਟ ਸਕਦੇ ਹਾਂ। ਅਸੀਂ ਅਲੱਗ-ਅਲੱਗ ਪੌਦਿਆਂ ਦੀਆਂ ਜੜ੍ਹਾਂ ਅਤੇ ਤਣੇ ਦੇ ਸ਼ੈਕਸ਼ਨ ਕੱਟਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਵੀ ਕਰ ਸਕਦੇ ਹਾਂ।


6.2.2 (i) ਸਰਲ ਸਥਾਈ ਟਿਸ਼ੂ (Simple Permanent Tissue)

ਸੈੱਲਾਂ ਦੀਆਂ ਕੁੱਝ ਤਹਿਆਂ ਥੱਲੇ ਵਾਲਾ ਪੈਕਿੰਗ ਟਿਸ਼ੂ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਇਸ ਟਿਸ਼ੂ ਨੂੰ ਪੇਅਰਨਕਾਈਮਾ ਟਿਸ਼ੂ (Parenchyma tissue) ਕਹਿੰਦੇ ਹਨ ਜਿਹੜਾ ਕਿ ਇਕ ਕਿਸਮ ਦਾ ਸਥਾਈ ਟਿਸ਼ੂ ਹੈ। ਇਸ ਵਿੱਚ ਦੂਜੇ ਟਿਸ਼ੂਆਂ ਦੇ ਮੁਕਾਬਲੇ ਪਤਲੀ ਸੈੱਲ ਕੰਧ ਵਾਲੇ ਆਮ ਜਿਹੇ ਸੈੱਲ ਹੁੰਦੇ ਹਨ। ਇਹ ਜੀਵਿਤ ਸੈੱਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਆਮ ਤੌਰ 'ਤੇ ਇਹ ਖੁੱਲੇ-ਖੁੱਲੇ ਪਏ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਵਿੱਚ ਕਾਫੀ ਖਾਲੀ ਜਗ੍ਹਾ ਅੰਤਰ ਸੈਲੀ ਸਥਾਨ (Intercellular space) ਹੁੰਦੀ ਹੈ। (ਚਿੱਤਰ 6.4 ੳ (i)) ਇਹ ਟਿਸ਼ੂ ਪੌਦੇ ਨੂੰ ਮਜ਼ਬੂਤੀ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ ਅਤੇ ਇਸ ਵਿੱਚ ਭੋਜਨ ਵੀ ਜਮਾਂ ਰਹਿੰਦਾ ਹੈ। ਕਈ ਵਾਗੋ ਇਸ ਵਿੱਚ ਕਲੋਰੋਫਿਲ ਵੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਹ ਪ੍ਰਕਾਸ਼

79

ਚਿੱਤਰ 6.4 : ਵਿਭਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਸਰਲ ਟਿਸ਼ੂ— (ਕ) ਪੇਅਰਨਕਾਈਮਾ (i) ਟੇਢੀ ਕਾਟ (transverse section), (ii) ਲੰਬੀ ਕਾਟ (Longitudinal section) (ਖ) ਕੌਲਨਕਾਈਮਾ (i) ਟੇਢੀ ਕਾਟ, (ii) ਲੰਬੀ ਕਾਟ) (ਗ) ਸਕਲੈਰਨਕਾਈਮਾ (i) ਟੇਢੀ ਕਾਟ, (ii) ਲੰਬੀ ਕਾਟ

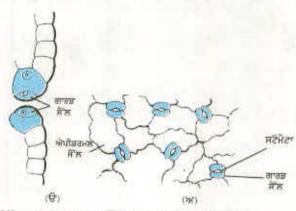
ਸੰਸ਼ਲੇਸ਼ਣ ਕਰਦਾ ਹੈ। ਅਜਿਹੀ ਸਥਿਤੀ ਵਿੱਚ ਇਸਨੂੰ ਕਲੋਰਨਕਾਈਮਾ ਕਿਸ਼ੂ (Chlorenchyma tissue) ਕਹਿੰਦੇ ਹਨ। ਜਲੀ ਪੌਦਿਆਂ ਵਿੱਚ ਪੇਅਰਨਕਾਈਮਾ ਟਿਸ਼ ਵਿੱਚ ਵੱਡੀਆਂ ਹਵਾ ਭਰੀਆਂ ਥਾਵਾਂ (Air cavities) ਹੰਦੀਆਂ ਹਨ ਜੋ ਪੌਦਿਆਂ ਨੂੰ ਹਲਕਾ ਰੱਖਦੀਆਂ ਹਨ ਅਤੇ ਉਛਾਲ ਬਲ (Buoyancy) ਦੇ ਕੇ ਤੈਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦੀਆਂ ਹਨ। ਅਜਿਹੇ ਪੇਅਰਨਕਾਈਮਾ ਨੂੰ ਏਅਰਨਕਾਈਮਾ (Aerenchyma) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਤਣੇ ਅਤੇ ਜੜ੍ਹਾਂ ਦੇ ਪੇਅਰਨਾਕਾਈਮਾ ਵਿੱਚ ਭੋਜਨ ਅਤੇ ਪਾਣੀ ਜਮ੍ਹਾਂ ਰਹਿੰਦਾ ਹੈ। ਪੌਦਿਆਂ ਵਿੱਚ ਲਚੀਲੇਪਣ ਦਾ ਗੁਣ, ਪੇਅਰਨਕਾਈਮਾ ਦੀ ਇਕ ਹੋਰ ਕਿਸਮ ਕੌਲਨਕਾਈਮਾ (Collenchyma) ਕਰਕੇ ਹੈ। ਇਹ ਪੌਦੇ ਵਿੱਚ ਖਾਸ ਕਰਕੇ ਪੱਤਿਆਂ ਅਤੇ ਤਣੇ ਨੂੰ ਬਿਨਾਂ ਟੁੱਟੇ ਅਸਾਨੀ ਨਾਲ ਝਕਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ। ਇਹ ਪੌਦਿਆਂ ਨੂੰ ਯੰਤਰਿਕ ਮਜ਼ਬੂਤੀ ਵੀ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਇਹ ਟਿਸ਼ੂ ਪੱਤਿਆਂ ਦੀਆਂ ਡੰਡੀਆਂ ਵਿੱਚ ਐਪੀਡਰਮਿਸ ਦੇ ਥੱਲੇ ਵੀ ਮਿਲਦਾ ਹੈ। ਇਸ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲ ਜੀਵਿਤ, ਲੰਬੁਤਰੇ (Elongated) ਅਤੇ ਕਿਤੇ-ਕਿਤੇ ਕਿਨਾਰਿਆਂ ਤੋਂ ਮੋਟੇ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਸੈੱਲਾਂ ਦੇ ਵਿਚਕਾਰ ਬਹੁਤ ਘੱਟ ਖਾਲੀ ਥਾਂ ਹੁੰਦੀ ਹੈ। (ਚਿੱਤਰ 6.4 (ਅ))

ਇਕ ਹੋਰ ਪ੍ਰਕਾਰ ਦਾ ਸਥਾਈ ਟਿਸ਼ੂ ਸਕਲੈਰਨਕਾਈਮਾ (Sclerenchyma) ਹੈ। ਇਹ ਉਹ ਟਿਸ਼ੂ ਹੈ ਜਿਹੜਾ ਪੌਦੇ ਨੂੰ ਕਠੌਰ ਅਤੇ ਮਜ਼ਬੂਤ ਬਣਾਉਂਦਾ ਹੈ। ਤੁਸੀਂ ਨਾਰੀਅਲ ਦਾ ਛਿਲਕਾ ਵੇਖਿਆ ਹੋਵੇਗਾ। ਇਹ ਸਕਲੈਰਨਕਾਈਮਾ ਟਿਸ਼ੂ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ। ਇਸ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲ ਮ੍ਰਿਤਕ ਹੁੰਦੇ ਹਨ। ਇਹ ਲੰਬੇ ਅਤੇ ਪਤਲੇ ਹੁੰਦੇ ਹਨ ਕਿਉਂ ਕਿ ਇਨ੍ਹਾਂ ਦੀਆਂ ਕੰਧਾਂ ਤੇ ਲਿਗਨਿਨ (Lignin) (ਜੋ ਕਿ ਸੈੱਲਾਂ ਨੂੰ ਮਜ਼ਬੂਤ ਕਰਨ ਲਈ ਸੀਮਿੰਟ ਦੀ ਤਰ੍ਹਾਂ ਕੰਮ ਕਰਨ ਵਾਲਾ ਇੱਕ ਰਸਾਇਣਿਕ ਪਦਾਰਥ ਹੈ) ਜੰਮਣ ਕਾਰਨ ਉਹ ਮੋਟੀਆਂ ਹੋ ਜਾਂਦੀਆਂ ਹਨ।ਅਕਸਰ ਇਨ੍ਹਾਂ ਸੈੱਲਾਂ ਦੀਆਂ ਕੰਧਾਂ ਇੰਨੀਆਂ ਮੋਟੀਆਂ ਹੋ ਜਾਦੀਆਂ ਹਨ ਕਿ ਸੈੱਲਾਂ ਦੇ ਅੰਦਰ ਕੋਈ ਖਾਲੀ ਥਾਂ ਨਹੀਂ ਬਚਦੀ।(ਚਿੱਤਰ 6.4) ਇਹ ਟਿਸ਼ੂ ਤਣੇ, ਵਹਿਣੀ ਟਿਸ਼ੂ ਦੇ ਬੰਡਲਾਂ ਦੇ ਦੁਆਲੇ ਪੱਤਿਆਂ ਦੀਆਂ ਸ਼ਿਰਾਵਾਂ ਅਤੇ ਬੀਜਾਂ ਤੇ ਸੁੱਕੇ ਫੁੱਲਾਂ ਦੇ ਕਠੋਰ ਛਿੱਲਕੇ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।ਇਹ ਪੌਦੇ ਦੇ ਭਾਗਾਂ ਨੂੰ ਮਜ਼ਬੂਤੀ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।

ਕਿਰਿਆ_____6.3

ਰਿਊ (Rhoeo) ਪੌਦੇ ਦੀ ਇਕ ਤਾਜ਼ੀ ਤੋੜੀ ਹੋਈ ਪੱਤੀ ਲਊ।

ਇਸਨੂੰ ਦਬਾਉ ਨਾਲ ਇਸ ਤਰ੍ਹਾਂ ਤੋੜੋ ਕਿ ਤ੍ਰੇੜ ਵਾਲੀ ਥਾਂ ਤੋਂ ਪੱਤੀ ਦਾ ਬਾਰੀਕ ਛਿੱਲਕਾ ਅਲੱਗ ਨਿਕਲ ਆਵੇ। ਛਿੱਲਕਾ ਉਤਾਰ ਕੇ ਇਸ ਨੂੰ ਪਾਣੀ ਦੀ ਭਗੇ ਹੋਈ ਪੈਟਰੀਡਿਸ਼ ਵਿੱਚ ਰੱਖੋ।


ਸੈਫਰਾਨਿਨ ਘੋਲ ਦੇ ਕੁੱਝ ਤੁਪਕੇ ਇਸ ਉਪਰ ਪਾਉ। ਕੁੱਝ ਮਿੰਟ ਉਡੀਕ ਕਰਨ ਤੋਂ ਬਾਅਦ ਇਸਨੂੰ ਸਲਾਈਡ ਤੇ ਰੱਖੋਂ ਅਤੇ ਹੌਲੀ ਜਿਹੀ ਕਵਰ ਸਲਿੱਪ ਨਾਲ ਢੱਕ ਦਿਉ। ਸੁਖਮਦਰਸ਼ੀ ਨਾਲ ਪ੍ਰੇਖਣ ਕਰੋ।

ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਸੈੱਲਾਂ ਦੀ ਸਭ ਤੋਂ ਬਾਹਰੀ ਪਰਤ ਐਪੀਡਰਮਿਸ (Epidermis) ਹੈ। ਇਹ ਐਪੀਡਰਮਿਸ ਆਮ ਤੌਰ 'ਤੇ ਸੈੱਲਾਂ ਦੀ ਇਕਹਿਰੀ ਪਰਤ ਹੈ। ਬਹੁਤ ਖੁਸ਼ਕ ਥਾਵਾਂ ਤੇ ਉੱਗਣ ਵਾਲੇ ਪੌਦਿਆਂ ਵਿੱਚ ਇਹ ਐਪੀਡਰਮਿਸ ਮੋਟੀ ਵੀ ਹੋ ਸਕਦੀ ਹੈ ਕਿਉਂਕਿ ਪਾਣੀ ਸੰਕਟ ਦੀ ਸਮੱਸਿਆ

80

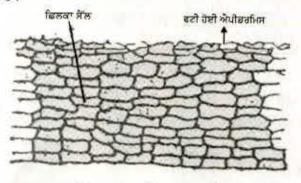
ਵਿਗਿਆਨ

ਇਨ੍ਹਾਂ ਪੌਦਿਆਂ ਵਿੱਚ ਬਹੁਤ ਗੰਭੀਰ ਹੁੰਦੀ ਹੈ। ਪੌਦੇ ਦੀ ਸਾਰੀ ਸਤ੍ਹਾ ਐਪੀਡਰਮਿਸ ਟਿਸ਼ੂ ਦੀ ਬਣੀ ਹੁੰਦੀ ਹੈ। ਇਹ ਪੌਦੇ ਦੇ ਸਾਰੇ ਭਾਗਾਂ ਨੂੰ ਬਚਾ ਕੇ ਰੱਖਦੀ ਹੈ। ਪੌਦੇ ਦੇ ਬਾਹਰੀ ਸਤ੍ਹਾ ਦੇ ਐਪੀਡਰਮਿਸ ਸੈੱਲ ਇਕ ਮੋਮ ਵਰਗੀ ਜਲ-ਪ੍ਤਿਰੋਧੀ ਤਹਿ ਬਣਾਉਂਦੇ ਹਨ। ਇਹ ਤਹਿ ਪੌਦੇ ਦੀ ਬਾਹਰੀ ਸਤ੍ਹਾ ਨੂੰ ਢੱਕ ਕੇ ਰੱਖਦੀ ਹੈ ਅਤੇ ਇਸਨੂੰ ਯੰਤਰਿਕ ਸੱਟ, ਪਰਜੀਵੀ ਉਲੀਆਂ ਦੇ ਹਮਲੇ ਅਤੇ ਪਾਣੀ ਦੀ ਹਾਨੀ ਹੋਣ ਤੋਂ ਬਚਾਅ ਕੇ ਰੱਖਦੀ ਹੈ। ਕਿਉਂਕਿ ਇਸ ਤਹਿ ਦਾ ਕੰਮ ਸੁਰੱਖਿਆ ਪ੍ਰਦਾਨ ਕਰਨਾ ਹੈ। ਇਸ ਲਈ ਇਸਦੇ ਸੈੱਲ ਬਿਨਾਂ ਸੈੱਲਾਂ ਦੇ ਵਿਚਕਾਰ ਥਾਂ ਛੱਡੇ ਇਕ ਲਗਾਤਾਰ ਪਰਤ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਜ਼ਿਆਦਾਤਰ ਐਪੀਡਰਮਲ ਸੈੱਲ ਚਪਟੇ ਹੁੰਦੇ ਹਨ। ਅਕਸਰ ਇਨ੍ਹਾਂ ਸੈੱਲਾਂ ਦੀਆਂ ਬਾਹਰਲੀਆਂ ਅਤੇ ਕਿਨਾਰੇ ਵਾਲੀਆਂ ਭਿੱਤੀਆਂ, ਅੰਦਰਲੀਆਂ ਭਿੱਤੀਆਂ ਤੋਂ ਮੋਟੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।

ਚਿੱਤਰ 6.5: ਗਾਰਡ ਸੈੱਲ ਅਤੇ ਐਪੀਡਰਮਲ ਸੈੱਲ : (ੳ) ਪਿਛਲੇ ਵਾਲਾ ਭਾਗ (ਅ) ਅਗਲੇ ਵਾਲਾ ਭਾਗ

ਅਸੀਂ ਪੱਤੇ ਦੀ ਐਪੀਡਰਮਿਸ ਵਿੱਚ ਛੋਟੇ-ਛੋਟੇ ਮੁਸਾਮ ਵੇਖਦੇ ਹਾਂ। ਇਨ੍ਹਾਂ ਮੁਸਾਮਾਂ ਨੂੰ ਸਟੋਮੈਟਾ (stomata) ਕਹਿੰਦੇ ਹਨ। (ਚਿੱਤਰ 6.5) ਸਟੋਮੈਟਾ ਦੋ ਗੁਰਦੇ ਦੇ ਆਕਾਰ ਵਰਗੇ ਸੈੱਲਾਂ ਨਾਲ ਘਿਰੇ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਗਾਰਡ ਸੈੱਲ (Guard cells) ਕਹਿੰਦੇ ਹਨ। ਸਟੋਮੈਟਾ ਬਾਹਰੀ ਵਾਤਾਵਰਣ ਨਾਲ ਗੈਸ਼ਾਂ ਦੀ ਅਦਲਾ-ਬਦਲੀ ਲਈ ਜ਼ਰੂਰੀ ਹੁੰਦੇ ਹਨ। ਵਾਸ਼ਪਉਤਸਰਜਣ (ਵਾਸ਼ਪਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪਾਣੀ ਦਾ ਨਿਕਲਣਾ) ਵੀ ਸਟੋਮੈਟਾ ਦੁਆਰਾ ਹੀ ਹੁੰਦਾ ਹੈ।

ਸਨ ।. ਪ੍ਰਕਾਸ਼-ਸੰਸ਼ਲੇਸਣ ਲਈ ਕਿਹੜੀ ਗੈਸ ਲੋੜੀਂਦੀ ਹੈ। 2. ਪੈਦਿਆਂ ਵਿੱਚ ਵਾਸ਼ਪਉਤਸਰਜਣ ਦੀ ਭੂਮਿਕਾ ਦੱਸੇ।


ਟਿਸ਼

ਜੜਾਂ ਦਾ ਕੰਮ ਕਿਉਂ ਕਿ ਪਾਣੀ ਸੋਖਣਾ ਹੈ, ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਦੇ ਐਪੀਡਰਮਲ ਸੈੱਲਾਂ ਵਿੱਚ ਲੰਬੀਆਂ ਧਾਗੋ ਵਰਗੀਆਂ ਰਚਨਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਜੜ੍ਹ-ਵਾਲ ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਇਹ ਸੋਖਣ ਵਾਲੇ ਖੇਤਰਫਲ ਨੂੰ ਬਹੁਤ ਵਧਾ ਦਿੰਦੇ ਹਨ।

ਮਾਰੂਥਲੀ ਪੌਦਿਆਂ ਦੀ ਬਾਹਰੀ ਸਤ੍ਹਾ ਵਾਲੇ ਐਪੀਡਰਮਿਸ ਵਿੱਚ ਕਿਊਟਿਨ (Cutin) (ਇਕ ਜਲ-ਰੋਧੀ ਰਸਾਇਣਿਕ ਪਦਾਰਥ) ਦਾ ਲੇਪ ਹੁੰਦਾ ਹੈ। ਕੀ ਅਸੀਂ ਇਸ ਦਾ ਕਾਰਨ ਸੋਚ ਸਕਦੇ ਹਾਂ ?

ਕੀ ਇੱਕ ਦਰਖਤ ਦੀ ਟਾਹਣੀ ਦੀ ਬਾਹਰਲੀ ਪਰਤ ਇੱਕ ਨਵੇਂ ਤਣੇ ਦੀ ਬਾਹਰਲੀ ਪਰਤ ਤੋਂ ਭਿੰਨ ਹੁੰਦੀ ਹੈ ?

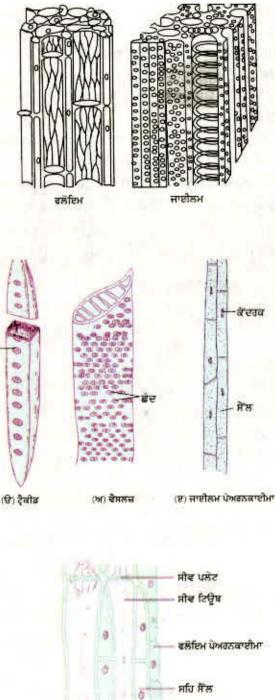
ਜਿਵੇਂ-ਜਿਵੇਂ ਦਰਖਤ ਦੀ ਉਮਰ ਵੱਧਦੀ ਹੈ, ਬਾਹਰਲੇ ਸੁਰੱਖਿਆ ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਕੁੱਝ ਬਦਲਾਓ ਆਉਂਦਾ ਰਹਿੰਦਾ ਹੈ।ਸਕੈਂਡਰੀ ਮੈਰੀਸਟੈਮ ਦੀ ਇਕ ਪੱਟੀ ਤਣੇ ਦੀ ਐਪੀਡਰਮਿਸ ਦੀ ਥਾਂ ਲੈ ਲੈਂਦੀ ਹੈ।ਬਾਹਰਲੇ ਸਤ੍ਹਾ ਦੇ ਸੈੱਲ ਇਸ ਸਤਹਿ ਤੋਂ ਅਲੱਗ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਹ ਪੌਦਿਆਂ ਵਿੱਚ ਕਈ ਪਰਤਾਂ ਵਾਲੀ ਮੋਟੀ ਛਿੱਲ ਨੂੰ ਬਣਾਉਂਦੀ ਹੈ।ਇਸ ਛਿਲਕੇ ਦੇ ਸੈੱਲ ਮ੍ਰਿਤਕ ਹੁੰਦੇ ਹਨ ਅਤੇ ਸੈੱਲ ਬਿਨ੍ਹਾਂ ਕੋਈ ਥਾਂ ਛੱਡੇ ਇੱਕ ਦੂਜੇ ਦੇ ਨਾਲ-ਨਾਲ ਜੁੜੇ ਹੁੰਦੇ ਹਨ। (ਚਿੱਤਰ 6.6) ਇਨ੍ਹਾਂ ਸੈੱਲਾਂ ਦੀਆਂ ਭਿੱਤੀਆਂ ਵਿੱਚ ਸੂਬੇਰਿਨ (suberin) ਨਾਂ ਦਾ ਇੱਕ ਪਦਾਰਥ ਹੁੰਦਾ ਹੈ ਜਿਹੜਾ ਹਵਾ ਅਤੇ ਪਾਣੀ ਰੋਧਕ ਹੁੰਦਾ ਹੈ।

ਚਿੱਤਰ 6.6 : ਰੱਖਿਆਤਮਕ ਟਿਸ਼ੂ

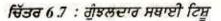
6.2.2 (ii) ਗੁੰਝਲਦਾਰ ਸਥਾਈ ਟਿਸ਼ੂ (Complex Permanent Tissue)

ਭਿੰਨ-ਭਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਟਿਸ਼ੂ ਜਿਹੜੇ ਅਸੀਂ ਹੁਣ ਤੱਕ ਪੜ੍ਹੇ ਹਨ, ਉਹ ਸਾਰੇ ਇਕੋ ਹੀ ਕਿਸਮ ਦੇ ਸੈੱਲਾਂ ਦੇ ਬਣੇ ਹੁੰਦੇ

81


ਹਨ। ਇਹ ਸਾਰੇ ਸੈੱਲ ਵੇਖਣ ਵਿੱਚ ਵੀ ਇਕੋ-ਜਿਹੇ ਲੱਗਦੇ ਹਨ। ਅਜਿਹੇ ਟਿਸ਼ਆਂ ਨੂੰ ਸਰਲ ਸਥਾਈ ਟਿਸ਼ੂ (Simple Permanent Tissue) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਇੱਕ ਸਥਾਈ ਟਿਸ਼ ਗੰਝਲਦਾਰ ਸਥਾਈ ਟਿਸ਼ ਹੁੰਦੇ ਹਨ ਜਿਸ ਵਿੱਚ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਸੈੱਲ ਹੁੰਦੇ ਹਨ। ਇਹ ਸਾਰੇ ਸੈੱਲ ਆਪਸੀ ਤਾਲ-ਮੇਲ ਕਰਕੇ ਇੱਕ ਸਾਂਝਾ ਕੰਮ ਕਰਦੇ ਹਨ। ਜਾਈਲਮ ਅਤੇ ਫਲੋਇਮ ਗੰਝਲਦਾਰ ਟਿਸ਼ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ।

ਇਹ ਦੋਵੇਂ ਵਹਿਣੀ ਟਿਸ਼ੂ ਹਨ ਅਤੇ ਵਹਿਣੀ-ਬੈਡਲ ਬਣਾਉਂਦੇ ਹਨ। ਵਹਿਣੀ ਟਿਸ਼ੂ ਦਾ ਹੋਣਾ ਵਿਕਸਿਤ ਪੌਦਿਆਂ ਦਾ ਇਕ ਅਜਿਹਾ ਗੁਣ ਹੈ ਜਿਹੜਾ ਉਨ੍ਹਾਂ ਨੂੰ ਥਲੀ ਵਾਤਾਵਰਣ ਦੇ ਅਨੁਕੂਲ ਬਣਾਉਂਦਾ ਹੈ। ਚਿੱਤਰ 6.3 ਵਿੱਚ ਤਣੇ ਦੀ ਇਕ ਕਾਟ ਵਿਖਾਈ ਗਈ ਹੈ। ਕੀ ਅਸੀਂ ਇਸ ਵਿੱਚ ਵਹਿਣੀ ਟਿਸ਼ੂ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਸੈੱਲ ਵੇਖ ਸਕਦੇ ਹਾਂ ?


ਜ਼ਾਈਲਮ ਵਿੱਚ ਟਰੈਕੀਡਜ (Tracheids), ਵੈਸਲਜ਼ (Vesseles), ਜਾਈਲਮ ਪੇਅਰਨਕਾਈਮਾ (Xylem Parenchyma) ਅਤੇ ਜਾਈਲਮ ਰੇਸ਼ੇ (Xylem Fibres) ਹੁੰਦੇ ਹਨ। (ਚਿੱਤਰ 6.7 (ੳ, ਅ, ੲ)) ਜ਼ਾਈਲਮ ਸੈੱਲਾਂ ਦੀਆਂ ਸੈੱਲ-ਭਿੱਤੀਆਂ ਅਕਸਰ ਮੋਟੀਆਂ ਅਤੇ ਸੈੱਲ ਆਮ ਤੌਰ ਤੇ ਮਿਤਕ ਹੁੰਦੇ ਹਨ। ਟਰੈਕੀਡਜ ਅਤੇ ਵੈਸਲਜ਼ ਦੀ ਸੰਰਚਨਾ ਨਲੀਨਮਾ ਹੁੰਦੀ ਹੈ ਜੋ ਕਿ ਪਾਣੀ ਅਤੇ ਖਣਿਜਾਂ ਨੂੰ ਹੇਠਾਂ ਤੋਂ ਉਪਰ ਵੱਲ ਢੋਣ 'ਚ ਮਦਦ ਕਰਦੀ ਹੈ। ਪੇਅਰਨਕਾਈਮਾ ਵਿੱਚ ਭੋਜਨ ਜਮ੍ਹਾਂ ਰਹਿੰਦਾ ਹੈ ਅਤੇ ਇਹ ਪਾਣੀ ਨੂੰ ਕਿਨਾਰਿਆਂ ਵੱਲ ਢੋਂਦਾ ਹੈ। ਰੇਸ਼ਿਆਂ ਦਾ ਮੱਖ ਕੰਮ ਸਹਾਰਾ ਦੇਣਾ ਹੈ।

ਫਲੋਇਮ ਚਾਰ ਭਾਗਾਂ ਦਾ ਬਣਿਆ ਹੈਦਾ ਹੈ। ਸੀਵ ਟਿਊਬਾਂ (Sieve Tubes), ਸਹਿ ਸੈੱਲ (Companion Cells), ਫਲੋਇਮ ਰੇਸ਼ੇ (Phloem Fibres) ਅਤੇ ਫਲੋਇਮ ਪੇਅਰਨਕਾਈਮਾ (Phloem Parenchyma) (ਚਿੱਤਰ 6.7 (d)) ਸੀਵ ਟਿਊਬਾਂ ਨਲੀ ਨੂਮਾ ਸੈੱਲ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀਆਂ ਭਿੱਤੀਆਂ ਮੁਸਾਮਦਾਰ ਹੁੰਦੀਆਂ ਹਨ। ਫਲੋਇਮ (Phloem) ਜ਼ਾਈਲਮ (Xylem) ਤੋਂ ਉਲਟ, ਦੋਵੇਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਪਦਾਰਬਾਂ ਦੀ ਗਤੀ ਕਰਾ ਸਕਦਾ ਹੈ। ਫਲੋਇਮ ਪੱਤਿਆਂ ਤੋਂ ਭੋਜਨ ਨੂੰ ਪੌਦੇ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਭਾਗ ਵਿੱਚ ਪਹੁੰਚਾਉਂਦਾ ਹੈ। ਫਲੋਇਮ ਰੇਸ਼ਿਆਂ ਤੋਂ ਬਿਨ੍ਹਾਂ ਫਲੋਇਮ ਦੇ ਬਾਕੀ ਸਾਰੇ ਭਾਗਾਂ ਦੇ ਸੈੱਲ ਜੀਵਿਤ ਹੁੰਦੇ ਹਨ।

82

ਵਿਗਿਆਨ

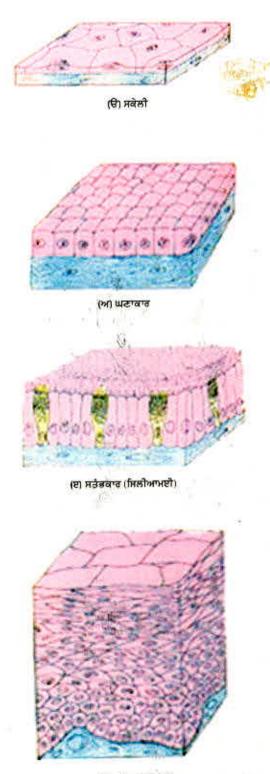
ਸ਼ਨ 1. ਸਰਲ ਟਿਸ਼ੂਆਂ ਦੀਆਂ ਕਿਸਮਾਂ ਦੇ ਨਾਂ ਦੱਸੋ। 2. ਐਪੀਕਲ ਮੈਰੀਸਟੈਮ ਕਿੱਥੇ ਮਿਲਦਾ ਹੈ? 3. ਨਾਰੀਅਲ ਦੇ ਰੇਸ਼ੋ ਕਿਸ ਟਿਸ਼ੂ ਦੇ ਬਣੇ ਹੁੰਦੇ ਹਨ? 4. ਫਲੋਇਮ ਦੇ ਕਿਹੜੇ-ਕਿਹੜੇ ਭਾਗ ਹਨ?

6.3 ਪ੍ਰਾਣੀ ਟਿਸ਼ੂ (Animal Tissue)

ਜਦੋਂ ਅਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਆਪਣੀ ਛਾਤੀ ਦੀ ਗਤੀ ਮਹਿਸੂਸ ਕਰ ਸਕਦੇ ਹਾਂ। ਸਰੀਰ ਦੇ ਇਹ ਹਿੱਸੇ ਕਿਵੇਂ ਗਤੀ ਕਰਦੇ ਹਨ? ਇਸਦੇ ਲਈ ਸਾਡੇ ਕੁੱਝ ਵਿਸ਼ੇਸ਼ ਸੈੱਲ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਅਸੀਂ ਪੇਸ਼ੀ ਸੈੱਲ (muscle cell)

ਚਿੱਤਰ 6.8 : ਪੇਸ਼ੀ ਰੇਸ਼ੇ ਦੇ ਸਥਾਨ

ਟਿਸ਼


(ਚਿੱਤਰ 6.8) ਕਹਿੰਦੇ ਹਾਂ। ਇਨ੍ਹਾਂ ਸੈੱਲਾਂ ਦਾ ਫੈਲਣਾ ਅਤੇ ਸੁੰਗੜਨਾ ਅੰਗਾਂ ਨੂੰ ਗਤੀ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।

ਸਾਹ ਲੈਣ ਵੇਲੇ ਅਸੀਂ ਆਕਸੀਜਨ ਅੰਦਰ ਲੈ ਕੇ ਜਾਂਦੇ ਹਾਂ। ਇਹ ਆਕਸੀਜਨ ਕਿੱਥੇ ਜਾਂਦੀ ਹੈ? ਇਹ ਫੇਫੜਿਆਂ ਦੁਆਰਾ ਸੌਖ ਲਈ ਜਾਂਦੀ ਹੈ ਅਤੇ ਫਿਰ ਲਹੂ-ਸੰਚਾਰ ਰਾਹੀਂ ਸਰੀਰ ਦੇ ਬਾਕੀ ਸਾਰੇ ਸੈੱਲਾਂ ਵਿੱਚ ਪਹੁੰਚ ਜਾਂਦੀ ਹੈ। ਸੈੱਲਾਂ ਨੂੰ ਆਕਸੀਜਨ ਦੀ ਜ਼ਰੂਰਤ ਕਿਉਂ ਹੁੰਦੀ ਹੈ? ਮਾਈਟ੍ਰੋਕਾਂਡਰੀਆ ਦਾ ਕੰਮ ਇਸ ਪ੍ਰਸ਼ਨ ਦੇ ਉੱਤਰ ਵੱਲ ਸੰਕੇਤ ਕਰਦਾ ਹੈ, ਜਿਸਦੇ ਬਾਰੇ ਵਿੱਚ ਅਸੀਂ ਪਹਿਲਾਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ। ਲਹੂ ਆਪਣੇ ਨਾਲ ਬਹੁਤ ਸਾਰੇ ਪਦਾਰਥਾਂ ਨੂੰ ਸਰੀਰ ਦੇ ਇੱਕ ਹਿੱਸੇ ਤੋਂ ਦੂਜੇ ਹਿੱਸੇ ਤੱਕ ਲੈ ਜਾਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ ਇਹ ਭੋਜਨ ਅਤੇ ਆਕਸੀਜਨ ਨੂੰ ਸਾਰੇ ਸੈੱਲਾਂ ਤੱਕ ਪਹੁੰਚਾਉਂਦਾ ਹੈ। ਇਹ ਸਰੀਰ ਦੇ ਸਾਰੇ ਭਾਗਾਂ ਤੋਂ ਵਿਅਰਥ ਪਦਾਰਥਾਂ ਨੂੰ ਇਕੱਠਾ ਕਰਕੇ ਨਿਪਟਾਰੇ ਲਈ ਜਿਗਰ ਅਤੇ ਗੁਰਦਿਆਂ ਤੱਕ ਪਹੰਚਾਉਂਦਾ ਹੈ।

ਲਹੂ ਅਤੇ ਪੇਸ਼ੀਆਂ ਦੋਨੋਂ ਹੀ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਟਿਸ਼ੂਆਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ। ਉਨ੍ਹਾਂ ਦੇ ਕੰਮ ਦੇ ਆਧਾਰ ਤੇ ਅਸੀਂ ਵਿਭਿੰਨ ਪ੍ਰਾਣੀ ਟਿਸ਼ੂਆਂ ਬਾਰੇ ਵਿਚਾਰ ਕਰ ਸਕਦੇ ਹਾਂ ਜਿਵੇਂ ਕਿ ਅਧਿਛੱਦ ਟਿਸ਼ੂ (epithelial tissue), ਜੋੜਕ ਟਿਸ਼ੂ (connective tissue), ਪੇਸ਼ੀ ਟਿਸ਼ੂ (muscular tissue) ਅਤੇ ਨਾੜੀ ਟਿਸ਼ੂ। ਲਹੂ ਇਕ ਪ੍ਰਕਾਰ ਦਾ ਜੋੜਕ ਟਿਸ਼ੂ ਹੈ ਅਤੇ ਮਾਸਪੇਸ਼ੀਆਂ ਇਕ ਪ੍ਰਕਾਰ ਦੇ ਪੇਸ਼ੀ ਟਿਸ਼ੂ ਹਨ।

6.3.1 ਅਧਿਛੱਦ ਟਿਸ਼ੂ

ਜੰਤੂਆਂ ਦੇ ਸਰੀਰ ਨੂੰ ਵਿਕਣ ਜਾਂ ਬਾਹਰੀ ਰੱਖਿਆ ਪ੍ਰਦਾਨ ਕਰਨ ਵਾਲੇ ਟਿਸ਼ੂ ਨੂੰ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਟਿਸ਼ੂ ਤਕਰੀਬਨ ਸਾਰੇ ਅੰਗ ਅਤੇ ਸਰੀਹ ਵਿੱਚਲੀਆਂ ਖੋੜਾਂ (cavities) ਨੂੰ ਢੱਕਣ ਦਾ ਕੰਮ ਕਰਦਾ ਹੈ। ਇਹ ਸਰੀਰ ਦੀਆਂ ਅੰਗ ਪ੍ਰਣਾਲੀਆਂ ਨੂੰ ਇਕ ਦੂਜੇ ਤੋਂ ਵੱਖ-ਵੱਖ ਰੱਖਣ ਦਾ ਕੰਮ ਵੀ ਕਰਦੇ ਹਨ। ਚਮੜੀ, ਮੂੰਹ ਅਤੇ ਲਹੂ ਵਹਿਣੀਆਂ ਦੀ ਅੰਦਰਲੀ ਝਿੱਲੀ ਫੇਫੜਿਆਂ ਦੀਆਂ ਖੋੜਾਂ ਅਤੇ ਗੁਰਦਾ-ਨਲੀਆਂ ਸਭ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਦੇ ਬਣੇ ਹੋਏ ਹੁੰਦੇ ਹਨ। ਅਧਿੱਛਦ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲਾਂ ਨਾਲ-ਨਾਲ ਪਏ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਕ ਬੱਝਵੀਂ ਤਹਿ ਬਣਾਉਂਦੇ ਹਨ। ਸੈੱਲਾਂ ਦੇ ਵਿਚਕਾਰ

(ਸ) ਤਹਿਦਾਰ ਸਕੇਲੀ

ਚਿੱਤਰ 6 9 : ਵਿਭਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਅਧਿਛੱਦ ਟਿਸ਼ੂ

84

ਕੋਈ ਖਾਲੀ ਥਾਂ ਨਹੀਂ ਹੁੰਦੀ ਅਤੇ ਸੈੱਲਾਂ ਨੂੰ ਜੋੜਨ ਵਾਲਾ ਪਦਾਰਥ ਵੀ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਸਰੀਰ ਦੇ ਅੰਦਰ ਆਉਣ ਵਾਲੇ ਅਤੇ ਬਾਹਰ ਜਾਣ ਵਾਲੇ ਪਦਾਰਥਾਂ ਨੂੰ ਘੱਟੋ ਘੱਟ ਸੈੱਲਾਂ ਦੀ ਇਕ ਤਹਿ ਵਿੱਚੋਂ ਲੰਘ ਕੇ ਜਾਣਾ ਪੈਂਦਾ ਹੈ। ਇਸਦੇ ਸਿੱਟੇ ਵਜੋਂ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਦੇ ਵਿਭਿੰਨ ਸੈੱਲਾਂ ਦੀ ਪਾਰਗਮਾਨਤਾ (permeability) ਸਰੀਰ ਦੇ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ ਅਤੇ ਸਰੀਰ ਤੇ ਬਾਹਰੀ ਵਾਤਾਵਰਣ ਵਿੱਚ ਪਦਾਰਥਾਂ ਦੇ ਆਦਾਨ-ਪ੍ਰਦਾਨ ਨੂੰ ਕੰਟਰੋਲ ਕਰਨ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੀ ਹੈ। ਸਾਰੇ ਹੀ ਕਿਸਮਾਂ ਦੇ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਨੂੰ ਇੱਕ ਰੇਸ਼ੇਦਾਰ ਆਧਾਰ ਝਿੱਲੀ (Basement membrane) ਹੇਠਲੇ ਟਿਸ਼ੁਆਂ ਤੋਂ ਵੱਖ ਕਰਦੀ ਹੈ।

ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੇ ਅਧਿਛੱਦ ਟਿਸ਼ੂਆਂ (ਚਿੱਤਰ 6.9) ਦੀ ਵੱਖ-ਵੱਖ ਸੰਰਚਨਾ ਹੁੰਦੀ ਹੈ ਜਿਹੜੀ ਉਨ੍ਹਾਂ ਦੁਆਰਾ ਨਿਭਾਏ ਜਾਣ ਵਾਲੇ ਕੰਮਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।ਉਦਾਹਰਣ ਦੋ ਤੌਰ 'ਤੇ ਲਹੂ ਵਹਿਣੀਆਂ ਦੇ ਸੈੱਲ ਅਤੇ ਫੇਫੜੇ ਦੀਆਂ ਖੋੜਾਂ (alveoli) ਦੇ ਸੈੱਲ ਇੱਕ ਸਰਲ ਚਪਟੀ ਕਿਸਮ ਦੇ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਸੈੱਲਾਂ ਤੋਂ ਬਣੀ ਹੁੰਦੀ ਹੈ ਕਿਉਂਕਿ ਇਨ੍ਹਾਂ ਦੀ ਅਰਧ ਪਾਰਗਮਨ ਸਤ੍ਹਾ (Selectively Permeable Surface) ਦੁਆਰਾ ਪਦਾਰਥਾਂ ਦੀ ਢੋਆ-ਢੋਆਈ ਦਾ ਕੰਮ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਨੂੰ ਸਰਲ ਸਕੇਲੀ ਅਧਿਛੱਦ (Simple squamous epithelium) ਕਹਿੰਦੇ ਹਨ।

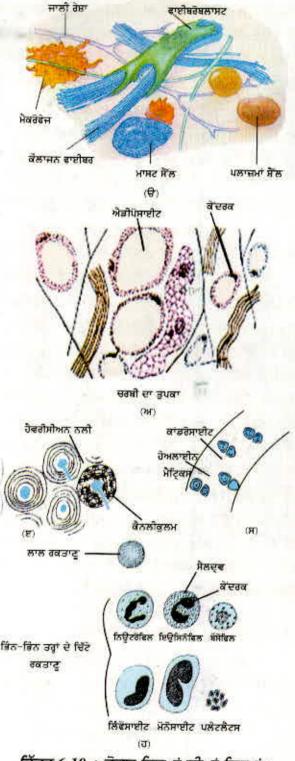
ਸਰਲ ਸਕੇਲੀ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲ ਬਹੁਤ ਪਤਲੇ ਅਤੇ ਚਪਟੇ ਹੁੰਦੇ ਹਨ ਅਤੇ ਬਹੁਤ ਬਰੀਕ ਤਹਿ ਬਣਾਉਂਦੇ ਹਨ। ਗ੍ਰਸ ਨਲੀ (Ocsophagus) ਅਤੇ ਮੂੰਹ ਦੇ ਅੰਦਰਲੇ ਪਾਸੇ ਦੇ ਸੈੱਲ ਇਸੇ ਕਿਸਮ ਦੇ ਹੁੰਦੇ ਹਨ। ਚਮੜੀ ਜਿਹੜੀ ਸਾਡੇ ਸਰੀਰ ਨੂੰ ਢੱਕ ਕੇ ਰੱਖਦੀ ਹੈ ਉਹ ਵੀ ਸਕੇਲੀ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਦੀ ਬਣੀ ਹੁੰਦੀ ਹੈ। ਚਮੜੀ ਦੇ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲ ਕਈ ਤਹਿਆਂ ਵਿੱਚ ਜੁੜੇ ਹੁੰਦੇ ਹਨ ਤਾਂ ਕਿ ਉਹ ਚਮੜੀ ਦੀ ਟੁੱਟ-ਭੱਜ ਨੂੰ ਬਚਾ ਸਕਣ। ਸਕੇਲੀ, ਘਣਾਕਾਰ, ਸ਼ਤੰਭਕਾਰ (ਸਿਲੀਆਮਈ), ਤਹਿਦਾਰ ਸਕੇਲੀ ਸੈੱਲਾਂ ਦੇ ਇਸ ਤਰ੍ਹਾਂ ਤਹਿਆਂ ਵਿੱਚ ਜੁੜੇ ਹੋਣ ਦੇ ਤਰੀਕੇ ਕਰਕੇ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਨੂੰ ਤਹਿਦਾਰ ਸਕੇਲੀ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਕਹਿੰਦੇ ਹਨ।

ਜਿੱਥੇ ਸੋਖਣ ਅਤੇ ਰਿਸਾਵ ਹੁੰਦਾ ਹੈ ਜਿਵੇਂ ਅੰਤੜੀ ਦੇ ਅੰਦਰਲੇ ਪਾਸੇ ਦੇ ਸੈੱਲਾਂ ਵਿੱਚ, ਉਥੇ ਲੰਬੂਤਰੇ ਅਧਿਛੱਦ ਸੈੱਲ

ਵਿਗਿਆਨ

ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਇਹ ਕਾਲਮ (ਮਤਲਬ ਬੰਮ੍ਹ ਜਿਹੇ) ਅਧਿੱਛਦ ਟਿਸ਼ੂ ਅਧਿਛੱਦ-ਰੋਧ (epithelial barrier) ਨੂੰ ਪਾਰ ਕਰਨ 'ਚ ਸਹਾਇਤਾ ਕਰਦੇ ਹਨ। ਸਾਹ ਨਲੀ ਵਿੱਚ ਕਾਲਮ-ਆਕਾਰ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲਾਂ ਵਿੱਚ ਸਿਲੀਆ ਵੀ ਹੁੰਦੇ ਹਨ ਜਿਹੜੀਆਂ ਕਿ ਸੈੱਲਾਂ ਦੀ ਬਾਹਰੀ ਸਤਹਿ ਤੋਂ ਉਗਣ ਵਾਲੀਆਂ ਵਾਲ ਵਰਗੀਆਂ ਰਚਨਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਸਿਲੀਆਂ ਗਤੀ ਕਰ ਸਕਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਗਤੀ ਬੱਲਗਮ (mucus) ਨੂੰ ਅੱਗੇ ਧੱਕ ਕੇ ਰਸਤਾ ਸਾਫ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੀ ਹੈ। ਇਸ ਲਈ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਨੂੰ ਸਿਲੀਆਮਈ ਕਾੱਲਮਆਕਰ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਕਹਿੰਦੇ ਹਨ।

6.3.2 নিরব टিদ্রু (Connective Tissue)


ਲਹੂ ਇਕ ਤਰ੍ਹਾਂ ਦਾ ਜੋੜਕ ਟਿਸ਼ੂ ਹੈ। ਇਸ ਨੂੰ ਜੋੜਕ ਟਿਸ਼ੂ ਕਿਉਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ? ਪਾਠ ਦੀ ਭੂਮਿਕਾ ਵਿੱਚ ਇਸ ਸੰਬੰਧੀ ਇੱਕ ਸੰਕੇਤ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਆਓ ਅਸੀਂ ਹੁਣ ਇਸ ਟਿਸ਼ੂ ਬਾਰੇ ਹੋਰ ਵਿਸਥਾਰ ਵਿੱਚ ਜਾਣੀਏ। ਜੋੜਕ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲ ਦੂਰ-ਦੂਰ ਪਏ ਹੁੰਦੇ ਹਨ ਅਤੇ ਅੰਤਰਸੈਲੀ ਮੈਟ੍ਰਿਕਸ (Intercellular matrix) ਵਿੱਚ ਖੁੱਭੇ ਹੁੰਦੇ ਹਨ। (ਚਿੱਤਰ 6.10) ਇਹ ਮੈਟ੍ਰਿਕਸ ਜੈਲੀ ਵਰਗਾ, ਤਰਲ, ਗਾੜ੍ਹਾ ਜਾਂ ਕਠੋਰ ਹੋ ਸਕਦਾ ਹੈ। ਮੈਟ੍ਰਿਕਸ ਦੀ ਕਿਸਮ ਜੋੜਕ ਟਿਸ਼ੂ ਦੇ ਕੰਮ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।

ਲਹੂ ਦੀ ਇਕ ਬੂੰਦ ਸਲਾਈਡ ਤੇ ਪਾਓ ਅਤੇ ਸੂਖਮਦਰਸ਼ੀ ਨਾਲ ਇਸ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਵੱਖ-ਵੱਖ ਸੈੱਲਾਂ ਦਾ ਪ੍ਰੇਖਣ ਕਰੋ।

ਲਹੂ ਦੀ ਮੈਟ੍ਰਿਕਸ ਤਰਲ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨੂੰ ਪਲਾਜ਼ਮਾ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਲਾਲ ਰਕਤਾਣੂ (RBCs), ਚਿੱਟੇ ਰਕਤਾਣੂ (WBCs) ਅਤੇ ਪਲੇਟਲੈਟਸ ਹੁੰਦੇ ਹਨ। ਇਹ ਸਭ^{ਤਿ} ਪਲਾਜ਼ਮਾ ਵਿੱਚ ਤੈਰਦੇ ਹਨ। ਪਲਾਜ਼ਮਾ ਵਿੱਚ ਪ੍ਰੋਟੀਨ, ਨਮਕ ਅਤੇ ਹਾਰਮੋਨ ਵੀ ਹੁੰਦੇ ਹਨ। ਲਹੂ ਸਰੀਰ ਵਿੱਚ ਗੈਸਾਂ, ਪਚੇ^{ਲਾਜ} ਹੋਏ ਭੋਜਨ, ਹਾਰਮੋਨ ਅਤੇ ਵਿਅਰਥ ਪਦਾਰਥ ਦਾ ਇਕ^{ਾਜੀ} ਭਾਗ ਤੋਂ ਦੂਜੇ ਭਾਗ ਤੱਕ ਸੰਚਾਰ ਕਰਦਾ ਹੈ।

ਹੱਡੀ ਜੋੜਕ ਟਿਸ਼ੂ ਦੀ ਇਕ ਹੋਰ ਉਦਾਹਰਣ ਹੈ। ਇਹ ਪਿੰਜਰ ਦਾ ਨਿਰਮਾਣ ਕਰਕੇ ਸਰੀਰ ਨੂੰ ਆਕਾਰ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ। ਇਹ ਪੇਸ਼ੀਆਂ ਨਾਲ ਵੀ ਜੁੜੀ ਹੁੰਦੀ ਹੈ ਅਤੇ

ਟਿਸ਼ੂ

ਚਿੱਤਰ 6.10 : ਜੋੜਕ ਟਿਸ਼ੂਆਂ ਦੀਆਂ ਕਿਸਮਾਂ : (ੳ) ਏਰੀਉਲਰ ਟਿਸ਼ੂ, (ਅ) ਚਰਬੀਲਾ ਟਿਸ਼ੂ (ੲ) ਹੱਡੀ (ਅਸਥੀ) (ਸ) ਉਪਅਸਥੀ (ਹ) ਵਿਭਿੰਨ ਲਹੂ ਸੈੱਲ

85

m

ਸਰੀਰ ਦੇ ਮੁੱਖ ਅੰਗਾਂ ਨੂੰ ਸਹਾਰਾ ਦਿੰਦੀ ਹੈ। ਇਹ ਮਜ਼ਬੂਤ ਅਤੇ ਕਠੋਰ ਹੁੰਦੀ ਹੈ। ਹੱਡੀਆਂ ਦੇ ਕੰਮ ਵਾਸਤੇ ਇਨ੍ਹਾਂ ਗੁਣਾਂ ਦਾ ਕੀ ਲਾਭ ਹੈ? ਹੱਡੀ-ਸੈੱਲ, ਕੈਲਸ਼ੀਅਮ ਅਤੇ ਫਾਸਫੋਰਸ ਯੋਗਿਕਾਂ ਦੀ ਬਣੀ ਕਠੋਰ ਮੈਟ੍ਰਿਕਸ ਵਿੱਚ ਧਸੇ ਹੁੰਦੇ ਹਨ।

ਦੋ ਹੱਡੀਆਂ ਆਪਸ ਵਿੱਚ ਇੱਕ ਹੋਰ ਕਿਸਮ ਦੇ ਜੋੜਕ ਟਿਸ਼ੂ ਲਿਗਾਮੈਂਟ (Ligaments) ਨਾਲ ਜੁੜੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਟਿਸ਼ੂ ਬਹੁਤ ਲਚਕੀਲਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਬਹੁਤ ਹੀ ਮਜ਼ਬੂਤੀ ਹੁੰਦੀ ਹੈ। ਲਿਗਾਮੈਂਟਾ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਮੈਟ੍ਰਿਕਸ ਹੁੰਦੀ ਹੈ। ਟੈਂਡਨ (Tendons) ਹੱਡੀ ਨੂੰ ਪੇਸ਼ੀ ਨਾਲ ਜੋੜਨ ਵਾਲੇ ਇਕ ਹੋਰ ਜੋੜਕ ਟਿਸ਼ੂ ਹਨ। ਟੈਂਡਨ ਬਹੁਤ ਮਜ਼ਬੂਤੀ ਪਰ ਘੱਟ ਲਚਕਤਾ ਵਾਲੇ ਰੇਸ਼ੇਦਾਰ ਟਿਸ਼ੂ ਹਨ।

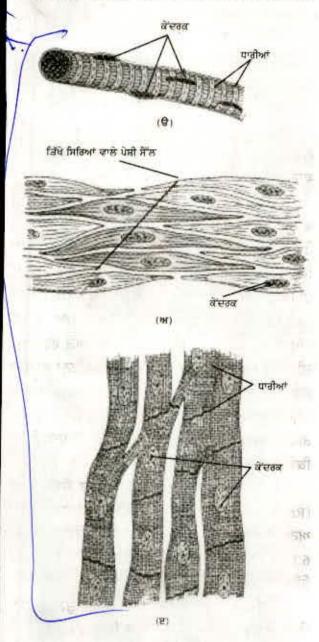
ਇਕ ਹੋਰ ਕਿਸਮ ਦਾ ਜੋੜਕ ਟਿਸ਼ੂ ਉਪਅਸਥੀ (cartilage) ਹੈ। ਇਸ ਵਿੱਚ ਸੈੱਲ ਬਹੁਤ ਦੂਰ-ਦੂਰ ਹੁੰਦੇ ਹਨ। ਨੋਸ ਮੈਟ੍ਰਿਕਸ ਖੰਡ ਅਤੇ ਪ੍ਰੋਟੀਨ ਅਣੂਆਂ ਦੀ ਬਣੀ ਹੁੰਦੀ ਹੈ। ਉਪਅਸਥੀ, ਹੱਡੀ ਦੀ ਸਤ੍ਹਾ ਅਤੇ ਜੋੜਾਂ ਨੂੰ ਪੱਧਰਾ ਰੱਖਦੀ ਹੈ ਅਤੇ ਇਹ ਨੱਕ, ਕੰਨ, ਸਾਹ ਨਲੀ ਅਤੇ ਕੰਠ (larynx) ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਅਸੀਂ ਕੰਨ ਦੀ ਉਪ-ਅਸਥੀ ਨੂੰ ਮਰੋੜ ਸਕਦੇ ਹਾਂ ਪਰ ਅਸੀਂ ਬਾਂਹ ਵਿੱਚ ਹੱਡੀਆਂ ਨੂੰ ਨਹੀਂ ਮੋੜ ਸਕਦੇ। ਸੋਚੋ ਇਹ ਦੋਵੇਂ ਟਿਸ਼ੂ ਆਪਸ 'ਚ ਕਿਵੇਂ ਭਿੰਨ ਹਨ ?

ਏਰੀਉਲਰ (Areolar) ਜੋੜਕ ਟਿਸ਼ੂ ਚਮੜੀ ਅਤੇ ਪੇਸ਼ੀਆਂ ਦੇ ਵਿਚਕਾਰ, ਲਹੂ ਵਹਿਣੀਆਂ ਅਤੇ ਨਾੜਾਂ ਦੇ ਦੁਆਲੇ ਅਤੇ ਹੱਡੀ ਵਿਚੋਂ (bone marrow) ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਹ ਔਗਾਂ ਵਿਚਲੀ ਥਾਂ ਭਰਨ, ਅੰਦਰੂਨੀ ਔਗਾਂ ਨੂੰ ਸਹਾਰਾ ਦੇਣ ਅਤੇ ਟਿਸ਼ੂਆਂ ਦੀ ਮੁਰੰਮਤ ਕਰਨ ਦਾ ਕੰਮ ਕਰਦਾ ਹੈ।

6.3.3. ਪੇਸ਼ੀ ਟਿਸ਼ੂ (Muscular Tissue)

ਪੇਸ਼ੀ ਟਿਸ਼ੂ ਵਿੱਚ ਲੰਬੇ ਸੈੱਲ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਪੇਸ਼ੀ ਰੇਸ਼ੇ (Muscular Tissue) ਕਹਿੰਦੇ ਹਨ। ਇਹ ਟਿਸ਼ੂ ਸਾਡੇ ਸਰੀਰ ਲਈ ਗਤੀ ਕਰਨ ਦਾ ਕੰਮ ਕਰਦੇ ਹਨ। ਪੇਸ਼ੀਆਂ ਵਿੱਚ ਸਪੈਸ਼ਲ ਕਿਸਮ ਦੇ ਪ੍ਰੋਟੀਨ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਸੁੰਗੜਨਸੀਲ ਪ੍ਰੋਟੀਨ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਸੁੰਗੜਨ ਅਤੇ ਫੈਲਣ ਨਾਲ ਗਤੀ ਲਿਆਉਂਦੇ ਹਨ। ਸ਼ੁੱਝ ਪੇਸ਼ੀਆਂ ਵਿੱਚ ਅਸੀਂ ਆਪਣੀ ਇੱਛਾ ਅਨੁਸਾਰ ਗਤੀ ਲਿਆ ਸਕਦੇ ਹਾਂ।ਸਾਡੀਆਂ ਲੱਤਾਂ ਅਤੇ ਬਾਹਵਾਂ ਦੀਆਂ ਪੇਸ਼ੀਆਂ ਵਿੱਚ ਅਸੀਂ ਆਪਣੀ ਇੱਛਾ ਅਨੁਸਾਰ ਗਤੀ ਲਿਆ ਵੀ ਸਕਦੇ ਹਾਂ ਅਤੇ ਰੋਕ ਵੀ ਸਕਦੇ ਹਾਂ। ਅਜਿਹੀਆਂ ਪੇਸ਼ੀਆਂ ਨੂੰ ਸਵੈਇੱਛਤ ਪੇਸ਼ੀਆਂ (voluntary muscle) ਕਹਿੰਦੇ ਹਨ। (ਚਿੱਤਰ 6.11((ੳ))। ਇਨ੍ਹਾਂ ਪੇਸ਼ੀਆਂ ਨੂੰ ਪਿੰਜਰ ਪੇਸ਼ੀਆਂ (Skeletar muscle) ਵੀ ਕਹਿੰਦੇ ਹਨ ਕਿਉਂਕਿ ਜ਼ਿਆਦਾਤਰ ਇਹ ਹੱਡੀਆਂ ਨਾਲ਼ ਜੁੜੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਸਰੀਰ ਵਿੱਚ ਗਤੀ ਲਿਆਉਂਦੀਆਂ ਹਨ। ਸੂਖਮਦਰਸ਼ੀ ਨਾਲ ਦੇਖਣ ਤੇ ਇਨ੍ਹਾਂ ਪੇਸ਼ੀਆਂ ਵਿੱਚ ਵਾਰੋ-ਵਾਰੀ ਹਲਕੇ ਅਤੇ ਗੂੜ੍ਹੇ ਰੈਗ ਦੀਆਂ ਧਾਰੀਆਂ ਨਜ਼ਰ ਆਉਂਦੀਆਂ ਹਨ। ਇਸ ਕਰਕੇ ਇਨ੍ਹਾਂ ਨੂੰ ਧਾਰੀਦਾਰ ਪੇਸ਼ੀਆਂ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲ ਲੰਬੇ, ਬੇਲਣਾਕਾਰ, ਬਿਨਾਂ ਸ਼ਾਖਾਵਾਂ ਦੇ ਅਤੇ ਬਹੁ ਕੇਂਦਰ ਵਾਲੇ (multiple centre) ਹੁੰਦੇ ਹਨ।

ਭੋਜਨ ਨਾਲੀ ਵਿੱਚ ਭੋਜਨ ਦੀ ਗਤੀ ਅਤੇ ਲਹੂ ਵਹਿਣੀਆਂ ਦਾ ਸ਼ੁੰਗੜਨਾ ਅਤੇ ਫੈਲਣਾ ਅਣ-ਇੱਛਤ ਗਤੀ ਹੈ। ਅਸੀਂ ਆਪਣੇ ਚਾਹੁਣ ਜਾਂ ਨਾ ਚਾਹੁਣ ਨਾਲ ਨਾ ਉਨ੍ਹਾਂ ਵਿੱਚ ਗਤੀ ਲਿਆ ਸਕਦੇ ਹਾਂ ਨਾ ਉਨ੍ਹਾਂ ਦੀ ਗਤੀ ਰੋਕ ਸਕਦੇ ਹਾਂ। ਧਾਰੀ-ਰਹਿਤ ਜਾਂ ਅਣਇੱਛਤ ਪੇਸ਼ੀਆਂ ਅਜਿਹੀ ਗਤੀ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਹੁੰਦੀਆਂ ਹਨ। (ਚਿੱਤਰ 6.11((ਅ))। ਇਹ ਅੱਖ ਦੇ ਆਇਰਸ ਗੁਰਦੇ ਦੀ ਮੂਤਰ ਵਹਿਣੀ ਅਤੇ ਫੇਫੜਿਆਂ ਦੀਆਂ ਉਪਸਾਹ ਨਾਲੀਆਂ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਸੈੱਲ ਲੰਬੇ ਅਤੇ ਤਿੱਖੇ ਸਿਰਿਆਂ ਵਾਲੇ (spindle shaped) ਅਤੇ ਇੱਕ ਕੇਂਦਰਕ ਵਾਲੇ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਪੇਸ਼ੀਆਂ ਨੂੰ ਧਾਰੀ-ਰਹਿਤ ਪੇਸ਼ੀਆਂ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨੂੰ ਧਾਰੀਰਹਿਤ ਕਿਉਂ ਕਹਿੰਦੇ ਹਨ?

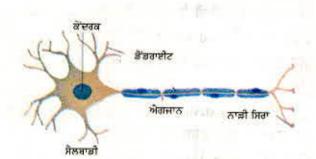

ਦਿਲ ਦੀਆਂ ਪੇਸ਼ੀਆਂ ਸਾਰੀ ਉਮਰ ਲੈਬੱਧ ਹੋ ਕੇ (Rhythmic) ਸੁੰਗੜਦੀਆਂ ਅਤੇ ਫੈਲਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਅਣ-ਇੱਛਤ ਪੇਸ਼ੀਆਂ ਨੂੰ ਦਿਲੀ ਪੇਸ਼ੀਆਂ ਕਹਿੰਦੇ ਹਨ।(ਚਿੱਤਰ 6.11(ੲ)। ਦਿਲ ਪੇਸ਼ੀ ਦੇ ਸੈੱਲ ਵੇਲਣਾਕਾਰ, ਸ਼ਾਖਿਤ ਅਤੇ ਇੱਕ-ਕੇਂਦਰਕ ਵਾਲੇ ਹੁੰਦੇ ਹਨ।

ਵਿਭਿੰਨ ਤਰ੍ਹਾਂ ਦੀਆਂ ਪੇਸ਼ੀਆਂ ਦੀ ਤੁਲਨਾ ਕਰੋ। ਉਨ੍ਹਾਂ ਦੇ ਸੈੱਲਾਂ ਦੀ ਆਕ੍ਰਿਤੀ, ਸੈੱਲ ਵਿੱਚ ਕੇਂਦਰਕ ਦੀ ਥਾਂ ਅਤੇ ਗਿਣਤੀ ਨੂੰ ਨੋਟ ਕਰੋ।

ਵਿਗਿਆਨ

6.3.4 ਨਾੜੀ ਟਿਸ਼ੂ (Nervous Tissue)

ਇਸ ਟਿਸ਼ੂ ਦੇ ਸਾਰੇ ਸੈੱਲਾਂ ਵਿੱਚ ਉਤੇਜਨਾ ਦੇ ਪ੍ਰਤਿ ਕਿਰਿਆ ਕਰਨ ਦੀ ਯੋਗਤਾ ਹੁੰਦੀ ਹੈ ਜਦਕਿ ਨਾੜੀ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲ ਬਹੁਤ ਤੇਜ਼ੀ ਨਾਲ਼ ਉਤੇਜਿਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਨੀ ਹੀ ਤੇਜ਼ੀ ਨਾਲ਼ ਪੂਰੇ ਸਰੀਰ ਵਿੱਚ ਇੱਕ ਸਥਾਨ ਤੋਂ ਦੂਜੇ ਸਥਾਨ ਤੱਕ ਇਸ ਉਤੇਜਨਾ ਨੂੰ ਪਹੁੰਚਾਉਂਦੇ ਹਨ।ਦਿਮਾਗ, ਸੁਖਮਨਾ


ਚਿੱਤਰ 6.11: ਵਿਭਿੰਨ ਕਿਸਮ ਦੇ ਪੇਸ਼ੀ ਟਿਸ਼ੂ (ੳ) ਧਾਰੀਦਾਰ ਪੇਸ਼ੀਆਂ(ਅ) ਧਾਰੀ ਰਹਿਤ ਪੇਸ਼ੀਆਂ(ੲ) ਦਿਲ ਪੇਸ਼ੀ

ਟਿਸ਼

ਨਾੜੀ ਅਤੇ ਨਾੜੀਆਂ ਸਾਰੇ ਹੀ ਨਾੜੀ ਟਿਸ਼ੂ ਦੇ ਬਣੇ ਹਨ। ਇਸ ਟਿਸ਼ੂ ਦੇ ਸੈੱਲਾਂ ਨੂੰ ਨਾੜੀ ਸੈੱਲ ਜਾਂ ਨਿਊਰਾਨ ਕਹਿੰਦੇ ਹਨ। ਨਿਊਰਾਨ ਦਾ ਸੈੱਲੇ ਸਰੀਰ ਵਿੱਚ ਕੇਂਦਰਕ ਅਤੇ ਸੈਲ ਦ੍ਵ ਹੁੰਦੇ ਹਨ (ਚਿੱਤਰ 6.12)।ਆਮ ਤੌਰ 'ਤੇ ਹਰੇਕ ਨਿਊਰਾਨ ਵਿੱਚ ਇੱਕ ਲੰਬੀ ਰਚਨਾ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਐਗਜਾਨ ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਕਈ ਛੋਟੀਆਂ ਸਥਿੰਡ ਰਚਨਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਡੈਂਡਰਾਈਟ ਕਹਿੰਦੇ ਹਨ। ਇਕ ਨਾੜੀ ਸੈੱਲ ਇੱਕ ਮੀਟਰ ਤੱਕ ਲੰਬਾ ਹੋ ਸਕਦਾ ਹੈ। ਬਹੁਤ ਸਾਰੇ ਨਾੜੀ ਸੈੱਲ ਜੋੜਕ ਟਿਸ਼ੂ ਰਾਹੀਂ ਇੱਕ ਦੂਜੇ ਨਾਲ ਜੁੜ ਕੇ ਇੱਕ ਨਾੜੀ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ।

ישיותי באינורבים

ਨਾੜੀ ਸੰਵੇਦਨਾ ਰਾਹੀਂ ਅਸੀਂ ਆਪਣੀ ਇੱਛਾ ਅਨੁਸਾਰ ਆਪਣੀਆਂ ਪੇਸ਼ੀਆਂ ਦੀ ਗਤੀ ਕਰ ਸਕਦੇ ਹਾਂ। ਨਾੜੀ ਅਤੇ ਪੇਸ਼ੀ ਟਿਸ਼ੂਆਂ ਦਾ ਕਾਰਜਾਤਮਕ ਸੰਯੋਜਨ ਸਾਰੇ ਜੰਤੂਆਂ ਵਿੱਚ ਮੌਲਿਕ ਹੈ ਅਤੇ ਇਹ ਸੰਯੋਜਨ ਉਤੇਜਨਾ ਅਨੁਸਾਰ ਜੰਤੂਆਂ ਨੂੰ ਤੇਜ਼ ਪ੍ਰਤਿਕਿਰਿਆ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ।

ਚਿੱਤਰ 6.12 : ਨਿਊਰਾਨ (ਨਾੜੀ ਟਿਸ਼ੁ ਦੀ ਇਕਾਈ)

ਸਨ। 1. ਸਰੀਰ ਵਿੱਚ ਗਤੀ ਲਿਆਉਣ ਵਾਲੇ ਟਿਸ਼ੂਆਂ ਦੇ ਨਾਂ ਦੱਸੋ।

2. ਨਿਊਰਾਨ ਵੇਖਣ ਵਿੱਚ ਕਿਹੋ ਜਿਹਾ ਲੱਗਦਾ ਹੈ?

87

- 3. ਦਿਲ ਪੇਸ਼ੀ ਦੇ ਤਿੰਨ ਲੱਛਣ ਦੱਸੋ।
- 4. ਏਰੀਓਰਲ ਟਿਸ਼ੂ ਦੇ ਕੰਮ ਦੱਸੋ।

nedo

1783

ਸਿੱਖਿਆ

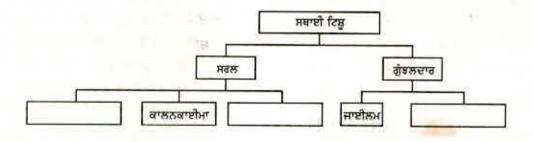
- ਇਕੋ ਜਿਹੀ ਸੰਰਚਨਾ ਅਤੇ ਕਾਰਜ ਵਾਲੇ ਸੈੱਲਾਂ ਦੇ ਸਮੂਹ ਨੂੰ ਟਿਸ਼ੂ ਕਹਿੰਦੇ ਹਨ।
- ਪੌਦਾ ਟਿਸ਼ੂ ਮੁੱਖ ਤੌਰ 'ਤੇ ਦੋ ਕਿਸਮਾਂ ਦੇ ਹੁੰਦੇ ਹਨ ਵਿਭਾਜਨ ਯੋਗ ਅਤੇ ਸਥਾਈ।
- ਵਿਭਾਜਨ ਯੋਗ ਵੰਡੇ ਜਾਣ ਵਾਲਾ ਟਿਸ਼ ਹੈ ਜਿਹੜਾ ਪੌਦਿਆਂ ਦੇ ਵਾਧੇ ਵਾਲੀਆਂ ਥਾਵਾਂ ਤੇ ਹੈਦਾ ਹੈ।
- ਵਿਭਾਜਨ ਯੋਗ ਟਿਸ਼ ਵਿਭਾਜਨ ਸਮਰੱਥਾ ਖੋਹ ਜਾਣ ਤੋਂ ਬਾਅਦ ਸਥਾਈ ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਬਦਲ ਜਾਂਦੇ ਹਨ, ਇਨ੍ਹਾਂ ਨੂੰ ਸਰਲ ਅਤੇ ਗੁੰਝਲਦਾਰ ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

ਸਰਲ ਟਿਸ਼ੂ ਤਿੰਨ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ - ਪੇਅਰਨਕਾਈਮਾ, ਕਾਲਨਕਾਇਮਾ ਅਤੇ ਸਕਲੈਰਨਕਾਈਮਾ। ਗੁੰਝਲਦਾਰ ਟਿਸ਼ੂ ਦੋ ਤਰ੍ਹਾਂ ਦੇ ਹਨ – ਜਾਈਲਮ ਅਤੇ ਫਲੋਇਮ।

ਪਾਣੀ ਟਿਸ਼ੂਆਂ ਨੂੰ ਅਧਿਛੱਦ ਟਿਸ਼ੂ, ਜੋੜਕ ਟਿਸ਼ੂ, ਪੇਸ਼ੀ ਟਿਸ਼ੂ ਅਤੇ ਨਾੜੀ ਟਿਸ਼ੂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ।

ਆਕ੍ਰਿਤੀ ਅਤੇ ਕੰਮ ਦੇ ਆਧਾਰ ਤੇ ਅਧਿਛੱਦ ਟਿਸ਼ੂ ਨੂੰ ਸਕੇਲੀ, ਘਣਾਕਾਰ, ਸਤੰਭਕਾਰ, ਸਿਲੀਆਮਈ ਅਤੇ ਗਲੈਂਡਦਾਰ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

- ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਵਿਭਿੰਨ ਕਿਸਮਾਂ ਦੇ ਜੋੜਕ ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਏਰੀਊਰਲ ਟਿਸ਼ੂ, ਚਰਬੀਲਾ ਟਿਸ਼ੂ, ਹੱਡੀ, ਟੈਂਡਨ, ਲਿਗਾਮੈਂਟ, ਉਪਅਸਥੀ ਅਤੇ ਲਹੂ ਸ਼ਾਮਲ ਹਨ।
- ਧਾਰੀਦਾਰ, ਧਾਰੀ ਰਹਿਤ ਅਤੇ ਦਿਲ ਪੇਸ਼ੀ ਤਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਪੇਸ਼ੀ ਟਿਸ਼ੂ ਹਨ।
- ਨਾੜੀ ਟਿਸ਼ੂ ਨਿਊਗਨਾਂ ਤੋਂ ਬਣਿਆ ਹੈ ਜਿਹੜੇ ਸੰਵੇਦਨਾ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਕੇ ਸੰਚਾਲਿਤ ਕਰਦੇ ਹਨ।


ਅਭਿਆਸ

- ਟਿਸ਼ੁ ਦੀ ਪਰਿਭਾਸ਼ਾ ਦਿਓ।
- ਕਿੰਨੇ ਕਿਸਮਾਂ ਦੇ ਘਟਕ ਇਕੱਠੇ ਹੋ ਕੇ ਜਾਈਲਮ ਟਿਸ਼ੂ ਬਣਾਉਂਦੇ ਹਨ ? ਉਨ੍ਹਾਂ ਦੇ ਨਾਂ ਦੱਸੋ ?
- ਪੌਦਿਆਂ ਵਿੱਚ ਸਰਲ ਟਿਸ਼ੂ ਗੁੰਝਲਦਾਰ ਟਿਸ਼ੂਆਂ ਤੋਂ ਕਿਵੇਂ ਭਿੰਨ ਹਨ ?
- 4. ਸੈੱਲ ਭਿੱਤੀ ਦੇ ਆਧਾਰ ਤੇ ਪੇਅਰਨਕਾਈਮਾ, ਕਾਲਨਕਾਈਮਾ ਅਤੇ ਸਕਲੈਰਨਕਾਈਮਾ ਵਿੱਚ ਅੰਤਰ ਦੱਸੋ।

ਵਿਗਿਆਨ

- ਸਟੋਮੈਟਾ ਦੇ ਕੀ ਕੰਮ ਹਨ ?
- ਓੱਤਰ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਤਿੰਨ ਕਿਸਮਾਂ ਦੇ ਪੇਸ਼ੀ ਰੇਸ਼ਿਆਂ ਵਿੱਚ ਅੰਤਰ ਦੱਸੋ।
- ਦਿਲ ਪੋਸ਼ੀ ਦਾ ਖਾਸ ਕੰਮ ਕੀ ਹੈ?

- ਸੰਰਚਨਾ ਅਤੇ ਸਰੀਰ ਵਿੱਚ ਥਾਂ ਦੇ ਆਧਾਰ ਤੇ ਧਾਰੀਦਾਰ, ਧਾਰੀਰਹਿਤ ਅਤੇ ਦਿਲ ਪੇਸ਼ੀ ਵਿੱਚ ਅੰਤਰ ਦੱਸੋ।
- ਨਿਊਰਾਨ ਦਾ ਇਕ ਲੇਬਲ ਕੀਤਾ ਚਿੱਤਰ ਬਣਾਉ।
- 10. ਹੇਠ ਲਿਖਿਆਂ ਦੇ ਨਾਮ ਦੱਸੋ -
 - (a) ਉਹ ਟਿਸ਼ੂ ਜਿਹੜਾ ਮੂੰਹ ਦੀ ਅੰਦਰਲੀ ਪਰਤ ਬਣਾਉਂਦਾ ਹੈ।
 - (b) ਉਹ ਟਿਸ਼ੂ ਜਿਹੜਾ ਮਨੁੱਖੀ ਸਰੀਰ ਵਿੱਚ ਪੇਸ਼ੀਆਂ ਅਤੇ ਹੱਡੀਆਂ ਨੂੰ ਜੋੜਦਾ ਹੈ।
 - (c) ਉਹ ਟਿਸ਼ੂ ਜਿਹੜਾ ਪੌਦਿਆਂ ਵਿੱਚ ਭੋਜਨ ਦਾ ਪਰਿਵਹਿਣ ਕਰਦਾ ਹੈ।
 - (d) ਉਹ ਟਿਸ਼ੂ ਜਿਹੜਾ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਚਰਬੀ ਜਮ੍ਹਾਂ ਰੱਖਦਾ ਹੈ।
 - (e) ਉਹ ਜੋੜਕ ਟਿਸ਼ੂ ਜਿਸਦੀ ਮੈਟ੍ਰਿਕਸ ਤਰਲ ਰੂਪ 'ਚ ਹੁੰਦੀ ਹੈ।
 - (f) ਉਹ ਟਿਸ਼ੂ ਜਿਹੜਾ ਦਿਮਾਗ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
- ਹੇਠ ਲਿਖਿਆ ਵਿੱਚ ਕਿਹੜਾ ਟਿਸ਼ੂ ਹੁੰਦਾ ਹੈ ਚਮੜੀ, ਦਰਖਤ ਦੀ ਛਿੱਲ, ਹੱਡੀ, ਗੁਰਦਾ ਨਲੀ ਦੀ ਅੰਦਰਲੀ ਪਰਤ ਅਤੇ ਵਹਿਣੀ ਬੈਡਲ।
- ਉਨ੍ਹਾਂ ਹਿੱਸਿਆਂ ਦੇ ਨਾਮ ਦੱਸੋ ਜਿੱਥੇ ਪੇਅਰਨਕਾਈਮਾ ਟਿਸ਼ੁ ਹੁੰਦਾ ਹੈ।
- 13. ਪੌਦਿਆਂ ਵਿੱਚ ਐਪੀਡਰਮਿਸ ਦੀ ਕੀ ਭੂਮਿਕਾ ਹੈ ?
- 14. ਕਾਰਕ (cork) ਸੁਰੱਖਿਆ ਟਿਸ਼ੂ ਦੇ ਤੌਰ ਤੇ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ ?
- 15. ਸਾਰਨੀ ਪੂਰੀ ਕਰੋ।

15 85

ਟਿਸ਼ੁ

16-Bay

Downloaded from https:// www.studiestoday.com

89

ਸਜੀਵਾਂ ਵਿੱਚ ਵਿਭਿੰਨਤਾ

(Diversity in Living Organisms)

ਕੀ ਤੁਸੀਂ ਕਦੇ ਸੋਚਿਆ ਹੈ ਕਿ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਕਿਨੀਆਂ ਕਿਸਮਾਂ ਦੇ ਜੀਵ-ਸਮੂਹ ਪਾਏ ਜਾਂਦੇ ਹਨ। ਸਾਰੇ ਸਜੀਵ ਇੱਕ ਦੂਜੇ ਤੋਂ ਕਿਸੇ ਨਾ ਕਿਸੇ ਰੂਪ ਵਿੱਚ ਭਿੰਨ ਹਨ। ਤੁਸੀਂ ਆਪਣੇ ਅਤੇ ਆਪਣੇ ਦੋਸਤ ਬਾਰੇ ਹੀ ਸੋਚੋ।

ਕੀ ਤੁਹਾਡਾ ਦੋਨਾਂ ਦਾ ਕੱਦ ਇੱਕੋ ਜਿਹਾ ਹੈ ?

ਅਧਿਆਇ 7

- ਕੀ ਤੁਹਾਡਾ ਨੱਕ ਬਿਲਕੁੱਲ ਤੁਹਾਡੇ ਮਿੱਤਰ/ਦੋਸਤਾਂ ਵਰਗਾ ਹੀ ਦਿਸਦਾ ਹੈ?
- ਕੀ ਤੁਹਾਡੀ ਅਤੇ ਤੁਹਾਡੇ ਮਿੱਤਰ/ਦੋਸਤਾਂ ਦੀ ਹਥੇਲੀ ਦਾ ਆਕਾਰ ਇੱਕੋ ਜਿਹਾ ਹੈ?

ਜੇਕਰ ਅਸੀਂ ਆਪਣੀ, ਆਪਣੇ ਮਿੱਤਰਾਂ/ਦੋਸਤਾਂ ਦੀ ਇੱਕ ਬਾਂਦਰ ਨਾਲ ਤੁਲਨਾ ਕਰੀਏ ਤਾਂ ਅਸੀਂ ਕੀ ਵੇਖਦੇ ਹਾਂ ? ਨਿਸ਼ਚਿਤ ਰੂਪ ਵਿੱਚ ਸਾਡੇ ਅਤੇ ਸਾਡੇ ਮਿੱਤਰਾਂ/ਦੋਸਤਾਂ ਵਿੱਚ ਬਾਂਦਰ ਦੇ ਮੁਕਾਬਲੇ ਬਹੁਤ ਜ਼ਿਆਦਾ ਸਮਾਨਤਾ ਹੈ। ਪਰ ਜਦੋਂ ਅਸੀਂ ਆਪਣੀ ਤੁਲਨਾ ਗਾਂ ਅਤੇ ਬਾਂਦਰ ਦੋਨਾਂ ਨਾਲ ਕਰਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਗਾਂ ਦੇ ਮੁਕਾਬਲੇ ਸਾਡੇ ਅਤੇ ਬਾਂਦਰ ਵਿੱਚ ਜ਼ਿਆਦਾ ਸਮਾਨਤਾ ਹੈ।

ਕਿਰਿਆ

7.1

- ਅਸੀਂ ਦੇਸੀ ਗਾਂ ਅਤੇ ਜਰਸੀ ਗਾਂ ਬਾਰੇ ਸੁਣਿਆ ਹੈ।
- ਕੀ ਇੱਕ ਦੇਸੀ ਗਾਂ, ਜਰਸੀ ਗਾਂ ਵਰਗੀ ਲਗਦੀ ਹੈ?
- ਕੀ ਸਾਰੀਆਂ ਦੇਸੀ ਗਾਵਾਂ ਇੱਕੋ ਜਿਹੀਆਂ ਲੱਗਦੀਆਂ ਹਨ ?
- ਕੀ ਅਸੀਂ ਦੇਸੀ ਗਾਵਾਂ ਦੇ ਝੁੰਡ ਵਿੱਚ ਜਰਸੀ ਗਾਂ ਨੂੰ ਪਛਾਣ ਸਕਾਂਗੇ ਜਿਹੜੀਆਂ ਕਿ ਇੱਕੋ ਜਿਹੀਆਂ ਨਹੀਂ ਹਨ ?
- ਸਾਡੀ ਪਛਾਣ ਕਰਨ ਦਾ ਆਧਾਰ ਕੀ ਹੋਵੇਗਾ ?

ਇਸ ਕਿਰਿਆ ਰਾਹੀਂ ਅਸੀਂ ਇਹ ਤੈਅ ਕੀਤਾ ਕਿ ਕਿਹੜਾ ਵਿਸ਼ੇਸ਼ ਲੱਛਣ ਕਿਸੇ ਖ਼ਾਸ ਜੀਵ-ਸਮੂਹ ਨੂੰ ਬਣਾਉਣ ਲਈ ਮਹੱਤਵਪੂਰਨ ਹਨ ਅਤੇ ਸਾਨੂੰ ਇਹ ਵੀ ਸੋਚਣਾ ਪਿਆ ਕਿ ਕਿਹੜੇ ਲੱਛਣਾਂ ਨੂੰ ਛੱਡਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਆਓ ਹੁਣ ਧਰਤੀ ਤੇ ਰਹਿਣ ਵਾਲੇ ਜੀਵਾਂ ਦੇ ਵੱਖ-ਵੱਖ ਸਮੂਹਾਂ ਬਾਰੇ ਸੋਚੀਏ। ਇਕ ਪਾਸੇ ਤਾਂ ਸੂਖਮਦਰਸ਼ੀ ਨਾਲ ਦੇਖੇ ਜਾਣ ਵਾਲੇ ਜੀਵਾਣੂ (Bacteria) ਹਨ, ਜਿਨ੍ਹਾਂ ਦਾ ਆਕਾਰ ਕੁੱਝ ਮਾਈਕਰੋਮੀਟਰ (Micro Meter) ਹੁੰਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ 30 ਮੀਟਰ ਲੰਬੀ ਨੀਲੀ ਵੇਲ੍ਹ (Blue Whale) ਅਤੇ ਕੈਲੇਫੋਰਨੀਆ ਦੇ 100 ਮੀਟਰ ਲੰਬੇ ਰੈਡਵੁੱਡ ਦਰਖ਼ਤ ਵੀ ਹਨ। ਕੁੱਝ ਚੀਲ (Pine) ਦੇ ਦਰਖ਼ਤ ਹਜ਼ਾਰਾਂ ਸਾਲ ਤੱਕ ਜੀਵਿਤ ਰਹਿੰਦੇ ਹਨ ਜਦੋਂ ਕਿ ਕੁੱਝ ਮੱਛਰਾਂ ਵਰਗੇ ਕੀੜੇ-ਪਤੰਗਿਆਂ ਦਾ ਜੀਵਨ ਕਾਲ ਕੁੱਝ ਹੀ ਦਿਨਾਂ ਦਾ ਹੁੰਦਾ ਹੈ। ਰੰਗਹੀਣ ਅਤੇ ਪਾਰਦਰਸ਼ੀ ਜੀਵਾਂ ਤੋਂ ਲੈ ਕੇ ਤਿੱਖੇ ਰੰਗਾਂ ਵਾਲੇ ਪੰਛੀਆਂ ਅਤੇ ਫੁੱਲਾਂ ਤੱਕ ਜੀਵਨ ਪਸਰਿਆ ਹੋਇਆ ਹੈ।

ਧਰਤੀ ਤੇ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਇਹ ਜੀਵਨ ਦੀ ਅਸੀਮਿਤ ਵਿਭਿੰਨਤਾ ਨੂੰ ਬਣਨ ਵਿੱਚ ਕਰੋੜਾਂ ਸਾਲ ਲੱਗੇ ਹਨ। ਪਰ ਸਾਡੇ ਕੋਲ ਇਨ੍ਹਾਂ ਸਾਰੇ ਜੀਵ-ਜੰਤੂਆਂ ਨੂੰ ਜਾਨਣ ਤੇ ਸਮਝਣ ਲਈ ਬਹੁਤ ਥੋੜ੍ਹਾ ਸਮਾਂ ਹੈ ਅਤੇ ਅਸੀਂ ਇਨ੍ਹਾਂ ਤੇ ਇੱਕ-ਇੱਕ ਕਰਕੇ ਵਿਚਾਰ ਨਹੀਂ ਕਰ ਸਕਦੇ। ਇਸਦੀ ਬਜਾਏ ਅਸੀਂ ਸਜੀਵਾਂ ਵਿੱਚ ਉਹ ਸਾਂਝੇ ਗੁਣ ਲੱਭਦੇ ਹਾਂ ਜਿਨ੍ਹਾਂ ਦੇ ਆਧਾਰ ਤੇ ਅਸੀਂ ਉਨ੍ਹਾਂ ਨੂੰ ਗਰੁੱਪਾਂ ਵਿੱਚ ਵੰਡ ਸਕੀਏ ਅਤੇ ਫਿਰ ਉਨ੍ਹਾਂ ਗਰੁੱਪਾਂ ਨੂੰ ਸਮੂਹ ਵੱਜੋਂ ਪੜ੍ਹ ਸਕੀਏ।

ਜੀਵਨ ਦੇ ਇਨ੍ਹਾਂ ਵਿਭਿੰਨ ਰੂਪਾਂ ਦੀ ਵਿਭਿੰਨਤਾ ਦਾ ਅਧਿਐਨ ਕਰਨ ਲਈ ਢੁਕਵੇਂ ਸਮੂਹ ਬਣਾਉਣ ਲਈ ਸਾਨੂੰ ਇਹ ਜਾਨਣਾ ਪਵੇਗਾ ਕਿ ਉਹ ਕਿਹੜੇ ਵਿਸ਼ੇਸ਼ ਲੱਛਣ ਹਨ ਜਿਹੜੇ ਜੀਵ-ਸਮੂਹਾਂ ਵਿੱਚ ਅੰਤਰ ਦੱਸਦੇ ਹਨ। ਇਸ ਨਾਲ ਸਜੀਵਾਂ ਦੇ ਮੁੱਖ ਵੱਡੇ ਸਮੂਹ ਬਣ ਜਾਣਗੇ ਅਤੇ ਫਿਰ ਵੱਡੇ ਸਮੂਹਾਂ ਵਿੱਚ ਕੁੱਝ ਘੱਟ ਮਹੱਤਵਪੂਰਨ ਗੁਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਅਸੀਂ ਛੋਟੇ ਸਮੂਹ ਬਣਾ ਸਕਾਂਗੇ।

ਸ਼ਨ 1. ਅਸੀਂ ਸਜੀਵਾਂ ਦਾ ਵਰਗੀਕਰਣ ਕਿਉਂ ਕਰਦੇ ਹਾਂ ? 2. ਆਪਣੇ ਆਲੇ-ਦੁਆਲੇ ਛੈਲੇ ਜੀਵਾ ਰੂਪਾਂ ਦੀ ਵਿਭਿੰਨਤਾ ਦੇ ਕੋਈ ਤਿੰਨ ਉਦਾਹਰਣਾਂ ਦਿਊ।

7.1 ਵਰਗੀਕਰਣ ਦਾ ਆਧਾਰ ਕੀ ਹੈ ?

(What is the Basis of Classification?) ਜੀਵਾਂ ਦੇ ਸਮੂਹਾਂ ਦੇ ਵਰਗੀਕਰਣ ਦੇ ਯਤਨ ਪੁਰਾਤਨ ਸਮੇਂ ਤੋਂ ਕੀਤੇ ਜਾਂਦੇ ਰਹੇ ਹਨ। ਯੂਨਾਨੀ ਵਿਚਾਰਕ ਅਰਸਤੂ ਨੇ ਜੀਵ-ਜੰਤੂਆਂ ਦਾ ਵਰਗੀਕਰਣ ਉਨ੍ਹਾਂ ਦੇ ਜਲ, ਥਲ ਜਾਂ ਹਵਾ ਵਿੱਚ ਰਹਿਣ ਦੇ ਆਧਾਰ ਤੇ ਕੀਤਾ ਸੀ। ਇਹ ਜੀਵਨ ਨੂੰ ਜਾਂਚਣ ਦਾ ਇਕ ਬਹੁਤ ਹੀ ਸਰਲ ਪਰ ਭੁਲੇਖੇ ਵਾਲਾ ਤਰੀਕਾ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਸਮੁੰਦਰ ਵਿੱਚ ਰਹਿਣ ਵਾਲੇ ਜੀਵ ਜਿਵੇਂ ਮੂੰਗਾ (Corals), ਵੇਲ੍ਹ, ਆਕਟੋਪਸ, ਸਟਾਰ ਫਿਸ਼ ਅਤੇ ਸ਼ਾਰਕ ਮੱਛੀ। ਇਹ ਕਈ ਪੱਖਾਂ ਤੋਂ ਇਕ ਦੂਜੇ ਤੋਂ ਕਾਫੀ ਭਿੰਨ ਹਨ। ਇਨ੍ਹਾਂ ਸਭਨਾਂ ਵਿੱਚ ਇੱਕੋ-ਇੱਕ ਸਮਾਨਤਾ ਇਨ੍ਹਾਂ ਦਾ ਆਵਾਸ (Habitat) ਹੈ। ਅਧਿਐਨ ਅਤੇ ਵਿਚਾਰ ਲਈ ਇਸ ਆਧਾਰ ਤੇ ਜੀਵ-ਧਾਰੀਆਂ ਨੂੰ ਸਮੂਹਾਂ ਵਿੱਚ ਵੰਡਣਾ ਠੀਕ ਨਹੀਂ।

ਇਸ ਲਈ ਅਸੀਂ ਹੁਣ ਇਹ ਨਿਰਣਾ ਲੈਣਾ ਹੈ ਕਿ ਜੀਵਾਂ ਦੇ ਕਿਨ੍ਹਾਂ ਵਿਸ਼ੇਸ਼ ਲੱਛਣਾਂ ਨੂੰ ਮੁੱਖ ਸਮੂਹ ਬਣਾਉਣ ਲਈ ਆਧਾਰ ਮੰਨਿਆ ਜਾਵੇ। ਫਿਰ ਸਾਨੂੰ ਕੁੱਝ ਹੋਰ ਲੱਛਣ ਚੁਣਨੇ ਪੈਣਗੇ ਤਾਂ ਕਿ ਵੱਡੇ ਸਮੂਹ ਨੂੰ ਅੱਗੇ ਛੋਟੇ ਸਮੂਹਾਂ ਵਿੱਚ ਵੰਡ ਸਕੀਏ। ਫਿਰ ਵਰਗੀਕਰਣ ਦੀ ਇਹ ਪ੍ਰਕਿਰਿਆ ਹਰ ਸਮੂਹ ਵਿੱਚ ਕੁੱਝ ਹੋਰ ਨਵੇਂ ਗੁਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਅੱਗੇ ਵਧਾਈ ਜਾ ਸਕਦੀ ਹੈ।

ਇਸ ਤੋਂ ਪਹਿਲਾਂ ਕਿ ਅਸੀਂ ਅੱਗੇ ਵਧੀਏ ਸਾਨੂੰ ਇਹ ਸੋਚਣਾ ਪਵੇਗਾ ਕਿ ਲੱਛਣਾਂ ਜਾਂ ਗੁਣਾਂ ਤੋਂ ਕੀ ਭਾਵ ਹੈ? ਜਦੋਂ ਅਸੀਂ ਜੀਵਾਂ ਦੇ ਕਿਸੇ ਵੱਖ ਗਰੁੱਪ ਦਾ ਵਰਗੀਕਰਣ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਜੀਵਾਂ ਵਿੱਚ ਕੁੱਝ ਅਜਿਹੇ ਸਾਂਝੇ ਲੱਛਣ ਲੱਭਣੇ ਪੈਣਗੇ ਤਾਂ ਕਿ ਕੁੱਝ ਜੀਵਾਂ ਨੂੰ ਅਸੀਂ ਇੱਕ ਗਰੁੱਪ ਵਿੱਚ ਰੱਖ ਸਕੀਏ। ਅਸਲ ਵਿੱਚ ਇਹੀ ਉਨ੍ਹਾਂ ਦੇ ਲੱਛਣ ਜਾਂ ਵਿਵਹਾਰ ਹੁੰਦਾ ਹੈ ਜਾਂ ਇਹ ਕਹਿ ਲਓ ਕਿ ਇਹੀ ਉਨ੍ਹਾਂ ਜੀਵਾਂ ਦਾ ਰੂਪ ਅਤੇ ਕੰਮ ਹੁੰਦਾ ਹੈ।

ਕਿਸੇ ਗੁਣ ਜਾਂ ਲੱਛਣ ਤੋਂ ਸਾਡਾ ਭਾਵ ਕਿਸੇ ਸਜੀਵ ਦਾ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਜਾਂ ਵਿਸ਼ੇਸ਼ ਕੰਮ ਹੈ। ਜਿਵੇਂ ਸਾਡੇ ਹੋਥ ਦੀਆਂ

ਸਜੀਵਾਂ ਵਿੱਚ ਵਿਭਿੰਨਤਾ

ਪੰਜ ਉਂਗਲਾਂ ਹੋਣੀਆਂ ਸਾਡਾ ਇਕ ਵਿਸ਼ੇਸ਼ ਲੱਛਣ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਸਾਡਾ ਭੱਜ ਸਕਣਾ ਪਰ ਇਕ ਬੋਹੜ ਦੇ ਦਰਖ਼ਤ ਦਾ ਨਾ ਭੱਜ ਸਕਣਾ ਵੀ ਵਿਸ਼ੇਸ਼ ਲੱਛਣ ਹਨ।

ਹੁਣ ਇਹ ਸਮਝਣ ਲਈ ਕਿ ਕੁੱਝ ਲੱਛਣ ਦੂਜਿਆਂ ਦੇ ਮੁਕਾਬਲੇ ਜ਼ਿਆਦਾ ਮੌਲਿਕ ਕਿਵੇਂ ਹੁੰਦੇ ਹਨ। ਅਸੀਂ ਇੱਕ ਪੱਥਰਾਂ ਦੀ ਬਣੀ ਹੋਈ ਕੰਧ ਦੀ ਉਦਾਹਰਣ ਲੈਂਦੇ ਹਾਂ। ਕੰਧ ਦੇ ਸਭ ਤੋਂ ਉੱਪਰ ਲੱਗੇ ਹੋਏ ਪੱਥਰਾਂ ਦਾ ਆਕਾਰ ਤੇ ਰੂਪ ਹੇਠਾਂ ਲੱਗੇ ਪੱਥਰਾਂ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਕਰਦਾ ਪਰ ਹੇਠਾਂ ਲੱਗੇ ਪੱਥਰਾਂ ਦਾ ਆਕਾਰ ਅਤੇ ਰੂਪ ਨਿਸ਼ਚੇ ਹੀ ਉਨ੍ਹਾਂ ਤੋਂ ਉਪਰਲੀਆਂ ਤਹਿਆਂ ਵਿੱਚ ਲੱਗਣ ਵਾਲੇ ਪੱਥਰਾਂ ਦੇ ਆਕਾਰ ਅਤੇ ਰੂਪ ਬਾਰੇ ਫੈਸਲਾ ਕਰੇਗਾ।

ਬੱਲੇ ਵਾਲੀਆਂ ਤਹਿਆਂ ਵਿੱਚ ਚਿਣੇ ਹੋਏ ਪੱਥਰ ਸਜੀਵਾਂ ਦੇ ਉਨ੍ਹਾਂ ਲੱਛਣਾਂ ਵਾਂਗ ਹਨ ਜਿਹੜੇ ਉਨ੍ਹਾਂ ਨੂੰ ਵੱਡੇ ਸਮੂਹਾਂ ਜਾਂ ਗਰੁੱਪਾਂ ਵਿੱਚ ਵੰਡਦੇ ਹਨ। ਇਹ ਲੱਛਣ ਸਜੀਵ ਦੇ ਦੂਜੇ ਕਿਸੇ ਵੀ ਸੰਰਚਨਾਤਮਕ ਜਾਂ ਕਿਰਿਆਤਮਕ ਲੱਛਣ ਤੋਂ ਭਿੰਨ ਅਤੇ ਆਜ਼ਾਦ ਹੁੰਦੇ ਹਨ। ਅਗਲੇ ਪੱਧਰ ਦੇ ਲੱਛਣ ਪਹਿਲੀ ਪੱਧਰ ਦੇ ਲੱਛਣਾਂ ਤੇ ਨਿਰਭਰ ਤਾਂ ਰਹਿੰਦੇ ਹਨ ਪਰੰਤੂ ਅਗਲੇ ਪੱਧਰ ਦੇ ਲੱਛਣਾਂ ਦੇ ਕਿਸਮ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦੇ ਹਨ। ਠੀਕ ਇਸੇ ਤਰ੍ਹਾਂ ਅਸੀਂ ਸਜੀਵਾਂ ਦੇ ਵਰਗੀਕਰਣ ਲਈ ਵੀ ਆਪਸੀ ਸੰਬੰਧਤ ਲੱਛਣਾਂ ਦਾ ਇਕ ਕੁਮ-ਔਕ ਬਣਾ ਲੈਂਦੇ ਹਾਂ।

ਅੱਜ-ਕੱਲ੍ਹ ਅਸੀਂ ਸਾਰੇ ਸਜੀਵਾਂ ਨੂੰ ਵਰਗੀਕ੍ਰਿਤ ਕਰਨ ਲਈ ਉਨ੍ਹਾਂ ਦੇ ਸੈੱਲਾਂ ਵਿੱਚ ਪਰਸਪਰ ਸੰਬੰਧਿਤ ਲੱਛਣਾਂ ਨੂੰ ਆਧਾਰ ਮੰਨਦੇ ਹਾਂ। ਅਜਿਹੇ ਲੱਛਣਾਂ ਦੀਆਂ ਕੁਝ ਪ੍ਰਤੱਖ ਉਦਾਹਰਣਾਂ ਕਿਹੜੀਆਂ ਹਨ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਅਸੀਂ ਵਰਗੀਕਰਣ ਕਰਨ ਲਈ ਕ੍ਰਮ-ਅੰਕ ਅਨੁਸਾਰ ਰੱਖਦੇ ਹਾਂ?

ਇੱਕ ਯੂਕੈਰਿਉਟਕ (Eukariotic) ਸੈੱਲ ਵਿੱਚ ਕੇਂਦਰਕ ਸਮੇਤ ਝਿੱਲੀਆਂ ਨਾਲ ਘਿਰੇ ਕੁਝ ਨਿਕੜੇ ਔਗ ਹੁੰਦੇ ਹਨ ਜਿਹੜੇ ਇੱਕ ਦੂਜੇ ਤੋਂ ਆਜ਼ਾਦ ਰੂਪ ਵਿੱਚ ਸੈੱਲ-ਕਿਰਿਆਵਾਂ ਨੂੰ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਰੱਖਦੇ ਹਨ। ਇਸ ਲਈ ਜਿਹੜੇ ਸਜੀਵਾਂ ਵਿੱਚ ਕੇਂਦਰਕ ਅਤੇ ਦੂਜੇ ਨਿਕੜੇ ਅੰਗ ਪ੍ਤੱਖ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਹਨ ਜਾਂ ਪੂਰੀ ਤਰ੍ਹਾਂ ਨਹੀਂ ਬਣੇ ਹੋਏ, ਉਨ੍ਹਾਂ ਲਈ ਕਿਰਿਆਵਾਂ ਨੂੰ ਸੰਗਠਿਤ ਕਰਨਾ ਵੱਖਰੇ ਢੰਗ ਦਾ ਹੋਵੇਗਾ। ਇਸ ਦਾ ਅਸਰ ਸੈੱਲ-ਸੰਰਚਨਾ ਦੇ ਸਾਰੇ ਪਹਿਲੂਆਂ ਤੇ ਪੈਂਦਾ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਕੇਂਦਰਕ ਵਾਲੇ ਸੈੱਲਾਂ ਵਿੱਚ ਬਹੁਸੈਲੀ ਜੀਵ

ਦੇ ਨਿਰਮਾਣ ਦੀ ਸਮਰੱਥਾ ਹੁੰਦੀ ਹੈ ਕਿਉਂਕਿ ਉਹ ਕਿਸੇ ਖ਼ਾਸ ਕੰਮ ਲਈ ਵਿਸ਼ੇਸ਼ ਰੂਪ 'ਚ ਹੋ ਸਕਦੇ ਹਨ। ਇਸ ਲਈ ਸੈੱਲ ਰਚਨਾ ਅਤੇ ਕਾਰਜ ਵਰਗੀਕਰਣ ਦਾ ਮੂਲ ਆਧਾਰ ਹੈ।

- ਪ੍ਰਸ਼ਨ ਉੱਠਦਾ ਹੈ ਕਿ ਕੀ ਸੈੱਲ ਇਕੱਲੇ ਹੁੰਦੇ ਹਨ ਜਾਂ ਉਹ ਇੱਕ ਸਮੂਹ ਵਿੱਚ ਮਿਲਦੇ ਹਨ ਜਾਂ ਉਹ ਇੱਕ ਵਿਭਾਜਨਯੋਗ ਸਮੂਹ ਦੇ ਤੌਰ ਤੇ ਹੁੰਦੇ ਹਨ। ਜਿਹੜੇ ਸੈੱਲ ਇੱਕ ਸਮੂਹ ਬਣਾ ਕੇ ਕਿਸੇ ਜੀਵ ਦਾ ਨਿਰਮਾਣ ਕਰਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਵਿੱਚ ਕੰਮ-ਵੰਡ ਪਾਈ ਜਾਂਦੀ ਹੈ। ਸਰੀਰਕ ਸੰਰਚਨਾ ਵਿੱਚ ਸਾਰੇ ਸੈੱਲ ਇੱਕ ਸਮਾਨ ਨਹੀਂ ਹੁੰਦਾ ਬਲਕਿ ਸੈੱਲਾਂ ਦੇ ਸਮੂਹ ਕੁੱਝ ਖਾਸ ਕੰਮਾਂ ਲਈ ਵਿਸ਼ੇਸ਼ ਬਣ ਜਾਂਦੇ ਹਨ। ਇਹੀ ਵਜ੍ਹਾ ਹੈ ਕਿ ਜੀਵਾਂ ਦੀ ਸਰੀਰਕ ਸੰਰਚਨਾ ਵਿੱਚ ਇੰਨੀ ਵਿਭਿਨਤਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਦੇ ਹੀ ਫਲਸਰੂਪ ਸਾਨੂੰ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਇੱਕ ਅਮੀਬਾ ਅਤੇ ਇੱਕ ਕਿਰਮ (Worm) ਦੀ ਸਰੀਰਕ ਬਨਾਵਟ ਵਿੱਚ ਕਿੰਨਾ ਫਰਕ ਹੈ।
- ਕੀ ਸਜੀਵ ਪ੍ਰਕਾਸ਼-ਸੰਸ਼ਲੇਸ਼ਣ ਦੀ ਕਿਰਿਆ ਰਾਹੀਂ ਆਪਣਾ ਭੋਜਨ ਆਪ ਬਣਾਉਂਦੇ ਹਨ? ਆਪ ਭੋਜਨ ਬਣਾਉਣ ਦੀ ਸਮਰੱਥਾ ਰੱਖਣ ਵਾਲੇ ਅਤੇ ਬਾਹਰੋਂ ਭੋਜਨ ਪ੍ਰਾਪਤ ਕਰਨ ਵਾਲੇ ਸਜੀਵਾਂ ਦੀ ਸਗੋਰਕ ਸੰਰਚਨਾ ਵਿੱਚ ਨਿਸ਼ਚਿਤ ਰੂਪ 'ਚ ਭਿੰਨਤਾ ਪਾਈ ਜਾਂਦੀ ਹੈ।
- ਜੋ ਸਜੀਵ ਪ੍ਰਕਾਸ਼ ਸੰਸਲੇਸ਼ਣ ਕਰਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਨੂੰ ਪੌਦੇ ਕਹਿੰਦੇ ਹਨ। ਪੌਦਿਆਂ ਦਾ ਸਰੀਰਕ ਸੰਗਠਨ ਕਿਸ ਪੱਧਰ ਦਾ ਹੁੰਦਾ ਹੈ।
- ਜੀਵ-ਜੰਤੂਆਂ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਸਰੀਰ ਵਿਕਸਿਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕਿਸ ਤਰ੍ਹਾਂ ਸਰੀਰ ਦੇ ਵਿਭਿੰਨ ਅੰਗ ਬਣਦੇ ਹਨ ? ਇਸ ਤੋਂ ਇਲਾਵਾ ਵਿਭਿੰਨ ਕਾਰਜਾਂ ਲਈ ਵਿਸ਼ੇਸ ਅੰਗ ਕਿਹੜੇ-ਕਿਹੜੇ ਹਨ ?

ਇਨ੍ਹਾਂ ਕੁਝ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਆਧਾਰ ਤੇ ਹੀ ਅਸੀਂ ਵੇਖ ਸਕਦੇ ਹਾਂ ਕਿ ਕਿਵੇਂ ਕ੍ਰਮਅੰਕ (Hierarchy) ਵਿਕਸਿਤ ਹੁੰਦਾ ਹੈ। ਵਰਗੀਕਰਣ ਲਈ ਪੌਦਿਆਂ ਦੇ ਸਰੀਰ ਦੇ ਵਿਭਿੰਨ ਲੱਛਣ ਕਿਸ ਤਰ੍ਹਾਂ ਜੀਵ-ਜੰਤੂਆਂ ਤੋਂ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਇਸ ਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਪੌਦਿਆਂ ਦਾ ਸਰੀਰ ਭੋਜਨ ਬਣਾਉਣ ਦੀ ਸਮਰੱਥਾ ਅਨੁਸਾਰ ਵਿਕਸਿਤ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਕਿ ਜੰਤੂਆਂ ਦਾ ਸਰੀਰ ਬਾਹਰੋਂ ਭੋਜਨ ਗ੍ਰਹਿਣ ਕਰਨ ਦੇ ਅਨੁਸਾਰ ਵਿਕਸਿਤ ਹੁੰਦਾ ਹੈ। ਇਹੀ ਲੱਛਣ ਵਰਗੀਕਰਨ ਦੇ ਦੌਰਾਨ ਉਪ-ਸਮੂਹ ਅਤੇ ਫਿਰ ਬਾਅਦ ਵਿੱਚ ਵੱਡੇ ਸਮੂਹਾਂ ਵਿੱਚ ਵਿਭਾਜਨ ਦਾ ਆਧਾਰ ਬਣਦੇ ਹਨ।

92

1

- ਜੀਵਾਂ ਦੇ ਵਰਗੀਕਰਨ ਲਈ ਸਭ ਤੋਂ ਮੂਲ ਲੱਛਣ ਕਿਹੜਾ ਹੈ ?
 - (a) ਉਹ ਥਾਂ ਜਿੱਥੇ ਉਹ ਰਹਿੰਦੇ ਹਨ? (b) ਜਿਸ ਪ੍ਰਕਾਰ ਦੇ ਸੈੱਲਾਂ ਦੇ ਉਹ ਬਣੇ ਹਨ? ਕਿਉਂ?
 - ਸਜੀਵਾਂ ਦੀ ਮੁੱਢਲੀ ਵੰਡ ਲਈ ਕਿਹੜੇ ਮੂਲ ਲੱਛਣਾਂ ਨੂੰ ਅਧਾਰ ਬਣਾਇਆ ਗਿਆ?
 - ਕਿਸ ਅਧਾਰ ਤੇ ਪੌਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਨੂੰ ਇੱਕ ਦੂਜੇ ਤੋਂ ਭਿੰਨ ਵਰਗਾਂ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ ?

7.2 ਵਰਗੀਕਰਣ ਅਤੇ ਜੀਵ-ਵਿਕਾਸ

(Classification and Evolution)

ਸਾਰੇ ਸਜੀਵਾਂ ਦੇ ਉਨ੍ਹਾਂ ਦੀ ਸੰਰਚਨਾ ਅਤੇ ਕੰਮ ਦੇ ਆਧਾਰ ਤੇ ਪਹਿਚਾਣ ਕਰਕੇ ਸਮੂਹ ਬਣਾਏ ਜਾਂਦੇ ਹਨ। ਕੁਝ ਲੱਛਣ ਸਜੀਵਾਂ ਦੀ ਸੰਰਚਨਾ ਵਿੱਚ ਜ਼ਿਆਦਾ ਵਿਭਿੰਨਤਾ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਹੁੰਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਸਮਾਂ ਵੀ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦਾ ਹੈ। ਇਸ ਲਈ ਜਦੋਂ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਸਗੋਰਕ ਸੰਰਚਨਾ ਹੋਂਦ ਵਿੱਚ ਆ ਗਈ, ਇਹ ਪਹਿਲਾਂ ਹੋਂਦ ਵਿੱਚ ਆਉਣ ਕਰਕੇ ਹੋਰ ਵਿਭਿੰਨਤਾਵਾਂ ਲਈ ਵੀ ਜ਼ਿੰਮੇਵਾਰ ਬਣੀ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਇਹ ਕਹਿ ਲਈਏ ਕਿ ਪਹਿਲਾਂ ਹੋਂਦ ਵਿੱਚ ਆਉਣ ਵਾਲੇ ਲੱਛਣ ਬਾਅਦ ਵਿੱਚ ਹੋਂਦ ਵਿੱਚ ਆਉਣ ਵਾਲੇ ਲੱਛਣਾਂ ਨਾਲੋਂ ਵੱਧ ਮੌਲਿਕ ਹੋਣਗੇ।

ਇਸ ਦਾ ਮਤਲਬ ਇਹ ਹੋਇਆ ਕਿ ਸਜੀਵਾਂ ਦੇ ਵਰਗੀਕਰਣ ਦਾ ਜੀਵ-ਵਿਕਾਸ ਨਾਲ ਡੂੰਘਾ ਸੰਬੰਧ ਹੈ। ਜੀਵ ਵਿਕਾਸ ਕੀ ਹੈ? ਜਿਹੜੇ ਲੱਛਣ ਜੀਵਾਂ ਦੇ ਰਹਿਣ-ਸਹਿਣ ਨੂੰ ਅਨੁਕੂਲ ਬਣਾਉਂਦੇ ਹਨ ਅਤੇ ਜੀਵ ਰੂਪਾਂ ਵਿੱਚ ਦਿੱਸਦੇ ਹਨ। ਉਹ ਹੌਲੀ-ਹੌਲੀ ਉਨ੍ਹਾਂ ਵਿੱਚ ਇਕੱਠੇ ਹੁੰਦੇ ਗਏ। ਚਾਰਲਸ ਡਾਰਵਿਨ ਨਾਂ ਦੇ ਵਿਗਿਆਨੀ ਨੇ ਸੰਭ ਤੋਂ ਪਹਿਲਾਂ ਜੀਵ-ਵਿਕਾਸ ਦਾ ਜ਼ਿਕਰ 1859 ਵਿੱਚ ਆਪਣੀ ਕਿਤਾਬ 'ਦੀ ਉਰਿਜਨ ਆੱਫ ਸਪੀਸ਼ੀਜ' ਵਿੱਚ ਕੀਤਾ।

ਜਦੋਂ ਅਸੀਂ ਜੀਵ-ਵਿਕਾਸ ਦਾ ਸੰਬੰਧ ਵਰਗੀਕਰਣ ਨਾਲ ਜੋੜਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਕੁਝ ਅਜਿਹੇ ਜੀਵ-ਸਮੂਹਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ ਮਿਲਦੀ ਹੈ ਜਿਨ੍ਹਾਂ ਦੀ ਸਰੀਰਕ ਰਚਨਾ ਵਿੱਚ ਜ਼ਿਆਦਾ ਤਬਦੀਲੀ ਨਹੀਂ ਆਈ। ਸਾਨੂੰ ਸਜੀਵਾਂ ਦੇ ਕੁਝ ਅਜਿਹੇ ਸਮੂਹ ਵੀ ਮਿਲਣਗੇ, ਜਿਨ੍ਹਾਂ ਨੇ ਆਪਣੀ ਵਿਸ਼ੇਸ਼ ਸਰੀਰਕ ਸੰਰਚਨਾ ਹੁਣੇ ਜਿਹੇ ਹੀ ਪ੍ਰਾਪਤ ਕੀਤੀ ਹੈ। ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ ਰੱਖੇ ਜਾਣ ਵਾਲੇ ਸਜੀਵਾਂ ਨੂੰ ਆਮ ਤੌਰ ਤੇ

ਵਿਗਿਆਨ

きま

te

EH

ਪੁਰਾਤਨ ਜਾਂ ਨੀਵੀਂ ਸ਼੍ਰੇਣੀ (Primitive Organisms) ਦੇ ਸਜੀਵ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਦੂਜੇ ਸਮੂਹ ਵਿੱਚ ਆਉਣ ਵਾਲੇ ਸਜੀਵਾਂ ਨੂੰ ਨਵੀਨ ਜਾਂ ਉੱਚ ਸ਼੍ਰੇਣੀ ਦੇ ਸਜੀਵ (Advanced organisms) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ ਇਨ੍ਹਾਂ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਇਹ ਸ਼ਬਦ ਇੰਨੇ ਢੁਕਵੇਂ ਨਹੀਂ ਹਨ ਕਿਉਂਕਿ ਇਹ ਪੂਰੀ ਤਰ੍ਹਾਂ ਉਨ੍ਹਾਂ ਵਿੱਚ ਅੰਤਰ ਨਹੀਂ ਦਰਸਾਉਂਦੇ। ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕੁੱਝ ਸਜੀਵ ਪੁਰਾਤਨ ਹਨ ਅਤੇ ਕੁਝ ਨਵੀਨ ਹਨ। ਕੁਝ ਜੀਵ ਪੁਰਾਣੇ ਅਤੇ ਕੁੱਝ ਜੀਵ ਨਵੇਂ ਹਨ। ਕਿਉਂਕਿ ਜੀਵ ਵਿਕਾਸ ਵੇਲੇ ਸਰੀਰਕ ਸੰਰਚਨਾ ਵਿੱਚ ਗੁੰਝਲਤਾ ਦੀ ਸੰਭਾਵਨਾ ਬਣੀ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਲਈ ਅਸੀਂ ਪੁਰਾਣੇ ਜੀਵਾਂ ਨੂੰ ਸਰਲ (Simple) ਅਤੇ ਨਵੇਂ ਜੀਵਾਂ ਨੂੰ ਗੁੰਝਲਦਾਰ (Complex) ਵੀ ਕਹਿ ਸਕਦੇ ਹਾਂ।

> ਕਿਹੜੇ ਸਜੀਵਾਂ ਨੂੰ ਪ੍ਰਾਚੀਨ ਜਾਂ ਪੁਰਾਤਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਹ ਅਖਾਉਤੀ ਨਵੀਨ ਜੀਵਾਂ ਤੋਂ ਕਿਵੇਂ ਭਿੰਨ ਹਨ ?

> ਕੀ ਨਵੀਨ ਜੀਵ ਅਤੇ ਗ੍ਰੰਝਲਦਾਰ ਜੀਵ ਇੱਕ ਹੀ ਹੁੰਦੇ ਹਨ?

7.3 ਵਰਗੀਕਰਣ ਸਮੂਹਾਂ ਦਾ ਪਦਕ੍ਰਮ (The

ਸ਼ਨ

Hierarchy of Classification groups)

ਅਰਨੇਸਟ ਹੈਕਲ (Ernst Haeckel) (1894), ਰਾਬਰਟ ਵਿਟਾਕਰ (Robert Whittaker) (1959) ਅਤੇ ਕਾਰਲ ਵੱਸ (Carl Woese) (1977) ਨਾਮਕ ਜੀਵ-ਵਿਗਿਆਨੀਆਂ ਨੇ ਸਾਰੇ ਹੀ ਸਜੀਵਾਂ ਨੂੰ ਮੁੱਖ ਜਗਤਾਂ (Kingdoms) ਵਿੱਚ ਵੰਡਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕੀਤੀ। ਵਿਟਾਕਰ ਦੁਆਰਾ ਸੁਝਾਏ ਗਏ ਵਰਗੀਕਰਣ ਅਨੁਸਾਰ ਪੰਜ ਜਗਤ ਮੋਨੀਰਾ (Monera), ਪ੍ਰੋਟੀਸਟਾ (Protista), ਫੰਜਾਈ (Fungi), ਪਲਾਂਟੀ (Plantae) ਅਤੇ ਐਨੀਮਲੀਆ (Animalia) ਮੁੱਖ ਤੌਰ ਤੋ ਵਰਤੇ ਜਾਂਦੇ ਹਨ। ਇਹ ਸਮੂਹ ਸੈੱਲ ਸੰਰਚਨਾ ਪੋਸ਼ਣ ਦੇ ਸ਼੍ਰੋਤ ਤਰੀਕੇ ਅਤੇ ਸਰੀਰਕ ਸੰਗਠਨ ਦੇ ਆਧਾਰ ਤੇ ਬਣਾਏ ਗਏ ਹਨ। ਵੋਸ (Woese) ਨੇ ਆਪਣੇ ਵਰਗੀਕਰਣ ਵਿੱਚ ਮੋਨੀਰਾ ਜਗਤ ਨੂੰ ਆਰਕੀ-ਬੈਕਟੀਰੀਆ(Archaebacteria) ਅਤੇ ਯੂਬੈਕਟੀਰੀਆ (Eubacteria) ਵਿੱਚ ਵੰਡ ਲਿਆ ਜੋ ਅੱਜ ਵੀ ਪ੍ਰਚੱਲਿਤ ਹੈ।

ਇਸ ਤੋਂ ਇਲਾਵਾ ਵਿਭਿੰਨ ਪੱਧਰਾਂ ਤੇ ਜੀਵਾਂ ਨੂੰ ਉਪ

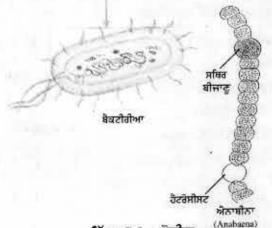
ਜੈਵਿਕ ਵਿਭਿੰਨਤਾ ਦਾ ਮਤਲਬ ਵਿਭਿੰਨ ਜੀਵਾਂ ਵਿੱਚ ਪਾਈ ਜਾਣ ਵਾਲੀ ਭਿੰਨਤਾ ਤੋਂ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਇਹ ਕਿਸੇ ਇੱਕ ਖੇਤਰ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਜੀਵਾਂ ਦੀਆਂ ਕਿਸਮਾਂ ਤੋਂ ਹੈ। ਜੀਵਾਂ ਦੀਆਂ ਭਿਨ-ਭਿੰਨ ਕਿਸਮਾਂ ਇੱਕੋ ਵਾਤਾਵਰਣ ਵਿੱਚ ਰਹਿੰਦੇ ਹੋਏ ਆਪਸ ਵਿੱਚ ਵੀ ਇੱਕ ਦੂਜੇ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀਆਂ ਹਨ। ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਵੱਖ-ਵੱਖ ਜਾਤੀਆਂ ਦਾ ਇੱਕ ਸਥਿਰ ਸਮੁਦਾਇ ਹੋਂਦ ਵਿੱਚ ਆਉਂਦਾ ਹੈ।ਅਜੋਕੇ ਸਮੇਂ ਵਿੱਚ ਇਨ੍ਹਾਂ ਸਮੁਦਾਇਆਂ ਦਾ ਸੰਤੁਲਨ ਬਦਲਣ ਵਿੱਚ ਮਨੁੱਖ ਦੀ ਵੀ ਭੂਮਿਕਾ ਰਹੀ ਹੈ। ਜ਼ਮੀਨ, ਪਾਣੀ ਅਤੇ ਮੌਸਮ ਦੇ ਵਿਸ਼ੇਸ਼ ਲੱਛਣ ਵੀ ਇਨ੍ਹਾਂ ਸਮੁਦਾਇਆਂ ਦੀ ਵਿਭਿੰਨਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ। ਇੱਕ ਮੋਟੇ ਅਨੁਮਾਨ ਅਨੁਸਾਰ ਧਰਤੀ ਤੇ ਜੀਵਾਂ ਦੀਆਂ ਤਕਰੀਬਨ ਇੱਕ ਕਰੋੜ ਪ੍ਰਜਾਤੀਆਂ ਪਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਜਦੋਂ ਕਿ ਸਾਨੂੰ ਸਿਰਫ 10 ਜਾਂ 20 ਲੱਖ ਪ੍ਰਜਾਤੀਆਂ ਦੀ ਹੀ ਜਾਣਕਾਰੀ ਹੈ। ਧਰਤੀ ਤੇ ਕਰਕ ਰੇਖਾ ਅਤੇ ਮਕਰ ਰੇਖਾ ਦੇ ਵਿਚਕਾਰ ਵਾਲਾ ਜੋ ਗਰਮੀ ਅਤੇ ਨਮੀ ਵਾਲਾ ਭਾਗ ਹੈ, ਉਥੇ ਪੌਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਵਿੱਚ ਕਾਫੀ ਵਿਭਿੰਨਤਾ ਪਾਈ ਜਾਂਦੀ ਹੈ। ਇਸ ਖੇਤਰ ਨੂੰ ਬਹੁਵਿਭਿੰਨਤਾ (Megadiversity) ਵਾਲਾ ਖੇਤਰ ਕਹਿੰਦੇ ਹਨ। ਧਰਤੀ ਤੇ ਪਾਈ ਜਾਣ ਵਾਲੀ ਸਾਰੀ ਜੈਵਿਕ ਵਿਭਿੰਨਤਾ ਵਿੱਚੋਂ ਅੱਧੀ ਤੋਂ ਜ਼ਿਆਦਾ ਕੁੱਝ ਕੁ ਦੇਸ਼ਾਂ ਜਿਵੇਂ ਬ੍ਰਾਜੀਲ, ਕੋਲੰਬੀਆ, ਇੱਕੁਆਡੋਰ, ਪੀਰੂ, ਮੈਕਸੀਕੋ, ਜਾਇਰੇ ਮੈਡਾਗਾਸਕਰ, ਆਸਟ੍ਰੇਲੀਆ, ਚੀਨ, ਭਾਰਤ, ਇੰਡੋਨੇਸ਼ੀਆ ਅਤੇ ਮਲੋਸ਼ੀਆ ਆਦਿ ਵਿੱਚ ਹੀ ਕੇਂਦਰਿਤ ਹੈ।

ਸਮੂਹਾਂ ਵਿੱਚ ਵਰਗੀਕ੍ਰਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।ਜਿਵੇਂ ਕਿ ਜਗਤ (ਕਿੰਗਡਮ) — ਫਾਈਲਮ (ਜੰਤੂਆਂ ਲਈ), ਡਿਵੀਜ਼ਨ (ਪੌਦਿਆਂ ਲਈ)

ਵਰਗ (ਕਲਾਸ) ਗਣ (ਆਰਡਰ) ਕੁੱਲ (ਫੈਮਿਲੀ) ਵੰਸ (ਜੀਨਸ)

ਜਾਤੀ (ਸਪੀਸ਼ੀਜ) ਇਸ ਤਰ੍ਹਾਂ ਵਰਗੀਕਰਣ ਦੇ ਪਦਕ੍ਰਮ ਵਿੱਚ ਜੀਵਾਂ ਨੂੰ

93

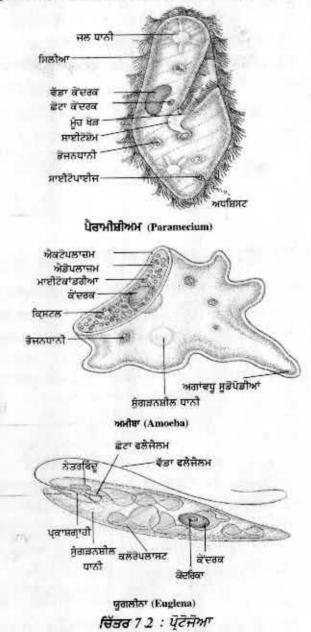

ਸਜੀਵਾਂ ਵਿੱਚ ਵਿਭਿਨਤਾ

ਵਿਭਿੰਨ ਲੱਛਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਛੋਟੇ ਤੋਂ ਛੋਟੇ ਸਮੂਹਾਂ ਵਿੱਚ ਵੰਡਦੇ ਹੋਏ ਅਸੀਂ ਵਰਗੀਕਰਣ ਦੀ ਮੂਲ ਇਕਾਈ ਤੇ ਪਹੁੰਚਦੇ ਹਾਂ। ਵਰਗੀਕਰਣ ਦੀ ਇਹ ਮੂਲ ਇਕਾਈ ਜਾਤੀ (ਸਪੀਸ਼ੀਜ) ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਕਿਹੜੇ ਜੀਵਾਂ ਨੂੰ ਅਸੀਂ ਇੱਕ ਜਾਤੀ ਦੇ ਜੀਵ ਕਹਾਂਗੇ। ਇੱਕ ਹੀ ਜਾਤੀ ਦੇ ਜੀਵਾਂ ਵਿੱਚ ਪਰਸਪਰ ਕਾਫੀ ਸਮਾਨਤਾ ਹੁੰਦੀ ਹੈ ਅਤੇ ਉਹ ਆਪਸੀ ਪ੍ਰਜਨਣ ਕਰਕੇ ਆਪਣੀ ਪੀੜੀ ਅੱਗੇ ਚਲਾ ਸਕਦੇ ਹਨ।

ਵਿਟਾਕਰ (Whittaker) ਦੁਆਰਾ ਸੁਝਾਏ ਗਏ ਪੰਜ ਜਗਤਾਂ ਦੇ ਹੇਠ ਲਿਖੇ ਲੱਛਣ ਹਨ।

7.3.1 ਮੋਨੀਰਾ (Monera)

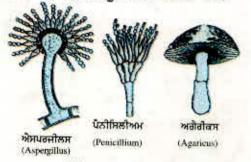
ਇਨ੍ਹਾਂ ਜੀਵਾਂ ਵਿੱਚ ਨਾ ਤਾਂ ਸੰਗਠਿਤ ਕੇਂਦਰਕ ਅਤੇ ਨਾ ਹੀ ਨਿੱਕੜੇ ਅੰਗ ਹੁੰਦੇ ਹਨ ਅਤੇ ਨਾ ਹੀ ਇਨ੍ਹਾਂ ਵਿੱਚ ਬਹੁਸੈੱਲੀ ਸਰੀਰਕ ਸੰਰਚਨਾ ਹੁੰਦੀ ਹੈ ਬਲਕਿ ਇਨ੍ਹਾਂ ਵਿੱਚ ਪਾਈ ਜਾਣ ਵਾਲੀ ਵਿਭਿੰਨਤਾ ਕਈ ਹੋਰ ਲੱਛਣਾਂ 'ਤੇ ਆਧਾਰਿਤ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਕਈਆਂ ਦੇ ਸੈੱਲ ਭਿੱਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਕਈਆਂ ਦੇ ਨਹੀਂ। ਸੈੱਲ ਭਿੱਤੀ ਦੇ ਹੋਣ ਜਾਂ ਨਾ ਹੋਣ ਕਾਰਨ ਮੋਨੀਰਾ ਵਰਗ ਦੇ ਜੀਵਾਂ ਦੀ ਸਰੀਰਕ ਸੰਰਚਨਾ 'ਚ ਆਏ ਪਰਿਵਰਤਨ ਤੁਲਨਾਤਮਕ ਰੂਪ ਵਿੱਚ ਬਹੁਸੈੱਲੀ ਜੀਵਾਂ ਵਿੱਚ ਸੈੱਲ ਭਿੱਤੀ ਹੋਣ ਜਾਂ ਨਾ ਹੋਣ ਕਾਰਨ ਆਏ ਪਰਿਵਰਤਨਾਂ ਤੋਂ ਭਿੰਨ ਹੁੰਦੇ ਹਨ। ਪੋਸ਼ਣ ਦੇ ਢੰਗ ਤੋਂ ਇਹ ਜੀਵ ਆਪਣਾ ਭੋਜਨ ਆਪ ਬਣਾਉਣ ਵਾਲੇ (ਸਵੈਪੋਸ਼ੀ) ਜਾਂ ਆਪਣੇ ਆਲੇ-ਦਆਲੇ ਤੋਂ ਭੋਜਨ ਲੈਣ ਵਾਲੇ (ਪਰਪੋਸ਼ੀ) ਹੋ ਸਕਦੇ ਹਨ। ਇਸ ਵਰਗ ਵਿੱਚ ਬੈਕਟੀਰੀਆ, ਨੀਲੀ ਹਰੀ ਕਾਈ ਜਾਂ ਸਾਈਨੋਬੈਕਟੀਰੀਆ (Cyanobacteria) ਅਤੇ ਮਾਈਕੋਪਲਾਜ਼ਮਾ (Mycoplasma) ਹੁੰਦੇ ਹਨ। ਕੁੱਝ ਉਦਾਹਰਣਾਂ ਚਿੱਤਰ 7.1 ਵਿੱਚ ਵਿਖਾਈਆਂ ਗਈਆਂ ਹਨ।



ਚਿੱਤਰ 7.1 : ਮੋਨੀਰਾ

94

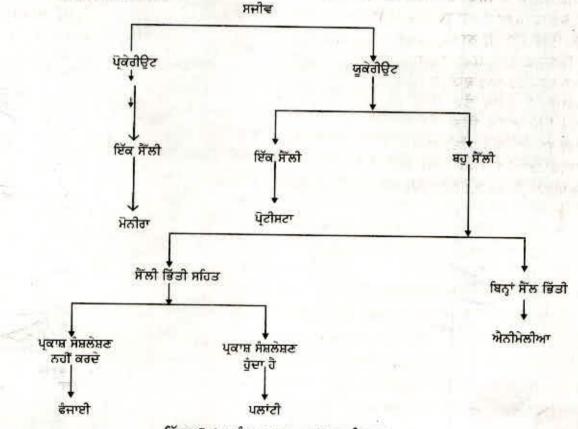
7.3.2 ਪ੍ਰਟੀਸਟਾ (Protista)


ਇਸ ਵਰਗ ਵਿੱਚ ਬਹੁਤ ਕਿਸਮਾਂ ਦੇ ਇੱਕ ਸੈੱਲ⁴.ਯੂਕੇਰਿਓਟੀ ਜੀਵ ਆਉਂਦੇ ਹਨ। ਇਸ ਵਰਗ ਦੇ ਕੁੱਝ ਜੀਵਾਂ ਵਿੱਚ ਗਤੀ ਕਰਨ ਲਈ ਵਾਲਾਂ ਵਰਗੇ ਸਿੱਲੀਆਂ ਜਾਂ ਧਾਗੇ ਵਰਗੀ ਰਚਨਾ ਫਲੇਜੈਲਾ ਹੁੰਦੇ ਹਨ। ਇਹ ਸਵੈਪੋਸ਼ੀ ਜਾਂ ਪਰਪੋਸ਼ੀ ਦੋਨੋਂ ਤਰ੍ਹਾਂ ਦੇ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ ਇੱਕ ਸੈੱਲੀ ਕਾਈ(Unicellular algae), ਡਾਇਐਟਮ (diatoms) ਅਤੇ ਪ੍ਰੋਟੋਜੋਆ (Protozoa) (ਚਿੱਤਰ 7.2 ਵਿੱਚ ਵੇਖੋ)।

ਵਿਗਿਆਨ

7.3.3 ਫੰਜਾਈ (Fungi)

ਇਹ ਪਰਪੋਸ਼ੀ ਕਿਸਮ ਦੇ ਯੂਕੇਰਿਓਟੀ ਜੀਵ ਹੁੰਦੇ ਹਨ। ਇਹ ਗਲ-ਸੜ ਰਹੇ ਕਾਰਬਨਿਕ ਪਦਾਰਥ ਨੂੰ ਭੋਜਨ ਦੇ ਤੌਰ ਤੇ ਵਰਤਦੇ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਨੂੰ ਮ੍ਰਿਤਜੀਵੀ (Saprophytes) ਕਹਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਜ਼ਿਆਦਾਤਰ ਵਿੱਚ ਜੀਵਨ ਦੀ ਕਿਸੇ ਵੀ ਪੜਾਅ ਤੇ ਬਹੁਸੈੱਲੀ ਬਣਨ ਦੀ ਸਮਰੱਥਾ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਦੀ ਸੈੱਲ ਭਿੱਤੀ ਜਟਿਲ ਸ਼ੂਗਰ ਦੇ ਬਣੇ ਹੋਏ ਕਾਇਟਿਨ (Chitin) ਨਾਮੀ ਪਦਾਰਥ ਦੀ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ ਖਮੀਰ ਅਤੇ ਮਸ਼ਰੂਮ (ਵੇਖੋ ਚਿੱਤਰ 7.3)


ਚਿੱਤਰ 7 3 : ਫੰਜਾਈ

ਕੁੱਝ ਫੰਜਾਈ ਦੀਆਂ ਜਾਤੀਆਂ, ਨੀਲੀ ਹਰੀ ਕਾਈ ਜਾਂ ਸਾਈਨੋਬੈਕਟੀਰੀਆ ਨਾਲ ਸਥਾਈ ਸਾਂਝਦਾਰੀ ਦਰਸਾਉਂਦੀਆਂ ਹਨ। ਇਹੋ ਜਿਹੇ ਸੰਬੰਧਾਂ ਨੂੰ ਸਹਿਲੀਵਤਾ (Symbiotic) ਕਹਿੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਹਿਜੀਵੀ ਜੀਵਾਂ ਨੂੰ ਲਾਈਕੇਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਲਾਈਕੇਨ ਅਕਸਰ ਦਰਖਤਾਂ ਦੀ ਛਿੱਲ ਤੇ ਰੰਗੀਨ ਧੱਬਿਆਂ ਦੇ ਰੂਪ 'ਚ ਵਿਖਾਈ ਦਿੰਦੇ ਹਨ।

7.3.4 ਪਲਾਂਟੀ (Plantae)

ਇਸ ਵਰਗ ਵਿੱਚ ਸੈੱਲ ਭਿੱਤੀ ਵਾਲੇ ਬਹੁ ਸੈੱਲੀ ਯੂਕੇਰਿਓਟਿਕ ਜੀਵ ਆਉਂਦੇ ਹਨ। ਇਹ ਸਵੈਪੋਸ਼ੀ ਹੁੰਦੇ ਹਨ ਅਤੇ ਪ੍ਰਕਾਸ਼-ਸੰਸ਼ਲੇਸ਼ਣ ਲਈ ਕਲੌਰੋਫਿਲ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ। ਇਸ ਵਰਗ ਵਿੱਚ ਸਾਰੇ ਪੌਦਿਆਂ ਨੂੰ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਕਿਉਂ ਕਿ ਪੌਦੇ ਅਤੇ ਜੰਤੂ ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਮਿਲਣ ਵਾਲੇ ਜੀਵਾਂ ਵਿੱਚੋਂ ਸਭ ਤੋਂ ਵੱਧ ਦ੍ਰਿਸ਼ਟੀਗੋਚਰ (most visible forms) ਹੁੰਦੇ ਹਨ, ਅਸੀਂ ਉਪ ਵਰਗਾਂ ਦੀ ਚਰਚਾ ਬਾਅਦ ਵਿੱਚ (ਖੰਡ 7.4) ਕਰਾਂਗੇ।

95

ਚਿੱਤਰ 7 4 : ਪੰਜ ਜਗਤ ਵਾਲਾ ਵਰਗੀਕਰਣ

ਸਜੀਵਾਂ ਵਿੱਚ ਵਿਭਿੰਨਤਾ

7.3.5 ਐਨੀਮੇਲੀਆ (Animalia)

HO

ਇਸ ਵਰਗ ਵਿੱਚ ਉਹ ਸਾਰੇ ਬਹੁ ਸੈਲੇ ਯੂਕੇਰਿਉਟਿਕ ਜੀਵ ਆਉਂਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਵਿਚ ਬਹੁਸੈੱਲੀ ਭਿੱਤੀ ਨਹੀਂ ਹੁੰਦੀ। ਇਸ ਵਰਗ ਦੇ ਜੀਵ ਪਰਪੋਸ਼ੀ ਹੁੰਦੇ ਹਨ। ਇਸ ਉਪਵਰਗ ਦੀ ਚਰਚਾ ਅਸੀਂ ਬਾਅਦ ਵਿੱਚ (ਖੰਡ 7.5) ਕਰਾਂਗੇ।

- ਜੀਵਾਂ ਨੂੰ ਪ੍ਰੋਟੀਸਟਾ ਅਤੇ ਮੋਨੀਰਾ ਜਗਤ ਵਿੱਚ ਵਂਡਣ ਲਈ ਮਾਪਦੰਡ ਕੀ ਹੈ?
- ਪ੍ਰਕਾਸ਼ ਸੰਸ਼ਲੇਸ਼ਣ ਕਰਨ ਵਾਲੇ ਇੱਕ ਸੈੱਲੀ ਯੂਕੇਰਿਉਟਿਕ ਜੀਵਾਂ ਨੂੰ ਤੁਸੀਂ ਕਿਸ ਜਗਤ ਵਿੱਚ ਰੱਖੋਗੇ ?
- ਵਰਗੀਕਰਣ ਦੇ ਵਿਭਿਨ ਪਦਕ੍ਰਮਾਂ ਵਿੱਚ ਕਿਸ ਸਮੂਹ ਵਿੱਚ ਵੱਧ ਤੋਂ ਵੱਧ ਮਿਲਦੇ-ਜੁਲਦੇ ਲੱਛਣ ਰੱਖਣ ਵਾਲੇ ਸਭ ਤੋਂ ਘੱਟ ਜੀਵਾਂ ਨੂੰ ਅਤੇ ਕਿਸ ਸਮੂਹ ਵਿੱਚ ਸਭ ਤੋਂ ਜਿਆਦਾ ਗਿਣਤੀ ਵਾਲੇ ਜੀਵਾਂ ਨੂੰ ਰੱਖਿਆ ਜਾਵੇਗਾ ?

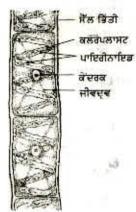
7.4 ਪਲਾਂਟੀ (Plantae)

ਪੌਦਿਆਂ ਵਿੱਚ ਪਹਿਲੇ ਪੱਧਰ ਦਾ ਵਰਗੀਕਰਣ ਇਨ੍ਹਾਂ ਤੱਥਾਂ ਤੇ ਆਧਾਰਿਤ ਹੈ ਕਿ ਪੌਦੇ ਦੇ ਸਰੀਰ ਦੇ ਭਾਗ ਪੂਰੀ ਤਰ੍ਹਾਂ ਵਿਭੇਦਿਤ (Differentiated) ਤੇ ਸਪਸ਼ਟ ਰੂਪ 'ਚ ਵਿਕਸਿਤ ਹਨ। ਦੂਜੇ ਪੱਧਰ ਦਾ ਵਰਗੀਕਰਣ ਇਸ ਗੱਲ ਤੇ ਆਧਾਰਿਤ ਹੈ ਕਿ ਵਿਭੇਦਿਤ ਪੌਦੇ ਦੇ ਸਰੀਰ ਵਿੱਚ ਪਾਣੀ ਅਤੇ ਹੋਰ ਪਦਾਰਥਾਂ ਦੀ ਢੋਆ-ਢੋਆਈ ਲਈ ਟਿਸ਼ੂ ਹਨ ਕਿ ਨਹੀਂ। ਵਰਗੀਕਰਣ ਦੇ ਅਗਲੇ ਪੱਧਰਾਂ ਵਿੱਚ ਪੌਦੇ ਵਿੱਚ ਬੀਜ ਬਣਾਉਣ ਦੀ ਸਮਰੱਥਾ ਅਤੇ ਜੇਕਰ ਬੀਜ ਬਣਦੇ ਹਨ ਤਾਂ ਕੀ ਉਹ ਫਲ ਨਾਲ ਢੱਕੇ ਹੋਏ ਹਨ ਜਾਂ ਨਹੀਂ ਆਦਿ ਸ਼ਾਮਲ ਹੈ।

7.4.1 ਥੈਲੋਫਾਈਟਾ (Thallophyta)

96

ਇਨ੍ਹਾਂ ਪੌਦਿਆਂ ਦੀ ਸਰੀਰਕ ਸੰਰਚਨਾ ਵਿੱਚ ਕੋਈ ਵਿਭੇਦਨ (Differentiation) ਨਹੀਂ ਹੁੰਦਾ। ਇਸ ਵਰਗ ਦੇ ਪੌਦਿਆਂ ਨੂੰ ਆਮ ਤੌਰ ਤੇ ਕਾਈ (Algae) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਪਾਣੀ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ-ਯੂਲੋਥਰਿਕਸ, ਸਪਾਇਰੋਗਾਇਰਾ, ਕਾਰਾ ਆਦਿ। (ਚਿੱਤਰ 7.5 ਵੇਖੋ)



ਯੂਲੋਬਰਿਕਸ (Ulothrix)

ਕਲੈਂਡਫੋਰਾ (Clodophora)

ਅਲਵਾ (Ulva)

ਸਪਾਇਰੋਗਾਇਰਾ (Spirogyra)

ਚਿੱਤਰ 7.5 : ਬੈਲੋਫਾਈਟਾ (ਕਾਈ)

ਵਿਗਿਆਨ

7.4.2 ਬ੍ਰਾਇਓਫਾਈਟਾ (Bryophyta)

ਇਸ ਵਰਗ ਦੇ ਪੌਦਿਆਂ ਨੂੰ ਪੌਦਾ ਜਗਤ ਦੇ ਜਲੀਥਲੀ ਜੀਵ (amphibians) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਵਰਗ ਵਿੱਚ ਪੌਦਾ ਸਰੀਰ ਤਣੇ ਅਤੇ ਪੱਤਿਆਂ ਵਰਗੀ ਸੰਰਚਨਾ ਵਿੱਚ ਵਿਭਾਜਿਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਪੌਦੇ ਦੇ ਇੱਕ ਹਿੱਸੇ ਤੋਂ ਦੂਜੇ ਹਿੱਸੇ ਤੱਕ ਪਾਣੀ ਅਤੇ ਦੂਜੇ ਪਦਾਰਥਾਂ ਦੀ ਢੋਆ-ਢੋਆਈ ਲਈ ਵਿਸ਼ੇਸ਼ ਟਿਸ਼ੂ ਨਹੀਂ ਹੁੰਦੇ। ਉਦਾਹਰਣ ਵਜੋਂ ਮੌਸ (ਫਿਊਨੇਗੀਆ) ਅਤੇ ਮਾਰਕੈਸ਼ੀਆ (ਚਿੱਤਰ 7.6 ਵੇਖੋ)

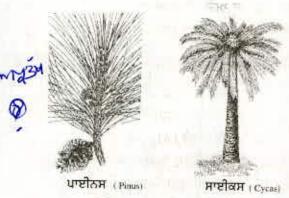
7.4.3 ਟੈਰੀਡੋਫਾਈਟਾ (Pteridophyta)

ਇਸ ਵਰਗ ਦੇ ਪੌਦਿਆਂ ਦਾ ਸਰੀਰ ਜੜ੍ਹ, ਤਣੇ ਅਤੇ ਪੱਤਿਆਂ ਵਿੱਚ ਵਿਭਾਜਿਤ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਪੌਦੇ ਦੇ ਇੱਕ ਭਾਗ ਤੋਂ ਦੂਜੇ ਭਾਗ ਤੱਕ ਪਾਣੀ ਅਤੇ ਪਦਾਰਥਾਂ ਦੀ ਢੋਆ– ਢੋਆਈ ਲਈ ਵਹਿਣੀ ਟਿਸ਼ੂ ਵੀ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਮਾਰਸਿਲੀਆ, ਫਰਨ, ਹਰਸਟੇਲ ਆਦਿ।

ਥੈਲੋਫਾਈਟਾ, ਬ੍ਰਾਇਓਫਾਈਟਾ ਅਤੇ ਟੈਰੀਡੋਫਾਈਟਾ ਵਿੱਚ ਅਣ ਢੱਕੇ ਭਰੂਣ (naked embryos) ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਆਰ ਬੀਜਾਣੂ (Spore) ਕਹਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਤਿੰਨਾਂ ਸਮੂਹਾਂ ਦੇ ਪੌਦਿਆਂ ਦੇ ਜਨਣ-ਅੰਗ ਸੰਬੰਧਤੱਥ (inconspicuous) ਹੁੰਦੇ Ø ਹਨ। ਇਸ ਕਰਕੇ ਇਨ੍ਹਾਂ ਨੂੰ ਕ੍ਰਿਪਟੋਗੇਮੀ (cryptogamae) ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਦਾ ਮਤਲਬ ਹੈ "ਲੁਕਵੇਂ ਜਨਣ-ਅੰਗਾਂ ਵਾਲੇ"।

ਦੂਜੇ ਪਾਸੇ ਉਹ ਪੌਦੇ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਜਨਣ ਅੰਗ ਪੂਰੀ

ਸਜੀਵਾਂ ਵਿੱਚ ਵਿਭਿੰਨਤਾ



ਚਿੱਤਰ 7.7 : ਟੈਰੀਡੋਫਾਈਟਾ

ਤਰ੍ਹਾਂ ਵਿਕਸਿਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਜਿਹੜੇ ਬੀਜ ਬਣਾਉਂਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਨੂੰ ਫੈਨੀਰੋਗੇਮੀ (Phanerogamae) ਕਹਿੰਦੇ ਹਨ। ਬੀਜ ਬਣਨਾ ਜਨਣ ਕਿਰਿਆ ਦਾ ਨਤੀਜਾ ਹੈ। ਬੀਜਾਂ ਵਿੱਚ ਭਰੂਣ ਅਤੇ ਜਮ੍ਹਾਂ ਭੋਜਨ ਹੁੰਦਾ ਹੈ ਜਿਹੜਾ ਬੀਜ ਦੇ ਪੁੰਗਰਣ ਵੇਲੇ ਭਰੂਣ ਦੇ ਮੁੱਢਲੇ ਵਾਧੇ ਤੇ ਵਿਕਾਸ ਲਈ ਲੋੜੀਂਦਾ ਹੈ। ਇਸ ਵਰਗ ਨੂੰ ਬੀਜਾਂ ਦੇ ਨੰਗੇ ਜਾਂ ਫਲ ਨਾਲ ਢੱਕੇ ਹੋਣ ਦੀ ਹਾਲਤ ਅਨੁਸਾਰ ਅੱਗੇ ਦੋ ਗਰੁੱਪਾਂ ਜਿਮਨੋਸਪਰਮ ਅਤੇ ਐਂਜੀਓਸਪਰਮ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ।

7.4.4 ਜਿਮਨੋਸਪਰਮ (Gymnosperms)

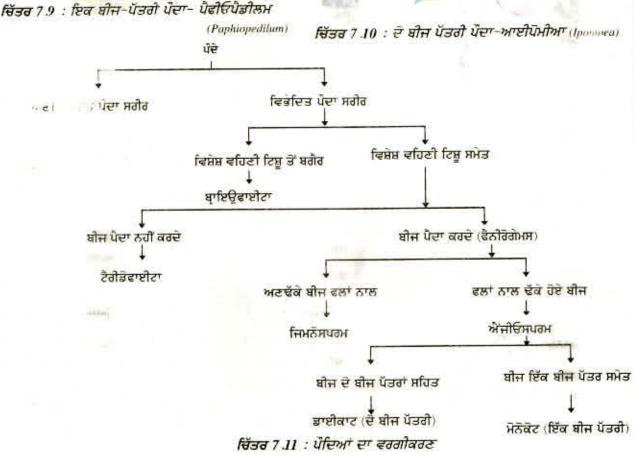
ਇਹ ਸ਼ਬਦ ਗ੍ਰੀਕ ਭਾਸ਼ਾ ਦੇ ਦੋ ਸ਼ਬਦਾਂ ਜਿਮਨੇ ਭਾਵ ਨੰਗਾ ਅਤੇ ਸਪਰਮ-ਭਾਵ ਬੀਜ ਤੋਂ ਬਣਿਆ ਹੈ। ਇਸ ਵਰਗ ਦੇ ਪੌਦਿਆਂ ਦੇ ਬੀਜ ਨੰਗੇ ਜਾਂ ਅਣਢੋਂਕੇ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਹ ਪੌਦੇ ਆਮ ਤੌਰ ਤੇ ਬਹੁ-ਵਰਗੀ, ਸਦਾਬਹਾਰ ਅਤੇ ਲਕੜੀਨੁਮਾ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ ਪਾਈਨ (Pine) ਅਤੇ ਦਿਉਂਦਾਰ (Deodar) (ਵੇਖੋ ਚਿੱਤਰ 7.8)।

ਚਿੱਤਰ 7.8 : ਜਿਮਨੋਸਪਰਮ

Downloaded from https:// www.studiestoday.org

97

7.4.5 ਐਂਜੀਓਸਪਰਮ (Angiosperms)


ਇਹ ਸ਼ਬਦ ਦੋ ਗ੍ਰੀਕ ਸ਼ਬਦਾਂ ਐਂਜਓ-ਭਾਵ ਢੱਕਿਆ ਅਤੇ ਸਪਰਮਾ-ਭਾਵ ਬੀਜ। ਬੀਜ ਇੱਕ ਔਗ ਦੇ ਅੰਦਰ ਵਿਕਸਤ ਹੁੰਦੇ ਹਨ। ਜਿਹੜਾ ਬਾਅਦ ਵਿੱਚ ਫਲ ਵਿੱਚ ਤਬਦੀਲ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਨੂੰ ਫੁੱਲਾਂ ਵਾਲੇ ਪੌਦੇ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਬੀਜ ਅੰਦਰ ਪੌਦਾ-ਭਰੂਣ ਵਿੱਚ ਕੁੱਝ ਸੰਰਚਨਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਕੋਟੀਲੀਡਨਸ (Cotyledons) ਕਹਿੰਦੇ ਹਨ। ਕੋਟੀਲੀਡਨਾਂ ਨੂੰ ਬੀਜ-ਪੱਤਰ ਵੀ ਕਹਿੰਦੇ ਹਨ ਕਿਉਂਕਿ ਬਹੁਤ ਵਾਰੀ ਬੀਜ ਪੁੰਗਰਨ ਵੇਲੇ ਇਹ ਬੀਜ ਵਿੱਚੋਂ ਬਾਹਰ

98

ਨਿਕਲ ਆਉਂਦੇ ਹਨ ਅਤੇ ਹਰੇ ਰੰਗ ਦੇ ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਬੀਜ ਪੱਤਰ ਅਤੇ ਪੌਦਾ ਭਰੂਣ ਬੀਜ ਅੰਦਰ ਇੱਕ ਛੋਟੇ ਪੌਦੇ ਦੀ ਤਰ੍ਹਾਂ ਹੁੰਦੇ ਹਨ। ਬੀਜ ਪੱਤਰਾਂ ਦੀ ਗਿਣਤੀ ਅਨੁਸਾਰ ਐਂਜੀਓਸਪਰਮ ਨੂੰ ਦੋ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ। ਜਿਹੜੇ ਪੌਦਿਆਂ ਦੇ ਬੀਜਾਂ ਵਿੱਚ ਇੱਕ ਬੀਜ ਪੱਤਰ (Moncotyledonous) ਹੁੰਦਾ ਹੈ ਉਨ੍ਹਾਂ ਨੂੰ ਇੱਕ ਬੀਜ-ਪੱਤਰੀ ਜਾਂ ਮੌਨੋਕੋਟ (monocots) ਪੌਦੇ ਅਤੇ ਜਿਹੜੇ ਬੀਜਾਂ ਵਿੱਚ ਦੋ ਬੀਜ ਪੱਤਰ ਹੋਣ ਉਨ੍ਹਾਂ ਨੂੰ ਦੋ ਬੀਜ ਪੱਤਰੀ (dicotyledonous) ਜਾਂ ਡਾਈਕੌਟ (dicots) ਪੌਦੇ ਕਹਿੰਦੇ ਹਨ। (ਚਿੱਤਰ 7.9 ਅਤੇ 7.10 ਵੇਖੋ)।

ਵਿਗਿਆਨਾ

ਕਿਰਿਆ

___7.2

ਹਰੇ ਛੋਲੇ, ਕਣਕ, ਮੱਕੀ, ਮਟਰ ਅਤੇ ਇਮਲੀ ਦੇ ਬੀਜਾਂ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਭਿਓਂ ਦਿਓ। ਪੋਲੇ ਹੋਣ ਤੋਂ ਬਾਅਦ ਬੀਜ ਨੂੰ ਤੋੜਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਨ। ਕੀ ਸਾਰੇ ਬੀਜ ਦੇ ਲਗਾਤਰ ਇੱਕੋ ਜਿਹੇ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡੇ ਜਾਂਦੇ ਹਨ?

ਜਿਹੜੇ ਬੀਜ ਦੋ ਬਰਾਬਰ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡੇ ਜਾਂਦੇ ਹਨ ਉਹ ਦੋ ਬੀਜ ਪੱਤਰੀ ਅਤੇ ਜਿਹੜੇ ਬਰਾਬਰ ਨਹੀਂ ਵੰਡੇ ਜਾਂਦੇ ਉਹ ਇੱਕ ਬੀਜ-ਪੱਤਰੀ ਹਨ।

ਹੁਣ ਇਨ੍ਹਾਂ ਪੌਦਿਆਂ ਦੀਆਂ ਜੜ੍ਹਾਂ ਪੱਤੇ ਅਤੇ ਫੁੱਲਾਂ ਨੂੰ ਧਿਆਨ ਨਾਲ ਵੇਖੋ।

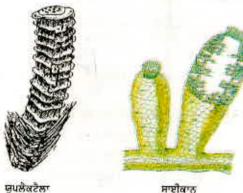
ਕੀ ਜੜ੍ਹਾਂ ਮੂਸਲਾਧਾਰ (tap roots) ਹਨ ਜਾਂ ਰੇਸ਼ੇਦਾਰ (fibrous)। ਕੀ ਪੱਤਿਆਂ ਵਿੱਚ ਸਮਾਂਤਰ ਪੱਤਾ ਸਿਰਾ ਤਰਤੀਬ (Parallel Venation) ਜਾਂ ਜਾਲੀਦਾਰ ਪੱਤਾ ਸਿਰਾ ਤਰਤੀਬ ਹੈ ? (Reticulate Venation)

ਇਨ੍ਹਾਂ ਪੌਦਿਆਂ ਦੇ ਭੁੱਲਾਂ ਵਿੱਚ ਕਿੰਨੀਆਂ ਪੰਖੜੀਆਂ ਹਨ ? ਕੀ ਤੁਸੀਂ ਆਪਣੇ ਪ੍ਰੇਖਣ ਦੇ ਆਧਾਰ ਤੇ ਇੱਕ ਬੀਜ ਪੱਤਰੀ ਅਤੇ ਦੋ ਬੀਜ ਪੱਤਰੀ ਪੌਦਿਆਂ ਵਿੱਚ ਹੋਰ ਅੰਤਰ ਲੱਭ ਸਕਦੇ ਹੋ ?

 ਸਰਲ ਪੈਂਦਿਆਂ ਨੂੰ ਕਿਸ ਵਰਗ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ?
 ਟੈਰੀਡੋਫਾਈਟ ਅਤੇ ਫੈਨੀਰੋਗੇਮੀ ਵਿੱਚ ਕੀ ਐਤਰ ਹੈ?

 ਜਿਸਨੋਸਪਰਮ ਅਤੇ ਐਂਜੀਓਸਪਰਮ ਇੱਕ ਦੂਜੇ ੱਤੋਂ ਕਿਵੇਂ ਭਿੰਨ ਹਨ?

7.5 ਐਨੀਮਲੀਆ (Animalia)

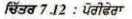

ਇਸ ਵਰਗ ਵਿੱਚ ਯੂਕੇਰਿਉਟਿਕ, ਬਹੁਸੈੱਲੀ ਪਰਪੋਸ਼ੀ ਜੀਵਾਂ ਨੂੰ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਇਨ੍ਹਾਂ ਦੇ ਸੈੱਲਾਂ ਵਿੱਚ ਸੈੱਲ ਭਿੱਤੀ ਨਹੀਂ ਹੁੰਦੀ।ਜ਼ਿਆਦਾਤਰ ਜੰਤੂ ਚੱਲਣਯੋਗ ਹੁੰਦੇ ਹਨ।ਸਰੀਰਕ ਸੰਰਚਨਾ ਅਤੇ ਵਿਭੇਦੀਕਰਣ (differentiation) ਦੇ ਆਧਾਰ ਤੇ ਇਨ੍ਹਾਂ ਦਾ ਅੱਗੇ ਵਰਗੀਕਰਣ ਕੀਤਾ ਗਿਆ ਹੈ।

7.5.1 ਪੋਰੀਫੇਰਾ (Porifera)

ਪੋਰੀਫੇਰਾ ਦਾ ਅਰਥ ਮੁਸ਼ਾਮਦਾਰ ਸਰੀਰ ਵਾਲੇ ਜੰਤੂ। ਇਹ ਜੀਵ ਚੱਲ ਫਿਰ ਨਹੀਂ ਸਕਦੇ ਸਗੋਂ ਕਿਸੇ ਠੋਸ ਆਧਾਰ ਤੇ ਜੁੜੇ ਹੋਏ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਪੂਰੇ ਸਰੀਰ ਤੇ ਮੁਸ਼ਾਮ ਜਾਂ

ਸਜੀਵਾਂ ਵਿੱਚ ਵਿਭਿੰਨਤਾ

ਛੇਕ ਹੁੰਦੇ ਹਨ ਜੋ ਸਰੀਰ ਦੇ ਅੰਦਰ ਇੱਕ ਨਾਲੀ ਸਿਸਟਮ ਵਿੱਚ ਖੁੱਲਦੇ ਹਨ। ਨਾਲੀ ਪ੍ਰਣਾਲੀ ਨਾਲ ਪੂਰੇ ਸਰੀਰ ਵਿੱਚ ਪਾਣੀ ਦਾ ਸੰਚਾਰ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਹ ਪਾਣੀ ਆਪਣੇ ਨਾਲ ਭੋਜਨ ਅਤੇ ਆਕਸੀਜਨ ਲੈ ਕੇ ਆਉਂਦਾ ਹੈ। ਇਹ ਜੰਤੂ ਇੱਕ ਬਾਹਰੀ ਕਠੌਰ ਪਰਤ ਜਾਂ ਪਿੰਜਰ ਨਾਲ ਢੱਕੇ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਸਰੀਰਕ ਸੰਰਚਨਾ ਅਤਿਅੰਤ ਸਰਲ ਹੁੰਦੀ ਹੈ ਅਤੇ ਟਿਸ਼ੂ ਵਿਭੇਦਨ ਨਹੀਂ ਹੁੰਦਾ। ਇਨ੍ਹਾਂ ਨੂੰ ਆਮ ਤੌਰ ਤੇ ਸਪੰਜ ਦੇ ਨਾਂ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਜ਼ਿਆਦਾਤਰ ਇਹ ਸਮੁੰਦਰੀ ਪਾਣੀ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ ਸਾਈਕਾਨ, ਯੂਪਲੇਕਟੈਲਾ ਅਤੇ ਸਪੰਜਿਲਾ ਆਦਿ। ਕੁੱਝ ਉਦਾਹਰਣ ਚਿੱਤਰ 7.12 ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਹਨ।



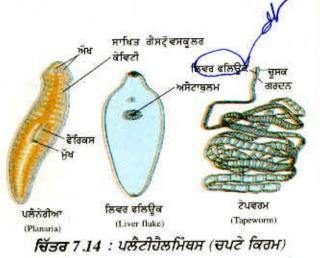
ਯੂਪਲੈਕਟੈਲਾ (Euplectela)

(Sycon)

ਸਪੇਜਿਲਾ (Spougilla)

7.5.2 ਸੀਲੈਂਟਰੇਟਾ (Coelenterata)

ਇਹ ਜਲੀ-ਜੀਵ (Aquatic animals) ਹਨ। ਇਨ੍ਹਾਂ ਦਾ ਸਰੀਰਕ ਸੰਗਠਨ ਟਿਸ਼ੂ ਪੱਧਰ ਦਾ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਦੇ ਸਰੀਰ ਵਿੱਚ ਇੱਕ ਖੋੜ (cavity) ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਦਾ ਸਰੀਰ ਸੈੱਲਾਂ ਦੀਆਂ ਦੋ ਤਹਿਆਂ ਨਾਲ ਢੱਕਿਆ ਹੋਇਆ ਹੁੰਦਾ ਹੈ। ਇੱਕ ਬਾਹਰਲੀ ਤਹਿ ਹੁੰਦੀ ਹੈ ਅਤੇ ਦੂਜੀ ਤਹਿ ਸਰੀਰ ਦੇ ਅੰਦਰ ਦੀ ਖੋੜ ਨੂੰ ਢੱਕਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਦੀਆਂ ਕੁੱਝ ਜਾਤੀਆਂ

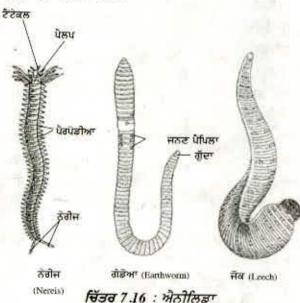

99

ਸਮੂਹਾਂ ਵਿੱਚ ਕਲੋਨੀ ਜੀਵਾਂ (Colonial Forms) ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦੀਆਂ ਹਨ। ਜਿਵੇਂ ਕਿ ਕੋਰਲ ਅਤੇ ਕੁੱਝ ਜਾਤੀਆਂ ਇਕੱਲੇ ਜੀਵਾਂ ਦੇ ਰੂਪ 'ਚ ਹੁੰਦੀਆਂ ਹਨ ਜਿਵੇਂ ਕਿ ਹਾਈਡਰਾ, ਜੈਲੀਫਿਸ਼ ਅਤੇ ਸੀ-ਐਨੀਮੋਨ ਕੁੱਝ ਆਮ ਉਦਾਹਰਣਾਂ ਹਨ। (ਵੇਖੋ ਚਿੱਤਰ 7.13)

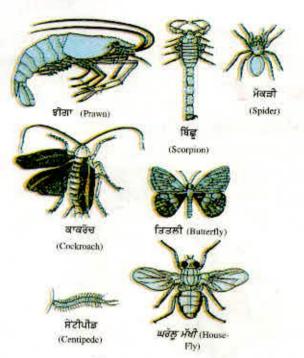
7.5.3 ਪਲੈਟੀਹੈਲਮਿੰਥਸ (Platyhelminthes)

ਪਹਿਲਾਂ ਵਰਨਣ ਕੀਤੇ ਗਏ ਦੋ ਵਰਗਾਂ ਦੇ ਮੁਕਾਬਲੇ ਇਸ ਵਰਗ ਦੇ ਜੰਤਆਂ ਦੀ ਸਰੀਰਕ ਸੰਰਚਨਾ ਬਹੁਤ ਜਟਿਲ ਹੰਦੀ ਹੈ। ਇਨਾਂ ਦਾ ਸਰੀਰ ਦੱਪਾਸੀ ਸਮਮਿਤੀ (Bilaterally Symmetrical) ਵਾਲਾ ਹੁੰਦਾ ਹੈ ਭਾਵ ਸਰੀਰ ਦੇ ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਦੀ ਸੰਰਚਨਾ ਸਮਾਨ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਦਾ ਸਰੀਰ ਤ੍ਰਿਕੋਰਕ (Triploblastic) ਹੁੰਦਾ ਹੈ। ਜਿਸ ਤੋਂ ਭਾਵ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਦੇ ਟਿਸ਼ੂਆਂ ਦਾ ਵਿਭੇਦਨ ਸੈੱਲਾਂ ਦੀਆਂ ਤਿੰਨ ਤਹਿਆਂ ਤੋਂ ਹੋਇਆ ਹੁੰਦਾ ਹੈ। ਇਸ ਨਾਲ ਸ਼ਗੀਰ ਦੇ ਅੰਦਰਨੀ ਤੇ ਬਾਹਰੀ ਸਤ੍ਹਾ ਅਤੇ ਕੁੱਝ ਅੰਗਾਂ ਦਾ ਨਿਰਮਾਣ ਵੀ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਜੀਵਾਂ ਵਿੱਚ ਕੁੱਝ ਹੱਦ ਤੱਕ ਟਿਸ਼ ਬਣਾਉਣ ਦੀ ਸਮਰੱਥਾ ਹੁੰਦੀ ਹੈ। ਪਰੰਤੂ ਅਸਲ ਵਿੱਚ ਅੰਦਰੁਨੀ ਖੋੜ (Internal Body Cavity) ਜਾਂ ਸੀਲੋਮ (Coelom) ਨਹੀਂ ਹੁੰਦਾ ਪਰ ਇਸ ਅੰਦਰ ਵਿਕਸਿਤ ਅੰਗ ਹੁੰਦੇ ਹਨ। ਸ਼ਰੀਰ ਉਪਰ ਤੋਂ ਹੇਠਾਂ ਵੱਲ ਚਪਟਾ (Dorsoventrally Flattened) ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਨੂੰ ਚਪਟੇ ਕਿਰਮ ਵੀ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਆਜ਼ਾਦ ਤੌਰ ਤੇ ਰਹਿਣ ਵਾਲੇ ਜਾਂ ਪਰਜੀਵੀ ਹੋ ਸਕਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਆਜ਼ਾਦ ਰੂਪ 'ਚ ਰਹਿਣ ਵਾਲਾ ਪਲੈਨੇਰੀਆ ਅਤੇ ਪਰਜੀਵੀ ਜਿਵੇਂ ਲੀਵਰ ਫਲਿਊਕ (ਵੇਖੋ ਚਿੱਤਰ 7.14)।

7.5.4 ਨੈਮਾਟੋਡਾ (Nematoda)


ਇਹ ਵੀ ਤ੍ਰਿਕੋਰਕ (Triploblastic) ਜੰਤੂ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਵਿੱਚ ਵੀ ਦੋਪਾਸੀ ਸਮਮਿਤੀ ਪਾਈ ਜਾਂਦੀ ਹੈ। ਪਰੰਤੂ ਇਨ੍ਹਾਂ ਦਾ ਸਰੀਰ ਚਪਟਾ ਨਹੀਂ ਬਲਕਿ ਵੇਲਣਾਕਾਰ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਟਿਸ਼ੂ ਤਾਂ ਹੁੰਦੇ ਹਨ ਪਰ ਅਸਲੀ ਅੰਗ ਨਹੀਂ ਬਣਦੇ ਭਾਵੇਂ ਕਿ ਅਭਾਸੀ ਦੇਹ-ਖੋੜ (Pseudo coelom) ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾ ਨੂੰ ਅਸੀਂ ਆਮ ਤੌਰ ਤੇ ਬਿਮਾਰੀ ਪੈਦਾ ਕਰਨ ਵਾਲੇ ਪਰਜੀਵੀਆਂ ਵਜੋਂ ਜਾਣਦੇ ਹਾਂ। ਉਦਾਹਰਣ ਵਜੋਂ ਐਲੀਫੈਂਟੀਐਸਿਸ (Elephantiasis) ਰੋਗ ਕਰਨ ਵਾਲਾ ਫਾਈਲੇਰੀਆ ਕਿਰਮ ਜਾਂ ਅੰਤੜੀਆਂ `ਚ ਮਿਲਣ ਵਾਲੇ ਗੋਲ ਕਿਰਮ ਜਾਂ ਪਿੰਨ-ਕਿਰਮ ਕੁੱਝ ਉਦਾਹਰਣ ਚਿੱਤਰ 7.15 ਵਿੱਚ ਵਿਖਾਏ ਗਏ ਹਨ।

100


7.5.5 ਐਨੀਲਿਡਾ (Annelida)

ਐਨੀਲਿਡ ਜੰਤੂ ਵੀ ਤ੍ਰਿਕੋਰਕ ਅਤੇ ਦੋਪਾਸੀ ਸਮਮਿਤੀ ਵਾਲੇ ਹੁੰਦੇ ਹਨ। ਪਰ ਇਨ੍ਹਾਂ ਵਿੱਚ ਅਸਲ ਦੇਹ-ਖੋੜ ਹੁੰਦੀ ਹੈ। ਇਸ ਨਾਲ ਅਸਲ ਅੰਗ ਸਰੀਰਕ ਸੰਰਚਨਾ ਵਿੱਚ ਠੀਕ ਤਰ੍ਹਾਂ ਫਿੱਟ ਹੋਏ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਵਿੱਚ ਵਿਆਪਕ ਵਿਭੇਦਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਹ ਵਿਭੇਦਨ ਸਰੀਰ ਦੇ ਮੂਹਰਲੇ ਸਿਰੇ ਤੋਂ ਪਿਛਲੇ ਹਿੱਸੇ ਤੱਕ ਖੰਡਾਂ (Segments) ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਪੂਰਾ ਸਰੀਰ ਬਹੁਤ ਸਾਰੇ ਹਿੱਸਿਆਂ ਜਾਂ ਖੰਡਾਂ ਵਿੱਚ ਵੰਡਿਆ ਹੁੰਦਾ ਹੈ। ਇਹ ਜੰਤੂ ਵਿਭਿੰਨ ਨਿਵਾਸ-ਅਸਥਾਨਾਂ ਜਿਵੇਂ ਤਾਜ਼ਾ ਪਾਣੀ, ਲੂਣਾ ਪਾਣੀ ਅਤੇ ਧਰਤੀ ਤੇ ਮਿਲਦੇ ਹਨ। ਗੰਡੋਏ ਅਤੇ ਜੋਕਾਂ ਕੁੱਝ ਆਮ ਉਦਾਹਰਣਾਂ ਹਨ। ਵੇਖੋ ਚਿੱਤਰ 7.16

7.5.6 ਆਰਥਰੋਪੋਡਾ (Arthropoda)

ਇਹ ਸ਼ਾਇਦ ਜੰਤੂਆਂ ਦਾ ਸਭ ਤੋਂ ਵੱਡਾ ਵਰਗ ਹੈ। ਇਹ ਜੰਤੂ ਵੀ ਦੋਪਾਸੀ ਸਮਮਿਤੀ ਵਾਲੇ ਅਤੇ ਖੰਡਿਤ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਇੱਕ ਖੁੱਲੀ ਸੰਚਾਰ ਪ੍ਣਾਲੀ ਪਾਈ ਜਾਂਦੀ ਹੈ। ਭਾਵ ਲਹੂ ਵਹਿਣੀਆਂ ਵਿੱਚ ਨਹੀਂ ਵਹਿੰਦਾ। ਦੇਹ-ਖੋੜ ਵਿੱਚ ਲਹੂ ਖੁੱਲਾ ਵਹਿੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਜੋੜਦਾਰ (Jointed) ਲੱਤਾਂ ਹੁੰਦੀਆਂ ਹਨ (ਆਰਥੋਪੋਡ ਸ਼ਬਦ ਦਾ ਮਤਲਬ ਹੈ ਜੋੜਦਾਰ ਲੱਤਾਂ) ਕੁੱਝ ਆਮ ਉਦਾਹਰਣਾਂ ਹਨ ਝੀਂਗਾ, ਤਿਤਲੀ, ਮੱਖੀ, ਮੱਕੜੀ, ਬਿੱਛੂ ਅਤੇ ਕੇਂਕੜਾ (ਵੇਖੋ ਚਿੱਤਰ 7.17)

ਚਿੱਤਰ 7.17 : ਆਰਥਰੋਪੋਡਾ

7.5.7 ਮੋਲਸਕਾ (Mollusca)

ਇਨ੍ਹਾਂ ਵਿੱਚ ਵੀ ਦੋਪਾਸੀ ਸਮਮਿਤੀ ਹੁੰਦੀ ਹੈ। ਦੇਹ ਖੋੜ ਬਹੁਤ ਛੋਟੀ ਹੁੰਦੀ ਅਤੇ ਸਰੀਰ ਘੱਟ ਖੰਡਿਤ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਖੁੱਲੀ ਸੰਚਾਰ ਪ੍ਣਾਲੀ ਅਤੇ ਮਲ-ਤਿਆਗ ਲਈ ਗੁਰਦੇ ਵਰਗੀਆਂ ਰਚਨਾਵਾਂ ਪਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇੱਕ ਪੈਰ ਵਰਗੀ ਰਚਨਾ ਸਰੀਰ ਦੀ ਹਿਲ-ਜੁਲ ਵਾਸਤੇ ਹੁੰਦੀ ਹੈ। ਅਧਿਕਤਰ ਮੋਲਸਕ ਜੰਤੂ ਇੱਕ ਖੋਲ ਨਾਲ ਢੱਕੇ ਹੁੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਘੋਗੇ ਅਤੇ ਸਿੱਪੀਆਂ (ਵੇਖੋ ਚਿੱਤਰ 7.18)

ਚਿੱਤਰ 7.18 : ਮੌਲਸਕਾ

ਸਜੀਵਾਂ ਵਿੱਚ ਵਿਭਿੰਨਤਾ

7.5.8 ਇਕਾਈਨੋਡਰਮੇਟਾ (Echinodermata)

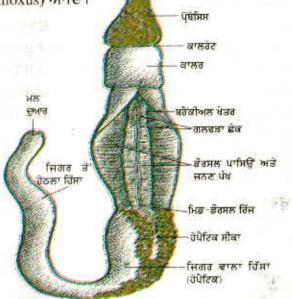
ਗ੍ਰੀਕ ਭਾਸ਼ਾ ਵਿੱਚ ਇਕਾਈਨੋ ਦਾ ਮਤਲਬ ਹੈ ਝਾੜਚੂਹਾ (ਹੈਜਹੌਗ) ਅਤੇ ਡਰਮਾ ਦਾ ਮਤਲਬ ਹੈ ਚਮੜੀ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਜੰਤੂਆਂ ਦੀ ਚਮੜੀ ਕੰਡੇਦਾਰ ਹੁੰਦੀ ਹੈ। ਇਹ ਮੁਕਤਜੀਵੀ ਸਮੁੰਦਰੀ ਜੰਤੂ ਹਨ। ਇਹ ਤ੍ਰਿਕੋਰਕ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਦੇਹ ਖੋੜ ਵੀ ਹੁੰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਇੱਕ ਖਾਸ ਕਿਸਮ ਦਾ ਪਾਣੀ ਨਾਲ ਭਰਿਆ ਨਾਲੀ ਸਿਸਟਮ ਹੁੰਦਾ ਹੈ ਜੋ ਇਨ੍ਹਾਂ ਨੂੰ ਚੱਲਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਜੰਤੂਆਂ ਵਿੱਚ ਕੈਲਸ਼ੀਅਮ ਕਾਰਬੋਨੇਟ ਦੀਆਂ ਕੁੱਝ ਪਿੰਜਰਨੁਮਾ ਰਚਨਾਵਾਂ

ਪੱਖਤਾਰਾ (ਐਟੀਡਾਨ) (Feather Star)

(Sea Cucumber)

(Sea-Urchin)

102


ਤਾਰਾ ਮੱਛੀ (Star-Fish)

ਚਿੱਤਰ 7.19 : ਇਕਾਈਨੰਡਰਮੇਟਾ

ਹੁੰਦੀਆਂ ਹਨ। ਕੁੱਝ ਉਦਾਹਰਣਾਂ ਹਨ ਤਾਰਾ ਮੱਛੀ, ਸੀ-ਅਰਚਿਨ ਆਦਿ (ਵੇਖੋ ਚਿੱਤਰ 7.19)।

7.5.9 ਪ੍ਰੋਟੋਕੌਰਡੇਟਾ (Protochordata)

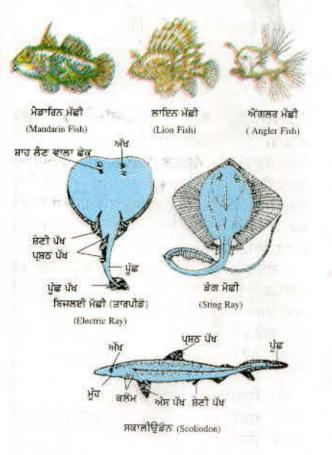
ਇਹ ਜੰਤੂ ਦੋਪਾਸੀ ਸਮਮਿਤੀ ਵਾਲੇ, ਤ੍ਰਿਕੋਰਕ ਅਤੇ ਦੇਹ-ਖੋੜ ਵਾਲੇ ਹੁੰਦੇ ਹਨ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਇਨ੍ਹਾਂ ਵਿੱਚ ਨੋਟੋਕਾਰਡ ਨਾਂ ਦੀ ਇੱਕ ਨਵੀਂ ਸਰੀਰਕ ਸੰਰਚਨਾ ਹੁੰਦੀ ਹੈ ਜਿਹੜੀ ਕਿ ਜ਼ਿੰਦਗੀ ਦੇ ਕਿਸੇ ਵੀ ਪੜਾਅ ਤੇ ਹੋ ਸਕਦੀ ਹੈ। ਨੋਟੋਕਾਰਡ ਛੜ ਵਰਗੀ ਇੱਕ ਲੰਬੀ ਸੰਰਚਨਾ ਹੁੰਦੀ ਹੈ ਜੋ ਜੰਤੂਆਂ ਦੇ ਪਿਛਲੇ ਭਾਗ ਵਿੱਚ ਪਾਈ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਹ ਨਾੜੀ ਟਿਸ਼ੂ ਨੂੰ ਆਹਾਰ ਨਲੀ ਤੋਂ ਅਲੱਗ ਕਰਦੀ ਹੈ। ਇਹ ਪੇਸ਼ੀਆਂ ਨੂੰ ਜੁੜਨ ਦਾ ਸਥਾਨ ਵੀ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ ਤਾਂ ਕਿ ਉਹ ਆਸਾਨੀ ਨਾਲ ਹਿਲਜੁਲ ਕਰ ਸਕਣ। ਪ੍ਰੋਟੋਕੌਰਡੇਟ ਜੰਤੂਆਂ ਵਿੱਚ ਜੀਵਨ ਦੀਆਂ ਸਾਰੀਆਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਨੋਟੋਕਾਰਡ ਨਹੀਂ ਹੁੰਦਾ। ਇਹ ਸਮੁੰਦਰੀ ਜੰਤੂ ਹਨ। ਉਦਾਹਰਣਾਂ- ਬੈਲੈਨੋਗਲੋਸਿਸ (Balanoglossus), ਹਰਡਮੇਨੀਆ (Herdmania) ਅਤੇ ਐਂਫੀਆਕਸਸ (Amphioxus) ਆਦਿ।

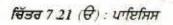
ਚਿੱਤਰ 7.20 : ਇੱਕ ਪ੍ਰੋਟੋਕਾਰਡੇਟ (ਬੈਲੇਨੋਗਲੋਸਿਸ)

7.5.10 ਵਰਟੀਬਰੇਟਾ (ਗੋੜਧਾਰੀ ਜੰਤੂ) (Vertebrata)

ਇਨ੍ਹਾਂ ਜੰਤੂਆਂ ਵਿੱਚ ਕੰਗਰੋੜ (Vertebral Column) ਅਤੇ ਅੰਦਰੂਨੀ ਪਿੰਜਰ ਪਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਕਾਰਨ ਇਨ੍ਹਾਂ ਜੰਤੂਆਂ ਵਿੱਚ ਪੇਸ਼ੀਆਂ ਦਾ ਵਿਤਰਣ ਅਲੱਗ ਹੁੰਦਾ ਹੈ ਭਾਵ ਪੇਸ਼ੀਆਂ ਪਿੰਜਰ ਨਾਲ ਜੁੜੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਜੋ ਇਨ੍ਹਾਂ ਨੂੰ ਚੱਲਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੀਆਂ ਹਨ।

ਰੀੜਧਾਰੀ ਜੰਤੂ ਦੋਪਾਸੀ ਸਮਮਿਤੀ ਵਾਲੇ, ਤ੍ਰਿਕੋਰਕ, ਦੇਹ ਖੋੜ ਵਾਲੇ, ਖੰਡਿਤ ਸਰੀਰਕ ਰਚਨਾ ਵਾਲੇ ਅਤੇ ਅੰਗਾਂ ਅਤੇ ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਜਟਿਲ ਵਿਭੇਦਨ ਰੱਖਣ ਵਾਲੇ ਪ੍ਰਾਣੀ ਹਨ।ਸਾਰੇ ਰੀੜਧਾਰੀਆਂ ਵਿੱਚ ਹੇਠ ਲਿਖੇ ਗੁਣ ਹੁੰਦੇ ਹਨ।

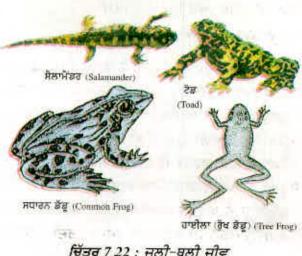

- (1) ਨੋਟੋਕਾਰਡ ਹੁੰਦੀ ਹੈ।
- (2) ਪਿਠਲੀ ਨਾੜੀ ਕਾਰਡ ਹੁੰਦੀ ਹੈ।
- (3) ਤ੍ਰਿਕੋਰਕ ਹੁੰਦੇ ਹਨ।
- (4) ਜੁੜਵੀਆਂ ਗਲਫੜਾ ਥੈਲੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।
- (5) ਦੇਹ ਖੋੜ ਹੁੰਦੀ ਹੈ।


ਰੀੜਧਾਰੀ ਪੰਜ ਕਲਾਸਾਂ ਵਿੱਚ ਵੰਡੇ ਗਏ ਹਨ।

ਵਿਗਿਆਨ

7.5.10 (i) ਪਾਇਸਿਸ (Pisces)

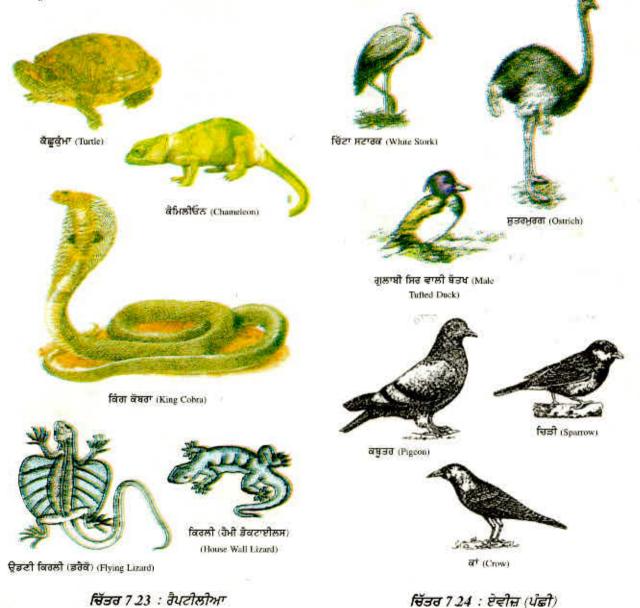
ਇਸ ਵਿੱਚ ਮੱਛੀਆਂ ਸ਼ਾਮਿਲ ਹਨ। ਇਹ ਪੂਰੀ ਤਰ੍ਹਾਂ ਜਲੀ-ਜੀਵ ਹਨ ? ਚਮੜੀ ਸਕੇਲਾਂ ਜਾਂ ਪਲੇਟਾਂ ਨਾਲ ਢੱਕੀ ਹੁੰਦੀ ਹੈ। ਇਹ ਗਲਫੜਿਆਂ ਨਾਲ ਪਾਣੀ ਵਿੱਚ ਘੁਲੀ ਹੋਈ ਆਕਸੀਜਨ ਲੈਂਦੀਆਂ ਹਨ। ਸਰੀਰ ਧਾਰਾ ਰੇਖਿਤ (Streamlined) ਹੁੰਦਾ ਹੈ ਅਤੇ ਪੇਸ਼ੀਦਾਰ ਪੂੰਛ ਨੂੰ ਇਹ ਚੱਲਣ ਅਤੇ ਮੁੜਨ ਲਈ ਵਰਤਦੀਆਂ ਹਨ। ਇਹ ਠੰਡੇ ਲਹੂ ਵਾਲੇ (Cold Blooded) ਪਾਣੀ ਹੁੰਦੇ ਹਨ ਅਤੇ ਦਿਲ ਦੋ ਖਾਨਿਆਂ ਵਾਲਾ ਹੁੰਦਾ ਹੈ। ਇਹ ਅੰਡੇ ਦਿੰਦੀਆਂ ਹਨ। ਮੱਛੀਆਂ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਕਈਆਂ ਦਾ ਪਿੰਜਰ ਸਿਰਫ ਪਸਲੀ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਸ਼ਾਰਕ ਮੱਛੀ। ਜਦੋਂ ਕਿ ਕੁੱਝ ਮੱਛੀਆਂ ਵਿੱਚ ਪਿੰਜਰ ਹੱਡੀ ਅਤੇ ਪਸਲੀ ਦੋਹਾਂ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਟੁਨਾ ਅਤੇ ਰੋਹੂ ਮੱਛੀ। ਉਦਾਹਰਣ ਲਈ ਵੇਖੋ ਚਿੱਤਰ 7.21 (ੳ) ਅਤੇ 7.21 (ਅ)



ਚਿੱਤਰ 7 21 (ਅ) - ਪਾਇਸਿਸ (Pisces)

7.5.10 (ii) ਐਮਫਿਬੀਆ (ਜਲੀ-ਥਲੀ ਜੀਵ) (Amphibia)

ਇਹ ਜੰਤੂ ਚਮੜੀ ਵਿੱਚ ਮਿਊਕਸ ਗ੍ਰੰਥੀਆਂ ਦਿਲ ਦੇ ਤਿੰਨ ਖਾਨੇ ਹੋਣ ਅਤੇ ਸਕੇਲ ਨਾ ਹੋਣ ਕਰਕੇ ਮੱਛੀਆਂ ਤੋਂ ਭਿੰਨ ਹਨ।ਸਾਹ ਕਿਰਿਆ ਗਲਫੜਿਆਂ ਜਾਂ ਫੇਫੜਿਆਂ ਰਾਹੀਂ ਹੁੰਦੀ ਹੈ। ਇਹ ਅੰਡੇ ਦਿੰਦੇ ਹਨ। ਇਹ ਜੰਤੂ ਪਾਣੀ ਵਿੱਚ ਅਤੇ ਧਰਤੀ ਤੇ ਦੋਨੋਂ ਥਾਵਾਂ ਤੇ ਮਿਲਦੇ ਹਨ। ਡੱਡੂ, ਟੋਡ ਅਤੇ ਸੈਲਾਮੈਡਰ ਆਦਿ।(ਵੇਖੋ ਚਿੱਤਰ 7.22)

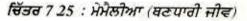

103

7.5.10 (iii) ਰੈਪਟੀਲੀਆ (Reptilia)

ਇਹ ਠੰਡੇ ਲਹੂ ਵਾਲੇ ਜੰਤੂ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਸਰੀਰ ਤੇ ਸਕੇਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਹ ਫੇਫੜਿਆਂ ਰਾਹੀਂ ਸਾਹ ਲੈਂਦੇ ਹਨ। ਜ਼ਿਆਦਾਤਰ ਇਨ੍ਹਾਂ ਵਿੱਚ ਤਿੰਨ ਖਾਨਿਆਂ ਵਾਲਾ ਦਿਲ ਹੁੰਦਾ ਹੈ ਪਰ ਮਗਰਮੱਛ ਦੇ ਦਿਲ ਦੇ ਚਾਰ ਖਾਨੇ ਹੁੰਦੇ ਹਨ। ਇਹ ਮੋਟੀ ਅਤੇ ਮਜ਼ਬੂਤ ਪਰਤ ਵਾਲੇ ਐਡੇ ਦਿੰਦੇ ਹਨ ਅਤੇ ਜਲੀ-ਥਲੀ ਜੀਵਾਂ ਵਾਂਗ ਇਨ੍ਹਾਂ ਨੂੰ ਅੰਡੇ ਪਾਣੀ ਵਿੱਚ ਨਹੀਂ ਦੇਣੇ ਪੈਂਦੇ। ਸੱਪ, ਕੱਛੂਕੁੰਮੇ, ਕਿਰਲੀਆਂ ਅਤੇ ਮਗਰਮੱਛ ਆਦਿ ਇਸ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਆਉਂਦੇ ਹਨ।(ਵੇਖੋ ਚਿੱਤਰ 7.23)

7.5.10 (iv) ਏਵੀਜ਼ (ਪੰਛੀ) (Aves)

ਇਹ ਸਮਤਾਪੀ ਜੰਤੂ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦਾ ਦਿਲ ਚਾਰ ਖਾਨਿਆਂ ਵਾਲਾ ਹੁੰਦਾ ਹੈ। ਇਹ ਐਡੇ ਦਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦਾ ਸਰੀਰ ਖੰਭਾਂ ਨਾਲ ਢੱਕਿਆ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੋ ਅਗਲੀਆਂ ਲੱਤਾਂ, ਉੱਡਣ ਵਾਸਤੇ ਪਰਾਂ ਵਿੱਚ ਬਦਲ ਜਾਂਦੀਆਂ ਹਨ। ਇਹ ਫੇਫੜਿਆਂ ਰਾਹੀਂ ਸਾਹ ਲੈਂਦੇ ਹਨ। ਸਾਰੇ ਪੰਛੀਆਂ ਨੂੰ ਇਸੇ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ। (ਉਦਾਹਰਣਾਂ ਲਈ ਵੇਖੋ ਚਿੱਤਰ 7.24)



7.5.10(v) ਸੋਸੈਲੀਆ (ਥਣਧਾਰੀ ਜੀਵ) (Mammalia)

ਥਣਧਾਰੀ ਜੀਵ ਗਰਮ ਖੂਨ ਵਾਲੇ ਜੰਤੂ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਦਿਲ ਦੇ ਚਾਰ ਖਾਨੇ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਸਰੀਰ ਵਿੱਚ ਨਵਜਾਤ ਬੱਚਿਆਂ ਦੇ ਪੋਸ਼ਣ ਵਾਸਤੇ ਦੁੱਧ ਪੈਦਾ ਕਰਨ ਲਈ ਦੁੱਧ-ਗ੍ਰੰਥੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਚਮੜੀ ਤੇ ਵਾਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਪਸੀਨੇ ਅਤੇ ਤੇਲ ਦੀਆਂ ਗ੍ਰੰਥੀਆਂ ਵੀ ਹੁੰਦੀਆਂ ਹਨ। ਜ਼ਿਆਦਾਤਰ ਥਣਧਾਰੀ ਜੀਵ ਬੱਚੇ ਪੈਦਾ ਕਰਦੇ ਹਨ ਪਰੰਤੂ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਕੁ ਜਿਵੇਂ ਪਲੈਟੀਪਸ਼ ਅਤੇ ਇਕਿਡਨਾ ਅੰਡੇ ਦਿੰਦੇ ਹਨ ਅਤੇ ਕੁੱਝ ਕੰਗਾਰੂ ਵਰਗੇ ਜਾਨਵਰ ਬਹੁਤ ਕਮਜ਼ੋਰ ਅਤੇ ਘੱਟ ਵਿਕਸਿਤ ਬੱਚਿਆਂ ਨੂੰ ਜਨਮ ਦਿੰਦੇ ਹਨ। ਕੁੱਝ ਉਦਾਹਰਣਾਂ 7.25 ਵਿੱਚ ਵਿਖਾਈਆਂ ਗਈਆਂ ਹਨ।

 ਪੋਰੀਫ਼ੇਰਾ ਅਤੇ ਸੀਲੈਂਟਰੇਟ ਵਰਗ ਦੇ ਜੰਤੂਆਂ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ ?

 ਐਨੀਲਿਡਾ ਅਤੇ ਆਰਥਰੋਪੰਡਾ ਵਰਗ ਦੇ ਜੰਤੂਆਂ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ?

 ਐਮਫਿਬੀਆਂ ਅਤੇ ਰੈਪਟੀਲੀਆਂ ਸ਼੍ਰੇਣੀ ਦੇ ਜੰਤੂਆਂ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ ?

7.6 ਨਾਂ ਪੱਧਤੀ (Nomenclature)

ਜੀਵ ਜੰਤੂਆਂ ਦੇ ਲੜੀਬੱਧ ਤਰੀਕੇ ਨਾਮ ਦੇਣ ਦੀ ਜ਼ਰੂਰਤ ਕਿਉਂ ਪੈਂਦੀ ਹੈ?

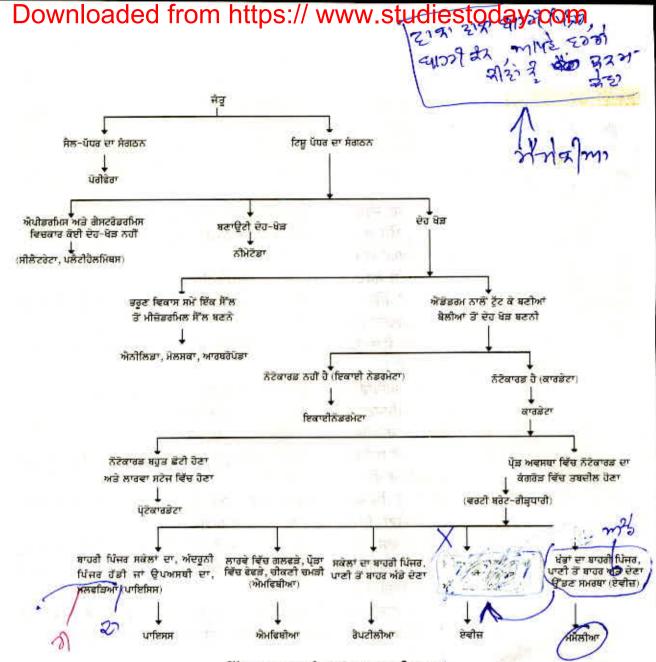
ਸਜੀਵਾਂ ਵਿੱਚ ਵਿਭਿੰਨਤਾ

ਕਾਰਲਸ ਲਿਨੀਅਸ (ਕਾਰਲ ਵੌਨ ਲਿਨੀ) ਦਾ ਜਨਮ ਸਵੀਡਨ ਵਿੱਚ ਹੋਇਆ ਅਤੇ ਉਹ ਪੇਸ਼ੇ ਤੋਂ ਡਾਕਟਰ ਸੀ। ਉਹ ਪੌਦਿਆਂ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਰੁਚੀ ਰੱਖਦਾ ਸੀ। 22 ਸਾਲ ਦੀ ਉਮਰ ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਪੌਦਿਆਂ ਤੇ ਆਪਣਾ ਪਹਿਲਾਂ ਖੋਜ-ਪੱਤਰ ਜਾਰੀ ਕੀਤਾ। ਇੱਕ ਧਨੀ ਅਧਿਕਾਰੀ ਦੇ ਘਰ ਡਾਕਟਰ ਵਜੋਂ

ਕਾਰਲਸ ਲਿਨੀਅਸ (1707-1778)

ਨੌਕਰੀ ਕਰਦੇ ਹੋਏ, ਉਸਨੇ ਆਪਣੇ ਮਾਲਕ ਦੇ ਬਗੀਚੇ ਵਿੱਚ ਪੌਦਿਆਂ ਦੀ ਵਿਭਿੰਨਤਾ ਬਾਰੇ ਪੜ੍ਹਿਆ। ਬਾਅਦ ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਚੌਦਾਂ (14) ਖੋਜ ਪੱਤਰ ਜਾਰੀ ਕੀਤੇ ਅਤੇ ਆਪਣੀ ਇੱਕ ਮਸ਼ਹੂਰ ਕਿਤਾਬ 'ਸਿਸਟਮਾ ਨੈਚੁਰੀ' ਪ੍ਰਕਾਸ਼ਿਤ ਕੀਤੀ ਜਿਸਦੇ ਆਧਾਰ ਤੇ ਸਾਰੀਆਂ ਮੌਲਿਕ ਟੈਕਸੋਨੋਮਿਕ ਖੋਜਾਂ ਕੀਤੀਆਂ। ਉਸਦੇ ਵਰਗੀਕਰਣ ਦਾ ਤਰੀਕਾ ਬੜਾ ਸਰਲ ਸੀ ਜਿਸ ਅਨੁਸਾਰ ਪੌਦਿਆਂ ਨੂੰ ਦੁਬਾਰਾ ਜਾਂਚਣ ਪਰਖਣ ਤੇ ਪਹਿਚਾਣ ਵਾਸਤੇ ਠੀਕ ਢੰਗ ਨਾਲ ਰੱਖਿਆ ਗਿਆ।

ਕਿਰਿਆ


7.3

ਹੇਠ ਲਿਖੇ ਪੌਦਿ ਵਿੱਚ ਸੰਭਵ ਹੋ	ਆਂ ਅਤੇ ਜੰਤੂਆਂ ਦੇ ਨ ' ਸਕੇ ਲਿਖੇ।	ਅ ਜਿੰਨੀਆਂ ਭਾਸ਼ਾਵਾਂ
1. ਚੀਤਾ	2. ਮੋਰ	<u>3</u> . बोझी
4. ਨਿੰਮ	5. ਕਮਲ	6. ਆਲ

ਇਨ੍ਹਾਂ ਸਭ ਦੇ ਨਾਮ ਭਿੰਨ-ਭਿੰਨ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਅਲੱਗ-ਅਲੱਗ ਹਨ। ਇਸ ਲਈ ਜਦੋਂ ਕੋਈ ਇੱਕ ਭਾਸ਼ਾ ਵਿੱਚ ਕਿਸੇ ਜੀਵ ਦੀ ਗੱਲ ਕਰ ਰਿਹਾ ਹੋਵੇ ਜਾਂ ਉਹਦੇ ਬਾਰੇ ਲਿਖ ਰਿਹਾ ਹੋਵੇ ਤਾਂ ਹੋ ਸਕਦਾ ਹੈ ਦੂਜੀ ਭਾਸ਼ਾ ਵਾਲਾ ਉਸਦੀ ਗੱਲ ਸਮਝ ਹੀ ਨਾ ਸਕੇ। ਇਸ ਸਮੱਸਿਆ ਦਾ ਹੱਲ ਵਿਗਿਆਨੀਆਂ ਨੇ ਸਾਰੇ ਜੀਵਾਂ ਨੂੰ ਇੱਕ ਵਿਗਿਆਨਕ ਨਾਂ ਦੇ ਕੇ ਉਸੇ ਤਰ੍ਹਾਂ ਹੱਲ ਕੀਤਾ ਜਿਵੇਂ ਵਿਭਿੰਨ ਰਸਾਇਣਕ ਪਦਾਰਥਾਂ ਨੂੰ ਸੰਕੇਤ ਅਤੇ ਫਾਰਮੂਲੇ ਦੇ ਕੇ ਪੂਰੀ ਦੁਨੀਆਂ ਵਿੱਚ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਹੀ ਹਰ ਜੀਵ ਦਾ ਵਿਗਿਆਨਕ ਨਾਮ ਵਿਲੱਖਣ ਹੈ ਅਤੇ ਪੂਰੇ ਸੰਸਾਰ ਵਿੱਚ ਉਹ ਉਸੇ ਨਾਂ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ।

ਵਿਗਿਆਨਕ ਨਾ ਦੇਣ ਲਈ ਅਸੀਂ ਜਿਸ ਵਿਗਿਆਨਕ ਪੱਧਤੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ ਉਹ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਕਾਰਲਸ ਲਿਨੀਅਸ ਦੁਆਰਾ ਅਠਾਰਵੀਂ ਸਦੀ ਦੇ ਸ਼ੁਰੂ 'ਚ ਦਿੱਤੀ ਗਈ ਕਿਸੇ ਜੀਵ ਦਾ ਵਿਗਿਆਨਕ ਨਾਂ ਵਰਗੀਕਰਣ ਦੀ ਉਸ ਪ੍ਰਕਿਰਿਆ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ

105

ਚਿੱਤਰ 7.26 : ਜੰਤੂਆਂ ਦਾ ਵਰਗੀਕਰਣ

ਜਿਸ ਅਨੁਸਾਰ ਉਸਨੂੰ ਉਸਦੇ ਨਾਲ ਬੇ-ਹੋਦ ਮੇਲ ਖਾਂਦੇ ਜੀਵ ਜੰਤੂਆਂ ਨਾਲ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਪਰ ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਜਾਤੀ ਨੂੰ ਨਾਂ ਦੇਣਾ ਹੁੰਦਾ ਹੈ ਤਾਂ ਅਸੀਂ ਉਸ ਦੇ ਸਾਰੇ ਪਦਕ੍ਰਮਾਂ ਦਾ ਧਿਆਨ ਨਹੀਂ ਦਿੰਦੇ ਬਲਕਿ ਉਸ ਜੀਵ ਦੇ ਜੀਨਸ ਅਤੇ ਸਪੀਸੀਜ਼ ਦਾ ਹੀ ਧਿਆਨ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।ਪੂਰੀ ਦੁਨੀਆਂ ਵਿੱਚ ਇਨ੍ਹਾਂ ਦੋ ਨਾਵਾਂ (ਜੀਨਸ ਅਤੇ ਸਪੀਸੀਜ਼) ਨੂੰ ਲਾਤੀਨੀ ਭਾਸ਼ਾ ਵਿੱਚ ਅਪਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਵਿਗਿਆਨਕ ਨਾਂ ਲਿਖਣ ਲਈ ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ ਦਾ ਧਿਆਨ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।

 ਜੀਨਸ ਦਾ ਨਾਮ ਅੰਗਰੇਜ਼ੀ ਦੇ ਵੱਡੇ ਅੱਖਰ ਤੋਂ ਸ਼ੁਰੂ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਸਪੀਸ਼ੀਜ ਦਾ ਨਾਂ ਅੰਗਰੇਜ਼ੀ ਦੇ ਛੋਟੇ ਅੱਖਰ ਤੋਂ ਸ਼ੁਰੂ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

- ਛਪਾਈ ਵੇਲੇ ਵਿਗਿਆਨਕ ਨਾਂ ਇਟੈਲਿਕ ਵਿੱਚ ਲਿਖੇ ਜਾਂਦੇ ਹਨ।
- ਜਦੋਂ ਇਨ੍ਹਾਂ ਨੂੰ ਹੱਥ ਨਾਲ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜੀਨਸ ਅਤੇ ਸਪੀਸ਼ੀਜ ਦੋਨਾਂ ਨੂੰ ਅਲੱਗ-ਅਲੱਗ ਰੇਖਾਂਕਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

वितिभा 7.4

ਕਿਸੇ ਪੰਜ ਜੈਤੂਆਂ ਅਤੇ ਪੌਦਿਆਂ ਦੇ ਵਿਗਿਆਨਕ ਨਾਵਾਂ ਦਾ ਪਤਾ ਲਗਾਓ। ਕੀ ਇਨ੍ਹਾਂ ਦੇ ਵਿਗਿਆਨਕ ਨਾਵਾਂ ਅਤੇ ਆਮ ਨਾਵਾਂ ਵਿੱਚ ਕੁੱਝ ਸਾਂਝ ਹੈ ?


106

ਵਿਗਿਆਨ

- ਵਰਗੀਕਰਣ ਜੀਵਾਂ ਵਿੱਚ ਵਿਭਿੰਨਤਾ ਲੱਭਣ ਵਿੱਚ ਸਹਾਈ ਹੁੰਦਾ ਹੈ।
 - ਜੀਵਾਂ ਨੂੰ ਪੰਜ ਜਗਤਾਂ ਵਿੱਚ ਵਰਗੀਕਰਣ ਕਰਨ ਲਈ ਹੇਠ ਲਿਖੇ ਲੱਛਣਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।
 - (a) ਸੈੱਲ ਸੰਰਚਨਾ-ਪ੍ਰੋਕੋਰਿਊਟੀ ਜਾਂ ਯੂਕੇਰਿਊਟਿਕ।
 - (b) ਕੀ ਜੀਵ ਇੱਕ ਸੈੱਲੀ ਹੈ ਜਾਂ ਬਹੁਤੇ ਸੈੱਲਾਂ ਵਿੱਚ ਸੰਗਠਿਤ ਹੋ ਕੇ ਜਟਿਲ ਸੰਰਚਨਾ ਬਣਾਉਂਦਾ ਹੈ।
 - (c) ਕੀ ਸੈੱਲ-ਭਿੱਤੀ ਹੈ ਜਾਂ ਨਹੀਂ ਅਤੇ ਕੀ ਉਹ ਆਪਣਾ ਭੋਜਨ ਆਪ ਬਣਾਉਂਦੇ ਹਨ ?
 - ਉਪਰੋਕਤ ਆਧਾਰ ਤੇ ਸਾਰੇ ਜੀਵਾਂ ਨੂੰ ਪੰਜ ਜਗਤਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ ਮੋਨੀਰਾ, ਪ੍ਰੋਟਿਸਟਾ, ਫੰਜਾਈ, ਪਲਾਂਟੀ ਅਤੇ ਐਨੀਮਲੀਆ।
 - ਜੀਵਾਂ ਦਾ ਵਰਗੀਕਰਣ ਉਨ੍ਹਾਂ ਦੇ ਵਿਕਾਸ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ।
- ਵੱਧਦੀ ਹੋਈ ਸਰੀਰਕ ਜਟਿਲਤਾ ਦੇ ਆਧਾਰ ਤੇ ਪਲਾਂਟੀ ਅਤੇ ਐਨੀਮਲੀਆ ਨੂੰ ਅੱਗੋਂ ਵਰਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ।
- ਪੌਦਿਆਂ ਨੂੰ ਪੰਜ ਵਰਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ : ਥੈਲੋਫਾਈਟਾ, ਬ੍ਰਾਇਓਫਾਈਟਾ, ਟੈਰੀਡੋਫਾਈਟਾ, ਜਿਮਨੋਸਪਰਮ ਅਤੇ ਐਜੀਓਸਪਰਮ।
- ਜੰਤੂਆਂ ਦੇ ਦਸ ਵਰਗ ਬਣਾਏ ਗਏ ਹਨ ਪੇਰੀਫੇਰਾ, ਸੀਲੈਂਟਰੇਟਾ, ਪਲੈਟੀ ਹੈਲਮਿੰਥਸ, ਨੈਮਾਟੋਡਾ, ਐਨੀਲਿਡਾ, ਆਰਥਰੋਪੋਡਾ, ਮੋਲਸਕਾ, ਇਕਾਈਨੋਡਰਮੇਟਾ, ਪ੍ਰੋਟੋਕੌਰਡੇਟਾ ਅਤੇ ਵਰਟੀਬਰੇਟਾ।
- ਦੋ ਨਾਵੀ ਪੱਧਤੀ ਜੀਵਾਂ ਦੀ ਸਹੀ ਪਹਿਚਾਣ ਦਾ ਇੱਕ ਸਹੀ ਤਰੀਕਾ ਦਰਸਾਉਂਦੀ ਹੈ।
- ਦੋ-ਨਾਵੀ ਪੱਧਤੀ ਵਿੱਚ ਪਹਿਲਾਂ ਨਾਂ ਜੀਨਸ ਅਤੇ ਦੂਜਾ ਨਾਂ ਸਪੀਸ਼ੀਜ ਦਾ ਹੁੰਦਾ ਹੈ।

পরিপাস

- ਜੀਵਾਂ ਨੂੰ ਵਰਗੀਕ੍ਰਿਤ ਕਰਨ ਦੇ ਕੀ ਲਾਭ ਹਨ ?
- ਵਰਗੀਕਰਣ ਵਿੱਚ ਪਦਕ੍ਰਮ ਨਿਰਧਾਰਣ ਕਰਨ ਲਈ ਦੋ ਲੱਛਣਾਂ ਵਿੱਚੋਂ ਤੁਸੀਂ ਇੱਕ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਚੁਣੋਗੇ ?
- ਜੀਵਾਂ ਨੂੰ ਪੰਜ ਜਗਤਾਂ ਵਿੱਚ ਵੰਡਣ ਲਈ ਚੁਣੇ ਗਏ ਅਧਾਰ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- ਪਲਾਂਟੀ ਜਗਤ ਵਿੱਚ ਕਿਹੜੇ-ਕਿਹੜੇ ਵਰਗ ਹਨ ? ਇਨ੍ਹਾਂ ਵਰਗਾਂ ਨੂੰ ਬਣਾਉਣ ਦਾ ਕੀ ਆਧਾਰ ਹੈ ?
- 5. ਜੰਤੂਆਂ ਅਤੇ ਪੌਦਿਆਂ ਦੇ ਵਰਗੀਕਰਣ ਦੇ ਆਧਾਰਾਂ ਵਿੱਚ ਮੂਲ ਅੰਤਰ ਕੀ ਹਨ ?
- ਜੰਤੂਆਂ ਦੇ ਵਰਟੀਬਰੇਟਾ ਵਰਗ ਨੂੰ ਅੱਗੋਂ ਛੋਟੇ ਵਰਗ ਜਾਂ ਕਲਾਸਾਂ ਵਿੱਚ ਕਿਵੇਂ ਵੰਡਿਆ ਗਿਆ ਹੈ ? ਵਿਆਖਿਆ ਕਰੋ।

ਸਜੀਵਾ ਵਿੱਚ ਵਿਭਿੰਨਤਾ

107

ਅਧਿਆਇ 8

ਅਸੀਂ ਰੋਜ਼ਾਨਾ ਜ਼ਿੰਦਗੀ ਵਿੱਚ ਕੁਝ ਵਸਤੂਆਂ ਨੂੰ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਅਤੇ ਕੁਝ ਵਸਤੂਆਂ ਨੂੰ ਗਤੀ ਅਵਸਥਾ ਵਿੱਚ ਵੇਖਦੇ ਹਾਂ। ਪੰਛੀ ਉੱਡਦੇ ਹਨ, ਮੱਛੀਆਂ ਤੈਰਦੀਆਂ ਹਨ, ਖ਼ੂਨ, ਨਾੜੀਆਂ ਅਤੇ ਧਮਨੀਆਂ ਵਿੱਚੋਂ ਵਗਦਾ ਹੈ ਅਤੇ ਗੱਡੀਆਂ ਚੱਲਦੀਆਂ ਹਨ। ਪਰਮਾਣੂ, ਅਣੂ, ਗ੍ਰਹਿ, ਤਾਰੇ ਅਤੇ ਆਕਾਸ਼ ਗੰਗਾ ਸਾਰੇ ਹੀ ਗਤੀ ਅਵਸਥਾ ਵਿੱਚ ਹਨ। ਅਸੀਂ ਅਕਸਰ ਇਹ ਸਮਝਦੇ ਹਾਂ ਕਿ ਕੋਈ ਵਸਤੂ ਗਤੀ ਵਿੱਚ ਉਦੋਂ ਹੀ ਜਦੋਂ ਉਹ ਸਮੇਂ ਦੇ ਨਾਲ ਆਪਣੀ ਸਥਿਤੀ ਬਦਲਦੀ ਹੈ। ਫਿਰ ਵੀ ਕੁਝ ਇਹੋ ਜਿਹੀਆਂ ਅਵਸਥਾਵਾਂ ਵੀ ਹਨ, ਜਿੱਥੇ ਗਤੀ ਨੂੰ ਅਸਿੱਧੇ ਪ੍ਰਮਾਣਾਂ ਰਾਹੀਂ ਦੱਸਿਆ ਜਾਂਦਾ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ, ਅਸੀਂ ਹਵਾ ਦੀ ਗਤੀ ਦਾ ਅੰਦਾਜ਼ਾ ਧੁੜ-ਕਣਾਂ ਦੇ ਉੱਡਣ ਨਾਲ, ਰੁੱਖਾਂ ਦੀਆਂ ਟਹਿਣੀਆਂ ਅਤੇ ਪੱਤਿਆਂ ਦੀ ਹਿਲਜਲ ਤੋਂ ਲਗਾਉਂਦੇ ਹਾਂ। ਸੁਰਜ ਦੇ ਚੜ੍ਹਨ, ਛਿਪਣ ਅਤੇ ਮੌਸਮਾਂ ਵਿੱਚ ਤਬਦੀਲੀ ਦੇ ਕੀ ਕਾਰਨ ਹਨ ? ਕੀ ਇਹ ਧਰਤੀ ਦੀ ਗਤੀ ਦੇ ਕਾਰਨ ਹੁੰਦੇ ਜਾਂ ਵਾਪਰਦੇ ਹਨ ? ਜੇ ਇਹ ਸੱਚ ਹੈ, ਤਾਂ ਅਸੀਂ ਧਰਤੀ ਦੀ ਗਤੀ ਦਾ ਅੰਦਾਜ਼ਾ ਸਿੱਧੇ ਤੌਰ ਤੇ ਕਿਉਂ ਨਹੀਂ ਲਗਾ ਸਕਦੇ ?

ਕਿਸੇ ਇੱਕ ਵਿਅਕਤੀ ਲਈ ਕੋਈ ਵਸਤੂ ਗਤੀ ਅਵਸਥਾ ਵਿੱਚ ਪ੍ਰਤੀਤ ਹੋ ਸਕਦੀ ਹੈ, ਪਰੰਤੂ ਦੂਜੇ ਨੂੰ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ। ਚੱਲਦੀ ਬਸ ਵਿੱਚ ਯਾਤਰੂਆਂ ਨੂੰ ਸੜਕ ਦੇ ਕਿਨਾਰੇ ਲੱਗੇ ਹੋਏ ਪੇੜ-ਪੌਦੇ ਪਿੱਛੇ ਵੱਲ ਜਾਂਦੇ ਲੱਗਦੇ ਹਨ ਜਦੋਂ ਕਿ ਸੜਕ ਦੇ ਕਿਨਾਰੇ ਖੜ੍ਹਾ ਹੋਇਆ ਇਕ ਵਿਅਕਤੀ ਬਸ ਦੇ ਨਾਲ ਯਾਤਰੂਆਂ ਨੂੰ ਵੀ ਗਤੀ ਵਿੱਚ ਦੇਖਦਾ ਹੈ, ਪਰੰਤੂ, ਬਸ ਦੇ ਅੰਦਰ ਬੈਠਾ ਹੋਇਆ ਯਾਤਰੀ ਹੋਰ ਯਾਤਰੂਆਂ ਨੂੰ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਵੇਖਦਾ ਹੈ ਇਹ ਸਾਰੇ ਅਵਲੋਕਨ ਕੀ ਦਰਸਾਉਂਦੇ ਹਨ ?

ਬਹੁਤ ਸਾਰੀਆਂ ਗਤੀਆਂ ਜਟਿਲ ਹੁੰਦੀਆਂ ਹਨ। ਕੁਝ ਵਸਤੂਆਂ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਅਤੇ ਕੁਝ ਚਕਰਾਕਾਰ ਪਥ ਵਿੱਚ ਚਲ ਸਕਦੀਆਂ ਹਨ। ਕੁਝ ਚੱਕਰ ਕੱਟ ਸਕਦੀਆਂ ਹਨ ਅਤੇ ਕੁਝ ਕੰਪਨ ਕਰ ਸਕਦੀਆਂ ਹਨ। ਕੁੱਝ ਇਹੋ ਜਿਹੀਆਂ

(Motion)

ਸਥਿਤੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ ਜਿਹਨਾਂ ਵਿੱਚ ਇਹ ਕਿਰਿਆਵਾਂ ਨਾਲ-ਨਾਲ ਹੋਣ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ, ਅਸੀਂ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਵਸਤੂਆਂ ਦੀ ਗਤੀ ਨੂੰ ਇੱਕ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਵਰਣਨ ਕਰਨਾ ਸਿੱਖਾਂਗੇ। ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਗਤੀ ਨੂੰ ਸਾਧਾਰਨ-ਸਮੀਕਰਣਾਂ ਅਤੇ ਗਰਾਫਾਂ ਰਾਹੀਂ ਦਰਸਾਉਣਾ ਵੀ ਸਿੱਖਾਂਗੇ। ਬਾਅਦ ਵਿੱਚ ਅਸੀਂ ਚੱਕਰਾਕਾਰ ਗਤੀ ਦੇ ਵਰਣਨ ਕਰਨ ਦੇ ਤਰੀਕਿਆਂ ਬਾਰੇ ਚਰਚਾ ਕਰਾਂਗੇ।

ਕਿਰਿਆ

_8.1

ਤੁਹਾਡੀ ਜਮਾਤ ਦੀਆਂ ਦੀਵਾਰਾਂ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਹਨ ਜਾਂ ਗਤੀ ਵਿੱਚ, ਚਰਚਾ ਕਰੋ।

ਕਿਰਿਆ

_8.2

ਕੀ ਤੁਸੀਂ ਕਦੇ ਮਹਿਸੂਸ ਕੀਤਾ ਹੈ ਕਿ ਜਿਸ ਰੇਲਗੱਡੀ ਵਿੱਚ ਤੁਸੀਂ ਬੈਠੇ ਹੋ, ਗਤੀ ਕਰਦੀ ਹੋਈ ਪ੍ਰਤੀਤ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਕਿ ਇਹ ਅਸਲ ਵਿੱਚ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦੀ ਹੈ ∂ ਇਸ ਬਿੰਦੂ ਤੇ ਚਰਚਾ ਕਰੋ ਅਤੇ ਆਪਣੇ ਅਨੁਭਵਾਂ ਦੇ ਵਿਚਾਰਾਂ ਦਾ ਆਦਾਨ-ਪਦਾਨ ਕਰੋ।

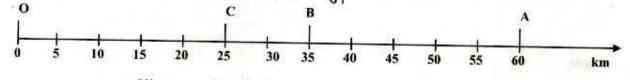
ਸੋਚੇ ਅਤੇ ਕਰੇ

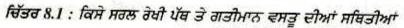
ਅਸੀਂ ਕਦੇ-ਕਦੇ ਆਪਣੇ ਨੇੜੇ-ਤੇੜੇ ਦੀਆਂ ਵਸਤੂਆਂ ਦੀ ਗਤੀ ਕਾਰਨ ਖਤਰੇ ਵਿੱਚ ਫਸ ਜਾਂਦੇ ਹਾਂ, ਖ਼ਾਸ ਕਰਕੇ ਜੇ ਉਹ ਗਤੀ ਅਨਿਯਮਿਤ ਅਤੇ ਅਨਿਯੰਤਰਿਤ ਹੋਵੇ, ਜਿਵੇਂ ਹੜਵਾਨੀ ਨਦੀ, ਤੂਫ਼ਾਨ ਜਾਂ ਸੁਨਾਮੀ ਵਿੱਚ ਦੇਖਿਆ ਗਿਆ ਹੈ। ਦੂਜੇ ਪਾਸੇ, ਨਿਯੰਤਰਿਤ ਗਤੀ ਮਨੁੱਖ ਦੀ ਸੇਵਾ ਵਿੱਚ ਸਹਾਇਕ ਹੋ ਸਕਦੀ ਹੈ ਜਿਵੇਂ-ਪਾਣੀ ਦੇ ਦੁਆਰਾ ਬਿਜਲੀ ਸ਼ਕਤੀ ਦਾ ਉਤਪਾਦਨ। ਕੀ ਤੁਸੀਂ ਮਹਿਸੂਸ ਕਰਦੇ ਹੋ ਕਿ ਕੁਝ ਵਸਤੂਆਂ ਦੀ ਅਨਿਯਮਿਤ ਗਤੀ ਦਾ ਅਧਿਐਨ ਕਰਨਾ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਨਿਯੰਤਰਿਤ ਕਰਨ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਸਿੱਖਣ ਦੀ ਜ਼ਰੂਰਤ ਹੈ?

8.1 ਗਤੀ ਦਾ ਵਰਣਨ (Describing Motion)

ਅਸੀਂ ਕਿਸੇ ਵਸਤੂ ਦੀ ਸਥਿਤੀ ਨੂੰ ਇਕ ਨਿਰਦੇਸ਼ ਬਿੰਦੂ

ਨਿਰਧਾਰਿਤ ਕਰਕੇ ਦਰਸਾ ਸਕਦੇ ਹਾਂ। ਆਉ ਇਸ ਨੂੰ ਇੱਕ ਉਦਾਹਰਣ ਰਾਹੀਂ ਸਮਝਦੇ ਹਾਂ। ਮੰਨ ਲਓ ਕਿ ਕਿਸੇ ਪਿੰਡ ਦਾ ਸਕੂਲ ਰੇਲਵੇ ਸਟੇਸ਼ਨ ਤੋਂ 2km ਉੱਤਰ ਦਿਸ਼ਾ ਵੱਲ ਹੈ। ਅਸੀਂ ਸਕੂਲ ਦੀ ਸਥਿਤੀ ਨੂੰ ਰੇਲਵੇ ਸਟੇਸ਼ਨ ਤੋਂ ਸਾਪੇਖ ਨਿਸ਼ਚਿਤ ਕੀਤਾ ਹੈ। ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ ਰੇਲਵੇ ਸਟੇਸ਼ਨ ਇੱਕ ਨਿਸ਼ਚਿਤ ਬਿੰਦੂ ਹੈ। ਅਸੀਂ ਦੂਜੇ ਨਿਸ਼ਚਿਤ ਬਿੰਦੂਆਂ ਨੂੰ ਵੀ ਆਪਣੀਆਂ ਸਹੂਲਤਾਂ ਅਨੁਸਾਰ ਚੁਣ ਸਕਦੇ ਹਾਂ। ਇਸ ਲਈ, ਕਿਸੇ ਵਸਤੂ ਦੀ ਸਥਿਤੀ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਸਾਨੂੰ ਇੱਕ ਨਿਸ਼ਚਿਤ ਬਿੰਦੂ ਨਿਰਧਾਰਿਤ ਕਰਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਮੂਲ ਬਿੰਦੂ (Origin) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।


8.1.1 ਸਰਲ ਰੇਖੀ ਗਤੀ (Linear Motion-Motion Along Straight Line)


ਗਤੀ ਦੀ ਸਭ ਤੋਂ ਸਾਧਾਰਨ ਕਿਸਮ ਸਰਲ ਰੇਖੀ ਗਤੀ ਹੈ।ਸਾਨੂੰ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਇਕ ਉਦਾਹਰਣ ਦੁਆਰਾ ਇਸਦਾ ਵਰਣਨ ਕਰਨਾ ਸਿੱਖਣਾ ਹੋਵੇਗਾ। ਮੰਨ ਲਉ ਇਕ ਵਸਤੂ ਸਰਲ ਰੇਖੀ ਪਥ ਤੇ ਚਲ ਰਹੀ ਹੈ। ਵਸਤੂ ਆਪਣੀ ਗਤੀ ਬਿੰਦੂ 'O' ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਨਿਸ਼ਚਿਤ ਬਿੰਦੂ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ। (ਚਿੱਤਰ 8.1)। ਮੰਨ ਲਉ A, B ਅਤੇ C ਵੱਖ-ਵੱਖ ਸਮੇਂ ਅੰਤਰਾਲਾਂ ਤੇ ਵਸਤੂ ਦੀ ਸਥਿਤੀ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਵਸਤੂ C ਤੋਂ ਚਲਦੀ ਹੋਈ B ਤੇ ਅਤੇ ਫਿਰ A ਤੇ ਪਹੁੰਚਦੀ ਹੈ। ਇਸ ਤੋਂ ਬਾਅਦ ਇਹ ਉਸੇ ਰਸਤੇ ਤੇ ਮੁੜਦੀ ਹੈ ਅਤੇ B ਤੋਂ ਹੁੰਦੀ ਹੋਈ C ਤੇ ਪਹੁੰਚਦੀ ਹੈ।

ਵਸਤੂ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਕੁੱਲ ਦੂਰੀ OA + AC ਹੈ, ਭਾਵ 60 km + 35 km = 95 km | ਇਹ ਵਸਤੂ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਕੁੱਲ ਦੂਰੀ ਹੈ। ਕਿਸੇ ਵਸਤੂ ਦੀ ਦੂਰੀ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਸਾਨੂੰ ਕੇਵਲ ਸੰਖਿਆਤਮਕ ਮਾਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਨਾ ਕਿ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦੀ। ਕੁਝ ਇਹੋ ਜਿਹੀਆਂ ਰਾਸ਼ੀਆਂ ਹੁੰਦੀਆਂ ਹਨ, ਜਿਹਨਾਂ ਨੂੰ ਕੇਵਲ ਉਹਨਾਂ ਦੇ ਸੰਖਿਆਤਮਕ ਮਾਨ ਦੁਆਰਾ ਨਿਸ਼ਚਿਤ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਭੌਤਿਕ ਰਾਸ਼ੀ ਦਾ ਸੰਖਿਆਤਮਕ ਮਾਨ ਉਸਦੀ ਮਾਤਰਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਉਦਾਹਰਣ ਦੇ ਨਾਲ ਕੀ ਤੁਸੀਂ ਵਸਤੂ C ਪਹਿਲੀ ਸਥਿਤੀ O ਤੋਂ ਅੰਤਿਮ ਸਥਿਤੀ C ਤੱਕ ਲੱਭ ਸਕਦੇ ਹੋ ? ਇਹ ਅੰਤਰ ਤੁਹਾਨੂੰ ਵਸਤੂ ਦੇ ਵਿਸਥਾਪਨ ਦਾ ਸੰਖਿਆਤਮਕ ਮਾਨ A ਤੋਂ ਗੁਜ਼ਰਦੇ ਹੋਏ O ਤੋਂ C ਤੱਕ ਦੇਵੇਗਾ। ਵਸਤੂ ਦੀ ਪਹਿਲੀ ਅਤੇ ਅੰਤਿਮ ਸਥਿਤੀ ਦੇ ਵਿਚਕਾਰ ਛੋਟੀ ਤੋਂ ਛੋਟੀ ਮਾਪੀ ਗਈ ਦੂਰੀ ਨੂੰ ਵਸਤੂ ਦਾ ਵਿਸਥਾਪਨ (Displacement) ਕਹਿੰਦੇ ਹਨ।

ਕੀ ਵਸਤੂ ਦੇ ਵਿਸਥਾਪਨ ਦੀ ਮਾਤ੍ਰਾ (ਮਾਤਰਾ) (Magnitude) ਵਸਤੂ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਦੇ ਬਰਾਬਰ ਹੋ ਸਕਦੀ ਹੈ ? ਚਿੱਤਰ 8.1 ਵਿੱਚ ਲਏ ਗਏ ਉਦਾਹਰਣ ਨੂੰ ਲੳ। O ਤੋਂ A ਤੱਕ ਵਸਤੂ ਦੀ ਗਤੀ ਦੇ ਲਈ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ 60 km ਹੈ ਅਤੇ ਵਿਸਥਾਪਨ ਦੀ ਮਾਤਰਾ (ਸੰਖਿਆਤਮਕ ਮਾਨ) ਵੀ 60km ਹੈ। ਉਸਦੀ ਗਤੀ O ਤੋਂ A ਤੱਕ ਅਤੇ ਵਾਪਸ B ਤੱਕ, ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ = 60 km + 25 km = 85 km ਹੈ, ਜਦੋਂ ਕਿ ਵਿਸਥਾਪਨ ਦੀ ਮਾਤਰਾ 35 km ਹੈ। ਇਸ ਲਈ ਵਿਸਥਾਪਨ ਦੀ ਮਾਤਰਾ (35 km) ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (85 km) ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋਵੇਗੀ। ਇਸ ਤੋਂ ਇਲਾਵਾ, ਅਸੀਂ ਇਹ ਵੀ ਦੇਖਾਂਗੇ ਕਿ ਵਿਸਥਾਪਨ ਦੀ ਮਾਤਰਾ ਗਤੀ ਦੇ ਦੌਰਾਨ (ਸਿਫ਼ਰ) (0) ਹੋ ਸਕਦੀ ਹੈ ਪਰੰਤੂ ਉਸਦੇ ਨਾਲ ਦੀ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਸਿਫ਼ਰ (0) ਨਹੀਂ ਹੋਵੇਗੀ। ਜੇ ਅਸੀਂ ਮੰਨ ਲੈਂਦੇ ਹਾਂ ਕਿ ਵਸਤੂ ਵਾਪਸ ਮੂਲ ਬਿੰਦੂ 'O' ਤੱਕ ਗਤੀ ਕਰਦੇ ਹੋਏ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਅੰਤਿਮ ਸਥਿਤੀ ਪਹਿਲੀ ਸਥਿਤੀ ਨਾਲ ਮਿਲ ਜਾਂਦੀ ਹੈ ਅਤੇ ਵਿਸਥਾਪਨ, 'ਸ਼ਿਫ਼ਰ' ਹੋ ਜਾਂਦਾ ਹੈ। ਭਾਵੇਂ ਕਿ ਇਸ ਯਾਤਰਾ ਵਿੱਚ ਕੁੱਲ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ OA + AO = 60 km + 60 km = 120 km ਹੈ। ਇਸ ਲਈ ਦੋ ਵੱਖ-ਵੱਖ ਭੌਤਿਕ ਰਾਸ਼ੀਆਂ-ਦੂਰੀ ਅਤੇ ਵਿਸਥਾਪਨ ਦਾ ਉਪਯੋਗ ਕਿਸੇ ਵਸਤੂ ਦੀ ਪੂਰੀ ਗਤੀ ਦੀ ਪ੍ਰਕਿਰਿਆ ਦਾ ਵਰਣਨ ਕਰਨ ਲਈ ਅਤੇ ਦਿੱਤੇ ਗਏ ਸਮੇਂ ਵਿੱਚ ਵਸਤੂ ਦੀ ਪਹਿਲੀ ਸਥਿਤੀ ਦੇ ਸਾਪੇਖ ਅੰਤਿਮ ਸਥਿਤੀ ਸਥਾਪਿਤ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

109

ਗਤੀ

ਕਿਰਿਆ

8.3

ਇੱਕ ਮੀਟਰ ਸਕੇਲ ਅਤੇ ਇੱਕ ਲੱਬੀ ਰੱਸੀ ਲਓ।

ਬਾਸ਼ਕੇਟ ਬਾਲ ਕੋਰਟ ਦੇ ਇੱਕ ਕੋਣੇ ਤੋਂ ਦੂਸਰੇ ਕੋਣੇ ਤੱਕ ਉਸਦੇ ਕਿਨਾਰੇ ਤੋਂ ਹੁੰਦੇ ਹੋਏ ਚੱਲੋ। ਆਪਣੇ ਦੁਆਰਾ ਡੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਅਤੇ ਵਿਸਥਾਪਨ ਦੀ ਮਾਤਰਾ ਨੂੰ ਮਾਪੋ।

ਦੋਵਾਂ ਭੌਤਿਕ ਰਾਸ਼ੀਆਂ ਦੇ ਮਾਪਣ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਅੰਤਰ ਪਾਉਂਦੇ ਹੋ।

ਕਿਰਿਆ

8.4

ਸਵੈਚਾਲਿਤ ਵਾਹਨਾਂ ਵਿੱਚ ਇੱਕ ਯੋਤਰ ਲੱਗਾ ਹੋਇਆ ਹੁੰਦਾ ਹੈ ਜੋ ਕਿ ਉਹਨਾਂ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਦਿਖਾਉਂਦਾ ਹੈ। ਇਸ ਯੰਤਰ ਨੂੰ ਓਡੋਮੀਟਰ ਕਹਿੰਦੇ ਹਨ। ਇਕ ਕਾਰ ਨੂੰ ਭੁਵਨੇਸ਼ਵਰ ਤੋਂ ਨਵੀਂ ਦਿੱਲੀ ਲੈ ਜਾਇਆ ਜਾਂਦਾ ਹੈ। ਓਡੋਮੀਟਰ ਦੀ ਅੰਤਿਮ ਅਤੇ ਪਹਿਲੀ ਪੜਤ ਵਿੱਚ ਅੰਤਰ 1850 km ਹੈ।

ਭਾਰਤ ਦੇ ਸੜਕ ਨਕਸ਼ੇ ਦੀ ਮਦਦ ਨਾਲ ਭੁਵਨੋਸ਼ਵਰ ਅਤੇ ਨਵੀਂ ਦਿੱਲੀ ਦੇ ਵਿੱਚ ਵਿਸਥਾਪਨ ਦੀ ਮਾਤਰਾ ਦਾ ਪਤਾ ਕਰੋ।

. ਇੱਕ ਵਸਤੂ ਦੁਆਰਾ ਕੁੱਝ ਦੂਰੀ ਤੈਅ ਕੀਤੀ ਗਈ। ਕੀ ਇਸਦਾ ਵਿਸਥਾਪਨ ਸਿਫ਼ਰ ਹੋ ਸਕਦਾ ਹੈ ? ਜੇਕਰ ਹਾਂ, ਤਾਂ ਆਪਣੇ ਉੱਤਰ ਨੂੰ ਉਦਾਹਰਣ ਨਾਲ ਸਮਝਾਓ।

- ਇੱਕ ਕਿਸਾਨ 10 ਮੀਟਰ ਦੀ ਭੂਜਾ ਵਾਲੇ ਇੱਕ ਵਰਗਾਕਾਰ ਖੇਤ ਦੀ ਸੀਮਾ ਤੇ 40s (ਸੈਕਿੰਡ) ਵਿੱਚ ਇੱਕ ਚੱਕਰ ਲਗਾਉਂਦਾ ਹੈ। 2 ਮਿੰਟ ਅਤੇ 20s (ਸੈਕਿੰਡ) ਦੇ ਬਾਅਦ ਕਿਸਾਨ ਦੇ ਵਿਸਥਾਪਨ ਦੀ ਮਾਤਰਾ ਕਿੰਨੀ (ਸੈਖਿਆਤਮਕ ਮਾਨ) ਹੋਵੇਗੀ ?
- 3. ਵਿਸਥਾਪਨ ਲਈ ਹੇਠ ਲਿਖੇ ਵਿੱਚੋਂ ਕੀ ਸਹੀ ਹੈ ?
 - (a) ਇਹ ਸਿਫ਼ਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
 - (b) ਇਸ ਦੀ ਮਾਤਰਾ ਵਸਤੂ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਤੋਂ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ।

8.1.2 ਇੱਕ ਸਮਾਨ ਗਤੀ ਅਤੇ ਅਸਮਾਨ ਗਤੀ (Uniform Motion And Non-Uniform Motion)

ਮੰਨ ਲਓ ਇੱਕ ਵਸਤੂ ਸਿੱਧੀ ਰੇਖਾ ਤੇ ਚਲ ਰਹੀ ਹੈ। ਮੰਨ ਲੳ ਕਿ ਇਹ ਪਹਿਲੇ ਸੈਕਿੰਡ (s) ਵਿੱਚ 50m, ਦੂਜੇ ਸੈਕਿੰਡ (s) ਵਿੱਚ 50m, ਤੀਜੇ ਸੈਕਿੰਡ (s) ਵਿੱਚ 50m

ਅਤੇ ਚੌਥੇ ਸੈਕਿੰਡ (s) ਵਿੱਚ 50 m ਦੂਰੀ ਤੈਅ ਕਰਦੀ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਵਸਤੂ ਹਰ ਸਕਿੰਟ ਵਿੱਚ 50m ਦੀ ਦੂਰੀ ਤੈਅ ਕਰਦੀ ਹੈ ਜਦੋਂ ਵਸਤੂ ਬਰਾਬਰ ਸਮੇਂ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਬਰਾਬਰ ਦੂਰੀ ਤੈਅ ਕਰਦੀ ਹੈ ਤਾਂ ਉਸਦੀ ਗਤੀ ਨੂੰ ਇੱਕ ਸਮਾਨ ਗਤੀ (Uniform Motion) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਗਤੀ ਵਿੱਚ ਸਮੇਂ ਅੰਤਰਾਲ ਛੋਟੇ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਅਸੀਂ ਰੋਜ਼ਾਨਾ ਜ਼ਿੰਦਗੀ ਵਿੱਚ ਕਈ ਵਾਰ ਅਜਿਹੀਆਂ ਗਤੀਆਂ ਵੇਖਦੇ ਹਾਂ ਜਿੱਥੇ ਵਸਤੂਆਂ (ਸਮਾਨ) ਸਮੇਂ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਅਸਮਾਨ ਦੂਰੀ ਤੈਅ ਕਰਦੀਆਂ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਭੀੜ ਵਾਲੀ ਸੜਕ ਤੇ ਜਾ ਰਹੀ ਕਾਰ ਜਾਂ ਪਾਰਕ ਵਿੱਚ ਦੌੜ ਰਿਹਾ ਇੱਕ ਵਿਅਕਤੀ, ਇਹ ਅਸਮਾਨ ਗਤੀ (non-Uniform Motion) ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਹਨ।

ਕਿਰਿਆ _____

	ਦੋ ਵਸਤੂਆਂ A ਅਤੇ B ਦੀ ਗਤੀ ਨਾਲ ਸੰਬੰਧਤ ਔਕੜੇ ਨੂੰ
8	ਸਾਰਣੀ 8.1 ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ।
	ਧਿਆਨ ਨਾਲ ਨਿਗੇਖਣ ਕਰੋ ਅਤੇ ਦੱਸੇ ਕਿ ਵਸਤੂਆਂ ਦੀ
8	ਗਤੀ ਇੱਕ ਸਮਾਨ ਹੈ ਜਾਂ ਅਸਮਾਨ।

ਸਾਰਣੀ 8.1

ਸਮਾਂ	ਵਸਤੂ A ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (ਮੀਟਰ ਵਿੱਚ)	ਵਸਤੂ B ਦੁਆਰਾ ਤੇਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (ਮੀਟਰ ਵਿੱਚ)
9:30 am	10	12
9:45 am	20	19
10:00 am	30	23
10:15 am	40	35
10:30 am	50	37
10:45 am	60	41
11:00 am	70	44

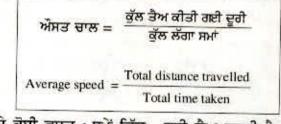
8.2 ਗਤੀ ਦੀ ਦਰ ਦਾ ਮਾਪਣ (Measuring the Rate of Motion)

ਚਿੱਤਰ 8.2 ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਸਥਿਤੀ ਨੂੰ ਦੇਖੋ। ਚਿੱਤਰ

ਵਿਗਿਆਨ

110

8.2 (ੳ) ਵਿੱਚ ਜੇ ਗੇਂਦ ਦੀ ਚਾਲ 143km/h ਹੈ, ਤਾਂ ਇਸ



ਤੋਂ ਕੀ ਭਾਵ ਹੈ ? ਚਿੱਤਰ 8.2 (ਅ) ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਸਾਈਨ ਬੋਰਡ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ?

ਕਿਸੇ ਦਿੱਤੀ ਗਈ ਨਿਸ਼ਚਿਤ ਦੂਰੀ ਨੂੰ ਤੈਅ ਕਰਨ ਲਈ ਵੱਖ-ਵੱਖ ਵਸਤੂਆਂ ਵੱਖ-ਵੱਖ ਸਮਾਂ ਲੈਣਗੀਆਂ। ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਤੇਜ਼ ਚੱਲਦੀਆਂ ਹਨ ਅਤੇ ਕੁੱਝ ਹੌਲੀ। ਵਸਤੂਆਂ ਦੀ ਗਤੀ ਕਰਨ ਦੀ ਦਰ ਵੱਖ-ਵੱਖ ਹੋ ਸਕਦੀ ਹੈ।ਵੱਖ-ਵੱਖ ਵਸਤੂਆਂ ਇੱਕ ਸਮਾਨ ਦਰ ਨਾਲ ਵੀ ਗਤੀ

ਗਤੀ

ਕਰ ਸਕਦੀਆਂ ਹਨ। ਕਿਸੇ ਇੱਕ ਵਸਤੁ ਦੀ ਗਤੀ ਦੀ ਦਰ ਨੂੰ ਮਾਪਣ ਦੇ ਤਰੀਕਿਆਂ ਵਿੱਚੋਂ ਇੱਕ ਤਰੀਕਾ ਵਸਤੂ ਦੁਆਰਾ ਇਕਾਈ ਸਮੇਂ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਪ੍ਰਾਪਤ ਕਰਨਾ ਹੈ। ਇਸ ਰਾਸ਼ੀ ਨੂੰ ਚਾਲ (Speed) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। 'ਚਾਲ' (v) ਦਾ ਮਾਤਕ ਇਕਾਈ (unit) 'ਮੀਟਰ/ਸੈਕਿੰਡ' ਹੈ। ਇਹ m/s ਜਾਂ ms⁻¹ ਚਿੰਨ੍ਹ ਨਾਲ ਦਰਸਾਈ ਜਾਂਦੀ ਹੈ। ਚਾਲ ਦੀਆਂ ਹੋਰ ਇਕਾਈਆਂ ਸੈਂਟੀਮੀਟਰ ਪ੍ਰਤੀ ਸੈਕਿੰਡ (cms⁻¹) ਅਤੇ ਕਿਲੋਮੀਟਰ ਪ੍ਰਤੀ ਘੰਟਾ (kmh⁻¹) ਹਨ। ਵਸਤੂ ਦੀ ਗਤੀ ਨੂੰ ਬਿਆਨ ਕਰਨ ਲਈ ਸਾਨੂੰ ਸਿਰਫ਼ ਉਸਦੀ ਮਾਤਰਾ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਇਹ ਜ਼ਰੂਰੀ ਨਹੀਂ ਕਿ ਵਸਤੂ ਦੀ ਚਾਲ ਹਮੇਸ਼ਾਂ ਸਥਿਰ ਰਹੇ। ਜ਼ਿਆਦਾਤਰ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਵਸਤੂਆਂ ਅਸਮਾਨ ਗਤੀ ਵਿੱਚ ਹੋਣਗੀਆਂ। ਇਸ ਲਈ ਅਸੀਂ ਅਜਿਹੀਆਂ ਵਸਤੂਆਂ ਦੀ ਗਤੀ ਦੀ ਦਰ ਨੂੰ ਉਹਨਾਂ ਦੀ ਔਸਤ ਚਾਲ (Average Speed) ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਉਂਦੇ ਹਾਂ। ਵਸਤੂ ਦੀ ਔਸਤ ਚਾਲ ਨੂੰ ਉਸਦੇ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਕੁੱਲ ਦੂਰੀ ਨੂੰ ਕੁੱਲ ਲੱਗੇ ਸਮੇਂ ਨਾਲ ਭਾਗ ਕਰਕੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਜੇ ਕੋਈ ਵਸਤੂ / ਸਮੇਂ ਵਿੱਚ s ਦੂਰੀ ਤੈਅ ਕਰਦੀ ਹੈ ਤਾਂ ਇਸਦੀ ਚਾਲ

 $v = \frac{s}{t}$

(8.1)

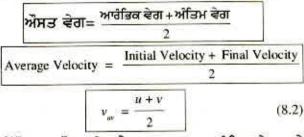
ਆਓ ਅਸੀਂ ਇਸ ਨੂੰ ਇੱਕ ਉਦਾਹਰਣ ਰਾਹੀਂ ਸਮਝੀਏ। ਇੱਕ ਕਾਰ 100 km ਦੀ ਦੂਰੀ 2 ਘੰਟਿਆਂ ਵਿੱਚ ਤੈਅ ਕਰਦੀ ਹੈ। ਇਸਦੀ ਔਸਤ ਚਾਲ 50 kmh⁻¹ ਹੈ। ਕਾਰ ਪੂਰੇ ਸਮੇਂ 50 km/h ਦੀ ਚਾਲ ਨਾਲ ਨਹੀਂ ਚੱਲੀ ਹੋਵੇਗੀ। ਕੁੱਝ ਸਮੇਂ ਲਈ ਇਹ ਇਸ ਤੋਂ ਜ਼ਿਆਦਾ ਤੇਜ਼ ਚਲੀ ਹੋਵੇਗੀ ਅਤੇ ਕੁੱਝ ਸਮੇਂ ਲਈ ਇਹ ਇਸ ਤੋਂ ਘੱਟ ਚਾਲ ਨਾਲ ਚਲੀ ਹੋਵੇਗੀ।

ਉਦਾਹਰਣ 8.1 : ਇੱਕ ਵਸਤੂ 16m ਦੀ ਦੂਰੀ 4s ਵਿੱਚ ਦੁਬਾਰਾ 16m ਦੀ ਦੂਰੀ 2s ਵਿੱਚ ਤੈਅ ਕਰਦੀ ਹੈ। ਉਸ ਵਸਤੂ ਦੀ ਔਸਤ ਚਾਲ ਕੀ ਹੈ ?

111

ਹੱਲ :

ਵਸਤੂ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਕੁੱਲ ਦੂਰੀ = 16 m + 16 m = 32 m ਕੁੱਲ ਲੱਗਾ ਸਮਾਂ = 4 s + 2 s = 6 s


ਕੁੱਲ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਔਸਤ ਚਾਲ = ਕੁੱਲ ਲੱਗਾ ਸਮਾਂ

 $=\frac{32 \text{ m}}{6 \text{ s}}=5.33 \text{ m s}^{-1}$

ਇਸ ਲਈ, ਵਸਤੂ ਦੀ ਔਸਤ ਚਾਲ 5.33 m s⁻¹ ਹੈ।

8.2.1 ਚਾਲ ਦਿਸ਼ਾ ਨਾਲ਼ (Speed With Direction) ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਤੀ ਦੀ ਦਰ ਹੋਰ ਵੀ ਜ਼ਿਆਦਾ ਵਿਆਪਕ ਹੋ ਸਕਦੀ ਹੈ। ਜੇਕਰ ਅਸੀਂ ਉਸ ਦੀ ਚਾਲ ਦੇ ਨਾਲ-ਨਾਲ ਦਿਸ਼ਾ ਨੂੰ ਵੀ ਬਿਆਨ ਕਰੀਏ। ਉਹ ਰਾਸ਼ੀ ਜੋ ਇਹਨਾਂ ਦੋਵਾਂ ਪੱਖਾਂ ਨੂੰ ਬਿਆਨ ਕਰਦੀ ਹੈ। ਇਸ ਲਈ ਇਕ ਨਿਸ਼ਚਿਤ ਦਿਸ਼ਾ ਵਿੱਚ ਚਾਲ ਨੂੰ 'ਵੇਗ' (Velocity) ਕਹਿੰਦੇ ਹਨ। ਕਿਸੇ ਵਸਤੂ ਦਾ ਵੇਗ ਇੱਕ ਸਮਾਨ ਜਾਂ ਅਸਮਾਨ ਹੋ ਸਕਦਾ ਹੈ। ਵੇਗ ਵਸਤੂ ਦੀ ਚਾਲ, ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਜਾਂ ਦੋਨੋਂ ਦੇ ਬਦਲਣ ਨਾਲ ਬਦਲ ਸਕਦਾ ਹੈ। ਜਦੋਂ ਕੋਈ ਵਸਤੂ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਬਦਲਦੀ ਹੋਈ ਚਾਲ ਦੇ ਨਾਲ ਗਤੀ ਕਰਦੀ ਹੈ, ਤਦ ਅਸੀਂ ਇਸਦੀ ਗਤੀ ਦੀ ਦਰ ਦੀ ਮਾਤਰਾ ਨੂੰ 'ਔਸਤ ਵੇਗ' (Average Velocity) ਦੁਆਰਾ ਦਰਸਾ ਸਕਦੇ ਹਾਂ। ਇਸ ਦਾ ਹੱਲ ਔਸਤ ਚਾਲ ਦੇ ਹੱਲ ਦੇ ਸਮਾਨ ਹੀ ਹੁੰਦਾ ਹੈ।

ਜੇਕਰ ਕਿਸੇ ਵਸਤੂ ਦਾ ਵੇਗ (Velocity) ਇੱਕ ਸਮਾਨ ਦਰ ਨਾਲ ਬਦਲਦਾ ਹੈ, ਉਦੋਂ ਔਸਤ ਵੇਗ ਦਿੱਤੇ ਗਏ ਸਮੇਂ ਵਿੱਚ ਮੁੱਢਲੇ ਆਰੰਭਿਕ ਵੇਗ ਅਤੇ ਅੰਤਿਮ ਵੇਗ ਦੇ ਔਸਤ (Mean) ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਜਿੱਥੇ v_{av} ਔਸਤ ਵੇਗ ਹੈ, v ਵਸਤੂ ਦਾ ਆਰੰਭਿਕ ਵੇਗ ਅਤੇ v ਵਸਤੂ ਦਾ ਅੰਤਿਮ ਵੇਗ ਹੈ। ਚਾਲ ਅਤੇ ਵੇਗ ਦੋਨਾਂ ਦੀ ਇਕਾਈ (Unit) ਸਮਾਨ ਹੁੰਦੀ ਹੈ, ਭਾਵ ms⁻¹ ਜਾਂ m/s।

112

ਕਿਰਿਆ

8.6

8.7

ਆਪਣੇ ਘਰ ਤੋਂ ਬਸ ਸਟਾਪ ਤੱਕ ਜਾਂ ਸਕੂਲ ਤੱਕ ਚੱਲ ਕੇ ਜਾਣ ਵਿੱਚ ਲੱਗੇ ਸਮੇਂ ਨੂੰ ਮਾਪੋ। ਜੋ ਤੁਸੀਂ ਮੰਨ ਲਉ ਕਿ ,ਤੁਹਾਡੇ ਪੈਦਲ ਚੱਲਣ ਦੀ ਔਸਤ ਚਾਲ 4km/h ਹੈ, ਤਾਂ ਆਪਣੇ ਘਰ ਤੋਂ ਬਸ ਸਟਾਪ ਦੀ ਜਾਂ ਸਕੂਲ ਦੀ ਦੂਰੀ ਦਾ ਪਤਾ ਲਗਾਓ।

ਕਿਰਿਆ

ਜਦੋਂ ਅਸਮਾਨ ਵਿੱਚ ਬੱਦਲ ਛਾਏ ਹੁੰਦੇ ਹਨ, ਤਾਂ ਬਿਜਲੀ ਦੇ ਚਮਕਣ ਅਤੇ ਬੱਦਲਾਂ ਦੇ ਗਰਜਣ ਦੀ ਕਿਰਿਆ ਬਾਰ-ਬਾਰ ਹੋ ਸਕਦੀ ਹੈ। ਪਹਿਲਾਂ ਬਿਜਲੀ ਦੀ ਚਮਕ ਹੁੰਦੀ ਹੈ ਅਤੇ ਉਸਦੇ ਕੁੱਝ ਸਮੇਂ ਬਾਅਦ ਬੱਦਲਾਂ ਦੇ ਗਰਜਣ ਦੀ ਧੁਨੀ ਤੁਹਾਡੇ ਤੱਕ ਪੁੱਜਦੀ ਹੈ।

ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕੋਗੇ ਇਸ ਤਰ੍ਹਾਂ ਕਿਉਂ ਹੁੰਦਾ ਹੈ ? ਤੁਸੀਂ ਇਹਨਾਂ ਵਿੱਚ ਸਮੇਂ ਅੰਤਰਾਲ ਨੂੰ ਡਿਜਿਟਲ ਕਲਾਈ ਘੜੀ ਜਾਂ ਵਿਰਾਮ ਘੜੀ (ਸਟਾਪ ਵਾਚ) ਨਾਲ ਮਾਪੋ। ਬਿਜਲੀ ਦੀ ਚਮਕ ਦੇ ਸਭ ਤੋਂ ਨੇੜੇ ਦੇ ਬਿੰਦੂ ਦੀ ਦੂਰੀ ਦਾ ਪਤਾ ਕਰੋ। (ਧਨੀ ਦੀ ਹਵਾ ਵਿੱਚ ਚਾਲ 346 m/s⁻¹ ਹੈ)

ਸ਼ਨ

- 1. ਚਾਲ (speed) ਅਤੇ ਵੇਗ (Velocity) ਵਿੱਚ ਅੰਤਰ ਦੱਸੋ।
 - ਕਿਹੜੀਆਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਔਸਤ ਵੇਗ ਦੀ ਮਾਤਰਾ ਔਸਤ ਚਾਲ ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ ?
- ਸਵੰਚਾਲਿਤ ਵਾਹਨ ਦਾ ਓਡੋਮੀਟਰ ਕੀ ਮਾਪਦਾ ਹੈ?
- 4. ਜਦੋਂ ਵਸਤੂ ਇੱਕ ਸਮਾਨ ਗਤੀ ਵਿੱਚ ਹੁੰਦੀ ਹੈ ਤਾਂ ਉਸਦਾ ਮਾਰਗ ਕਿਹੇ ਜਿਹਾ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ ?
- ਇੱਕ ਪ੍ਰਯੋਗ ਦੇ ਦੌਰਾਨ, ਪੁਲਾੜਯਾਨ ਤੋਂ ਇੱਕ ਸਿਗਨਲ ਨੂੰ ਧਰਤੀ ਤੱਕ ਪੁੱਜਣ ਲਈ 5 ਮਿੰਟ ਦਾ ਸਮਾਂ ਲੱਗਦਾ ਹੈ। ਧਰਤੀ ਤੋਂ ਸਥਿਤ ਸਟੇਸ਼ਨ ਤੋਂ ਉਸ ਪੁਲਾਡਯਾਨ ਦੀ ਦੂਰੀ ਕਿੰਨੀ ਹੈ ? (ਸਿਗਨਲ ਦੀ ਚਾਲ = ਪ੍ਰਕਾਸ਼ ਦੀ ਚਾਲ = 3 × 10⁸ ms⁻¹)

ਉਦਾਹਰਣ 8.2 ਯਾਤਰਾ ਸ਼ੁਰੂ ਹੋਣ ਸਮੇਂ ਕਾਰ ਦਾ ਓਡੋਮੀਟਰ 2000 km ਦਰਸਾਉਂਦਾ ਹੈ ਅਤੇ ਯਾਤਰਾ ਦੀ ਸਮਾਪਤੀ ਤੇ 2400 km ਦਰਸਾਉਂਦਾ ਹੈ। ਜੇਕਰ

ਵਿਗਿਆਨ

ਇਸ ਯਾਤਰਾ ਨੂੰ 8 ਘੰਟੇ ਲੱਗੇ ਹੋਣ ਤਾਂ ਕਾਰ ਦੀ ਔਸਤ ਚਾਲ km/h ਅਤੇ m/s ਵਿੱਚ ਪਤਾ ਕਰੋ। ਹੱਲ :

ਕਾਰ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ s = 2400 km – 2000 km

= 400 km

ਕੁੱਲ ਲੱਗਾ ਸਮਾਂ t = 8 h ਕਾਰ ਦੀ ਔਸਤ ਚਾਲ

$$v_{av} = \frac{s}{t} = \frac{400 \text{ km}}{8 \text{ h}}$$
$$= 50 \text{ km h}^{-1}$$

 $= 50 \frac{\mathrm{km}}{\mathrm{h}} \times \frac{1000 \,\mathrm{m}}{1 \,\mathrm{km}} \times \frac{1 \mathrm{h}}{3600 \,\mathrm{s}}$

$$= 13.9 \text{ m s}^{-1}$$

ਕਾਰ ਦੀ ਔਸਤ ਚਾਲ 50km/h ਜਾਂ 13.9m/s ਹੈ।

ਉਦਾਹਰਣ 8.3. ਊਸ਼ਾ 90m ਲੰਬੇ ਤਲਾਬ ਵਿੱਚ ਤੈਰਦੀ ਹੈ। ਉਹ ਇੱਕ ਸਿਰੇ ਤੋਂ ਦੂਜੇ ਸਿਰੇ ਤੱਕ ਸਰਲ ਰੇਖੀ ਪੱਥ ਤੇ ਜਾਂਦੀ ਹੈ ਅਤੇ ਵਾਪਸ ਆਉਂਦੀ ਹੈ। ਇਸ ਦੌਰਾਨ ਉਹ ਕੁੱਲ 180m ਦੀ ਦੂਰੀ 1 ਮਿੰਟ ਵਿੱਚ ਤੈਅ ਕਰਦੀ ਹੈ। ਊਸ਼ਾ ਦੀ ਔਸਤ ਚਾਲ ਅਤੇ ਔਸਤ ਵੇਗ ਨੂੰ ਗਿਆਤ ਕਰੋ।

ਹੱਲ :

ਊਸ਼ਾ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਕੁੱਲ ਦੂਰੀ 180m ਹੈ।

1 ਮਿੰਟ ਵਿੱਚ ਊਸ਼ਾ ਦਾ ਵਿਸਥਾਪਨ = 0 m

[ਔਸਤ ਚਾਲ = ਕੁੱਲ ਡੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ
ਕੁੱਲ ਲੱਗਾ ਸਮਾਂ
=
$$\frac{180 \,\mathrm{m}}{1 \,\mathrm{min}} = \frac{180 \,\mathrm{m}}{1 \,\mathrm{min}} imes \frac{1 \,\mathrm{min}}{60 \,\mathrm{s}}$$

= 3 m s⁻¹

$$=\frac{0\,\mathrm{m}}{60\,\mathrm{s}}=0\,\mathrm{m\,s}$$

ਊਸ਼ਾ ਦੀ ਔਸਤ ਚਾਲ 3m/s ਹੈ ਅਤੇ ਉਸਦਾ ਔਸਤ ਵੇਗ 0m/s⁻¹ ਹੈ।

8.3 ਵੇਗ ਦੇ ਪਰਿਵਰਤਨ ਦੀ ਦਰ (Rate of Change of Velocity)

ਕਿਸੇ ਵਸਤੂ ਦੀ ਇੱਕ ਸਮਾਨ ਸਰਲ ਰੇਖੀ ਗਤੀ (Uniform Linear Motion) ਦੇ ਦੌਰਾਨ, ਵੇਗ (Velocity) ਸਮੇਂ ਦੇ ਨਾਲ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ। ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਕਿਸੇ ਵੀ ਸਮੇਂ ਅੰਤਰਾਲ ਵਿੱਚ ਵਸਤੂ ਦੇ ਵੇਗ ਵਿੱਚ ਅੰਤਰ ਸਿਫ਼ਰ ਹੁੰਦਾ ਹੈ।ਪਰੰਤੂ ਅਸਮਾਨ ਗਤੀ (Non-Uniform Motion) ਵਿੱਚ, ਵੇਗ ਸਮੇਂ ਦੇ ਨਾਲ ਬਦਲਦਾ ਹੈ। ਇਸਦਾ ਮਾਨ ਵੱਖ-ਵੱਖ ਸਮੇਂ ਤੇ ਅਤੇ ਮਾਰਗ ਦੇ ਵੱਖ-ਵੱਖ ਬਿੰਦੂਆਂ ਤੇ ਵੱਖ-ਵੱਖ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਕਿਸੇ ਵੀ ਸਮੇਂ ਅੰਤਰਾਲ ਤੇ ਵਸਤੂ ਦੇ ਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਸਿਫ਼ਰ ਨਹੀਂ ਹੁੰਦਾ। ਕੀ ਹੁਣ ਅਸੀਂ ਵਸਤੂ ਦੇ ਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਨੂੰ ਬਿਆਨ ਕਰ ਸਕਦੇ ਹਾਂ?

ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਪ੍ਰਸ਼ਨਾਂ ਦਾ ਉੱਤਰ ਦੇਣ ਲਈ ਸਾਨੂੰ ਇੱਕ ਹੋਰ ਭੌਤਿਕ ਰਾਸ਼ੀ ਤਵਰਣ ਜਾਂ ਪ੍ਰਵੇਗ (acceleration) (a) ਦੇ ਬਾਰੇ ਜਾਣਨਾ ਹੋਵੇਗਾ, ਜੋ ਕਿ ਇੱਕ ਵਸਤੂ ਦੇ ਇਕਾਈ ਸਮੇਂ ਵਿੱਚ ਵੇਗ ਦੇ ਪਰਿਵਰਤਨ ਦਾ ਮਾਪ ਹੈ—

ਜੇ ਕਿਸੀ ਵਸਤੂ ਦਾ ਵੇਗ ਆਰੰਭਿਕ ਵੇਗ ॥ ਤੋਂ ਸਮੇਂ ਵਿੱਚ ਬਦਲਦੇ ॥ ਹੋ ਜਾਂਦਾ ਹੈ ਤਾਂ ਪ੍ਰਵੇਗ a ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੋਵੇਗਾ।

$$a = \frac{v - u}{t} \tag{8.3}$$

113

ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਗਤੀ ਨੂੰ ਪ੍ਰਵੇਗਿਤ ਗਤੀ (Accelerated Motion) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ ਪ੍ਰਵੇਗ (Acceleration) ਵੇਗ (Velocity) ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੈ, ਤਾਂ ਇਸਨੂੰ ਧਨਾਤਮਕ (+ve) ਲਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਜੇਕਰ ਇਹ ਵੇਗ ਦੇ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਹੈ ਤਾਂ ਇਸਨੂੰ ਰਿਣਾਤਮਕ (-ve) ਲਿਆ ਜਾਂਦਾ ਹੈ। ਪ੍ਰਵੇਗ ਦੀ SI ਇਕਾਈ m/s⁻² ਹੈ।

Downloaded from https:// www.studiestoday.c

ਗਤੀ

ਜੇਕਰ ਕੋਈ ਵਸਤੂ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਚੱਲਦੀ ਹੈ ਅਤੇ ਇਸਦਾ ਵੇਗ ਬਰਾਬਰ ਸਮੇਂ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਬਰਾਬਰ ਮਾਤਰਾ ਵਿੱਚ ਘੱਟਦਾ ਜਾਂ ਵੱਧਦਾ ਹੈ ਤਾਂ ਵਸਤੂ ਦੇ ਪ੍ਰਵੇਗ ਨੂੰ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ (Uniform acceleration) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਆਪਣੇ ਆਪ ਡਿੱਗਦੀ ਹੋਈ ਵਸਤੂ (freely falling body) ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ (Uniform acceleration) ਦੀ ਉਦਾਹਰਣ ਹੈ। ਦੂਸਰੇ ਪਾਸੇ ਇੱਕ ਵਸਤੂ ਅਸਮਾਨ ਪ੍ਰਵੇਗ ਨਾਲ ਚੱਲ ਸਕਦੀ ਹੈ ਜੇ ਉਸਦਾ ਵੇਗ ਅਸਮਾਨ ਦਰ ਨਾਲ ਬਦਲਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ 'ਤੇ ਜੇਕਰ ਇਕ ਕਾਰ ਸਿੱਧੀ ਸੜਕ ਤੇ ਚੱਲਦੇ ਹੋਏ ਬਰਾਬਰ ਸਮੇਂ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਅਸਮਾਨ ਦਰ ਨਾਲ ਚਾਲ ਬਦਲਦੀ ਹੈ। ਤਾਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਕਾਰ ਅਸਮਾਨ ਪ੍ਰਵੇਗ (Non Uniform acceleration) ਦੇ ਨਾਲ ਗਤੀਮਾਨ ਹੈ।

ਕਿਰਿਆ ____

_____8.8

- ਤੁਸੀਂ ਰੋਜ਼ਾਨਾ ਜ਼ਿੰਦਗੀ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਵੱਖ-ਵੱਖ ਗਤੀਆਂ ਨੂੰ ਵੇਖਦੇ ਹੋਵੇਗੇ ਜਿਹਨਾਂ ਵਿੱਚੋਂ
- (a) ਪਵੇਗ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੈ।
- (b) ਪਵੇਗ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਤੋਂ ਉਲਟ ਹੈ।
- (c) ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ (Uniform acceleration) ਹੈ।
- (d) ਅਸਮਾਨ ਪ੍ਵੇਗ (Non-Uniform acceleration) ਹੈ।
- ਕੀ ਤੁਸੀਂ ਉੱਪਰ ਦੱਸੀ ਗਈ ਹਰੇਕ ਪ੍ਰਕਾਰ ਦੀ ਗਤੀ ਦੀ ਕਿਸਮ ਦਾ ਇੱਕ-ਇੱਕ ਉਦਾਹਰਣ ਦੇ ਸਕਦੇ ਹੋ ?

ਉਦਾਹਰਣ 8.3. ਰਾਹੁਲ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਖੜ੍ਹੀ ਸਾਈਕਲ ਨੂੰ ਚਲਾਉਣਾ ਸ਼ੁਰੂ ਕਰਦਾ ਹੈ ਅਤੇ 30s ਵਿੱਚ 6ms⁻¹ ਦਾ ਵੇਗ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦਾ ਹੈ। ਉਹ ਇਸ ਤਰ੍ਹਾਂ ਬਰੇਕ ਲਗਾਉਂਦਾ ਹੈ ਕਿ ਸਾਈਕਲ ਦਾ ਵੇਗ ਅਗਲੇ 5s ਵਿੱਚ ਘੱਟ ਹੋ ਕੇ 4ms⁻¹ ਹੋ ਜਾਂਦਾ ਹੈ। ਦੋਨੋਂ ਹਾਲਾਤਾਂ ਵਿੱਚ ਸਾਈਕਲ ਦਾ ਪ੍ਵੇਗ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਪਹਿਲੀ ਸਥਿਤੀ ਵਿੱਚ — ਆਰੰਭਿਕ ਵੇਗ (u) = 0 ਅੰਤਿਮ ਵੇਗ (v) = 6ms⁻¹ ਸਮਾਂ (t) = 30s

ਸਮੀਕਰਣ (8.3) ਤੋਂ

114

$$a = \frac{v - u}{t}$$

u, v ਅਤੇ t ਦਾ ਦਿੱਤਾ ਹੋਇਆ ਮਾਨ ਉੱਪਰ ਦਿੱਤੇ ਗਏ ਸਮੀਕਰਣ ਵਿੱਚ ਰੱਖਣ ਤੇ,

> $a = \frac{(6 \text{ m s}^{-1} - 0 \text{ m s}^{-1})}{30 \text{ s}}$ = 0.2 m s⁻² ਦੂਜੀ ਅਵਸਥਾ ਵਿੱਚ ਆਰੰਭਿਕ ਵੇਗ $u = 6 \text{ms}^{-1}$ ਅੰਤਿਮ ਵੇਗ $v = 4 \text{ms}^{-1}$ ਸਮਾਂ (t) = 5 sਪ੍ਰਵੇਗ, $a = \frac{(4 \text{ m s}^{-1} - 6 \text{ m s}^{-1})}{5 \text{ s}}$

= -0.4 m s⁻². ਸਾਈਕਲ ਦਾ ਪ੍ਰਵੇਗ ਪਹਿਲੀ ਸਥਿਤੀ ਵਿੱਚ 0.2ms⁻² ਅਤੇ ਦੂਜੀ ਸਥਿਤੀ ਵਿੱਚ -0.4 ms⁻² ਹੈ।

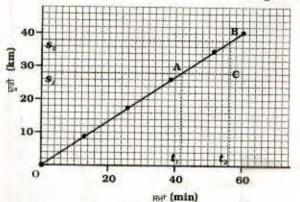
ਤੁਸੀਂ ਕਿਸੇ ਵਸਤੂ ਬਾਰੇ ਕਦੋਂ ਕਹੋਗੇ ਕਿ

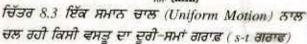
- (i) ਉਹ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ ਨਾਲ ਗਤੀ ਵਿੱਚ ਹੈ ?
 (ii) ਉਹ ਅਸਮਾਨ ਪ੍ਰਵੇਗ ਨਾਲ ਗਤੀ ਵਿੱਚ ਹੈ ?
- ਇੱਕ ਬੱਸ ਦੀ ਚਾਲ 80kmh ' ਤੋਂ ਘੱਟ ਕੇ 60kmh' 5s ਵਿੱਚ ਹੋ ਜਾਂਦੀ ਹੈ। ਬੱਸ ਦਾ ਪ੍ਰਵੇਗ ਪਤਾ ਕਰੋ ?
- ਇੱਕ ਬੇਲਗੱਡੀ ਰੇਲਵੇ ਸਟੇਸ਼ਨ ਤੋਂ ਚੱਲਣਾ ਸ਼ੁਰੂ ਕਰਦੀ ਹੈ ਅਤੇ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ ਨਾਲ ਚੱਲਦੇ 40km/h ਦੀ ਚਾਲ 10 ਮਿੰਟਾਂ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦੀ ਹੈ।ਉਸਦਾ ਪ੍ਰਵੇਗ ਪਤਾ ਕਰੋ।

8.4 ਗਤੀ ਦਾ ਗਰਾਫ਼ ਰਾਹੀਂ ਪ੍ਰਦਰਸ਼ਨ

(Graphical Representation of Motion)

ਕਈ ਘਟਨਾਵਾਂ ਬਾਰੇ ਮੂਲ ਜਾਣਕਾਰੀ ਸੁਵਿਧਾਜਨਕ ਢੰਗ ਨਾਲ ਗਰਾਫ਼ ਰਾਹੀਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ ਕਿਸੇ ਇੱਕ ਰੋਜ਼ਾ ਕ੍ਰਿਕੇਟ ਮੈਚ ਦੇ ਪ੍ਰਸਾਰਣ ਵਿੱਚ ਕਿਸੇ ਟੀਮ ਦੁਆਰਾ ਹਰੇਕ ਓਵਰ ਵਿੱਚ ਬਣਾਏ ਗਏ ਰਨਾਂ ਦੀ ਦਰ ਨੂੰ ਅਕਸਰ 'ਸਿੱਧਾ ਖੜ੍ਹੇ' ਬਾਰ ਗਰਾਫ਼ ਨਾਲ ਦਿਖਾਇਆ ਜਾਂਦਾ ਹੈ। ਜਿਸ ਤਰ੍ਹਾਂ ਤੁਸੀਂ


ਵਿਗਿਆਨ


ਗਣਿਤ ਵਿੱਚ ਪੜ੍ਹਿਆ ਹੈ ਕਿ ਇੱਕ ਸਰਲ ਰੇਖੀ ਗਰਾਫ਼ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਦੋ ਚਰ ਯੁਕਤ (Two Variables) ਰੇਖਿਕ ਸਮੀਕਰਣ ਦਾ ਹੱਲ ਪਤਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਤੀ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਇੱਕ ਰੇਖੀ ਗਰਾਫ਼ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਰੇਖਾ ਗਰਾਫ਼ ਕਿਸੇ ਇੱਕ ਭੌਤਿਕ ਰਾਸ਼ੀ ਤੇ ਨਿਰਭਰਤਾ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਜਿਵੇਂ ਦੂਰੀ ਜਾਂ ਵੇਗ ਦੀ ਦੂਜੀ ਰਾਸ਼ੀ, ਜਿਵੇਂ ਸਮੇਂ ਤੇ ਨਿਰਭਰ ਹੋਣਾ।

8.4.1 ਦੂਰੀ-ਸਮਾਂ ਗਰਾਫ਼ (x – t ਗਰਾਫ਼) (Distance - Time Graphs)

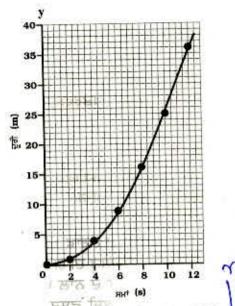
(i) ਇਕ ਸਮਾਨ ਗਤੀ ਲਈ (For Uniform Motion)
(ii) ਅਸਮਾਨ ਗਤੀ ਲਈ (For Non-Uniform Motion)
ਸਮੇਂ ਦੇ ਨਾਲ ਕਿਸੀ ਵਸਤੂ ਦੀ ਸਥਿਤੀ ਪਰਿਵਰਤਨ ਨੂੰ
ਇੱਕ ਸੁਵਿਧਾਜਨਕ ਪੈਮਾਨਾ ਚੁਣ ਕੇ ਦੂਰੀ-ਸਮਾਂ ਗਰਾਫ਼
ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਗਰਾਫ਼
ਵਿੱਚ ਸਮੇਂ ਨੂੰ x-ਧੁਰੇ ਅਤੇ ਦੂਰੀ ਨੂੰ y-ਧੁਰੇ ਤੇ ਲਿਆ
ਜਾਂਦਾ ਹੈ। ਦੂਰੀ ਸਮੇਂ ਗਰਾਫ਼ ਨੂੰ ਵੱਖ-ਵੱਖ ਅਵਸਥਾਵਾਂ
ਵਿੱਚ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਜਿਵੇਂ ਵਸਤੂ ਇੱਕ

ਸਮਾਨ ਚਾਲ, ਅਸਮਾਨ ਚਾਲ ਨਾਲ ਚਲ ਰਹੀ ਹੋਵੇ ਜਾਂ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਹੋਵੇ ਆਦਿ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਜਦੋਂ ਕੋਈ ਵਸਤੂ ਬਰਾਬਰ ਦੂਰੀ ਬਰਾਬਰ ਸਮੇਂ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਤੈਅ ਕਰਦੀ ਹੈ ਤਾਂ ਇਹ ਇੱਕ ਸਮਾਨ ਗਤੀ ਹੈ। ਵਸਤੂ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ, ਲੱਗੇ ਸਮੇਂ ਦੇ ਅਨੁਕ੍ਰਮਾਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਇੱਕ ਸਮਾਨ ਚਾਲ ਲਈ, ਸਮੇਂ ਦੇ ਨਾਲ ਤੈਅ ਕੀਤੀ ਗਈ

ਗਤੀ

ਦੂਰੀ ਦਾ ਗਰਾਫ਼ ਇੱਕ ਸਰਲ ਰੇਖਾ (Straight Line) ਹੈ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 8.3 ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ। ਗਰਾਫ਼ ਦਾ OB ਭਾਗ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਦੂਰੀ, ਇੱਕ ਸਮਾਨ ਦਰ ਨਾਲ ਵੱਧ ਰਹੀ ਹੈ। ਧਿਆਨ ਦਿਓ, ਜੇਕਰ ਅਸੀਂ y-ਧੁਰੇ ਤੇ ਵਿਸਥਾਪਨ ਦੀ ਮਾਤਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਦੇ ਬਰਾਬਰ ਲੈਂਦੇ ਹਾਂ ਤਾਂ ਤੁਸੀਂ ਇੱਕ ਸਮਾਨ 'ਚਾਲ' ਦੀ ਜਗ੍ਹਾ ਤੇ ਇੱਕ ਸਮਾਨ ਵੇਗ ਸ਼ਬਦ ਦਾ ਪ੍ਰਯੋਗ ਵੀ ਕਰ ਸਕਦੇ ਹੋ।


ਅਸੀਂ (s – t) ਗਰਾਫ਼ ਦੂਰੀ-ਸਮੇਂ ਗਰਾਫ਼ ਦਾ ਪ੍ਰਯੋਗ ਵਸਤੂ ਦੀ ਚਾਲ ਪਤਾ ਕਰਨ ਲਈ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਹ ਕਰਨ ਲਈ, ਚਿੱਤਰ 8.3 ਵਿੱਚ ਲਏ ਗਏ ਦੂਰੀ-ਸਮੇਂ ਗਰਾਫ਼ ਦੇ ਛੋਟੇ ਜਿਹੇ ਭਾਗ AB ਨੂੰ ਲਉ। ਬਿੰਦੂ A ਤੋਂ x ਧੁਰੇ ਦੇ ਸਮਾਨਾਂਤਰ ਇੱਕ ਰੇਖਾ ਅਤੇ ਬਿੰਦੂ B ਤੋਂ y-ਧੁਰੇ ਦੇ ਸਮਾਨਾਂਤਰ ਇੱਕ ਰੇਖਾ ਖਿੱਚੋ। ਇਹ ਦੋਨੇਂ ਰੇਖਾਵਾਂ ਬਿੰਦੂ C ਤੇ ਮਿਲਕੇ ਇੱਕ ਤ੍ਰਿਭੁਜ ABC ਬਣਾਉਂਦੀਆਂ ਹਨ। ਹੁਣ, ਗਰਾਫ਼ ਤੇ AC ਸਮਾਂ ਅੰਤਰਾਲ ($t_2 - t_1$) ਅਤੇ BC ਦੂਰੀ ($s_2 - s_1$) ਨੂੰ ਦੱਸਦਾ ਹੈ। ਅਸੀਂ ਗਰਾਫ਼ ਤੋਂ ਦੇਖ ਸਕਦੇ ਹਾਂ ਕਿ ਵਸਤੂ A ਬਿੰਦੂ ਤੋਂ B ਬਿੰਦੂ ਤੱਕ ਚੱਲਣ ਲਈ ($t_2 - t_1$) ਸਮੇਂ ਵਿੱਚ ($s_2 - s_1$) ਦੂਰੀ ਤੈਅ ਕਰਦੀ ਹੈ। ਇਸ ਲਈ ਵਸਤੂ ਦੀ ਚਾਲ v ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

$$v = \frac{s_2 - s_1}{t_2 - t_1}$$
(8.4)

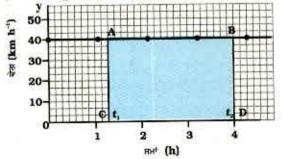
ਅਸੀਂ ਪ੍ਰਵੇਗਿਤ ਗਤੀ ਲਈ ਵੀ ਦੂਰੀ-ਸਮਾਂ ਗਰਾਫ਼ ਖਿੱਚ ਸਕਦੇ ਹਾਂ।ਸਾਰਣੀ 8.2 ਇੱਕ ਕਾਰ ਦੁਆਰਾ 2s ਦੇ ਸਮੇਂ ਅੰਤਰਾਲ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ।

ਸਾਰਟੀ 8.2 ਕਾਰ ਦੁਆਰਾ ਨਿਯਮਿਤ ਸੰਮ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ		
ਸਮਾਂ (s)	ਦੂਰੀ (m)	
0	0	
2	1	
4	A 4	
6	9	
8	16	
10	25	
12	36	
ਕਾਰ ਦੀ ਗਤੀ ਦੇ ਲ	ਤਈ ਦੂਰੀ ਸਮਾਂ ਗਰਾਫ਼ (s – t)	

115

ਚਿੱਤਰ 8.4 ਅਸਮਾਨ ਚਾਲ (Non-Uniform Motion) ਨਾਲ ਗਤੀਮਾਨ ਕਿਸੀ ਕਾਰ ਦਾ ਦੂਰੀ-ਸਮਾਂ ਗਰਾਫ/(s – ı) ਗਰਾਫ

ਗਰਾਫ਼ ਚਿੱਤਰ 8.4 ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ। ਧਿਆਨ ਦਿਉ ਕਿ ਇਸ ਗਰਾਫ਼ ਦਾ ਆਕਾਰ ਚਿੱਤਰ 8.3 ਵਿੱਚ ਬਣਾਏ ਗਏ ਗਰਾਫ਼ ਤੋਂ ਵੱਖ ਹੈ। ਇਸ ਗਰਾਫ਼ ਦੀ ਪ੍ਰਕਿਰਤੀ ਸਮੇਂ ਦੇ ਨਾਲ ਕਾਰ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਦਾ ਸ਼ਰਲੋਰੇਖੀ (Non-linear) ਪਰਿਵਰਤਨ (ਬਦਲਾਵ) ਦਰਸਾਉਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਚਿੱਤਰ 8.4 ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਗਰਾਫ਼ ਅਸਮਾਨ ਚਾਲ (Non Uniform Speed) ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।


8.4.2 ਵੇਗ-ਸਮਾਂ ਗਰਾਫ਼ (v - t ਗਰਾਫ਼) (Velocity Time Graphs)

(i) ਇੱਕ ਸਮਾਨ ਗਤੀ ਲਈ (Uniform Motion)

- (ii) ਇੱਕ ਸਮਾਨ ਪ੍ਵੇਗਿਤ ਗਤੀ ਲਈ (Uniform
 - Accelerated Motion)

116

(iii) ਅਸਮਾਨ ਪ੍ਰਵੇਗਿਤ ਗਤੀ ਲਈ (Non-Uniform Motion)

ਚਿੱਤਰ 8.5 ਇਕ ਸਮਾਨ ਚਾਲ ਦੀ ਗਤੀ ਨਾਲ਼ ਕਿਸੇ ਕਾਰ ਦਾ ਵੇਗ−ਸਮਾਂ (v-t ਗਰਾਫ਼) ਗਰਾਫ਼

ਇੱਕ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਚਲ ਰਹੇ ਵਸਤੂ ਦੇ ਵੇਗ ਵਿੱਚ ਸਮੇਂ ਦੇ ਨਾਲ ਤਬਦੀਲੀ (ਪਰਿਵਰਤਨ) ਨੂੰ ਵੇਗ-ਸਮਾਂ ($\upsilon - t$) ਗਰਾਫ਼ ਰਾਹੀਂ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਗਰਾਫ਼ ਵਿੱਚ ਸਮੇਂ ਨੂੰ x-ਧੁਰੇ ਦੇ ਵੱਲ ਅਤੇ ਵੇਗ ਨੂੰ y-ਧੁਰੇ ਦੇ ਵੱਲ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਜੇਕਰ ਵਸਤੂ ਇੱਕ ਸਮਾਨ ਵੇਗ ਨਾਲ ਚੱਲਦੀ ਹੈ ਤਾਂ ਸਮੇਂ ਦੇ ਨਾਲ ਵੇਗ-ਸਮਾਂ ਗਰਾਫ਼ ਦੀ ਉੱਚਾਈ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੋਵੇਗਾਂ। ਇਹ x-ਧੁਰੇ ਦੇ ਸਮਾਨਾਂਤਰ ਇੱਕ ਸਰਲ ਰੇਖਾ ਹੋਵੇਗੀ।ਚਿੱਤਰ 8.5 ਵਿੱਚ, ਇੱਕ ਕਾਰ ਜੋ 40km/h ਦੇ ਇੱਕ ਸਮਾਨ ਵੇਗ ਨਾਲ ਗਤੀ ਕਰ ਰਹੀ ਹੈ, ਦੇ ਵੇਗ ਸਮੇਂ ਗਰਾਫ਼ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਵੇਗ ਅਤੇ ਸਮੇਂ ਦਾ ਗੁਣਨਫਲ ਉਸ ਵਸਤੂ ਲਈ ਵਿਸਥਾਪਨ ਦਿੰਦਾ ਹੈ, ਜੋ ਕਿ ਇੱਕ ਸਮਾਨ ਵੇਗ ਨਾਲ ਚਲ ਰਹੀ ਹੁੰਦੀ ਹੈ। ਵੇਗ ਸਮੇਂ ਗਰਾਫ਼ ਵਿੱਚ ਵੇਗ ਅਤੇ ਸਮਾਂ ਧੁਰੇ ਵੱਲੋਂ ਘੇਰਿਆ ਗਿਆ ਖੇਤਰ ਕਿਸੇ ਸਮੇਂ ਅੰਤਰਾਲ ਲਈ ਵਿਸਥਾਪਨ ਦੀ ਮਾਤਰਾ ਦੇ ਬਰਾਬਰ ਹੋਵੇਗਾ।

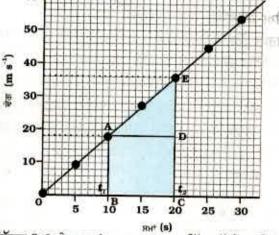
ਚਿੱਤਰ 8.5 ਵਿੱਚ t₁ ਅਤੇ t₂ ਸਮੇਂ ਦੇ ਵਿੱਚ ਕਾਰ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਨੂੰ ਪਤਾ ਕਰਨ ਲਈ t₁ ਅਤੇ t₂ ਸੰਗਤ ਬਿੰਦੂ ਤੋਂ ਗਰਾਫ਼ ਤੇ ਲੰਬ ਖਿੱਚੋ। 40kmh⁻¹ ਦੇ ਵੇਗ ਨੂੰ ਉੱਚਾਈ AC ਜਾਂ BD ਨਾਲ ਅਤੇ ਸਮੇਂ (t₂-t₁) ਨੂੰ ਲੰਬਾਈ AB ਨਾਲ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਇਸ ਲਈ ($t_2^{-t_1}$) ਸਮੇਂ ਅੰਤਰਾਲ ਵਿੱਚਕਾਰ(ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

$$= AC \times CD$$

= $[(40 \text{ km h}^{-1}) \times (t_2 - t_1) \text{ h}]$

 $= 40 (t_2 - t_1) \text{ km}$


s = ਚਤੁਰਭੁਜ ABCD ਦਾ ਖੇਤਰਫਲ (ਚਿੱਤਰ 8.5 ਵਿੱਚ ਛਾਂਦਾਰ ਹਿੱਸਾ)

ਵੇਗ ਸਮੇਂ ਗਰਾਫ਼ ਦੁਆਰਾ ਅਸੀਂ ਇੱਕ ਸਮਾਨ ਰੂਪ ਨਾਲ ਪ੍ਰਵੇਗਿਤ ਗਤੀ ਦਾ ਵੀ ਅਧਿਐਨ ਕਰ ਸਕਦੇ ਹਾਂ। ਮੰਨ ਲਉ ਇੱਕ ਕਾਰ ਦੇ ਇੰਜਣ ਨੂੰ ਪਰਖਣ ਲਈ ਸਰਲ ਰੇਖੀ ਮਾਰਗ ਤੇ ਚਲਾਇਆ ਜਾਂਦਾ ਹੈ।ਮੰਨ ਲਉ ਚਾਲਕ ਦੇ ਨਾਲ ਬੈਠਾ ਇੱਕ ਵਿਅਕਤੀ ਹਰੇਕ 5s ਦੇ ਬਾਅਦ ਕਾਰ ਦੇ ਸਪੀਡੋਮੀਟਰ ਦੀ ਪੜ੍ਹਤ ਲੈਂਦਾ ਹੈ।ਕਾਰ ਦਾ ਵੇਗ ਵੱਖ-ਵੱਖ ਸਮੇਂ ਤੇ ms⁻¹ ਅਤੇ kmh⁻¹ ਵਿੱਚ ਸਾਰਣੀ 8.3 ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

ਵਿਗਿਆਨ

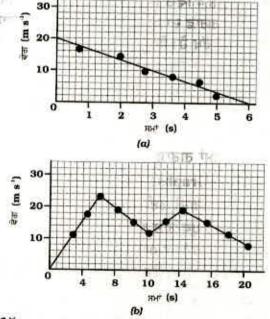
ਸਾਰਟੀ 8.3 ਕਾਰ ਦਾ ਵੇਗ ਬਰਾਬਰ ਸਮੇਂ ਅੰਤਰਾਲਾਂ ਵਿੱਚ		
ਸਮਾ	ਕਾਰ ਦਾ ਵੇਗ	
(5)	(m s ⁻¹)	(kmh')
0	0	0
5	9	32.4
10	18	64.8
15	27	97.2
20	36	129.6
25	45	162.0
30	54	194.4

ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਕਾਰ ਦੀ ਗਤੀ ਲਈ ਵੇਗ-ਸਮਾਂ (v – t) ਗਰਾਫ਼ ਚਿੱਤਰ 8.6 ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਗਰਾਫ਼ ਦੀ ਦਿੱਖ ਇਹ ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ ਵੇਗ ਬਰਾਬਰ ਸਮੇਂ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਬਰਾਬਰ ਬਦਲਦਾ ਹੈ। ਇਸ ਲਈ ਸਾਰੀਆਂ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗਿਤ ਗਤੀਆਂ (Uniformly Accelerated Motion) ਦੇ ਲਈ ਵੇਗ-ਸਮਾਂ (v – t) ਗਰਾਫ਼

ਚਿੱਤਰ 8.6 ਵੇਗ ਸਮਾਂ ਗਰਾਫ਼ (v – t) ਇੱਕ ਗੱਡੀ ਲਈ ਜੋ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗਿਤ (Uniformly Accelerated Motion) ਗਤੀ ਨਾਲ ਚੱਲ ਰਿਹਾ ਹੈ

ਇੱਕ ਸਰਲ ਰੇਖਾ ਹੁੰਦਾ ਹੈ।

वाजी


ਤੁਸੀਂ ਕਾਰ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਨੂੰ ਵੇਗ-ਸਮਾਂ ਗਰਾਫ਼ ਨਾਲ ਵੀ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹੋ। (v – t) ਵੇਗ ਸਮਾਂ ਗਰਾਫ਼ ਦਾ ਖੇਤਰਫਲ ਦਿੱਤੇ ਸਮੇਂ ਅੰਤਰਾਲ ਵਿੱਚ ਕਾਰ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (ਵਿਸਥਾਪਨ ਦੀ ਮਾਤਰਾ) ਨੂੰ ਦੱਸਦਾ ਹੈ। ਜੇ ਕਾਰ ਇੱਕ ਸਮਾਨ ਵੇਗ ਨਾਲ ਗਤੀ ਕਰੇ ਤਾਂ ਗਰਾਫ਼ ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਖੇਤਰ ABCD ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਨੂੰ ਦਰਸਾਇਆ ਜਾਵੇਗਾ ਕਿਉਂਕਿ ਕਾਰ ਦੇ ਵੇਗ ਦਾ ਪਰਿਮਾਣ ਪ੍ਰਵੇਗ ਦੇ ਕਾਰਨ ਬਦਲ ਰਿਹਾ ਹੈ। ਇਸ ਲਈ ਕਾਰ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (s) ਨੂੰ ਵੇਗ ਸਮੇਂ ਗਰਾਫ਼ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਖੇਤਰ ABCDE ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਵੇਗਾ।

- s = ABCDE ਦਾ ਖੇਤਰਫਲ
 - = ਆਇਤ ABCD ਦਾ ਖੇਤਰਫਲ + ਤ੍ਰਿਭੁਜ ADE ਦਾ ਖੇਤਰਫਲ

$$= AB \times BC + \frac{1}{2}(AD \times DE)$$

ਅਸਮਾਨ ਪ੍ਰਵੇਗਿਤ ਗਤੀ (Non-Uniformly Accelerated Motion) ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਵੇਗ-ਸਮਾਂ ਗਰਾਫ਼ ਕਿਸੀ ਵੀ ਆਕਾਰ ਦਾ ਹੋ ਸਕਦਾ ਹੈ।

ਚਿੱਤਰ 8.7 (a) ਵੇਗ ਸਮਾਂ ਗਰਾਫ਼ (v – t) ਗਰਾਫ਼ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਜੋ ਕਿ ਇੱਕ ਵਸਤੂ ਦੀ ਗਤੀ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਜਿਸਦਾ ਵੇਗ ਸਮੇਂ ਦੇ ਨਾਲ ਘੱਟਦਾ ਹੈ। ਜਦੋਂ ਕਿ ਚਿੱਤਰ 8.7 (b) ਵਿੱਚ ਕਿਸੀ ਵਸਤੂ ਦੇ ਵੇਗ ਵਿੱਚ ਅਸਮਾਨ ਤਬਦੀਲੀ ਨੂੰ ਵੇਗ-ਸਮਾਂ (v – t) ਗਰਾਫ਼ ਰਾਹੀਂ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਹਨਾਂ ਗਰਾਫ਼ਾਂ ਨੂੰ ਸਮਝਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।

ਚਿੱਤਰ 8. 7 ਅਸਮਾਨ ਪ੍ਰਵੇਗਿਤ ਗਤੀ (Non-Uniformly Accelerated Motion) ਨਾਲ ਚਲ ਰਹੀ ਕਿਸੇ ਵਸਤੂ ਦੇ

ਵੇਗ-ਸਮਾਂ (v – t) ਗਰਾਫ਼

ਇੱਕ ਟ੍ਰੇਨ ਦੇ ਤਿੰਨ ਵੱਖ-ਵੱਖ ਸਟੇਸ਼ਨ A, B ਅਤੇ C ਤੇ ਪਹੁੰਚਣ ਅਤੇ ਜਾਣ ਦੇ ਸਮੇਂ ਦੇ ਵੇਰਵੇ ਅਤੇ ਸਟੇਸ਼ਨ A ਤੋਂ ਸਟੇਸ਼ਨ B ਅਤੇ C ਦੀ ਦੂਰੀ ਸਾਰਣੀ 8.4 ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਹੈ।

117

8.9

Downloaded from https:// www.studiestoday.com

ਕਿਰਿਆ

ਸਾਗਣੀ 8.4 ਸੰਗਿਆ A ਤੋਂ 11 ਅਤੇ C ਦੀ ਦੂਵੀ ਅਤੇ ਟੁੱਨ ਦੇ ਆਉਣ ਅਤੇ ਜਾਣ ਦਾ ਸਮਾਂ			
ਸਟੇਸ਼ਨ	A ਤੋਂ ਦੂਰੀ (km)	ਆਉਣ ਦਾ ਸਮਾਂ (ਘੰਟਾ)	ਜਾਣ ਦਾ ਸਮਾਂ (ਘੰਟਾ)
A	0	08:00	08:15
в	120	11:15	11:30
с	180	13:00	13:15

ਮੰਨ ਲਓ ਕਿਸੇ ਦੇ ਸਟੈਂਸ਼ਨਾਂ ਦੇ ਵਿੱਚ ਟ੍ਰੇਨ ਦੀ ਗਤੀ ਇੱਕ ਸਮਾਨ ਹੈ ਇਸ ਆਧਾਰ ਤੇ ਵੇਗ ਸਮਾਂ (v – l) ਗਰਾਫ਼ ਖਿੱਚੋ ਅਤੇ ਇਸਦੀ ਵਿਆਖਿਆ ਕਰੋ।

) मेवैय रू जीवान्स जीवान्स

8.10

ਫਿਰੋਜ਼ ਅਤੇ ਉਸਦੀ ਭੈਣ ਸਾਨੀਆ ਆਪਣੀ-ਆਪਣੀ ਸਾਈਕਲਾਂ ਤੇ ਸਕੂਲ ਜਾਂਦੇ ਹਨ। ਉਹ ਦੋਵੇਂ ਘਰ ਤੋਂ ਇੱਕ ਹੀ ਸਮੇਂ ਤੇ ਨਿਕਲਦੇ ਹਨ ਅਤੇ ਇੱਕੋ ਹੀ ਰਸਤੇ ਤੇ ਜਾਂਦੇ ਹਨ। ਪਰ ਫਿਰ ਵੀ ਵੱਖ-ਵੱਖ ਸਮੇਂ ਤੇ ਸਕੂਲ ਪਹੁੰਚਦੇ ਹਨ। ਸਾਰਣੀ 8.5 ਵਿੱਚ ਉਨ੍ਹਾਂ ਦੋਨਾਂ ਦੁਆਰਾ ਅਲੱਗ-ਅਲੱਗ ਸਮੇਂ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਦਿਖਾਈ ਗਈ ਹੈ। ਉਹਨਾਂ ਦੋਨਾਂ ਦੀ ਗਤੀ ਲਈ ਇੱਕ ਹੀ ਪੈਮਾਨੇ (Scale) ਤੇ ਦੂਰੀ ਸਮਾਂ ਗਰਾਫ਼ ਖਿੱਚੋਂ ਅਤੇ ਵਿਆਖਿਆ ਕਰੋ।

ਸਾਰਟੀ 8-6 ਵਿਛੇਸ਼ ਅਤੇ ਇਨੀਆਂ ਦੁਸ਼ਾਰਾ ਸਾਪਣੀ- ਆਪਣੀ ਸਾਈਕਨਾਂ ਹੋ ਵੱਖ ਵੱਖ ਸੰਮੇਂ ਵਿੱਚ ਰੇਮ ਕੀਤੀ ਗਈ ਦੂਕੀ _{ਸ਼ਰਨ ਹ} ਾਲ		
ਸਮਾਂ	ਫਿਰੋਜ਼ ਦੇ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (km)	ਸਾਨੀਆ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (km)
8:00 am	0	0
8:05 am	1.0	0.8
8:10 am	1.9	1.6
8:15 am	2.8	2.3
8:20 am	3.6	3.0
8:25 am	250	3.6

HQ

- ਕਿਸੇ ਵਸਤੂ ਦੇ ਇੱਕ ਸਮਾਨ ਅਤੇ ਅਸਮਾਨ ਗਤੀ ਲਈ ਦੂਰੀ-ਸਮਾਂ(x−1) ਗਰਾਫ਼ ਦੀ ਦਿੱਖ ਕਿਹੋ ਜਿਹੀ ਹੁੰਦੀ ਹੈ?
- ਉਸ ਵਸਤੂ ਦੀ ਗਤੀ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ ? ਜਿਸਦਾ ਦੂਰੀ ਸਮਾਂ (s-1) ਗਰਾਫ਼ ਸਮਾਂ 1-ਧੁਰੇ (x-axis) ਦੇ ਸਮਾਨਾਂਤਰ ਇੱਕ ਸਰਲ ਰੇਖਾ (straight line) ਹੋਵੇ।
- 3. ਕਿਸੀ ਵਸਤੂ ਦੀ ਗਤੀ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ, ਜਿਸਦਾ ਚਾਲ-ਸਮਾਂ ਗਰਾਫ਼ / (v – t), ਸਮਾਂ ਧੁਰੇ ਦੇ ਸਮਾਨਾਂਤਰ ਇੱਕ ਸਰਲ ਰੇਖਾ ਹੋਵੇ।
- 4. ਵੰਗ ਸਮੇਂ ਗਰਾਫ਼ (v 1) ਵਿੱਚ ਘੇਰੇ ਗਏ ਖੇਤਰਫਲ ਤੋਂ ਮਾਪੀ ਜਾਣ ਵਾਲੀ ਰਾਸ਼ੀ ਕਿਹੜੀ ਹੁੰਦੀ ਹੈ ?

8.5 ਗਰਾਫ਼ਾਂ ਰਾਹੀਂ ਗਤੀ ਦੇ ਸ਼ਮੀਕਰਣ

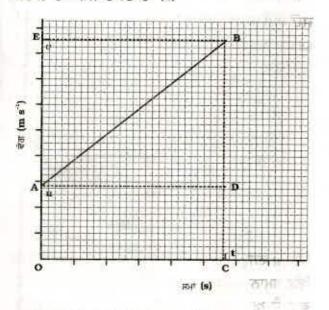
(Equations of Motion By traphical Method) ਜਦੋਂ ਕੋਈ ਵਸਤੂ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਇੱਕ ਸਮਾਨ ਪ੍ਵੇਗ (Uniformly Accelerated Motion) ਨਾਲ ਚੱਲਦੀ ਹੈ ਤਾਂ ਇੱਕ ਨਿਸ਼ਚਿਤ ਸਮੇਂ ਅੰਤਰਾਲ ਵਿੱਚ ਸਮੀਕਰਣਾਂ ਦੁਆਰਾ ਉਸਦੇ ਵੇਗ, ਗਤੀ ਦੇ ਦੌਰਾਨ ਪ੍ਵੇਗ ਅਤੇ ਉਸਦੇ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਵਿੱਚ ਸੰਬੰਧ ਬਣਾਉਣਾ ਸੰਭਵ ਹੈ, ਜਿਹਨਾਂ ਨੂੰ ਗਤੀ ਦੇ ਸਮੀਕਰਣ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਤਿੰਨ ਸਮੀਕਰਣ ਹਨ, ਜੋ ਕਿ ਇਸ ਤਰ੍ਹਾਂ ਹਨ :

$$y = u + at \tag{8.5}$$

$$S = ut + \frac{1}{2} at^2$$
 (8.6)

$$2 as = v^2 - u^2$$
 (8.7)

ਜਿੱਥੇ *u* ਵਸਤੂ ਦਾ ਆਰੰਭਿਕ ਵੇਗ ਹੈ ਜੋ ਕਿ *t* ਸਮੇਂ ਦੇ ਲਈ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ *a* ਨਾਲ ਚੱਲਦਾ ਹੈ, *v* ਉਸਦਾ ਅੰਤਿਮ ਵੇਗ ਹੈ ਅਤੇ s ਵਸਤੂ ਦੁਆਰਾ *t* ਸਮੇਂ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (s) ਹੈ। ਸਮੀਕਰਣ (8.5) ਵੇਗ ਅਤੇ ਸਮੇਂ ਵਿੱਚ ਸੰਬੰਧ ਦਾ ਵਰਨਣ ਕਰਦੀ ਹੈ। ਸਮੀਕਰਣ (8.6) ਸਮੇਂ ਅਤੇ ਸਥਿਤੀ ਵਿੱਚ ਸੰਬੰਧ ਦੱਸਦਾ ਹੈ ਅਤੇ ਸਮੀਕਰਣ (8.7) ਜੋ ਕਿ ਵੇਗ ਅਤੇ ਸਥਿਤੀ ਵਿੱਚ ਸੰਬੰਧ ਦਰਸਾਉਂਦਾ ਹੈ, ਨੂੰ ਸਮੀਕਰਣ (8.5) ਅਤੇ (8.6) ਤੋਂ *t* ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਕੇ (ਹਟਾ ਕੇ) ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹਨਾਂ ਤਿੰਨਾਂ ਸਮੀਕਰਣਾਂ ਨੂੰ ਗਰਾਫ਼ਾਂ ਰਾਹੀਂ ਵੀ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।


118

ਵਿਗਿਆਨ

ਜਾਂ

8.5.1 ਵੇਗ-ਸਮਾਂ ਸੰਬੰਧ ਲਈ ਸਮੀਕਰਣ (Equations for Velocity-Time Relation)

ਕੋਈ ਵਸਤੂ ਜੋ ਕਿ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗਿਤ ਵੇਗ (Uniformly Accelerated Motion) ਨਾਲ ਚੱਲਦੀ ਹੈ, ਉਸਦਾ ਵੇਗ-ਸਮੇਂ ਗਰਾਫ਼ ਨੂੰ ਲਵੇਂ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 8.8 ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ। (ਚਿੱਤਰ 8.6 ਦੇ ਸਮਰੂਪ, ਪਰ ਹੁਣ u = 0) ਇਸ ਗਰਾਫ਼ ਤੋਂ ਤੁਸੀਂ ਦੇਖ ਸਕਦੇ ਹੋ ਕਿ ਵਸਤ ਦਾ ਮੁੱਢਲਾ ਵੇਗ u ਹੈ। (ਬਿੰਦੂ A ਤੇ) ਅਤੇ ਇਹ I ਸਮੇਂ ਵਿੱਚ ਵੱਧ ਕੇ v (ਬਿੰਦੂ B ਤੇ) ਹੋ ਜਾਂਦਾ ਹੈ। ਵੇਗ, ਇੱਕ ਸਮਾਨ ਦਰ a ਦੇ ਨਾਲ ਬਦਲਦਾ ਹੈ। ਚਿੱਤਰ 8.8 ਵਿੱਚ ਦੋ ਲੰਬ BC ਅਤੇ BE ਲੜੀਵਾਰ ਸਮਾਂ ਅਤੇ ਵੇਗ ਧੁਰੇ ਖਿੱਚੇ ਗਏ ਹਨ। ਮੱਢਲਾ ਵੇਗ OA ਦੇ ਨਾਲ ਅਤੇ ਅੰਤਿਮ ਵੇਗ BC ਦੁਆਰਾ ਅਤੇ ਸਮਾਂ ਅੰਤਰਾਲ t, OC ਦੇ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। BD = BC – DC ਸਮਾਂ ਅੰਤਰਾਲ । ਵਿੱਚ ਵੇਗ ਵਿੱਚ ਆਈ ਤਬਦੀਲੀ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਹੁਣ OC ਦੇ ਸਮਾਨਾਂਤਰ AD ਰੇਖਾ ਖਿੱਚੇ। ਗਰਾਫ਼ ਤੋਂ ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ

ਚਿੱਤਰ 8.8 ਗਤੀ ਦੇ ਸਮੀਕਰਣਾਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਵੇਗ-ਸਮਾਂ ਗਰਾਫ਼ (v-t ਗਰਾਫ਼)

BC = BD + DC = BD + OAਇਸ ਵਿੱਚ BC = v ਅਤੇ OA = u, ਰੱਖਣ ਤੇ ਅਸੀਂ ਪਾਉਂਦੇ ਹਾਂ v = BD + u ਜਾਂ BD = v - u(8.8) ਵੇਗ ਸਮਾਂ ਗਰਾਫ਼ ਤੋਂ (ਚਿੱਤਰ 8.8) ਵਸਤੂ ਦੇ ਤਵਰਣ ਨੂੰ

n' year

(8.9)

ਸਮੀਕਰਣ (8.8) ਅਤੇ (8.9) ਤੋਂ ਇਹ ਮਿਲਦਾ ਹੈ। ਜਾਂ v - u = atוצא איעים ਸਦੀ ਵਿਆਦਿਆ

8.5.2 ਸਥਿਤੀ-ਸਮਾਂ (x – t) ਸੰਬੰਧ ਲਈ ਸਮੀ-ਕਰਣ (Equation for Position -Time Relation) ाउ छेमच

NYN Y TH ਮੰਨ ਲਉ ਕਿ ਵਸਤੂ ਨੇ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ a ਨਾਲ t ਸਮੇਂ ਵਿੱਚ s ਦੂਰੀ ਤੈਅ ਕੀਤੀ। ਚਿੱਤਰ 8.8 ਵਿੱਚ ਵਸਤੂ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ, ਵੇਗ-ਸਮਾਂ ਗਰਾਫ਼ AB ਦੁਆਰਾ ਘੇਰੇ ਗਏ ਖੇਤਰਫਲ OABC ਦੁਆਰਾ ਪਾਪਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਵਸਤੂ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ S ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

- s = OABC ਦਾ ਖੇਤਰਫਲ (ਜੋ ਕਿ ਇੱਕ ਸਮਲੰਬ ਚਤੁਰਭੁਜ ਹੈ)
 - =ਆਇਤ OADC ਦਾ ਖੇਤਰਫਲ + ਤ੍ਰਿਭਜ ABD ਦਾ ਖੇਤਰਫਲ

$$= OA \times OC + \frac{1}{2} (AD \times BD)$$
 (8.10)

$$DA = u$$
, $OC = AD = t$ ਅਤੇ $BD = at$, ਮਾਣ ਰੱਖਣ ਤੇ,

$$s = u \times t + \frac{1}{2} (t \times at)$$

$$\overline{\mathbf{H}^{\dagger}}, \quad s = u t + \frac{1}{2} a t^2$$

119

Downloaded from https:// www.studiestoday.com

ਗਤੀ

8.5.3 ਵੇਗ-ਦੂਰੀ (v – s) ਸੰਬੰਧ ਦੇ ਲਈ ਸਮੀਕਰਣ (Equation for Distance-Velocity Relation)

ਚਿੱਤਰ 8.8 ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਵੇਗ-ਸਮਾਂ ਗਰਾਫ਼ ਤੋਂ, ਵਸਤੂ ਦੇ ਦੁਆਰਾ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ a ਨਾਲ ı ਸਮੇਂ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ s ਨੂੰ ਗਰਾਫ਼ ਦੇ ਹੇਠ ਸਮਲੰਬ ਚਤੁਰਭੁਜ OABC ਦੁਆਰਾ ਘੇਰੇ ਗਏ ਖੇਤਰਫਲ ਦੁਆਰਾ ਦਿਖਾਇਆ ਜਾਂਦਾ ਹੈ। ਭਾਵ —

s = ਸਮਲੰਬ OABC ਦਾ ਖੇਤਰਫਲ =

¹/₂×(ਸਮਾਂਤਰ ਭੁਜਾਵਾਂ ਦਾ ਜੋੜ)× ਲੰਬਾਤਮਕ ਦੂਰੀ

$$\frac{1}{2} \times (OA+BC) \times OC = \frac{(OA+BC) \times OC}{2}$$

OA = u, BC = v ਅਤੇ OC = t ਰੱਖਣ ਤੇ ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ

$$s = \frac{(u+v)t}{2}$$
(8.11)

ਵੇਗ-ਸਮਾਂ ਸੰਬੰਧ ਸਮੀਕਰਣ (8.6) ਤੋਂ, ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ (V = w)

$$=\frac{(v-u)}{a} \tag{8.12}$$

ਸਮੀਕਰਣ (8.11) ਅਤੇ ਸਮੀਕਰਣ (8.12) ਤੋਂ ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ।

$$s \neq \frac{(v+u) \times (v-u)}{2a}$$

$$\overrightarrow{H^{\dagger}} \quad 2 \ a \ s = v^2 - u^2$$

ਉਦਾਹਰਣ 8.5 : ਇੱਕ ਰੇਲ੍ਹਗੱਡੀ ਵਿਰਾਮ ਅਵਸਥਾ ਤੋਂ ਚੱਲਣਾ ਸ਼ੁਰੂ ਕਰਦੀ ਹੈ ਅਤੇ 5 ਮਿੰਟ ਵਿੱਚ 72km/h ਦਾ ਵੇਗ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦੀ ਹੈ।ਮੰਨ ਲੳ ਕਿ ਪ੍ਵੇਗ ਇੱਕ ਸਮਾਨ ਹੈ, ਪਤਾ ਕਰੋ (i) ਪ੍ਵੇਗ (ii) ਇਸ ਵੇਗ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਰੇਲਗੱਡੀ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ।

ਹੱਲ :

ਦਿੱਤਾ ਹੈ

120

u = 0 ; v = 72 km h⁻¹ = 20 m s⁻¹ਅਤੇ t = 5 min, = 300 s. (i) ਸਮੀਕਰਣ (8.5) ਤੋਂ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ

$$a = \frac{(v-u)}{t}$$
$$= \frac{20 \text{ m s}^{-1} - 0 \text{ m s}^{-1}}{300 \text{ s}}$$
$$= \frac{1}{15} \text{ m s}^{-2} \qquad .$$

$$s = \frac{v^2}{2a}$$

= $\frac{(20 \text{ ms}^{-1})^2}{2 \times (1/15) \text{ ms}^{-2}}$
= 3000 m
= 3 km

ਰੇਲਗੱਡੀ ਦਾ ਪ੍ਵੇਗ <mark>1</mark>15 ms⁻² ਹੈ ਅਤੇ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ 3km ਹੈ।

ਉਦਾਹਰਣ 8.6 : ਕੋਈ ਕਾਰ ਇੱਕ ਸਮਾਨ ਰੂਪ ਨਾਲ ਪ੍ਰਵੇਗਿਤ ਹੋ ਕੇ 5s ਵਿੱਚ 18kmh⁻¹ ਤੋਂ 36kmh⁻¹ ਦੀ ਚਾਲ ਪ੍ਰਾਪਤ ਕਰਦੀ ਹੈ। ਪਤਾ ਕਰੋ (i) ਪ੍ਰਵੇਗ (ii) ਉੱਨੇ ਸਮੇਂ ਵਿੱਚ ਕਾਰ ਦੇ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ।

ਹੱਲ : ਦਿੱਤਾ ਹੈ

$$u = 18 \text{ km h}^{-1} = 5 \text{ m s}^{-1}$$

t = 5 s.

(i) ਸਮੀਕਰਣ (8.5) ਤੋਂ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ

$$a = \frac{v - u}{t}$$

= $\frac{10 \text{ m s}^{-1} - 5 \text{ m s}^{-1}}{5 \text{ s}}$
= 1 m s⁻²

$$s = u t + \frac{1}{2} a t^2$$

ਵਿਗਿਆਨ

$$= 5 \text{ m s}^{-1} \times 5 \text{ s} + \frac{1}{2} \times 1 \text{ m s}^{-2} \times (5 \text{ s})^2$$

= 25 m + 12.5 m = 37.5 m ਕਾਰ ਦਾ ਪ੍ਰਵੇਗ 1ms⁻² ਅਤੇ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ 37.5m ਹੈ।

ਉਦਾਹਰਣ 8.7 : ਕਿਸੀ ਕਾਰ ਦੇ ਬਰੇਕ ਲਗਾਉਣ ਤੇ ਗਤੀ ਦੀ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ 6ms⁻² ਦਾ ਪ੍ਰਵੇਗ ਉਤਪੰਨ ਹੁੰਦਾ ਹੈ। ਜੇ ਕਾਰ ਬਰੇਕ ਲਗਾਏ ਜਾਣ ਤੋਂ ਬਾਅਦ ਰੁਕਣ ਲਈ 2s ਦਾ ਸਮਾਂ ਲੈਂਦੀ ਹੈ ਤਾਂ ਉੱਨੇ ਸਮੇਂ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦਰੀ ਦਾ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਦਿੱਤਾ ਹੈ

$$a = -6 \text{ m s}^{-2}$$
; $t = 2 \text{ s}$ $\overrightarrow{\text{ms}} v = 0 \text{ m s}^{-1}$.

ਸਮੀਕਰਣ 8.5 ਤੋਂ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ

$$v = u + at$$

 $0 = u + (-6 \text{ m s}^{-2}) \times 2 \text{ s}$

 $\vec{H}^{\dagger} u = 12 \text{ m s}^{-1}$.

ਸਮੀਕਰਣ 8.6 ਤੋਂ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ

$$s = u t + \frac{1}{2} a t$$

=
$$(12 \text{ m s}^{-1}) \times (2\text{ s}) + \frac{1}{2}(-6 \text{ m s}^{-2}) \times (2 \text{ s})^2$$

= $24 \text{ m} - 12 \text{ m}$

ਇਸ ਲਈ ਕਾਰ ਬਰੇਕ ਲਗਾਉਣ ਉਪਰੰਤ ਵਿਰਾਮ ਅਵਸਥਾ ਤੱਕ ਆਉਂਦੇ ਹੋਏ 12m ਦੀ ਦੂਰੀ ਤੈਅ ਕਰੇਗੀ।

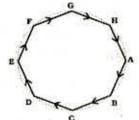
ਕੀ ਹੁਣ ਤੁਸੀਂ ਇਸ ਗੱਲ ਦਾ ਮਹੱਤਵ ਸਮਝੋਗੇ ਕਿ ਡਰਾਈਵਰਾਂ (ਚਾਲਕਾਂ) ਨੂੰ ਸਾਵਧਾਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਉਹ ਸੜਕ ਤੇ ਗੱਡੀ ਚਲਾਉਣ ਸਮੇਂ ਦੂਜੀ ਗੱਡੀ ਤੋਂ ਦੂਰੀ ਬਣਾ ਕੇ ਰੱਖਣ।

ਸ਼ਨ

ਗਤੀ


 ਕੋਈ ਬੱਸ ਵਿਰਾਮ ਅਵਸਥਾ ਤੋਂ ਚੱਲਣਾ ਸ਼ੁਰੂ ਕਰਦੀ ਹੈ ਅਤੇ 2 ਮਿੰਟ ਤੱਕ 0.1ms⁻² ਦੇ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ ਨਾਲ ਚੱਲਦੀ ਹੈ ਪਤਾ ਕਰੋ (a) ਪ੍ਰਾਪਤ ਕੀਤੀ ਗਈ ਚਾਲ (b) ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ।

- ਕੋਈ ਰੇਲ ਗੱਡੀ 90kmh⁻¹ ਦੀ ਚਾਲ ਨਾਲ ਚੱਲ ਰਹੀ ਹੈ। ਬਰੇਕ ਲਗਾਏ ਜਾਣ ਤੋਂ ਬਾਅਦ ਉਹ -0.5ms⁻² ਦਾ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ ਉਤਪੰਨ ਕਰਦੀ ਹੈ। ਰੇਲਗੱਡੀ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਆਉਣ ਤੋਂ ਪਹਿਲਾਂ ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕਰੇਗੀ?
- ਇੱਕ ਟਰਾਲੀ ਇੱਕ ਢਾਲਵੇਂ ਤਲ ਤੇ 2ms⁴ ਦੇ ਪ੍ਰਵੇਗ ਨਾਲ ਹੇਠਾਂ ਵੱਲ ਜਾ ਰਹੀ ਹੈ।ਗਤੀ ਸ਼ੁਰੂ ਕਰਨ ਦੇ 3s ਦੇ ਬਾਅਦ ਉਸਦਾ ਵੇਗ ਕਿੰਨਾ ਹੋਵੇਗਾ ?
- 4. ਇੱਕ ਰੇਸਿੰਗ ਕਾਰ ਦਾ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ 4ms¹ ਹੈ ਅਤੇ ਗਤੀ ਸ਼ੁਰੂ ਕਰਨ ਦੇ 3s ਦੇ ਬਾਅਦ ਉਸਦਾ ਵੇਗ ਕਿੰਨਾ ਹੋਵੇਗਾ ?
- 5. ਕਿਸੇ ਪੱਥਰ ਨੂੰ ਖੜੀ ਲੰਬਵਤ ਦਿਸ਼ਾ ਵਿੱਚ ਉੱਪਰ ਵੱਲ ਨੂੰ 5ms⁻¹ ਦੇ ਵੇਗ ਨਾਲ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ। ਜੇ ਗਤੀ ਦੌਰਾਨ ਪੱਥਰ ਦਾ ਹੋਨਾਂ ਵੱਲ ਨੂੰ ਪ੍ਵੇਗ 10ms⁻¹ ਹੋਵੇ ਤਾਂ ਪੱਥਰ ਦੁਆਰਾ ਕਿੰਨੀ ਉੱਚਾਈ ਪ੍ਰਾਪਤ ਕੀਤੀ ਗਈ ਅਤੇ ਉਸਨੂੰ ਉੱਥੇ ਪਹੁੰਚਣ ਵਿੱਚ ਕਿੰਨਾ ਸਮਾਂ ਲੱਗੇਗਾ?¹
- 8.6 ਇੱਕ ਸਮਾਨ ਚੱਕਰਾਕਾਰ ਗਤੀ (Uniform Circular Motion)


ਜਦੋਂ ਵਸਤੂ ਦੇ ਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ ਤਾਂ ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ ਉਹ ਵਸਤੂ ਪ੍ਰਵੇਗਿਤ ਹੋ ਰਹੀ ਹੈ। ਵੇਗ ਵਿੱਚ ਇਹ ਪਰਿਵਰਤਨ, ਵੇਗ ਦੀ ਮਾਤਰਾ ਜਾਂ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਜਾਂ ਦੋਨਾਂ ਵਿੱਚ ਤਬਦੀਲੀ ਦੇ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਇੱਕ ਉਦਾਹਰਣ ਬਾਰੇ ਸੋਚ ਸਕਦੇ ਹੋ, ਜਿਸ ਵਿੱਚ ਵਸਤੂ ਆਪਣੇ ਵੇਗ ਦੀ ਮਾਤਰਾ ਨੂੰ ਨਹੀਂ ਬਦਲਦੀ, ਪਰੰਤੂ ਆਪਣੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਨੂੰ ਲਗਾਤਾਰ ਬਦਲਦੀ ਹੈ?

ਕਿਸੇ ਬੰਦ ਪੱਥ (Closed Path) (ਮਾਰਗ) ਤੇ ਇੱਕ ਵਸਤੂ ਦੀ ਗਤੀ ਦਾ ਉਦਾਹਰਣ ਲਓ। ਚਿੱਤਰ 8.9 (ੳ) ਕਿਸੇ ਅਥਲੀਟ (ਦੌੜਾਕ) ਨੂੰ ਇੱਕ ਆਇਤਾਕਾਰ ਪੱਥ ABCD ਦੇ ਨਾਲ ਗਤੀ ਕਰਦੇ ਹੋਏ ਦਿਖਾਉਂਦਾ ਹੈ। ਮੰਨ ਲਉ ਦੌੜਾਕ ਪੱਥ ਦੇ ਸਿੱਧੇ ਭਾਗ AB, BC, CD ਅਤੇ DA ਤੇ ਇੱਕ ਸਮਾਨ ਚਾਲ ਨਾਲ ਦੌੜਦਾ ਹੈ। ਆਪਣੇ ਆਪ ਨੂੰ ਪੱਥ ਤੇ ਬਣਾਏ ਰੱਖਣ ਲਈ ਕੋਣਿਆਂ ਤੇ ਉਹ ਜਲਦੀ ਨਾਲ ਆਪਣੀ ਚਾਲ ਬਦਲਦਾ ਹੈ। ਉਸ ਦੌੜਾਕ ਨੂੰ ਇੱਕ ਚੱਕਰ ਪੂਰਾ ਕਰਨ ਲਈ ਕਿੰਨੀ ਵਾਰ ਆਪਣੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਬਦਲਣੀ ਪਵੇਗੀ ? ਇਹ ਸਪਸ਼ਟ ਹੈ ਕਿ ਆਇਤਾਕਾਰ ਪੱਥ ਤੇ ਇੱਕ ਵਾਰ ਚੱਕਰ ਲਗਾਉਣ ਲਈ ਉਸਨੂੰ ਚਾਰ ਵਾਰ ਆਪਣੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਨੂੰ ਬਦਲਣਾ ਪਵੇਗਾ।

121

(ণ্ড) ਆਇਤਾਕਾਰ ਪੱਥ (ਮਾਰਗ) (Rectangular track)

(ਅ) ਛੇਭੂਜੀ (ਛੇਕੋਣੀ) ਪੱਥ (Hexagonal track)

(ੲ) ਅੱਠਭੂਜੀ ਆਕਾਰ ਵਾਲਾ ਮਾਰਗ (Octaganal shaped track)

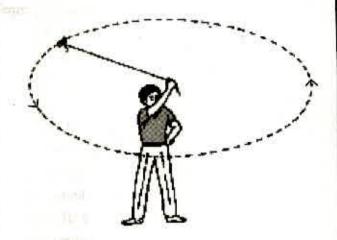
122

(ਸ) ਇੱਕ ਚੱਕਰਾਕਾਰ ਮਾਰਗ ਇੱਕ (ਵ੍ਰਿਤਾਕਾਰ ਪੱਥ) (Circular track)

ਚਿੱਤਰ 8.9 ਇੱਕ ਦੌੜਾਕ (ਅਥਲੀਟ) ਦੁਆਰਾ ਵੱਖ-ਵੱਖ ਆਕ੍ਰਿਤੀ ਵਾਲੇ ਬੰਦ ਪੱਥ ਤੇ ਗਤੀ

ਹਣ ਮੰਨ ਲੳ ਕਿ ਦੌੜਾਕ (ਅਥਲੀਟ) ਆਇਤਾਕਾਰ ਪੱਥ ਦੀ ਬਜਾਏ ਛੇਕੋਣੀ (Hexagonal) ਪੱਥ ABCDEF ਦੇ ਨਾਲ-ਨਾਲ ਦੌੜ ਰਿਹਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 8.9 ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ, ਦੌੜਾਕ ਨੂੰ ਇੱਕ ਚੱਕਰ ਪਰਾ ਕਰਨ ਵਿੱਚ ਛੇ ਵਾਰੀ ਆਪਣੀ ਦਿਸ਼ਾ ਬਦਲਣੀ ਹੋਵੇਗੀ। ਜੇ ਪੱਥ ਛੇਭਜੀ ਨਾ ਹੋ ਕੇ ਅੱਠਭਜੀ ABCDEFGH ਹੋਵੇ ਚਿੱਤਰ 8.9 (ੲ), ਤਾਂ ਕੀ ਹੋਵੇਗਾ ? ਇਹ ਦੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਪੱਥ ਦੀਆਂ ਭਜਾਵਾਂ ਦੀ ਗਿਣਤੀ ਵਿੱਚ ਵਾਧੇ ਦੇ ਨਾਲ ਦੌੜਾਕ ਨੂੰ ਆਪਣੇ ਮੁੜਨ ਦੀ ਗਿਣਤੀ ਵਿੱਚ ਵੀ ਵਾਧਾ ਕਰਨਾ ਪੈਂਦਾ ਹੈ (ਦੌੜਾਕ ਨੂੰ ਜ਼ਿਆਦਾ ਮੋੜ ਜਲਦੀ-ਜਲਦੀ ਲੈਣੇ ਪੈਣਗੇ)। ਪੱਥ ਦਾ ਆਕਾਰ ਕਿਹੋ ਜਿਹਾ ਹੋਵੇਗਾ, ਜਦੋਂ ਅਸੀਂ ਭਜਾਵਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਅਨਿਸ਼ਚਿਤ ਢੰਗ ਨਾਲ ਵੱਧਾ ਦੇਈਏ ? ਜੇ ਤਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਕਰਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਪਾਉਗੇ ਕਿ ਸਾਰੀਆਂ ਭਜਾਵਾਂ ਦੀ ਲੰਬਾਈ ਘੱਟ ਕੇ ਇੱਕ ਬਿੰਦੂ ਦੇ ਸਮਾਨ ਹੋ ਜਾਵੇਗੀ ਅਤੇ ਪੱਥ ਦਾ ਆਕਾਰ ਲਗਭਗ ਇੱਕ ਚੱਕਰਾਕਾਰ ਦੇ ਸਮਾਨ ਹੋ ਜਾਵੇਗਾ। ਜੇ ਦੌੜਾਕ ਵਿਤੀਪਥ (ਚੱਕਰਾਕਾਰ ਮਾਰਗ) ਤੇ ਕਿਸੇ ਸਥਿਰ ਮਾਤਰਾ ਵਾਲੇ ਵੇਗ ਨਾਲ ਦੌੜਦਾ ਹੈ ਤਾਂ ਉਸਦੇ ਵੇਗ ਵਿੱਚ ਤਬਦੀਲੀ ਸਿਰਫ਼ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਬਦਲਣ ਨਾਲ ਹੁੰਦੀ ਹੈ। ਦੌੜਾਕ ਦੀ ਕਿਸੇ ਵਿਤੀ ਪੱਥ ਤੇ ਗਤੀ, ਪਵੇਗਿਤ ਗਤੀ (Accelerated motion) ਦਾ ਉਦਾਹਰਣ ਹੈ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਅਰਧ ਵਿਆਸ r ਵਾਲੇ ਚੱਕਰ ਦਾ ਘੇਰਾ 2πr ਹੁੰਦਾ ਹੈ ਜੇਕਰ ਦੌੜਾਕ r ਅਰਧ ਵਿਆਸ ਵਾਲੇ ਇੱਕ ਚੱਕਰ ਨੂੰ ਇੱਕ ਵਾਰ ਪੂਰਾ ਕਰਨ ਨੂੰ t ਸੈਕਿੰਡ ਦਾ ਸਮਾਂ ਲੈਂਦਾ ਹੈ ਤਾਂ ਚਾਲ v ਹੋਵੇਗੀ।


$$v = \frac{2\pi r}{t} \tag{8.13}$$

ਜਦੋਂ ਕਿ ਵਸਤੂ ਇੱਕ ਸਮਾਨ ਚਾਲ ਨਾਲ ਇੱਕ ਚੱਕਰਾਕਾਰ (ਵ੍ਰਿਤੀ) ਪੱਥ ਤੇ ਚਲਦੀ ਹੈ ਤਾਂ ਇਸਦੀ ਗਤੀ ਨੂੰ ਇੱਕ ਸਮਾਨ ਚੱਕਰਾਕਾਰ ਗਤੀ (Uniform Circular Motion) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਕਿਰਿਆ

_8.11

ਇੱਕ ਧਾਗੇ ਦਾ ਟੁਕੜਾ ਲਓ ਅਤੇ ਉਸਦੇ ਇੱਕ ਸਿਰੇ ਤੇ ਇੱਕ ਛੋਟੇ ਜਿਹੇ ਪੱਥਰ ਨੂੰ ਬੰਨ੍ਹ ਲਉ। ਧਾਗੇ ਦੇ ਦੂਜੇ ਸਿਰੇ ਨੂੰ ਪਕੜ ਕੇ ਪੱਥਰ ਨੂੰ ਪੱਥ ਤੇ ਸਥਿਰ ਚਾਲ ਨਾਲ ਘੁਮਾਓ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 8.10 ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ।

ਚਿੱਤਰ 8.10: ਇੱਕ ਪੱਥਰ ਸਥਿਰ ਮਾਤਰਾ ਦੀ ਗਤੀ ਦੇ ਨਾਲ ਚੱਕਰਾਕਾਰ ਪੱਥ ਤੇ ਚਲਦਾ ਹੋਇਆ

> ਹੁਣ, ਧਾਗੇ ਨੂੰ ਛੱਡ ਕੇ ਪੱਥਰ ਨੂੰ ਜਾਣ ਦਿਓ। ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਪੱਥਰ ਨੂੰ ਛੱਡਣ ਤੋਂ ਬਾਅਦ ਇਹ ਕਿਹੜੀ ਦਿਸ਼ਾ ਵਿੱਚ ਜਾਵੇਗਾ ? ਇਸ ਕਿਰਿਆ ਨੂੰ ਵਾਰ-ਵਾਰ ਦੁਹਰਾਓ ਅਤੇ ਚੱਕਰਾਕਾਰ ਪੱਥ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਸਥਿਤੀਆਂ ਤੋਂ ਪੱਥਰ ਨੂੰ ਛੱਡੋਂ ਅਤੇ ਇਹ ਦੇਖੋ ਕਿ ਪੱਥਰ ਕਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀ ਕਰਦਾ ਹੈ?

ਵਿਗਿਆਨ

ਜੇ ਤੁਸੀਂ ਧਿਆਨ ਨਾਲ ਦੇਖੋਗੇ ਤਾਂ ਤੁਸੀਂ ਪਾਊਗੇ ਕਿ ਪੱਥਰ ਛੱਡੇ ਜਾਣ ਤੇ ਇਹ ਚੱਕਰਾਕਾਰ ਪੱਥ ਨਾਲ ਬਣਦੀ ਸਪਰਸ਼ ਰੇਖਾ ਵੱਲ ਇਕ ਸਰਲ ਰੇਖਾ ਤੇ ਗਤੀ ਕਰਦਾ ਹੈ। ਇਹ ਇਸ ਲਈ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਜਦੋਂ ਪੱਥਰ ਨੂੰ ਛੱਡਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਹ ਉਸੇ ਦਿਸ਼ਾ ਵਿੱਚ ਚਲਦਾ ਰਹਿੰਦਾ ਹੈ ਜਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਉਹ ਉਸ ਪਲ ਗਤੀ ਕਰ ਰਿਹਾ ਸੀ। ਇਸ ਤੋਂ ਪਤਾ ਚੱਲਦਾ ਹੈ ਕਿ ਜਦੋਂ ਪੱਥਰ ਨੂੰ ਵ੍ਰਿਤੀ ਪੱਥ ਤੇ ਘੁਮਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਸਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਹਰੇਕ ਬਿੰਦ ਤੇ ਬਦਲਦੀ ਰਹਿੰਦੀ ਹੈ।

ਜਦੋਂ ਕੋਈ ਅਥਲੀਟ ਖੇਡ ਮੁਕਾਬਲੇ ਵਿੱਚ ਇਕ ਡਿਸਕਸ ਜਾਂ ਗੋਲੇ ਨੂੰ ਸੁੱਟਦਾ ਹੈ ਤਾਂ ਉਹ ਇਸਨੂੰ ਆਪਣੇ ਹੱਥ ਵਿੱਚ ਪਕੜਦਾ ਹੈ ਤੇ ਫਿਰ ਆਪਣੇ ਸ਼ਰੀਰ ਨੂੰ ਘੁਮਾ ਕੇ ਉਸਨੂੰ

ਤਸੀ

ਕੀ

ਚੱਕਰਾਕਾਰ ਗਤੀ ਦਿੰਦਾ ਹੈ। ਇਕ ਵਾਰ ਮਨਚਾਹੀ ਗਤੀ ਵਿੱਚ ਛੱਡਣ ਤੋਂ ਬਾਅਦ, ਗੋਲਾ ਜਾਂ ਡਿਸਕਸ ਉਸੇ ਹੀ ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀ ਕਰਦਾ ਹੈ ਜਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਉਹ ਛੱਡਣ ਲੱਗਿਆਂ ਗਤੀ ਕਰ ਰਿਹਾ ਸੀ, ਠੀਕ ਉਸੇ ਤਰ੍ਹਾਂ ਹੀ ਜਿਸ ਤਰਾਂ ਉੱਪਰਲੀ ਪੱਥਰ ਵਾਲੀ ਕਿਰਿਆ ਵਿੱਚ ਵਰਨਣ ਕੀਤਾ ਗਿਆ ਹੈ। ਵਸਤੁਆਂ ਦੀ ਇਕ ਸਮਾਨ ਵਿਤੀ (ਚੱਕਰਾਕਾਰ) ਗਤੀ ਦੇ ਬਹੁਤ ਸਾਰੇ ਹੋਰ ਉਦਾਹਰਣ ਵੀ ਹਨ। ਜਿਵੇਂ ਚੈਨ ਅਤੇ ਪ੍ਰਿਥਵੀ ਦੀ ਗਤੀ, ਪ੍ਰਿਥਵੀ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਗ੍ਰਹਿਮਾਰਗ ਵਿੱਚ ਘੁੰਮਦਾ ਹੋਇਆ ਉਪਗ੍ਰਹਿ, ਚੱਕਰੀ (ਵਿਤੀ) ਪੱਥ ਤੇ ਸਥਿਰ ਚਾਲ ਨਾਲ ਚੱਲਦਾ ਹੋਇਆ ਸਾਈਕਲ ਸਵਾਰ ਆਦਿ।

> Unaped trou 19 631

> ्र हिन्दी

कि वि सेत

123

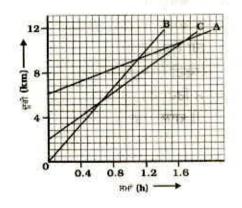
ਗਤੀ

ਗਤੀ ਸਥਿਤੀ ਵਿੱਚ ਤਬਦੀਲੀ ਹੋਣਾ ਹੈ, ਇਸ ਦਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਜਾਂ ਵਿਸਥਾਪਨ ਨਾਲ ਵਰਨਣ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

- ਵਸਤੁ ਦੀ ਗਤੀ ਦਾ ਇੱਕ ਸਮਾਨ ਜਾਂ ਅਸਮਾਨ ਹੋਣਾ ਉਸ ਵਸਤੂ ਦੇ ਵੇਗ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿ ਉਹ ਸਥਿਰ (ਨਿਯਤ) ਹੈ ਜਾਂ ਬਦਲ ਰਿਹਾ ਹੈ।
- ਪ੍ਰਤੀ ਇਕਾਈ ਸਮੇਂ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਵਸਤੂ ਦੀ ਚਾਲ (speed) ਹੁੰਦੀ ਹੈ ਅਤੇ ਪ੍ਰਤੀ ਇਕਾਈ ਸਮੇਂ ਵਿੱਚ ਹੋਇਆ ਵਿਸਥਾਪਣ (displacement) ਉਸਦਾ ਵੇਗ (velocity) ਹੁੰਦਾ ਹੈ।
- ਕਿਸੇ ਵਸਤੂ ਦਾ ਪ੍ਵੇਗ (acceleration) ਪ੍ਰਤੀ ਇਕਾਈ ਸਮੇਂ ਵਿੱਚ ਉਸਦੇ ਵੇਗ (velocity) ਵਿੱਚ ਹੋਣ ਵਾਲਾ ਪਰਿਵਰਤਨ ਹੈ।
 - ਗਰਾਫ਼ਾਂ ਰਾਹੀਂ ਵਸਤੂ ਦੀ ਇਕ ਸਮਾਨ (uniform motion) ਅਤੇ ਅਸਮਾਨ ਗਤੀ (non-uniform motion) ਨੂੰ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।
 - ਇਕ ਸਮਾਨ ਪ੍ਰਵੇਗ ਨਾਲ ਚਲ ਰਹੀ ਵਸਤੂ ਦੀ ਗਤੀ ਦੀ ਵਿਆਖਿਆ ਹੇਠ ਦਿੱਤੇ ਤਿੰਨ ਸਮੀਕਰਣਾਂ ਅਨੁਸਾਰ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ–

```
v = u + at
   s = ut + \frac{1}{2} at^2
2as = v^2 - u^2
```

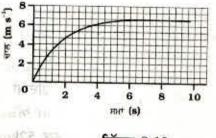
ਜਿੱਥੇ u ਵਸਤੂ ਦਾ ਆਰੰਭਿਕ ਵੇਗ ਹੈ ਅਤੇ ਜੋ ਕਿ / ਸਮੇਂ ਦੇ ਲਈ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ a ਨਾਲ ਗਤੀ ਕਰਦਾ ਹੈ ਅਤੇ v ਉਸ ਦਾ ਅੰਤਿਮ ਵੇਗ ਹੈ ਅਤੇ r ਸਮੇਂ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (s) ਹੁੰਦੀ ਹੈ।



121 100

124

ਅਭਿਆਸ


- ਇੱਕ ਅਥਲੀਟ 200m ਵਿਆਸ ਵਾਲੇ ਇੱਕ ਵ੍ਰਿਤੀ (ਚੱਕਰਾਕਾਰ) ਪੱਥ ਦਾ ਇੱਕ ਪੂਰਾ ਚੱਕਰ 40s ਵਿੱਚ ਲਗਾਉਂਦਾ ਹੈ। 2 ਮਿੰਟ 20s ਦੇ ਬਾਅਦ ਉਹ ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕਰੇਗਾ ਅਤੇ ਉਸਦਾ ਵਿਸਥਾਪਨ ਕਿੰਨਾ ਹੋਵੇਗਾ ?
- 300m ਸਰਲ ਰੇਖੀ ਪੱਥ ਤੇ ਜੋਸੇਫ ਜਾਗਿੰਗ ਕਰਦਿਆਂ ਹੋਇਆਂ 2 ਮਿੰਟ 30s ਵਿੱਚ ਇੱਕ ਸਿਰੇ A ਤੋਂ ਦੂਜੇ ਸਿਰੇ B ਤੱਕ ਪਹੁੰਚਦਾ ਹੈ ਅਤੇ ਘੁੰਮ ਕੇ 1 ਮਿੰਟ ਵਿੱਚ 100m ਪਿੱਛੇ ਬਿੰਦੂ C ਤੇ ਪਹੁੰਚਦਾ ਹੈ। ਜੋਸੇਫ ਦੀ ਔਸਤ ਚਾਲ ਅਤੇ ਔਸਤ ਵੇਗ ਕਿੰਨਾ ਹੋਵੇਗਾ ?
 (a) ਸਿਰੇ A ਤੋਂ ਸਿਰੇ B ਤੱਕ
 (b) ਸਿਰੇ A ਤੋਂ ਸਿਰੇ C ਤੱਕ
- ਅਬਦੁਲ ਗੱਡੀ ਤੇ ਸਕੂਲ ਜਾਂਦਿਆਂ ਹੋਇਆਂ ਆਪਣੀ ਔਸਤ ਚਾਲ ਨੂੰ 20km/h ਪੜ੍ਹਦਾ ਹੈ। ਵਾਪਸੀ ਵੇਲੇ ਘੱਟ ਭੀੜ ਹੋਣ ਕਾਰਨ ਉਸਦੀ ਔਸਤ ਚਾਲ 30km/h ਹੈ। ਅਬਦੁਲ ਦੀ ਇਸ ਪੂਰੀ ਯਾਤਰਾ ਵਿੱਚ ਔਸਤ ਚਾਲ ਪਤਾ ਕਰੋ।
- 4. ਇੱਕ ਮੋਟਰ ਬੋਟ ਇੱਕ ਝੀਲ ਵਿੱਚ ਵਿਰਾਮ ਅਵਸਥਾ ਤੋਂ ਸ਼ੁਰੂ ਹੋ ਕੇ ਇੱਕ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਗਤੀ ਕਰਦਿਆਂ ਹੋਇਆਂ 3ms⁻² ਦੇ ਸਥਿਰ (ਨਿਯਤ) ਪ੍ਵੇਗ ਨਾਲ 8 ਸੈਕਿੰਡ (s) ਤੱਕ ਚੱਲਦੀ ਹੈ ਇਸ ਸਮੇਂ ਅੰਤਰਾਲ ਵਿੱਚ ਮੋਟਰ ਬੋਟ ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕਰਦੀ ਹੈ।
- 5. ਕਿਸੇ ਕਾਰ ਦਾ ਚਾਲਕ 52kmh⁻¹ ਦੀ ਗਤੀ ਨਾਲ ਚਲ ਰਹੀ ਕਾਰ ਵਿੱਚ ਬਰੇਕ ਲਗਾਉਂਦਾ ਹੈ ਅਤੇ ਇਹ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਇੱਕ ਸਮਾਨ ਦਰ ਨਾਲ ਪ੍ਵੇਗਿਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਕਾਰ 5s ਵਿੱਚ ਰੁਕ ਜਾਂਦੀ ਹੈ। ਦੂਜੀ ਕਾਰ ਦਾ ਚਾਲਕ 30kmh⁻¹ ਦੀ ਗਤੀ ਨਾਲ ਚੱਲ ਰਹੀ ਕਾਰ ਤੇ ਹੌਲੀ ਬਰੇਕ ਲਗਾਉਂਦਾ ਹੈ ਅਤੇ 10s ਵਿੱਚ ਕਾਰ ਰੁਕ ਜਾਂਦੀ ਹੈ। ਇੱਕ ਹੀ ਗਰਾਫ਼ ਵਿੱਚ ਦੋਨੋਂ ਕਾਰਾਂ ਦੇ ਲਈ ਚਾਲ-ਸਮਾਂ ਗਰਾਫ਼ ਬਣਾਉ। ਬਰੇਕ ਲਗਾਉਣ ਤੋਂ ਬਾਅਦ ਦੋਨੋਂ ਵਿੱਚੋਂ ਕਿਹੜੀ ਕਾਰ ਜ਼ਿਆਦਾ ਦੂਰ ਤੱਕ ਜਾਵੇਗੀ ?
- 6. ਚਿੱਤਰ 8.11 ਵਿੱਚ ਤਿੰਨ ਵਸਤੂਆਂ A, B ਅਤੇ C ਦੇ ਦੂਰੀ-ਸਮਾਂ ਗਰਾਫ਼ ਪ੍ਰਦਰਸ਼ਿਤ ਹਨ। ਗਰਾਫ਼ ਦਾ ਅਧਿਐਨ ਕਰਕੇ ਨਿਮਨ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ।

ਚਿੱਤਰ 8.11 (ੳ) ਇਹਨਾਂ ਤਿੰਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਸਭ ਤੋਂ ਤੇਜ਼ ਚੱਲ ਰਿਹਾ ਹੈ ? (ਅ) ਕੀ ਇਹ ਤਿੰਨੋਂ ਕਿਸੇ ਸਮੇਂ ਸੜਕ ਦੇ ਇੱਕ ਹੀ ਜਗ੍ਹਾ ਤੇ ਹੋਣਗੇ ?

ਵਿਗਿਆਨ

- (ੲ) C ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕਰ ਚੁੱਕਿਆ ਹੋਵੇਗਾ, ਜਦੋਂ B, A ਤੋਂ ਗੁਜ਼ਰਦਾ ਹੈ ?
- (ਸ) ਜਿਸ ਸਮੇਂ B, C ਤੋਂ ਗੁਜ਼ਰਦਾ ਹੈ ਉਸ ਸਮੇਂ ਤੱਕ ਉਹ ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕਰ ਚੁੱਕਿਆ ਹੈ?
- 7. 20m ਦੀ ਉੱਚਾਈ ਤੋਂ ਇੱਕ ਗੇਂਦ ਨੂੰ ਆਰਾਮ ਨਾਲ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ। ਜੇ ਉਸਦਾ ਵੇਗ 10ms⁻² ਦੇ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ ਦੀ ਦਰ ਨਾਲ ਵੱਧਦਾ ਹੈ ਤਾਂ ਇਹ ਗੇਂਦ ਕਿਸ ਵੇਗ ਦੇ ਨਾਲ ਧਰਤੀ ਨਾਲ ਅਤੇ ਕਿੰਨੇ ਸਮੇਂ ਦੇ ਬਾਅਦ ਧਰਤੀ ਨਾਲ ਟਕਰਾਵੇਗਾ ?
- ਕਿਸੇ ਕਾਰ ਦਾ ਚਾਲ-ਸਮਾਂ ਗਰਾਫ਼ ਚਿੱਤਰ 8.12 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

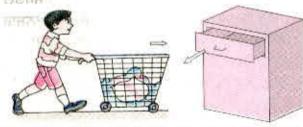
- (ੳ) ਪਹਿਲੇ ਚਾਰ ਸੈਕਿੰਡਾਂ ਵਿੱਚ ਕਾਰ ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕਰਦੀ ਹੈ ? ਇਸ ਸਮੇਂ ਅੰਤਰਾਲ ਵਿੱਚ ਕਾਰ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਨੂੰ ਗਰਾਫ਼ ਵਿੱਚ ਕਾਲ਼ੇ (Shaded) ਖੇਤਰ ਦੁਆਰਾ ਦਰਸਾਉ।
- (ਅ) ਗਰਾਫ਼ ਦਾ ਕਿਹੜਾ ਹਿੱਸਾ ਕਾਰ ਦੀ ਇੱਕ ਸਮਾਨ ਗਤੀ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ?
- ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੀਆਂ ਅਵਸਥਾਵਾਂ ਸੰਭਵ ਹਨ ਅਤੇ ਹਰੇਕ ਦੇ ਲਈ ਇੱਕ ਉਦਾਹਰਣ ਦੇਵੋ –
 - (ੳ) ਕੋਈ ਵਸਤੂ ਜਿਸਦਾ ਪ੍ਰਵੇਗ ਸਥਿਰ (ਨਿਯਤ) ਹੋਵੇ ਪਰ ਵੇਗ ਸਿਫ਼ਰ ਹੋਵੇ।
 - (ਅ) ਕੋਈ ਵਸਤੂ ਜਿਹੜੀ ਨਿਸ਼ਚਿਤ ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀ ਕਰ ਰਹੀ ਹੋਵੇ ਅਤੇ ਉਸਦਾ ਪ੍ਰਵੇਗ ਲੰਬਵਤ ਹੋਵੇ।

125

 ਇੱਕ ਬਨਾਵਟੀ ਉਪਗ੍ਰਹਿ 42250km ਅਰਧ ਵਿਆਸ ਦੇ ਚੱਕਰਾਕਾਰ ਆਕਾਰ ਗ੍ਰਹਿਪਥ ਵਿੱਚ ਘੁੰਮ ਰਿਹਾ ਹੈ। ਜੇਕਰ ਉਹ 24 ਘੰਟਿਆਂ ਵਿੱਚ ਧਰਤੀ ਦੀ ਪਰਿਕਰਮਾ ਕਰਦਾ ਹੈ ਤਾਂ ਉਸਦੀ ਚਾਲ ਪਤਾ ਕਰੋ।

Downloaded from https:// www.studiestoday.com

ਗਤੀ


ਅਧਿਆਇ 9

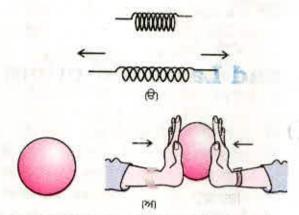
ਬਲ ਅਤੇ ਗਤੀ ਦੇ ਨਿਯਮ (Force and Laws of Motion)

ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਇੱਕ ਵਸਤੂ ਦੀ ਗਤੀ ਨੂੰ ਸਰਲਰੇਖੀ ਪੱਥ ਵਿੱਚ ਸਥਿਤੀ, ਵੇਗ ਅਤੇ ਪ੍ਰਵੇਗ ਦੇ ਆਧਾਰ ਤੇ ਵਰਨਣ ਕੀਤਾ। ਅਸੀਂ ਦੇਖਿਆ ਕਿ ਇਹੋ ਜਿਹੀ ਗਤੀ ਇਕਸਮਾਨ ਜਾਂ ਅਸਮਾਨ ਹੋ ਸਕਦੀ ਹੈ। ਅਜੇ ਤੱਕ ਅਸੀਂ ਇਹ ਖੋਜ ਨਹੀਂ ਕੀਤੀ ਕਿ ਕਿਨ੍ਹਾਂ ਕਾਰਨਾਂ ਕਰਕੇ ਗਤੀ ਹੁੰਦੀ ਹੈ।ਸਮੇਂ ਦੇ ਨਾਲ ਵਸਤੂ ਦੀ ਚਾਲ ਕਿਉਂ ਬਦਲਦੀ ਹੈ। ਕੀ ਸਾਰੀ ਤਰ੍ਹਾਂ ਦੀ ਗਤੀਆਂ ਦਾ ਕੋਈ ਕਾਰਨ ਹੁੰਦਾ ਹੈ ? ਜੋ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦਾ ਹੈ ; ਤਾਂ ਇਸ ਕਾਰਨ ਦੀ ਪ੍ਰਕਿਰਤੀ ਕੀ ਹੈ ? ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਇਹੋ ਜਿਹੀ ਉਤਸੁਕਤਾ ਨੂੰ ਸ਼ਾਂਤ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕੁਰਾਂਗੇ।

ਸਦੀਆਂ ਤੋਂ ਗਤੀ ਅਤੇ ਇਸਦੇ ਕਾਰਨਾਂ ਨੇ ਵਿਗਿਆਨੀਆਂ ਨੂੰ ਅਤੇ ਦਾਰਸ਼ਨਿਕਾਂ ਨੂੰ ਉਲਝਾ ਕੇ ਰੱਖਿਆ ਹੋਇਆ ਸੀ। ਫਰਸ਼ ਤੇ ਰੱਖੀ ਇੱਕ ਗੇਂਦ ਹਲਕੀ ਜਿਹੀ ਠੋਕਰ ਮਾਰਨ ਤੇ, ਹਮੇਸ਼ਾ ਗਤੀਮਾਨ ਨਹੀਂ ਰਹਿੰਦੀ ਜਾਂ ਹਮੇਸ਼ਾ ਲਈ ਗਤੀ ਵਿੱਚ ਨਹੀਂ ਆ ਜਾਂਦੀ। ਇਹੋ ਜਿਹੇ ਪ੍ਰੇਖਣ ਤੋਂ ਪਤਾ ਚੱਲਦਾ ਹੈ ਕਿ ਕਿਸੀ ਵਸਤੂ ਦੀ ਵਿਰਾਮ ਅਵਸਥਾ ਹੀ ਉਸਦੀ ਸ਼ਹਿਜ ਸੁਭਾਵਿਕ ਅਵਸਥਾ ਹੈ। ਇਹ ਮਾਨਤਾ ਤਦ ਤੱਕ ਬਣੀ ਰਹੀ ਜਦੋਂ ਤੱਕ ਕਿ ਗੈਲੀਲਿਊ ਗੈਲੀਲੀ ਅਤੇ ਆਈਸੈਕ ਨਿਊਟਨ ਨੇ ਵਸਤੂਆਂ ਦੀ ਗਤੀ ਸਮਝਣ ਬਾਰੇ ਇੱਕ ਬਿਲਕੁਲ ਵੱਖਰੀ ਸੋਚ ਵਾਲਾ ਤਰੀਕਾ ਤਿਆਰ ਕੀਤਾ।

ਅਸੀਂ ਆਪਣੀ ਰੋਜ਼ਾਨਾ ਜ਼ਿੰਦਗੀ ਵਿੱਚ ਦੇਖਦੇ ਹਾਂ ਕਿ ਇੱਕ ਸਥਿਰ ਵਸਤੂ ਨੂੰ ਗਤੀ ਵਿੱਚ ਲਿਆਉਣ ਲਈ ਜਾਂ ਗਤੀਮਾਨ ਵਸਤੂ ਨੂੰ ਰੋਕਣ ਲਈ ਕੁਝ ਯਤਨ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਅਸੀਂ ਆਮ ਤੌਰ 'ਤੇ ਇਸਨੂੰ ਪੱਠਿਆਂ ਦੇ ਯਤਨ ਦੇ ਰੂਪ ਵਿੱਚ ਅਨੁਭਵ ਕਰਦੇ ਹਾਂ ਅਤੇ ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਤੀ ਦੀ ਅਵਸਥਾ ਬਦਲਣ ਲਈ ਸਾਨੂੰ ਉਸਨੂੰ ਹਰ ਹਾਲਤ ਵਿੱਚ ਧੱਕਾ ਮਾਰਣਾ, ਖਿੱਚਣਾ ਜਾਂ ਠੋਕਰ ਲਗਾਉਣੀ ਪੈਂਦੀ ਹੈ। ਖਿੱਚਣ, ਧਕੇਲਣ ਜਾਂ ਠੋਕਰ ਲਗਾਉਣ ਦੀ ਇਹ ਕਿਰਿਆ 'ਬਲ' ਦੀ ਧਾਰਣਾ 'ਤੇ ਆਧਾਰਿਤ ਹੈ। ਆਉ ਹੁਣ ਅਸੀਂ 'ਬਲ' ਦੇ ਵਿਸ਼ੇ 'ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ। ਇਹ ਕੀ ਹੈ ? ਅਸਲ ਵਿੱਚ ਬਲ ਨੂੰ ਨਾ ਤਾਂ ਕਿਸੀ ਨੇ ਦੇਖਿਆ ਹੈ, ਨਾ ਚਖਿਆ ਹੈ ਅਤੇ ਨਾ ਹੀ ਮਹਿਸੂਸ ਕੀਤਾ ਹੈ। ਪਰ ਫਿਰ ਵੀ ਬਲ ਦਾ ਪ੍ਰਭਾਵ ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਜਾਂ ਮਹਿਸੂਸ ਕਰਦੇ ਹਾਂ। ਇਸ ਬਲ ਨੂੰ ਕੇਵਲ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਵਰਨਣ ਕਰਦਿਆਂ ਹੋਇਆਂ ਕੀ ਹੁੰਦਾ ਹੈ ? ਜਦੋਂ ਕਿਸੀ ਵਸਤੂ ਤੇ ਬਲ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ ਧੱਕਾ ਮਾਰਨਾ, ਠੱਕਰ ਮਾਰਨੀ ਅਤੇ ਵਸਤੂਆਂ ਨੂੰ ਆਪਣੇ ਵੱਲ ਖਿੱਚਣਾ, ਇਹ ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ ਵਸਤੂ ਨੂੰ ਗਤੀ ਵਿੱਚ ਲਿਆਉਣ ਦੇ ਵੱਖ-ਵੱਖ ਤਰੀਕੇ ਹਨ। ਉਹ ਗਤੀ ਕਰਦੀਆਂ ਹਨ, ਕਿਉਂਕਿ ਅਸੀਂ ਕਿਸੀ ਤਰ੍ਹਾਂ ਤੇ ਬਲ ਨੂੰ ਉਹਨਾਂ ਉੱਪਰ ਲੁਗਾਊਂਦੇ ਹਾਂ।

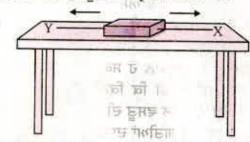
(ੳ) ਧਕੋਲਣ ਤੇ ਟ੍ਰਾਲੀ ਉਸੀ ਦਿਸ਼ਾ ਵਿੱਚ ਗੜੀ ਕਰਦੀ ਹੈ ਜਿੱਧਰ ਅਸੀਂ ਧੱਕਾ ਲਗਾਉਂਦੇ ਹਾਂ।


(ਅ) ਦਹਾਜ ਨੂੰ ਪਿੱਚਿਆ ਜਾਂਦਾ ਹੈ।

(ੲ) ਹਾਕੀ ਦੀ ਛੜ ਗੇਂਦ ਨੂੰ ਅੱਗੇ ਵੱਲ ਠੋਕਰ ਮਾਰਦੀ ਹੈ। ਚਿੱਤਰ 9.1 : ਵਸਤੂਆਂ ਨੂੰ ਧੱਕਾ ਮਾਰ ਕੇ, ਖਿੱਚ ਕੇ ਜਾਂ ਠੌਕਰ ਮਾਰ ਕੇ ਉਹਨਾਂ ਦੀ ਗਤੀ ਦੀ ਅਵਸਥਾ ਨੂੰ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਪਿਛਲੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਲਏ ਗਏ ਗਿਆਨ ਦੇ ਆਧਾਰ ਤੇ ਤੁਸੀਂ ਇਸ ਤੱਥ ਨਾਲ ਜਾਣੂ ਹੋ ਕਿ ਕਿਸੀ ਵਸਤੂ ਦੇ ਵੇਗ ਦੀ ਮਾਤਰਾ ਬਦਲਣ (ਭਾਵ ਵਸਤੂ ਦੀ ਗਤੀ ਨੂੰ ਤੇਜ਼ ਜਾਂ ਹੌਲੀ ਕਰਨ ਲਈ) ਜਾਂ ਗਤੀ ਦੀ ਦਿਸ਼ਾਂ•ਬਦਲਣ

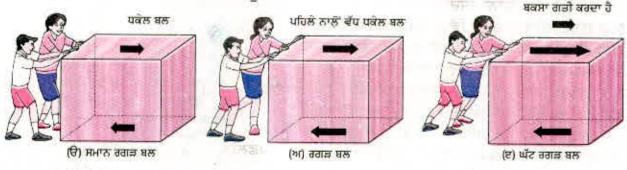
ਲਈ ਬਲ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਅਸੀਂ ਇਹ ਵੀ ਜਾਣਦੇ ਹਾਂ ਕਿ ਬਲ ਦੁਆਰਾ ਵਸਤੂਆਂ ਦਾ ਆਕਾਰ ਅਤੇ ਸ਼ਕਲ ਸੂਰਤ ਵੀ ਬਦਲੀ ਜਾ ਸਕਦੀ ਹੈ।



ਚਿੱਤਰ 9.2 : (ੳ) ਬਲ ਲਗਾਉਣ ਤੇ ਸਪਰਿੰਗ ਫੈਲਦਾ ਹੈ (ਅ)ਬਲ ਲਗਾਉਣ ਤੇ ਗੋਲਾਕਾਰ ਗੇਂਦ ਅੰਡਾਕਾਰ ਹੋ ਜਾਂਦੀ ਹੈ।

9.1 ਸੰਤੁਲਿਤ ਅਤੇ ਅਸੰਤੁਲਿਤ ਬਲ (Balanced

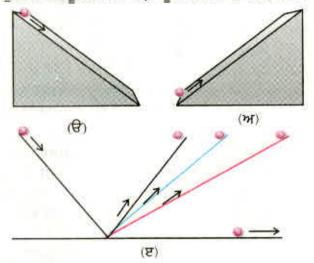
And Unbalanced Forces)


ਚਿੱਤਰ 9.3 ਵਿੱਚ ਲੱਕੜੀ ਦਾ ਇੱਕ ਪਿੰਡ ਇੱਕ ਸੰਮਤਲ ਮੇਜ਼ ਤੇ ਰੱਖਿਆ ਹੋਇਆ ਹੈ। ਚਿੱਤਰ ਵਿੱਚ ਦਿਖਾਏ ਅਨੁਸਾਰ ਦੋ ਧਾਗੇ X ਅਤੇ Y ਮੁੱਢ (ਲੱਕੜੀ) ਦਾ ਠੋਸ ਟੁਕੜਾ (Block) ਦੇ ਉਲਟ ਦਿਸ਼ਾ ਵੱਲ ਬੰਨੇ ਹੋਏ ਹਨ। ਜੇ ਅਸੀਂ ਧਾਗੇ X ਨੂੰ ਖਿੱਚ ਕੇ ਬਲ ਲਗਾਉਂਦੇ ਹਾਂ ਤਾਂ ਲੱਕੜ ਦਾ ਟੁੱਕੜਾ ਸੱਜੇ ਪਾਸੇ ਖਿਸਕਣਾ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਜੇ ਅਸੀਂ Y ਧਾਗੇ ਨੂੰ ਖਿੱਚੀਏ ਤਾਂ ਮੁੱਢ ਖੱਬੇ ਪਾਸੇ ਖਿਸਕਣਾ ਸ਼ੁਰੂ ਹੋ ਜਾਂਦਾ ਹੈ। ਪਰੰਤੂ ਜੇ ਮੁੱਢ ਨੂੰ ਦੋਨਾਂ ਪਾਸੋਂ ਬਰਾਬਰ ਬਲ ਨਾਲ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ ਇਹੋ ਜਿਹੀ ਹਾਲਤ ਵਿੱਚ ਮੁੱਢ ਗਤੀ ਨਹੀਂ ਕਰਦਾ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਬਲਾਂ ਨੂੰ ਸੰਤੁਲਿਤ ਬਲ (Balanced Force) ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਇਹ ਵਸਤੁਆਂ ਦੀ ਵਿਰਾਮ ਅਵਸਥਾ ਜਾਂ ਗਤੀ ਅਵਸਥਾ ਨੂੰ ਨਹੀਂ ਬਦਲਦੇ। ਹੁਣ ਅਸੀਂ ਇਹੋ ਜਿਹੀ ਅਵਸਥਾ ਦੀ ਕਲਪਨਾ ਕਰਦੇ ਹਾਂ ਜਿਸ ਵਿੱਚ ਦੋ ਵੱਖ-ਵੱਖ ਮਾਤਰਾ ਦੇ ਬਲ ਮੁੱਢ ਨੂੰ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਖਿੱਚਦੇ ਹਨ। ਇਸ ਹਾਲਤ ਵਿੱਚ ਮੁੱਢ ਜ਼ਿਆਦਾ ਬਲ ਵਾਲੀ ਦਿਸ਼ਾ ਵਿੱਚ ਖਿਸਕਣਾ ਸ਼ੁਰੂ ਕਰੇਗਾ। ਇਸ ਲਈ ਦੋਨੇਂ ਬਲ ਸੰਤੁਲਿਤ ਨਹੀਂ ਹਨ ਅਤੇ ਅਸੰਤੁਲਿਤ ਬਲ ਮੁੱਢ ਦੇ ਖਿਸਕਣ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਕੰਮ ਕਰਦਾ ਹੈ। ਇਸ ਤੋਂ ਇਹ ਪਤਾ ਚੱਲਦਾ ਹੈ ਕਿ ਕਿਸੀ ਵੀ ਵਸਤੂ ਤੇ ਨੱਗਣ ਵਾਲਾ ਅਸੰਤੁਲਿਤ ਬਲ ਉਸਨੂੰ ਗਤੀ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।

ਚਿੱਤਰ 9.3 : ਲੱਕੜੀ ਦੇ ਇੱਕ ਬਲਾਕ ਤੇ ਲੱਗੇ ਦੋ ਬਲ

ਜਦੋਂ ਕੁਝ ਬੱਚੇ ਇੱਕ ਬਕਸੇ ਨੂੰ ਖੁਰਦਰੇ ਫਰਸ਼ ਤੇ ਧਕੇਲਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਨ ਤਾਂ ਕੀ ਹੁੰਦਾ ਹੈ ? ਜੇ ਉਹ ਬਕਸੇ ਨੂੰ ਘੱਟ ਜ਼ੋਰ ਦੇ ਨਾਲ ਧੱਕਾ ਮਾਰਦੇ ਹਨ ਤਾਂ ਬਕਸਾ ਨਹੀਂ ਖਿਸਕਦਾ ਹੈ। ਕਿਉਂਕਿ (Friction) ਰਗੜ ਬਲ ਧਕੇਲਣ ਦੇ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਕੰਮ ਕਰ ਰਿਹਾ ਹੈ। ਚਿੱਤਰ 9.4 (ੳ) ਇਹ ਰਗੜ ਬਲ ਦੋ ਆਪਸ ਵਿੱਚ ਛੂੰਹਦੀਆਂ ਤਲਾਂ/ਪਰਤਾਂ ਦੇ ਵਿੱਚ ਉਤਪੰਨ ਹੁੰਦਾ ਹੈ ; ਇਸ ਉਦਾਹਰਣ ਵਿੱਚ ਬਕਸੇ ਦੇ ਬੱਲੇ ਦੇ ਤਲ ਅਤੇ ਫਰਸ਼ ਦੇ ਖੁਰਦਰੇ ਤਲ ਵਿਚਕਾਰ ਹੁੰਦਾ ਹੈ। ਇਹ ਧਕੇਲਣ ਵਾਲੇ ਬਲ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰਦਾ ਹੈ ਅਤੇ ਬਕਸਾ ਇਸ ਲਈ ਗਤੀ ਨਹੀਂ ਕਰਦਾ। ਚਿੱਤਰ 9.4 (ਅ) ਬੱਚੇ ਬਕਸੇ ਨੂੰ ਜ਼ੋਰ ਨਾਲ ਧੱਕਾ ਮਾਰਦੇ ਹਨ ਪਰੰਤੂ ਬਕਸਾ

127


ਬਲ ਅਤੇ ਗਤੀ ਦੇ ਨਿਯਮ

ਅਜੇ ਵੀ ਨਹੀਂ ਹਿਲਦਾ। ਇਹ ਇਸ ਲਈ ਹੈ ਕਿ ਰਗੜ ਬਲ ਨੇ ਅਜੇ ਧਕੇਲਣ ਵਾਲੇ ਬਲ ਨੂੰ ਸੰਤੁਲਿਤ ਕਰ ਲਿਆ ਹੈ। ਜੇ ਬੱਚੇ ਬਕਸੇ ਨੂੰ ਜ਼ਿਆਦਾ ਜ਼ੋਰ ਨਾਲ ਧੱਕਾ ਮਾਰਦੇ ਹਨ ਧੱਕਣ ਵਾਲਾ ਬਲ ਰਗੜ ਬਲ ਤੋਂ ਜ਼ਿਆਦਾ ਹੋ ਜਾਂਦਾ ਹੈ (ਚਿੱਤਰ 9.4 (ੲ))। ਇੱਥੇ ਅਸੰਤੁਲਿਤ ਬਲ ਕੰਮ ਕਰਦਾ ਹੈ ਇਸ ਲਈ ਬਕਸਾ ਖਿਸਕਣ ਲੱਗਦਾ ਹੈ।

ਜਦੋਂ ਅਸੀਂ ਸਾਈਕਲ ਚਲਾਉਂਦੇ ਹਾਂ ਤਾਂ ਕੀ ਹੁੰਦਾ ਹੈ ? ਪੈਡਲ ਚਲਾਉਣਾ ਬੰਦ ਕਰਨ ਤੇ ਸਾਈਕਲ ਹੌਲੀ ਚਲਣ ਲੱਗ ਜਾਂਦੀ ਹੈ। ਇਹ ਇਸ ਲਈ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਰਗੜ ਬਲ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਤੋਂ ਉਲਟ ਕੰਮ ਕਰਦਾ ਹੈ। ਸਾਈਕਲ ਨੂੰ ਚੱਲਦਾ ਰੱਖਣ ਲਈ ਸਾਨੂੰ ਫਿਰ ਤੋਂ ਪੈਡਲ ਮਾਰਨਾ ਪੈਂਦਾ ਹੈ। ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਪਤੀਤ ਹੁੰਦਾ ਹੈ ਕਿ ਅਸੰਤੁਲਿਤ ਬਲ ਦੇ ਲਗਾਤਾਰ ਲੱਗਣ ਤੇ ਵਸਤੂ ਆਪਣੇ ਆਪ ਨੂੰ ਗਤੀ ਵਿੱਚ ਬਣਾਏ ਰੱਖਦੀ ਹੈ। ਪਰ ਫਿਰ ਵੀ ਇਹ ਕਾਫੀ ਹੱਦ ਤੱਕ ਗ਼ਲਤ ਹੈ। ਕੋਈ ਵਸਤੂ ਸਮਾਨ ਵੇਗ ਦੇ ਨਾਲ ਕੇਵਲ ਉਦੋਂ ਹੀ ਚੱਲਦੀ (ਗਤੀਮਾਨ) ਰਹਿ ਸਕਦੀ ਹੈ ਜਦੋਂ ਤੱਕ ਉਸ ਤੇ ਲੱਗਣ ਵਾਲੇ ਬਲ (ਬਾਹਰੀ ਧਕੇਲਣ ਬਲ ਅਤੇ ਰਗੜ ਬਲ) ਸੈਤਲਿਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਵਸਤੂ ਤੇ ਕੋਈ ਬਾਹਰੀ ਬਲ ਕਾਰਜ ਨਹੀਂ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਕਿਸੇ ਵਸਤੂ ਤੇ ਅਸੰਤੁਲਿਤ ਬਲ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ ਤਦ ਉਸਦੀ ਚਾਲ ਵਿੱਚ ਪਰਿਵਰਤਨ ਜਾਂ ਉਸਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਪ੍ਰਵੇਗਿਤ ਕਰਨ ਲਈ ਇੱਕ ਅਸੰਤੁਲਿਤ ਬਲ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਅਤੇ ਉਸਦੀ ਗਤੀ ਜਾਂ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਉਦੋਂ ਤੱਕ ਤਬਦੀਲੀ ਹੁੰਦੀ ਰਹੇਗੀ ਜਦੋਂ ਤੱਕ ਅਸੰਤੁਲਿਤ ਬਲ ਉਸ ਤੇ ਕੰਮ ਕਰਦਾ ਰਹੇਗਾ। ਇਹ ਬਲ ਹਟਾ ਲੈਣ ਤੇ ਵਸਤ ਪਾਪਤ ਕੀਤੇ ਹੋਏ ਵੇਗ ਨਾਲ ਗਤੀਮਾਨ ਰਹੇਗੀ।

9.2 ਗਤੀ ਦਾ ਪਹਿਲਾ ਨਿਯਮ (First Law of Motion)

ਵਸਤੂਆਂ ਦੀ ਕਿਸੇ ਢਾਲੂ ਤਲ ਤੇ ਗਤੀ ਵੇਖ ਕੇ ਗੈਲੀਲਿਊ ਨੇ ਇਹ ਸਿੱਟਾ ਕੱਢਿਆ ਕਿ ਜਦੋਂ ਤੱਕ ਵਸਤੂ ਤੇ ਬਾਹਰੀ ਬਲ ਨਹੀਂ ਲੱਗਦਾ। ਉਦੋਂ ਤੱਕ ਵਸਤੂਆਂ ਇੱਕ ਨਿਸ਼ਚਿਤ ਗਤੀ ਨਾਲ ਚੱਲਦੀਆਂ ਹਨ। ਉਨ੍ਹਾਂ ਨੇ ਵੇਖਿਆ ਕਿ ਕੱਚ ਦੀ ਗੋਲ਼ੀ ਢਾਲੂ ਤਲ ਤੇ ਲੁੜਕਦੀ ਹੈ ਤਾਂ ਉਸਦਾ ਵੇਗ ਵੱਧ ਜਾਂਦਾ ਹੈ ਚਿੱਤਰ 9.5 (ੳ)। ਅਗਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਸਿੱਖਾਂਗੇ ਕਿ ਗੋਲ਼ੀ ਗੁਰੂਤਾ ਬਲ ਦੇ ਅਸੰਤੁਲਿਤ ਕਾਰਣ ਬੱਲੇ ਨੂੰ ਡਿੱਗਦੀ ਹੈ ਅਤੇ ਬੱਲੇ ਪਹੁੰਚਦੇ-ਪਹੁੰਚਦੇ ਉਹ ਇੱਕ ਨਿਸ਼ਚਿਤ ਵੇਗ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦੀ ਹੈ ਅਤੇ ਚਿੱਤਰ 9.5 (ਅ) ਵਿੱਚ ਦਿਖਾਏ ਅਨੁਸਾਰ, ਜਦੋਂ ਕੱਚ ਦੀ ਗੋਲ਼ੀ ਢਾਲੂ ਤਲ ਦੇ ਉੱਪਰ ਵੱਲ ਨੂੰ ਚੜ੍ਹਦੀ ਹੈ ਤਾਂ ਇਸਦਾ ਵੇਗ ਘੱਟਦਾ ਹੈ। ਚਿੱਤਰ 9.5 (ੲ) ਵਿੱਚ ਇੱਕ ਆਕਰਸ਼ ਰਗੜ ਰਹਿਤ ਦੋਨੋਂ ਪਾਸੇ ਢਾਲ ਤਲ ਤੇ ਇੱਕ ਕੱਚ ਦੀ ਗੋਲੀ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਪਈ ਦਿਖਾਈ ਗਈ ਹੈ। ਗੈਲੀਲੀਓ ਨੇ ਤਰਕ ਦਿੱਤਾ ਸੀ ਕਿ ਜਦੋਂ ਕਿਸੇ ਗੋਲੀ ਨੂੰ ਖੱਬੇ ਪਾਸੇ ਤੋਂ ਛੱਡਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਹ ਢਲਾਨ ਤੇ ਥੱਲੇ ਵੱਲ ਨੂੰ ਲੜਕੇਗੀ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਢਾਲੂ ਤਲ ਤੇ ਉਨੀ ਹੀ ਉੱਚਾਈ ਤੇ ਚੜੇਗੀ ਜਿੰਨੀ ਉੱਚਾਈ ਤੋਂ ਉਸਨੂੰ ਛੱਡਿਆ ਗਿਆ ਸੀ। ਜੇਂਕਰ ਦੋਨੋਂ ਪਾਸਿਆਂ ਦੇ ਢਾਲੂ ਤਲ ਦੀ ਝੁਕਾਨ (ਢਲਾਨ) ਬਰਾਬਰ ਹੈ ਤਾਂ ਗੱਲੀ ਉਨੀ ਹੀ ਦੂਰ ਤੱਕ ਚੜ੍ਹੇਗੀ ਜਿੰਨੀ ਦੂਰੀ ਤੋਂ ਉਹ ਪਰਲੇ ਪਾਸ਼ੋਂ ਲੁੜਕੀ ਸੀ। ਜੇਕਰ ਸੱਜੇ ਪਾਸੇ ਵਾਲੇ ਢਾਲੂ ਤਲ ਦੇ ਕੋਣ ਨੂੰ ਹੌਲੀ-ਹੌਲੀ ਘਟਾਇਆ ਜਾਵੇ ਤਾਂ ਗੋਲ਼ੀ ਨੂੰ ਅਸਲ ਉੱਚਾਈ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਜ਼ਿਆਦਾ ਦਰੀ ਤੈਅ ਕਰਨੀ ਪਵੇਗੀ। ਜੇਕਰ ਇਸ ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਵਾਲੇ ਢਾਲੂ ਤਲ ਨੂੰ ਅਖੀਰ ਵਿੱਚ ਸਮਤਲ (ਲੇਟਵਾਂ) ਬਣਾ ਦਿੱਤਾ ਜਾਵੇ ਭਾਵ ਢਲਾਨ ਨੂੰ ਸਿਫ਼ਰ ਕਰ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਕੱਚ ਦੀ ਗੋਲੀ ਨੂੰ ਹਮੇਸ਼ਾਂ ਲਈ ਗਤੀ ਵਿੱਚ ਰਹਿਣਾ ਪਵੇਗਾ ਭਾਵ ਚੱਲਣਾ ਪਵੇਗਾ ਤਾਂ ਕਿ ਉਹ ਉਸ ਉਚਾਈ ਤੱਕ ਪਹੁੰਚ ਜਾਵੇ ਜਿਸ ਤੋਂ ਇਸਨੂੰ ਛੱਡਿਆ ਗਿਆ ਸੀ। ਇਸ ਹਾਲਤ ਵਿੱਚ ਕੱਚ ਦੀ ਗੋਲੀ ਤੇ ਲੱਗ ਰਹੇ ਅਸੰਤਲਿਤ ਬਲ ਸਿਫ਼ਰ ਹਨ। ਇਸ ਤੋਂ ਇਹ ਸਿੱਟਾ ਕੱਢਣ ਵਿੱਚ ਮੱਦਦ ਮਿਲਦੀ ਹੈ ਕਿ ਕੱਚ ਦੀ ਗੋਲ਼ੀ ਦੀ ਗਤੀ ਨੂੰ ਬਦਲਣ ਲਈ ਇੱਕ ਬਾਹਰੀ ਅਸੰਤੁਲਿਤ ਬਲ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ ਪਰੰਤੂ ਕੱਚ ਦੀ ਗੋਲ਼ੀ ਨੂੰ ਇੱਕ ਸਮਾਨ ਗਤੀ ਵਿੱਚ

ਚਿੱਤਰ 9.5 : (ੳ) ਕਿਸੀ ਕੱਚ ਦੀ ਗੋਲ਼ੀ ਦਾ ਢਾਲੂ ਤਲ ਤੇ ਥੱਲੇ ਵੱਲ ਨੂੰ ਲੁੜਕਣਾ (ਅ) ਢਾਲੂ ਤਲ ਤੇ ਕੱਚ ਦੀ ਗੋਲ਼ੀ ਦੀ ਉਤਾਂਹ ਵੱਲ ਨੂੰ ਗਤੀ ਕਰਨਾ (ੲ) ਕੱਚ ਦੀ ਗੋਲ਼ੀ ਦਾ ਦੋ ਢਾਲੂ ਤਲ ਤੇ ਗਤੀ ਕਰਨਾ।

128

<u>ৰি</u>ৱান্স'ম

ਗੈਲੀਲੀਓ ਗੈਲੀਲੀ ਦਾ ਜਨਮ 15 ਫਰਵਰੀ ਸਨ 1564 ਵਿੱਚ ਇਟਲੀ ਦੇ ਪੀਸਾ ਸ਼ਹਿਰ ਵਿੱਚ ਹੋਇਆ ਸੀ। ਗੈਲੀਲੀਓ ਦੀ ਬਚਪਨ ਤੋਂ ਹੀ ਗਣਿਤ ਅਤੇ ਦਰਸ਼ਨ ਵਿੱਚ ਰੁਚੀ ਸੀ। ਪਰੰਤੂ ਪਿਤਾ ਵਿਨੇਜ ਗੈਲੀਲੀ, ਉਨ੍ਹਾਂ ਨੂੰ ਡਾਕਟਰ ਬਣਾਉਣਾ ਚਾਹੁੰਦੇ ਸਨ। ਇਸੇ ਕਾਰਨ ਗੈਲੀਲੀਓ ਨੇ 1581

ਗੈਲੀਲੀਓ ਗੈਲੀਲੀ (1564 – 1642)

ਵਿੱਚ ਡਾਕਟਰ ਦੀ ਉਪਾਧੀ (ਡਾਕਟਰ ਦੀ ਡਿਗਰੀ) ਲਈ ਪੀਸਾ ਵਿਸ਼ਵਵਿਦਿਆਲਿਆ ਤੋਂ ਨਾਮਾਂਕਨ ਕਰਵਾ ਲਿਆ ਸੀ ਪਰ ਉਹ ਇਸ ਨੂੰ ਕਦੇ ਪੂਰਾ ਨਹੀਂ ਕਰ ਪਾਏ ਕਿਉਂਕਿ ਉਸਦੀ ਅਸਲ ਰੁਚੀ ਗਣਿਤ ਵਿੱਚ ਸੀ। ਸੰਨ 1586 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਆਪਣੀ ਪਹਿਲੀ ਵਿਗਿਆਨੀ ਪੁਸਤਕ 'ਦ ਲਿਟਿਲ ਬੇਨੇਂਸ' (ਲਾ ਬੈਲੇਂਸਿਟਾ) ਲਿਖੀ। ਜਿਸ ਵਿੱਚ ਉਹਨਾਂ ਨੇ ਇੱਕ ਤੁਲਾ ਦੁਆਰਾ ਪਦਾਰਥਾਂ ਦੀ ਸਾਖੇਖ ਘਣਤਾ (Relative Density) ਜਾਂ ਵਿਸ਼ਿਸ਼ਟ ਗੁਰੂਤਾ (specific gravity) ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਆਰਕੀਮੀਡਿਜ਼ ਦੀ ਵਿਧੀ ਦਾ ਵਰਨਣ ਕੀਤਾ ਸੀ। ਸੰਨ 1589 ਵਿੱਚ ਉਨ੍ਹਾਂ ਨੇ ਆਪਣੀ ਲੇਖ ਲੜੀ ਡੀ ਮੌਟ (De motu) ਵਿੱਚ ਢਾਲੂ ਤਲ ਦੇ ਪ੍ਰਯੋਗ ਨਾਲ ਕਿਸੀ ਡਿੱਗਦੀ ਹੋਈ ਵਸਤੂ ਦੇ ਡਿੱਗਣ ਦੀ ਦਰ ਨੂੰ ਘੱਟ ਹੋ ਜਾਣ ਸੰਬੰਧੀ ਆਪਣ ਸਿਧਾਂਤ ਨੂੰ ਪੇਸ਼ ਕੀਤਾ।

1592 ਵਿੱਚ, ਉਨ੍ਹਾਂ ਨੂੰ ਵੈਨਿਸ ਗਣਰਾਜ ਦੇ ਪਡੂਆ ਵਿਸ਼ਵ-ਵਿਦਿਆਲਿਆ ਵਿੱਚ ਗਣਿਤ ਦੇ ਪ੍ਰੋਫ਼ੈਸਰ ਪਦ ਤੇ ਨਿਯੁਕਤ ਕੀਤਾ ਗਿਆ। ਇੱਥੇ ਵੀ ਉਨ੍ਹਾਂ ਨੇ ਲਗਾਤਾਰ ਗਤੀ ਦੇ ਸਿਧਾਂਤਾਂ ਤੇ ਪ੍ਰੇਖਣਾਂ ਨੂੰ ਜਾਰੀ ਰੱਖਿਆ ਅਤੇ ਉਸਨੇ ਢਾਲੂ ਤਲ ਅਤੇ ਪੈਂਡੂਲਮ ਤੇ ਆਪਣੇ ਅਧਿਐਨ ਦੇ ਆਧਾਰ ਤੇ ਉਨ੍ਹਾਂ ਨੇ ਇਕ ਸਮਾਨ ਪ੍ਰਵੇਗਿਤ ਵਸਤੂਆਂ ਲਈ ਸਹੀ ਨਿਯਮ ਬਣਾਇਆ ਜਿਸ ਵਿੱਚ ਵਸਤੂ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਸਮੇਂ ਦੇ ਵਰਗ ਦੇ ਅਨੁਕ੍ਰਮਾਨੁਪਾਤੀ ਹੁੰਦੀ ਹੈ।

ਗੈਲੀਲੀਓ ਇਕ ਕੁਸ਼ਲ ਸ਼ਿਲਪਕਾਰ (ਸ਼ਿਲਪੀ) ਵੀ ਸਨ। ਉਨ੍ਹਾਂ ਨੇ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੇ ਦੂਰਬੀਨ ਦੀ ਲੜੀ ਤਿਆਰ ਕੀਤੀ ਜਿਨ੍ਹਾਂ ਦੀ ਪ੍ਰਕਾਸ਼ੀ ਨਿਪੁਣਤਾ ਉਸ ਵੇਲੇ ਉਪਲੱਬਧ ਦੂਰਬੀਨ ਤੋਂ ਬਹੁਤ ਜ਼ਿਆਦਾ ਸੀ। ਸੰਨ 1640 ਦੇ ਨੇੜੇ ਉਨ੍ਹਾਂ ਨੇ ਪਹਿਲੀ ਪੈਂਡੂਲਮ ਘੜੀ ਬਣਾਈ। ਉਨ੍ਹਾਂ ਨੇ ਖਗੋਲੀ ਖੋਜਾਂ ਤੇ ਲਿਖੀ ਆਪਣੀ ਕਿਤਾਬ ਸਟਾਰੀ ਮੇਸੇਂਜਰ (Starry-Messenger) ਵਿੱਚ ਗੈਲੀਲੀਓ ਨੇ ਚੰਨ ਤੇ ਪਹਾੜਾਂ ਨੂੰ ਦੇਖਣ ਦਾ, ਆਕਾਸ਼ਗੰਗਾ ਦਾ ਬਹੁਤ ਸਾਰੇ ਛੋਟੇ-ਛੋਟੇ ਤਾਰਿਆਂ ਤੋਂ ਮਿਲ ਕੇ ਬਣੇ ਹੋਣ ਦਾ ਅਤੇ ਚਾਰ ਛੋਟੇ ਪਿੰਡਾਂ ਨੂੰ ਬ੍ਰਹਿਸਪਤੀ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਘੁੰਮਦੇ ਦੇਖਣ ਦਾ ਦਾਅਵਾ ਕੀਤਾ। ਉਸਨੇ ਆਪਣੀਆਂ ਕਿਤਾਬਾਂ (Discourse on Floating Bodies) ਡਿਸਕਾਰਸ ਔਨ ਫਲੋਟਿੰਗ ਔਬਜੈਕਟਸ ਅਤੇ (Letters on the Sunspot) ਲੈਟਰਜ਼ ਔਨ ਦ ਸਨਸਪਾਟਾ ਵਿੱਚ ਸੂਰਜ ਤੇ ਧੱਬਿਆਂ ਦੇ ਹੋਣ ਸੰਬੰਧੀ ਆਪਣੇ ਪ੍ਰੇਖਣਾਂ ਨੂੰ ਜਾਹਿਰ ਕੀਤਾ।

ਆਪਣੀ ਬਣਾਈ ਦੂਰਦਰਸ਼ੀ ਦੁਆਰਾ ਸ਼ਨੀ ਗ੍ਰਹਿ ਅਤੇ ਸ਼ੁਕਰ ਗ੍ਰਹਿ ਤੇ ਕੀਤੇ ਗਏ ਪ੍ਰੇਖਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਗੈਲੀਲੀਓ ਨੇ ਤਰਕ ਦਿੱਤਾ ਕਿ ਸਾਰੇ ਗ੍ਰਹਿਆਂ ਨੂੰ ਸੂਰਜ ਦੇ ਦੁਆਲੇ ਘੁੰਮਣਾ ਚਾਹੀਦਾ ਹੈ ਨਾ ਕਿ ਧਰਤੀ ਦੇ ਇਹ ਵਿਚਾਰ ਉਸ ਸਮੇਂ ਦੀ ਪ੍ਰਚਲਿਤ ਵਿਚਾਰਧਾਰਾ ਦੇ ਬਿਲਕੁਲ ਉਲਟ ਸੀ।

ਬਣਾਏ ਰੱਖਣ ਲਈ ਕਿਸੇ ਕੁੱਲ ਬਲ ਦੀ ਜ਼ਰੂਰਤ ਨਹੀਂ ਹੁੰਦੀ। ਵਾਸਤਵਿਕ ਅਵਸਥਾ ਵਿੱਚ ਕੇਵਲ ਅਸੰਤੁਲਿਤ ਬਲ ਪ੍ਰਾਪਤ ਕਰਨਾ ਮੁਸ਼ਕਿਲ ਹੈ। ਇਸ ਦਾ ਕਾਰਨ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦੇ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਰਗੜ ਬਲ ਦਾ ਕੰਮ ਕਰਨਾ ਹੈ। ਇਸ ਲਈ ਆਮ ਹਾਲਤਾਂ ਵਿੱਚ ਕੱਚ ਦੀ ਗੋਲੀ ਥੋੜ੍ਹੀ ਦੇਰ ਚੱਲਣ ਤੋਂ ਬਾਅਦ ਰੁੱਕ ਜਾਂਦੀ ਹੈ। ਰਗੜ ਬੁਲ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਇੱਕ ਚਿਕਨੀ ਕੱਚ ਦੀ ਗੋਲੀ ਅਤੇ ਚਿਕਨੀ ਸਮਤਲ ਅਤੇ ਸਮਤਲ ਸਤ੍ਹਾ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਚਿਕਨਾਈ ਯੁਕਤ ਪਦਾਰਥ ਦਾ ਲੇਪ ਕਰਕੇ ਘਟਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਨਿਊਟਨ ਨੇ ਬਲ ਅਤੇ ਗਤੀ ਬਾਰੇ ਗੈਲੀਲੀਓ ਦੇ ਵਿਚਾਰਾਂ ਦਾ ਅੱਗੇ ਅਧਿਐਨ ਕੀਤਾ। ਉਨ੍ਹਾਂ ਨੇ ਤਿੰਨ ਬੁਨਿਆਦੀ ਸਿਧਾਂਤ ਪੇਸ਼ ਕੀਤੇ। ਜੋ ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਤੀ ਦਾ ਵਰਨਣ ਕਰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਨਿਯਮਾਂ ਨੂੰ ਨਿਊਟਨ ਦੇ ਗਤੀ ਦੇ ਨਿਯਮ (Newton's Laws of Motion) ਦੇ ਨਾਂ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ।

ਗਤੀ ਦਾ ਪਹਿਲਾ ਨਿਯਮ (First Law of Motion)

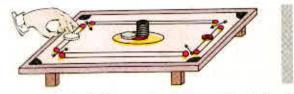
'ਹਰੇਕ ਵਸਤੂ ਆਪਣੀ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਜਾਂ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਇੱਕ ਸਮਾਨ ਗਤੀ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਬਣੀ ਰਹਿੰਦੀ ਹੈ ਜਦੋਂ ਤੱਕ ਕੋਈ ਬਾਹਰੀ ਬਲ ਉਸਦੀ ਉਸ ਅਵਸਥਾ ਨੂੰ ਬਦਲਣ ਲਈ ਮਜ਼ਬੂਰ ਨਹੀਂ ਕਰਦਾ।'

ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਹਰ ਵਸਤੂ ਆਪਣੀ ਗਤੀ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦਾ ਵਿਰੋਧ ਕਰਦੀ ਹੈ। ਗੁਣਾਤਮਕ ਰੂਪ ਵਿੱਚ ਕਿਸੇ ਬਿਨਾਂ ਹਿਲਾਈ ਵਸਤੂ ਦੇ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਰਹਿਣ ਜਾਂ ਇਕ ਸਮਾਨ ਵੇਗ ਨਾਲ ਗਤੀਮਾਨ ਰਹਿਣ ਦੀ ਪ੍ਵਿਰਤੀ ਨੂੰ ਜੜ੍ਹਤਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਜਾਂ (ਵਸਤੂਆਂ ਦਾ ਉਹ ਗੁਣ ਜਿਸ ਕਾਰਨ ਵਸਤੂ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਜਾਂ ਇੱਕੋ ਜਿਹੇ ਵੇਗ ਨਾਲ ਗਤੀਮਾਨ ਰਹਿਣਾ ਚਾਹੁੰਦੀ ਹੈ, ਨੂੰ ਜੜ੍ਹਤਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਹੀ ਕਾਰਨ ਹੈ ਕਿ ਗਤੀ ਦੋ ਪਹਿਲੇ ਨਿਯਮ ਨੂੰ 'ਜੜ੍ਹਤਾ ਦਾ ਨਿਯਮ' (Law of Inertia) ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਬਲ ਅਤੇ ਗਤੀ ਦੇ ਨਿਯਮ

129

ਕਿਸੇ ਮੋਟਰ ਗੱਡੀ ਵਿੱਚ ਯਾਤਰਾ ਕਰਨ ਸਮੇਂ ਹੋਣ ਵਾਲੇ ਅਨਭਵਾਂ ਦੀ ਵਿਆਖਿਆ ਜੜਤਾ ਦੇ ਨਿਯਮ ਦੁਆਰਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਸੀਟ ਦੇ ਸਾਪੇਖ ਅਸੀਂ ਤਦ ਤੱਕ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਰਹਿਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ ਜਦ ਤੱਕ ਮੋਟਰਗੱਡੀ ਨੂੰ ਰੋਕਣ ਲਈ ਡਰਾਈਵਰ ਬਰੇਕ ਨਹੀਂ ਲਗਾਉਂਦਾ। ਬਰੇਕ ਲਗਾਏ ਜਾਣ ਤੇ ਕਾਰ ਦੀ ਗਤੀ ਘੱਟ ਜਾਂਦੀ ਹੈ ਤੇ ਨਾਲ ਸੀਟ ਵੀ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਆ ਜਾਂਦੀ ਹੈ। ਪਰੰਤੂ ਸਾਡਾ ਸਰੀਰ ਜੜਤਾ ਦੇ ਕਾਰਨ ਗਤੀ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਬਣੇ ਰਹਿਣ ਦਾ ਸਭਾਅ ਰੱਖਦਾ ਹੈ। ਅਚਾਨਕ ਬਰੇਕ ਲਗਾਉਣ ਤੇ ਸੀਟ ਦੇ ਅੱਗੇ ਲੱਗੇ ਪੈਨਲ ਨਾਲ ਟਕਰਾ ਕੇ ਅਸੀਂ ਜਖ਼ਮੀ ਹੋ ਸਕਦੇ ਹਾਂ। ਇਸ ਤਰਾਂ ਦੀਆਂ ਦਰਘਟਨਾਵਾਂ ਤੋਂ ਬਚਣ ਲਈ ਸੁਰੱਖਿਆ ਬੈਲਟ ਦਾ ਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਸਰੱਖਿਆ ਬੈਲਟ ਸਾਡੇ ਸਰੀਰ ਤੇ ਬਲ ਲਗਾ ਕੇ ਉਸਦੇ ਅੱਗੇ ਵੱਧਣ ਦੀ ਗਤੀ ਨੂੰ ਹੌਲੀ ਕਰਦੀ ਹੈ। ਇਸਦੇ ਉਲਟ ਅਨੁਭਵ ਸਾਨੂੰ ਤਦ ਤੱਕ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਅਸੀਂ ਬਸ ਵਿੱਚ ਖੜ੍ਹੇ ਹੁੰਦੇ ਹਾਂ। ਅਤੇ ਬਸ ਅਚਾਨਕ ਚੱਲਣਾ ਸ਼ੁਰੂ ਕਰ ਦਿੰਦੀ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਅਸੀਂ ਪਿੱਛੇ ਵੱਲ ਨੂੰ ਡਿੱਗਣ ਦੀ ਪ੍ਰਵਿਰਤੀ ਰੱਖਦੇ ਹਾਂ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੁੰਦਾ ਹੈ ਕਿ ਬਸ ਦੇ ਅਚਾਨਕ ਗਤੀ ਵਿੱਚ ਆ ਜਾਣ ਤੇ ਬਸ ਅਤੇ ਸਾਡਾ ਪੈਰ ਜੋ ਕਿ ਬਸ ਦੇ ਫ਼ਰਸ਼ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ. ਗਤੀ ਵਿੱਚ ਆ ਜਾਂਦੇ ਹਨ। ਪਰ ਸਰੀਰ ਦਾ ਉੱਪਰਲਾ ਹਿੱਸਾ ਇਸ ਗਤੀ ਦਾ ਜੜਤਾ ਕਾਰਨ ਵਿਰੋਧ ਕਰਦੇ 105


ਜਦੋਂ ਕੋਈ ਮੋਟਰ ਕਾਰ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਕਿਸੇ ਤਿੱਖੇ ਮੋੜ ਤੋਂ ਮੁੜਦੀ ਹੈ ਤਾਂ ਅਸੀਂ ਇੱਕ ਪਾਸੇ ਨੂੰ ਗਿਰ (ਡਿੱਗ) ਜਾਂਦੇ ਹਾਂ, ਧੱਕਾ ਮਹਿਸੂਸ ਕਰਦੇ ਹਾਂ। ਇਸਨੂੰ ਵੀ ਜੜ੍ਹਤਾ ਦੇ ਨਿਯਮ ਤੋਂ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਅਸੀਂ ਸਰਲ ਰੇਖੀ ਗਤੀ ਵਿੱਚ ਹੀ ਚੱਲਦੇ ਰਹਿਣਾ ਚਾਹੁੰਦੇ ਹਾਂ। ਜਦੋਂ ਕਿ ਮੋਟਰ ਕਾਰ ਦੀ ਦਿਸ਼ਾ ਬਦਲਣ ਲਈ ਇੰਜਣ ਦੁਆਰਾ ਇੱਕ ਅਸੰਤੁਲਿਤ ਬਲ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ। ਅਸੀਂ ਆਪਣੇ ਸ਼ਰੀਰ ਦੀ ਜੜ੍ਹਤਾ ਦੇ ਕਾਰਨ ਸੀਟ ਦੇ ਇੱਕ ਪਾਸੇ ਨੂੰ ਧੱਕੇ (ਫਿਸਲ) ਜਾਂਦੇ ਹਾਂ।

ਇੱਕ ਵਸਤੂ ਓਦੋਂ ਤੱਕ ਆਪਣੀ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਰਹੇਗੀ ਜਦੋਂ ਤੱਕ ਕਿ ਉਸ ਤੇ ਕੋਈ ਅਸੰਤੁਲਿਤ ਬਲ ਨਹੀਂ ਲੱਗਿਆ ਹੋਵੇ । ਇਸ ਨੂੰ ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਦੁਆਰਾ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਕਿਰਿਆ

9.1

ਚਿੱਤਰ 9.6 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਇੱਕੋ ਹੀ ਤਰ੍ਹਾਂ ਦੀ ਕੈਰਮ ਦੀ ਗੀਟੀਆਂ ਨੂੰ ਇੱਕ ਦੇ ਉੱਤੇ ਇੱਕ ਰੱਖ ਕੇ ਢੇਰੀ ਬਣਾਉ। ਇੱਕ ਹੋਰ ਗੀਟੀ ਜਾਂ ਸਟਰਾਈਕਰ ਨੂੰ ਢੇਰੀ ਦੀ ਸਭ ਤੋਂ ਥੱਲੇ ਦੀ ਗੀਟੀ ਨਾਲ ਬੜੀ ਤੇਜ਼ੀ ਨਾਲ ਸਮਤਲ ਰੂਪ ਵਿੱਚ ਟਕਰਾਓ। (ਜੇ ਤੁਸੀਂ ਗੀਟੀ ਨੂੰ ਲੋੜੀਂਦੀ ਤੇਜ਼ੀ ਨਾਲ ਟਕਰਾਉਂਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਕੇਵਲ ਥੱਲੇ ਵਾਲੀ ਗੀਟੀ ਹੀ ਛੇਤੀ ਨਾਲ ਢੇਰੀ ਤੋਂ ਬਾਹਰ ਆਉਂਦੀ ਹੈ। ਥੱਲੇ ਵਾਲੀ ਗੀਟੀ ਦੇ ਬਾਹਰ ਆ ਜਾਣ ਤੋਂ ਬਾਅਦ ਹੋਰ ਗੀਟੀਆਂ ਆਪਣੀ ਜੜ੍ਹਤਾ ਦੇ ਕਾਰਨ ਖੜੇ ਰੂਪ ਵਿੱਚ ਥੱਲੇ ਨੂੰ ਡਿੱਗ ਜਾਂਦੀਆਂ ਹਨ।

ਚਿੱਤਰ 9.6 : ਕਿਸੀ ਤੇਜ਼ ਗਤੀ ਦੀ ਕੈਰਮ ਦੀ ਗੀਟੀ (ਜਾਂ ਸਟਰਾਈਕਰ) ਨਾਲ ਟਕਰਾ ਕੇ ਢੇਰੀ ਦੀ ਸਭ ਤੋਂ ਬੱਲੇ ਵਾਲੀ ਗੀਟੀ ਹੀ ਢੇਰੀ ਤੋਂ ਬਾਹਰ ਆਉਂਦੀ ਹੈ

ਕਿਰਿਆ

ਕੱਚ ਦੇ ਇੱਕ ਖਾਲੀ ਗਿਲਾਸ ਦੇ ਉੱਪਰ ਇੱਕ ਸਖ਼ਤ ਗੱਤੇ ਦਾ ਟੁਕੜਾ ਰੱਖੋ, ਚਿੱਤਰ 9.7 ਵਿੱਚ ਦਿਖਾਏ ਅਨੁਸਾਰ ਗਿਲਾਸ ਮੇਜ਼ ਦੇ ਉੱਪਰ ਅਤੇ ਗੱਤੇ ਦੇ ਟੁਕੜੇ ਉੱਪਰ ਪੰਜ ਰੁਪਏ ਦਾ ਇੱਕ ਸਿੱਕਾ ਰੱਖੋ।

9.2

ਵਿਗਿਆਨ

ਗੱਤੇ ਦੇ ਟੁਕੜੇ ਨੂੰ ਉਂਗਲੀ ਨਾਲ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਸਿੱਧੀ ਲੇਟਵੀਂ ਦਿਸ਼ਾ (ਸਮਤਲ) ਵਿੱਚ ਤੇਜ਼ ਝਟਕ ਦਿਉ।

ਤੁਸੀਂ ਤੇਜ਼ੀ ਨਾਲ ਕਰਨ ਤੇ ਦੇਖੋਗੇ ਕਿ ਗੱਤਾ ਅੱਗੇ ਨੂੰ ਖਿਸਕ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਿੱਕਾ ਆਪਣੀ ਜੜ੍ਹਤਾ ਕਾਰਨ ਥੱਲੇ ਵੱਲ ਸਿੱਧਾ ਗਲਾਸ ਵਿੱਚ ਜਾ ਕੇ ਡਿੱਗਦਾ ਹੈ।

ਅਜਿਹਾ ਇਸ ਲਈ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਗੱਤੇ ਦੇ ਟੁਕੜੇ ਦੇ ਹੱਟਣ ਤੋਂ ਬਾਅਦ ਵੀ ਸਿੱਕਾ ਆਪਣੀ ਵਿਰਾਮ ਅਵਸਥਾ ਬਣਾਏ ਰੱਖਣਾ ਚਾਹੁੰਦਾ ਹੈ।

ਚਿੱਤਰ 9.7 : ਉਂਗਲੀ ਨਾਲ਼ ਗੱਤੇ ਦੇ ਟੁੱਕੜੇ ਨੂੰ ਝਟਕਾ ਦੇਣ ਤੇ ਗੱਤੇ ਉੱਤੇ ਰੱਖਿਆ ਸਿੱਕਾ ਬੱਲੇ ਵੱਲ ਗਿਲਾਸ ਵਿੱਚ ਡਿੱਗਦਾ ਹੈ।

fa	ਰਿਆ9.	3
	ਪਾਣੀ ਨਾਲ ਭਰਿਆ ਗਿਲਾਸ ਕਿਸੇ ਟ੍ਰੇਅ ਵਿੱਚ ਰੱਖੋ। ਟਰੇਅ ਨੂੰ ਹੱਥ ਵਿੱਚ ਪਕੜ ਕੇ ਜਿੰਨਾ ਤੇਜ਼ ਹੋ ਸ ਘੁਮਾਉ।	नवे

130

ਅਸੀਂ ਇਹ ਦੇਖਦੇ ਹਾਂ ਕਿ ਗਿਲਾਸ ਲੁੜਕ ਜਾਂਦਾ ਹੈ ਅਤੇ ਪਾਣੀ ਛਲਕ ਜਾਂਦਾ ਹੈ, ਕਿਉਂ ?

ਤੁਸੀਂ ਹੁਣ ਸਮਝੇ ਕਿ ਪਲੇਟ ਵਿੱਚ ਕੱਪ ਨੂੰ ਰੱਖਣ ਲਈ ਝਿਰੀ ਕਿਉਂ ਬਣੀ ਹੋਈ ਹੁੰਦੀ ਹੈ। ਇਹ ਕੱਪ ਨੂੰ ਅਚਾਨਕ ਲੱਗਣ ਵਾਲੇ ਝਟਕਿਆਂ ਤੋਂ ਬਚਾਉਂਦੀ ਹੈ।

9.3 ਜੜ੍ਹਤਾ ਅਤੇ ਪੁੰਜ (Inertia And Mass)

ਹੁਣ ਤੱਕ ਦਿੱਤੇ ਗਏ ਸਾਰੇ ਉਦਾਹਰਣਾਂ ਅਤੇ ਕਿਰਿਆਵਾਂ ਤੋਂ ਇਹ ਗਿਆਤ ਹੁੰਦਾ ਹੈ ਕਿ ਹਰੇਕ ਵਸਤੂ ਆਪਣੀ ਗਤੀ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦਾ ਵਿਰੋਧ ਕਰਦੀ ਹੈ। ਜੇਕਰ ਇਹ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਹੈ ਤਾਂ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਹੀ ਰਹਿਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੇਗੀ ਜੇਕਰ ਇਹ ਚੱਲ ਰਹੀ ਹੈ ਤਾਂ ਉਹ ਚੱਲਣ ਦੀ ਹੀ ਕੋਸ਼ਿਸ਼ ਕਰੇਗੀ। ਵਸਤੂ ਆਪਣੀ ਮੁਲ ਅਵਸਥਾ ਨੂੰ ਬਣਾਏ ਰੱਖਣਾ ਚਾਹੁੰਦੀ ਹੈ। ਵਸਤੂ ਦਾ ਇਹ ਗੁਣ ਉਸਦੀ ਜੜਤਾ ਕਹਿਲਾਉਂਦਾ ਹੈ। ਕੀ ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਦੀ ਜੜ੍ਹਤਾ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ ? ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪੁਸ਼ਤਕਾਂ ਨਾਲ ਭਰੇ ਬਕਸੇ ਨੂੰ ਧੱਕਾ ਦੇਣ ਦੀ ਬਜਾਏ ਖਾਲੀ ਬਕਸੇ ਨੂੰ ਹਿਲਾਉਣਾ ਆਸਾਨ ਹੁੰਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਜੇ ਅਸੀਂ ਫੁੱਟਬਾਲ ਨੂੰ ਕਿੱਕ ਲਗਾਉਂਦੇ ਹਾਂ ਤਾਂ ਇਹ ਦੂਰ ਚਲੀ ਜਾਂਦੀ ਹੈ ਜਦੋਂਕਿ ਅਸੀਂ ਉਨੇ ਹੀ ਆਕਾਰ ਦੇ ਕਿਸੇ ਵੱਡੇ ਪੱਥਰ ਨੂੰ ਉਨੇ ਹੀ ਬਲ ਨਾਲ ਕਿੱਕ ਮਾਰਦੇ ਹਾਂ ਤਾਂ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਉਹ ਖਿਸਕੇ ਵੀ ਨਹੀਂ। ਇਹ ਜ਼ਰੂਰ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਐਸਾ ਕਰਦੇ ਸਮੇਂ ਸਾਡੇ ਪੈਰ ਨੂੰ ਹੀ ਚੋਟ ਲਗ ਜਾਏ। ਕਿਰਿਆ 9.2 ਵਿੱਚ ਅਸੀਂ ਪੰਜ ਰੁਪਏ ਦੇ ਸਿੱਕੇ ਦੀ ਬਜਾਏ ਜੇ ਇੱਕ ਰੁਪਏ ਦਾ ਸਿੱਕਾ ਲੈਂਦੇ ਹਾਂ, ਤਾਂ ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਉਸੀ ਕਿਰਿਆ ਨੂੰ ਕਰਨ ਲਈ ਘੱਟ ਬਲ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਇੱਕ ਬਲ ਜੇ ਕਿ ਛੋਟੇ ਜਿਹੇ ਛਕੜਾ ਗੱਡੀ (ਗੱਡੇ/ਰੇੜੇ) ਨੂੰ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਚਲਾਉਣ ਲਈ ਕਾਫੀ ਹੁੰਦੀ ਹੈ, ਉਹੀ ਬਲ ਜੋ ਰੇਲਗੱਡੀ ਤੇ ਲਗਾਇਆ ਜਾਵੇ ਤਾਂ ਉਸਦੀ ਗਤੀ ਵਿੱਚ ਨਾ ਦੇ ਬਰਾਬਰ ਪਰਿਵਰਤਨ ਹੋਵੇਗਾ। ਕਿਉਂਕਿ ਛਕੜਾ ਗੱਡੀ ਦੀ ਬਜਾਏ ਰੇਲਗੱਡੀ ਵਿੱਚ ਆਪਣੀ (ਗਤੀ ਦੀ) ਅਵਸਥਾ ਬਦਲਣ ਦੀ ਘੱਟ ਪ੍ਰਵਿਰਤੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਰੇਲਗੱਡੀ ਦੀ ਜੜ੍ਹਤਾ ਛਕੜਾ ਗੱਡੀ ਤੋਂ ਜ਼ਿਆਦਾ ਹੈ। ਇਸ ਤੋਂ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਭਾਰੀ ਵਸਤਆਂ ਦੀ ਜੜ੍ਹਤਾ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ।ਮਾਤ੍ਰਾਤਮਕ ਰੂਪ ਵਿੱਚ ਵਸਤੂ ਦੀ ਜੜਤਾ ਪੁੰਜ ਤੋਂ ਮਾਪੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਅਸੀਂ ਜੜਤਾ ਪੁੰਜ ਦਾ ਸੰਬੰਧ ਇਸ ਤਰ੍ਹਾਂ (ਜੋੜ ਸਕਦੇ ਹਾਂ।)/ਬਣਾ ਸਕਦੇ ਹਾਂ।

ਕਿਸੇ ਵੀ ਵਸਤੂ ਦੀ ਜੜ੍ਹਤਾ ਉਸਦਾ ਪ੍ਰਕਿਰਤਿਕ ਗੁਣ ਜਾਂ ਪ੍ਰਵਿਰਤੀ ਹੈ ਜੋ ਕਿ ਉਸਦੀ ਵਿਰਾਮ ਜਾਂ ਗਤੀ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦਾ ਵਿਰੋਧ ਕਰਦਾ ਹੈ। ਇਸ

ਬਲ ਅਤੇ ਗਤੀ ਦੇ ਨਿਯਮ

ਪ੍ਰਕਾਰ ਕਿਸੇ ਵਸਤੂ ਦਾ ਪੁੰਜ ਉਸਦੀ ਜੜ੍ਹਤਾ ਦਾ ਮਾਪ ਹੈ।

 ਨਿਮਨ ਵਿੱਚ ਕਿਸ ਦੀ ਜੜ੍ਹਤਾ ਜ਼ਿਆਦਾ ਹੈ ?

 (a) ਇੱਕ ਰਬੜ ਦੀ ਗੇਂਦ ਅਤੇ ਉਸੇ ਆਕਾਰ ਦਾ ਪੱਥਰ ?
 (b) ਇੱਕ ਸਾਥੀਕਲ ਅਤੇ ਇੱਕ ਰੇਲਗੱਡੀ ?
 (c) ਪੰਜ ਰੁਪਏ ਦਾ ਇੱਕ ਸਿੱਕਾ ਅਤੇ ਇੱਕ ਰੁਪਏ ਦਾ ਸਿੱਕਾ ?

 ਥੱਲੇ ਦਿੱਤੇ ਗਏ ਉਜ਼ਾਹਰਣ ਵਿੱਚ ਗੇਂਦ ਦਾ ਵੇਗ ਕਿੰਨੀ ਵਾਰ ਬਦਲਦਾ ਹੈ, ਜਾਣਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ ? "ਭੁਟਸ਼ਾਲ ਦਾ ਇੱਕ ਖਿਡਾਰੀ ਗੇਂਦ ਨੂੰ ਠੋਕਰ ਮਾਰ ਕੇ/ਕਿੱਕ ਲਗਾ ਕੇ ਗੇਂਦ ਨੂੰ ਆਪਣੀ ਟੀਮ ਦੇ ਦੂਜੇ ਖਿਡਾਰੀ ਦੇ ਕੋਲ ਪਹੁੰਚਾਉਂਦਾ ਹੈ। ਦੂਜਾ ਖਿਡਾਰੀ ਉਸ ਗੇਂਦ ਨੂੰ ਕਿੱਕ ਲਗਾ ਕੇ ਗੋਲ ਵੱਲ ਪਹੁੰਚਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦਾ ਹੈ। ਵਿਰੋਧੀ ਟੀਮ ਦਾ ਗੋਲਕੀਪਰ (ਗੋਲਚੀ) ਗੇਂਦ ਨੂੰ ਪਕੜਦਾ ਹੈ ਅਤੇ ਆਪਣੀ ਟੀਮ ਦੇ ਖਿਡਾਰੀ ਵੱਲ ਕਿੱਕ (ਠੋਕਰ) ਲਗਾਉਂਦਾ ਹੈ।

ਇਸਦੇ ਨਾਲ ਹੀ ਉਸ ਕਾਰਨ ਦੀ ਵੀ ਪਹਿਚਾਣ ਕਰੋ ਜੋ ਹਰੇਕ ਅਵਸਥਾ ਵਿੱਚ ਬਲ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ।

- 3. ਕਿਸੀ ਰੁੱਖ ਦੀਆਂ ਟਾਹਣੀਆਂ ਨੂੰ ਤੇਜ਼ੀ ਨਾਲ ਹਿਲਾਉਣ ਨਾਲ ਕੁਝ ਪੱਤੀਆਂ ਝੜ ਜਾਂਦੀਆਂ ਹਨ। ਕਿਉਂ ?
- ਜਦੋਂ ਕੋਈ ਗਤੀਮਾਨ ਬਸ ਅਚਾਨਕ ਰੁੱਕ ਜਾਂਦੀ ਹੈ ਤਾਂ ਤੁਸੀਂ ਅੱਗੇ ਵੱਲ ਨੂੰ ਡਿੱਗਦੇ ਹੋ ਅਤੇ ਜਦੋਂ ਵਿਰਾਮ ਅਵਸਥਾ ਤੋਂ ਪ੍ਰਵੇਗਿਤ ਹੁੰਦੀ ਹੈ ਤਾਂ ਪਿੱਛੇ ਦੇ ਵੱਲ ਡਿੱਗਦੇ ਹੋ। ਕਿਉਂ ?

9.4 ਗਤੀ ਦਾ ਦੂਜਾ ਨਿਯਮ (Second Law of Motion)

ਗਤੀ ਦਾ ਪਹਿਲਾ ਨਿਯਮ ਇਹ ਦੱਸਦਾ ਹੈ ਕਿ ਜੱਦੋਂ ਕੋਈ ਅਸੰਤੁਲਿਤ ਬਲ ਵਸਤੂ ਤੇ ਲੱਗਦਾ ਹੈ, ਤਾਂ ਇਸਦਾ ਵੇਗ ਬਦਲਦਾ ਹੈ, ਭਾਵ, ਵਸਤੂ ਪ੍ਵੇਗਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਹੁਣ ਅਸੀਂ ਇਹ ਅਧਿਐਨ ਕਰਨਾ ਚਾਹੁੰਗੇ ਚਾਹਾਂਗੇ ਕਿ ਕਿਸ ਤਰ੍ਹਾਂ ਵਸਤੂ ਦਾ ਪ੍ਵੇਗ ਲਗਾਏ ਗਏ ਬਲ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਅਤੇ ਕਿਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਬਲ ਨੂੰ ਆਪਾਂਗੇ ? ਆਉ ਅਸੀਂ ਕੁਝ ਰੋਜ਼ਾਨਾ ਜ਼ਿੰਦਗੀ ਦੇ ਅਨੁਭਵਾਂ ਦਾ ਅਧਿਐਨ ਕਰੀਏ। ਟੇਬਲ ਟੈਨਿਸ ਦੇ ਖੇਡ ਦੇ ਦੌਰਾਨ ਜੇਕਰ ਗੇਂਦ ਕਿਸੇ ਖਿਡਾਰੀ ਦੇ ਸਰੀਰ ਨਾਲ ਟਕਰਾਉਂਦੀ ਹੈ ਤਾਂ ਉਹ ਜਖ਼ਮੀ ਨਹੀਂ ਹੁੰਦਾ। ਦੂਜੇ ਪਾਸੇ ਇੱਕ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਆਉਂਦੀ ਕ੍ਰਿਕੇਟ ਦੀ ਗਂਦ ਕਿਸੇ ਦਰਸ਼ਕ ਨੂੰ ਲੱਗਣ ਤੋਂ ਬਾਅਦ ਉਸਨੂੰ ਚੋਟ ਪਹੁੰਚਾ ਸਕਦੀ ਹੈ। ਇੱਕ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਸੜਕ ਦੇ ਕਿਨਾਰੇ ਖੜ੍ਹੇ ਟਰੱਕ ਤੋਂ ਕੋਈ

131

lat

ਦੁਰਘਟਨਾ ਨਹੀਂ ਹੁੰਦੀ।ਪਰੰਤੂ 5ms⁻¹ ਜਿਹੀ ਘੱਟ ਗਤੀ ਨਾਲ ਚੱਲਦਾ ਹੋਇਆ ਟਰੱਕ, ਆਪਣੇ ਰਸਤੇ ਵਿੱਚ ਖੜੇ ਵਿਅਕਤੀ ਦੀ ਮੌਤ ਦਾ ਕਾਰਨ ਬਣ ਸਕਦਾ ਹੈ। ਇੱਕ ਛੋਟਾ ਜਿਹਾ ਪੰਜ, ਜਿਵੇਂ ਕਿ ਗੋਲ਼ੀ ਨੂੰ ਜੇਕਰ ਬੰਦੂਕ ਤੋਂ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਛੱਡਿਆ ਜਾਵੇ ਤਾਂ ਉਹ ਵੀ ਕਿਸੇ ਵਿਅਕਤੀ ਦੀ ਮੌਤ ਦਾ ਕਾਰਨ ਬਣ ਸਕਦੀ ਹੈ। ਇਹ ਵਸਤੂ ਦੁਆਰਾ ਉਤਪੰਨ ਟੱਕਰ ਦੇ ਪ੍ਰਭਾਵ ਵਸਤੂ ਦੇ ਪੁੰਜ ਅਤੇ ਵੇਗ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਜੇਕਰ ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਪ੍ਰਵੇਗਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜ਼ਿਆਦਾ ਵੇਗ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਜ਼ਿਆਦਾ ਬਲ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਤਾ ਇੰਝ ਲੱਗਦਾ ਹੈ ਕਿ ਕੋਈ ਮਹੱਤਵਪੂਰਨ ਰਾਸ਼ੀ ਵਸਤ੍ਰ ਦੇ ਪੁੰਜ ਅਤੇ ਵੇਗ ਨਾਲ ਸ਼ੈਬੰਧ (ਮਿਲ ਕੇ ਬਣੀ ਹੋਈ/ਹੋਣੀ ਰਖਦੀ ਹੈ। ਸੰਵੇਗ ਨਾਂ ਦੀ (Momentum) ਇਸ ਰਾਸ਼ੀ ਨੂੰ ਨਿਊਟਨ ਨੇ ਪੇਸ਼ ਕੀਤਾ ਸੀ। ਕਿਸੀ ਵਸਤੂ ਦਾ ਸੰਵੇਗ p ਉਸਦੇ ਪੁੰਜ m ਅਤੇ ਵੇਗ v ਦੇ ਗੁਣਨਫਲ ਨਾਲ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਸ਼ੰਵੇਗ = ਪੁੰਜ × ਵੇਗ

$$\rho = mv$$
 9.

ਸੰਵੇਗ ਦੇ ਪਰਿਮਾਣ ਅਤੇ ਦਿਸ਼ਾ ਦੋਨੋਂ ਹੀ ਹੁੰਦੇ ਹਨ। ਇਸਦੀ ਦਿਸ਼ਾ ਉਹੀ ਹੁੰਦੀ ਹੈ ਜੋ ਵੇਗ V ਦੀ ਹੁੰਦੀ ਹੈ। ਸੰਵੇਗ ਦਾ SI ਮਾਤਕ (kg ms⁻¹) ਕਿਲੋਗ੍ਰਾਮ-ਮੀਟਰ/ ਸੈਕਿੰਡ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਕਿਸੇ ਅਸੰਤੁਲਿਤ ਬਲ ਦੇ ਪ੍ਯੋਗ ਨਾਲ ਉਸ ਵਸਤੂ ਦੇ ਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ ; ਇਸ ਲਈ ਇਹ ਹੁਣ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਬਲ ਸੰਵੇਗ ਨੂੰ ਵੀ ਪਰਿਵਰਤਿਤ ਕਰਦਾ ਹੈ।

ਇੱਕ ਇਹੋ ਜਿਹੀ ਅਵਸਥਾ ਬਾਰੇ ਵਿਚਾਰ ਕਰੋ ਜਿਸ ਵਿੱਚ ਖਰਾਬ ਬੈਟਰੀ ਵਾਲੀ ਇੱਕ ਕਾਰ ਨੂੰ ਸਿੱਧੀ ਸੜਕ ਤੇ Im/s ਦੀ ਗਤੀ ਵਿੱਚ ਲਿਆਉਣ ਲਈ ਧੱਕਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਜੋ ਕਿ ਉਸਦੇ ਇੰਜਣ ਨੂੰ ਸ਼ੁਰੂ (ਸਟਾਰਟ) ਕਰਨ ਲਈ ਕਾਫ਼ੀ ਹੈ। ਜੇਕਰ ਇੱਕ ਜਾਂ ਦੋ ਵਿਅਕਤੀ ਇਸਨੂੰ ਅਚਾਨਕ ਧੱਕਾ (ਅਸੰਤੁਲਿਤ ਬਲ) ਦਿੰਦੇ ਹਨ ਤਾਂ ਵੀ ਇਹ ਸਟਾਰਟ (ਚਾਲੂ) ਨਹੀਂ ਹੁੰਦੀ। ਪਰੰਤੂ ਕੁਝ ਸਮੇਂ ਤੱਕ ਲਗਾਤਾਰ ਧੱਕਾ ਦੇਣ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਕਾਰ ਇਸ ਗਤੀ ਨਾਲ ਹੌਲ਼ੀ ਹੌਲ਼ੀ ਪ੍ਵੇਗਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਤੋਂ ਸਪੱਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ਕਾਰ ਦੇ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕੇਵਲ ਬਲ ਦੀ ਮਾਤਰਾ ਤੋਂ ਹੀ ਨਹੀਂ ਹੁੰਦਾ ਪਰੰਤੂ ਉਸ ਸਮੇਂ ਤੋਂ ਵੀ ਹੁੰਦਾ ਹੈ ਜਿਸ ਸਮੇਂ ਵਿੱਚ ਬਲ ਲਗਾਇਆ ਗਿਆ।

ਇਸ ਲਈ ਇਸ ਤੋਂ ਇਹ ਸਿੱਟਾ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਵਸਤੂ ਦੇ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਲਿਆਉਣ ਲਈ ਲੱਗਣ ਵਾਲਾ ਬਲ ਉਸਦੀ ਉਸ ਸਮੇਂ ਦਰ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ। ਗਤੀ ਦਾ ਦੂਜਾ ਨਿਯਮ ਇਹ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਕਿਸੇ

ਵਸਤੂ ਦੇ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੀ ਦਰ ਉਸ ਉੱਤੇ ਲਗਾਏ ਗਏ ਬਾਹਰੀ ਅਸੰਤੁਲਿਤ ਬਲ ਦੀ ਦਿਸ਼ਾ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ (ਸਿੱਧੇ ਅਨੁਪਾਤ ਵਿੱਚ) ਹੁੰਦੀ ਹੈ।

9.4.1 ਗਤੀ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦਾ ਗਣਿਤ ਅਨੁਸਾਰ ਸੂਤਰੀਕਰਨ

ਮੰਨ ਲਓ m ਪੁੰਜ ਦੀ ਕੋਈ ਵਸਤੂ ਮੁੱਢਲੇ ਵੇਗ μ ਨਾਲ ਸਰਲ ਰੇਖੀ ਪੱਥ ਤੇ ਚਲ ਰਹੀ ਹੈ। t ਸਮੇਂ ਤੱਕ ਇੱਕ ਨਿਸ਼ਚਿਤ ਬਲ F ਲਗਾਉਣ ਤੇ ਉਸ ਵਸਤੂ ਦਾ ਵੇਗ v ਹੋ ਜਾਂਦਾ ਹੈ। ਉਸ ਵਸਤੂ ਦਾ ਮੁੱਢਲਾ (ਆਰੈਭਿਕ) ਅਤੇ ਅੰਤਿਮ ਵੇਗ ਕ੍ਰਮਵਾਰ $p_1 = mu$ ਅਤੇ $p_2 = mv$ ਹੋਵੇਗਾ। ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ $\approx p_2 - p_1$ $\approx mv - mu$ $\approx m(v - u)$ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੀ ਦਰ $\propto \frac{m(v - u)}{t}$ ਜਾਂ ਲਗਾਇਆ ਗਿਆ ਬਲ $F \propto \frac{m(v - u)}{t}$

$$\mathbf{F} = \frac{\kappa n (t - n)}{t} \quad (9.2)$$

$$F = km(a)$$
 (9.3)

ਇੱਥੇ $a = \frac{(v-u)}{t} = \hat{e}$ ਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੀ ਦਰ ਭਾਵ ਪ੍ਵੇਗ ਹੈ। ਜਿੱਥੇ k ਇੱਕ ਅਨੁਪਾਤਤਾ ਸਥਿਰਾਂਕ ਹੈ ਪੁੰਜ ਦਾ ਅਤੇ ਪ੍ਵੇਗ ਦਾ SI ਮਾਤ੍ਕ ਕ੍ਰਮਵਾਰ kg ਅਤੇ ms^{-2} ਹੈ। ਬਲ ਦਾ ਮਾਤ੍ਕ ਇਵੇਂ ਚੁਣਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਸਥਿਰਾਂਕ k ਦਾ ਮਾਨ ਇੱਕ ਹੋ ਜਾਵੇ। ਇਸ ਲਈ ਬਲ ਦੇ ਮਾਤ੍ਕ ਨੂੰ ਇਵੇਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਕਾਈ ਬਲ ਦਾ ਮਾਤ੍ਕ ਉਹ ਮਾਤਰਾ ਹੁੰਦੀ ਹੈ ਜੋ ਕਿ 1kg ਪੁੰਜ ਵਾਲੀ ਵਸਤੂ ਵਿੱਚ $1ms^{-2}$ ਦਾ ਪ੍ਵੇਗ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਭਾਵ 1 ਇਕਾਈ ਬਲ= $k (1 \text{ kg}) \times (1ms^{-2})$

k ਦਾ ਮਾਨ ਇੱਕ (1) ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਮੀਕਰਣ 9.3 ਤੋਂ ਗਤੀ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦਾ ਸੂਤਰ

$$\mathbf{F} = ma$$

ਬਲ ਦਾ ਮਾਤਕ kg ms⁻² ਹੈ। ਨਿਊਟਨ ਹੈ, ਜਿਸਦਾ ਸੰਕੇਤਰਚਿੰਨ੍ਹ N ਹੈ। ਗਤੀ ਦਾ ਦੂਜਾ ਨਿਯਮ ਸਾਨੂੰ ਕਿਸੇ ਵਸਤੂ ਤੇ ਲੱਗ ਰਹੇ ਬਲ ਨੂੰ ਮਾਪਣ ਦੀ ਵਿਧੀ ਦੱਸਦਾ ਹੈ। ਬਲ ਨੂੰ ਉਸ ਵਸਤੂ ਵਿੱਚ ਉਤਪੰਨ ਪ੍ਵੇਗ ਅਤੇ ਵਸਤੂ ਦੇ ਪੁੰਜ ਦੇ ਗੁਣਨਫਲ ਤੋਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

132

ਵਿਗਿਆਨ

9.4

ਗਤੀ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦਾ ਪ੍ਰਯੋਗ ਅਸੀਂ ਆਪਣੇ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਅਕਸਰ ਦੇਖਦੇ ਹਾਂ। ਕੀ ਤੁਸੀਂ ਧਿਆਨ ਦਿੱਤਾ ਹੈ ਕਿ ਕ੍ਰਿਕੇਟ ਮੈਚ ਦੇ ਦੌਰਾਨ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਆਉਂਦੀ ਕ੍ਰਿਕੇਟ ਦੀ ਗੇਂਦ ਨੂੰ ਪਕੜਣ ਲਈ ਖਿਡਾਰੀ ਹੱਥ ਨੂੰ ਗੇਂਦ ਦੇ ਨਾਲ ਪਿੱਛੇ ਵੱਲ ਕਿਉਂ ਖਿੱਚਦਾ ਹੈ। ਅਜਿਹਾ ਕਰਨ ਨਾਲ ਖਿਡਾਰੀ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਆ ਰਹੀ ਗੇਂਦ ਦੇ ਵੇਗ ਨੂੰ ਸਿਫ਼ਰ ਕਰਨ ਲਈ ਜ਼ਿਆਦਾ ਸਮਾਂ ਲਗਾਉਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਗੇਂਦ ਦੇ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੀ ਦਰ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ। ਇਸ ਕਾਰਨ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਆ ਰਹੀ ਗੇਂਦ ਦਾ ਪਭਾਵ ਹੱਥ ਤੇ ਘੱਟ ਪੈਂਦਾ ਹੈ। ਅਗਰ ਗੇਂਦ ਨੂੰ ਇਕ ਦੱਮ ਅਚਾਨਕ ਰੋਕ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਤੇਜ਼ ਗਤੀ ਵਾਲਾ ਗੇਂਦ ਦਾ ਫ਼ੇਗ ਬਹਤ ਘੱਟ ਸਮੇਂ ਵਿੱਚ ਸਿਫ਼ਰ ਹੋ ਜਾਂਦਾ ਹੈ। ਭਾਵ ਗੇਂਦ ਦੇ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੀ ਦਰ ਜ਼ਿਆਦਾ ਹੋਵੇਗੀ। ਇਸ ਲਈ ਗੇਂਦ ਪਕੜਨ ਲਈ ਜ਼ਿਆਦਾ ਬਲ ਲਗਾਉਣਾ ਹੋਵੇਗਾ। ਜਿਸ ਨਾਲ ਖਿਡਾਗੇ ਦੀ ਹਥੇਲੀ ਵਿੱਚ ਜ਼ਿਆਦਾ ਸੱਟ ਲੱਗ ਸਕਦੀ ਹੈ। ਖ਼ੇਡ ਮੁਕਾਬਲੇ ਉੱਚੀ ਛਲਾਂਗ ਦੇ ਖੇਡ ਮੁਕਾਬਲੇ ਕਰਵਾਉਣ ਸਮੇਂ ਖਿਡਾਰੀਆਂ ਨੂੰ ਜਾਂ ਤਾਂ ਕੁਸ਼ਨ ਦੇ ਗੱਦੇ ਤੇ ਜਾਂ ਬਾਲੂ ਦੇ ਗੱਦੇ (ਡੇਰ) ਉੱਤੇ ਗਿਰਾਇਆ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਖਿਡਾਰੀਆਂ ਦੇ ਛਲਾਂਗ ਲਗਾਉਣ ਤੋਂ ਬਾਅਦ ਡਿੱਗਣ ਦੇ ਸਮੇਂ ਨੂੰ ਵਧਾਉਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਸੰਵੌਂਗ ਦੇ ਪਰਿਵਰਤਨ ਦੀ ਦਰ ਘੱਟ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਅਨੁਭਵ ਕੀਤਾ ਗਿਆ ਬਲ ਵੀ। ਸੋਚੋ ਕਿ ਕਰਾਟੇ ਦਾ ਇੱਕ ਖਿਡਾਰੀ ਇੱਕ ਹੀ ਝਟਕੇ ਵਿੱਚ ਬਰਫ਼ ਦੀ ਇੱਕ ਸਿੱਲੀ ਨੂੰ ਕਿਵੇਂ ਤੋੜ ਦਿੰਦਾ ਹੈ ?

ਚਿੱਤਰ 9.8 : ਕ੍ਰਿਕੇਟ ਦੇ ਖੇਡ ਵਿੱਚ ਖਿਡਾਰੀ ਗੇਂਦ ਪਕੜਣ ਲਈ ਗੇਂਦ ਦੇ ਨਾਲ ਹੌਲੀ-ਹੌਲੀ ਆਪਣੇ ਹੱਥਾਂ ਨੂੰ ਪਿੱਛੇ ਵੱਲ ਖਿੱਚਦਾ ਹੈ। ਗਤੀ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦੇ ਗਣਿਤੀ ਸੂਤਰ (ਸਮੀਕਰਣ

9.4) ਦੇ ਉਪਯੋਗ ਨਾਲ ਗਤੀ ਦੇ ਪਹਿਲੇ ਨਿਯਮ ਨੂੰ ਗਣਿਤੀ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮੀਕਰਣ 9.4 ਤੋਂ F = ma

$$F = m \frac{(v-u)}{t} \qquad \dots (9.5)$$
$$F = mv - mu$$

ਭਾਵ, ਜਦੋਂ F= 0, ਤਾਂ ਕਿਸੇ ਵੀ ਸਮੇਂ t ਤੇ 0 = mV – mu. v= u ਜਦੋਂ ਬਲ ਸਿਫ਼ਰ ਹੋ ਜਾਂਦਾ ਹੈ। (i) ਵਸਤੂ ਸਮਾਨ ਵੇਗ µ. ਨਾਲ ਸਾਰੇ ਸਮੇਂ t ਵਿੱਚ ਚੱਲਦੀ ਹੀ ਰਹੇਗੀ। (ii) ਜੋ µ = 0 ਸਿਫ਼ਰ ਹੋ ਜਾਵੇ ਤਾਂ v = 0 ਅੰਤਿਮ ਵੇਗ ਵੀ ਸਿਫ਼ਰ ਹੋਵੇਗਾ। ਭਾਵ ਜੇ ਵਸਤੂ ਸ਼ੁਰੂ ਵਿੱਚ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਸੀ ਤਾਂ ਉਹ ਉਸੇ ਅਵਸਥਾ ਵਿੱਚ ਹੀ ਰਹੇਗੀ। ਇਹ ਨਿਊਟਨ ਦਾ ਪਹਿਲਾ ਨਿਯਮ ਹੈ।

ਉਦਾਹਰਣ 9.1 ਇੱਕ 5kg ਪੂੰਜ ਵਾਲੀ ਵਸਤੂ ਤੇ 28 ਦੇ ਲਈ ਇੱਕ ਨਿਯਤ ਬਲ ਲੱਗਦਾ ਹੈ। ਇਹ ਵਸਤੂ ਦੇ ਵੇਗ ਨੂੰ ਵੱਧਾ ਕੇ 3m/s ਤੋਂ 7m/s ਕਰ ਦਿੰਦਾ ਹੈ। ਲਗਾਏ ਗਏ ਬਲ ਦੀ ਮਾਤਰਾ ਪਤਾ ਕਰੋ। ਅਗਰ ਇਹੀ ਬਲ 5% ਦੇ ਸਮੇਂ ਲਈ ਲਗਾਇਆ ਜਾਵੇ ਤਾਂ ਵਸਤੂ ਦਾ ਅੰਤਿਮ ਵੇਗ ਕਿੰਨਾ ਹੋਵੇਗਾ ?

ਹੱਲ—

1

ਸਾਨੂੰ ਦਿੱਤਾ ਗਿਆ ਹੈ $u = 3\text{ms}^{-1}$, $v = 7\text{ms}^{-1}$, t = 2s, m = 5kgਸਮੀਕਰਣ (9.5) ਤੋਂ $\mathbf{F} = \frac{(v-u)}{v}$

ਮਾਨ ਰੱਖਣ ਤੇ

$$r = \frac{5kg (7ms^{-1} - 3ms^{-1})}{2S} = 10N$$

ਹੁਣ ਜੋ ਸਮਾਂ 5s (t = 5s) ਤੱਕ ਬਲ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਸਮੀਕਰਣ (9.5) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖ ਕੇ ਅੰਤਿਮ ਵੇਗ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

$$v = u + \frac{Ft}{2}$$

u, F, m ਅਤੇ t = ਦਾ ਮਾਨ ਰੱਖਣ ਤੇ ਅੰਤਿਮ ਵੇਗ

THES

ਉਦਾਹਰਣ 9.2. ਕਿਸਨੂੰ ਜ਼ਿਆਦਾ ਬਲ ਦੀ ਲੋੜ ਹੋਵੇਗੀ ? 2kg ਪੁੰਜ ਵਾਲੀ ਕਿਸੇ ਵਸਤੂ ਨੂੰ 5ms⁻² ਦੀ ਦਰ ਦੇ ਨਾਲ ਪ੍ਰਵੇਗਿਤ ਕਰਨ ਸਮੇਂ ਜਾਂ 4kg ਪੁੰਜ ਵਾਲੀ ਵਸਤੂ ਨੂੰ 2ms⁻² ਦੀ ਦਰ ਨਾਲ ਪ੍ਰਵੇਗਿਤ ਕਰਨ ਸਮੇਂ ?

133

Downloaded from https:// www.studiestoday.

m

8

8

ਹੱਲ— ਸਮੀਕਰਣ (9.4) ਤੋਂ F = ma ਇੱਥੇ $m_1 = 2$ kg, $a_1 = 5$ ms⁻² $m_2 = 4$ kg $a_2 = 2$ ms⁻² $F_1 = m_1 a_1 = 2 \text{kg} \times 5 \text{ms}^{-2} = 10 \text{ N}$ $F_2 = m_2 a_2 = 4 \text{kg} (2 \text{ms}^{-2}) = 8 \text{N}$ \Rightarrow F₁ > F₂ ਇਸ ਲਈ 2kg ਪੁੰਜ ਦੀ ਵਸਤੂ ਨੂੰ 5ms⁻² ਦੀ ਦਰ ਨਾਲ ਪਵੇਗਿਤ ਕਰਨ ਵਿੱਚ ਜ਼ਿਆਦਾ ਬਲ ਲੱਗੇਗਾ। ਉਦਾਹਰਣ 9.3. ਇੱਕ ਕਾਰ 108km/h ਦੇ ਵੇਗ ਨਾਲ ਚੱਲ ਰਹੀ ਹੈ ਅਤੇ ਬਰੋਕ ਲਗਾਉਣ ਦੇ ਬਾਅਦ ਇਹ ਰੁਕਣ ਵਿੱਚ 4s ਦਾ ਸਮਾਂ ਲੈਂਦੀ ਹੈ। ਕਾਰ ਤੇ ਬਰੇਕ ਕਾਰਨ ਲੱਗਣ ਵਾਲੇ ਬਲ ਦਾ ਮਾਨ ਪਤਾ ਕਰੋ। ਕਾਰ ਦਾ ਯਾਤਰੀਆਂ ਸਮੇਤ ਕੁੱਲ ਪੁੰਜ 1000kg ਹੈ। ਹੱਲ— ਕਾਰ ਦਾ ਮੱਢਲਾ ਵੇਗ $\mu = 108 \text{km/h}$ $= 108 \times 1000 \text{ m} / (60 \times 60 \text{ s})$

 $= 30 \text{ms}^{-1}$

ਕਾਰ ਦਾ ਅੰਤਿਮ ਵੇਗ v = 0ms⁻¹

ਕਾਰ ਦਾ ਕੁੱਲ ਪੁੰਜ = 1000kg ਕਾਰ ਰੋਕਣ ਵਿੱਚ ਲੱਗਾ ਸਮਾਂ *t* = 4s ਸਮੀਕਰਣ (9.5) ਵਿੱਚ ਬਰੇਕ

ਨਾਲ ਲੱਗ ਰਹੇ ਬਲ ਦਾ ਪਰਿਮਾਣ = $\frac{(v-u)}{t}$ ਹੈ

ਮਾਨ ਰੱਖਣ ਤੇ

134

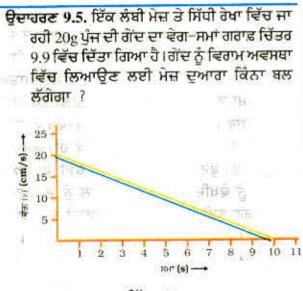
$$F = \frac{1000 \,\text{kg} \times (0 - 30) \,\text{ms}^{-1}}{4 \text{s}}$$

= -7500kg ms⁻² = -7500N

ਰਿਣਾਤਮਕ ਚਿੰਨ੍ਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਬਰੇਕ ਦੁਆਰਾ ਲਗਾਇਆ ਗਿਆ ਬਲ ਗੱਡੀ ਦੀ ਗਤੀ ਦੀ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਹੈ।

ਉਦਾਹਰਣ 9.4. 5N ਦਾ ਇੱਕ ਬਲ ਕਿਸੇ ਪੁੰਜ m₁ ਨੂੰ 10ms⁻² ਦਾ ਪ੍ਰਵੇਗ ਦਿੰਦਾ ਹੈ ਅਤੇ ਪੁੰਜ m₂ ਨੂੰ 20ms⁻² ਦਾ ਪ੍ਰਵੇਗ ਦਿੰਦਾ ਹੈ।ਜੇਕਰ ਦੋਨੋਂ ਪੁੰਜਾਂ ਨੂੰ ਇਕੱਠਾ ਕਰ ਦਿੱਤਾ ਜਾਏ ਤਾਂ ਇਸ ਬਲ ਦੇ ਕਾਰਨ ਕਿੰਨਾ ਪ੍ਵੇਗ ਉਤਪੰਨ ਹੋਵੇਗਾ ?

ਸਮੀਕਰਣ (9.4) ਤੋਂ
$$m_1 = \frac{F}{a_1}$$
 ਅਤੇ


$$m_2 = \frac{F}{a_2}$$

 $m\hat{3} a_1 = 10 \text{ms}^{-2}$
 $a_2 = 20 \text{ms}^{-2} \ \text{M}\hat{3} \ \text{F} = 5\text{N}$
 5N

ਇਸ ਤਰ੍ਹਾਂ
$$m_1 = \frac{10 \text{ ms}^{-2}}{10 \text{ ms}^{-2}} = 0.50 \text{ kg}$$

ਅਤੇ
$$m_2 = \frac{5N}{20 \,\mathrm{ms}^{-2}} = 0.25 \mathrm{kg}$$

ਜਦੋਂ ਦੋਨੋਂ ਪੁੰਜਾਂ ਨੂੰ ਇਕੱਠਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕੁੱਲ ਪੁੰਜ m = 0.50kg + 0.25 kg = 0.75kg ਹੁਣ ਕੁੱਲ ਪ੍ਰਵੇਗ ਪੁੰਜ m ਤੇ 5N ਬਲ ਦੁਆਰਾ ਉਤਪੰਨ ਕੀਤਾ ਗਿਆ।

$$a = \frac{F}{m} = \frac{5N}{0.75kg} = 6.67 ms^{-2}$$

ਚਿੱਤਰ 9.9

ਵਿਗਿਆਨ

ਹੱਲ— ਗੇਂਦ ਦਾ ਮੁੱਢਲਾ ਵੇਗ 20cms⁻¹ ਹੈ ਅਤੇ ਮੇਜ਼ ਦੁਆਰਾ ਗੇਂਦ ਤੇ ਰਗੜ ਬਲ ਲੱਗਣ ਦੇ ਕਾਰਨ ਗੇਂਦ ਦਾ ਵੇਗ 10s ਵਿੱਚ ਸਿਫ਼ਰ ਹੋ ਜਾਂਦਾ ਹੈ। ਕਿਉਂਕਿ ਵੇਗ ਸਮਾਂ ਗਰਾਫ਼ ਇੱਕ ਸਰਲ ਰੇਖਾ ਹੈ। ਇਸ ਤੋਂ ਸਪੱਸ਼ਟ ਹੋ ਜਾਂਦਾ ਹੈ ਗੇਂਦ ਇੱਕ ਸਥਿਰ ਪ੍ਰਵੇਗ ਨਾਲ ਚੱਲਦੀ ਹੈ।

ਪ੍ਰਵੇਗ
$$a = \frac{v-u}{t}$$

= $\frac{0 \text{ cm/s} - 20 \text{ cm/s}}{10s}$
= $-2 \text{ cms}^{-2} = -0.02 \text{ ms}^{-2}$ ਗੇਂਦ ਦੇ ਲੱਗ ਰਿਹਾ ਰਗੜ ਬਲ

$$F = ma = \left(\frac{20}{1000}\right) \text{kg} \times (-0.02 \text{ms}^{-2})^{-1}$$

= -0.004N

ਰਿਣਾਤਮਕ ਚਿੰਨ੍ਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਗੇਂਦ ਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦੇ ਉਲਟ ਮੇਜ਼ ਦੁਆਰਾ ਰਗੜ ਬਲ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ।

9.5 ਗਤੀ ਦਾ ਤੀਜਾ ਨਿਯਮ (Third Law of Motion)

ਗਤੀ ਦੇ ਪਹਿਲੇ ਦੋ ਨਿਯਮਾਂ ਤੋਂ ਸਾਨੂੰ ਪਤਾ ਚੱਲਦਾ ਹੈ ਕਿ ਲਗਾਇਆ ਗਿਆ ਬਲ ਗਤੀ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਲਿਆਉਂਦਾ ਹੈ ਅਤੇ ਇਸ ਨਾਲ ਸਾਨੂੰ ਬਲ ਮਾਪਣ ਦਾ ਤਰੀਕਾ ਵੀ ਪਤਾ ਚੱਲਦਾ ਹੈ। ਗਤੀ ਦੇ ਤੀਜੇ ਨਿਯਮ ਅਨੁਸਾਰ ਜਦੋਂ ਇੱਕ ਵਸਤ ਦੂਜੀ ਵਸਤ ਤੇ ਬਲ ਲਗਾਉਂਦੀ ਹੈ ਤਾਂ ਦੂਜੀ ਵਸਤ ਵੀ ਉਸੇ ਸਮੇਂ ਪਹਿਲੀ ਵਸਤੂ ਤੇ ਬਲ ਲਗਾਉਂਦੀ ਹੈ। ਇਹ ਦੋਨੋਂ ਬਲ ਮਾਤਰਾ ਵਿੱਚ ਹਮੇਸ਼ਾ ਬਰਾਬਰ ਪਰੰਤੂ ਦਿਸ਼ਾ ਵਿੱਚ ਉਲਟ ਹੁੰਦੇ ਹਨ। ਇਸ ਦਾ ਭਾਵ ਇਹ ਹੈ ਕਿ ਇਹ ਬਲ ਦੋ ਵੱਖ-ਵੱਖ ਵਸਤਆਂ ਤੇ ਲੱਗਦੇ ਹਨ ਅਤੇ ਕਦੀ ਵੀ ਉਸੇ (ਇੱਕੋ ਹੀ) ਵਸਤੂ ਤੇ ਨਹੀਂ ਲੱਗਦੇ। ਫੱਟਬਾਲ ਦੀ ਖੇਡ ਵਿੱਚ ਕਈ ਵਾਰ ਅਸੀਂ ਫਟਬਾਲ ਨੂੰ ਵੇਖਦਿਆਂ ਹੋਇਆਂ ਫੁੱਟਬਾਲ ਨੂੰ ਤੇਜ਼ੀ ਨਾਲ ਕਿੱਕ ਮਾਰਨ ਲਈ ਵਿਰੋਧੀ ਟੀਮ ਦੇ ਖਿਡਾਰੀ ਨਾਲ ਟਕਰਾ ਜਾਂਦੇ ਹਾਂ। ਦੋਨੋਂ ਹੀ ਖਿਡਾਰੀਆਂ ਨੂੰ ਸੱਟ ਲਗਦੀ ਹੈ। ਕਿਉਂਕਿ ਦੋਨੋਂ ਇੱਕ ਦੂਸਰੇ ਦੇ ਉੱਪਰ ਬਲ ਲਗਾਉਂਦੇ ਹਨ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਬਲ ਦਾ ਇੱਕ ਜਗਲ ਜੋੜਾ ਹੁੰਦਾ ਹੈ।

ਬਲ ਅਤੇ ਗਤੀ ਦੇ ਨਿਯਮ

ਇਕੱਲੇ ਬਲ ਦਾ ਕੋਈ ਵਜੁਦ ਨਹੀਂ ਹੁੰਦਾ। ਇਨ੍ਹਾਂ ਦੋਨੋਂ ਵਿਰੋਧੀ ਬਲਾਂ ਨੂੰ ਕਿਰਿਆ ਅਤੇ ਪਤਿਕਿਰਿਆ ਬਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਮੰਨ ਲਉ ਦੋ ਕਮਾਨੀਦਾਰ ਤੁਲਾ (ਤੁਲਾਵਾਂ) ਇੱਕ-ਦਜੇ ਨਾਲ ਜੁੜੀਆਂ ਹਨ। ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 9.10 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਤੁਲਾ B ਦਾ ਸਥਿਰ ਸਿਰਾ ਦੀਵਾਰ ਨਾਲ ਜੁੜਿਆ ਹੋਇਆ ਹੈ। ਜਦੋਂ ਤੁਲਾ A ਦੇ ਮੁਕਤ ਸਿਰੇ ਤੇ ਬਲ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ। ਤਾਂ ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਦੋਵੇਂ ਤੁਲਾਵਾਂ ਇੱਕੋ ਜਿਹਾ ਮਾਨ ਵਿਖਾਉਂਦੀਆਂ ਹਨ। ਭਾਵ ਤਲਾ A ਦੇ ਦੁਆਰਾ ਤੁਲਾ B ਦੇ ਦੁਆਰਾ ਲਗਾਇਆ ਗਿਆ ਬਲ, ਅਤੇ ਤਲਾ B ਦੁਆਰਾ ਤਲਾ A ਤੇ ਲਗਾਏ ਗਏ ਬਲ ਦੀ ਮਾਤਰਾ ਸਮਾਨ ਹੈ ਪਰੰਤ ਇਨਾਂ ਦੋਨੇਂ ਬਲਾਂ ਦੀ ਦਿਸ਼ਾ ਉਲਟ ਹੈ। ਬਲ ਜਿਹੜਾ ਕਿ A ਤਲਾ ਦੁਆਰਾ B ਤਲਾ ਤੇ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ। ਉਸਨੂੰ ਕਿਰਿਆ ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਜਿਹੜਾ ਤਲਾ B ਦੁਆਰਾ A ਤਲਾ ਤੇ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ। ਉਸਨੂੰ ਪਤਿਕਿਰਿਆ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਲਈ ਗਤੀ ਦੇ ਤੀਜੇ ਨਿਯਮ ਦਾ ਇਸ ਪੁਕਾਰ ਵੀ ਵਰਨਣ ਕੀਤਾ ਜਾਂਦਾ ਹੈ : ਹਰੇਕ ਕਿਰਿਆ ਦੇ ਬਰਾਬਰ ਪਰੰਤ ਉਸਦੀ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਪ੍ਰਤੀਕਿਰਿਆ ਹੁੰਦੀ ਹੈ। ਪਰੰਤੂ ਸਾਨੂੰ ਇਹ ਹਮੇਸ਼ਾ

ਚਿੱਤਰ 9.10 : ਕਿਰਿਆ ਅਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਬਲ ਬਰਾਬਰ ਅਤੇ ਉਲਟੇ ਹੁੰਦੇ ਹਨ।

ਯਾਦ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਕਿਰਿਆ ਅਤੇ ਪ੍ਰਤਿਕਿਰਿਆ ਹਮੇਸ਼ਾ ਦੋ ਵੱਖ-ਵੱਖ ਵਸਤੂਆਂ ਤੇ ਕੰਮ ਕਰਦੀਆਂ ਹਨ।

ਮੰਨ ਲਓ ਤੁਸੀਂ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਹੋ ਅਤੇ ਸੜਕ ਤੇ ਚੱਲਣਾ ਸ਼ੁਰੂ ਕਰ ਦਿੰਦੇ ਹੋ। ਦੂਜੇ ਨਿਯਮ ਅਨੁਸਾਰ ਇਸਦੇ ਲਈ ਇੱਕ ਬਲ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਜੋ ਤੁਹਾਡੇ ਸਰੀਰ ਵਿੱਚ ਪ੍ਰਵੇਗ ਪੈਦਾ ਕਰਦਾ ਹੈ ਇਹ ਕਿਹੜਾ ਬਲ ਹੈ ? ਕੀ ਇਹ ਮਾਸਪੇਸ਼ੀਆਂ ਦਾ ਬਲ ਹੈ ਜੋ ਕਿ ਅਸੀਂ ਸੜਕ ਤੇ ਲਗਾਉਂਦੇ ਹਾਂ ? ਕੀ ਇਹ ਬਲ ਅਸੀਂ ਉਸੇ ਦਿਸ਼ਾ ਵਿੱਚ ਲਗਾਉਂਦੇ ਹਾਂ ਜਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਅਸੀਂ ਅੱਗੇ ਵੱਧਦੇ ਹਾਂ। ਨਹੀਂ, ਤੁਸੀਂ ਸੜਕ ਨੂੰ ਪਿੱਛੇ ਵੱਲ ਨੂੰ ਧੱਕਾ ਮਾਰਦੇ ਹੋ। ਸੜਕ ਬਰਾਬਰ ਅਤੇ ਉਲਟ ਪ੍ਰਤੀਕਿਰਿਆ ਬਲ ਤੁਹਾਡੇ ਪੈਰਾਂ ਤੇ ਲੱਗਦਾ ਹੈ ਜਿਸ ਕਾਰਨ ਤੁਸੀਂ ਅੱਗੇ ਵੱਲ ਗਤੀ ਕਰਦੇ ਹੋ।

135

ਇਹ ਜਾਨਣਾ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਕਿਰਿਆ ਅਤੇ ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਪਰਿਮਾਣ ਹਮੇਸ਼ਾਂ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਪਰੰਤੂ ਇਹ ਬਲ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ ਉਤਪੰਨ ਨਹੀਂ ਕਰ ਸਕਦੇ ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਹਰੇਕ ਬਲ ਵੱਖਰੀ ਵਸਤੂ ਦੇ ਉੱਪਰ ਲੱਗਦਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਦਾ ਪੁੰਜ ਵੱਖਰਾ ਹੋ ਸਕਦਾ ਹੈ।

ਬੰਦੂਕ ਦੁਆਰਾ ਗੋਲ਼ੀ ਛੱਡਣ ਦੀ ਅਵਸਥਾ ਵਿੱਚ, ਬੰਦੂਕ ਦੁਆਰਾ ਗੋਲ਼ੀ ਤੋਂ ਅੱਗੇ ਵੱਲ ਨੂੰ ਇੱਕ ਬਲ (ਧੱਕਾ) ਲੱਗਦਾ ਹੈ ਗੋਲ਼ੀ ਵੀ ਬੰਦੂਕ ਤੇ ਇਕ ਸਮਾਨ ਪਰੰਤੂ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਬਲ ਲਗਾਉਂਦੀ ਹੈ। ਇਸ ਦੇ ਨਤੀਜੇ ਵੱਜੋਂ ਬੰਦੂਕ ਤੇ ਪਿੱਛੇ ਵੱਲ ਨੂੰ ਧੱਕਾ ਲੱਗਦਾ ਹੈ ਕਿਉਂਕਿ ਬੰਦੂਕ ਦਾ ਪੁੰਜ ਗੋਲ਼ੀ ਨਾਲੋਂ ਜ਼ਿਆਦਾ ਹੈ। ਬੰਦੂਕ ਵਿੱਚ ਪੈਦਾ ਹੋਇਆ ਪ੍ਵੇਗ ਗੋਲ਼ੀ ਨਾਲੋਂ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਗਤੀ ਦੇ ਤੀਜੇ ਨਿਯਮ ਨੂੰ ਮਲਾਹ ਦੁਆਰਾ (ਕਿਸ਼ਤੀ) ਤੋਂ ਅੱਗੇ ਵੱਲ ਕੁੱਦ ਕੇ ਬਾਹਰ ਆਉਣ ਦੀ ਸਥਿਤੀ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। (ਮਲਾਹ) ਅੱਗੇ ਵੱਲ ਨੂੰ ਛਲਾਂਗ ਲਗਾਉਂਦਾ ਹੈ ਅਤੇ (ਕਿਸ਼ਤੀ) ਤੇ ਲੱਗਣ ਵਾਲਾ ਪ੍ਰਤੀਕਿਰਿਆ ਬਲ (ਕਿਸ਼ਤੀ ਨੂੰ ਪਿੱਛੇ ਵੱਲ ਨੂੰ ਧੱਕਾ ਮਾਰਦਾ ਹੈ।

ਚਿੱਤਰ 9.11 : ਗੋਲ਼ੀ ਤੇ ਲੱਗਣ ਵਾਲਾ ਪ੍ਰਵੇਗਿਤ ਬਲ ਅਤੇ ਬੰਦੂਕ ਦਾ ਪਿੱਛੇ ਵੱਲ ਨੂੰ ਧੱਕਾ ਲੱਗਣਾ

ਚਿੱਤਰ 9.12 : ਮਲਾਹ ਦੁਆਰਾ ਅੱਗੇ ਕੁੱਦਣ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਕਿਸ਼ਤੀ ਪਿੱਛੇ ਵੱਲ ਨੂੰ ਗਤੀ ਕਰਦੀ ਹੈ

136

ਕਿਰਿਆ

ਦੇ ਬੱਚਿਆਂ ਨੂੰ ਪਹੀਏ ਵਾਲੀ ਗੱਡੀ ਤੇ ਖੜ੍ਹਾ ਹੋਣ ਨੂੰ ਕਹੋ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 9.13 ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ।

9.4

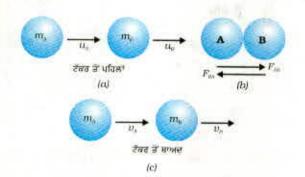
ਉਹਨਾਂ ਨੂੰ ਬਾਲੂ (ਰੇਤ) ਨਾਲ ਭਰਿਆ ਬੈਲਾ ਜਾਂ ਕੋਈ ਹੋਰ ਭਾਰੀ ਵਸਤੂ ਦੇ ਦਿਓ। ਹੁਣ ਉਹਨਾਂ ਨੂੰ ਪਕੜਣ ਦੀ ਖੇਡ ਬੈਲੇ ਦੇ ਨਾਲ ਖੇਡਣ ਨੂੰ ਕਹੋ।

(ਕ) ਰੇਤ ਦੇ ਬੋਲੇ ਨੂੰ ਸ਼ੁੱਟਣ (ਕਿਰਿਆ) ਦੇ ਕਾਰਨ ਕੀ ਦੋਨੋਂ ਤਤਕਾਲੀਨ ਪ੍ਰਤੀਕਿਰਿਆ ਮਹਿਸੂਸ ਕਰਦੇ ਹਨ ?

ਤੁਸੀਂ ਗੱਡੀ ਦੇ ਪਹੀਏ ਤੇ ਇੱਕ ਸਫ਼ੇਦ (ਚਿੱਟੀ) ਰੇਖਾ ਖਿੱਚ ਸਕਦੇ ਹੋ ਜਦੋਂ ਦੇਨੋਂ ਬੱਚੇ ਬੈਲਾ ਸੁੱਟਣ ਤਾਂ ਗੱਡੀ ਦੀ ਗਤੀ ਨੂੰ ਦੇਖਿਆ ਜਾ ਸਕੇ।

ਹੁਣ ਤੁਸੀਂ ਇੱਕ ਬੱਚੇ ਨੂੰ ਇੱਕ ਗੱਡੀ ਤੇ ਖੜਾ ਕਰ ਦਿਓ ਅਤੇ ਇੱਕ ਹੋਰ ਬੱਚੇ ਨੂੰ ਦੂਜੀ ਗੱਡੀ ਤੇ। ਤੁਸੀਂ ਹੁਣ ਦੂਜੇ ਗੱਡੀ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ ਦੇਖੋਗੇ ਕਿ ਹੁਣ ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਇਹ ਬਲ ਅਲੱਗ-ਅਲੱਗ ਪ੍ਰਵੇਗ ਪੈਦਾ ਕਰਦਾ ਹੈ।

ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਦਿਖਾਈ ਗੱਡੀ 50cm × 100cm ਆਕਾਰ ਦੇ 12mm ਜਾਂ 18mm ਮੋਟੇ ਪਲਾਈ ਬੋਰਡ ਤੇ ਦੋ (ਪਹੀਏ) ਜੋੜ ਕੇ ਬਣਾਈ ਜਾ ਸਕਦੀ ਹੈ (ਸਕੇਟਿੰਗ ਵਾਲੇ ਪਹੀਏ ਵਰਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਪਰੰਤੂ ਸਕੇਟ ਬੋਰਡ ਪ੍ਰਭਾਵੀ ਨਹੀਂ ਹੋਵੇਗਾ ਕਿਉਂਕਿ ਇਸਦਾ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਗਤੀ ਕਰਨਾ ਮੁਸ਼ਕਿਲ ਹੈ।


9.6 ਸੰਵੇਗ ਦਾ ਸੁਰੱਖਿਅਣ (ਪ੍ਰਤਿਪਾਲਣ) (Conservation of Momentum)

ਮੰਨ ਲਓ ਦੋ ਵਸਤੂਆਂ (ਗੇਂਦਾਂ A ਅਤੇ B) ਜਿਨ੍ਹਾਂ ਦਾ ਪੁੰਜ m_A ਅਤੇ m_B ਹੈ। ਇੱਕੋ ਹੀ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਵੇਗਾਂ ਨਾਲ ਕੁਮਵਾਰ u_A ਅਤੇ u_B ਨਾਲ ਗਤੀ ਕਰ

ৰিবিন্সান

ਰਹੀਆਂ ਹਨ। (ਚਿੱਤਰ 9.14(ੳ)) ਅਤੇ ਉਹਨਾਂ ਉੱਪਰ ਕੋਈ ਹੋਰ ਅਸੰਤੁਲਿਤ ਬਲ ਕਾਰਜ ਨਹੀਂ ਕਰ ਰਿਹਾ। ਮੰਨ ਲੳ $u_A > u_B$ ਅਤੇ ਦੋਨੋਂ ਗੇਂਦਾਂ ਚਿੱਤਰ 9.14 (ਅ) ਅਨੁਸਾਰ ਆਪਸ ਵਿੱਚ ਟਕਰਾਉਂਦੀਆਂ ਹਨ। ਮਨ ਲਓ ਟਕਰਾਉਣ ਦਾ ਸਮਾਂ 1 ਹੈ, ਗੇਂਦ A ਗੇਂਦ B ਤੇ F_{AB} ਬਲ ਲਗਾਉਂਦੀ ਹੈ ਅਤੇ ਗੇਂਦ B, F_{BA} ਬਲ ਗੇਂਦ A ਤੇ ਲਗਾਉਂਦੀ ਹੈ। ਮੰਨ ਲਉ ਕਿ v_A ਅਤੇ v_B ਦੋ ਗੇਂਦਾਂ ਦੇ ਟਕਰਾਉਣ ਤੋਂ ਬਾਅਦ ਦੇ ਲੜੀਵਾਰ ਵੇਗ ਹਨ। [ਚਿੱਤਰ 9.14 (ੲ)]

ਸਮੀਕਰਣ (9.1) ਤੋਂ, ਗੇਂਦ A ਦੇ ਸੰਵੇਗ, ਟਕਰਾਉਣ

ਚਿੱਤਰ 9.14 : ਦੋ ਗੇਂਦਾਂ ਦੀ ਟੱਕਰ ਵਿੱਚ ਸੇਵੇਗ ਸੁਰੱਖਿਅਣ

ਪਹਿਲਾਂ ਅਤੇ ਬਾਅਦ ਵਿੱਚ ਕ੍ਰਮਵਾਰ $m_A u_A$ ਅਤੇ $m_B v_B$ ਹੋਣਗੇ। ਅਤੇ ਟਕਰਾਉਣ ਸਮੇਂ ਗੇਂਦ A ਦੇ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੀ ਦਰ (ਜਾਂ F_{AB} , ਕਿਰਿਆ) = $\frac{m_A (v_A - u_A)}{t}$ ਟਕਰਾਉਣ ਸਮੇਂ ਗੇਂਦ B ਦੇ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੀ ਦਰ $F_{BA} = \frac{m_B (v_B - u_B)}{t}$

ਗਤੀ ਦੋ ਤੀਜੇ ਨਿਯਮ ਅਨੁਸਾਰ ਗੇਂਦ A ਦੁਆਰਾ ਗੇਂਦ B ਤੇ ਲਗਾਇਆ ਗਿਆ ਬਲ F_{AB} (ਕਿਰਿਆ) ਅਤੇ ਗੇਂਦ B ਦੁਆਰਾ ਗੇਂਦ A ਤੇ ਲਗਾਇਆ ਗਿਆ ਬਲ F_{BA} (ਪ੍ਰਤੀਕਿਰਿਆ) ਇੱਕ-ਦੂਜੇ ਦੇ ਬਰਾਬਰ ਅਤੇ ਉਲਟ ਹੋਵੇਗਾ। ਇਸ ਲਈ

$$\frac{\left[F_{AB} = -F_{BA}\right]}{\prod_{i} \frac{m_{i}(v_{A} - u_{A})}{t}} = \frac{m_{B}(v_{B} - u_{B})}{t}$$
(9.6)
ਜਾਂ $\frac{m_{i}(v_{A} - u_{A})}{t}$

(9.7)

 $m_{\rm A}u_{\rm A} + m_{\rm B}u_{\rm B} = m_{\rm A} v_{\rm A} + m_{\rm B}v_{\rm B}$

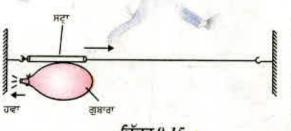
ਟਕਰਾਉਣ ਤੋਂ ਪਹਿਲਾਂ ਦੋਨੋਂ ਗੇਂਦਾਂ A ਅਤੇ B ਦਾ ਕੁੱਲ ਸੰਵੇਗ (m_Au_A + m_Bu_B)ਅਤੇ ਟਕਰਾਉਣ ਤੋਂ ਬਾਅਦ ਕੁੱਲ ਸੰਵੇਗ (m_Au_A + m_Bu_B) ਅਤੇ ਟਕਰਾਉਣ ਤੋਂ ਬਾਅਦ ਕੁੱਲ ਸੰਵੇਗ (m_A v_A + m_Bv_B) ਹੈ। ਸਮੀਕਰਣ (9.7) ਤੋਂ ਸਾਨੂੰ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਜਦੋਂ ਕੋਈ ਬਾਹਰੀ ਬਲ ਗੇਂਦਾਂ ਤੇ ਕੰਮ ਕਰ ਰਿਹਾ ਹੋਵੇ ਤਾਂ ਦੋਨਾਂ ਗੇਂਦਾਂ ਦਾ ਕੁੱਲ ਸੰਵੇਗ ਬਦਲਦਾ ਨਹੀਂ ਹੈ ਜਾਂ ਕੁੱਲ ਸੰਵੇਗ ਸੁਰੱਖਿਅਤ ਰਹਿੰਦਾ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਆਦਰਸ਼ ਟਕਰਾਉਣ ਪ੍ਰਯੋਗ ਦੇ ਆਧਾਰ ਤੇ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਦੋ ਵਸਤੂਆਂ ਦੇ ਟਕਰਾਉਣ ਤੋਂ ਪਹਿਲਾਂ ਕੁੱਡ ਸੰਵੇਗ ਦਾ ਜੋੜ ਅਤੇ ਦੋ ਵਸਤੂਆਂ ਦਾ ਟਕਰਾਉਣ ਤੋਂ ਬਾਅਦ ਕੁੱਲ ਸੰਵੇਗ ਦਾ ਜੋੜ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ । ਜੇਕਰ ਉਹਨਾਂ ਤੇ ਕੋਈ ਅਸੰਤੁਲਿਤ ਬਲ ਕਾਰਜ ਨਾ ਕਰ ਰਿਹਾ ਹੋਵੇ। ਇਸ ਨੂੰ ਸੰਵੇਗ ਦਾ ਸੁਰੱਖਿਅਣ ਦਾ ਨਿਯਮ (Law of conservation of momentum) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਵੀ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ਦੋ ਵਸਤੂਆਂ ਦਾ ਕੁੱਲ ਸੰਵੇਗ ਟਕਰਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਬਦਲਦਾ ਨਹੀਂ ਹੈ ਜਾਂ ਸਰੱਖਿਅਤ ਰਹਿੰਦਾ ਹੈ।

ਕਿਰਿਆ

ਇੱਕ ਵੱਡੇ ਆਕਾਰ ਦਾ ਰਬੜ ਦਾ ਗੁਬਾਰਾ ਲਵੇ ਅਤੇ ਉਸਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਹਵਾ ਨਾਲ ਭਰ ਲਓ।

9.5


137

ਇਸਦੇ ਮੁੱਖ ਤੇ ਧਾਗਾ ਬੈਨ੍ਹੋ।

ਇਸਦੀ ਸਤ੍ਹਾ ਤੋਂ ਚਿਪਕਾਉਣ ਵਾਲੀ ਟੇਪ ਨਾਲ ਇੱਕ ਪਲਾਸਟਿਕ ਦੀ ਪਤਲੀ ਨਲੀ (ਸਟ੍ਰਾ Straw) ਵੀ ਲਗਾਓ। ਉਸ ਨਲੀ (ਸਟ੍ਰਾ) ਵਿੱਚੋਂ ਇੱਕ ਧਾਗੇ ਨੂੰ ਪਾਰ ਕਰਵਾਉ ਅਤੇ ਦੀਵਾਰ ਦੇ ਨਾਲ ਧਾਗੇ ਦੇ ਦੋਨਾਂ ਸਿਰਿਆਂ ਨੂੰ ਬੇਨੋ। (ਜਾਂ ਤੁਸੀਂ ਅਤੇ ਤੁਹਾਡਾ ਮਿੱਤਰ ਇੱਕ-ਇੱਕ ਸਿਰੇ ਨੂੰ ਹੱਥ ਵਿੱਚ ਪਕੜ ਕੇ ਰੱਖ ਸਕਦਾ ਹੈ) ਇਹ ਵਿਧੀ ਚਿੱਤਰ 9.15 ਵਿੱਚ ਦਿਖਾਈ ਗਈ ਹੈ।

ਹੁਣ ਗੁਬਾਰੇ ਦੇ ਮੂੰਹ ਤੇ ਬੰਨ੍ਹਿਆ ਹੋਇਆਂ ਧਾਗਾ ਖੋਲ ਦੇਵੇਂ ਅਤੇ ਗੁਬਾਰੇ ਦੇ ਮੂੰਹ ਤੋਂ ਹਵਾ ਨੂੰ ਬਾਹਰ ਨਿਕਲਣ ਦੇਵੇ।

ਪਲਾਸਟਿਕ ਦੀ ਨਲੀ ਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਨੂੰ ਧਿਆਨ ਨਾਲ ਵੇਖੋ।

ਚਿੱਤਰ 9.15

ਬਲ ਅਤੇ ਗਤੀ ਦੇ ਨਿਯਮ

9.6

ਚੰਗੇ ਕੱਚ ਦੀ ਇੱਕ ਪਰਖਨਲੀ (ਟੈੱਸਟ ਟਿਊਬ) ਲਉ ਅਤੇ ਉਸ ਵਿੱਚ ਕੁਝ ਪਾਣੀ ਪਾ ਦਿਉ ਅਤੇ ਉਸਦੇ ਮੂੰਹ ਤੇ ਸਟਾਪ ਕਾਰਕ ਲਗਾ ਦਿਓ।

ਹੁਣ ਚਿੱਤਰ 9.16 ਵਿੱਚ ਵਿਖਾਏ ਅਨੁਸਾਰ ਲੋਟਵੇਂ ਸਮਤਲ ਰੂਪ ਵਿੱਚ ਪਰਖਨਲੀ ਨੂੰ ਦੋ ਧਾਗਿਆਂ ਦੇ ਦੁਆਰਾ ਸਟੈਂਡ ਤੇ ਲਟਕਾਉ।

ਬਰਨਰ (Burner) ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਉਦੋਂ ਤੱਕ ਪਰਖਨਲੀ ਨੂੰ ਗਰਮ ਕਰੋ ਜਦੋਂ ਤੱਕ ਕਿ ਸਾਰੇ ਪਾਣੀ ਦਾ ਵਾਸ਼ਪੀਕਰਣ ਹੋ ਜਾਵੇ ਅਤੇ ਕਾਰਕ ਬਾਹਰ ਨੂੰ ਨਿਕਲ ਆਵੇ।

ਅਸੀਂ ਵੇਖਦੇ ਹਾਂ ਕਿ ਪਰਖਨਲੀ ਕਾਰਕ ਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦੇ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਧੱਕੀ ਜਾਂਦੀ ਹੈ।

ਚਿੱਤਰ 9.16 ਪਰਖਨਲੀ ਦਾ ਕਾਰਕ ਤੋਂ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਧੱਕਾ ਲੱਗਣਾ

-

ਕਾਰਕ ਦੇ ਵੇਗ ਅਤੇ ਪਿੱਛੇ ਵੱਲ ਨੂੰ ਮੁੜਦੀ ਪਰਖਨਲੀ ਦੇ ਵੇਗ ਵਿੱਚ ਅੰਤਰ ਵੇਖੋ।

ਉਦਾਹਰਣ 9.6. 2kg ਦੇ ਇੱਕ ਪਿਸਤੌਲ ਵਿੱਚੋਂ 20g ਦੀ ਗੋਲੀ ਸਮਤਲ (ਲੇਟਵੀਂ) ਦਿਸ਼ਾ ਵਿੱਚ 150ms⁻¹ ਦੇ ਵੇਗ ਨਾਲ ਛੱਡੀ ਜਾਂਦੀ ਹੈ (ਨਿਕਲਦੀ ਹੈ)। ਪਿਸਤੌਲ ਦਾ ਪਿੱਛੇ ਵੱਲ ਨੂੰ ਵੇਗ ਕਿੰਨਾ ਹੈ। ਪਤਾ ਕਰੋ।

ਹੱਲ—

138

ਗੋਲੀ ਦਾ ਪੁੰਜ, $m_1 = 20g = 0.02 \text{ kg}$ ਪਿਸਤੌਲ ਦਾ ਪੁੰਜ $m_2 = 2\text{kg}$ ਗੋਲੀ ਦਾ ਮੁੱਢਲਾ ਵੇਗ = $u_1 = 0$ ਪਿਸਤੌਲ ਦਾ ਮੁੱਢਲਾ ਵੇਗ = $u_2 = 0$ ਭਾਵ $u_1 - u_2 = 0$ ਗੋਲੀ ਦਾ ਅੰਤਿਮ ਵੇਗ $v_1 = 150\text{ms}^{-1}$ ਗੋਲੀ ਦੀ ਦਿਸ਼ਾ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਵੱਲ (ਨਿਯਮਾਨੁਸਾਰ, ਚਿੱਤਰ 9.17) ਲਈ ਗਈ ਹੈ।

ਪਿਸਤੌਲ ਦਾ ਪਿਛਲੇ ਪਾਸੇ ਵੱਲ ਜਾਂ ਅੰਤਿਮ ਵੇਗ = v_2 . ਗੋਲੀ ਛੁੱਟਣ ਤੋਂ ਪਹਿਲਾਂ ਪਿਸਤੌਲ ਅਤੇ ਗੋਲੀ ਦਾ ਕੁੱਲ ਸੰਵੇਗ = $(2 + 0.02) \text{ kg} \times 0 \text{ms}^{-1} = 0 \text{ kgms}^{-1}$ (ਗੋਲੀ ਛੁੱਟਣ ਤੋਂ ਪਹਿਲਾਂ ਪਿਸਤੌਲ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਸੀ) = $m_1 v_1 + m_2 v_2$

ਗੋਲੀ ਛੁੱਟਣ ਤੋਂ ਬਾਅਦ ਪਿਸਤੌਲ ਅਤੇ ਗੋਲੀ ਦਾ ਕੁੱਲ ਸੰਵੇਗ=0.02kg×150ms⁻¹ + 2kg×v₂ms⁻¹ = (3 × 2v₂) kgms⁻¹

ਸੰਵੈਗ ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ ਗੋਲੀ ਛੁੱਟਣ ਤੋਂ ਪਹਿਲਾਂ ਦਾ ਕੁੱਲ ਸੰਵੇਗ = ਗੋਲੀ ਛੱਟਣ ਤੋਂ ਬਾਅਦ ਦਾ ਕੱਲ ਸੰਵੇਗ

$$0 = 3 + 2v_2$$

 $3 + 2v_2 = 0$

 $\Rightarrow v_2 = -1.5 \text{ms}^{-1}$

ਰਿਣਾਤਮਕ ਚਿੰਨ੍ਹ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਪਿਸਤੌਲ ਗੋਲੀ ਤੋਂ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਭਾਵ, ਸੱਜੇ ਤੋਂ ਖੱਬੇ ਪਾਸੇ ਵੱਲ ਧੱਕਾ ਮਹਿਸੂਸ ਕਰੇਗੀ।

ਚਿੱਤਰ 9.17 : ਪਿਸਤੌਲ ਦਾ ਪਿੱਛੇ ਵੱਲ ਨੂੰ ਧੱਕਾ ਲੱਗਣਾ

ਉਦਾਹਰਣ 9.7. 40kg ਪੁੰਜ ਵਾਲੀ ਇੱਕ ਲੜਕੀ 5ms⁻¹ ਦੇ ਸਮਤਲ ਲੇਟਵੇਂ ਵੇਗ ਨਾਲ ਇੱਕ 3kg ਪੁੰਜ ਵਾਲੀ ਸਥਿਰ ਪਹੀਏ ਵਾਲੀ ਗੱਡੀ ਤੇ ਛਲਾਂਗ ਲਗਾਉਂਦੀ ਹੈ ਗੱਡੀ ਦੇ ਪਹੀਏ ਰਗੜ ਰਹਿਤ ਹਨ।ਗੱਡੀ ਦੀ ਗਤੀ ਸ਼ੁਰੂ ਕਰਨ ਵੇਲੇ ਲੜਕੀ ਦਾ ਵੇਗ ਕਿੰਨਾ ਹੋਵੇਗਾ? ਮੰਨ ਲਉ ਕਿ ਲੇਟਵੀਂ ਦਿਸ਼ਾ ਵਿੱਚ ਕੋਈ ਵੀ ਅਸੰਤੁਲਿਤ ਬਲ ਕੰਮ ਨਹੀਂ ਕਰ ਰਿਹਾ ਹੈ ?

 $m_1 = 40$ kg, v = 5ms⁻¹ $m_2 = 3$ kg, $v_2 = 0$

ਵਿਗਿਆਨ

ਚਿੱਤਰ 9.18 : ਲੁੜਕੀ ਗੱਡੀ ਤੇ ਛਾਲ ਮਾਰਦੀ (ਕੁੱਦਦੀ ਹੈ)

ਹੱਲ-

ਲੜਕੀ ਅਤੇ ਗੱਡੀ ਦਾ ਲੜਕੀ ਦੇ ਕੁੱਦਣ ਤੋਂ ਪਰਿਲਾਂ ਦਾ ਕੁੱਲ ਸੰਵੇਗ

 $= 40 \text{kg} \times 5 \text{ms}^{-1} + 3 \text{kg} \times 0 \text{ms}^{-1}$

 $= 200 \text{kg ms}^{-1}$

ਮੰਨ ਲਉ ਲੜਕੀ ਅਤੇ ਗੱਡੀ ਦਾ ਕੁੱਦਣ ਤੋਂ ਬਾਅਦ ਵੇਗ v₂ ਹੈ।

ਇਸ ਅੰਵਸਥਾ ਵਿੱਚ ਗੱਡੀ ਅਤੇ ਲੜਕੀ ਦਾ ਕੁੱਲ ਸੰਵੇਗ

ਵਿੱਚ ਸੰਵੇਗ ਬਰਾਬਰ ਹੋਣਗੇ। 43vkg = 200kg ms⁻¹

$$v_2 = \frac{200}{43} \text{ms}^{-1} = +4.65 \text{ ms}^{-1}$$

ਗੱਡੀ ਤੇ ਸਵਾਰ ਲੜਕੀ 4.65ms⁻¹ ਦੇ ਵੇਗ ਨਾਲ ਛਲਾਂਗ ਲਗਾਉਣ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਚਲੇਗੀ (ਚਿੱਤਰ 9.18)

ਉਦਾਹਰਣ 9.8. ਹਾਕੀ ਦੀ ਪ੍ਰਤਿਯੋਗੀ (ਵਿਰੋਧੀ) ਟੀਮਾਂ ਦੇ ਦੋ ਖਿਡਾਰੀ ਗੇਂਦ ਨੂੰ ਹਿੱਟ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਵਿੱਚ ਆਪਸ਼ ਵਿੱਚ ਟਕਰਾ ਜਾਂਦੇ ਹਨ ਅਤੇ ਆਪਸ ਵਿੱਚ ਉਲਝ ਜਾਂਦੇ ਹਨ। ਪਹਿਲੇ ਖਿਡਾਰੀ ਦਾ ਪੁੰਜ 60kg ਹੈ ਅਤੇ ਉਹ 5.0ms⁻¹ ਦੇ ਵੇਗ ਨਾਲ ਗਤੀ ਵਿੱਚ ਸੀ। ਜਦੋਂਕਿ ਦੂਜੇ (ਖਿਡਾਰੀ) ਦਾ ਪੁੰਜ 55kg ਹੈ ਅਤੇ ਉਹ ਉਸ ਤੋਂ ਤੇਜ਼ 6ms⁻¹ ਦੇ ਵੇਗ ਨਾਲ ਪਹਿਲੇ ਖਿਡਾਰੀ

ਬਲ ਅਤੇ ਗਤੀ ਦੇ ਨਿਯਮ

ਵੱਲ ਆ ਰਿਹਾ ਸੀ।ਟਕਰਾ ਕੇ ਉਲਝਣ ਤੋਂ ਬਾਅਦ ਉਹ ਦੋਨੋਂ ਕਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਅਤੇ ਕਿਸ ਗਤੀ ਨਾਲ ਗਤੀ ਕਰਨਗੇ? ਮੰਨ ਲਉ ਦੋਨਾਂ ਖਿਡਾਰੀਆਂ ਦੇ ਪੈਰਾਂ ਅਤੇ ਜ਼ਮੀਨ ਵਿੱਚ ਲੱਗ ਰਿਹਾ ਰਗੜ ਬਲ ਨਾਂ-ਮਾਤਰ ਹੈ।

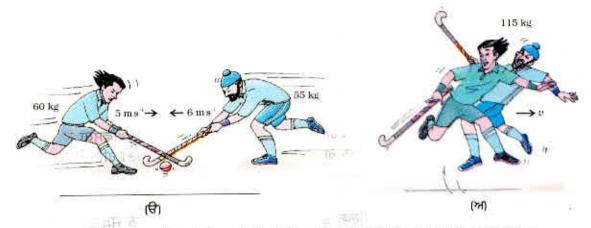
ਹੱਲ—

ਮੰਨ ਲਉ ਪਹਿਲਾ ਖਿਡਾਰੀ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਵੱਲ ਦੌੜ ਰਿਹਾ ਹੈ ਅਤੇ ਨਿਯਮਾਨੁਸਾਰ ਖੱਬੇ ਤੋਂ ਸੱਜੇ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਧਨਾਤਮਕ ਅਤੇ ਸੱਜੇ ਤੋਂ ਖੱਬੇ ਪਾਸੇ ਵਾਲੀ ਦਿਸ਼ਾ ਰਿਣਾਤਮਕ ਲੈਂਦੇ ਹਾਂ।(ਚਿੱਤਰ 9.19)|ਪ੍ਰਤੀਕ m ਅਤੇ " ਦੋਨਾਂ ਖਿਡਾਰੀਆਂ ਦੇ ਕ੍ਰਮਵਾਰ ਪੁੰਜ ਅਤੇ ਵੇਗ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ ਅਤੇ ਇਹਨਾਂ ਭੌਤਿਕ ਰਾਸ਼ੀਆਂ ਦੇ ਪਾਦ-ਚਿੰਨ੍ਹ (ਹੇਠ ਲਿਖੀਆਂ) ਸੰਖਿਆਵਾਂ 1 ਅਤੇ 2 ਕ੍ਰਮਵਾਰ ਪਹਿਲੇ ਅਤੇ ਦੂਜੇ ਖਿਡਾਰੀਆਂ ਨੂੰ ਸੰਬੋਧਿਤ ਕਰਦੀਆਂ ਹਨ॥ ਇਸ ਲਈ

 $m_1 = 60 \text{kg} \ u_1 = 5 \text{ms}^{-1}$ ਅਤੇ

 $m_2 = 55 \text{kg} \ u_2 = -6 \text{ms}^{-1}$

ਟਕਰਾਉਣ ਤੋਂ ਪਹਿਲਾਂ ਦੋਨੋਂ ਖਿਡਾਰੀਆਂ ਦਾ ਕੁੱਲ ਸੰਵੇਗ


$$= m_1 u_1 + m_2 u_2$$

$$= 60 \text{kg} \times 5 \text{ms}^{-1} + 55 \text{kg} \times (-6 \text{ms}^{-1})$$

ਮੰਨ ਲਓ ਕਿ ਦੋਨਾਂ ਖਿਡਾਰੀਆਂ ਦੇ ਟਕਰਾ ਕੇ ਉਲਝਣ ਤੋਂ ਬਾਅਦ ਵੇਗ v ਹੈ ਅਤੇ ਟੱਕਰ ਤੋਂ ਬਾਅਦ ਕੁੱਲ ਸੰਵੇਗ

$$= (m_1 + m_2) v = (60 + 55) \text{kg } v$$

139

ਚਿੱਤਰ 9.19 : ਦੋ ਹਾਕੀ ਖਿਡਾਰੀਆਂ ਦੀ ਟੱਕਰ (ੳ) ਟੱਕਰ ਤੋਂ ਪਹਿਲਾਂ (ਅ) ਟੱਕਰ ਤੋਂ ਬਾਅਦ

ਸੰਵੇਗ ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ, ਟੱਕਰ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਬਾਅਦ ਵਿੱਚ ਸੰਵੇਗ ਦੀ ਬਰਾਬਰੀ ਤੋਂ –30kgms⁻¹ = 11kg v

 $\frac{-30}{11}$ ms⁻¹ = v

 $= -0.27 \text{ ms}^{-1} = v$

ਇਸ ਲਈ ਉਲਝਣ ਤੋਂ ਬਾਅਦ ਦੋਨੋਂ ਖਿਡਾਰੀ ਸੱਜੇ ਤੋਂ ਖੱਬੇ 0.26 ms⁻¹ ਵੇਗ ਨਾਲ ਗਤੀ ਕਰਨਗੇ।

ਸਨ। । ਜੋਕਰ ਕਿਰਿਆ ਹਮੇਸ਼ਾ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਬਰਾਬਰ ਹੋ ਤਾਂ ਇਸ ਤੱਥ ਦੇ ਆਧਾਰ ਤੇ ਵਿਆਖਿਆ ਕਰੋ ਕਿ ਘੋੜਾ ਗੱਡੀ ਨੂੰ ਕਿਵੇਂ ਖਿੱਚ ਪਾਉਂਦਾ ਹੈ ? ਇੱਕ ਅੱਗ ਬੁਝਾਉਣ ਵਾਲੇ ਕਰਮਚਾਰੀ ਨੂੰ ਤੇਜ਼ ਸ਼ਮਿਓ ਨੇ ਗਤੀ ਨਾਲ ਬਹੁਤ ਜ਼ਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਪਾਣੀ ਸ਼ੀ ਸਿਊ ਸ਼ੁੱਟਣ ਵਾਲੀ ਰਬੜ ਦੀ ਨਲੀ ਨੂੰ ਪਕੜਣ ਵਿੱਚ ਸ਼ੁਸ਼ਕਿਲ ਕਿਉਂ ਆਉਂਦੀ ਹੈ ? ਸਪੱਸ਼ਟ ਕਰਦਿਆਂ ਸਮਝਾਉ।

- ਇੱਕ 50g ਪੁੰਜ ਦੀ ਗੋਲੀ 4kg ਪੁੰਜ ਦੀ ਬੈਦੂਕ (ਗਇਫਲ) ਤੋਂ 35ms⁻¹ ਦੇ ਮੁੱਢਲੇ ਵੇਗ ਨਾਲ ਛੱਡੀ ਜਾਂਦੀ ਹੈ। ਬੰਦੂਕ ਦੇ (ਆਰੰਭਿਕ) ਮੁੱਢਲੇ ਪਿੱਛੇ ਵੱਲ ਨੂੰ ਲਗ ਰਹੇ ਬਲ ਦਾ ਪਤਾ ਕਰੋ।
- 4. 100g ਅਤੇ 200g ਪੁੰਜ ਦੀਆਂ ਦੋ ਵਸਤੂਆਂ ਇੱਕ ਹੀ ਰੇਖਾ ਵਿੱਚ ਅਤੇ ਇੱਕ ਹੀ ਦਿਸ਼ਾ ਵਿੱਚ ਕ੍ਰਮਵਾਰ 2ms⁻¹ ਅਤੇ 1ms⁻¹ ਵੇਗਾ ਨਾਲ ਗੜੀ ਕਰ ਰਹੀਆਂ ਹਨ। ਦੋਨੀਂ ਵਸਤੂਆਂ ਟਕਰਾ ਜਾਂਦੀਆਂ ਹਨ। ਟਕਰਾਉਣ ਤੋਂ ਬਾਅਦ ਪਹਿਲੀ ਵਸਤੂ ਦਾ ਵੇਗ 1.67 ms⁻¹ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇ ਦੂਜੀ ਵਸਤੂ ਦਾ ਵੇਗ ਪਤਾ ਕਰੋ।

ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮ (Conservation Laws)

ਸੁਰੱਖਿਅਣ ਦੇ ਸਾਰੇ ਨਿਯਮਾਂ : ਜਿਵੇਂ ਸੰਵੇਗ, ਊਰਜਾ, ਕੋਣੀ ਸੰਵੇਗ (Angular Momentum) ਆਵੇਸ਼ (Charge) ਆਦਿ ਨੂੰ ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ ਬੁਨਿਆਦੀ (ਮੌਲਿਕ) ਨਿਯਮ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਸਾਰੇ ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮ ਪ੍ਯੋਗੀ ਪ੍ਰੇਖਣਾਂ ਤੇ ਆਧਾਰਿਤ ਹਨ। ਇਹ ਯਾਦ ਰੱਖਣਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਪ੍ਰਮਾਣਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਇਹਨਾਂ ਨੂੰ ਪ੍ਰਯੋਗਾਂ ਦੇ ਦੁਆਰਾ ਤਸਦੀਕ (ਸਿੱਧ) ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ ਖੰਡਿਤ (ਰੱਦ) ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਵੀ ਸੁਰੱਖਿਅਣ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ (ਮੇਲ ਖਾਂਦੇ) ਪ੍ਰਯੋਗਾਂ ਦੇ ਨਤੀਜੇ ਉਸ ਨਿਯਮ ਦਾ ਸਮਰਥਨ (ਪੁਸ਼ਟੀ) ਤਾਂ ਕਰਦੇ ਹਨ ਜਾਂ ਸੱਚਾਈ ਸਾਬਤ ਕਰਦੇ ਹਨ ਪਰੰਤੂ ਉਸ ਨਿਯਮ ਨੂੰ ਸਿੱਧ ਨਹੀਂ ਕਰਦੇ ਹਨ। ਦੂਜੇ ਪਾਸੇ ਇੱਕੋ ਹੀ ਪ੍ਰਯੋਗ ਜਿਸਦਾ ਨਤੀਜਾ ਕਿਸੇ ਨਿਯਮ ਦੇ ਵਿਰੁੱਧ ਹੋਵੇ ਤਾਂ ਉਹ ਸੁਰੱਖਿਅਣ ਨਿਯਮ ਨੂੰ ਖੰਡਿਤ ਕਰਨ ਲਈ ਕਾਫੀ ਹੋਵੇਗਾ।

ਸੰਵੇਗ ਸੁਰੱਖਿਅਣ ਦਾ ਨਿਯਮ ਬਹੁਤ ਸਾਰੇ ਪ੍ਯੋਗਾਂ ਅਤੇ ਪ੍ਰੇਖਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਸਿੱਟਾ ਕੱਢ ਕੇ ਬਣਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਨਿਯਮ ਦਾ ਤਿੰਨ ਸੌ ਸਾਲ ਪਹਿਲਾਂ ਸੂਤਰੀਕਰਣ ਕੀਤਾ ਗਿਆ ਸੀ। ਇਸ ਨਿਯਮ ਨੂੰ ਖੇਡਿਤ ਕਰ ਸਕਣ ਵਾਲੀ ਕਿਸੇ ਸਥਿਤੀ ਦਾ ਅਜੇ ਤੱਕ ਕੋਈ ਅਨੁਭਵ ਪਤਾ ਨਹੀਂ ਹੈ। ਵੱਖ-ਵੱਖ ਰੋਜ਼ਾਨਾ ਅਨੁਭਵਾਂ ਨੂੰ ਸੰਵੇਗ-ਸੁਰੱਖਿਅਣ ਨਿਯਮ ਦੇ ਆਧਾਰ ਤੇ ਸਪੱਸ਼ਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਵਿਗਿਆਨ

ਤੁਸੀਂ ਕੀ ਸਿੱਖਿਆ ?

- ਗਤੀ ਦਾ ਪਹਿਲਾ ਨਿਯਮ— ਵਸਤੂ ਆਪਣੀ ਵਿਰਾਮ ਅਵਸਥਾ ਜਾਂ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਇੱਕ ਸਮਾਨ ਗਤੀ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਉਦੋਂ ਤੱਕ ਬਣੀ ਰਹਿੰਦੀ ਹੈ, ਜਦੋਂ ਤੱਕ ਉਸ ਤੇ ਕੋਈ ਅਸੰਤੁਲਿਤ ਬਲ ਕੰਮ ਨਾ ਕਰੇ।
- ਵਸਤੂਆਂ ਦੁਆਰਾ ਆਪਣੀ ਵਿਰਾਮ ਅਵਸਥਾ ਜਾਂ ਇਕ ਸਮਾਨ ਗਤੀ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦਾ ਵਿਰੋਧ ਕਰਨ ਦੀ ਪ੍ਰਵਿਰਤੀ ਨੂੰ ਜੜ੍ਹਤਾ ਕਹਿੰਦੇ ਹਨ।
- ਕਿਸੇ ਵਸਤੂ ਦਾ ਪੁੰਜ ਉਸਦੇ ਜੜ੍ਹਤਾ ਦਾ ਮਾਪ ਹੁੰਦਾ ਹੈ। ਇਸਦਾ SI ਮਾਤ੍ਕ ਕਿਲੋਗ੍ਰਾਮ ਹੈ।
- ਰਗੜ ਬਲ ਹਮੇਸ਼ਾਂ ਵਸਤੂ ਦੀ ਗਤੀ ਦਾ ਵਿਰੋਧ ਕਰਦਾ ਹੈ।⁷⁷⁸ ਇ
- ਗਤੀ ਦਾ ਦੂਜਾ ਨਿਯਮ— ਕਿਸੇ ਵਸਤੂ ਦੇ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੀ ਦਰ ਵਸਤੂ ਤੇ ਲਗਾਏ ਗਏ ਅਸੰਤੁਲਿਤ ਬਲ ਦੇ ਅਨੁਪਾਤੀ ਅਤੇ ਲਗਾਏ ਗਏ ਬਲ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।
- ਬਲ ਦਾ SI ਮਾਤਕ kgms⁻² ਹੈ। ਇਸਨੂੰ ਨਿਊਟਨ ਦੇ ਨਾਂ ਨਾਲ ਵੀ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸਨੂੰ ਪ੍ਰਤੀਕ N ਦੁਆਰਾ ਵਿਅਕਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਨਿਊਟਨ ਦਾ ਬਲ ਕਿਸੇ kg ਪੁੰਜ ਦੀ ਵਸਤੂ ਵਿੱਚ 1ms⁻² ਦਾ ਪ੍ਵੇਗ ਪੈਦਾ ਕਰਦਾ ਹੈ।
- ਵਸਤੂ ਦਾ ਸੰਵੇਗ ਉਸਦੇ ਪੁੰਜ ਅਤੇ ਵੇਗ ਦਾ ਗੁਣਨਫਲ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸਦੀ ਦਿਸ਼ਾ ਉਹੀ ਹੁੰਦੀ ਹੈ, ਜੋ ਵਸਤੂ ਦੇ ਵੇਗ ਦੀ ਹੁੰਦੀ ਹੈ। ਇਸਦਾ SI ਮਾਤ੍ਰਕ kgms⁻¹ ਹੁੰਦਾ ਹੈ।
- ਗਤੀ ਦਾ ਤੀਜਾ ਨਿਯਮ— ਹਰੇਕ ਕਿਰਿਆ ਦੇ ਸਮਾਨ ਅਤੇ ਉਲਟ ਪ੍ਰਤੀਕਿਰਿਆ ਹੁੰਦੀ ਹੈ। ਇਹ ਦੋ ਵੱਖ-ਵੱਖ ਵਸਤੂਆਂ ਤੇ ਕੰਮ ਕਰਦੀ ਹੈ।
- ਕਿਸੀ ਅਲੱਗ ਵਿਵਸਥਾ ਵਾਲੇ ਪ੍ਰਬੰਧ ਵਿੱਚ (ਜਿਸ ਵਿੱਚ ਕੋਈ ਬਾਹਰੀ ਬਲ ਨਾ ਲੱਗਦਾ ਹੋਵੇ) ਕੁੱਲ ਸੰਵੇਗ ਸੁਰੱਖਿਅਤ ਰਹਿੰਦਾ ਹੈ।

ਅਭਿਆਸ

TRATE

 ਕੋਈ ਵਸਤੂ ਬਾਹਰੀ ਅਸੰਤੁਲਿਤ ਬਲ ਸਿਫ਼ਰ ਮਹਿਸੂਸ ਕਰਦੀ ਹੈ। ਕੀ ਕਿਸੇ ਵਸਤੂ ਦੇ ਲਈ ਅਸਿਫ਼ਰ ਵੇਗ ਨਾਲ ਗਤੀ ਕਰਨਾ ਸੰਭਵ ਹੈ ? ਜੇਕਰ ਹਾਂ, ਤਾਂ ਵਸਤੂ ਦੇ ਵੇਗ ਦੇ ਪਰਿਮਾਣ ਅਤੇ ਦਿਸ਼ਾ ਤੋਂ ਲੱਗਣ ਵਾਲੀਆਂ ਸ਼ਰਤਾਂ ਦਾ ਬਿਆਨ ਕਰੋ। ਜੇਕਰ ਨਹੀਂ ਤਾਂ ਕਾਰਨ ਸਪੱਸ਼ਟ ਕਰੋ।

- ਜਦੋਂ ਕਿਸੇ ਛੜੀ ਨਾਲ ਇੱਕ ਦਰੀ (ਗਲੀਚੇ) ਨੂੰ ਕੁੱਟਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਧੂੜ ਦੇ ਕਣ ਬਾਹਰ ਨਿਕਲ ਆਉਂਦੇ ਹਨ। ਸਪੱਸ਼ਟ ਕਰੋ।
- ਬਸ ਦੀ ਛੱਤ ਤੇ ਰੱਖੇ ਹੋਏ ਸਮਾਨ ਨੂੰ ਰੱਸੀ ਨਾਲ ਕਿਉਂ ਬੰਨਿਆ ਜਾਂਦਾ ਹੈ ?
- 4. ਇੱਕ ਬੱਲੇਬਾਜ਼ (Batsman) ਦੁਆਰਾ ਕ੍ਰਿਕੇਟ ਦੀ ਗੇਂਦ ਨੂੰ ਜ਼ੋਰ ਦੀ ਮਾਰਨ ਨਾਲ ਉਹ ਜ਼ਮੀਨ ਤੇ ਲੁੜਕਦੀ ਹੈ। ਕੁਝ ਦੂਰੀ ਚਲਣ ਦੇ ਬਾਅਦ ਗੇਂਦ ਰੁਕ ਜਾਂਦੀ ਹੈ। ਗੇਂਦ ਰੁਕਣ ਲਈ ਹੌਲੀ ਹੁੰਦੀ ਹੈ ਕਿਉਂਕਿ—

ਬਲ ਅਤੇ ਗਤੀ ਦੇ ਨਿਯਮ

141

- ਬੱਲੇਬਾਜ਼ ਨੇ ਗੇਂਦ ਨੂੰ ਪੂਰੇ ਜ਼ੋਰ ਨਾਲ (ਕੋਸ਼ਿਸ਼ ਨਾਲ) ਹਿੱਟ ਨਹੀਂ ਕੀਤਾ ਹੈ। (a)
- ਵੇਗ ਗੇਂਦ ਤੇ ਲਗਾਏ ਗਏ ਬਲ ਦੇ ਸਮਾਨੁਪਾਤੀ ਹੈ। (b)
- ਗੇਂਦ ਤੇ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦੇ ਉਲਟ ਇੱਕ ਬਲ ਕਾਰਜ ਕਰ ਰਿਹਾ ਹੈ। (c)
- ਗੇਂਦ ਤੇ ਕੋਈ ਅਸੰਤੁਲਿਤ ਬਲ ਨਹੀਂ ਕੰਮੀਕਰ ਰਿਹਾ। ਇਸ ਲਈ ਗੇਂਦ ਵਿਰਾਮ (d)ਅਵਸਥਾ ਵਿੱਚ ਆ ਜਾਵੇਗੀ।
- RUNE ਇੱਕ ਟਰੱਕ ਵਿਰਾਮ ਅਵਸਥਾ ਤੋਂ ਕਿਸੇ ਪਹਾੜੀ ਤੋਂ ਥੱਲੇ ਵੱਲ ਸਥਿਰ ਪ੍ਵੇਗ ਨਾਲ 5. ਲੁੜਕਣਾ ਸ਼ੁਰੂ ਕਰਦਾ ਹੈ। ਇਹ 20s ਵਿੱਚ 400m ਦੀ ਦੁਰੀ ਤੈਅ ਕਰਦਾ ਹੈ। ਇਸਦਾ ਪਵੇਗ ਪਤਾ ਕਰੇ। ਜੇਕਰ ਇਸ ਦਾ ਪੁੰਜ 7 ਟਨ ਹੈ ਤਾਂ ਇਸ ਤੇ ਲੱਗਣ ਵਾਲੇ ਬਲ ਦਾ ਪਤਾ ਕਰੋ। (1 ਟਨ = 1000kg) I EW G 15

ਇੱਕ kg ਪੁੰਜ ਦੇ ਇੱਕ ਪੱਥਰ ਨੂੰ 20ms⁻¹ ਦੇ ਵੇਗ ਨਾਲ ਜੰਮੀ ਹੋਈ ਝੀਲ ਦੀ ਸਤ੍ਹਾ ਤੇ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ। ਪੱਥਰ 50m ਦੀ ਦੂਰੀ ਤੈਅ ਕਰਨ ਤੋਂ ਬਾਅਦ ਰੁਕ ਜਾਂਦਾ ਹੈ। ਪੱਥਰ ਅਤੇ ਬਰਫ਼ ਦੇ ਵਿੱਚ ਲੱਗਣ ਵਾਲੇ ਰਗੜ ਬਲ ਦਾ ਪਤਾ ਕਰੋ।

2 377 ਇੱਕ 8000 kg ਪੁੰਜ ਵਾਲਾ ਰੇਲ ਇੰਜਣ ਪ੍ਰਤੀ 2000kg ਪੁੰਜ ਵਾਲੇ 5 ਡੱਬਿਆਂ ਨੂੰ 7. ਸਿੱਧੀ ਪਟਰੀ ਤੇ ਖਿੱਚਦਾ ਹੈ। ਇੱਕ ਇੰਜਣ 40000N ਦਾ ਬਲ ਲਗਾਉਂਦਾ ਹੈ ਅਤੇ ਪਟਰੀ 5000N ਦਾ ਬਲ ਲਗਾਉਂਦੀ ਹੈ ਪਤਾ ਕਰੋ-

- (a) ਪਵੇਗਿਤ ਕਰਨ ਵਾਲਾ ਬਲ
 - (b) ਰੇਲ ਦਾ ਪ੍ਰਵੇਗ

「戸浦」登 16

वित्र सिम्ह 6.

ELS THE MAIN

11 10-

058

行九

142

- (c) ਪਹਿਲੇ ਡੱਬੇ ਦੁਆਰਾ ਦੂਜੇ ਡੱਬੇ ਤੇ ਲਗਾਇਆ ਗਿਆ ਬਲ
- 8. ਇੱਕ ਗੱਡੀ ਦਾ ਪੁੰਜ 1500kg ਹੈ। ਇੱਕ ਗੱਡੀ ਨੂੰ 1.7ms⁻¹ ਦੇ ਰਿਣਾਤਮਕ ਪ੍ਵੇਗ ਦੇ ਨਾਲ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਲਿਆਂਦਾ ਹੈ। ਗੱਡੀ ਅਤੇ ਸੜਕ ਵਿੱਚ ਲੱਗਣ ਵਾਲਾ ਰਗੜ ਬਲ ਕਿੰਨਾ ਹੋਵੇਗਾ ?
- 9. ਕਿਸੀ m ਪੁੰਜ ਵਾਲੀ ਵਸਤੂ ਜਿਸਦਾ ਵੇਗ, v ਹੈ ਦਾ ਸੇਵੇਗ ਕਿੰਨਾ ਹੋਵੇਗਾ ?

(ੳ) $(mv)^2$ (ਅ) mv^2 (ੲ) $\frac{1}{2}mv^2$ (ਸ) mv, ਇਹਨਾਂ ਵਿੱਚੋਂ ਸਹੀ ਦੀ ਚੋਣ ਕਰੋ।

10. ਅਸੀਂ ਇੱਕ ਲੱਕੜ ਦੇ ਬਕਸੇ ਨੂੰ 200N ਦਾ ਬਲ ਲਗਾ ਕੇ ਉਸਨੂੰ ਸਥਿਰ ਵੇਗ ਨਾਲ ਫਰਸ਼ ਤੇ ਧਕੇਲਦੇ ਹਾਂ। ਬਕਸੇ ਤੇ ਲੱਗਣ ਵਾਲਾ ਰਗੜ ਬਲ ਕਿੰਨਾ ਹੋਵੇਗਾ ?

11. ਦੋ ਵਸਤੂਆਂ, ਹਰੇਕ ਦਾ ਪੁੰਜ 1.5kg ਹੈ, ਇੱਕ ਹੀ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਇੱਕ-ਦੂਜੇ ਦੇ ਨ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀ ਕਰ ਰਹੀਆਂ ਹਨ। ਟਕਰਾਉਣ ਤੋਂ ਪਹਿਲਾਂ ਹਰੇਕ ਦਾ ਵੇਗ ਤੀਜ 7 ਮਾਤਾਰਡ 2.5ms⁻¹ ਹੈ। ਟਕਰਾਉਣ ਤੋਂ ਬਾਅਦ ਇਹ ਦੋਨੋਂ ਇੱਕ ਦੂਜੇ ਨਾਲ ਜੁੜ ਜਾਂਦੀਆਂ ਹਨ ਤਾਂ ਇਹਨਾਂ ਵਸਤੂਆਂ ਦਾ ਟਕਰਾਉਣ ਤੋਂ ਬਾਅਦ ਜੁੜ ਜਾਣ ਤੇ ਕਿੰਨਾ ਵੇਗ ਹੋਵੇਗਾ ?

> 12. ਗਤੀ ਦੇ ਤੀਜੇ ਨਿਯਮ ਅਨੁਸਾਰ ਜਦੋਂ ਅਸੀਂ ਕਿਸੀ ਵਸਤੂ ਨੂੰ ਧੱਕਾ ਮਾਰਦੇ ਹਾਂ ਤਾਂ ਵਸਤੂ ਵੀ ਸਾਨੂੰ ਉਨੇ ਹੀ ਬਲ ਨਾਲ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਧੱਕਾ ਦਿੰਦੀ ਹੈ। ਜੇ ਉਹ ਵਸਤੂ ਇਕ ਟਰੱਕ ਹੈ ਜੋ ਕਿ ਸੜਕ ਦੇ ਕਿਨਾਰੇ ਸੜਕ ਤੇ ਖੜਾ ਹੈ, ਸੰਭਵ ਹੈ ਕਿ ਸਾਡੇ ਦੁਆਰਾ ਬਲ ਲਗਾਉਣ ਤੇ ਵੀ ਉਹ ਗਤੀਮਾਨ ਨਹੀਂ ਹੋ ਪਾਵੇਗਾ। ਇੱਕ ਵਿਦਿਆਰਥੀ

> > ਵਿਗਿਆਨ

ਇਸ ਨੂੰ ਸਹੀ ਸਿੱਧ ਕਰਦਿਆਂ ਹੋਇਆਂ ਕਹਿੰਦਾ ਹੈ ਕਿ ਦੋਨੇ ਬਲ ਉਲਟ ਅਤੇ ਬਰਾਬਰ ਹਨ ਅਤੇ ਇਸੇ ਕਰਕੇ ਦੋਨੇ ਇੱਕ ਦੂਜੇ ਨੂੰ ਖ਼ਤਮ ਕਰ ਦਿੰਦੇ ਹਨ। ਇਸ ਤਰਕ ਤੇ ਆਪਣੇ ਵਿਚਾਰ ਦਿਓ ਅਤੇ ਵਿਆਖਿਆ ਕਰੋ ਕਿ ਟਰੱਕ ਕਿਉਂ ਨਹੀਂ ਗਤੀ ਕਰਦਾ।

- 13. ਇੱਕ ਹਾਕੀ ਦੀ ਗੇਂਦ ਜਿਸਦਾ ਪੁੰਜ 200g ਹੈ 10ms⁻¹ ਦੇ ਵੇਗ ਨਾਲ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਚਲਦਿਆਂ ਹੋਇਆਂ 5kg ਪੁੰਜ ਵਾਲੀ ਲੱਕੜੀ ਦੀ ਹਾਕੀ ਦੀ ਛੜ ਨਾਲ ਟਕਰਾਉਂਦੀ ਹੈ ਅਤੇ 5ms⁻¹ ਦੇ ਵੇਗ ਨਾਲ ਆਪਣੇ ਅਸਲੀ ਮਾਰਗ ਤੇ ਵਾਪਸ ਆ ਜਾਂਦੀ ਹੈ। ਹਾਕੀ ਦੀ ਛੜ ਦੁਆਰਾ ਬਲ ਲਗਾਉਣ ਕਾਰਨ ਹਾਕੀ ਦੀ ਗੇਂਦ ਦੀ ਗਤੀ ਵਿੱਚ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੀ ਦਰ ਪਤਾ ਕਰੋ।
- 14. 10g ਪੁੰਜ ਵਾਲੀ ਬੰਦੂਕ ਦੀ ਇੱਕ ਗੋਲ਼ੀ ਜੋ ਕਿ 150ms⁻¹ ਗਤੀ ਨਾਲ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਚੱਲਦੀ ਹੋਈ ਇੱਕ ਲੱਕੜ ਦੇ ਗੁਟਕੇ ਨਾਲ ਟਕਰਾਉਂਦੀ ਹੈ ਅਤੇ 0.035 ਵਿੱਚ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਆ ਜਾਂਦੀ ਹੈ।ਗੁਟਕੇ ਵਿੱਚ ਗੋਲ਼ੀ ਦੁਆਰਾ ਭੇਜੀ ਗਈ ਦੂਰੀ ਪਤਾ ਕਰੋ ਅਤੇ ਲੱਕੜੀ ਦੇ ਗੁਟਕੇ ਦੁਆਰਾ ਗੋਲ਼ੀ ਤੇ ਲਗਾਏ ਗਏ ਬਲ ਦੀ ਮਾਤਰਾ ਪਤਾ ਕਰੋ।
- 15. ਇੱਕ ਵਸਤੂ ਜਿਸ ਦਾ ਪੁੰਜ 1kg ਹੈ, 10ms⁻¹ ਦੇ ਵੇਗ ਨਾਲ ਇੱਕ ਸਿੱਧੀ ਰੇਖਾ ਨਾਲ ਚੱਲਦੇ ਹੋਏ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਰੱਖੇ ਹੋਏ 5kg ਪੁੰਜ ਵਾਲੇ ਇੱਕ ਲੱਕੜੀ ਦੇ ਗੁਟਕੇ ਨਾਲ ਟਕਰਾਉਂਦੀ ਹੈ ਅਤੇ ਟਕਰਾਉਣ ਤੋਂ ਬਾਅਦ ਉਸ ਨਾਲ ਹੀ ਜੁੜ ਜਾਂਦੀ ਹੈ ਉਸਦੇ ਬਾਅਦ ਦੋਨੋਂ ਇੱਕ ਸਿੱਧੀ ਰੇਖਾ ਵਿੱਚ ਗਤੀ ਕਰਦੇ ਹਨ। ਟੱਕਰ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਟੱਕਰ ਤੋਂ ਬਾਅਦ ਦਾ ਕੁੱਲ ਸੰਵੇਗ ਪਤਾ ਕਰੋ। ਆਪਸ ਵਿੱਚ ਜੁੜੀਆਂ ਹੋਈਆਂ ਦੋਨਾਂ ਵਸਤੂਆਂ ਦਾ ਵੇਗ ਵੀ ਪਤਾ ਕਰੋ।
- 16. 100kg ਪੁੰਜ ਵਾਲ਼ੀ ਇੱਕ ਵਸਤੂ 6 ਸੈਕਿੰਡਾਂ ਵਿੱਚ 5ms⁻¹ ਤੋਂ 8ms⁻¹ ਦੇ ਵੇਗ ਨਾਲ ਚਲਦੇ ਹੋਏ ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗਿਤ ਹੁੰਦੀ ਹੈ। ਵਸਤੂ ਦਾ ਪਹਿਲਾ ਅਤੇ ਅੰਤਿਮ ਸੈਵੇਗ ਪਤਾ ਕਰੋ। ਵਸਤੂ ਉੱਤੇ ਲੱਗੇ ਬਲ ਦਾ ਮਾਨ ਵੀ ਪਤਾ ਕਰੋ।
- 17. ਅਖਤਰ, ਕਿਰਨ ਅਤੇ ਰਾਹੁਲ ਕਿਸੀ ਰਾਜਮਾਰਗ ਤੇ ਬਹੁਤ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਚੱਲਦੀ ਹੋਈ ਕਾਰ ਤੇ ਸਵਾਰ ਹਨ- ਅਚਾਨਕ ਇੱਕ ਕੀੜਾ ਉੱਡਦਾ ਹੋਇਆ ਕਾਰ ਦੇ ਸਾਹਮਣੇ ਵਾਲੇ ਸ਼ੀਸ਼ੇ ਵਿੱਚ ਆ ਟਕਰਾਇਆ ਅਤੇ ਸ਼ੀਸ਼ੇ ਨਾਲ ਚਿਪਕ ਗਿਆ। ਅਖਤਰ ਅਤੇ ਕਿਰਨ ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਵਿਚਾਰ ਕਰਦੇ ਹਨ। ਕਿਰਨ ਦਾ ਮੰਨਣਾ ਹੈ ਕਿ ਕਾਰ ਵਿੱਚ ਸੰਵੇਗ ਦੇ ਪਰਿਵਰਤਨ ਨਾਲੋਂ ਕੀੜੇ ਵਿੱਚ ਆਏ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹੈ। ਕਿਉਂਕਿ ਕਾਰ ਨਾਲੋਂ ਕੀੜੇ ਵਿੱਚ ਆਇਆ ਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹੈ ਅਖਤਰ ਨੇ ਕਿਹਾ ਕਿਉਂਕਿ ਕਾਰ ਬਹੁਤ ਜ਼ਿਆਦਾ ਵੇਗ ਨਾਲ ਚਲ ਰਹੀ ਸੀ। ਇਸ ਕਰਕੇ ਇਸਨੇ ਕੀੜੇ ਉੱਪਰ ਬਹੁਤ ਜ਼ਿਆਦਾ ਬਲ ਲਗਾਇਆ ਅਤੇ ਇਸ ਕਾਰਨ ਕੀੜਾ ਮਰ ਗਿਆ। ਰਾਹੁਲ ਨੇ ਇੱਕ ਬਿਲਕੁਲ ਨਵਾਂ ਤਰਕ ਪੇਸ਼ ਕਰਦਿਆਂ ਹੋਇਆਂ ਕਿਹਾ ਕਿ ਦੋਨੋਂ ਮੋਟਰਕਾਰ ਅਤੇ ਕੀੜੇ ਨੇ ਬਰਾਬਰ ਬਲ ਮਹਿਸੂਸ ਕੀਤਾ ਅਤੇ ਦੋਨਾਂ ਵਿੱਚ ਸੰਵੇਗ ਦਾ ਪਰਿਵਰਤਨ ਵੀ ਬਰਾਬਰ ਹੋਇਆ ਇਹਨਾਂ ਵਿਚਾਰਾਂ ਤੇ ਆਪਣੀ ਪ੍ਰਤੀਕਿਰਿਆ ਦਿਓ।
- 18. 10 ਕਿਲੋਗ੍ਰਾਮ ਪੁੰਜ ਵਾਲੀ ਇੱਕ ਘੰਟੀ ਫ਼ਰਸ਼ ਨੂੰ ਕਿੰਨਾ ਸੰਵੇਗ ਸਥਾਂਤਰਿਤ ਕਰੇਗੀ ? ਜਦੋਂ ਇਹ 80cm ਦੀ ਉੱਚਾਈ ਤੋਂ ਹੇਠਾਂ ਵੱਲ ਨੂੰ ਡਿੱਗਦੀ ਹੈ। ਇਸਦਾ ਹੇਠਾਂ ਵੱਲ ਡਿੱਗਦਿਆਂ ਹੋਇਆਂ ਪ੍ਰਵੇਗ ਦਾ ਮਾਨ 10ms⁻² ਲੈ ਲਓ।

ਬਲ ਅਤੇ ਗਤੀ ਦੇ ਨਿਯਮ

J'H'E

ा दता उद

143

144

学行65 年刊

ਅਤਿਰਿਕਤ ਅਭਿਆਸ

A1. ਇੱਕ ਵਸਤੂ ਦਾ ਗਤੀ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਦੂਰੀ ਸਮਾਂ ਸਾਰਣੀ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੈ।

ਸਮਾਂ (s)		ਦੂਰੀ (m)
0		0
1		1
2		8
3		27
4		64
5	市市	125
6	1.6.18	216
7	STREET	343

- (ੳ) ਪ੍ਰਵੇਗ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹੋ ਕਿ ਇਹ ਸਥਿਰ ਹੈ, ਵੱਧ ਰਿਹਾ ਹੈ, ਘੱਟ ਰਿਹਾ ਹੈ ਜਾਂ ਸਿਫ਼ਰ ਹੈ ?
- (ਅ) ਤੁਸੀਂ ਵਸਤੂ ਤੇ ਲੱਗਣ ਵਾਲੇ ਬਲ ਬਾਰੇ ਕੀ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹੋ ?
- A2. 1200kg ਪੁੰਜ ਵਾਲੀ ਕਾਰ ਨੂੰ ਇੱਕ ਸਮਤਲ ਸੜਕ ਤੇ ਦੋ ਵਿਅਕਤੀ ਸਮਾਨ ਵੇਗ ਨਾਲ ਧੱਕਾ ਦਿੰਦੇ ਹਨ। ਉਸੇ ਕਾਰ ਨੂੰ ਤਿੰਨ ਵਿਅਕਤੀਆਂ ਦੁਆਰਾ ਧੱਕਾ ਦੇ ਕੇ $0.2ms^{-1}$ ਦਾ ਪ੍ਰਵੇਗ ਪੈਦਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। (ਹਰੇਕ ਵਿਅਕਤੀ ਕਾਰ ਤੇ ਲੱਗਣ ਵਾਲਾ ਬਲ) ਹਰੇਕ ਵਿਅਕਤੀ ਕਾਰ ਨੂੰ ਕਿੰਨੇ ਬਲ ਨਾਲ ਧੱਕਾ ਲਗਾਉਂਦਾ ਹੈ ? (ਮੰਨ ਲਉ ਕਿ ਸਾਰੇ ਵਿਅਕਤੀ ਸਮਾਨ ਪੇਸ਼ੀ ਬਲ ਨਾਲ ਕਾਰ ਨੂੰ ਧੱਕਾ ਦਿੰਦੇ ਹਨ।)
- A3. 500g ਪੁੰਜ ਵਾਲਾ ਇੱਕ ਹਥੌੜਾ, 50ms⁻¹ ਦੇ ਵੇਗ ਨਾਲ ਗਤੀਮਾਨ ਹੋ ਕੇ, ਇੱਕ ਕਿੱਲ ਤੇ ਮਾਰਿਆ ਜਾਂਦਾ ਹੈ। ਕਿੱਲ ਹਥੌੜੇ ਨੂੰ ਬਹੁਤ ਥੋੜ੍ਹੇ ਸਮੇਂ 0.015 ਵਿੱਚ ਰੋਕ ਦਿੰਦਾ ਹੈ। ਕਿੱਲ ਦੁਆਰਾ ਹਥੌੜੇ ਤੇ ਲਗਾਇਆ ਗਿਆ ਬਲ ਪਤਾ ਕਰੋ।
- A4. ਇੱਕ 1200kg ਪੁੰਜ ਵਾਲੀ ਕਾਰ 90km/h ਦੇ ਵੇਗ ਨਾਲ ਇੱਕ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਚੱਲ ਰਹੀ ਹੈ। ਉਸਦਾ ਵੇਗ ਬਾਹਰੀ ਅਸੰਤੁਲਿਤ ਬਲ ਲੱਗਣ ਕਾਰਨ 4s ਵਿੱਚ ਘੱਟ ਕੇ 18km/h ਹੋ ਜਾਂਦਾ ਹੈ। ਪ੍ਰਵੇਗ ਅਤੇ ਸੰਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਪਤਾ ਕਰੋ। ਲੱਗਣ ਵਾਲੇ ਬਲ ਦੀ ਮਾਤਰਾ ਵੀ ਪਤਾ ਕਰੋ।
- A5. ਇੱਕ ਟਰੱਕ ਅਤੇ ਇੱਕ ਕਾਰ v ਵੇਗ ਨਾਲ ਗਤੀਸ਼ੀਲ ਹਨ। ਦੋਨੋਂ ਇੱਕ-ਦੂਜੇ ਨਾਲ ਆਹਮਣੇ-ਸਾਹਮਣੇ ਟਕਰਾਉਂਦੇ ਹਨ ਅਤੇ ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਦੋਨੋਂ ਰੁੱਕ ਜਾਂਦੇ ਹਨ। ਜੇਕਰ ਟੱਕਰ ਦਾ ਸਮਾਂ 1s ਹੈ, ਤਾਂ
 - (a) ਕਿਹੜੀ ਗੱਡੀ ਤੇ ਬਲ ਦਾ ਪ੍ਰਭਾਵ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਪਵੇਗਾ ? 🕫 🖡
 - (b) ਕਿਹੜੀ ਗੱਡੀ ਦੇ ਸੈਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਹੋਵੇਗਾ?

ਵਿਗਿਆਨ

- (c) ਕਿਸ ਗੱਡੀ ਦਾ ਪ੍ਰਵੇਗ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਹੋਵੇਗਾ ?
- (d) ਟਰੱਕ ਦੀ ਬਜਾਏ ਕਾਰ ਨੂੰ ਜ਼ਿਆਦਾ ਨੁਕਸਾਨ ਕਿਉਂ ਹੋਵੇਗਾ ?

ਅਧਿਆਇ 10

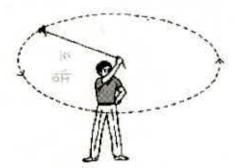
ਅਧਿਆਇ 8 ਅਤੇ 9 ਵਿੱਚ ਅਸੀਂ ਵਸਤੂਆਂ ਦੀ ਗਤੀ ਅਤੇ ਬਲ ਨੂੰ ਗਤੀ ਦੇ ਕਾਰਕ ਦੇ ਰੂਪ ਵਿੱਚ ਅਧਿਐਨ ਕੀਤਾ ਹੈ। ਅਸੀਂ ਸਿੱਖਿਆ ਹੈ ਕਿ ਕਿਸੇ ਵਸਤੂ ਦੀ ਚਾਲ ਜਾਂ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਨੂੰ ਬਦਲਣ ਲਈ ਬਲ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਅਸੀਂ ਹਮੇਸ਼ਾ ਵੇਖਿਆ ਹੈ ਕਿ ਜਦੋਂ ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਉੱਚਾਈ ਤੋਂ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਹ ਧਰਤੀ ਵੱਲ ਹੀ ਡਿੱਗਦੀ ਹੈ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਸਾਰੇ ਗ੍ਰਹਿ ਸੂਰਜ ਦੇ ਆਲ਼ੇ-ਦੁਆਲ਼ੇ ਚੱਕਰ ਲਗਾਉਂਦੇ ਹਨ। ਚੰਨ ਧਰਤੀ ਦੁਆਲੇ ਚੱਕਰ ਲਗਾਉਂਦਾ ਹੈ। ਇਹਨਾਂ ਸਾਰੀਆਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਵਸਤੂਆਂ, ਗ੍ਰਹਿਆਂ ਅਤੇ ਚੰਨ ਉੱਤੇ ਜ਼ਰੂਰ ਕੋਈ ਬਲ ਕਿਰਿਆ ਕਰਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਆਈਜ਼ੇਕ ਨਿਊਟਨ ਇਸ ਤੱਥ ਨੂੰ ਸਮਝ ਗਏ ਸਨ ਕਿ ਇਹਨਾਂ ਸਾਰੀਆਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਇੱਕੋ ਬਲ ਕਿਰਿਆ ਕਰਦਾ ਹੈ। ਇਸ ਬਲ ਨੂੰ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ (Gravitations Force) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ (Gravitation) ਅਤੇ ਸਰਵਵਿਆਪੀ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ (Universal Law of Gravitation) ਦੇ ਨਿਯਮ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ। ਅਸੀਂ ਧਰਤੀ ਦੇ ਗੁਰੂਤਾ ਆਕਰਸ਼ਣ ਬਲ ਦੇ ਪ੍ਰਭਾਵ ਹੇਠ ਵਸਤੂਆਂ ਦੀ ਗਤੀ ਬਾਰੇ ਵਿਚਾਰ ਕਰਾਂਗੇ। ਅਸੀਂ ਅਧਿਐਨ ਕਰਾਂਗੇ ਕਿ ਕਿਸੇ ਵਸਤੂ ਦਾ ਭਾਰ ਇੱਕ ਸਥਾਨ ਤੋਂ ਦੂਸਰੇ ਸਥਾਨ ਤੇ ਕਿਸ ਤਰ੍ਹਾਂ ਬਦਲਦਾ ਹੈ। ਅਸੀਂ ਵਸਤੂਆਂ ਦੇ ਦ੍ਵ ਉੱਤੇ ਤੈਰਨ ਦੀਆਂ ਸ਼ਰਤਾਂ (Condition of floatation) ਉੱਪਰ ਵੀ ਵਿਚਾਰ ਕਰਾਂਗੇ।

10.1 ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ (Gravitation)

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਚੰਨ ਧਰਤੀ ਦੁਆਲੇ ਚੱਕਰ ਲਗਾਉਂਦਾ ਹੈ। ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਜਦੋਂ ਉੱਪਰ ਵੱਲ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇੱਕ ਉੱਚਾਈ ਤੇ ਪਹੁੰਚਣ ਤੋਂ ਬਾਅਦ ਉਹ ਹੇਠਾਂ ਵੱਲ ਡਿੱਗਦੀ ਹੈ। ਇਹ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਜਦੋਂ ਨਿਊਟਨ ਇੱਕ

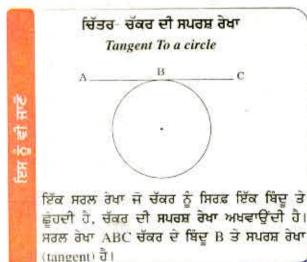
ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ (Gravitation)


ਦਰੱਖਤ ਥੱਲੇ ਬੈਠੇ ਸਨ ਤਾਂ ਇੱਕ ਸੇਬ ਉਹਨਾਂ ਉੱਤੇ ਡਿੱਗਿਆ। ਸੇਬ ਦੇ ਡਿੱਗਣ ਦੀ ਕਿਰਿਆ ਨੇ ਨਿਊਟਨ ਨੂੰ ਸੋਚਣ ਲਈ ਪ੍ਰੇਰਿਤ ਕੀਤਾ। ਉਸ ਨੇ ਸੋਚਿਆ ਜੇ ਧਰਤੀ ਸੇਬ ਨੂੰ ਆਪਣੇ ਵੱਲ ਆਕਰਸ਼ਿਤ ਕਰ ਸਕਦੀ ਹੈ ਤਾਂ ਕੀ ਉਹ ਚੰਨ ਨੂੰ ਆਕਰਸ਼ਿਤ ਨਹੀਂ ਕਰ ਸਕਦੀ ? ਕੀ ਦੋਨੋਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਇੱਕੋ ਕਿਸਮ ਦਾ ਬਲ ਲੱਗ ਰਿਹਾ ਹੈ? ਉਹਨਾਂ ਨੇ ਅੰਦਾਜਾ ਲਗਾਇਆ ਕਿ ਦੋਨੋਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਇੱਕੋ ਕਿਸਮ ਦਾ ਬਲ ਜ਼ਿੰਮੇਵਾਰ ਹੈ। ਉਹਨਾਂ ਨੇ ਤਰਕ ਦਿੱਤਾ ਕਿ ਆਪਣੇ ਗ੍ਰਹਿਮਾਰਗ ਦੇ ਹਰੇਕ ਬਿੰਦੂ ਤੇ ਚੰਨ ਕਿਸੇ ਸਰਲ ਰੇਖੀ ਪੱਥ ਤੇ ਗਤੀ ਨਹੀਂ ਕਰਦਾ ਬਲਕਿ ਧਰਤੀ ਵੱਲ ਡਿੱਗਦਾ ਰਹਿੰਦਾ ਹੈ। ਇਸ ਲਈ ਚੰਨ ਜ਼ਰੂਰ ਹੀ ਧਰਤੀ ਦੁਆਰਾ ਆਕਰਸ਼ਿਤ ਹੁੰਦਾ ਹੈ। ਪਰ ਅਸੀਂ ਅਸਲ ਵਿੱਚ ਚੰਨ ਨੂੰ ਧਰਤੀ ਵੱਲ ਡਿੱਗਦਾ ਹੋਇਆ ਨਹੀਂ ਦੇਖਦੇ।

ਆਉ ਅਸੀਂ ਚੰਨ ਦੀ ਗਤੀ ਨੂੰ ਸਮਝਣ ਲਈ ਕਿਰਿਆ 10.1 ਤੇ ਵਿਚਾਰ ਕਰੀਏ।

ਕਿਰਿਆ

ਇੱਕ ਧਾਗੇ ਦਾ ਟੁਕੜਾ ਲਓ। ਇਸਦੇ ਇੱਕ ਸਿਰੇ ਤੇ ਛੋਟਾ ਪੱਥਰ ਬੰਨੋ ਅਤੇ ਦੂਸਰੇ ਸਿਰੇ ਨੂੰ ਪਕੜ ਕੇ ਪੱਥਰ ਨੂੰ ਗੋਲਾਕਾਰ ਪੱਥ ਵਿੱਚ ਘੁਮਾਓ ਜਿਵੇਂ ਚਿੱਤਰ 10.1 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।


10.1

ਚਿੱਤਰ 10.1 : ਸਥਿਰ ਮਾਨ ਵੇਗ (Uniform Velocity) ਨਾਲ ਚੱਕਰਾਕਾਰ ਪੱਥ ਵਿੱਚ ਘੁੰਮਦਾ ਹੋਇਆ ਇੱਕ ਪੱਥਰ

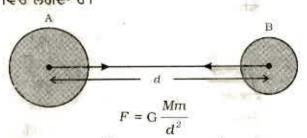
- ਪੱਥਰ ਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦੇਖੋ।
- ਹੁਣ ਧਾਗੇ ਨੂੰ ਛੱਡ ਦਿਓ।
- ਦੁਸ਼ਾਰਾ ਪੱਥਰ ਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਦੇਖੋ।

ਧਾਗੇ ਨੂੰ ਛੱਡਣ ਤੋਂ ਪਹਿਲਾਂ ਪੱਥਰ ਇੱਕ ਨਿਸ਼ਚਿਤ ਚਾਲ (Speed) ਨਾਲ ਚੱਕਰਾਕਾਰ ਪੱਥ ਵਿੱਚ ਗਤੀ ਕਰਦਾ ਹੈ ਅਤੇ ਹਰੇਕ ਬਿੰਦੂ ਤੇ ਉਸਦੀ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਬਦਲਦੀ ਹੈ। ਦਿਸ਼ਾ ਦੇ ਬਦਲਾਵ ਵਿੱਚ ਵੇਗ (Velocity) ਦਾ ਬਦਲਾਵ ਜਾਂ ਪ੍ਰਵੇਗ (acceleration) ਸ਼ਾਮਿਲ ਹੈ। ਜਿਹੜੇ ਬਲ ਦੇ ਕਾਰਨ ਪ੍ਰਵੇਗ ਿਦਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜੋ ਵਸਤੂ ਨੂੰ ਚੱਕਰਾਕਾਰ ਪੱਥ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਰੱਖਦਾ ਸਿਹ ਬਲ ਕੇਂਦਰ ਵੱਲ ਲੱਗਦਾ ਹੈ। ਇਸ ਬਲ ਨੂੰ ਕੇਂਦਰ-ਮੁਖੀ ਬਲ (Centripetal Force) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਬਲ ਦੀ ਅਣਹਿੰਦ ਵਿੱਚ ਪੱਥਰ ਸਰਲ ਰੇਖਾ ਤੇ ਮੁਕਤ ਰੂਪ ਵਿੱਚ ਗਤੀਸ਼ਾਲ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਸਰਲ ਰੇਖਾ ਚੱਕਰਾਕਾਰ ਪੱਥ ਦੀ ਸਪਰਸ਼ ਰੇਖਾ (Tangent) ਹੋਵੇਗੀ।

ਧਰਤੀ ਦੁਆਲੇ ਚੋਨ ਦੀ ਗਤੀ ਕੇਂਦਰਮੁਖੀ ਬੱਲ (Centripetal Force) ਦੇ ਕਾਰਨ ਹੈ। ਕੇਂਦਰਮੁਖੀ ਬਲ ਧਰਤੀ ਦੇ ਆਕਰਸ਼ਣ ਬਲ (gravitational force of attraction) ਦੇ ਕਾਰਨ ਮਿਲਦਾ ਹੈ। ਜੇਕਰ ਅਜਿਹਾ ਕੋਈ ਬਲ ਨਾ ਹੋਵੇ ਤਾਂ ਚੋਨ ਇੱਕ ਸਮਾਨ ਗਤੀ (uniform motion) ਨਾਲ ਸਰਲ ਰੇਖੀ ਪੱਥ (Linear motion) ਤੇ ਚੱਲਦਾ ਰਹੇਗਾ।

ਇਹ ਦੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਡਿੱਗਦਾ ਸੇਬ ਧਰਤੀ ਵੱਲ ਆਕਰਸ਼ਿਤ ਹੁੰਦਾ ਹੈ। ਕੀ ਸੇਬ ਵੀ ਧਰਤੀ ਨੂੰ ਆਕਰਸ਼ਿਤ ਕਰਦਾ ਹੈ ? ਜੇਕਰ ਅਜਿਹਾ ਹੈ ਤਾਂ ਅਸੀਂ ਧਰਤੀ ਨੂੰ ਸੇਬ ਵੱਲ ਗਤੀ ਕਰਦੇ ਨਹੀਂ ਦੇਖਦੇ। ਕਿਉਂ ?

ਗਤੀ ਦੇ ਤੀਸਰੇ ਨਿਯਮ ਅਨੁਸਾਰ ਸੇਬ ਵੀ ਧਰਤੀ ਨੂੰ


ਆਕਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਪਰੰਤੂ ਗਤੀ ਦੇ ਦੂਸਰੇ ਨਿਯਮ ਅਨੁਸਾਰ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਬਲ ਲਈ ਪ੍ਵੇਗ (acceleration), ਵਸਤੂ ਦੇ ਪੁੰਜ (mass) ਦੇ ਉਲਟ-ਅਨੁਪਾਤੀ (inversely proportional) ਹੁੰਦਾ ਹੈ। (ਸਮੀਕਰਣ 9.4)। ਧਰਤੀ ਦੇ ਪੁੰਜ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਸੇਬ ਦਾ ਪੁੰਜ ਬਹੁਤ ਥੋੜ੍ਹਾ ਹੈ। ਇਸ ਕਰਕੇ ਅਸੀਂ ਧਰਤੀ ਨੂੰ ਸੇਬ ਵੱਲ ਗਤੀ ਕਰਦੇ ਨਹੀਂ ਦੇਖਦੇ। ਇਸੇ ਤਰਕ ਦਾ ਵਿਸਥਾਰ ਇਹ ਜਾਣਨ ਲਈ ਕਰੀਏ ਕਿ ਧਰਤੀ ਚੰਨ ਵੱਲ ਗਤੀ ਕਿਉਂ ਨਹੀਂ ਕਰਦੀ।

ਆਪਣੇ ਸੂਰਜ ਮੰਡਲ ਵਿੱਚ, ਸਾਰੇ ਗ੍ਰਹਿ-ਸੂਰਜ ਦੇ ਦੁਆਲੇ ਪਰਿਕਰਮਾ ਕਰਦੇ ਹਨ। ਪਹਿਲਾਂ ਵਾਂਗ ਤਰਕ ਕਰਕੇ, ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਸੂਰਜ ਅਤੇ ਗ੍ਰਹਿ ਦੇ ਵਿਚਕਾਰ ਇੱਕ ਬਲ ਹੋਂਦ ਰੱਖਦਾ ਹੈ। ਉਪਰੋਕਤ ਤੱਥਾਂ ਦੇ ਆਧਾਰ ਤੇ ਨਿਊਟਨ ਨੇ ਸਿੱਟਾ ਨੱਢਿਆ ਕਿ ਨਾ ਸਿਰਫ ਚੈਨ ਅਤੇ ਸੇਬ ਨੂੰ ਧਰਤੀ ਆਕਰਸ਼ਿਤ ਕਰਦੀ ਹੈ ਪਰੰਤੂ ਬ੍ਰਹਿਮੰਡ ਵਿੱਚ ਸਾਰੀਆਂ ਹੀ ਵਸਤੂਆਂ ਇੱਕ ਦੂਸਰੇ ਨੂੰ ਆਕਰਸ਼ਿਤ ਕਰਦੀਆਂ ਹਨ। ਵਸਤੂਆਂ ਵਿੱਚ ਇਹ ਆਕਰਸ਼ਣ ਬਲ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਅਖਵਾਉਂਦਾ ਹੈ।

10.1.1 ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਦਾ ਸਰਵ-ਵਿਆਪੀ

장돼서 (Universal Law of Gravitation)

ਬ੍ਰਹਿਮੰਡ ਵਿੱਚ ਹਰੇਕ ਵਸਤੂ ਹਰ ਦੂਸਰੀ ਵਸਤੂ ਨੂੰ ਇੱਕ ਬਲ ਨਾਲ ਆਕਰਸ਼ਿਤ ਕਰਦੀ ਹੈ ਜਿਹੜਾ ਉਹਨਾਂ ਦੇ ਪੁੰਜਾਂ (masses) ਦੇ ਗੁਣਨਫਲ ਦੇ ਸਿੱਧਾ ਅਨੁਪਾਤੀ (proportional) ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਦੇ ਕੇਂਦਰਾਂ ਵਿਚਕਾਰ ਦੂਰੀ (distance) ਦੇ ਵਰਗ ਦੇ ਉਲਟ ਅਨੁਪਾਤੀ (inversely proportional) ਹੁੰਦਾ ਹੈ। ਇਹ ਬਲ ਸਦਾ ਹੀ ਉਹਨਾਂ ਦੋਵੇਂ ਵਸਤੂਆਂ ਦੇ ਕੇਂਦਰਾਂ ਨੂੰ ਮਿਲਾਉਣ ਵਾਲੀ ਰੇਖਾ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਲੱਗਦਾ ਹੈ।

ਚਿੱਤਰ 10.2 : ਦੋ ਇੱਕ ਸਮਾਨ ਵਸਤੂਆਂ ਵਿਚਕਾਰ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਉਹਨਾਂ ਦੇ ਕੇਂਦਰਾਂ ਨੂੰ ਮਿਲਾਉਣ ਵਾਲੀ ਰੇਖਾ|ਦਿਸ਼ਾ ਵਿੱਚ ਲੱਗਦਾ ਹੈ

ਵਿਗਿਆਨ

146

ਆਈਜ਼ਕ ਨਿਊਟਨ (1642 - 1727)

ਆਈਜ਼ਕ ਨਿਊਟਨ ਦਾ ਜਨਮ ਇੰਗਲੈਂਡ ਵਿੱਚ ਗ੍ਰੈੱਥਮ ਨੇੜੇ ਵੂਲਸਥੋਰਪੇ ਵਿੱਚ ਹੋਇਆ ਸੀ। ਵਿਗਿਆਨ ਦੇ ਇਤਿਹਾਸ ਵਿੱਚ ਉਹ ਅਕਸਰ ਸਾਰਿਆਂ ਤੋਂ ਜ਼ਿਆਦਾ ਮੌਲਿਕ ਅਤੇ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਸਿਧਾਂਤਵਾਦੀ ਦੇ ਰੂਪ ਵਿੱਚ ਜਾਣੇ ਜਾਂਦੇ ਹਨ। ਉਹ ਇੱਕ ਗਰੀਬ ਖੇਤੀ ਕਰਨ ਵਾਲੇ ਪਰਿਵਾਰ ਵਿੱਚ ਜੰਮੇ ਸਨ। ਪਰ ਇਹ ਖੇਤੀ ਦੇ ਕੰਮ ਵਿੱਚ

ਨਿਪੁੰਨ ਨਹੀਂ ਸਨ। 1661 ਵਿੱਚ ਪੜ੍ਹਾਈ ਕਰਨ ਲਈ ਉਹਨਾਂ ਨੂੰ ਕੈਂਮਬ੍ਰਿਜ਼ ਯੂਨੀਵਰਸਿਟੀ ਭੇਜਿਆ ਗਿਆ। ਸੰਨ 1661 ਵਿੱਚ ਕੈਂਮਬ੍ਰਿਜ਼ ਵਿੱਚ ਪਲੇਗ ਫੈਲ ਗਿਆ ਅਤੇ ਨਿਊਟਨ ਨੂੰ ਇੱਕ ਸਾਲ ਲਈ ਛੁੱਟੀ ਮਿਲ ਗਈ। ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਇਹੀ ਸਾਲ ਸੀ ਜਦੋਂ ਉਹਨਾਂ ਤੇ ਸੇਬ ਡਿੱਗਣ ਦੀ ਘਟਨਾ ਵਾਪਰੀ। ਇਸ ਘਟਨਾ ਨੇ ਨਿਊਟਨ ਨੂੰ, ਚੰਨ ਨੂੰ ਆਪਣੇ ਗ੍ਰਹਿਪੱਥ ਵਿੱਚ ਬੰਨ੍ਹ ਕੇ ਰੱਖਣ ਵਾਲੇ ਬਲ ਅਤੇ ਗੁਰੂਤਾ ਬਲ ਵਿਚਕਾਰ ਸੰਬੰਧ ਦੀ ਸੰਭਾਵਨਾ ਦੀ ਖੋਜ ਕਰਨ ਲਈ ਉਕਸਾਇਆ। ਇਸ ਤੋਂ ਉਹਨਾਂ ਨੇ ਸਰਵ ਵਿਆਪਕ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਦਾ ਨਿਯਮ ਲੱਭਿਆ। ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਹੈ ਕਿ ਇਹਨਾਂ ਤੋਂ ਪਹਿਲਾਂ ਵੀ ਬਹੁਤ ਸਾਰੇ ਮਹਾਨ ਵਿਗਿਆਨਕ ਗੁਰੂਤਾ ਬਾਰੇ ਜਾਣਦੇ ਸਨ ਪਰ ਇਸ ਦੇ ਮਹੱਤਵ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਉਹ ਅਸਮਰੱਥ ਰਹੇ ਸਨ।

ਨਿਊਟਨ ਨੇ ਗਤੀ ਦੇ ਪ੍ਰਸਿੱਧ ਨਿਯਮਾਂ ਨੂੰ ਸੂਤਰਬੱਧ ਕੀਤਾ। ਉਹਨਾਂ ਨੇ ਪ੍ਰਕਾਸ਼ ਅਤੇ ਰੰਗਾਂ ਦੇ ਸਿਧਾਂਤਾਂ ਤੇ ਕੰਮ ਕੀਤਾ। ਉਹਨਾਂ ਨੇ ਖਗੋਲੀ ਨਿਰੀਖਣ ਲਈ ਖਗੋਲੀ ਦੂਰਦਰਸ਼ਕੇ ਦੀ ਰਚਨਾ ਕੀਤੀ। ਨਿਊਟਨ ਇੱਕ ਮਹਾਨ ਗੋਣਿਤ ਵਿਗਿਆਨੀ ਵੀ ਸਨ। ਉਹਨਾਂ ਨੇ ਹਿਸਾਬ ਦੀ ਇੱਕ ਨਵੀਂ ਸ਼ਾਖਾ ਦੀ ਕਾਢ ਕੀਤੀ ਜਿਸਨੂੰ ਕੈਲਕੁਲਸ (Calculus) ਕਹਿੰਦੇ ਹਨ। ਇਸਦੀ ਵਰਤੋਂ ਉਹਨਾਂ ਨੇ ਇਹ ਸਿੱਧ ਕਰਨ ਲਈ ਕੀਤੀ ਕਿ ਕਿਸੇ ਇੱਕ ਸਮਾਨ ਘਣਤਾ ਵਾਲੇ ਗੋਲੇ ਦੇ ਬਾਹਰ ਪਈਆਂ ਵਸਤੂਆਂ ਲਈ ਗੋਲੇ ਦਾ ਵਿਹਾਰ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਹੁੰਦਾ ਹੈ ਜਿਵੇਂ ਉਸਦਾ ਸਾਰਾ ਪੁੰਜ ਉਸਦੇ ਕੇਂਦਰ ਵਿੱਚ ਸਥਿਤ ਹੋਵੇ। ਨਿਊਟਨ ਨੇ ਆਪਣੇ ਗਤੀ ਦੇ ਤਿੰਨ ਨਿਯਮਾਂ ਅਤੇ ਵਿਸ਼ਵ ਵਿਆਪਕ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਦੇ ਨਿਯਮ ਨਾਲ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਢਾਂਚੇ ਨੂੰ ਹੀ ਬਦਲ ਦਿੱਤਾ। ਸਤਾਰ੍ਹਵੀਂ ਸ਼ਤਾਬਦੀ ਦੀ ਪ੍ਰਮੁੱਖ ਵਿਗਿਆਨਿਕ ਕ੍ਰਾਂਤੀ ਦੇ ਰੂਪ ਵਿੱਚ ਨਿਊਟਨ ਨੇ ਕਾਪਰਨਿਕਸ ਕੈਪਲਰ, ਗੈਲੀਲਿਓ ਅਤੇ ਹੋਰਨਾਂ ਦੇ ਯੋਗਦਾਨ ਨੂੰ ਆਪਣੇ ਕਾਰਜਾਂ ਨਾਲ ਜੋੜ ਕੇ ਇੱਕ ਨਵੇਂ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਸੰਸ਼ਲੇਸ਼ਣ ਦੇ ਰੂਪ ਵਿੱਚ ਇਕੱਠਾ ਕੀਤਾ।

ਇਹ ਗੱਲ ਧਿਆਨ ਦੇਣ ਯੋਗ ਹੈ ਕਿ ਚਾਹੇ ਉਸ ਸਮੇਂ ਤੱਕ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਦੇ ਨਿਯਮ ਨੂੰ ਸਿੱਧ ਨਹੀਂ ਸੀ ਕੀਤਾ ਗਿਆ ਪਰ ਉਸਦੇ ਸਿੱਧ ਹੋਣ ਵਿੱਚ ਕੋਈ ਸ਼ੱਕ ਵੀ ਨਹੀਂ ਸੀ ਰਹਿ ਗਿਆ। ਇਸਦਾ ਕਾਰਨ ਸੀ ਕਿ ਨਿਊਟਨ ਦਾ ਸਿਧਾਂਤ ਠੋਸ ਵਿਗਿਆਨਕ ਤਰਕ ਤੇ ਆਧਾਰਿਤ ਸੀ ਅਤੇ ਗਣਿਤ ਨੇ ਵੀ ਉਸਦੀ ਹਾਂ ਵਿੱਚ ਹਾਂ ਮਿਲਾਈ ਸੀ। ਇਸ ਕਰਕੇ ਇਹ ਸਿਧਾਂਤ ਹੋਰ ਵੀ ਸਰਲ ਅਤੇ ਮਨੋਰੇਜਕ ਬਣ ਗਿਆ। ਇਹ ਖੂਬੀਆਂ ਅੱਜ ਕਿਸੇ ਚੰਗੇ ਵਿਗਿਆਨਕ ਸਿਧਾਂਤ ਲਈ ਅਤੀ ਜ਼ਰੂਰੀ ਸ਼ਰਤਾਂ ਮੰਨੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

ਨਿਊਟਨ ਨੇ ਉਲਟ-ਅਨੁਪਾਤੀ ਨਿਯਮ ਦਾ ਅੰਦਾਜ਼ਾ ਕਿਵੇਂ ਲਗਾਇਆ ? (How did Newton guess the inverse square rule?)

ਗ੍ਰਹਿਆਂ ਦੀ ਗਤੀ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਸਦਾ ਹੀ ਸਾਡੀ ਗੂੜ੍ਹੀ ਦਿਲਚਸਪੀ ਰਹੀ ਹੈ। ਸ਼ੋਲ੍ਹਵੀਂ ਸਦੀ ਤੱਕ ਅਨੇਕ ਖਗੋਲ ਵਿਗਿਆਨੀਆਂ ਦੁਆਰਾ ਗ੍ਰਹਿਆਂ ਦੀ ਗਤੀ ਦੇ ਸੰਬੰਧ ਵਿੱਚ ਬਹੁਤ ਸਾਰੇ ਆਂਕੜੇ ਇਕੱਠੇ ਕੀਤੇ ਗਏ ਸਨ। ਜੋਹਾਂਸ ਕੈਪਲਰ ਨੇ ਇਹਨਾਂ ਆਂਕੜਿਆਂ ਦੇ ਆਧਾਰ ਤੇ ਤਿੰਨ ਨਿਯਮ ਬਣਾਏ ਜਿਹੜੇ ਗ੍ਰਹਿਆਂ ਦੀ ਗਤੀ ਨੂੰ ਨਿਰਦੇਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਇਹਨਾਂ ਨੂੰ ਕੈਪਲਰ ਦੇ ਨਿਯਮ (Kepler's Law) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਨਿਯਮ ਇਸ ਪ੍ਰਕਾਰ ਹਨ—

- ਹਰੇਕ ਗ੍ਹਹਿ ਦਾ ਗ੍ਰਹਿਪੱਥ ਅੰਡਾਕਾਰ ਹੁੰਦਾ ਹੈ ਅਤੇ ਸੂਰਜ ਇਸਦੇ ਇੱਕ ਕੇਂਦਰ ਤੇ ਹੁੰਦਾ ਹੈ ਜਿਸ ਤਰ੍ਹਾਂ ਹੇਠਾਂ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਚਿੱਤਰ ਵਿੱਚ O ਦੁਆਰਾ ਸੂਰਜ ਦੀ ਸਥਿਤੀ ਨੂੰ ਦਿਖਾਇਆ ਗਿਆ ਹੈ।
- ਸੂਰਜ ਅਤੇ ਗ੍ਰਹਿ ਨੂੰ ਮਿਲਾਉਣ ਵਾਲੀ ਰੇਖਾ ਸਮਾਨ ਸਮੇਂ ਵਿੱਚ ਸਮਾਨ ਖੇਤਰਫਲ ਤੈਅ ਕਰਦੀ ਹੈ। ਜੇਕਰ A ਤੋਂ B ਤੱਕ ਗਤੀ ਕਰਨ ਵਿੱਚ ਲੱਗਾ ਸਮਾਂ C ਤੋਂ D ਤੱਕ ਗਤੀ ਕਰਨ ਵਿੱਚ ਲੱਗੇ ਸਮੇਂ ਦੇ ਬਰਾਬਰ ਹੋਵੇ ਤਾਂ ਖੇਤਰਫਲ OAB ਅਤੇ OCD ਬਰਾਬਰ ਹੋਣਗੇ।
- ਸੂਰਜ ਤੋਂ ਕਿਸੇ ਗ੍ਰਹਿ ਦੀ ਔਸਤ ਦੂਰੀ (r) ਦਾ ਘਣ ਉਸ ਗ੍ਰਹਿ ਦੇ ਗ੍ਰਹਿਪੱਥ ਪਰਕਰਮਾ ਕਾਲ T ਦੇ ਵਰਗ ਦੇ ਸਿੱਧਾ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ। ਅਰਥਾਤ r³/T² = ਸਥਿਰ

ਗਰਤਾ-ਆਕਰਸ਼ਣ

ਇਹ ਧਿਆਨ ਦੇਣ ਯੋਗ D ਹੈ ਕਿ ਗਹਿਆਂ ਦੀ ਗਤੀ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਲਈ ਕੈਪਲਰ ਕੋਈ ਸਿਧਾਂਤ ਪੇਸ਼ ਨਹੀਂ ਕਰ ਸਕੇ। ਨਿਊਟਨ ਨੇ ਦਿਖਾਇਆ ਕਿ ਗੁਹਿਆਂ ਦੀ ਗਤੀ

ਦਾ ਕਾਰਨ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਦਾ ਬਲ ਹੈ ਜੋ ਸੁਰਜ ਇਹਨਾਂ ਉੱਪਰ ਲਗਾਉਂਦਾ ਹੈ। ਨਿਊਟਨ ਨੇ ਕੈਪਲਰ ਦੇ ਤੀਸਰੇ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਗੁਰੁਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਦੀ ਗਣਨਾ ਕਰਨ ਲਈ ਕੀਤੀ। ਧਰਤੀ ਦਾ ਗੁਰੁਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਦਰੀ ਨਾਲ ਘੱਟਦਾ ਹੈ। ਇਹ ਸਰਲ ਤਰਕ ਇਸ ਪ੍ਰਕਾਰ ਹੈ। ਅਸੀਂ ਮੰਨ ਸਕਦੇ ਹਾਂ ਕਿ ਗੁਹਿਪੱਥ ਗੋਲਾਕਾਰ ਹਨ। ਜੇਕਰ ਗਹਿਪੱਥ ਵੇਗ v ਅਤੇ ਗਹਿਪੱਥ ਦਾ ਅਰਥ ਵਿਆਸ r ਹੈ ਤਾਂ ਪਰਿਕਰਮਾ ਕਰਦੇ ਹੋਏ ਗ੍ਰਹਿ ਤੇ ਲੱਗਣ ਵਾਲਾ ਬਲ. F ∝ υ²/r.

ਜੇਕਰ ਪਰਿਕਰਮਾ ਕਾਲ T ਹੈ ਤਾਂ $v = 2\pi r/T = \frac{2\pi r}{T}$ $u^2 \propto r^2/T^2$

ਇਸ ਸੰਬੰਧ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਵੀ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ

 $v^2 = rac{1}{r} imes rac{r^3}{r^2}$ ਕਿਉਂਕਿ r^3/T^2 ਕੈਪਲਰ ਦੇ ਤੀਸਰੇ ਨਿਯਮ ਅਨਸਾਰ ਸਥਿਰ ਅੰਕ ਹੈ

 $v^2 \propto \frac{1}{2}$ ਇਸ ਕਰਕੇ ਇਸ ਨੂੰ $F \propto \frac{v^2}{r}$ ਦੇ ਨਾਲ ਜੋੜਕੇ $\left|F \propto \frac{1}{r^2}\right|$ ਪ੍ਰਾਪਤ ਹੰਦਾ ਹੈ।

ਮੰਨ ਲਉ, M ਅਤੇ m ਪੁੰਜ ਵਾਲੀਆਂ ਦੋ ਵਸਤੂਆਂ ਇੱਕ ਦੂਸਰੇ ਤੋਂ d ਦੂਰੀ ਤੇ ਹਨ ਜਿਵੇਂ ਚਿੱਤਰ 10.2 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।ਮੰਨ ਲਉ ਦੋਨਾਂ ਵਸਤੂਆਂ ਵਿਚਕਾਰ ਆਕਰਸ਼ਣ ਬਲ F ਹੈ। ਗੁਰੁਤਾ-ਆਕਰਸ਼ਣ ਦੇ ਸਰਵ-ਵਿਆਪੀ ਨਿਯਮ ਅਨੁਸਾਰ ਦੋਨਾਂ ਵਸਤੂਆਂ ਵਿਚਕਾਰ ਲੱਗਣ ਵਾਲਾ ਬਲ ਉਹਨਾਂ ਦੇ ਪੰਜਾਂ ਦੇ ਗੁਣਨਫਲ (product of masses) ਦੇ ਸਿੱਧਾ ਅਨੁਪਾਤ ਹੈ। ਅਰਥਾਤ,

> $F \propto M \times m$ (10.1)

ਅਤੇ ਦੋਨਾਂ ਵਸਤੂਆਂ ਦੇ ਵਿਚਕਾਰ ਲੱਗਣ ਵਾਲਾ ਬਲ ਉਹਨਾਂ ਦੇ ਕੇਂਦਰਾਂ ਵਿਚਕਾਰਲੀ ਦੂਰੀ ਦੇ ਵਰਗ (Square of distance) ਦੇ ਉਲਟ-ਅਨਪਾਤੀ ਹੈ। ਅਰਥਾਤ,

$$\mathbf{F} \approx \frac{1}{d^2} \tag{10.2}$$

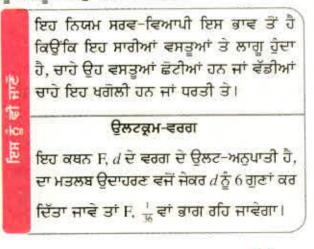
ਸਮੀਕਰਣ (10.1) ਅਤੇ (10.2) ਤੋਂ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ

$$F \propto \frac{M \times m}{d^2}$$
 (10.3)

$$\mathbf{H}^{\dagger}$$
 $\mathbf{F} = \frac{\mathbf{GM} \times m}{d^2}$ (10.4)

ਜਿੱਬੇ G ਅਨਪਾਤਕ ਸਥਿਰ ਅੰਕ ਹੈ ਅਤੇ ਸਰਵ-ਵਿਆਪੀ ਗੁਰੁਤੱਵੀ ਸਥਿਰਅੰਕ (Universal gravitational constant) ਅਖਵਾਉਂਦਾ ਹੈ।

ਸਮੀਕਰਣ (10.4) ਨੂੰ ਤਿਰਛੀ ਗੁਣਾ ਕਰਕੇ


ਜਾਂ

$$F \times d^2 = G M \times m$$
$$G = \frac{Fd^2}{M \times m}$$

ਸਮੀਕਰਣ (10.5) ਵਿੱਚ ਬਲ, ਦੂਰੀ ਅਤੇ ਪੁੰਜ ਦੀਆਂ ਇਕਾਈਆਂ ਵਰਤ ਕੇ ਅਸੀਂ G ਦੀ S.I. ਇਕਾਈ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ ਜੋ ਕਿ Nm² kg⁻² ਹੈ।

ਹੈਨਰੀ ਕੈਵੇਂਡਿਸ (1731-1810) ਨੇ ਇੱਕ ਸੰਵੇਦਨਸ਼ੀਲ ਤੁਲਾ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਰੁਤਾ-ਆਕਰਸ਼ਣ ਸਥਿਰ ਅੰਕ ਦਾ ਮਾਨ ਗਿਆਤ ਕੀਤਾ। G ਦਾ ਮੰਨਣਯੋਗ ਮਾਨ 6.673 $\times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2} \text{ J}$

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਦੋ ਵਸਤੂਆਂ ਵਿਚਕਾਰ ਇੱਕ ਆਕਰਸ਼ਣ ਬਲ ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ। ਤੁਸੀਂ ਆਪਣੇ ਕੋਲ ਬੈਠੇ ਕਿਸੀ ਵੀ ਦੋਸਤ ਅਤੇ ਆਪਣੇ ਵਿਚਕਾਰ ਲੱਗਣ ਵਾਲੇ ਇਸ ਬਲ ਦੀ ਗਣਨਾ ਕਰੋ। ਸਿੱਟਾ ਕੱਢੋ ਕਿ ਤੁਸੀਂ ਇਸ ਬਲ ਨੂੰ ਮਹਿਸਸ ਕਿਉਂ ਨਹੀਂ ਕਰ ਸਕਦੇ।

148

ź

ਵਿਗਿਆਨ

(10.5)

ਉਦਾਹਰਣ 10.1 : ਧਰਤੀ ਦਾ ਪੁੰਜ 6 × 10²⁴kg ਅਤੇ ਚੰਨ ਦਾ ਪੁੰਜ 7.4 × 10²² kg ਹੈ। ਜੇਕਰ ਧਰਤੀ ਅਤੇ ਚੰਨ ਦੇ ਵਿਚਕਾਰ ਦੂਰੀ 3.8 × 10⁵ km ਹੋਵੇ ਤਾਂ ਧਰਤੀ ਦੁਆਰਾ ਚੰਨ ਤੇ ਲੱਗਿਆ ਬਲ ਗਿਆਤ ਕਰੋ। G = 6.7 × 10⁻¹¹ Nm²kg⁻²

ਹੱਲ—

ਧਰਤੀ ਦਾ ਪੁੰਜ M = 6×10^{24} kg ਚੰਨ ਦਾ ਪੁੰਜ m = 7.4×10^{22} kg ਧਰਤੀ ਅਤੇ ਚੰਨ ਵਿਚਕਾਰ ਦੂਰੀ d= 3.84×10^5 km = $3.84 \times 10^5 \times 1000$ m = 3.84×10^8 m G = 6.7×10^{-11} Nm²kg⁻² ਸਮੀਕਰਣ (10.4) ਤੋਂ ਧਰਤੀ ਦੁਆਰਾ ਚੰਨ ਤੇ

ਲੱਗਿਆ ਬਲ <u>GM × m</u>

$$= \frac{6.7 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2} \times 6 \times 10^{24} \text{ kg} \times 7.4 \times 10^{22} \text{ kg}}{(3.84 \times 10^8 \text{ m})^2}$$

= 2.01 × 10²⁰N ਅਰਥਾਤ ਧਰਤੀ ਦੁਆਰਾ ਚੰਨ ਤੇ ਲੱਗਿਆ ਬਲ 2.01 × 10²⁰N ਹੈ।

1. ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਦਾ ਸਰਵ-ਵਿਆਪੀ ਨਿਯਮ ਲਿਖੋ।

 ਧਰਤੀ ਅਤੇ ਉਸਦੀ ਸਤਹ ਤੇ ਰੱਖੀ ਹੋਈ ਵਸਤੂ ਦੇ ਵਿਚਕਾਰ ਲੱਗਣ ਵਾਲੇ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਦੇ ਪਰਿਮਾਣ ਦਾ ਸ਼ੁਤਰ ਲਿਖੋ।

10.1.2. ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਦੇ ਸਰਵ-ਵਿਆਪੀ ਨਿਯਮ ਦਾ ਮਹੱਤਵ (Importance of the Universal Law of Gravitation)

ਸਰਵ-ਵਿਆਪੀ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਨਿਯਮ ਅਜਿਹੇ ਅਨੇਕ ਤੱਥਾਂ ਦੀ ਸਫ਼ਲਤਾਪੂਰਵਕ ਵਿਆਖਿਆ ਕਰਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਦਾ ਆਪਸ ਵਿੱਚ ਕੋਈ ਸੰਬੰਧ ਨਹੀਂ ਮੰਨਿਆ ਜਾਂਦਾ ਸੀ।

ਗਰਤਾ-ਆਕਰਸ਼ਣ

- (i) ਬਲ ਜੋ ਸਾਨੂੰ ਧਰਤੀ ਨਾਲ ਬੰਨ੍ਹ ਕੇ ਰੱਖਦਾ ਹੈ।
- (ii) ਚੰਨ ਦੀ ਧਰਤੀ ਦੁਆਲੇ ਗਤੀ।
- (iii) ਗ੍ਰਹਿਆਂ ਦੀ ਸੂਰਜ ਦੁਆਲੇ ਗਤੀ।
- (iv) ਚੈਨ ਅਤੇ ਸੂਰਜ ਦੇ ਕਾਰਨ ਜੁਆਰ-ਭਾਟਾ।

10.2. ਸੁਤੰਤਰ ਡਿੱਗਣਾ (Free Fall)

ਆਓ ਅਸੀਂ ਸੁਤੰਤਰ ਡਿੱਗਣਾ ਦੇ ਅਰਥ ਨੂੰ ਸਮਝਣ ਲਈ ਇਹ ਕਿਰਿਆ ਕਰੀਏ।

ਕਿਰਿਆ ______10.2

ਇੱਕ ਪੱਥਰ ਲਓ।

ਉਸਨੂੰ ਉੱਪਰ ਵੱਲ ਸ਼ੁੱਟੇ।

ਉਹ ਇੱਕ ਨਿਸ਼ਚਿਤ ਉੱਚਾਈ ਤੱਕ ਜਾਂਦਾ ਹੈ ਅਤੇ ਫਿਰ ਹੇਠਾਂ ਵੱਲ ਡਿੱਗਣਾ ਸ਼ੁਰੂ ਕਰਦਾ ਹੈ।

ਅਸੀਂ ਜਾਣ ਚੁੱਕੇ ਹਾਂ ਕਿ ਧਰਤੀ ਵਸਤੂਆਂ ਨੂੰ ਆਪਣੇ ਵੱਲ ਆਕਰਸ਼ਿਤ ਕਰਦੀ ਹੈ। ਇਹ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਕਾਰਨ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਕੋਈ ਵਸਤੂ ਕੇਵਲ ਇਸੀ ਬਲ ਦੇ ਕਾਰਨ ਧਰਤੀ ਵੱਲ ਡਿੱਗਦੀ ਹੈ ਤਾਂ ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ ਵਸਤੂ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਡਿੱਗ ਰਹੀ ਹੈ। ਕੀ ਡਿੱਗਦੀ ਹੋਈ ਵਸਤੂ ਦੇ ਵੇਗ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਆਉਂਦਾ ਹੈ? ਡਿੱਗਦੀ ਹੋਈ ਵਸਤੂ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਨਹੀਂ ਹੁੰਦਾ ਪਰੰਤੂ ਧਰਤੀ ਦੇ ਆਕਰਸ਼ਣ ਦੇ ਕਾਰਨ ਵੇਗ ਦੇ ਮਾਨ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ। ਵੇਗ (Velocity) ਵਿੱਚ ਪਰਿਵਰਤਨ ਪ੍ਰਵੇਗ (Acceleration) ਪੈਦਾ ਕਰਦਾ ਹੈ। ਇਹ ਪ੍ਰਵੇਗ ਧਰਤੀ ਦੇ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਦੇ ਕਾਰਨ ਹੁੰਦਾ ਹੈ। ਇਸ ਨੂੰ ਧਰਤੀ ਦੇ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਦੇ ਕਾਰਨ ਪ੍ਰਵੇਗ ਜਾਂ ਗੁਰੂਤਾ-ਪ੍ਰਵੇਗ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨੂੰ g ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। g ਦੀ ਇਕਾਈ ਉਹੀ ਹੈ ਜੋ ਪ੍ਰਵੇਗ ਦੀ ਹੈ ਅਰਥਾਤ ms⁻²।

ਗਤੀ ਦੇ ਦੂਸਰੇ ਨਿਯਮ ਤੋਂ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪੁੰਜ (mass) ਅਤੇ ਪ੍ਰਵੇਗ (acceleration) ਦਾ ਗੁਣਨਫਲ ਬਲ (force) ਹੈ। ਮੰਨ ਲਉ 10.2 ਕਿਰਿਆ ਵਿੱਚ ਪੱਥਰ ਦਾ ਪੁੰਜ *m* ਹੈ। ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਜਾਣਦੇ ਹਾਂ ਕਿ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਦੇ ਕਾਰਨ ਡਿੱਗਦੀ ਹੋਈ ਵਸਤੂ ਵਿੱਚ ਪ੍ਰਵੇਗ ਪੈਦਾ ਹੁੰਦਾ ਹੈ ਜਿਸਨੂੰ *g* ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ (F) ਦਾ ਮਾਨ,

149

m

ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਪ੍ਰਵੇਗ (g) ਅਤੇ ਪੁੰਜ (m) ਦੇ ਗੁਣਨਫਲ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਅਰਥਾਤ,

$$F = mg$$
 (10.6)

ਸਮੀਕਰਣ (10.4) ਅਤੇ (10.6) ਤੋਂ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ

$$mg = \frac{GM \times m}{d^2}$$

$$\mathbf{H}^{\dagger} \qquad g = \frac{GM}{d^2} \qquad 10.7$$

ਜਿੱਥੇ M ਧਰਤੀ ਦਾ ਪੁੰਜ ਹੈ ਅਤੇ d ਧਰਤੀ ਅਤੇ ਵਸਤੂ ਦੇ ਵਿਚਕਾਰ ਦੂਰੀ ਹੈ। ਮੰਨ ਲਉ ਇੱਕ ਵਸਤੂ ਧਰਤੀ ਉੱਪਰ ਜਾਂ ਇਸਦੀ ਸਤ੍ਹਾ ਦੇ ਨੇੜੇ ਹੈ। ਸਮੀਕਰਣ (10.7) ਵਿੱਚ d ਧਰਤੀ ਦੇ ਅਰਧ ਵਿਆਸ R ਦੇ ਬਰਾਬਰ ਹੋਵੇਗੀ। ਇਸ ਲਈ ਧਰਤੀ ਉੱਤੇ ਜਾਂ ਇਸਦੀ ਸਤ੍ਹਾ ਦੇ ਨੇੜੇ ਪਈਆਂ ਵਸਤੂਆਂ ਲਈ

$$mg = \frac{\mathrm{GM} \times m}{\mathrm{R}^2}$$
(10.8)
$$g = \frac{\mathrm{GM}}{\mathrm{R}^2}$$
(10.9)

ਧਰਤੀ ਇੱਕ ਸੰਪੂਰਨ ਗੋਲਾ ਨਹੀਂ ਹੈ। ਜਿਸ ਤਰ੍ਹਾਂ ਧਰਤੀ ਦਾ ਅਰਧ ਵਿਆਸ ਧਰੁਵਾਂ (Poles) ਤੋਂ ਭੂ-ਮੱਧ ਰੇਖਾ (Equator) ਵੱਲ ਜਾਣ ਤੇ ਵੱਧਦਾ ਹੈ, g ਦਾ ਮਾਨ ਧਰੁਵਾਂ ਤੇ ਭੂ-ਮੱਧ ਰੇਖਾ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵੱਧ ਹੈ। ਜ਼ਿਆਦਾਤਰ ਗਣਨਾਵਾਂ ਵਿੱਚ ਅਸੀਂ ਧਰਤੀ ਉੱਪਰ ਜਾਂ ਇਸਦੀ ਸਤ੍ਹਾ ਦੇ ਨੇੜੇ g ਦਾ ਮਾਨ ਸਥਿਰ ਮੰਨ ਸਕਦੇ ਹਾਂ। ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਵਸਤੂਆਂ ਲਈ ਜੋ ਧਰਤੀ ਤੋਂ ਦੂਰ ਹਨ ਧਰਤੀ ਦਾ ਗੁਰੂਤਾ ਪਵੇਗ ਸਮੀਕਰਨ (10.7) ਨਾਲ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ।

10.2.1. ਗੁਰੂਤਾ-ਪ੍ਰਵੇਗ g ਦੇ ਮਾਨ ਦੀ ਗਣਨਾ

(To Calculate the Value of g)

ਗੁਰੂਤਾ-ਪ੍ਰਵੇਗ g ਦੇ ਮਾਨ ਦੀ ਗਣਨਾ ਕਰਨ ਲਈ ਸਮੀਕਰਨ 10.9 ਵਿੱਚ G. M ਅਤੇ R ਦਾ ਮੁੱਲ ਭਰੋ। ਜਿਵੇਂ G = 6.67 × 10⁻¹¹ Nm²kg⁻² ਸਰਵ-ਵਿਆਪੀ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਅੰਕ, M = 6 × 10²⁴ kg ਧਰਤੀ ਦਾ ਪੁੰਜ ਅਤੇ R = 6.4 × 10⁶m ਧਰਤੀ ਦਾ ਅਰਧ ਵਿਆਸ

$$g = \frac{GM}{R^2}$$

150

 $= \frac{6.7 \times 10^{-11} \,\mathrm{Nm^2 \,k \,g^{-2}} \times 6 \times 10^{24} \,\mathrm{k \,g}}{(6.4 \times 10^6 \,\mathrm{m})^2}$ $= 9.8 \,\mathrm{m/s^2}$

ਇਸ ਤਰ੍ਹਾਂ ਧਰਤੀ ਤੇ ਗੁਰੂਤਾ–ਪ੍ਵੇਗ $g = 9.8 \, {
m ms}^{-2}$

10.2.2. ਧਰਤੀ ਦੇ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਦੇ ਪ੍ਰਭਾਵ ਵਿੱਚ ਵਸਤੂਆਂ ਦੀ ਗਤੀ (Motion of Object under the Influence of Gravitational Force of The Earth)

ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਖੋਖਲੀ ਜਾਂ ਠੋਸ, ਵੱਡੀ ਜਾਂ ਛੋਟੀ ਕਿਸੇ ਉੱਚਾਈ ਤੋਂ ਸਮਾਨ ਦਰ ਨਾਲ ਡਿੱਗਣਗੀਆਂ, ਸਮਝਣ ਲਈ ਆਓ ਇਹ ਕਿਰਿਆ ਕਰੀਏ—

ਕਿਰਿਆ _____10.3

ਕਾਗਜ਼ ਦੀ ਇੱਕ ਸ਼ੀਟ ਅਤੇ ਪੱਥਰ ਲਉ।

ਦੋਨਾਂ ਨੂੰ ਕਿਸੇ ਇਮਾਰਤ ਦੀ ਪਹਿਲੀ ਮੰਜ਼ਿਲ ਤੋਂ ਸੁੱਟੇ। ਦੇਖੋ, ਕੀ ਦੋਨੋਂ ਧਰਤੀ ਤੇ ਇੱਕੋ ਸਮੇਂ ਤੋਂ ਪਹੁੰਚਦੇ ਹਨ ? ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ ਪੱਥਰ ਨਾਲੋਂ ਥੋੜ੍ਹੀ ਦੇਰ ਬਾਅਦ ਪਹੁੰਚਦੀ ਹੈ। ਇਸਦਾ ਕਾਰਨ ਹਵਾ ਦਾ ਵਿਰੋਧ ਹੈ। ਡਿੱਗਦੀ ਹੋਈ ਗਤੀਸ਼ੀਲ ਵਸਤੂਆਂ ਤੇ ਰਗੜ ਬਲ ਦੇ ਕਾਰਨ ਹਵਾ ਪ੍ਤੀਰੋਧ ਲਗਾਉਂਦੀ ਹੈ। ਕਾਗਜ਼ ਤੇ ਲੱਗਣ ਵਾਲਾ ਹਵਾ ਦਾ ਵਿਰੋਧ ਪੱਥਰ ਤੇ ਲੱਗਣ ਵਾਲੇ ਵਿਰੋਧ ਨਾਲੋਂ ਵੱਧ ਹੈ। ਇਸ ਕਿਰਿਆ ਨੂੰ ਅਸੀਂ ਕੱਚ ਦੇ ਬੈੱਲ ਜਾਰ ਵਿੱਚ ਕਰਦੇ ਹਾਂ ਜਿਸ ਵਿੱਚੋਂ ਸਾਰੀ ਹਵਾ ਕੱਢ ਦਿੱਤੀ ਗਈ ਹੋਵੇ ਤਾਂ ਕਾਗਜ਼ ਅਤੇ ਪੱਥਰ ਇੱਕੋ ਦਰ ਨਾਲ ਡਿੱਗਣਗੇ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਸੁਤੰਤਰ ਰੂਪ (Free Fall) ਵਿੱਚ ਡਿੱਗਦੀ ਹੋਈ ਵਸਤੂ ਪ੍ਵੇਗ (acceleration) ਦਾ ਅਨੁਭਵ ਕਰਦੀ ਹੈ। ਸਮੀਕਰਣ (10.9) ਤੋਂ, ਵਸਤੂ ਦੁਆਰਾ ਅਨੁਭਵ ਕੀਤਾ ਜਾਣ ਵਾਲਾ ਇਹ ਪ੍ਰਵੇਗ (acceleration) ਉਸਦੇ ਪੁੰਜ (mass) ਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ। ਇਸਦਾ ਭਾਵ ਹੋਇਆ ਕਿ ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਬੋਖਲੀ ਜਾਂ ਠੋਸ, ਵੱਡੀ ਜਾਂ ਛੋਟੀ ਸਮਾਨ ਦਰ ਨਾਲ ਹੇਠਾਂ ਵੱਲ ਡਿੱਗਣੀਆਂ ਚਾਹੀਦੀਆਂ ਹਨ। ਇੱਕ ਕਹਾਣੀ ਅਨੁਸਾਰ ਇਸ ਵਿਚਾਰ ਨੂੰ ਸਿੱਧ ਕਰਨ ਲਈ ਗੈਲੀਲਿਓ ਨੇ ਇਟਲੀ ਵਿੱਚ ਪੀਸਾ ਦੀ ਝੁਕੀ ਹੋਈ ਮੀਨਾਰ ਤੋਂ ਵੱਖ-ਵੱਖ ਵਸਤੁਆਂ ਨੂੰ ਸੁੱਟਿਆ।

ਕਿਉਂਕਿ ਧਰਤੀ ਨੇੜੇ g ਦਾ ਮੁੱਲ ਸਥਿਰ ਹੈ, ਇੱਕ

ਵਿਗਿਆਨ

ਸਮਾਨ ਪ੍ਰਵੇਗ ਨਾਲ ਗਤੀ ਕਰਦੀਆਂ ਵਸਤੂਆਂ ਦੀਆਂ ਸਾਗੋਆਂ ਗਤੀ ਸਮੀਕਰਨਾਂ ਵਿੱਚ a ਦੇ ਸਥਾਨ ਤੇ g ਭਰਨ ਨਾਲ ਮੰਨਣਯੋਗ ਹੋਣਗੀਆਂ। (ਦੇਖੋ ਭਾਗ 8.5) ਇਹ ਸਮੀਕਰਨਾਂ ਹਨ—

$$\mathbf{v} = u + at \tag{10.10}$$

$$s = ut + \frac{1}{2}at^2$$
 (10.11)

$$u^2 = u^2 + 2as$$
 (10.12)

ਜਿੱਥੇ ॥ ਅਤੇ ৩ ਮੁੱਢਲਾ ਅਤੇ ਅੰਤਮ ਵੇਗ ਹੈ, s ਵਸਤੂ ਦੁਆਰਾ tਸਮੇਂ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਹੈ।

ਇਹਨਾਂ ਸਮੀਕਰਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਜੇਕਰ ਪ੍ਵੇਗ (a) ਵੇਗ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੋਵੇ ਅਰਥਾਤ ਗਤੀ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਤਾਂ ਇਸਨੂੰ ਧਨਾਤਮਕ ਲਵਾਂਗੇ ਅਤੇ ਗਤੀ ਦੇ ਦਿਸ਼ਾ ਦੇ ਉਲਟ ਹੋਵੇ ਤਾਂ ਇਸਨੂੰ ਰਿਣਾਤਮਕ ਲਵਾਂਗੇ।

- ਉਦਾਹਰਣ 10.2. ਕਿਸੇ ਉੱਭਰੀ ਹੋਈ ਚੱਟਾਨ (ਕਿੰਗਰੇ) ਤੋਂ ਇੱਕ ਕਾਰ 0.5 s ਵਿੱਚ ਧਰਤੀ ਤੇ ਡਿੱਗਦੀ ਹੈ। ਮੰਨ ਲਉ g = 10m/s² (ਗਣਨਾ ਨੂੰ ਸੋਖਾ ਕਰਨ ਲਈ)।
 - (i) ਧਰਤੀ ਨਾਲ ਟਕਰਾਉਂਦੇ ਹੋਏ ਕਾਰ ਦੀ ਚਾਲ ਕੀ ਹੋਵੇਗੀ ?
 - (ii) 0.5s ਦੇ ਦੌਰਾਨ ਇਸਦੀ ਔਸਤ ਚਾਲ ਕੀ ਹੋਵੇਗੀ ?
 - (iii) ਧਰਤੀ ਤੋਂ ਕਿੰਗਰੇ ਦੀ ਕਿੰਨੀ ਉਚਾਈ ਹੈ ?

ਹੱਲ— ਸਮਾਂ
$$t = \frac{1}{2}$$
s = 0.5s
ਮੁੱਢਲਾ ਵੇਗ $u = 0$ m/s
ਗੁਰੂਤਾ ਪ੍ਰਵੇਗ $g = 10$ m/s²
ਕਾਰ ਦਾ ਪ੍ਰਵੇਗ $a = +10$ m/s² (ਥੱਲੇ ਵੱਲ
(*i*) ਚਾਲ $v = u + at$
 $= 0 + 10$ m/s² × 0.5s
 $= 5$ m/s
(*ii*) ਔਸਤ ਚਾਲ $= \frac{v+u}{2}$
(0 m/s + 5 m/s)

2

- 2.5m/s

(*iii*)ਤੈਅ ਕੀਤੀ ਦੂਰੀ
$$s = ut + \frac{1}{2}at^2$$

= $0 \times 0.5s + \frac{1}{2} \times 10m/s^2 (0.5s)^2$
= $\frac{1}{2} \times 10m/s^2 \times 0.25s^2$
= $1.25m$


ਇਸ ਲਈ,

- (i) ਧਰਤੀ ਨਾਲ ਟਕਰਾਉਂਦੇ ਸਮੇਂ ਕਾਰ ਦੀ ਚਾਲ = 5m/s
- (ii) 0.5s ਦੌਰਾਨ ਇਸਦੀ ਔਸਤ ਚਾਲ = 2.5m/s
- (iii) ਧਰਤੀ ਤੋਂ ਕਿੰਗਰੇ (ਚੱਟਾਨ) ਦੀ ਉੱਚਾਈ = 1.25m

ਉਦਾਹਰਣ 10.3. ਇੱਕ ਵਸਤੂ ਨੂੰ ਸਿੱਧਾ ਉੱਪਰ ਵੱਲ ਸੱਟਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਹ 10m ਦੀ ਉੱਚਾਈ ਤੱਕ ਜਾਂਦੀ ਹੈ। ਪਤਾ ਕਰੋ (i) ਵੇਗ, ਜਿਸ ਨਾਲ ਵਸਤ ਨੂੰ ਉੱਪਰ ਵੱਲ ਸੁੱਟਿਆ ਗਿਆ। (ii) ਵਸਤੂ ਦੁਆਰਾ ਉੱਚਤਮ ਬਿੰਦੂ ਤੱਕ ਪਹੁੰਚਣ ਲਈ ਲੱਗਿਆ ਸਮਾਂ। ਹੱਲ—ਤੈਅ ਕੀਤੀ ਦੂਰੀ s = 10m ਅੰਤਿਮ ਵੇਗ v = 0 m/s ਗੁਰੁਤਾ ਪਵੇਗ g = 9.8m/s² ਵਸਤੂ ਦਾ ਪ੍ਰਵੇਗ a= -9.8m/s² (ਸਿੱਧਾ ਉੱਪਰ ਵੱਲ) $v^2 = u^2 + 2aS$ (i) $0 = u^2 + 2 \times -9.8 \text{ m/s}^2 \times 10 \text{m}$ $-u^2 = -2 \times 9.8 \times 10 \text{ m}^2/\text{s}^2$ $u = \sqrt{196} \text{ ms}^{-1}$ $u = 14 \text{ ms}^{-1}$ (ii)v = u + at0 = 14 m/s - 9.8 m/s² × t $t = \frac{14 \text{ m/s}}{9.8 \text{ m/s}^2}$ t = 1.43s(i) ਇਸ ਲਈ ਮੁੱਢਲਾ ਵੇਗ, u = 14ms⁻¹ ਅਤੇ (*ii*) ਲੱਗਾ ਸਮਾਂ, *t* = 1.43s

151

ਗਰੁਤਾ-ਆਕਰਸ਼ਣ

10.3 ਪੁੰਜ (Mass)

ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਜਾਣ ਚੁੱਕੇ ਹਾਂ ਕਿ ਵਸਤੂ ਦਾ ਪੁੰਜ (mass) ਉਸਦੀ ਜੜ੍ਹਤਾ (inertia) ਦਾ ਮਾਪ ਹੁੰਦਾ ਹੈ।(ਭਾਗ 9.3)।ਅਸੀਂ ਇਹ ਵੀ ਸਿੱਖਿਆ ਹੈ ਕਿ ਜੇਕਰ ਵਸਤੂ ਦਾ ਪੁੰਜ ਵੱਧ ਹੋਵੇ ਤਾਂ ਉਸਦੀ ਜੜ੍ਹਤਾ ਵੀ ਵੱਧ ਹੋਵੇਗੀ। ਕਿਸੇ ਵਸਤੂ ਦਾ ਪੁੰਜ ਉਨਾ ਹੀ ਰਹਿੰਦਾ ਹੈ ਚਾਹੇ ਉਹ ਧਰਤੀ ਤੇ ਹੋਵੇ, ਚਾਹੇ ਚੰਨ ਤੇ ਜਾਂ ਫਿਰ ਬਾਹਰੀ ਪੁਲਾੜ ਵਿੱਚ। ਇਸ ਲਈ ਵਸਤੂ ਦਾ ਪੁੰਜ ਸਥਿਰ (mass constant) ਰਹਿੰਦਾ ਹੈ, ਇੱਕ ਸਥਾਨ ਤੋਂ ਦੂਸਰੇ ਸਥਾਨ ਤੇ ਬਦਲਦਾ ਨਹੀਂ।

10.4 ਭਾਰ (Weight)

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਧਰਤੀ ਹਰੇਕ ਵਸਤੂ ਨੂੰ ਇੱਕ ਨਿਸ਼ਚਿਤ ਬਲ ਨਾਲ ਆਕਰਸ਼ਿਤ ਕਰਦੀ ਹੈ, ਜੋ ਵਸਤੂ ਦੇ ਪੁੰਜ (m) ਅਤੇ ਗੁਰੂਤਾ-ਪ੍ਰਵੇਗ (g) ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

ਕਿਸੇ ਵਸਤੂ ਦਾ ਭਾਰ ਉਹ ਬਲ ਹੈ ਜਿਸ ਨਾਲ ਵਸਤੂ ਧਰਤੀ ਵੱਲ ਆਕਰਸ਼ਿਤ ਹੁੰਦੀ ਹੈ।

 $\mathbf{F} = m \times a \tag{10.13}$

ਅਰਥਾਤ $F = m \times g$ (10.14)

ਵਸਤੂ ਤੇ ਧਰਤੀ ਦਾ ਆਕਰਸ਼ਣ ਬਲ ਵਸਤੂ ਦਾ ਭਾਰ ਹੈ। ਇਸਨੂੰ W ਨਾਲ ਨਿਰਦੇਸ਼ਿਤ ਕਰਦੇ ਹਨ। ਇਸਨੂੰ ਸਮੀਕਰਨ (10.14) ਵਿੱਚ ਭਰਨ ਤੇ—

$$\mathbf{W} = \boldsymbol{m} \times \boldsymbol{g} \tag{10.15}$$

ਕਿਉਂਕਿ ਵਸਤੂ ਦਾ ਭਾਰ ਇੱਕ ਬਲ ਹੈ ਜਿਸ ਨਾਲ ਇਹ ਧਰਤੀ ਵੱਲ ਆਕਰਸ਼ਿਤ ਹੁੰਦੀ ਹੈ ਇਸ ਕਰਕੇ ਭਾਰ ਦੀ S.I. ਇਕਾਈ ਉਹੀ ਹੈ ਜੋ ਬਲ ਦੀ ਹੈ ਅਰਥਾਤ ਨਿਊਟਨ (N)। ਭਾਰ ਇੱਕ ਬਲ ਹੈ ਜੋ ਧਰਤੀ ਵੱਲ ਸਿੱਧਾ ਹੇਠਾਂ ਨੂੰ ਲੱਗਦਾ ਹੈ। ਇਸਦਾ ਪਰਿਮਾਣ (ਮੁੱਲ) ਵੀ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦਿਸ਼ਾ ਵੀ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਦਿੱਤੇ ਹੋਏ ਸਥਾਨ ਤੇ g ਦਾ ਮਾਨ ਸਥਿਰ ਹੈ। ਇਸ ਲਈ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਸਥਾਨ ਤੇ ਵਸਤੂ ਦਾ ਭਾਰ ਉਸਦੇ ਪੁੰਜ (m) ਦੇ ਸਿੱਧਾ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ। ਅਰਥਾਤ W ∝ m। ਇਹੀ ਕਾਰਨ ਹੈ ਕਿ ਦਿੱਤੇ ਹੋਏ ਸਥਾਨ ਤੇ ਵਸਤੂ ਦਾ ਭਾਰ ਉਸਦੇ ਪੁੰਜ ਦੇ ਮਾਪ ਵਜੋਂ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਵਸਤੂ ਦਾ ਪੁੰਜ ਹਰ ਇੱਕ ਸਥਾਨ ਤੇ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ, ਚਾਹੇ ਧਰਤੀ ਉੱਤੇ ਹੋਵੇ ਜਾਂ ਕਿਸੇ ਹੋਰ ਗ੍ਰਹਿ ਤੇ ਪਰੰਤੂ ਉਸਦਾ ਭਾਰ ਉਸਦੇ ਸਥਾਨ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

10.4.1. ਕਿਸੇ ਵਸਤੂ ਦਾ ਚੰਨ ਤੇ ਭਾਰ (Weight

of An Object On the Moon)

ਅਸੀਂ ਜਾਣ ਚੁੱਕੇ ਹਾਂ ਕਿ ਧਰਤੀ ਉੱਪਰ ਵਸਤੂ ਦਾ ਭਾਰ ਉਹ ਬਲ ਹੈ ਜਿਸ ਨਾਲ ਧਰਤੀ ਉਸ ਵਸਤੂ ਨੂੰ ਆਪਣੇ ਵੱਲ ਆਕਰਸ਼ਿਤ ਕਰਦੀ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਚੰਨ ਉੱਪਰ ਵਸਤੂ ਦਾ ਭਾਰ ਉਹ ਬਲ ਹੈ ਜਿਸ ਨਾਲ ਚੰਨ ਉਸਨੂੰ ਆਪਣੇ ਵੱਲ ਆਕਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਚੰਨ ਦਾ ਪੁੰਜ ਧਰਤੀ ਦੇ ਪੁੰਜ ਨਾਲੋਂ ਘੱਟ ਹੈ ਇਸ ਲਈ ਚੰਨ ਵਸਤੂਆਂ ਤੇ ਘੱਟ ਅਕਰਸ਼ਣ ਬਲ ਲਗਾਉਂਦਾ ਹੈ।

ਮੰਨ ਲਉ ਵਸਤੂ ਦਾ ਪੁੰਜ *m* ਹੈ ਅਤੇ ਚੰਨ ਤੇ ਉਸਦਾ ਭਾਰ W_m ਹੈ।ਮੰਨ ਲਓ ਚੰਨ ਦਾ ਪੁੰਜ M_m ਅਤੇ ਉਸਦਾ ਅਰਧ ਵਿਆਸ R_m ਹੈ.

ਸਰਵ-ਵਿਆਪੀ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਦੇ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਚੈਨ ਤੇ ਵਸਤੂ ਦਾ ਭਾਰ ਹੋਵੇਗਾ।

$$W_m = G \frac{M_m \times m}{R_m^2} \tag{10.16}$$

ਮੰਨ ਲਓ ਉਸੀ ਵਸਤੂ ਦਾ ਭਾਰ ਧਰਤੀ ਤੇ W_e ਹੈ। ਧਰਤੀ ਦਾ ਪੁੰਜ M ਅਤੇ ਉਸਦਾ ਅਰਧ-ਵਿਆਸ R.

ਸਾਰਣੀ 10.1		
ਖਗੋਲੀ ਪਿੰਡ	ਪੁੰਜ (kg)	ਅਰਧ ਵਿਆਸ (m)
ਧਰਤੀ	5.98×10^{24}	6.37×10^{6}
ਚੈਨ	7.36×10^{22}	1.74×10^{6}

152

ਵਿਗਿਆਨ

ਸਮੀਕਰਨ (10.9) ਅਤੇ (10.15) ਤੋਂ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ।

$$W_e = \frac{GM \times m}{R^2}$$
(10.17)

ਸਮੀਕਰਨ (10.16) ਅਤੇ (10.17) ਵਿੱਚ, ਸਾਰਣੀ 10.1 ਤੋਂ ਮਾਨ ਭਰ ਕੇ, ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ।

$$W_m = G \frac{7.36 \times 10^{22} \text{ kg} \times \text{m}}{(1.74 \times 10^6 \text{ m})^2}$$

 $W_m = 2.431 \times 10^{10} \text{ G} \times m$ (10.18*a*)

ਅਤੇ $W_e = 1.474 \times 10^{11} \text{ G} \times m$ (10.18b) ਸਮੀਕਰਨ (10.18a) ਨੂੰ (10.18b) ਨਾਲ ਭਾਗ ਕਰਕੇ,

ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ

$$\frac{W_m}{W_e} = \frac{2.431 \times 10^{10}}{1.474 \times 10^{11}}$$

ਜਾਂ $\frac{W_m}{W_e} = 0.165 = \frac{1}{6}$ (10.19)
ਚੰਨ ਤੇ ਵਸਤੂ ਦਾ ਭਾਰ ____

ਧਰਤੀ ਤੇ ਵਸਤੂ ਦਾ ਭਾਰ = 6

ਚੰਨ ਤੇ ਵਸਤੂ ਦਾ ਭਾਰ = $rac{1}{6}$ × ਧਰਤੀ ਤੇ ਉਸਦਾ ਭਾਰ

ਉਦਾਹਰਣ 10.4. ਵਸਤੂ ਦਾ ਪੁੰਜ 10kg ਹੈ। ਧਰਤੀ ਤੇ ਇਸਦਾ ਭਾਰ ਕਿੰਨਾ ਹੋਵੇਗਾ ?

ਹੱਲ— ਪੁੰਜ M = 10 kgਗੁਰੂਤਾ ਪ੍ਰਵੇਗ $g = 9.8 \text{ ms}^{-2}$

$$W = m \times g$$

$$W = 10 \text{kg} \times 9.8 \text{ms}^{-2} = 98 \text{ N}$$

ਅਰਥਾਤ ਵਸਤੂ ਦਾ ਭਾਰ 98N ਹੈ।

ਉਦਾਹਰਣ 10.5. ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਕਿਸੇ ਵਸਤੂ ਦਾ ਭਾਰ ਮਾਪਣ ਤੇ 10N ਹੈ। ਚੰਨ ਦੀ ਸਤ੍ਹਾ ਤੇ ਮਾਪਣ ਤੇ ਉਸਦਾ ਭਾਰ ਕਿੰਨਾ ਹੋਵੇਗਾ ? ਹੱਲ— ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ

ਚੰਨ ਤੇ ਵਸਤੂ ਦਾ ਭਾਰ = $rac{1}{6} imes$ ਧਰਤੀ ਤੇ ਉਸਦਾ ਭਾਰ

$$W_m = \frac{W_e}{6}$$
$$= \frac{10}{6} N$$

= 1.67 N

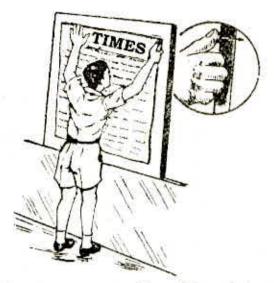
ਅਤੇ ਚੰਨ ਦੀ ਸਤ੍ਹਾ ਤੇ ਵਸਤੂ ਦਾ ਭਾਰ ਹੋਵੇਗਾ 1.67 N

ਸਨ 1. ਵਸਤੂ ਦੇ ਪੁੰਜ ਅਤੇ ਭਾਰ ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ ? 2. ਕਿਸੇ ਵਸਤੂ ਦਾ ਚੰਨ ਤੇ ਭਾਰ, ਧਰਤੀ ਤੇ ਉਸਦੇ ਭਾਰ ਦਾ <mark>1</mark>/₆ ਗੁਣਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ ?

10.5. ਧਕੇਲ ਬਲ ਅਤੇ ਦਬਾਅ (Thrust

And Pressure)

ਕੀ ਤੁਸੀਂ ਕਦੇ ਸੋਚਿਆ ਹੈ ਕਿ ਊਠ ਰੇਗਿਸਤਾਨ ਵਿੱਚ ਸੌਖਾ ਕਿਵੇਂ ਭੱਜ ਲੈਂਦਾ ਹੈ? ਇੱਕ ਫੌਜੀ ਟੈਂਕ ਜਿਸਦਾ ਭਾਰ ਇੱਕ ਹਜ਼ਾਰ ਟਨ ਤੋਂ ਵੀ ਵੱਧ ਹੁੰਦਾ ਹੈ, ਨਿਰਤੰਰ-ਚੇਨ ਤੇ ਕਿਵੇਂ ਟਿਕਿਆ ਰਹਿੰਦਾ ਹੈ? ਕਿਸੇ ਟਰੱਕ ਜਾਂ ਬੱਸ ਦੇ ਟਾਇਰ ਚੌੜੇ ਕਿਉਂ ਹੁੰਦੇ ਹਨ? ਕੱਟਣ ਵਾਲੇ ਔਜ਼ਾਰਾਂ (ਸੰਦਾਂ) ਦੀ ਧਾਰ ਤੇਜ਼ ਕਿਉਂ ਹੰਦੀ ਹੈ?


ਇਹਨਾਂ ਸਾਰੇ ਪ੍ਰਸ਼ਨਾਂ ਦਾ ਹੱਲ ਜਾਣਨ ਲਈ ਅਤੇ ਇਸ ਵਰਤਾਰੇ ਨੂੰ ਸਮਝਣ ਲਈ, ਦਿੱਤੀ ਹੋਈ ਵਸਤੂ ਤੇ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਦਿਸ਼ਾ ਵਿੱਚ ਲੱਗਣ ਵਾਲੇ ਕੁੱਲ ਬਲ (ਧਕੇਲ ਬਲ Thrust) ਅਤੇ ਪ੍ਰਤੀ ਇਕਾਈ ਖੇਤਰਫਲ ਤੇ ਲੱਗਣ ਵਾਲੇ ਬਲ ਦਬਾਅ (Pressure) ਦੀਆਂ ਧਾਰਨਾਵਾਂ ਬਾਰੇ ਜਾਣਨ ਦੀ ਜ਼ਰੂਰਤ ਹੈ। ਆਓ ਧਕੇਲ ਬਲ (Thrust) ਅਤੇ ਦਬਾਅ (Pressure) ਦਾ ਅਰਥ ਸਮਝਣ ਲਈ ਹੇਠ ਲਿਖੀਆਂ ਸਥਿਤੀਆਂ ਤੇ ਵਿਚਾਰ ਕਰੀਏ—

ਸਥਿਤੀ 1 : ਤੁਸੀਂ ਸੂਚਨਾ ਬੋਰਡ ਤੇ ਇੱਕ ਇਸ਼ਤਿਹਾਰ ਲਗਾਉਣਾ ਚਾਹੁੰਦੇ ਹੋ। ਜਿਵੇਂ ਚਿੱਤਰ (10.3) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਹ ਕਾਰਜ ਕਰਨ ਲਈ ਤੁਸੀਂ ਡਰਾਇੰਗ ਪਿੰਨਾਂ ਨੂੰ ਆਪਣੇ ਅੰਗੂਠੇ ਨਾਲ ਦਬਾਓਗੇ।ਤੁਸੀਂ

ਗਰੁਤਾ-ਆਕਰਸ਼ਣ

153

ਪਿੰਨ ਦੇ ਸਿਰੇ ਦੇ ਖੇਤਰਫਲ ਤੇ ਬਲ ਲਗਾਉਂਗੇ। ਇਹ ਬਲ ਬੋਰਡ ਦੀ ਸਤ੍ਹਾ ਦੇ ਖੇਤਰਫਲ ਤੇ ਲੰਬ ਰੂਪ (Perpendicular) ਵਿੱਚ ਨਿਰਦੇਸ਼ਿਤ ਹੁੰਦਾ ਹੈ। ਇਹ ਬਲ ਪਿੰਨ ਦੇ ਘੱਟ ਖੇਤਰਫਲ ਵਾਲੇ ਤਿੱਖੇ ਸਿਰੇ ਤੇ ਲੱਗਦਾ ਹੈ।

ਚਿੱਤਰ 10.3 : ਪੋਸਟਰ ਲਗਾਉਣ ਲਈ ਬੋਰਡ ਦੇ ਲੰਬਾਤਮਕ ਦਿਸ਼ਾ ਵਿੱਚ ਡਰਾਇੰਗ ਪਿੰਨਾਂ ਨੂੰ ਅੰਗੂਨੇ ਨਾਲ ਦਬਾਇਆ ਜਾਂਦਾ ਹੈ।

ਸਥਿਤੀ - 2. ਤੁਸੀਂ ਢਿੱਲੀ (loose) ਰੇਤ ਤੇ ਖੜ੍ਹੇ ਹੋਵੋ। ਤੁਹਾਡੇ ਪੈਰ ਰੇਤ ਵਿੱਚ ਡੂੰਘੇ ਧੱਸ ਜਾਂਦੇ ਹਨ। ਹੁਣ ਰੇਤ ਤੇ ਲੇਟ ਜਾਓ। ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਤੁਹਾਡਾ ਸਰੀਰ ਰੇਤ ਵਿੱਚ ਡੂੰਘਾ ਨਹੀਂ ਧੱਸਦਾ। ਦੋਨੋਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਰੇਤ ਤੇ ਲੱਗਿਆ ਬਲ ਤੁਹਾਡੇ ਸਰੀਰ ਦਾ ਭਾਰ ਹੈ।

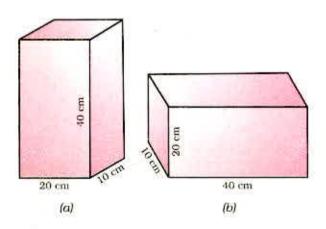
ਤੁਸੀਂ ਜਾਣ ਚੁੱਕੇ ਹੋ ਕਿ ਸਿੱਧਾ ਹੇਠਾਂ ਵੱਲ ਲੱਗ ਰਿਹਾ ਬਲ, ਭਾਰ (Weight) ਹੈ। ਇੱਥੇ, ਉੱਤੇ ਦੀ ਸਤ੍ਹਾ ਤੇ ਲੰਬ ਰੂਪ ਵਿੱਚ ਬਲ ਕਿਰਿਆ ਹੈ। ਕਿਸੇ ਵਸਤੂ ਦੀ ਸਤ੍ਹਾ ਦੇ ਲੰਬ ਰੂਪ (Perpendicular) ਵਿੱਚ ਕਿਰਿਆ ਕਰ ਰਹੇ ਬਲ ਨੂੰ ਧਕੇਲ ਬਲ (Thrust) ਕਹਿੰਦੇ ਹਨ।

ਜਦੋਂ ਤੁਸੀਂ ਢਿੱਲੇ ਰੇਤ ਤੇ ਖੜ੍ਹੇ ਹੁੰਦੇ ਹੋ, ਤਾਂ ਬਲ ਜੋ ਤੁਹਾਡੇ ਸਰੀਰ ਦਾ ਭਾਰ ਹੈ। ਤੁਹਾਡੇ ਪੈਰਾਂ ਦੇ ਖੇਤਰਫਲ ਦੇ ਬਰਾਬਰ ਦੇ ਖੇਤਰਫਲ ਤੇ ਕਿਰਿਆ ਕਰਦਾ ਹੈ। ਜਦੋਂ ਤੁਸੀਂ ਲੇਟ ਜਾਂਦੇ ਹੋ, ਤਾਂ ਉਹੀ ਬਲ ਤੁਹਾਡੇ ਪੂਰੇ ਸਰੀਰ ਦੇ ਸੰਪਰਕ ਖੇਤਰਫਲ ਦੇ ਬਰਾਬਰ ਦੇ ਖੇਤਰਫਲ ਤੇ ਕਿਰਿਆ ਕਰਦਾ ਹੈ, ਜਿਹੜਾ ਤੁਹਾਡੇ ਪੈਰਾਂ ਦੇ ਖੇਤਰਫਲ ਤੋਂ ਜ਼ਿਆਦਾ ਹੈ। ਇਸ

154

ਤਰ੍ਹਾਂ ਵੱਖ-ਵੱਖ ਖੇਤਰਫਲ ਤੇ ਸਮਾਨ ਮੁੱਲ ਵਾਲੇ ਬਲ ਦਾ ਪ੍ਰਭਾਵ ਵੀ ਵੱਖੋ-ਵੱਖਰਾ ਹੁੰਦਾ ਹੈ।ਉਪਰੋਕਤ ਸਥਿਤੀਆਂ ਵਿੱਚ ਧਕੇਲ ਬਲ ਇੱਕ ਸਮਾਨ ਹੈ। ਪਰ ਉਸਦੇ ਪ੍ਰਭਾਵ ਅਲੱਗ-ਅਲੱਗ ਹਨ। ਇਸ ਲਈ ਧਕੇਲ ਬਲ ਦਾ ਪ੍ਰਭਾਵ ਉਸ ਖੇਤਰਫਲ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਜਿਸ ਤੇ ਉਹ ਕਿਰਿਆ ਕਰਦਾ ਹੈ।

ਰੇਤ ਦੇ ਧਕੇਲ ਬਲ ਦਾ ਪ੍ਰਭਾਵ ਲੇਟੇ ਹੋਣ ਦੀ ਸਥਿਤੀ ਨਾਲੋਂ ਖੜ੍ਹੇ ਹੋਣ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਜ਼ਿਆਦਾ ਹੈ। ਇਕਾਈ ਖੇਤਰਫਲ (Area) ਤੇ ਲਗ ਰਹੇ ਧਕੇਲ ਬਲ (Thrust) ਨੂੰ ਦਬਾਅ (Pressure) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਕਰਕੇ


ਦਬਾਅ=
$$\frac{uarrow}{uarrow} = \frac{F}{A}$$
 (10.20)

ਸਮੀਕਰਨ (10.20) ਵਿੱਚ ਧਕੇਲ ਬਲ ਅਤੇ ਖੇਤਰਫਲ ਦੀ S.I. ਇਕਾਈ ਰੱਖ ਕੇ ਅਸੀਂ ਦਬਾਅ ਦੀ S.I. ਇਕਾਈ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ ਜੋ N/m² ਜਾਂ Nm⁻² ਹੈ।

ਵਿਗਿਆਨੀ ਬਲੈਸ ਪਾਸਕਲ (Pascal) ਦੇ ਸਨਮਾਨ ਵਿੱਚ ਦਬਾਅ ਦੀ S.I. ਇਕਾਈ ਨੂੰ ਪਾਸਕਲ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ _{Pa} ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

ਵੱਖਰੇ ਖੇਤਰਫਲਾਂ ਤੇ ਧਕੇਲ ਬਲ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਸਮਝਣ ਲਈ ਆਓ ਇੱਕ ਸੰਖਿਆਤਮਕ ਉਦਾਹਰਣ ਤੇ ਵਿਚਾਰ ਕਰੀਏ।

ਉਦਾਹਰਣ 10.6. ਇੱਕ ਲੱਕੜ ਦਾ ਠੋਸ ਟੁੱਕੜਾ ਮੇਜ਼ ਉੱਤੇ ਰੱਖਿਆ ਹੈ। ਲੱਕੜ ਦੇ ਟੱਕੜੇ ਦਾ ਪੰਜ 5kg

ਚਿੱਤਰ 10.4

ਵਿਗਿਆਨ

ਹੈ ਅਤੇ ਇਸਦੀਆਂ ਭੁਜਾਵਾਂ 40cm × 20cm × 10cm ਹਨ। ਲੱਕੜ ਦੇ ਟੁੱਕੜੇ ਦੁਆਰਾ ਮੇਜ਼ ਤੇ ਲੱਗਣ ਵਾਲਾ ਦਬਾਅ ਪਤਾ ਕਰੋ ਜੇਕਰ ਇਸਦੀਆਂ ਹੇਠ ਲਿਖੀਆਂ ਭੁਜਾਵਾਂ ਮੇਜ਼ ਦੀ ਸਤ੍ਹਾ ਤੇ ਰੱਖੀਆਂ ਜਾਂਦੀਆਂ ਹਨ – (a) 20cm × 10cm ਅਤੇ (b) 40cm × 20cm

ਹੱਲ—

ਲੱਕੜ ਦੇ ਠੋਸ ਟੁੱਕੜੇ ਦਾ ਪੁੰਜ = 5kg

ਇਸਦੀਆਂ ਭਜਾਵਾਂ = 40cm × 20cm × 10cm ਲੱਕੜੇ ਦੇ ਟੁੱਕੜੇ ਦਾ ਭਾਰ ਮੇਜ਼ ਦੀ ਸਤ੍ਹਾ ਤੇ ਧਕੇਲ ਬਲ ਲਗਾਉਂਦਾ ਹੈ।

ਅਰਥਾਤ ਧਕੇਲ ਬਲ F = m × g

ਇੱਕ ਪਾਸੇ ਦਾ ਖੇਤਰਫਲ = ਲੰਬਾਈ × ਚੌੜਾਈ

$$= 20 \text{cm} \times 10 \text{cm}$$

= 200 cm² = 0.02 m²

ਸਮੀਕਰਨ (10.20) ਤੋਂ

ਦਬਾਅ =
$$\frac{49 \,\mathrm{N}}{0.02 \,\mathrm{m}^2}$$

= 2450 Nm⁻²

ਜਦੋਂ ਲੱਕੜ ਦੇ ਟੁੱਕੜੇ ਦੀ 40cm × 20cm ਭੁਜਾਵਾਂ ਦਾ ਪਾਸਾ ਮੇਜ਼ ਤੇ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਪਹਿਲਾਂ ਜਿੰਨਾ ਹੀ ਧਕੇਲ ਬਲ ਲੱਗਦਾ ਹੈ।

ਖੇਤਰਫਲ = ਲੰਬਾਈ × ਚੌੜਾਈ

$$= 40 \text{cm} \times 20 \text{cm}$$

= $800 \text{cm}^2 = 0.08 \text{ cm}^2$

ਸਮੀਕਰਨ (10.20) ਤੋਂ

ਦਬਾਅ = $\frac{49 \text{ N}}{0.08 \text{ m}^2}$

$$= 612.5 \text{ N/m}^2$$

ਸਤ੍ਹਾ 20cm × 10cm ਦੁਆਰਾ ਲੱਗਿਆ ਦਬਾਅ 2450 N/m² ਹੈ ਅਤੇ ਸਤ੍ਹਾ 40cm × 20cm ਦੁਆਰਾ ਲੱਗਿਆ ਦਬਾਅ 612.5N/m² ਹੈ।

ਗਰੁਤਾ-ਆਕਰਸ਼ਣ

ਇਸ ਤਰ੍ਹਾਂ ਜਦੋਂ ਕੋਈ ਬਲ ਘੱਟ ਖੇਤਰਫਲ ਤੇ ਕਿਰਿਆ ਕਰਦਾ ਹੈ ਤਾਂ ਜ਼ਿਆਦਾ ਦਬਾਅ ਅਤੇ ਜਦੋਂ ਵੱਡੇ ਖੇਤਰਫਲ ਤੇ ਕਿਰਿਆ ਕਰਦਾ ਹੈ ਤਾਂ ਘੱਟ ਦਬਾਅ ਲਗਾਉਂਦਾ ਹੈ। ਇਹੀ ਕਾਰਨ ਹੈ ਕਿ ਕਿੱਲ ਦਾ ਇੱਕ ਸਿਰਾ ਤਿੱਖਾ ਹੁੰਦਾ ਹੈ, ਚਾਕੂ ਦੀ ਧਾਰ ਤੇਜ਼ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਮਾਰਤ ਦੀ ਨੀਂਹ ਚੌੜੀ ਹੁੰਦੀ ਹੈ।

10.5.1 ਦ੍ਵਾਂ ਵਿੱਚ ਦਬਾਅ(Pressure in Fluids)

ਸਾਰੇ ਦ੍ਵ ਜਾਂ ਗੈਸਾਂ ਤਰਲ ਹਨ। ਠੋਸ ਆਪਣੇ ਭਾਰ ਕਰਕੇ ਕਿਸੇ ਇੱਕ ਸਤ੍ਹਾ ਦੇ ਦਬਾਅ ਪਾਉਂਦਾ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ ਦ੍ਵਾਂ ਦਾ ਵੀ ਭਾਰ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜਿਹੜੇ ਭਾਂਡੇ ਵਿੱਚ ਰੱਖੇ ਜਾਂਦੇ ਹਨ ਉਸਦੇ ਆਧਾਰ ਅਤੇ ਕੰਧਾਂ ਤੇ ਦਬਾਅ ਲਗਾਉਂਦੇ ਹਨ। ਕਿਸੇ ਸੀਮਤ ਪੁੰਜ ਵਾਲੇ ਦ੍ਵ ਤੇ ਲੱਗਿਆ ਦਬਾਅ ਬਿਨਾਂ ਕਿਸੇ ਤਬਦੀਲੀ ਦੇ ਸਾਰੀਆਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਫੈਲ ਜਾਂਦਾ ਹੈ।

10.5.2. ਉਛਾਲ ਬਲ (Buoyancy)

ਕੀ ਤੁਸੀਂ ਕਦੇ ਕਿਸੇ ਤਲਾਬ ਵਿੱਚ ਤੈਰਦੇ ਹੋਏ ਆਪਣੇ ਆਪ ਨੂੰ ਹਲਕਾ ਮਹਿਸੂਸ ਕੀਤਾ ਹੈ ? ਕੀ ਤੁਸੀਂ ਕਦੇ ਖੂਹ ਵਿੱਚੋਂ ਪਾਣੀ ਕੱਢਿਆ ਹੈ ਅਤੇ ਪਾਣੀ ਦੀ ਭਰੀ ਬਾਲਟੀ ਜਦੋਂ ਪਾਣੀ ਵਿੱਚੋਂ ਬਾਹਰ ਆਉਂਦੀ ਹੈ ਤਾਂ ਭਾਰੀ ਮਹਿਸੂਸ ਕੀਤੀ ਹੈ ? ਕੀ ਤੁਸੀਂ ਕਦੇ ਸੋਚਿਆ ਹੈ ਕਿ ਇੱਕ ਸਮੁੰਦਰੀ ਜਹਾਜ਼ ਜੋ ਲੋਹੇ ਅਤੇ ਸਟੀਲ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ, ਸਮੁੰਦਰ ਵਿੱਚ ਡੁੱਬਦਾ ਨਹੀਂ ਪਰੰਤੂ ਉੱਨੇ ਭਾਰ ਦੇ ਲੋਹੇ ਅਤੇ ਸਟੀਲ ਦੀ ਬਣੀ ਚਾਦਰ ਡੁੱਬ ਜਾਂਦੀ ਹੈ ? ਇਹਨਾਂ ਸਾਰੇ ਪ੍ਰਸ਼ਨਾਂ ਦਾ ਉੱਤਰ ਉਛਾਲ ਬਲ (Buoyancy) ਨੂੰ ਸਮਝ ਕੇ ਦਿੱਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਆਓ ਉਛਾਲ ਬਲ ਨੂੰ ਸਮਝਣ ਲਈ ਕਿਰਿਆ ਕਰੀਏ।

विंगिभा 10.4

ਇੱਕ ਪਲਾਸਟਿਕ ਦੀ ਖਾਲੀ ਬੋਤਲ ਲਉ। ਉਸਦਾ ਮੂੰਹ ਹਵਾ ਰੋਧਕ ਕਾਰਕ ਨਾਲ ਬੰਦ ਕਰ ਦਿਉ। ਉਸਨੂੰ ਇੱਕ ਪਾਣੀ ਨਾਲ ਭਰੀ ਹੋਈ ਬਾਲਟੀ ਵਿੱਚ ਰੱਖੋ। ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਬੋਤਲ ਤੈਰਦੀ ਹੈ।

ਬੋਤਲ ਨੂੰ ਬਾਲਟੀ ਦੇ ਅੰਦਰ ਵੱਲ ਧੱਕੋ। ਤੁਸੀਂ ਉੱਪਰ ਵੱਲ ਧੱਕਾ ਮਹਿਸੂਸ ਕਰੋਗੇ। ਬੋਤਲ ਨੂੰ ਹੋਰ ਅੰਦਰ ਧੱਕਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ। ਤੁਸੀਂ ਬੋਤਲ ਨੂੰ

ਡੂੰਘਾ ਧੱਕਣ ਵਿੱਚ ਔਖ ਮਹਿਸੂਸ ਕਰੋਗੇ। ਇਸ ਤੋਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਪਾਣੀ ਬੋਤਲ ਤੇ ਉੱਪਰ ਵੱਲ ਬਲ ਲਗਾਉਂਦਾ ਹੈ। ਪਾਣੀ ਦੁਆਰਾ ਉੱਪਰ ਵੱਲ ਲੱਗਿਆ ਬਲ ਵੱਧਦਾ ਜਾਂਦਾ ਹੈ।ਉਦੋਂ ਤੱਕ ਬੋਤਲ ਨੂੰ ਡੂੰਘਾ ਧੱਕਿਆ ਜਾਂਦਾ ਹੈ, ਜਦੋਂ ਤੱਕ ਬੋਤਲ ਪੂਰੀ ਤਰ੍ਹਾਂ ਨਹੀਂ ਡੁੱਬ ਜਾਂਦੀ।

ਹੁਣ ਬੋਤਲ ਨੂੰ ਛੱਡ ਦਿਉ ਇਹ ਉੱਛਲ ਕੇ ਪਾਣੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਆ ਜਾਂਦੀ ਹੈ ।

ਕੀ ਇਹ ਬੋਤਲ ਤੇ ਲੱਗੇ ਧਰਤੀ ਦੇ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਕਰਕੇ ਹੋਇਆ ? ਜੇਕਰ ਹਾਂ ਤਾਂ ਬੋਤਲ ਛੱਡ ਦਿੱਤੀ ਜਾਣ ਤੋਂ ਬਾਅਦ ਪਾਣੀ ਵਿੱਚ ਕਿਉਂ ਨਹੀਂ ਡੁੱਬੀ ਰਹਿੰਦੀ ? ਤੁਸੀਂ ਬੋਤਲ ਨੂੰ ਕਿਵੇਂ ਡੋਬੋਗੇ ?

ਧਰਤੀ ਦੇ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਕਾਰਨ ਬਲ ਬੋਤਲ ਤੇ ਹੇਠਾਂ ਵੱਲ ਨੂੰ ਕਿਰਿਆ ਕਰਦਾ ਹੈ। ਇਸ ਕਰਕੇ ਬੋਤਲ ਹੇਠਾਂ ਵੱਲ ਖਿੱਚੀ ਜਾਂਦੀ ਹੈ। ਪਰੰਤੂ ਪਾਣੀ ਬੋਤਲ ਤੇ ਉੱਪਰ ਵੱਲ ਬਲ ਲਗਾਉਂਦਾ ਹੈ। ਇਸ ਕਰਕੇ ਬੋਤਲ ਉੱਪਰ ਵੱਲ ਆ ਜਾਂਦੀ ਹੈ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਵਸਤੂ ਦਾ ਭਾਰ ਉਹ ਬਲ ਹੈ ਜੋ ਧਰਤੀ ਦੇ ਗੁਰੂਤਾ ਆਕਰਸ਼ਣ ਕਰਕੇ ਲੱਗਦਾ ਹੈ। ਜਦੋਂ ਬੋਤਲ ਡੁੱਬੀ ਹੁੰਦੀ ਹੈ, ਪਾਣੀ ਦੁਆਰਾ ਬੋਤਲ ਤੇ ਉੱਪਰ ਵੱਲ ਲੱਗਿਆ ਬਲ ਬੋਤਲ ਦੇ ਭਾਰ ਨਾਲੋਂ ਜ਼ਿਆਦਾ ਹੈ। ਇਸ ਕਰਕੇ ਜਦੋਂ ਉਸਨੂੰ ਛੱਡ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਹ ਉੱਪਰ ਆ ਜਾਂਦੀ ਹੈ।

ਬੋਤਲ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਡੋਬੇ ਰੱਖਣ ਲਈ ਉਸ ਤੇ ਉੱਪਰ ਵੱਲ ਲੱਗੇ ਬਲ ਨੂੰ ਸੰਤੁਲਿਤ ਕੀਤਾ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਹ ਤਾਂ ਸੰਭਵ ਹੋ ਸਕਦਾ ਹੈ ਜੇਕਰ ਹੇਠਾਂ ਵੱਲ ਇੱਕ ਬਾਹਰੀ ਬਲ ਲਗਾਇਆ ਜਾਵੇ। ਇਹ ਬਲ ਘੱਟ ਤੋਂ ਘੱਟ ਉੱਪਰ ਵੱਲ ਲੱਗੇ ਬਲ ਅਤੇ ਬੋਤਲ ਦੇ ਭਾਰ ਦੇ ਅੰਤਰ ਦੇ ਬਰਾਬਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

ਬੋਤਲ ਤੇ ਪਾਣੀ ਦੁਆਰਾ ਉੱਪਰ ਵੱਲ ਲੱਗੇ ਬਲ ਨੂੰ ਉੱਪਰ ਵੱਲ ਧਕੇਲ ਬਲ (Upthrust) ਜਾਂ ਉਛਾਲ ਬਲ (Buoyant Force) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਦਰਅਸਲ, ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਦ੍ਵ ਵਿੱਚ ਡੋਬੇ ਜਾਣ ਤੇ ਉਛਾਲ ਬਲ ਮਹਿਸੂਸ ਕਰਦੀਆਂ ਹਨ। ਇਸ ਉਛਾਲ ਬਲ (Buoyant Force) ਦਾ ਮਾਨ ਦ੍ਵ ਦੀ ਘਣਤਾ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।

156

10.5.3. ਪਾਣੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਰੱਖੀ ਵਸਤੂ ਤੈਰਦੀ ਜਾਂ ਡੁੱਬਦੀ ਕਿਉਂ ਹੈ ? (Why objects Float or Sink When Placed on The Surface of Water?)

ਆਉਂ ਇਸ ਪ੍ਰਸ਼ਨ ਦਾ ਉੱਤਰ ਜਾਣਨ ਲਈ ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਕਰੀਏ।

ਕਿਰਿਆ _____10.5

- ਪਾਣੀ ਨਾਲ ਭਰਿਆ ਇੱਕ ਬੀਕਰ ਲਉ।
- ਇੱਕ ਲੋਹੇ ਦੀ ਕਿੱਲ ਨੂੰ ਪਾਣੀ ਦੀ ਸਤ੍ਹਾ ਤੋ ਰੱਖ ਦਿਉ।
- ਦੇਖੋ ਕੀ ਹੁੰਦਾ ਹੈ?

ਕਿੱਲ ਡੁੱਬ ਜਾਵੇਗੀ। ਧਰਤੀ ਦੇ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਕਰਕੇ ਲੱਗਿਆ ਬਲ ਕਿੱਲ ਨੂੰ ਹੇਠਾਂ ਵੱਲ ਖਿੱਚ ਲੈਂਦਾ ਹੈ। ਪਾਣੀ ਦੁਆਰਾ ਲੱਗਿਆ ਉਛਾਲ ਬਲ ਉਸਨੂੰ ਉੱਪਰ ਵੱਲ ਧੱਕਦਾ ਹੈ।ਪਰੰਤੂ ਕਿੱਲ ਤੇ ਹੇਠਾਂ ਵੱਲ ਲੱਗਿਆ ਬਲ ਪਾਣੀ ਦੇ ਉਛਾਲ ਬਲ ਨਾਲੋਂ ਜ਼ਿਆਦਾ ਹੈ।ਇਸ ਕਰਕੇ ਕਿੱਲ ਡੁੱਬ ਜਾਂਦੀ ਹੈ।ਚਿੱਤਰ (10.5)।

ਚਿੱਤਰ 10.5 : ਲੋਹੇ ਦੀ ਕਿੱਲ ਡੁੱਬ ਜਾਂਦੀ ਹੈ ਅਤੇ ਕਾਰਕ ਤੈਰਦਾ ਹੈ ਜਦੋਂ ਦੋਨਾਂ ਨੂੰ ਪਾਣੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।

ਕਿਰਿਆ ______10.6

- ਪਾਣੀ ਦਾ ਭਰਿਆ ਇੱਕ ਬੀਕਰ ਲਉ।
- ਇੱਕ ਲੋਹੇ ਦੀ ਕਿੱਲ ਅਤੇ ਸਮਾਨ ਪੁੰਜ ਵਾਲਾ ਕਾਰਕ ਦਾ ਟੁੱਕੜਾ ਲਉ।
- ਦੋਨਾਂ ਨੂੰ ਪਾਣੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਰੱਖ।
- ਦੇਖੋ ਕੀ ਹੁੰਦਾ ਹੈ ?

ਵਿਗਿਆਨ

ਕਾਰਕ ਦਾ ਟੁੱਕੜਾ ਤੈਰਦਾ ਹੈ ਅਤੇ ਲੋਹੇ ਦੀ ਕਿੱਲ ਡੁੱਬ ਜਾਂਦੀ ਹੈ। ਦੋਨਾਂ ਦੀ ਘਣਤਾ ਵਿੱਚ ਅੰਤਰ ਹੋਣ ਕਰਕੇ ਅਜਿਹਾ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਘਣਤਾ (Density) ਉਸਦੇ ਇਕਾਈ ਆਇਤਨ (Volume) ਦਾ ਪੁੰਜ (Mass) ਹੁੰਦਾ ਹੈ। ਕਾਰਕ ਦੀ ਘਣਤਾ ਪਾਣੀ ਦੀ ਘਣਤਾ ਨਾਲੋਂ ਘੱਟ ਹੈ। ਅਰਥਾਤ ਪਾਣੀ ਦੁਆਰਾ ਕਾਰਕ ਤੇ ਲੱਗਿਆ ਉੱਪਰ ਵੱਲ ਧਕੇਲ ਬਲ (Thrust) ਕਾਰਕ ਦੇ ਭਾਰ (Weight) ਤੋਂ ਵੱਧ ਹੈ। ਇਸ ਕਰਕੇ ਉਹ ਤੈਰਦਾ ਹੈ।

ਲੋਹੇ ਦੇ ਕਿੱਲ ਦੀ ਘਣਤਾ ਪਾਣੀ ਦੀ ਘਣਤਾ ਤੋਂ ਵੱਧ ਹੈ। ਅਰਥਾਤ ਲੋਹੇ ਦੇ ਕਿੱਲ ਤੇ ਪਾਣੀ ਦੁਆਰਾ ਲੱਗਿਆ ਉੱਪਰ ਵੱਲ ਧਕੇਲ ਬਲ ਕਿੱਲ ਦੇ ਭਾਰ ਤੋਂ ਘੱਟ ਹੈ। ਇਸ ਕਰਕੇ ਕਿੱਲ ਡੁੱਬ ਜਾਂਦੀ ਹੈ।

ਇਸ ਕਰਕੇ ਉਹ ਪਦਾਰਥ ਜਿਨ੍ਹਾਂ ਦੀ ਘਣਤਾ ਦ੍ਰਵ ਦੀ ਘਣਤਾ ਤੋਂ ਘੱਟ ਹੈ, ਦ੍ਰਵ ਵਿੱਚ ਤੈਰਦੇ ਹਨ। ਉਹ ਪਦਾਰਥ ਜਿਨ੍ਹਾਂ ਦੀ ਘਣਤਾ ਦ੍ਰਵ ਦੀ ਘਣਤਾ ਤੋਂ ਵੱਧ ਹੈ, ਦ੍ਰਵ ਵਿੱਚ ਡੁੱਬ ਜਾਂਦੇ ਹਨ।

> ਇੱਕ ਪਤਲੀ ਅਤੇ ਮਜਬੂਤ ਡੇਰੀ ਨਾਲ ਬਣੇ ਪੇਂਟੇ ਦੀ ਮੱਦਦ ਨਾਲ ਸਕੂਲ ਬੈਂਗ ਨੂੰ ਚੁੱਕਣਾ ਔਖਾ ਹੁੰਦਾ ਹੈ ਕਿਉਂ ?

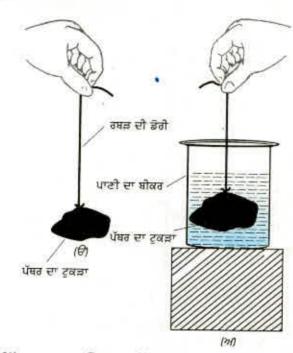
- 2. ਉਛਾਲ ਬਲ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਮਝਦੇ ਹੋ ?
- ਪਾਣੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਰੱਖੀ ਹੋਈ ਕੋਈ ਵਸਤੂ ਕਿਉਂ ਤੈਰਦੀ ਜਾਂ ਡੁੱਬਦੀ ਹੈ ?

10.6 ਆਰਕੀਮਿਡੀਜ਼ ਦਾ ਸਿਧਾਂਤ

(Archimedes' Principle)

ਕਿਰਿਆ

10.7


ਇੱਕ ਪੱਥਰ ਦਾ ਟੁੱਕੜਾ ਲਉ ਅਤੇ ਇਸਨੂੰ ਰਬੜ ਦੀ ਡੋਰੀ ਜਾਂ ਕਮਾਨੀਦਾਰ ਤੁਲਾ ਦੇ ਇੱਕ ਸਿਰੇ ਤੇ ਬੰਨੇ।

ਕਮਾਨੀਦਾਰ ਤੁਲਾ ਜਾਂ ਰਬੜ ਦੀ ਡੋਰੀ ਨੂੰ ਹੱਥ ਵਿੱਚ ਪਕੜਕੇ ਪੱਥਰ ਨੂੰ ਹੇਠਾਂ ਵੱਲ ਲਟਕਾ ਦਿਉ ਜਿਵੇਂ ਚਿੱਤਰ 10.6 (ੳ) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਪੱਥਰ ਦੇ ਭਾਰ ਦੇ ਕਾਰਨ ਰਬੜ ਦੀ ਡੋਰੀ ਦੀ ਵਧੀ ਹੋਈ ਲੰਬਾਈ ਜਾਂ ਕਮਾਨੀਦਾਰ ਤੁਲਾ ਦੀ ਪੜ੍ਹਤ ਨੋਟ ਕਰੋ। ਹੁਣ ਪੱਥਰ ਨੂੰ ਹੌਲੀ-ਹੌਲੀ ਪਾਣੀ ਨਾਲ ਭਰੇ ਬੀਕਰ ਵਿੱਚ

ਅੰਸ਼ਕ ਤੌਰ ਤੇ ਭੁਬੋ ਦਿਉ ਜਿਵੇਂ ਚਿੱਤਰ 10.6 (ਅ) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

ਰਬੜ ਦੀ ਡੋਰੀ ਵਿੱਚ ਪਸਾਰ (Elogation) ਜਾਂ ਕਮਾਨੀਦਾਰ ਤੁਲਾ (Spring Balance) ਦੀ ਪੜ੍ਹਤ ਵਿੱਚ ਅੰਤਰ ਨੌਟ ਕਰੇ।

ਚਿੱਤਰ 10.6 : (ੳ) ਹਵਾ ਵਿੱਚ ਲਟਕੇ ਪੱਥਰ ਦੇ ਭਾਰ ਕਰਕੇ ਰਬੜ ਦੀ ਡੋਰ ਵਿੱਚ ਪਸਾਰ ਦਾ ਨਿਰੀਖਣ ਕਰੋ। (ਅ) ਪੱਥਰ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਭੁਬਾਉਣ ਤੇ ਡੋਰੀ ਦੇ ਪਸਾਰ ਜਾਂ ਤੁਲਾ ਦੀ ਪੜ੍ਹਤ ਵਿੱਚ ਕਮੀ ਆਉਂਦੀ ਹੈ।

ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਡੋਰੀ ਦੇ ਪਸਾਰ ਜਾਂ ਕਮਾਨੀਦਾਰ ਤੁਲਾ ਦੀ ਪੜ੍ਹਤ ਵਿੱਚ ਕਮੀ ਆਉਂਦੀ ਹੈ, ਜਦੋਂ ਪੱਥਰ ਨੂੰ ਪਾਣੀ ਵਿੱਚ ਹੋਰ ਡੂੰਘਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਪਰ, ਜਦੋਂ ਪੱਥਰ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਡੁਬੇ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਕੋਈ ਤਬਦੀਲੀ ਨਹੀਂ ਦੇਖੀ ਜਾਂਦੀ। ਡੋਰੀ ਦੇ ਪਸਾਰ ਜਾਂ ਕਮਾਨੀਦਾਰ ਤੁਲਾ ਦੀ ਪੜ੍ਹਤ ਵਿੱਚ ਕਮੀ ਤੋਂ ਤਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢੋਗੇ?

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਡੋਰੀ ਦੇ ਪਸਾਰ ਜਾਂ ਤੁਲਾ ਦੀ ਪੜ੍ਹਤ ਵਿੱਚ ਕਮੀ ਦਾ ਕਾਰਨ ਪੱਥਰ ਦਾ ਭਾਰ (Weight) ਹੈ। ਜਦੋਂ ਪੱਥਰ ਨੂੰ ਪਾਣੀ ਵਿਚ ਡੂੰਘਾ ਡੋਬਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਪਸਾਰ ਵਿੱਚ ਕਮੀ ਆਉਂਦੀ ਹੈ ਅਰਥਾਤ ਕੋਈ ਬਲ ਪੱਥਰ ਤੇ ਉੱਪਰ ਵੱਲ ਕਿਰਿਆ ਕਰਦਾ ਹੈ। ਇਸ ਦੌਰਾਨ ਡੋਰੀ ਤੇ ਲੱਗ ਰਿਹਾ ਕੁੱਲ ਬਲ ਘੱਟ ਜਾਂਦਾ ਹੈ ਅਤੇ ਪਸਾਰ ਵਿੱਚ ਕਮੀ ਆਉਂਦੀ ਹੈ। ਜਿਸ ਤਰ੍ਹਾਂ ਪਹਿਲਾਂ ਦੱਸਿਆ ਜਾ ਚੁੱਕਾ ਹੈ ਕਿ ਪਾਣੀ ਦੁਆਰਾ ਉੱਪਰ ਵੱਲ ਲਗਾਏ ਬਲ ਨੂੰ

ਗਰੁਤਾ-ਆਕਰਸ਼ਣ

157

ਉਡਾਲ ਬਲ (Buoyant Force) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਕਿਸੇ ਪਦਾਰਥ ਦੁਆਰਾ ਮਹਿਸੂਸ ਕੀਤੇ ਉਛਾਲ ਬਲ ਦਾ ਮਾਨ ਕੀ ਹੈ ? ਕੀ ਇਹ ਕਿਸੇ ਇੱਕ ਪਦਾਰਥ ਲਈ ਸਾਰੇ ਦ੍ਵਾਂ ਵਿੱਚ ਸਮਾਨ ਹੁੰਦਾ ਹੈ ? ਕੀ ਦਿੱਤੇ ਹੋਏ ਦ੍ਵ ਵਿੱਚ ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਸਮਾਨ ਉਛਾਲ ਬਲ ਮਹਿਸੂਸ ਕਰਦੀਆਂ ਹਨ ? ਇਹਨਾਂ ਸਾਰੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਆਰਕੀਮਿਡੀਜ਼ ਦੇ ਸਿਧਾਂਤ ਨੂੰ ਸਮਝ ਕੇ ਦਿੱਤੇ ਜਾ ਸਕਦੇ ਹਨ ਜਿਸਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦੱਸਿਆ ਜਾਂਦਾ ਹੈ।

ਜਦੋਂ ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਜਾਂ ਅੰਸ਼ਕ ਤੌਰ 'ਤੇ ਕਿਸੇ ਦ੍ਵ ਵਿੱਚ ਡੁਬੋਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਸ ਦੁਆਰਾ ਉੱਪਰ ਵੱਲ ਮਹਿਸੂਸ ਕੀਤਾ ਬਲ (upward force) ਵਸਤੂ ਦੁਆਰਾ ਵਿਸਥਾਪਿਤ ਦ੍ਵ (displaced water) ਦੇ ਭਾਰ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।

ਕੀ, ਹੁਣ ਤੁਸੀਂ ਸਮਝਾ ਸਕਦੇ ਹੋ ਕਿ ਕਿਰਿਆ 10.7 ਵਿੱਚ ਪੱਥਰ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਪਾਣੀ ਵਿੱਚ ਡੁਬਾਉਣ ਤੋਂ ਬਾਅਦ ਰਬੜ ਦੀ ਡੋਰੀ ਦੇ ਪਸਾਰ ਵਿੱਚ ਹੋਰ ਕਮੀ ਕਿਉਂ ਨਹੀਂ ਹੁੰਦੀ ?

ਆਰਕੀਮਿਡੀਜ਼ ਇੱਕ ਗ੍ਰੀਕ ਵਿਗਿਆਨੀ ਸਨ। ਉਹਨਾਂ ਨੇ ਨੋਟ ਕੀਤਾ ਕਿ ਪਾਣੀ ਨਾਲ ਭਰੇ ਨਹਾਉਣ ਵਾਲੇ ਟੱਬ ਵਿੱਚ ਪੈਰ ਰੱਖਣ ਤੇ ਪਾਣੀ ਬਾਹਰ ਡੁੱਲ੍ਹ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਉਹਨਾਂ ਨੇ ਇੱਕ ਸਿਧਾਂਤ ਦੀ ਖੋਜ ਕੀਤੀ, ਜਿਸਨੂੰ ਉਹਨਾਂ ਦੇ ਨਾਮ

ਆਰਕੀਮਿਡੀਜ਼

ਨਾਲ ਹੀ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਉਹ ਸੜਕ ਤੇ (Eureka) "ਯੁਰੇਕਾ-ਯੁਰੇਕਾ" ਚੀਕਦੇ ਹੋਏ ਭੱਜੇ ਆਏ, ਜਿਸਦਾ ਅਰਥ ਹੈ "ਮੈਂ ਲੱਭ ਲਿਆ ਹੈ।"

ਇਸ ਜਾਣਕਾਰੀ ਦੀ ਵਰਤੋਂ ਆਰਕੀਮਿਡੀਜ਼ ਰਾਜਾ ਦੇ ਤਾਜ ਵਿੱਚ ਲੱਗੇ ਸੋਨੇ ਦੀ ਸ਼ੁੱਧਤਾ ਮਾਪਣ ਲਈ ਕੀਤੀ।

ਉਹਨਾਂ ਦੁਆਰਾ ਯਾਂਤ੍ਰਿਕੀ ਅਤੇ ਜਿਆਮਿਤੀ ਦੇ ਖੇਤਰ ਵਿੱਚ ਕੀਤੇ ਗਏ ਕਾਰਜ ਨੇ ਉਹਨਾਂ ਨੂੰ ਪ੍ਰਸਿੱਧ ਕਰ ਦਿੱਤਾ। ਲੀਵਰ (Levers), ਘਿਰਨੀ (Pulleys), ਪਹੀਏ ਅਤੇ ਧੁਰੇ (Wheels and Axle) ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਉਹਨਾਂ ਦੀ ਜਾਣਕਾਰੀ ਨੇ ਗ੍ਰੀਕ ਫੌਜ਼ ਨੂੰ ਰੋਮਨ ਫੌਜ਼ ਦੇ ਵਿਰੱਧ ਲੜਾਈ ਵਿੱਚ ਸਹਾਇਤਾ ਕੀਤੀ। ਆਰਕੀਮਿਡੀਜ਼ ਦੇ ਸਿਧਾਂਤ ਦੇ ਬਹੁਤ ਉਪਯੋਗ ਹਨ। ਇਹ ਸਮੁੰਦਰੀ ਜਹਾਜ਼ ਅਤੇ ਪਣਡੁੱਬੀਆਂ ਡਿਜ਼ਾਇਨ ਕਰਨ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।ਲੈਕਟੋਮੀਟਰ (ਦੁੱਧ ਮਾਪਕ ਯੰਤਰ), ਜਿਹੜਾ ਦੁੱਧ ਦੇ ਕਿਸੇ ਨਮੂਨੇ ਦੀ ਸ਼ੁੱਧਤਾ ਪਰਖਣ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਹਾਈਡੋ੍ਮੀਟਰ, ਜਿਹੜਾ ਦ੍ਵਾਂ ਦੀ ਘਣਤਾ ਮਾਪਣ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ, ਇਸੇ ਸਿਧਾਂਤ ਤੇ ਆਧਾਰਿਤ ਹਨ।

> 1, ਤੁਸੀਂ ਭਾਰ ਤੋਲਣ ਵਾਲੀ ਮਸ਼ੀਨ ਤੇ ਆਪਣਾ ਪੁੰਜ, 42kg ਦੇਖਦੇ ਹੋ। ਕੀ ਤਹਾਡਾ ਪੁੰਜ 42kg ਤੋਂ ਵੱਧ ਹੈ ਜਾਂ ਘੱਟ ?

 ਤੁਹਾਡੇ ਕੋਲ ਇੱਕ ਹੂੰ ਦਾ ਬੋਹਾ ਹੈ ਅਤੇ ਇੱਕ ਲੋਹੇ ਦੀ ਛੜ, ਭਾਰ ਤੋਲਣ ਵਾਲੀ ਮਸ਼ੀਨ ਦੋਨਾਂ ਦਾ ਪੁੰਜ 100kg ਦਰਸਾਉਂਦੀ ਹੈ। ਅਸਲ ਵਿੱਚ ਇੱਕ ਦੂਸਰੇ ਨਾਲੋਂ ਭਾਰਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਭਾਰਾ ਹੈ ਅਤੇ ਕਿਉਂ?

10.7 ਸਾਪੱਖ ਘਟਤਾ (Relative Density)

ਜਿਵੇਂ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਘਣਤਾ ਉਸਦੇ ਇਕਾਈ ਆਇਤਨ ਦਾ ਪੁੰਜ ਹੁੰਦਾ ਹੈ। ਘਣਤਾ ਦੀ ਇਕਾਈ kg/m³ ਜਾਂ kgm⁻³ ਹੈ। ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਘਣਤਾ ਵਿਸ਼ੇਸ਼ ਹਾਲਤਾਂ ਵਿੱਚ ਸਦਾ ਹੀ ਸਮਾਨ ਰਹਿੰਦੀ ਹੈ। ਇਸ ਕਰਕੇ ਘਣਤਾ ਪਦਾਰਥ ਦੇ ਵਿਸ਼ੇਸ਼ ਗੁਣਾਂ ਵਿੱਚੋਂ ਇੱਕ ਹੈ। ਵੱਖ-ਵੱਖ ਪਦਾਰਥਾਂ ਦੀ ਘਣਤਾ ਵੱਖ-ਵੱਖ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਸੋਨੇ ਦੀ ਘਣਤਾ 19300 kgm⁻³ ਹੈ ਜਦੋਂ ਕਿ ਪਾਣੀ ਦੀ ਘਣਤਾ 1000kgm⁻³ ਹੈ। ਕਿਸੇ ਪਦਾਰਥ ਦੇ ਨਮੂਨੇ ਦੀ ਘਣਤਾ ਉਸ ਪਦਾਰਥ ਦੀ ਸ਼ੁੱਧਤਾ ਦੀ ਪਰਖ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦੀ ਹੈ।

ਅਕਸਰ ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਘਣਤਾ ਪਾਣੀ ਦੀ ਘਣਤਾ ਨਾਲ ਤੁਲਨਾ ਕਰਕੇ ਆਸਾਨੀ ਨਾਲ ਕੱਢੀ ਜਾ ਸਕਦੀ ਹੈ। ਕਿਸੇ ਪਦਾਰਥ ਦੀ ਸਾਪੇਖ ਘਣਤਾ (Relative Density) ਉਸ ਪਦਾਰਥ ਦੀ ਘਣਤਾ ਅਤੇ ਪਾਣੀ ਦੀ ਘਣਤਾ ਦਾ ਅਨੁਪਾਤ ਹੁੰਦਾ ਹੈ—

158

ਵਿਗਿਆਨ

ਪਾਣੀ ਦੀ ਘਣਤਾ 10³ kgm⁻³ ਹੈ। S.I ਇਕਾਈ ਵਿੱਚ ਚਾਂਦੀ ਦੀ ਘਣਤਾ ਪਤਾ ਕਰੋ ਹੱਲ :

ਚਾਂਦੀ ਦੀ ਘਣਤਾ = 10.8

ਸਾਪੇਖ ਘਣਤਾ= ਚਾਂਦੀ ਦੀ ਘਣਤਾ/ਪਾਣੀ ਦੀ ਘਣਤਾ ਚਾਂਦੀ ਦੀ ਬਣਤਾ = ਸਾਪੇਖ ਘਣਤਾ × ਪਾਣੀ ਦੀ ਘਣਤਾ

 $= 10.8 \times 10^3 \text{ kgm}^{-3}$

ਸਾਪੇਖ ਘਣਤਾ = <mark>ਪਦਾਰਥ ਦੀ ਘਣਤਾ</mark> ਪਾਣੀ ਦੀ ਘਣਤਾ

ਸਾਪੇਖ ਘਣਤਾ ਦੀ ਕੋਈ ਇਕਾਈ ਨਹੀਂ ਹੈ ਕਿਉਂਕਿ ਇਹ ਦੋ ਇੱਕੋ ਜਿਹੀਆਂ ਰਾਸ਼ੀਆਂ ਦਾ ਅਨੁਪਾਤ ਹੈ।

ਉਦਾਹਰਨ 10.7 ਚਾਂਦੀ ਦੀ ਸਾਪੇਖ ਘਣਤਾ 10.8 ਅਤੇ

 ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਦਾ ਨਿਯਮ ਦੱਸਦਾ ਹੈ ਕਿ ਦੋ ਵਸਤੂਆਂ ਵਿਚਕਾਰ ਆਕਰਸ਼ਣ ਬਲ ਉਹਨਾਂ ਦੇ ਪੁੰਜਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਸਿੱਧਾ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਦੇ ਕੇਂਦਰਾਂ ਵਿਚਕਾਰ ਦੂਰੀ ਦੇ ਵਰਗ ਦੇ ਉਲਟ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ। ਇਹ ਨਿਯਮ ਬ੍ਰਹਿਮੰਡ ਵਿੱਚ ਕਿਸੇ ਵੀ ਜਗ੍ਹਾ ਦੀਆਂ ਵਸਤੂਆਂ ਤੇ ਲਾਗੂ ਹੁੰਦਾ ਹੈ।

 ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਇੱਕ ਕਮਜ਼ੋਰ ਬਲ ਹੈ ਜਦੋਂ ਤੱਕ ਇਸ ਵਿੱਚ ਬਹੁਤ ਜ਼ਿਆਦਾ ਪੁੰਜ ਵਾਲੀਆਂ ਵਸਤੂਆਂ ਨਾ ਹੋਣ।

 ਧਰਤੀ ਦੇ ਕਾਰਨ ਗੁਰੂਤਾ ਆਕਰਸ਼ਣ (gravitation) ਬਲ ਗੁਰੂਤਾ (gravity) ਅਖਵਾਉਂਦਾ ਹੈ।

ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਤੋਂ ਉੱਚਾਈ ਵੱਧਣ ਨਾਲ ਘੱਟਦਾ ਜਾਂਦਾ ਹੈ।
 ਇਹ ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਵੀ ਬਦਲਦਾ ਹੈ, ਭੂ-ਮੱਧ ਰੇਖਾ (equator) ਤੋਂ ਧਰੁਵਾਂ (poles)
 ਵੱਲ ਘੱਟਦਾ ਹੈ।

 ਵਸਤੂ ਦਾ ਭਾਰ (weight) ਉਹ ਬਲ (force) ਹੈ ਜਿਸ ਨਾਲ ਧਰਤੀ ਉਸਨੂੰ ਆਕਰਸ਼ਿਤ ਕਰਦੀ ਹੈ।

ਇੱਕ ਸਥਾਨ ਤੋਂ ਦੂਸਰੇ ਸਥਾਨ ਤੇ ਭਾਰ ਬਦਲ ਸਕਦਾ ਹੈ ਪਰੰਤੂ ਪੁੰਜ ਇੱਕ ਸਮਾਨ ਰਹਿੰਦਾ ਹੈ।

 ਪੁੰਜ (mass) ਅਤੇ ਗੁਰੂਤਾ-ਪ੍ਵੇਗ (acceleration due to gravity) ਦੇ ਗੁਣਨਫਲ ਨੂੰ ਭਾਰ (weight) ਕਹਿੰਦੇ ਹਨ।

 ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਦਵ ਵਿੱਚ ਡੁਬਾਉਣ ਤੇ ਉਛਾਲ ਬਲ (upthrust) ਮਹਿਸੂਸ ਕਰਦੀਆਂ ਹਨ।

 ਉਹ ਵਸਤੂਆਂ ਜਿਨ੍ਹਾਂ ਦੀ ਘਣਤਾ (density) ਦ੍ਵ ਦੀ ਘਣਤਾ ਤੋਂ ਘੱਟ ਹੈ, ਦ੍ਵ ਵਿੱਚ ਡੁਬੋਣ ਤੇ ਉਸ ਦੀ ਸਤ੍ਹਾ ਤੇ ਤੈਰਦੀਆਂ ਹਨ। ਪਰ ਉਹ ਵਸਤੂਆਂ ਜਿਨ੍ਹਾਂ ਦੀ ਘਣਤਾ ਦ੍ਵ ਦੀ ਘਣਤਾ ਤੋਂ ਵੱਧ ਹੈ, ਦ੍ਵ ਵਿੱਚੋਂ ਡੁਬੋਣ ਤੇ ਦ੍ਵ ਵਿੱਚ ਡੁੱਬ ਜਾਂਦੀਆਂ ਹਨ?

ਗਰਤਾ-ਆਕਰਸ਼ਣ

159

160

ਅਭਿਆਸ

- ਦੋ ਵਸਤੂਆਂ ਵਿਚਕਾਰ ਦੂਰੀ ਅੱਧੀ ਕਰ ਦਿੱਤੀ ਜਾਵੇ ਤਾਂ ਉਹਨਾਂ ਵਿੱਚ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਕਿਵੇਂ ਬਦਲਦਾ ਹੈ ?
- ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਤੇ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਉਨ੍ਹਾਂ ਦੇ ਪੁੰਜਾਂ ਦੇ ਅਨੁਪਾਤੀ ਹੁੰਦਾ ਹੈ। ਫਿਰ ਵੀ ਭਾਰੀ ਵਸਤੂ, ਹਲਕੀ ਵਸਤੂ ਨਾਲੋਂ ਤੇਜ਼ ਗਤੀ ਨਾਲ ਹੇਠਾਂ ਨੂੰ ਨਹੀਂ ਡਿੱਗਦੀ। ਕਿਉਂ ?
- 3. ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਤੇ 1 kg ਭਾਰ ਵਾਲੀ ਵਸਤੂ ਅਤੇ ਧਰਤੀ ਵਿਚਕਾਰ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਦਾ (ਪਰਿਮਾਣ) ਮੁੱਲ ਕੀ ਹੈ ? (ਧਰਤੀ ਦਾ ਪੁੰਜ 6 × 10²⁴ kg ਅਤੇ ਅਰਧ ਵਿਆਸ 6.4 × 10⁶ m ਹੈ)
- 4. ਧਰਤੀ ਅਤੇ ਚੰਨ ਇੱਕ ਦੂਸਰੇ ਵੱਲ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਕਰਕੇ ਆਕਰਸ਼ਿਤ ਹੁੰਦੇ ਹਨ। ਕੀ ਧਰਤੀ ਜਿੰਨੇ ਬਲ ਨਾਲ ਚੰਨ ਨੂੰ ਆਕਰਸ਼ਿਤ ਕਰਦੀ ਹੈ? ਚੰਨ ਉਸੇ ਬਲ, ਉਸ ਤੋਂ ਵੱਧ ਬਲ ਜਾਂ ਉਸ ਤੋਂ ਘੱਟ ਬਲ ਨਾਲ ਧਰਤੀ ਨੂੰ ਆਕਰਸ਼ਿਤ ਕਰਦਾ ਹੈ ? ਕਿਉਂ?
- 5. ਜੇਕਰ ਚੰਨ ਧਰਤੀ ਨੂੰ ਆਕਰਸ਼ਿਤ ਕਰਦਾ ਹੈ ਤਾਂ ਧਰਤੀ ਚੰਨ ਵੱਲ ਗਤੀ ਕਿਉਂ ਨਹੀਂ ਕਰਦੀ ?
- ਦੋ ਵਸਤੂਆਂ ਵਿਚਕਾਰ ਲੱਗਣ ਵਾਲਾ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਕਿਵੇਂ ਬਦਲਦਾ ਹੈ ਜਦੋਂ –
 - (i) ਇੱਕ ਵਸਤੂ ਦਾ ਪੁੰਜ ਦੁੱਗਣਾ ਕਰ ਦਿੱਤਾ ਜਾਵੇ ?
 - (ii) ਵਸਤੂਆਂ ਵਿਚਕਾਰ ਦੂਰੀ ਦੁੱਗਣੀ ਅਤੇ ਤਿੱਗਣੀ ਕਰ ਦਿੱਤੀ ਜਾਵੇ ?
 - (iii) ਦੋਨੋਂ ਵਸਤੂਆਂ ਦਾ ਪੁੰਜ ਦੁੱਗਣਾ ਕਰ ਦਿੱਤਾ ਜਾਵੇ ?
- 7. ਸਰਵ ਵਿਆਪੀ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਦੇ ਨਿਯਮ ਦਾ ਕੀ ਮਹੱਤਵ ਹੈ ?
- 8. ਸੁਤੰਤਰ ਡਿੱਗਣ ਦਾ ਪ੍ਵੇਗ ਕੀ ਹੈ ?
- 9. ਧਰਤੀ ਅਤੇ ਵਸਤੂ ਵਿਚਕਾਰ ਲੱਗਣ ਵਾਲੇ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਨੂੰ ਅਸੀਂ ਕੀ ਕਹਿੰਦੇ ਹਾਂ ?
- 10. ਅਮਿਤ ਆਪਣੇ ਮਿੱਤਰ ਦੇ ਨਿਰਦੇਸ਼ ਨਾਲ਼ ਧਰੁਵਾਂ ਤੇ ਕੁੱਝ ਗ੍ਰਾਮ ਸੋਨਾ ਖਰੀਦਦਾ ਹੈ। ਉਹੀ ਸੋਨਾ ਉਹ ਆਪਣੇ ਮਿੱਤਰ ਨੂੰ ਭੂ-ਮੱਧ ਰੇਖਾ ਤੇ ਜਾ ਕੇ ਪਕੜਾ ਦਿੰਦਾ ਹੈ। ਕੀ ਉਸਦਾ ਮਿੱਤਰ ਸੋਨੇ ਦੇ ਭਾਰ ਨਾਲ ਸਹਿਮਤ ਹੋਵੇਗਾ ? ਜੇਕਰ ਨਹੀਂ ਤਾਂ ਕਿਉਂ ? (ਸੰਕੇਤ - ਧਰੁਵਾਂ ਨਾਲੋਂ ਭੂ-ਮੱਧ ਰੇਖਾ ਤੇ g ਦਾ ਮਾਨ ਵੱਧ ਹੁੰਦਾ ਹੈ)
- 11. ਇੱਕ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ, ਉਨੇ ਹੀ ਕਾਗਜ਼ ਨੂੰ ਮਰੋੜ ਕੇ ਬਣਾਈ ਗਈ ਗੇਂਦ ਨਾਲੋਂ ਹੌਲੀ ਕਿਉਂ ਡਿੱਗਦੀ ਹੈ ?
- 12. ਚੰਨ ਦੀ ਸਤ੍ਹਾ ਤੇ ਗੁਰੂਤਾ ਆਕਰਸ਼ਣ ਬਲ, ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਬਲ ਦੀ ਤੁਲਨਾ ਵਿੱਚ 1/6 ਗੁਣਾ ਹੈ। 10kg ਪੁੰਜ ਵਾਲੀ ਵਸਤੂ ਦਾ ਚੰਨ ਅਤੇ ਧਰਤੀ ਤੇ ਨਿਊਟਨ (N) ਵਿੱਚ ਭਾਰ ਕਿੰਨਾ ਹੋਵੇਗਾ ?

ਵਿਗਿਆਨ

- 13. ਇੱਕ ਗੇਂਦ ਨੂੰ 49m/s ਵੇਗ ਨਾਲ ਸਿੱਧਾ ਉੱਪਰ ਵੱਲ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ। ਪਤਾ ਕਰੋ (i) ਵੱਧ ਤੋਂ ਵੱਧ ਉੱਚਾਈ ਜਿੱਥੇ ਤੱਕ ਗੇਂਦ ਪਹੁੰਚਦੀ ਹੈ। (ii) ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਤੱਕ ਵਾਪਸ ਆਉਣ ਵਿੱਚ ਲੱਗਾ ਕੁੱਲ ਸਮਾਂ।
- 14. ਇੱਕ ਪੱਥਰ ਨੂੰ 19.6m ਉੱਚੀ ਮੀਨਾਰ ਦੇ ਸ਼ਿਖਰ ਤੋਂ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ। ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਪਹੁੰਚਣ ਤੋਂ ਪਹਿਲਾਂ ਇਸਦਾ ਅੰਤਿਮ ਵੇਗ ਪਤਾ ਕਰੋ।
- 15. ਇੱਕ ਪੱਥਰ ਨੂੰ 40m/s ਦੇ ਮੁੱਢਲੇ ਵੇਗ ਨਾਲ ਸਿੱਧਾ ਉੱਪਰ ਵੱਲ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ। g = 10m/s² ਲੈਂਦੇ ਹੋਏ ਪਤਾ ਕਰੋ, ਪੱਥਰ ਵੱਧ ਤੋਂ ਵੱਧ ਕਿੰਨੀ ਉੱਚਾਈ ਤੱਕ ਪਹੁੰਚਦਾ ਹੈ। ਕੁੱਲ ਵਿਸਥਾਪਨ ਕਿੰਨਾ ਹੈ ਅਤੇ ਪੱਥਰ ਦੁਆਰਾ ਕੁੱਲ ਦੂਰੀ ਕਿੰਨੀ ਹੈ ?
- 16. ਧਰਤੀ ਅਤੇ ਸੂਰਜ ਵਿਚਕਾਰ ਗੁਰੂਤਾ-ਆਕਰਸ਼ਣ ਦਾ ਬਲ ਪਤਾ ਕਰੋ। ਦਿੱਤਾ ਹੈ ਧਰਤੀ ਦਾ ਪੁੰਜ = 6 × 10²⁴kg, ਸੂਰਜ ਦਾ ਪੁੰਜ 2 × 10³⁰kg, ਦੋਨਾਂ ਵਿਚਕਾਰ ਔਸਤ ਦੂਰੀ = 1.5 × 10¹¹m ।
- 17. ਇੱਕ ਪੱਥਰ 100m ਉੱਚੀ ਮੀਨਾਰ ਦੀ ਛੱਤ ਤੋਂ ਥੱਲੇ ਸ਼ੁੱਟਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਸੀ ਸਮੇਂ ਦੂਸਰਾ ਪੱਥਰ 25m/s ਵੇਗ ਨਾਲ ਸਿੱਧਾ ਉੱਪਰ ਵੱਲ ਸ਼ੁੱਟਿਆ ਜਾਂਦਾ ਹੈ। ਪਤਾ ਕਰੋ ਦੋਨੋਂ ਪੱਥਰ ਕਦੋਂ ਅਤੇ ਕਿੱਥੇ ਮਿਲਣਗੇ ?
- 18. ਸਿੱਧੀ ਉੱਪਰ ਵੱਲ ਸੁੱਟੀ ਗਈ ਗੇਂਦ 6s ਬਾਅਦ ਸ਼ੁੱਟਣ ਵਾਲੇ ਕੋਲ ਵਾਪਸ ਆ ਜਾਂਦੀ ਹੈ। ਪਤਾ ਕਰੋ—
 - (i) ਗੇਂਦ ਕਿਸ ਵੇਗ ਨਾਲ ਉੱਪਰ ਵੱਲ ਸ਼ੁੱਟੀ ਗਈ ?
 - (ii) ਗੇਂਦ ਵੱਧ ਤੋਂ ਵੱਧ ਕਿੰਨੀ ਉੱਚੀ ਜਾਂਦੀ ਹੈ?
 - (iii) 4s ਬਾਅਦ ਗੇਂਦ ਦੀ ਸਥਿਤੀ।
- 19. ਕਿਸੇ ਦ੍ਵ ਵਿੱਚ ਡੁੱਬੀ ਹੋਈ ਵਸਤੂ ਤੇ ਉਛਾਲ ਬਲ ਕਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਕਿਰਿਆ ਕਰਦਾ ਹੈ ?
- 20. ਇੱਕ ਪਲਾਸਟਿਕ ਦਾ ਟੁਕੜਾ ਪਾਣੀ ਵਿੱਚ ਛੱਡ ਦਿੱਤੇ ਜਾਣ ਤੋਂ ਬਾਅਦ ਪਾਣੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਕਿਉਂ ਆ ਜਾਂਦਾ ਹੈ ?
- 50g ਪਦਾਰਥ ਦਾ ਆਇਤਨ 20cm³ ਹੈ। ਜੇਕਰ ਪਾਣੀ ਦੀ ਘਣਤਾ 1g/cm³ ਹੈ ਤਾਂ ਪਦਾਰਥ ਤੈਰੇਗਾ ਜਾਂ ਡੁੱਬੇਗਾ ?
- 22. 500g ਸੀਲਬੰਦ ਪੈਕੇਟ ਦਾ ਆਇਤਨ 350cm³ ਹੈ। ਪੈਕੇਟ 1gm cm⁻³ ਘਣਤਾ ਵਾਲੇ ਪਾਣੀ ਵਿੱਚ ਤੈਰੇਗਾ ਜਾਂ ਡੁੱਬੇਗਾ। ਪੈਕੇਟ ਦੁਆਰਾ ਵਿਸਥਾਪਿਤ ਪਾਣੀ ਦਾ ਪੁੰਜ ਕਿੰਨਾ ਹੋਵੇਗਾ ?

ਗਰੁਤਾ-ਆਕਰਸ਼ਣ

Downloaded from https:// www.studiestoday.co

161

ਅਧਿਆਇ 11

ਪਿਛਲੇ ਕੁਝ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਵਸਤੂਆਂ ਦੀ ਗਤੀ ਦੇ ਵਰਨਣ ਕਰਨ ਦੇ ਤਰੀਕਿਆਂ, ਗਤੀ ਦੇ ਕਾਰਨ ਅਤੇ ਗੁਰੂਤਾਕਰਸ਼ਣ ਦੇ ਬਾਰੇ ਵਿੱਚ ਚਰਚਾ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਕਾਰਜ ਇਕ ਹੋਰ ਅਵਧਾਰਨਾ (concept) ਹੈ ਜੋ ਸਾਨੂੰ ਅਨੇਕ ਪ੍ਰਾਕ੍ਰਿਤਿਕ ਘਟਨਾਵਾਂ ਨੂੰ ਸਮਝਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੀ ਹੈ। ਊਰਜਾ ਅਤੇ ਸ਼ਕਤੀ ਦਾ ਕੰਮ ਨਾਲ਼ ਨੇੜੇ ਦਾ ਸੰਬੰਧ ਹੈ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਇਨ੍ਹਾਂ ਵਿਚਾਰਾਂ/ਅਵਧਾਰਨਾਵਾਂ ਦੇ ਬਾਰੇ ਅਧਿਐਨ ਕਰਾਂਗੇ।

ਸਾਰੇ ਸਜੀਵਾਂ ਨੂੰ ਭੋਜਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਜੀਵਤ ਰਹਿਣ ਦੇ ਲਈ ਸਜੀਵਾਂ ਨੂੰ ਬਹੁਤ ਸਾਰੀਆਂ ਮੂਲਭੂਤ ਗਤੀਵਿਧੀਆਂ (ਕਿਰਿਆਵਾਂ) ਕਰਨੀਆਂ ਪੈਂਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਗਤੀਵਿਧੀਆਂ (ਕਿਰਿਆਵਾਂ) ਨੂੰ ਅਸੀਂ ਜੈਵ ਪ੍ਰਕ੍ਰਿਆ (life process) ਕਹਿੰਦੇ ਹਾਂ। ਇਨ੍ਹਾਂ ਕਿਰਿਆਵਾਂ (processes) ਦੇ ਲਈ ਊਰਜਾ ਭੋਜਨ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਕੁਝ ਹੋਰ ਕਿਰਿਆਵਾਂ ਜਿਸ ਤਰ੍ਹਾਂ-ਖੇਡਣ, ਗਾਉਣ, ਪੜ੍ਹਨ, ਲਿਖਣ, ਸੋਚਣ, ਕੁੱਦਣ, ਦੌੜਨ ਅਤੇ ਸਾਇਕਲ ਚਲਾਉਣ ਦੇ ਲਈ ਸਾਨੂੰ ਊਰਜਾ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਔਖਿਆਂ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਜ਼ਿਆਦਾ ਊਰਜਾ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।

ਜੰਤੂ ਵੀ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਰੁੱਝੇ ਰਹਿੰਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਉਹ ਕੁੱਦ ਜਾਂ ਦੌੜ ਸਕਦੇ ਹਨ।ਉਨ੍ਹਾਂ ਨੂੰ ਲੜਣਾ ਪੈਂਦਾ ਹੈ, ਆਪਣੇ ਦੁਸ਼ਮਣਾਂ ਤੋਂ ਦੂਰ ਭੱਜਣਾ ਪੈਂਦਾ ਹੈ, ਭੋਜਨ ਖਜਿਡੇ ਦੀ ਭਾਲ਼ ਜਾਂ ਆਵਾਸ ਦੇ ਲਈ ਸ਼ੁਰੱਖਿਅਤ ਥਾਵਾਂ ਲੱਭਣੀਆਂ ਪੈਂਦੀਆਂ ਹਨ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਕੁਝ ਜੰਤੂਆਂ ਨੂੰ ਅਸੀਂ ਭਾਰ ਢੋਣ, ਗੱਡੀ ਖਿੱਚਣ ਜਾਂ ਖੇਤ ਵਾਹੁਣ ਦੇ ਲਈ ਉਪਯੋਗ ਵਿੱਚ ਲਿਆਉਂਦੇ ਹਾਂ। ਇਨ੍ਹਾਂ ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ਉਰਜਾ ਦੀ ਜ਼ਹੂਰਤ ਹੁੰਦੀ ਹੈ।

ਮਸ਼ੀਨਾਂ ਬਾਰੇ ਸੋਚੀਏ। ਉਨ੍ਹਾਂ ਮਸ਼ੀਨਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜਿਨ੍ਹਾਂ ਦਾ ਉਪਯੋਗ ਤੁਸੀਂ ਕਰਦੇ ਹੈ। ਉਨ੍ਹਾਂ ਨੂੰ ਕੰਮ

ਕਾਰਜ ਅਤੇ ਊਰਜਾ (Work and Energy)

ਕਰਨ ਦੇ ਲਈ ਕਿਸ ਚੀਜ਼ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ ? ਕੁਝ ਇੰਜਣਾਂ ਨੂੰ ਪੈਟਰੋਲ ਅਤੇ ਡੀਜ਼ਲ ਦੀ ਜ਼ਰੂਰਤ ਕਿਉਂ ਹੁੰਦੀ ਹੈ ? ਸਜੀਵਾਂ ਅਤੇ ਮਸ਼ੀਨਾਂ ਨੂੰ ਊਰਜਾ ਦੀ ਜ਼ਰੂਰਤ ਕਿਉਂ ਹੁੰਦੀ ਹੈ ?

11.1 ਕਾਰਜ (Work)

ਕਾਰਜ ਕੀ ਹੈ ? ਅਸੀਂ ਆਪਣੇ ਦੈਨਿਕ ਜੀਵਨ ਵਿੱਚ ਜਿਸ ਰੂਪ ਵਿੱਚ ਕਾਰਜ ਸ਼ਬਦ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ ਅਤੇ ਜਿਸ ਰੂਪ ਵਿੱਚ ਅਸੀਂ ਇਸ ਨੂੰ ਵਿਗਿਆਨ ਵਿੱਚ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ, ਉਨ੍ਹਾਂ ਵਿੱਚ ਅੰਤਰ ਹੈ। ਇਸ ਗੱਲ ਨੂੰ ਸ਼ਪੱਸ਼ਟ ਕਰਨ ਦੇ ਲਈ ਆਓ ਕਝ ਉਦਾਹਰਣ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ।

11.1.1 ਔਖਾ ਕਾਰਜ ਕਰਨ ਦੇ ਬਾਵਜੂਦ ਕੁੱਝ ਜ਼ਿਆਦਾ 'ਕਾਰਜ' ਨਹੀਂ। (No much `More' inspite of Working Hard)

ਕਮਲੀ ਪ੍ਰੀਖਿਆ ਦੀ ਤਿਆਰੀ ਕਰ ਰਹੀ ਹੈ। ਉਹ ਅਧਿਐਨ ਵਿੱਚ ਬਹੁਤ ਸਾਰਾ ਸਮਾਂ ਬਤੀਤ ਕਰਦੀ ਹੈ। ਉਹ ਪੁਸਤਕਾਂ ਪੜ੍ਹਦੀ ਹੈ, ਚਿੱਤਰ ਬਣਾਉਂਦੀ ਹੈ, ਆਪਣੇ ਵਿਚਾਰਾਂ ਨੂੰ ਸੁਵਿਵਸਥਿਤ ਕਰਦੀ ਹੈ, ਪ੍ਰਸ਼ਨ-ਪੱਤਰਾਂ ਨੂੰ ਇਕੱਠਾ ਕਰਦੀ ਹੈ, ਜਮਾਤਾਂ ਵਿੱਚ ਹਾਜ਼ਰ ਰਹਿੰਦੀ ਹੈ, ਆਪਣੇ ਮਿੱਤਰਾਂ ਦੇ ਨਾਲ ਸਮੱਸਿਆਵਾਂ ਬਾਰੇ ਵਿਚਾਰ-ਵਟਾਂਦਰਾ ਕਰਦੀ ਹੈ ਅਤੇ ਪ੍ਰਯੋਗ ਕਰਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਕਿਰਿਆਵਾਂ ਉੱਤੇ ਉਹ ਬਹੁਤ ਸਾਰੀ ਊਰਜਾ ਲਗਾਉਂਦੀ ਹੈ। ਆਮ ਬੋਲਚਾਲ ਵਿੱਚ ਉਹ 'ਕਠੋਰ ਕਾਰਜ' (working hard) ਕਰ ਰਹੀ ਹੈ। ਅਗਰ ਅਸੀਂ ਕੰਮ ਨੂੰ ਵਿਗਿਆਨਿਕ ਪਰਿਭਾਸ਼ਾ ਦੇ ਅਨੁਸਾਰ ਦੇਖੀਏ ਤਾਂ ਇਸ ਕਠੋਰ ਕੰਮ ਵਿੱਚ ਬਹੁਤ ਥੋੜਾ 'ਕਾਰਜ' ਸ਼ਾਮਿਲ ਹੈ।

ਤੁਸੀਂ ਇੱਕ ਬਹੁਤ ਵੱਡੀ ਚਟਾਨ ਨੂੰ ਧੱਕਣ ਲਈ ਸਖ਼ਤ ਮਿਹਨਤ ਕਰ ਰਹੇ ਹੋ।ਮੰਨ ਲਉ ਤੁਹਾਡੇ ਸਾਰੇ ਯਤਨਾਂ ਦੇ ਬਾਵਜੂਦ ਚਟਾਨ ਨਹੀਂ ਹਿੱਲਦੀ।ਤੁਸੀਂ ਪੂਰਨ ਤੌਰ `ਤੇ ਥੱਕ ਚੁੱਕੇ ਹੋ।ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਚਟਾਨਾਂ ਉੱਤੇ ਕੋਈ ਕਾਰਜ

ਨਹੀਂ ਕੀਤਾ ਕਿਉਂਕਿ ਚਟਾਨ ਵਿੱਚ ਕੋਈ ਵਿਸਥਾਪਨ (displacement) ਕਾਰਜ ਨਹੀਂ ਹੋਇਆ।

ਤੁਸੀਂ ਆਪਣੇ ਸਿਰ ਉੱਪਰ ਇੱਕ ਭਾਰੀ ਬੋਝ ਰੱਖ ਕੁਝ ਮਿੰਟਾਂ ਦੇ ਲਈ ਬਿਨਾਂ ਹਿੱਲੇ-ਡੁੱਲੇ ਖੜ੍ਹੇ ਰਹਿੰਦੇ ਹੋ। ਤੁਸੀਂ ਬੱਕ ਜਾਂਦੇ ਹੋ। ਤੁਸੀਂ ਯਤਨ ਕੀਤਾ ਹੈ ਅਤੇ ਆਪਣੀ ਬਹੁਤ ਸਾਰੀ ਊਰਜਾ ਖਰਚ ਕੀਤੀ ਹੈ। ਕੀ ਤੁਸੀਂ ਭਾਰੀ ਬੋਝ ਉੱਤੇ ਕੋਈ ਕਾਰਜ ਕਰ ਰਹੇ ਹੋ?

ਅਸੀਂ ਵਿਗਿਆਨ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ 'ਕਾਰਜ' ਸ਼ਬਦ ਦਾ ਅਰਥ ਸਮਝ ਸਕਦੇ ਹਾਂ ਅਤੇ ਉਸ ਰੂਪ ਦੀ ਕਿਸ ਸਥਿਤੀ ਵਿੱਚ ਕਾਰਜ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ।

ਕੁਦਰਤੀ ਦ੍ਰਿਸ਼ਾਂ ਨੂੰ ਦੇਖਣ ਦੇ ਲਈ ਤੁਸੀਂ ਪੌੜੀਆਂ ਉੱਤੇ ਚੜ੍ਹ ਕੇ ਇਮਾਰਤ ਦੀਆਂ ਉਪਰਲੀਆਂ ਮੰਜਲਾਂ ਤੱਕ ਪਹੁੰਚ ਜਾਂਦੇ ਹੋ। ਤੁਸੀਂ ਇੱਕ ਉੱਚੇ ਦਰਖ਼ਤ ਉੱਤੇ ਵੀ ਚੜ੍ਹ ਸਕਦੇ ਹੋ। ਵਿਗਿਆਨਿਕ ਪਰਿਭਾਸ਼ਾ ਦੇ ਅਨੁਸਾਰ ਇਨ੍ਹਾਂ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਬਹੁਤ ਸਾਰਾ ਕਾਰਜ ਸ਼ਾਮਿਲ ਹੈ।

ਤੁਹਾਡੇ ਦੈਨਿਕ ਜੀਵਨ ਵਿੱਚ ਅਸੀਂ ਕਿਸੇ ਵੀ ਲਾਭਦਾਇਕ ਸਰੀਰਿਕ ਜਾਂ ਮਾਨਸਿਕ ਮਿਹਨਤ ਨੂੰ ਕਾਰਜ ਸਮਝਦੇ ਹਾਂ।ਕੁਝ ਕਿਰਿਆਕਲਾਪਾਂ ਜਿਸ ਤਰ੍ਹਾਂ- ਮੈਦਾਨ ਵਿੱਚ ਖੇਡਣਾ, ਮਿੱਤਰਾਂ ਨਾਲ ਬਾਤ-ਚੀਤ ਕਰਨਾ, ਕਿਸੇ ਧੁਨ ਨੂੰ ਗੁਣਗੁਣਾਉਣਾ, ਕਿਸੀ ਚਲ ਚਿੱਤਰ ਦੇਖਣਾ, ਕਿਸੇ ਸਮਾਰੋਹ ਵਿੱਚ ਸ਼ਾਮਿਲ ਹੋਣਾ ਨੂੰ ਕਦੀ-ਕਦੀ ਕਾਰਜ ਨਹੀਂ ਸਮਝਿਆ ਜਾਂਦਾ। ਕਾਰਜ ਕੀ ਹੁੰਦਾ ਹੈ ਇਹ ਇਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿ ਅਸੀਂ ਉਸ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ। ਵਿਗਿਆਨ ਵਿੱਚ ਅਸੀਂ ਕਾਰਜ ਸ਼ਬਦ ਨੂੰ ਭਿੰਨ-ਭਿੰਨ ਪ੍ਰਕਾਰ ਨਾਲ ਪ੍ਰਯੋਗ ਅਤੇ ਪ੍ਰਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ। ਇਹ ਜਾਣਨ ਲਈ ਆਉ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਕਿਰਿਆਵਾਂ ਕਰੀਏ-

ਕਿਰਿਆ ______11.1

ਉਪਰੋਕਤ ਪੈਰਿਆਂ ਵਿੱਚ ਅਸੀਂ ਅਨੇਕ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਕਿਰਿਆਵਾਂ ਦੀ ਵਿਆਖਿਆ ਕੀਤੀ ਹੈ ਕਿ ਜਿਨ੍ਹਾਂ ਨੂੰ ਅਸੀਂ ਆਪਣੇ ਦੈਨਿਕ ਜੀਵਨ ਵਿੱਚ ਕਾਰਜ ਮੰਨਦੇ ਹਾਂ। ਇਸ ਨੂੰ ਹਰੇਕ ਕਿਰਿਆਵਾਂ ਦੇ ਲਈ ਹੇਠਾਂ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦਾ ਉੱਤਰ ਦਿਉ—

- (i) ਕਿਸ ਵਸਤੂ ਉੱਤੇ ਕਾਰਜ ਕੀਤਾ ਗਿਆ ?
- (ii) ਵਸਤੂ ਉੱਤੇ ਕੀ ਵਾਪਰ ਰਿਹਾ ਹੈ ?
- (iii) ਕਾਰਜ ਕੌਣ ਕਰ ਰਿਹਾ ਹੈ ?

11.1.2. ਕਾਰਜ ਦੀ ਵਿਗਿਆਨਿਕ ਧਾਰਨਾ

ਵਿਗਿਆਨ ਦੇ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਅਸੀਂ ਕਾਰਜ ਨੂੰ ਕਿਸ ਪ੍ਰਕਾਰ ਦੇਖਦੇ ਅਤੇ ਪ੍ਰਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ। ਇਹ ਸਮਝਣ ਦੇ ਲਈ ਆਉ ਕੁਝ ਸਥਿਤੀਆਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ—

ਕਿਸੇ ਸਤ੍ਹਾ ਉੱਤੇ ਰੱਖੇ ਇੱਕ ਗੁਟਕੇ ਨੂੰ ਧਕੇਲੋ। ਗੁਟਕਾ ਕੁਝ ਦੂਰੀ ਤਹਿ ਕਰਦਾ ਹੈ। ਆਪਣੇ ਗੁਟਕੇ ਤੇ ਕੁਝ ਬਲ ਲਗਾਇਆ ਜਿਸ ਨਾਲ ਗੁਟਕਾ ਵਿਸਥਾਪਿਤ ਹੋ ਗਿਆ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਕਾਰਜ ਹੋਇਆ।

ਇੱਕ ਲੜਕੀ ਕਿਸੇ ਟਰਾਲੀ ਨੂੰ ਖਿੱਚਦੀ ਹੈ ਅਤੇ ਟਰਾਲੀ ਕੁਝ ਦੂਰ ਤੱਕ ਜਾਂਦੀ ਹੈ। ਲੜਕੀ ਨੇ ਟਰਾਲੀ ਤੇ ਬਲ ਲਗਾਇਆ ਅਤੇ ਉਹ ਵਿਸਥਾਪਿਤ ਹੋਈ ਇਸ ਲਈ ਕਾਰਜ ਕੀਤਾ ਗਿਆ।

ਇਕ ਪੁਸਤਕ ਨੂੰ ਕਿਸੇ ਉਚਾਈ ਤੱਕ ਉਠਾਉ। ਇਸ ਤਰ੍ਹਾਂ ਕਰਨ ਲਈ ਤੁਹਾਨੂੰ ਬਲ ਲਗਾਉਣਾ ਪਵੇਗਾ। ਪੁਸਤਕ ਉੱਪਰ ਉੱਠਦੀ ਹੈ। ਪੁਸਤਕ ਉੱਤੇ ਇੱਕ ਬਲ ਲਗਾਇਆ ਗਿਆ ਅਤੇ ਪੁਸਤਕ ਗਤੀਮਾਨ ਹੋਈ, ਇਸ ਲਈ ਕਾਰਜ ਕੀਤਾ ਗਿਆ।

ਉਪਰੋਕਤ ਸਥਿਤੀਆਂ ਨੂੰ ਧਿਆਨਪੂਰਵਕ ਦੇਖਣ ਤੋਂ ਗਿਆਤ ਹੁੰਦਾ ਹੈ ਕਿ ਕਾਰਜ ਕਰਨ ਦੇ ਲਈ ਦੋ ਦਿਸ਼ਾਵਾਂ ਦਾ ਹੋਣਾ ਜ਼ਰੂਰੀ ਹੈ। (i) ਵਸਤੂ ਉੱਤੇ ਕੋਈ ਬਲ ਲਗਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ (ii) ਵਸਤੂ ਵਿਸਥਾਪਿਤ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।

ਅਗਰ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੋਈ ਵੀ ਦਿਸ਼ਾ ਪੂਰੀ ਨਹੀਂ ਹੁੰਦੀ ਤਾਂ ਕਾਰਜ ਨਹੀਂ ਕੀਤਾ ਗਿਆ। ਵਿਗਿਆਨ ਵਿੱਚ ਅਸੀਂ ਕਾਰਜ ਨੂੰ ਇਸੇ ਦ੍ਰਿਸ਼ਟੀ ਤੋਂ ਵੇਖਦੇ ਹਾਂ।

ਇੱਕ ਬੈਲ ਕੋਈ ਗੱਡੀ ਨੂੰ ਖਿੱਚ ਰਿਹਾ ਹੈ।ਗੱਡੀ ਚੱਲਦੀ ਹੈ ਗੱਡੀ ਉੱਤੇ ਇੱਕ ਬਲ ਲੱਗ ਰਿਹਾ ਹੈ ਅਤੇ ਗੱਡੀ ਕੁਝ ਦੂਰ ਚੱਲਦੀ ਹੈ। ਕੀ ਤੁਹਾਡੇ ਵਿਚਾਰ ਅਨੁਸਾਰ ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਕਾਰਜ ਕੀਤਾ ਗਿਆ ਹੈ ?

বিবিস্প

11.2

- ਆਪਣੇ ਦੈਨਿਕ ਜੀਵਨ ਦੀਆਂ ਕੁਝ ਸਥਿਤੀਆਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿਸ ਵਿੱਚ ਕਾਰਜ ਸ਼ਾਮਿਲ ਹੈ।
- ਇਸ ਦੀ ਸੂਚੀ ਬਣਾਉ।
- ਆਪਣੇ ਮਿੱਤਰਾਂ ਨਾਲ ਵਿਚਾਰ ਵਟਾਂਦਰਾ ਕਰੋ ਕਿ ਕਿਸ ਸਥਿਤੀ ਵਿੱਚ ਕਾਰਜ ਕੀਤਾ ਗਿਆ ਹੈ।

ਕਾਰਜ ਅਤੇ ਉਰਜਾ

163

ਆਪਣੇ ਉੱਤਰਾਂ ਦਾ ਕਾਰਨ ਜਾਣਨ ਲਈ ਯਤਨ ਕਰੇ। ਅਗਰ ਕਾਰਜ ਹੋਇਆ ਹੈ ਤਾਂ ਵਸਤੂ ਉੱਤੇ ਕਿਹੜਾ ਬਲ ਕਾਰਜ ਕਰ ਰਿਹਾ ਹੈ।

ਉਹ ਕਿਹੜੀ ਵਸਤੂ ਹੈ, ਜਿਸ ਉੱਤੇ ਕਾਰਜ ਕੀਤਾ ਗਿਆ ਹੈ ?

ਜਿਸ ਵਸਤੂ ਉੱਤੇ ਕਾਰਜ ਕੀਤਾ ਗਿਆ ਹੈ ਉਸ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਕੀ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ।

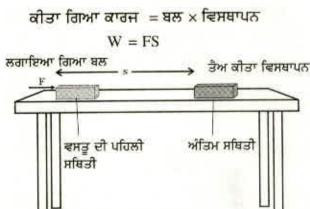
ਕਿਰਿਆ 1

____11.3

ਕੁਝ ਸਥਿਤੀਆਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ ਜਦੋਂ ਵਸਤੂ ਉੱਤੇ ਬਲ ਲਗਾਉਣ ਦੇ ਬਾਵਜੂਦ ਉਹ ਵਿਸਥਾਪਿਤ ਨਹੀਂ ਹੁੰਦੀ।

ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਥਿਤੀ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ ਜਦੋਂ ਕੋਈ ਵਸਤੂ ਬਲ ਲਗਾਉਣ ਤੇ ਵਿਸਥਾਪਿਤ ਹੋ ਜਾਵੇ।

ਹਰੇਕ ਦੇ ਲਈ ਜਿੰਨੀਆਂ ਸਥਿਤੀਆਂ ਤੁਸੀਂ ਸੋਚ ਸਕਦੇ ਹੋ ਉਸ ਦੀ ਸੂਚੀ ਬਣਾਉ।

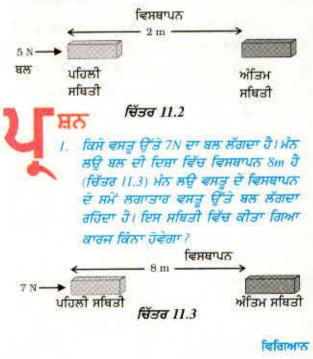

ਆਪਣੇ ਮਿੱਤਰਾਂ ਨਾਲ ਵਿਚਾਰ-ਦਿਮਰੇਸ਼ ਕਰੋ ਕਿ ਇਨ੍ਹਾਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਕਾਰਜ ਹੋਇਆ ਹੈ।

11.1.3 ਇੱਕ ਨਿਸ਼ਚਿਤ ਬਲ ਦੁਆਰਾ ਕੀਤਾ

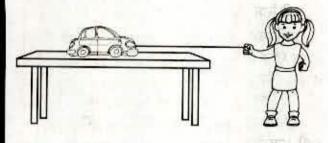
ਰਿਆ ਕਾਰਜ (Work Done by a Constant Force)

ਵਿਗਿਆਨ ਵਿੱਚ ਕਾਰਜ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ? ਇਸ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ, ਪਹਿਲੇ ਅਸੀਂ ਉਸ ਸਥਿਤੀ ਉੱਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ ਜਦੋਂ ਬਲ ਵਿਸਥਾਪਨ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਲੱਗ ਰਿਹਾ ਹੋਵੇ।

ਮੰਨ ਲਉ ਕਿਸੇ ਵਸਤੂ ਉੱਤੇ ਇੱਕ ਨਿਯਤ ਬਲ F ਕਾਰਜ ਕਰਦਾ ਹੈ।ਮੰਨ ਲਉ ਕਿ ਵਸਤੂ ਦੀ ਬਲ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ S ਦੂਰੀ ਵਿਸਥਾਪਿਤ ਹੋਈ (ਚਿੱਤਰ 11.1)ਮੰਨ ਲਉ W ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਹੈ। ਕਾਰਜ ਦੀ ਪਰਿਭਾਸ਼ਾ ਦੇ ਅਨੁਸਾਰ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਬਲ ਅਤੇ ਵਿਸਥਾਪਨ ਦੇ ਗੁਣਨਫਲ ਦੇ ਬਰਾਬਰ ਹੈ।


164

ਇਸ ਲਈ ਕਿਸੇ ਵਸਤੂ ਉੱਤੇ ਲੱਗਣ ਵਾਲਾ ਬਲ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਬਲ ਦੇ ਪਰਿਮਾਣ ਅਤੇ ਬਲ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਚਲੀ ਗਈ ਦੂਰੀ ਦੇ ਗੁਣਨਫਲ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਕਾਰਜ ਵਿੱਚ ਕੇਵਲ ਪਰਿਮਾਣ ਹੁੰਦਾ ਹੈ ਅਤੇ ਕੋਈ ਦਿਸ਼ਾ ਨਹੀਂ ਹੁੰਦੀ।


ਸਮੀਕਰਣ (11.1) ਵਿੱਚ ਅਗਰ F= 1N ਅਤੇ S = Im ਹੋਵੇ ਤਾਂ ਬਲ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਕਾਰਜ 1Nm ਹੋਵੇਗਾ। ਇੱਥੇ ਬਲ ਦਾ ਮਾਤ੍ਰਿਕ ਨਿਊਟਨ ਮੀਟਰ (Nm) ਜਾਂ ਜੂਲ (J) ਹੈ। ਇਸ ਲਈ 1J ਕਿਸੇ ਵਸਤੂ ਉੱਤੇ ਕੀਤੇ ਗਏ ਕਾਰਜ ਦੀ ਉਹ ਮਾਤਰਾ ਹੈ ਜਦੋਂ 1N ਦਾ ਬਲ ਵਸਤੂ ਨੂੰ ਬਲ ਦੀ ਕਿਰਿਆ ਰੇਖਾ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ 1m ਵਿਸਥਾਪਿਤ ਕਰ ਦੇਵੇ।

ਸਮੀਕਰਣ (11.1) ਨੂੰ ਧਿਆਨ ਪੂਰਵਕ ਦੇਖੀਏ। ਅਗਰ ਵਸਤੂ ਉੱਤੇ ਲੱਗਣ ਵਾਲਾ ਬਲ ਜ਼ੀਰੋ ਹੈ ਤਾਂ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਕਿੰਨਾ ਹੋਵੇਗਾ ? ਅਗਰ ਵਸਤੂ ਦਾ ਵਿਸਥਾਪਨ ਜ਼ੀਰੋ ਹੈ ਤਾਂ ਕੀ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਕਿੰਨਾ ਹੋਵੇਗਾ ? ਉਨ੍ਹਾਂ ਦਿਸ਼ਾਵਾਂ ਦਾ ਉਲੇਖ ਕਰੋ ਜਿਨ੍ਹਾਂ ਦਾ ਕਾਰਜ ਹੋਣ ਦੇ ਲਈ ਪਰਾ ਹੋਣਾ ਜ਼ਰਰੀ ਹੋਵੇ।

ਉਦਾਹਰਣ 11.1. ਕਿਸੇ ਵਸਤੂ ਉੱਤੇ 5N ਬਲ ਲੱਗ ਰਿਹਾ ਹੈ। ਬਲ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਵਸਤੂ 2m ਵਿਸਥਾਪਿਤ ਹੁੰਦੀ ਹੈ। (ਚਿੱਤਰ 11.2) ਅਗਰ ਵਿਸਥਾਪਨ ਹੁੰਦੇ ਸਮੇਂ ਲਗਾਤਾਰ ਵਸਤੂ ਉੱਤੇ ਬਲ ਲੱਗਦਾ ਰਹੇ, ਤਾਂ ਸਮੀਕਰਨ (11.1) ਦੇ ਅਨੁਸਾਰ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਹੋਵੇਗਾ 5N ×2m = 10Nm ਜਾਂ 10J।

ਇੱਕ ਹੋਰ ਸਥਿਤੀ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ ਜਿਸ ਵਿੱਚ ਬਲ ਅਤੇ ਵਿਸਥਾਪਨ ਇੱਕ ਹੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹਨ। ਇੱਕ ਬੱਚਾ ਕਿਸੇ ਖਿਲੋਣਾ ਕਾਰ ਨੂੰ ਚਿੱਤਰ 11.4 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਧਰਤੀ ਦੇ ਸਮਾਨ ਅੰਤਰ ਖਿੱਚ ਰਿਹਾ ਹੈ। ਬੱਚੇ ਨੇ ਕਾਰ ਦੇ ਵਿਸਥਾਪਨ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਬਲ ਲਗਾਇਆ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਬਲ ਅਤੇ ਵਿਸਥਾਪਨ ਦੇ ਗੁਣਨਫਲ ਦੇ ਬਰਾਬਰ ਹੋਵੇਗਾ। ਇਸ ਪ੍ਰਕਾਰ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਬਲ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਧਨਾਤਮਕ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ।

ਲ ਲੱਭ ਵਿੱਤਰ 11.4

ਹੁਣ ਇੱਕ ਹੋਰ ਸਥਿਤੀ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿਸ ਵਿੱਚ ਕਿ ਇੱਕ ਵਸਤੂ ਸਮਾਨ ਵੇਗ ਨਾਲ ਕਿਸੇ ਨਿਯਤ ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀ ਕਰ ਰਹੀ ਹੈ ਅਤੇ ਉਸ ਉੱਤੇ ਉਲਟ ਦਿਸ਼ਾ ਵਿੱਚ ਇੱਕ ਵਿਰੋਧੀ ਬਲ, F ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ, ਅਰਥਾਤ ਦੋਵਾਂ ਦਿਸ਼ਾਵਾਂ ਦੇ ਵਿੱਚ 180° ਦਾ ਕੋਣ ਬਣ ਰਿਹਾ ਹੈ। ਮੰਨ ਲਉ ਕਿ ਵਸਤੂ S ਦੂਰੀ ਦੇ ਵਿਸਥਾਪਨ ਦੇ ਮਗਰੋਂ ਰੁਕ ਜਾਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਬਲ F ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਰਿਣਾਤਮਕ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸੇ ਰਿਣ ਚਿੰਨ੍ਹ ਦੁਆਰਾ ਨਿਰਦੇਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਬਲ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਕਾਰਜ F × (-S) ਜਾਂ (-F × S) ਹੈ।

ਜਦੋਂ ਬਲ ਵਿਸਥਾਪਨ ਦੀ ਦਿਸ਼ਾ ਦੀ ਉਲਟ ਦਿਸ਼ਾ ਲੱਗਦਾ ਹੈ ਤਾਂ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਰਿਣਾਤਮਕ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਬਲ ਵਿਸਥਾਪਨ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਲੱਗਦਾ ਹੈ ਤਾਂ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਧਨਾਤਮਕ ਹੁੰਦਾ ਹੈ।

ਉਪਰੋਕਤ ਵਿਚਾਰ ਗੋਸ਼ਟੀ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਕਿਸੇ ਬਲ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਧਨਾਤਮਕ ਜਾਂ ਰਿਣਾਤਮਕ ਦੋਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਇੱਕ ਹੋ ਸਕਦਾ ਹੈ। ਇਸ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਆਉ ਅਸੀਂ ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਕਰੀਏ:—

ਕਿਰਿਆ

ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਉੱਪਰ ਉਠਾਉ। ਤੁਹਾਡੇ ਦੁਆਰਾ ਵਸਤੂ ਉੱਤੇ ਲਗਾਏ ਗਏ ਬਲ ਦੇ ਦੁਆਰਾ ਕਾਰਜ ਕੀਤਾ ਗਿਆ। ਵਸਤੂ ਉੱਪਰ ਵੱਲ ਚੱਲਦੀ ਹੈ। ਤੁਹਾਡੇ ਦੁਆਰਾ ਲਗਾਇਆ ਗਿਆ ਬਲ ਵਿਸਥਾਪਨ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਹੈ। ਅਸਲ ਵਿੱਚ ਵਸਤੂ ਉੱਤੇ ਗੁਰੂਤਵੀਏ ਬਲ ਵੀ ਕਿਰਿਆ ਕਰਦਾ ਹੈ। ਇਸ ਵਿੱਚੋਂ ਕਿਹੜਾ ਬਲ ਧਨਾਤਮਕ ਕਾਰਜ ਕਰ ਰਿਹਾ ਹੈ?

11.4

ਕਿਹੜਾ ਬਲ ਰਿਣਾਤਮਕ ਕਾਰਜ ਕਰ ਰਿਹਾ ਹੈ ? ਕਾਰਨ ਦੱਸੋ।

ਉਦਾਹਰਣ 11.2 ਇੱਕ ਕੁਲੀ 15kg ਦਾ ਬੋਝ ਧਰਤੀ ਤੋਂ 1.5m ਉੱਪਰ ਉਠਾ ਕੇ ਆਪਣੇ ਸਿਰ ਉੱਤੇ ਰੱਖਦਾ ਹੈ।ਉਸਦੇ ਦੁਆਰਾ ਬੋਝ ਉੱਤੇ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਦਾ ਪਰਿਕਲਨ ਕਰੋ। ਹੱਲ—

ਬੋਝ ਦਾ ਭਾਰ m = 15kg ਅਤੇ ਵਿਸਥਾਪਨ S = 1.5m ਕੀਤਾ ਗਿਆ ਕਾਰਜ W = F × S

- $= mg \times S$
 - $= 15 \text{kg} \times 10 \text{ms}^{-2} \times 1.5 \text{m}$
 - $= 225 \text{ kgms}^{-2} \text{ m}$
 - = 225 Nm = 225 J

ਕੁਲੀ ਦੁਆਰਾ ਬੋਝ ਉੱਤੇ ਕੀਤਾ ਗਿਆ ਕਾਰਜ 225J ਹੈ।

।. ਅਸੀਂ ਕਦੇ ਕਹਿੰਦੇ ਹਾਂ ਕਿ ਕਾਰਜ ਕੀਤਾ ਗਿਆ ਹੈ ?

- 2. ਜਦੋਂ ਕਿਸੇ ਵਸਤੂ ਉੱਤੇ ਲੱਗਣ ਵਾਲਾ ਬਲ ਇਸਦੇ ਵਿਸਥਾਪਨ ਦੀ ਦਿਸ਼ਾ ਵੱਲ ਹੋਵੇ ਤਾਂ ਕੀਤੇ ਗਏ ਕਾਰਜ ਨੂੰ ਪ੍ਰਗਟ ਕਰੋ।
- 3. 1J ਕਾਰਜ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ।
- 4. ਬੈਲਾਂ ਦੀ ਇੱਕ ਜੋੜੀ ਖੇਤ ਨੂੰ ਜੋਤੇ ਸਮੇਂ ਕਿਸੇ ਹੱਲ ਉੱਤੇ 140N ਬਲ ਲਗਾਉਂਦੀ ਹੈ। ਜੋਤਿਆ ਗਿਆ ਖੇਤ 15m ਲੰਬਾ ਹੈ। ਖੇਤ ਦੀ ਲੰਬਾਈ ਨੂੰ ਜੋਤਨੇ ਵਿੱਚ ਕਿੰਨਾ ਕਾਰਜ ਕੀਤਾ ਗਿਆ ?

165

11.2 ਊਰਜਾ (Energy)

HO

ਊਰਜਾ ਦੇ ਬਿਨਾਂ ਜੀਵਨ ਅਸੰਭਵ ਹੈ। ਊਰਜਾ ਦੀ ਜ਼ਰੂਰਤ ਦਿਨ ਪ੍ਰਤੀਦਿਨ ਵੱਧ ਰਹੀ ਹੈ। ਸਾਨੂੰ ਉਰਜਾ ਕਿੱਥੋਂ ਪ੍ਰਾਪਤ

ਕਾਰਜ ਅਤੇ ਉਰਜਾ

ਹੁੰਦੀ ਹੈ ? ਸੂਰਜ ਸਾਡੇ ਲਈ ਊਰਜਾ ਦਾ ਸਭ ਤੋਂ ਵੱਡਾ ਪ੍ਰਾਕ੍ਰਿਤਿਕ ਸਰੋਤ ਹੈ। ਸਾਡੇ ਊਰਜਾ ਦੇ ਬਹੁਤ ਸਾਰੇ ਸਰੋਤ ਸੂਰਜ ਤੋਂ ਉਤਪੰਨ ਹੁੰਦੇ ਹਨ। ਅਸੀਂ ਪਰਮਾਣੂਆਂ ਦੇ ਕੇਂਦਰਕਾਂ ਤੋਂ ਪ੍ਰਿਥਵੀ ਦੇ ਅੰਦਰੂਨੀ ਭਾਗਾਂ ਤੋਂ ਅਤੇ ਜਵਾਰਭਾਟਾ ਤੋਂ ਵੀ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਕੀ ਤੁਸੀਂ ਊਰਜਾ ਦੇ ਹੋਰ ਸਰੋਤਾਂ ਦੇ ਬਾਰੇ ਸੋਚ ਸਕਦੇ ਹੋ ?

ਕਿਰਿਆ

11.5

ਊਰਜਾ ਦੇ ਕੁਝ ਸਰੋਤਾਂ ਦਾ ਉੱਪਰ ਵਰਨਣ ਕੀਤਾ ਗਿਆ ਹੈ। ਊਰਜਾ ਦੇ ਅਨੇਕ ਹੋਰ ਵੀ ਸਰੋਤ ਹਨ। ਉਹਨਾਂ ਦੀ ਸੂਚੀ ਬਣਾਉ। ਛੋਟੇ ਸਮੂਹਾਂ ਵਿੱਚ ਵਿਚਾਰ ਵਟਾਂਦਰਾ ਕਰੋ ਕਿ ਕਿਸ ਤਰ੍ਹਾਂ ਊਰਜਾ ਦੇ ਕੁਝ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਸਰੋਤ ਵੀ ਹਨ ਜੋ ਸਰਜ ਦੇ ਕਾਰਨ ਨਹੀਂ ਹਨ ?

ਉਰਜਾ ਸ਼ਬਦ ਦਾ ਪਯੋਗ ਵੀ ਸਾਡੇ ਦੈਨਿਕ ਜੀਵਨ ਵਿੱਚ ਹੁੰਦਾ ਰਹਿੰਦਾ ਹੈ। ਲੇਕਿਨ ਵਿਗਿਆਨ ਵਿੱਚ ਇਸ ਦਾ ਇੱਕ ਨਿਸ਼ਚਿਤ ਅਤੇ ਪਰਿਸ਼ੁੱਧੇ ਅਰਥ ਹੈ।ਆਉ ਹੇਠ ਲਿਖੀਆਂ 🔊 ਉਦਾਹਰਣਾਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ ਜਦੋਂ ਤੇਜ਼ ਵੇਗ ਨਾਲ ਗਤੀਸ਼ੀਲ ਕ੍ਰਿਕੇਟ ਦੀ ਗੇਂਦ ਸਥਿਰ ਵਿਕਟਾਂ ਨਾਲ ਟਕਰਾਉਂਦੀ ਹੈ, ਤਾਂ ਵਿਕਟ ਦੂਰ ਜਾ ਡਿੱਗਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਕਿਸੀ ਨਿਸ਼ਚਿਤ ਉੱਚਾਈ ਉੱਤੇ ਉਠਾਉਂਦੇ ਹਾਂ ਤਦ ਉਸ ਵਿੱਚ ਕਾਰਜ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਸਮਾਹਿਤ ਪੈਦਾ ਹੋ ਜਾਂਦੀ ਹੈ। ਤੁਸੀਂ ਜ਼ਰੂਰ ਹੀ ਦੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਉੱਚਾਈ ਤੱਕ ਉਠਾਇਆ ਗਿਆ ਹਥੌੜਾ ਜਦੋਂ ਲੱਕੜੀ ਦੇ ਕਿਸੇ ਟੁਕੜੇ ਉੱਤੇ ਰੱਖੀ ਹੋਈ ਕਿੱਲ ਉੱਤੇ ਕਿਰਿਆ ਕਰਦਾ ਹੈ ਤਾਂ ਉਹ ਕਿੱਲ ਨੂੰ ਲੱਕੜੀ ਵਿੱਚ ਠੋਕ ਦੇਂਦਾ ਹੈ। ਅਸੀਂ ਬੱਚਿਆਂ ਦੇ ਖਿਲੌਣਿਆਂ (ਜਿਸ ਤਰ੍ਹਾਂ ਖਿਲੌਣਾ-ਕਾਰ) ਵਿੱਚ ਚਾਬੀ ਭਰਦੇ ਵੀ ਦੇਖਿਆ ਹੈ ਅਤੇ ਜਦੋਂ ਇਹ ਖਿਲੌਣਾ ਕਿਸੀ ਫਰਸ਼ ਉੱਤੇ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਹ ਗਤੀ ਕਰਨ ਲੱਗਦਾ ਹੈ। ਜਦੋਂ ਕਿਸੇ ਗੁਬਾਰੇ ਵਿੱਚ ਹਵਾ ਭਰ ਕੇ ਉਸੇ ਨੂੰ ਦਬਾਉਂਦੇ ਹਨ ਤਾਂ ਉਸ ਦੀ ਆਕ੍ਰਿਤੀ ਵਿੱਚ ਤਬਦੀਲੀ ਹੁੰਦੀ ਹੈ।ਜੇਕਰ ਅਸੀਂ ਗੁਬਾਰੇ ਨੂੰ ਘੱਟ ਬਲ ਲਗਾ ਕੇ ਦਬਾਉਂਦੇ ਹਾਂ ਤਾਂ ਬਲ ਨੂੰ ਹਟਾਉਣ ਉੱਤੇ ਉਹ ਆਪਣੀ ਅਸਲ ਆਕ੍ਰਿਤੀ ਵਿੱਚ ਵਾਪਸ ਆ ਸਕਦਾ ਹੈ। ਅਗਰ ਜਦੋਂ ਅਸੀਂ ਗੁਬਾਰੇ ਨੂੰ ਅਧਿਕ ਬਲ ਨਾਲ ਦਬਾਉਂਦੇ ਹਾਂ ਉਹ ਵਿਸਫੋਟਿਕ ਅਵਾਜ਼ ਕਰਦੇ ਹੋਏ ਫਟ ਵੀ ਸਕਦਾ ਹੈ। ਇਨਾਂ ਸਾਰੀਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚ ਵਸਤੂਆਂ ਭਿੰਨ-ਭਿੰਨ

ਪ੍ਰਕਾਰ ਤੋਂ, ਕਾਰਜ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਗ੍ਰਹਿਣ ਕਰ ਲੈਂਦੀਆਂ ਹਨ। ਅਗਰ ਕਿਸੇ ਵਸਤੂ ਵਿੱਚ ਕਾਰਜ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਹੈ ਤਾਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਉਸ ਵਿੱਚ ਊਰਜਾ ਹੈ। ਜੋ ਵਸਤੂ ਕਾਰਜ ਕਰਦੀ ਹੈ ਉਸ ਵਿੱਚ ਊਰਜਾ ਦੀ ਹਾਨੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਜਿਸ ਵਸਤੂ ਉੱਤੇ ਕਾਰਜ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਉਸ ਵਿੱਚ ਊਰਜਾ ਦਾ ਵਾਧਾ ਹੁੰਦਾ ਹੈ।

ਕਿਸੇ ਵਸਤ ਵਿੱਚ ਅਗਰ ਉਰਜਾ ਹੈ ਤਾਂ ਉਹ ਕਿਸ ਤਰ੍ਹਾਂ ਕਾਰਜ ਕਰਦੀ ਹੈ ? ਕੋਈ ਵਸਤੂ ਜਿਸ ਵਿੱਚ ਊਰਜਾ ਹੈ ਤਾਂ ਉਹ ਦੁਸਰੀ ਵਸਤੂ ਉੱਤੇ ਬਲ ਲਗਾ ਸਕਦੀ ਹੈ। ਜਦੋਂ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦਾ ਹੈ ਤਾਂ ਊਰਜਾ ਪਹਿਲੀ ਵਸਤੂ ਤੋਂ ਦੂਸਰੀ ਵਸਤੂ ਵਿੱਚ ਸਥਾਨ ਅੰਤਰਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਦੁਸਰੀ ਵਸਤੂ ਕਿਉਂਕਿ ਕੁਝ ਉਰਜਾ ਗਹਿਣ ਕਰਦੀ ਹੈ, ਇਸ ਲਈ ਕੁਝ ਕਾਰਜ ਕਰ ਸਕਦੀ ਹੈ ਅਤੇ ਇਸ ਪਕਾਰ ਇਹ ਗਤੀ ਵਿੱਚ ਆ ਸਕਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਪਹਿਲੀ ਵਸਤੂ ਵਿੱਚ ਕਾਰਜ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਹੈ। ਇਸ ਦਾ ਅਰਥ ਹੋਇਆ ਕਿ ਕੋਈ ਵੀ ਵਸਤੂ ਜਿਸ ਵਿੱਚ ਉਰਜਾ ਹੈ, ਕਾਰਜ ਕਰ ਸਕਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਕਿਸੇ ਵਸਤੂ ਵਿੱਚ ਨਹਿਤ ਊਰਜਾ ਨੂੰ ਉਸਦੀ ਕਾਰਜ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਦੇ ਰੂਪ ਵਿੱਚ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਉਰਜਾ ਦੀ ਇਕਾਈ ਉਹੀ ਹੈ ਜੋ ਕਾਰਜ ਦੀ ਹੈ ਅਰਥਾਤ ਜੂਲ (J)। ਇੱਕ ਜੂਲ ਕਾਰਜ ਕਰਨ ਦੇ ਲਈ ਜ਼ਰੂਰੀ ਉਰਜਾ ਦੀ ਮਾਤਰਾ 1J ਹੁੰਦੀ ਹੈ। ਕਦੇ-ਕਦੇ ਉਰਜਾ ਦੀ ਵੱਡੀ ਇਕਾਈ ਕਿਲੋਂ ਜੁਲ (kJ) ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। lkJ, 1000J ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।

11.2.1 ਊਰਜਾ ਦੇ ਰੂਪ (Forms of Energy)

ਸਭਾਗਿਆ ਨਾਲ ਜਿਸ ਸੰਸਾਰ ਵਿੱਚ ਅਸੀਂ ਰਹਿੰਦੇ ਹਾਂ ਉਸ ਵਿੱਚ ਊਰਜਾ ਅਨੇਕ ਰੂਪਾਂ ਵਿੱਚ ਮੌਜੂਦ ਹੈ। ਭਿੰਨ-ਭਿੰਨ ਰੂਪਾਂ ਵਿੱਚ ਸਥਿਤਿਜ ਊਰਜਾ, ਗਤਿਜ ਊਰਜਾ, ਊਸ਼ੇਮਾ ਊਰਜਾ, ਰਸਾਇਣਿਕ ਊਰਜਾ, ਬਿਜਲੀ ਊਰਜਾ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਊਰਜਾ ਸ਼ਾਮਲ ਹੈ। ਕਿਸੀ ਵਸਤੂ ਦੀ ਸਥਿਤਿਜ ਅਤੇ ਗਤਿਜ ਊਰਜਾ ਦੇ ਜੋੜ ਨੂੰ ਵਸਤੂ ਦੀ ਯੰਤਰਿਕ ਊਰਜਾ ਕਹਿੰਦੇ ਹਨ।

ਇਸ ਨੂੰ ਸੋਚੀਏ

ਤੁਸੀਂ ਕਿਸ ਤਰ੍ਹਾਂ ਗਿਆਤ ਕਰੋਗੇ ਕਿ ਕੋਈ ਸਤ੍ਹਾ (ਵਸਤੂ ਜਿਸਦੀ ਹੋਂਦ ਹੈ) ਊਰਜਾ ਦਾ ਰੂਪ ਹੈ। ਆਪਣੇ ਮਿੱਤਰਾਂ ਅਤੇ ਅਧਿਆਪਕਾਂ ਨਾਲ ਵਿਚਾਰ-ਵਟਾਂਦਰਾ ਕਰੋ।

166

ਵਿਗਿਆਨ

ਜੈਮਸ ਪ੍ਰੈਸਕਾਂਟ ਜੂਲ ਇੱਕ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਬ੍ਰਿਟਿਸ਼ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਸਨ। ਉਹ ਆਪਣੇ ਬਿਜਲੀ ਅਤੇ ਊਸ਼ਮਾਗਤਿਕੋਂ ਦੇ ਖੋਜਾਂ ਦੇ ਲਈ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਨਾਲ ਪ੍ਰਸਿੱਧ ਹੋਏ। ਹੋਰ ਵਿਚਾਰਾਂ ਤੋਂ ਇਲਾਵਾ ਉਨਾਂ ਨੇ

11.6

ਜੈਮਸ ਪ੍ਰੈਸਕਾਂਟ ਜੂਲ ਬਿਜਲੀ ਦੇ ਊਸ਼ੋਸੀ ਪ੍ਰਭਾਵ ਦੇ ਬਾਰੇ W

ਕਿਰਿਆ

ਵਿੱਚ ਨਿਯਮ ਬਣਾਇਆ। ਉਨ੍ਹਾਂ ਨੇ ਊਰਜਾ ਸੁਰੱਖਿਅਣ ਨਿਯਮ ਨੂੰ ਪ੍ਯੋਗਾਤਮਕ ਰੂਪ ਨਾਲ ਸਥਾਪਿਤ ਕੀਤਾ ਅਤੇ ਊਸ਼ਮਾ ਦੇ ਯਾਂਤਰਿਕ ਡੁਲਾਬੀਕ ਦੇ ਸਾਪ ਮਾਨ ਦੀ ਖੋਜ ਕੀਤੀ। ਊਰਜਾ ਅਤੇ ਕਾਰਜ ਦੇ ਮਾਤਿ੍ਕ ਦਾ ਨਾਮ ਜੂਲ ਉਨ੍ਹਾਂ ਦੇ ਸਨਮਾਨ ()ਰੱਖਿਆ ਗ੍ਰਿਆ ਹੈ।

11.2.2. गांडिन ਊरान (Kinetic Energy)

1

ਇੱਕ ਭਾਰੀ ਗੇਂਦ ਲਉ। ਇਸ ਨੂੰ ਰੇਤ ਦੀ ਮੋਟੀ ਪਰਤ (ਕਿਆਰੀ) ਉੱਤੇ ਰੱਖੋ। ਗਿੱਲੀ ਰੇਤ ਦੀ ਸਤ੍ਹਾ ਚੰਗਾ ਕਾਰਜ ਕਰੇਗੀ। ਗੇਂਦ ਨੂੰ ਰੇਤ ਉੱਤੇ ਲਗਭਗ 25cm ਦੀ ਉਚਾਈ ਨਾਲ ਸੁੱਟੇ। ਗੇਂਦ ਰੇਤ ਵਿੱਚ ਇੱਕ ਖੱਡਾ ਬਣਾ ਦੇਂਦੀ ਹੈ। ਇਸ ਕਿਰਿਆ ਨੂੰ 50m, 1m ਅਤੇ 1.5m ਦੀਆਂ ਉਚਾਈਆਂ ਤੋਂ ਗੇਂਦ ਨੂੰ ਡਿੱਗ ਕੇ ਦਹਰਾਉ।

ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਸਾਰੇ ਖੋਡੇ ਸਪੱਸ਼ਟ ਦਿਖਾਈ ਦੇਣ। ਗੇਂਦ ਨੂੰ ਡਿੱਗਣ ਦੀ ਉਚਾਈ ਦੇ ਅਨੁਸਾਰ ਸਾਰੇ ਖੱਡਿਆਂ ਉੱਤੇ ਨਿਸ਼ਾਨ ਲਗਾਓ।

ਉਨ੍ਹਾਂ ਦੀਆਂ ਗਹਿਰਾਈਆਂ ਦੀ ਤੁਲਨਾ ਕਰੋ।

ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਖੱਡਾ ਸਭ ਤੋਂ ਅਧਿਕ ਡੂਂਘਾ ਹੈ। ਕਿਹੜਾ ਖੱਡਾ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਉਠਾਲਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਕਿਉਂ ਹੈ ?

ਗੇਂਦ ਨੇ ਕਿਸ ਕਾਰਨ ਨਾਲ ਡੂੰਘਾ ਖੱਡਾ ਬਣਾਇਆ ∂ ਵਿਚਾਰ ਵਟਾਂਦਰਾ ਕਰੋ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰੋ।

11.7

11.5 ਦੇ ਅਨੁਸਾਰ ਉਪਕਰਨ ਨੂੰ ਸੈੱਟ ਕਰੋ। ਇੱਕ ਗਿਆਤ ਪੁੰਜ ਦੇ ਲੱਕੜੀ ਦੇ ਗੁਟਕੇ ਨੂੰ ਟਰਾਲੀ ਦੇ ਸਾਹਮਣੇ ਕਿਸੇ ਦੂਰੀ ਤੇ ਰੱਖੋ।

> ਪਲੜੇ ਉੱਤੇ ਇੱਕ ਗਿਆਤ ਪੁੰਜ ਜਿਸ ਵਿੱਚ ਕਿ ਟਰਾਲੀ ਗਤੀਮਾਨ ਹੋ ਜਾਵੇ।

> ਟਰਾਲੀ ਅੱਗੇ ਚੱਲਦੀ ਹੈ ਅਤੇ ਲੱਕੜੀ ਦੇ ਗੁਟਕੇ ਨਾਲ ਟਕਰਾਉਂਦੀ ਹੈ।

> ਮੇਜ ਉੱਤੇ ਇੱਕ ਅਵਰੋਧਕ ਇਸ ਤਰ੍ਹਾਂ ਲਗਾਉ ਕਿ ਗੁਟਕੇ ਨਾਲ ਟਕਰਾਉਣ ਦੇ ਮਗਰੋਂ ਟਰਾਲੀ ਉੱਥੇ ਹੀ ਰੁਕ ਜਾਵੇ। ਗੁਟਕਾ ਵਿਸਥਾਪਿਤ ਹੋ ਜਾਂਦਾ ਹੈ।

> ਗੁਟਕੇ ਦੇ ਵਿਸਥਾਪਨ ਨੂੰ ਮਾਪੋ। ਇਸਦਾ ਅਰਥ ਹੋਇਆ ਕਿ ਜਿਵੇਂ ਹੀ ਗੁਟਕੇ ਨੇ ਊਰਜਾ ਗ੍ਰਹਿਣ ਕੀਤੀ, ਟਰਾਲੀ ਰਾਹੀਂ ਗੁਟਕੇ ਉੱਤੇ ਕਾਰਜ ਕੀਤਾ ਗਿਆ।

ਇਹ ਊਰਜਾ ਕਿੱਥੋਂ ਆਈ ?

ਪਲੜੇ ਉੱਤੇ ਰੱਖੇ ਪੁੰਜ ਨੂੰ ਵਧਾ ਕੇ ਇਸ ਪ੍ਯੋਗ ਨੂੰ ਦੁਹਰਾਓ।

ਕਿਸ ਅਵਸਥਾ ਵਿੱਚ ਵਿਸਥਾਪਨ ਅਧਿਕ ਹੈ। ਕਿਸ ਅਵਸਥਾ ਵਿੱਚ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਜ਼ਿਆਦਾ ਹੋਵੇਗਾ ?

ਇਸ ਕਿਰਿਆ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਟਰਾਲੀ ਕਾਰਜ ਕਰਦੀ ਨਿਤਾ ਨੇ ਹੈ ਅਤੇ ਇਸ ਵਿੱਚ ਊਰਜਾ ਮੌਜੂਦ ਹੈ।

ਇੱਕ ਚਲਦੀ ਹੋਈ ਵਸਤੂ ਕਾਰਜ ਕਰ ਸਕਦੀ ਹੈ। ਇੱਕ ਤੇਜ਼ ਚਲਦੀ ਹੋਈ ਵਸਤੂ ਆਪਣੇ ਮੁਕਾਬਲੇ ਤੋਂ ਹੌਲੀ ਚੱਲਦੀ ਹੋਈ ਵਸਤੂ ਨਾਲ ਜ਼ਿਆਦਾ ਕਾਰਜ ਕਰ ਸਕਦੀ ਹੈ। ਇੱਕ ਗਤੀਸ਼ੀਲ ਗੋਲੀ, ਵੱਗਦੀ ਹੋਈ ਹਵਾ, ਘੁੰਮਦਾ ਹੋਇਆ ਪਹੀਆ, ਇੱਕ ਗਤੀਸ਼ੀਲ ਪੱਥਰ, ਇਹ ਸਾਰੇ ਕਾਰਜ ਕਰ ਸਕਦੇ ਹਨ। ਗੋਲੀ ਲਕਸ਼ਿਆ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਭੇਦ ਪਾਉਂਦੀ ਹੈ ? ਵਗਦੀ ਹੋਈ ਹਵਾ, ਪ੍ਰਵੰਨ ਚੱਕੀ ਦੀਆਂ ਪੱਖੜੀਆਂ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਘੁਮਾਉਂਦੀ ਹੈ ? ਗਤੀਸ਼ੀਲ ਵਸਤੂਆਂ ਵਿੱਚ ਊਰਜਾ ਹੁੰਦੀ ਹੈ। ਅਸੀਂ ਇਸ ਊਰਜਾ ਨੂੰ ਗਤਿਜ ਊਰਜਾ ਕਹਿੰਦੇ ਹਨ।

ਡਿੱਗਦਾ ਹੋਇਆ ਨਾਰੀਅਲ, ਗਤੀਸ਼ੀਲ ਕਾਰ, ਰਿੜ੍ਹਦਾ ਹੋਇਆ ਪੱਥਰ, ਉੱਡਦਾ ਹੋਇਆ ਹਵਾਈ ਜਹਾਜ਼, ਵੱਗਦਾ ਹੋਇਆ ਪਾਣੀ, ਵਗਦੀ ਹੋਈ ਹਵਾ, ਦੌੜਦਾ ਹੋਇਆ

167

ਕਾਰਜ ਅਤੇ ਊਰਜਾ

ਕਿਰਿਆ

ਖਿਡਾਰੀ ਆਦਿ ਇਨ੍ਹਾਂ ਸਾਰਿਆਂ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਊਰਜਾ ਮੌਜੂਦ ਹੈ। ਸੰਖੇਪ ਵਿੱਚ ਕਿਸੇ ਵਸਤੂ ਵਿੱਚ ਉਸਦੀ ਗਤੀ ਦੇ ਕਾਰਨ ਨਿਹਿਤ ਊਰਜਾ ਨੂੰ ਗਤਿਜ ਊਰਜਾ ਕਹਿੰਦੇ ਹਨ। ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਉਸਦੀ ਚਾਲ ਅਨੁਸਾਰ ਵੱਧਦੀ ਹੈ।

ਕਿਸੇ ਗਤੀਸ਼ੀਲ ਵਸਤੂ ਵਿੱਚ ਉਸਦੀ ਗਤੀ ਦੇ ਕਾਰਨ ਕਿੰਨੀ ਊਰਜਾ ਨਿਹਿਤ ਹੁੰਦੀ ਹੈ। ਪਰਿਭਾਸ਼ਾ ਦੇ ਅਨੁਸਾਰ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਕਿਸੀ ਨਿਸ਼ਚਿਤ ਵੇਗ ਨਾਲ ਗਤੀਸ਼ੀਲ ਵਸਤੂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਉਸ ਵਸਤੂ ਉੱਤੇ ਵੇਗ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਕੀਤੇ ਗਏ ਕਾਰਜ ਦੇ ਬਰਾਬਰ ਹੈ।

ਆਉ ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਨੂੰ ਇੱਕ ਸਮੀਕਰਨ ਦੇ ਰੂਪ ਵਿੱਚ ਬਿਆਨ ਕਰੀਏ। ਮੰਨ ਲਉ ਕਿ ਪੁੰਜ ਦੀ ਇੱਕ ਵਸਤੂ ਇੱਕ ਸਮਾਨ ਵੇਗ ਨਾਲ ਗਤੀਸ਼ੀਲ ਹੈ।

ਹੁਣ ਮੰਨ ਲਉ ਜਦੋਂ ਇਸ ਉੱਤੇ ਇੱਕ ਨਿਯਮਤ ਬਲ F ਵਿਸਥਾਪਨ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਲੱਗਦਾ ਹੈ ਤਾਂ ਵਸਤੂ S ਦੂਰੀ ਤੱਕ ਵਿਸਥਾਪਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਸਮੀਕਰਨ (11.1) ਤੋਂ, ਕੀਤਾ ਗਿਆ ਕਾਰਜ W, Fs ਦੇ ਬਰਾਬਰ ਹੈ। ਵਸਤੂ ਉੱਤੇ ਕੀਤੇ ਗਏ ਕਾਰਜ ਦੇ ਕਾਰਨ ਇਸਦੇ ਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋਵੇਗਾ। ਮੰਨ ਲਉ ਕਿ ਇਸਦਾ ਵੇਗ u ਤੇ V ਹੋ ਜਾਂਦਾ ਹੈ। ਮੰਨ ਲਉ ਉਤਪੰਨ ਹੋਏ ਪ੍ਵੇਗ ਦਾ ਮਾਨ a ਹੈ।

ਅਨੁਭਾਗ 8.5 ਵਿੱਚ ਅਸੀਂ ਗਤੀ ਦੇ ਤਿੰਨ ਸਮੀਕਰਨਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਧਿਐਨ ਕੀਤਾ ਹੈ। ਇੱਕ ਸਮਾਨ ਪ੍ਰਵੇਗ a ਤੋਂ ਗਤੀਸ਼ੀਲ ਕਿਸੇ ਵਸਤੂ ਦੇ ਆਰੈਭਿਕ ਵੇਗ (u) ਅੰਤਿਮ ਵੇਗ (v) ਅਤੇ ਵਿਸਥਾਪਨ S ਦੇ ਵਿੱਚ ਹੇਠ ਲਿਖਿਆ ਸੰਬੰਧ ਹੈ।

$$v^2 = u^2 = 2aS$$
 (8.7)

$$V^2 - u^2$$

$$\frac{1}{2a}$$
 (11.2)

ਅਨੁਰਾਗ 9.4 ਤੋਂ ਸਾਨੂੰ ਗਿਆਤ ਹੈ ਕਿ F = ma ਇਸ ਪ੍ਰਕਾਰ ਸਮੀਕਰਨ (11.2) ਨੂੰ ਸਮੀਕਰਨ (11.1) ਵਿੱਚ ਰੱਖਣ ਉੱਤੇ ਅਸੀਂ ਬਲ F ਦੁਆਰਾ ਕੀਤੇ ਗਏ ਕਾਰਜ ਨੂੰ ਲਿਖ ਸਕਦੇ ਹਾਂ।

S =

$$W = F(s)$$

$$F = ma$$

$$W = m \times a \times \frac{V^2 - u^2}{2a}$$

$$W = \frac{1}{2} m (v^2 - u^2)$$
 (1)

ਅਗਰ ਵਸਤੂ ਦੀ ਗਤੀ ਆਪਣੀ ਵਿਰਾਮ ਅਵਸਥਾ ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ, ਅਰਥਾਤ ਆਰੰਭਿਕ ਵੇਗ ॥ = 0, ਤੱਦ

$$W = \frac{1}{2} mv^2$$
 (11.4)

ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਵਸਤੂ ਦੀ ਗਤੀਸ਼ੀਲ ਉਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਬਰਾਬਰ ਹੈ।

ਅਗਰ u = 0, ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਹੋਵੇਗਾ $=\frac{1}{2} mv^2$

∴ ਦ੍ਵਮਾਨ ਦਾ ਅਤੇ ਇਕ ਸਮਾਨ ਵੇਗ ⊭ਤੋਂ ਗਤੀਸ਼ੀਲ ਵਸਤੂ ਦੀ ਗਤਿਜ ਉਰਜਾ ਦਾ ਮਾਨ

$$E_k = \frac{1}{2} m v^2$$
 (11.5)

ਉਦਾਹਰਣ 11.3. 15kg ਦ੍ਵਮਾਨ ਦੀ ਇੱਕ ਵਸਤੂ 4ms⁻¹ ਦੇ ਇੱਕ ਸਮਾਨ ਨਾਲ ਗਤੀਸ਼ੀਲ ਹੈ।ਵਸਤੂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਕਿੰਨੀ ਹੋਵੇਗੀ ? ਹੱਲ—

ਸਮੀਕਰਨ (11.5) ਤੋਂ

$$\mathbf{E}_k = \frac{1}{2} m v^2$$

$$= \frac{1}{2} \times 15 \text{kg} \times 4 \text{ms}^{-1} \times 4 \text{ms}^{-1}$$

= 120J

ਵਸਤੂ ਦੀ ਗਤਿਜ ਉਰਜਾ 120J ਹੈ।

ਉਦਾਹਰਣ 11.4 ਜੇਕਰ ਕਿਸੀ ਕਾਰ ਦਾ ਪੁੰਜ 1500 kg ਹੈ ਤਾਂ ਉਸਦੇ ਵੇਗ ਨੂੰ 30kmh⁻¹ ਤੋਂ 60kmh⁻¹ ਤੱਕ ਵਧਾਉਣ ਵਿੱਚ ਕਿੰਨਾ ਕਾਰਜ (W) ਕਰਨਾ ਪਵੇਗਾ। ਹੱਲ—

ਕਾਰ ਦਾ ਦ੍ਰਵਮਾਨ *m* = 1500kg ਕਾਰ ਦਾ ਆਰੰਭਿਕ ਵੇਗ *u* = 30kmh⁻¹ = $\frac{30 \times 1000m}{60 \times 60 \mathrm{S}}$ = $8.33 \mathrm{ms}^{-1}$

168

ਵਿਗਿਆਨ

bwnloaded from https:// www.studiestoday.com

ਜਾਂ

ਇਸੇ ਪ੍ਰਕਾਰ ਕਾਰ ਦਾ ਅੰਤਿਮ ਵੇਗ

 $v = 60 \text{mh}^{-1}$ = 16.67 ms^{-1}

ਇਸ ਲਈ ਕਾਰ ਦੀ ਆਰੰਭਿਕ ਗਤਿਜ ੳਰਜਾ

$$E_{ki} = \frac{1}{2} mu^2$$

$$=\frac{1}{2} \times 1500$$
kg $\times (8.33$ ms⁻¹)²

= 52041.68 J

ਇਸ ਪ੍ਰਕਾਰ, ਕਾਰ ਦੀ ਅੰਤਿਮ ਗਤਿਜ ਉਰਜਾ

$$E_{ki} = \frac{1}{2} \times 1500 \text{kg} \times (16.67 \text{ ms}^{-1})^2$$

= 208416.68 J

 $= E_{kf} - E_{ki}$

= 156375 J

.. ਕੀਤਾ ਗਿਆ ਕਾਰਜ = ਗਤਿਜ ਊਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਨ

Work done = change in K.E. =

ਸ਼ਨ

- ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਕੀ ਹੁੰਦੀ ਹੈ ?
 ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਦੇ ਲਈ ਸੂਤਰ ਲਿਖੋ।
- 3. 5ms⁻¹ ਦੇ ਵੇਗ ਵਿੱਚ ਗਤੀਸ਼ੀਲ ਕਿਸੀ ਪੁੰਜ ਦੀ ਵਸਤੂ ਦੀ ਗਤਿਜ ਊਰਜਾ 25J ਹੈ। ਜੇਕਰ ਇਸ ਦੇ ਵੇਗ ਨੂੰ ਦੁਗਣਾ 20 ਕਰ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਇਸਦੀ ਗਤਿਜ ਊਰਜਾ ਕਿੰਨੀ ਹੋ ਜਾਵੇਗੀ ? ਜੇਕਰ ਇਸ ਦੇ ਵੇਗ ਨੂੰ ਤਿੰਨ ਗੁਣਾ ਕਰ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਇਸ ਦੀ ਗਤਿਜ ਊਰਜਾ ਕਿੰਨੀ ਹੋ ਜਾਵੇਗੀ ?

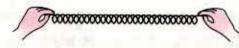
11.2.3 ਸਥਿਤਿਜ ਊਰਜਾ (Potential Energy)

โสโฮพา_____11.8

ਇੱਕ ਰਬੜ ਬੈਂਡ (ਰਬੜ ਦਾ ਛੱਲਾ) ਲਉ। ਇਸਦੇ ਇੱਕ ਸਿਰੇ ਨੂੰ ਫੜ ਕੇ ਦੂਸਰੇ ਸਿਰੇ ਤੋਂ ਖਿੱਚੋ। ਛੱਲਾ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ।

ਛੱਲੋ ਦੇ ਇੱਕ ਸਿਰੇ ਨੂੰ ਛੱਡੋ। ਕੀ ਹੁੰਦਾ ਹੈ ?

ਕਾਰਜ ਅਤੇ ਊਰਜਾ


ਛੱਲਾ ਆਪਣੀ ਆਰੇਭਿਕ ਲੰਬਾਈ ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਯਤਨ ਕਰੇਗਾ। ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਛੱਲੇ ਨੇ ਆਪਣੀ ਖਿੱਚੀ ਹੋਈ ਸਥਿਤੀ ਵਿੱਚ ਕੁੱਝ ਊਰਜਾ ਹਾਸਿਲ ਕਰ ਲਈ ਹੈ।

ਖਿੱਚਣ ਤੇ ਉਹ ਊਰਜਾ ਜਿਸ ਪ੍ਰਕਾਰ ਹਾਸਿਲ ਕਰ ਲੈਂਦਾ ਹੈ ?

ਕਿਰਿਆ_____11.9

ਇੱਕ ਸਪਰਿੰਗ ਲਉ।

ਹੇਠ ਲਿਖੇ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਆਪਣੇ ਮਿੱਤਰ ਨੂੰ ਇਸਦੇ ਇੱਕ ਸਿਰੇ ਨੂੰ ਫੜਨ ਦੇ ਲਈ ਕਹੋ। ਤੁਸੀਂ ਦੂਸਰੇ ਸਿਰੇ ਨੂੰ ਫੜੋਂ ਅਤੇ ਆਪਣੇ ਮਿੱਤਰ ਤੋਂ ਦੂਰ ਚਲੇ ਜਾਉ।

ਹੁਣ ਤੁਸੀਂ ਸਪਰਿੰਗ ਨੂੰ ਛੱਡ ਦਿਉ । ਕੀ ਹੁੰਦਾ ਹੈ ? ਖਿੱਚਣ ਨਾਲ ਸਪਰਿੰਗ ਨੇ ਕਿਸ ਪ੍ਰਕਾਰ ਊਰਜਾ ਪੈਂਦਾ ਕੀਤੀ ? ਕੀ ਸਪਰਿੰਗ ਕਰਨ ਉੱਤੇ ਵੀ ਸਲਿੰਕੀ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰੇਗੀ ?

ਕਿਰਿਆ __

11.10

ਇੱਕ ਖਿਡੌਣਾ ਕਾਰ ਲਉ। ਇਸ ਵਿੱਚ ਚਾਬੀ ਭਰੋ। ਕਾਰ ਨੂੰ ਜ਼ਮੀਨ ਉੱਤੇ ਰੱਖੋ। ਕੀ ਇਹ ਚੱਲਦੀ ਹੈ ? ਇਸਨੇ ਊਰਜਾ ਕਿੱਥੋਂ ਪ੍ਰਾਪਤ ਕੀਤੀ। ਕੀ ਪ੍ਰਾਪਤ ਊਰਜਾ, ਚਾਬੀ ਦੁਆਰਾ ਭਰੇ ਗਏ ਫੇਰਿਆਂ ਦੀ ਸੰਖਿਆ ਉੱਤੇ ਨਿਰਭਰ ਹੈ ? ਤੁਸੀਂ ਇਸ ਦੀ ਜਾਂਚ ਕਿਸ ਤਰ੍ਹਾਂ ਕਰ ਸਕਦੇ ਹੋ ?

ਕਿਰਿਆ

11.11

ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਇੱਕ ਨਿਸ਼ਚਿਤ ਉੱਚਾਈ ਤੱਕ ਉਠਾਉ। ਵਸਤੂ ਹੁਣ ਕਾਰਜ ਕਰ ਸਕਦੀ ਹੈ।ਛੱਡਣ ਉੱਤੇ ਇਹ ਹੇਠਾਂ ਡਿੱਗਣ ਲੱਗਦੀ ਹੈ। ਇਸਦਾ ਅਰਥ ਹੈ ਕਿ ਇਸਨੇ ਕੁਝ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰ ਲਈ ਹੈ।

ਅਧਿਕ ਊਰਜਾ ਉਠਾਉਣ ਉੱਤੇ ਇਹ ਅਧਿਕ ਕਾਰਜ ਕਰ ਸਕਦੀ ਹੈ ਅਤੇ ਇਸ ਪ੍ਰਕਾਰ ਇਸ ਵਿੱਚ ਜ਼ਿਆਦਾ ਊਰਜਾ ਵਿਧਮਾਨ ਹੋ ਜਾਂਦੀ ਹੈ।

ਇਸਨੂੰ ਊਰਜਾ ਕਿੱਥੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ ? ਸੋਚੋ ਅਤੇ ਵਿਚਾਰ ਵਟਾਂਦਰਾ ਕਰੋ।

169

ਉਪਰੋਕਤ ਹਾਲਤਾਂ ਵਿੱਚ, ਵਸਤੂ ਉੱਤੇ ਕੀਤੇ ਗਏ ਕਾਰਜਾਂ ਦੇ ਕਾਰਨ ਇਸ ਵਿੱਚ ਊਰਜਾ ਜਮ੍ਹਾਂ ਹੋ ਜਾਂਦੀ ਹੈ। ਕਿਸੇ ਵਸਤੂ ਦੀ ਸਥਾਨਅੰਤਰਿਤ ਕੀਤੀ ਗਈ ਊਰਜਾ ਇਸ ਵਿੱਚ ਸਥਿਤਿਜ ਊਰਜਾ ਦੇ ਰੂਪ ਵਿੱਚ ਜਮ੍ਹਾਂ ਰਹਿੰਦੀ ਹੈ। ਅਗਰ ਇਹ ਵਸਤੂ ਦੀ ਚਾਲ ਜਾਂ ਵੇਗ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਰਨ ਦੇ ਲਈ ਉਪਯੋਗ ਵਿੱਚ ਨਹੀਂ ਆਉਂਦੀ।

ਜਦੋਂ ਤੁਸੀਂ ਕਿਸੇ ਰਬੜ ਬੈਂਡ ਨੂੰ ਖਿੱਚਦੇ ਹੋ ਤਾਂ ਆਪ ਕੁਝ ਊਰਜਾ ਸਥਾਨਅੰਤਰਿਤ ਕਰਦੇ ਹੋ। ਬੈਂਡ ਵਿੱਚ ਸਥਾਨਅੰਤਰਿਤ ਕੀਤੀ ਗਈ ਊਰਜਾ ਇਸ ਵਿੱਚ ਸਥਿਤਿਜ ਊਰਜਾ ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਚਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਕਿਸੇ ਖਿਡੌਣਾ ਕਾਰ ਵਿੱਚ ਚਾਬੀ ਭਰਦੇ ਸਮੇਂ ਤੁਸੀਂ ਕਾਰਜ ਕਰਦੇ ਹੋ। ਇਸਦੇ ਅੰਦਰ ਕਮਾਨੀ ਵਿੱਚ ਸਥਾਨਅੰਤਰਿਤ ਕੀਤੀ ਗਈ ਊਰਜਾ ਸਥਿਤਿਜ ਊਰਜਾ ਦੇ ਰੂਪ ਵਿੱਚ ਜਮ੍ਹਾਂ ਹੋ ਜਾਂਦੀ ਹੈ। ਕਿਸੇ ਵਸਤੂ ਦੁਆਰਾ ਇਸ ਦੀ ਸਥਿਤੀ ਜਾਂ ਬਣਤਰ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਕਾਰਨ ਪ੍ਰਾਪਤ ਊਰਜਾ ਨੂੰ ਸਥਿਤਿਜ ਊਰਜਾ ਕਹਿੰਦੇ ਹਨ।

ਕਿਰਿਆ

170

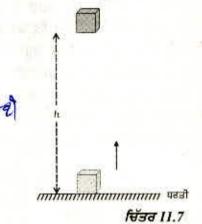
ਬਾਂਸ ਦੀ ਇੱਕ ਸੋਟੀ ਲਉ ਅਤੇ ਇਸ ਨਾਲ ਚਿੱਤਰ 11.6

11.12

- ਵਿੱਚ ਦਿਖਾਏ ਅਨੁਸਾਰ ਇੱਕ ਧਨੁਸ਼ ਬਣਾਉ।
- ਕਿਸੇ ਹਲਕੀ ਡੰਡੀ ਦਾ ਇੱਕ ਤੀਰ ਬਣਾਉ।
- ਤੀਰ ਦਾ ਇੱਕ ਸਿਰਾ ਧਨੁਸ਼ ਦੀ ਤਾਨਿਤ ਡੋਰੀ ਉੱਤੇ ਰੱਖੋ।
- ਹੁਣ ਡੋਰੀ ਨੂੰ ਖਿੱਚੋਂ ਅਤੇ ਤੀਰ ਨੂੰ ਮੁਕਤ ਕਰੋ।
- ਤੀਰ ਨੂੰ ਧਨੁਸ਼ ਤੋਂ ਦੂਰ ਜਾਂਦੇ ਹੋਏ ਦੇਖੋ।

ਧਨੁਸ਼ ਦੀ ਆਕ੍ਰਿਤੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਉੱਤੇ ਧਿਆਨ ਦਿਉ।

ਧਨੁਸ਼ ਦੀ ਆਕ੍ਰਿਤੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਕਾਰਨ ਉਸ ਵਿੱਚ ਸੰਚਿਤ ਸਥਿਤਿਜ ਊਰਜਾ, ਤੀਰ ਨੂੰ ਗਤਿਜ ਊਰਜਾ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ। ਜਿਸ ਨਾਲ ਤੀਰ ਗਤੀਸ਼ੀਲ ਹੋ ਕੇ ਦੂਰ ਜਾ ਡਿੱਗਦਾ ਹੈ।


ਚਿੱਤਰ 11.6 ਧਨੁਸ਼ ਦੀ ਤਾਨਿਤ ਡੋਰੀ ਉੱਤੇ ਰੱਖਿਆ ਤੀਰ

11.2.4 ਕਿਸੀ ਉੱਚਾਈ ਉੱਤੇ ਵਸਤੂ ਦੀ ਸਥਿਤਿਜ ਊਰਜਾ (Potential Energy of an Object At Height)

ਵਸਤੂ ਨੂੰ ਕਿਸੇ ਉੱਚਾਈ ਤੱਕ ਉਠਾਉਣ ਵਿੱਚ ਉਸ ਦੀ ਊਰਜਾ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਕਾਰਨ ਹੈ ਕਿ ਇਸ ਨੂੰ ਉੱਪਰ ਉਠਾਉਣ ਵਿੱਚ ਇਸ ਉੱਤੇ ਗੁਰੂਤਾ ਬਲ ਦੇ ਵਿਰੁੱਧ ਕਾਰਜ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਦੀ ਵਸਤੂ ਵਿੱਚ ਵਿਧਮਾਨ ਉਰਜਾ ਉਸ ਦੀ ਗੁਰੁਤਵਾ ਸਥਿਤਿਜ ਉਰਜਾ ਹੈ।

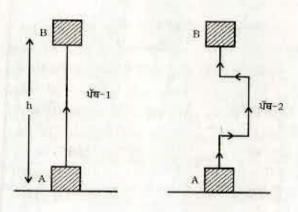
ਭੂਮੀ ਤੋਂ ਉੱਪਰ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ ਕਿਸੇ ਵਸਤੂ ਦੀ ਗੁਰੂਤਵ ਸਥਿਤਿਜ ਊਰਜਾ ਨੂੰ, ਵਸਤੂ ਨੂੰ ਭੂਮੀ ਤੋਂ ਉਸ ਬਿੰਦੂ ਤੱਕ ਉਠਾਉਣ ਵਿੱਚ ਗੁਰੂਤਵਾ ਬਲ ਦੇ ਵਿਰੁੱਧ ਕੀਤੇ ਗਏ ਕਾਰਜ ਦੁਆਰਾ ਪ੍ਰਭਾਸ਼ਿਤ ਕਰਦੇ ਹਨ।

ਕਿਸੇ ਉੱਚਾਈ ਤੋਂ ਕਿਸੀ ਵਸਤੂ ਦੇ ਗੁਰੂਤਾ ਸਥਿਤਿਜ ਉਰਜਾ ਦੇ ਵਿਅੰਜਕ ਨੂੰ ਗਿਆਤ ਕਰਨਾ ਸਰਲ ਹੈ।

ਇੱਕ m ਪੁੰਜ ਦੀ ਵਸਤੂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਵਿਚਾਰ ਕਰੀਏ। ਮੰਨ ਲਉ ਇਸ ਨੂੰ ਧਰਤੀ ਤੋਂ h ਉੱਚਾਈ ਤੱਕ ਉੱਪਰ ਉਠਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਕਰਨ ਦੇ ਲਈ ਇੱਕ ਬਲ ਦੀ ਜ਼ਰੂਰਤ ਹੈ। ਵਸਤੂ ਨੂੰ ਉਠਾਉਣ ਦੇ ਲਈ ਜ਼ਰੂਰੀ ਘੱਟ ਤੋਂ ਘੱਟ ਬਲ ਵਸਤੂ ਦੇ ਭਾਰ ਦੇ ਬਰਾਬਰ ਅਰਥਾਤ mg ਹੈ। ਵਸਤੂ ਵਿੱਚ ਇਸ ਉੱਤੇ ਕੀਤੇ ਗਏ ਕਾਰਜ ਦੇ ਬਰਾਬਰ ਊਰਜਾ ਪੈਦਾ ਹੋਵੇਗੀ। ਮੰਨ ਲਉ ਕਿ ਵਸਤੂ ਉੱਤੇ ਗੁਰੂਤਾ ਬਲ ਦੇ ਵਿਰੱਧ ਕੀਤਾ ਗਿਆ ਕਾਰਜ W ਹੈ।

ਤਦ ਕੀਤਾ ਗਿਆ ਕਾਰਜ W = ਬਲ × ਵਿਸਥਾਪਨ

 $= mg \times h$ W = mgh


ਵਿਗਿਆਨ

ਕਿਉਂਕਿ ਵਸਤੂ ਉੱਤੇ ਕੀਤਾ ਗਿਆ ਕਾਰਜ mgh ਦੇ ਬਰਾਬਰ ਹੈ, ਇਸ ਲਈ ਵਸਤੂ ਵਿੱਚ mgh ਇਕਾਈ ਦੇ ਬਰਾਬਰ ਊਰਜਾ ਪੈਂਦਾ ਹੋਵੇਗੀ। ਇਹ ਵਸਤੂ ਦੀ ਸਥਿਤਿਜ ਊਰਜਾ (E_p) ਹੈ।

 $E_p = mgh$ 11.6

ਵਸਤੂ ਦੀ ਕਿਸੇ ਉੱਚਾਈ ਉੱਤੇ ਸਥਿਤਿਜ ਊਰਜਾ ਭੂਮੀ ਬਲ ਜਾਂ ਤੁਹਾਡੇ ਦੁਆਰਾ ਚੁਣੇ ਗਏ ਜ਼ੀਰੋ ਤਲ ਉੱਤੇ ਨਿਰਭਰ ਹੈ। ਕਿਸੇ ਵਸਤੂ ਦੇ ਲਈ ਦਿੱਤੀ ਗਈ ਸਥਿਤੀ ਦੇ ਲਈ ਇੱਕ ਤਲ ਦੇ ਸਾਪੇਖ ਸਥਿਤਿਜ ਊਰਜਾ ਦਾ ਕੋਈ ਵਿਸ਼ੇਸ਼ਮਾਨ ਹੋ ਸਕਦਾ ਹੈ ਅਤੇ ਕਿਸੇ ਦੂਸਰੇ ਤਲ ਦੇ ਸਾਪੇਖ ਸਥਿਤਿਜ ਊਰਜਾ ਦਾ ਕੋਈ ਦੂਸਰਾ ਮਾਨ ਹੋ ਸਕਦਾ ਹੈ।

ਇਹ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਹੈ ਕਿ ਗੁਰੂਤਵ ਬਲ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਵਸਤੂ ਦੀ ਆਰੰਭਿਕ ਅਤੇ ਅੰਤਿਮ ਸਥਿਤੀਆਂ ਦੀਆਂ ਉੱਚਾਈਆਂ ਦੇ ਅੰਤਰ ਉੱਤੇ ਨਿਰਭਰ ਹੈ ਨਾ ਕਿ ਉਸ ਰਸਤੇ ਉੱਤੇ ਜਿਸ ਉੱਤੇ ਕਿ ਵਸਤੂ ਨੇ ਗਤੀ ਕੀਤੀ ਹੈ। ਚਿੱਤਰ 11.8 ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਥਿਤੀ ਦਿਖਾਈ ਗਈ ਹੈ। ਇੱਥੇ ਇੱਕ ਗੁਟਕਾ ਸਥਿਤੀ A ਤੋਂ ਸਥਿਤੀ B ਤੱਕ ਦੋ ਭਿੰਨ-ਭਿੰਨ ਪੱਥਾਂ ਤੋਂ ਪਹੁੰਚਾਇਆ ਗਿਆ ਹੈ।ਮੰਨ ਲਉ ਉੱਚਾਈ AB = h ਦੋਵਾਂ ਹੀ ਸਥਿਤੀਆਂ ਵਿੱਚ ਵਸਤੂ ਉੱਤੇ ਕੀਤਾ ਗਿਆ ਕਾਰਜ mgh ਹੈ।

ਚਿੱਤਰ 11.8

ਉਦਾਹਰਣ 11.5. 10kg ਪੁੰਜ ਦੀ ਇੱਕ ਵਸਤੂ ਨੂੰ ਧਰਤੀ ਤੋਂ 6m ਦੀ ਉੱਚਾਈ ਤੱਕ ਉੱਪਰ ਚੁੱਕਿਆ ਗਿਆ ਹੈ।

ਕਾਰਜ ਅਤੇ ਊਰਜਾ

ਇਸ ਵਸਤੂ ਵਿੱਚ ਮੌਜੂਦ ਊਰਜਾ ਦੀ ਪਰੀਕਲਨ ਕਰੋ। g ਦਾ ਮਾਨ 9.8 ms⁻² ਹੈ। ਹੱਲ—

437

ਵਸਤੂ ਦਾ ਪੁੰਜ *m* = 10kg ਵਿਸਥਾਪਨ (ਉੱਚਾਈ) *h* = 6m ਅਤੇ ਗੁਰੂਤਵ ਪ੍ਰਵੇਗ *g* = 9.8ms⁻² ਸਮੀਕਰਨ (11.6) ਤੋਂ ਸਥਿਤਿਜ ਊਰਜਾ = mgh = 10kg × 9.8 ms⁻² × 6m = 588J ਸਥਿਤਿਜ ਉਰਜਾ 588J ਹੈ।

ਉਦਾਹਰਣ 11.6. 12kg ਪੁੰਜ ਦੀ ਇੱਕ ਵਸਤੂ ਧਰਤੀ ਤੋਂ ਇੱਕ ਨਿਸ਼ਚਿਤ ਉੱਚਾਈ ਉੱਤੇ ਸਥਿਤ ਹੈ।ਅਗਰ ਵਸਤੂ ਦੀ ਸਥਿਤਿਜ ਊਰਜਾ 480J ਹੈ ਤਾਂ ਵਸਤੂ ਦੀ ਧਰਤੀ ਦੀ ਸਾਪੇਖ ਉੱਚਾਈ ਗਿਆਤ ਕਰੋ।ਦਿੱਤਾ ਹੈ, ਬਰਿਕਲਨ ਵਿੱਚ ਸਰਲਤਾ ਦੇ ਲਈ g ਦਾ ਮੁੱਲ 10ms⁻² ਲਉ।

> ਵਸਤੂ ਦਾ ਪੁੰਜ m = 12kg ਸਥਿਤਿਜ ਊਰਜਾ $E_p = 480J$ $E_p = mgh$ 480J = 12kg × 10ms⁻² × h

> > $h = \frac{480 \,\mathrm{J}}{120 \,\mathrm{kg} \,\mathrm{ms}^{-2}} = 4 \mathrm{m}$

171

ਵਸਤੂ 4m ਦੀ ਉੱਚਾਈ ਉੱਤੇ ਸਥਿਤ ਹੈ।

11.2.5. ਕੀ ਊਰਜਾ ਦੇ ਵਿਭਿੰਨ ਰੂਪ ਪਰਸਪਰ ਪਰਿਵਰਤਨੀਏ ਹਨ ?(Are Various Energy Forms Interconvertible ?)

ਕੀ ਅਸੀਂ ਊਰਜਾ ਦਾ ਇੱਕ ਰੂਪ ਤੋਂ ਦੂਸਰੇ ਰੂਪ ਵਿੱਚ ਰੂਪਾਂਤਰ ਕਰ ਸਕਦੇ ਹਾਂ ? ਪ੍ਰਕਿਰਤੀ ਵਿੱਚ ਅਸੀਂ ਊਰਜਾ ਰੂਪਾਂਤਰ ਦੇ ਅਨੇਕ ਉਦਾਹਰਣ ਦੇਖਣ ਵਿੱਚ ਮਿਲਦੇ ਹਨ।

11.13

11.14

- ਛੋਟੇ ਸਮੂਹਾਂ ਵਿੱਚ ਬੈਠੋ।
- ਕੁਦਰਤ ਵਿੱਚ ਊਰਜਾ ਦੇ ਰੂਪਾਂਤਰ ਦੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਵਿਧੀਆਂ ਉੱਤੇ ਵਿਚਾਰ ਕਰੋ।
- ਆਪਣੇ ਸਮੂਹ ਵਿੱਚ ਹੇਠ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਵਿਚਾਰ ਵਟਾਂਦਰਾ ਕਰੋ।
 - (i) ਹਰੇ ਪੈਂਦੇ ਖਾਣਾ ਕਿਸ ਤਰ੍ਹਾਂ ਬਣਾਉਂਦੇ ਹਨ ?
 - (ii) ਉਨ੍ਹਾਂ ਨੂੰ ਊਰਜਾ ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ ?
 - (iii) ਹਵਾ ਇੱਕ ਸਥਾਨ ਤੋਂ ਦੂਜੀ ਸਥਾਨ ਵੱਲ ਕਿਉਂ ਵੱਗਦੀ ਹੈ?
 - (iv) ਕੋਲਾ ਅਤੇ ਪੈਟਰੋਲੀਅਮ ਵਰਗੇ ਬਾਲਣ ਕਿਸ ਤਰ੍ਹਾਂ ਬਣੇ ?
 - (v) ਕਿਸ ਪ੍ਰਕਾਰ ਦੇ ਊਰਜਾ ਰੂਪਾਂਤਰਣ ਜਲ ਚੱਕਰ ਨੂੰ ਬਣਾਈ ਰੱਖਦੇ ਹਨ ?

विविभा _____

ਅਨੇਕ ਮਾਨਵ ਕਿਰਿਆਵਾਂ ਅਤੇ ਸਾਡੇ ਦੁਆਰਾ ਉਪਯੋਗ ਕੀਤੀ ਜੀਣ ਵਾਲੇ ਸ਼ਿਗ੍ਰਾਂ ਵਿੱਚ ਊਰਜਾ ਰੂਪਾਂਤਰਣ ਬਮਿਲਿਤ ਹੈ।

ਇਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਕਿਰਿਆਵਾਂ ਅਤੇ ਜੁਗਡੈ ਦੀ ਇੱਕ ਸੂਚੀ ਬਣਾਉ।

ਹਰੇਕ ਕਿਰਿਆਕਲਾਪ ਜਾਂ ਜੁਗਤ ਵਿੱਚ ਪਹਿਚਾਣੀਏ ਕਿ ਕਿਸ ਪ੍ਰਕਾਰ ਦੀ ਉਰਜਾ ਰੁਪਾਂਤਰਣ ਹੋ ਰਹੀ ਹੈ।

11.2.6. ਊਰਜਾ ਸੁਰੱਖਿਅਣ ਦਾ ਨਿਯਮ (Laws of Conservation)

ਕਿਰਿਆ 11.13 ਅਤੇ 11.14 ਵਿੱਚ ਅਸੀਂ ਸਿੱਖਿਆ ਕਿ ਊਰਜਾ ਇੱਕ ਰੂਪ ਤੋਂ ਦੂਸਰੇ ਰੂਪ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਸਕਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਨਿਕਾਸ ਦੀ ਕੁੱਲ ਊਰਜਾ ਦਾ ਕੀ ਹੋਇਆ ? ਊਰਜਾ ਰੂਪਾਂਤਰਣ ਦੀ ਅਵਸਥਾ ਵਿੱਚ ਨਿਕਾਸ ਦੀ ਕੁੱਲ ਊਰਜਾ ਅਪਵਰਤਿਤ ਰਹਿੰਦੀ ਹੈ। ਇਹ ਊਰਜਾ ਸੁਰੱਖਿਅਣ ਦਾ ਨਿਯਮ ਹੈ। ਇਸ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ, ਊਰਜਾ ਕੇਵਲ ਇੱਕ ਰੂਪ ਤੋਂ ਦੂਸਰੇ ਰੂਪ ਵਿੱਚ ਰੂਪਾਂਤਰਿਤ ਹੋ ਸਕਦੀ ਹੈ, ਇਹ ਨਾ ਤਾਂ ਪੈਦਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਅਤੇ ਨਾ ਹੀ ਨਸ਼ਟ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਰੂਪਾਂਤਰਣ ਦੇ ਪਹਿਲੇ ਅਤੇ ਰੂਪਾਂਤਰਣ ਦੇ ਬਾਅਦ ਕੁੱਲ ਊਰਜਾ ਸਦੈਵ ਅਚਰ ਰਹਿੰਦੀ ਹੈ। ਊਰਜਾ ਸੁਰੱਖਿਅਣ ਦਾ ਨਿਯਮ ਹਰੇਕ ਸਥਿਤੀ ਅਤੇ ਸਾਰੇ ਪ੍ਰਕਾਰ ਦੇ ਰੂਪਾਂਤਰਣ ਵਿੱਚ ਮੰਨਣ-ਯੋਗ ਹੈ।

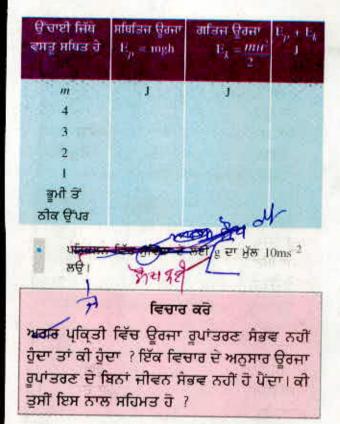
ਇੱਕ ਸਰਫ਼ ਉਦਾਹਰਣ ਉੱਤੇ ਵਿਚਾਰ ਕਰੀਏ। ਮੰਨ ਲਊ m ਦ੍ਵੀਆਨ ਦੀ ਇੱਕ ਵਸਤੁ ਨੂੰ ਉੱਚਾਈ ਤੋ ਸਵਤੰਤਰਤਾ ਪੁਰਵਕ ਗਿਰਾਈ ਜਾਂਦੀ ਹੈ। ਅਰੰਭ ਵਿੱਚ ਸਥਿਤਿਜ ਉਰਜਾ mgh ਹੈ ਅਤੇ ਗਤਿਜ ਉਰਜਾ ਜ਼ੀਰੋ ਹੈ। ਗਤਿਜ ਉਰਜਾ ਜ਼ੀਰੋ ਕਿਉਂ ਹੈ ? ਇਹ ਜ਼ੀਰੋ ਹੈ ਕਿਉਂਕਿ ਇਸਦਾ ਆਰੰਭਿਕ ਵੇਗ ਜ਼ੀਰੋ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਵਸਤੂ ਦੀ ਕੁੱਲ ਊਰਜਾ mgh ਹੈ। ਜਦੋਂ ਇਹ ਵਸਤੂ ਡਿੱਗਦੀ ਹੈ ਤਾਂ ਇਸ ਦੀ ਸਥਿਤਿਜ ਉਰਜਾ ਗਤਿਜ ਉਰਜਾ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋਵੇਗੀ। ਜੇਂਕਰ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਪਲ ਉੱਤੇ ਵਸਤੂ ਦਾ ਵੇਗ V ਹੈ ਤਾਂ ਗਤਿਜ ਉਰਜਾ 1/2mv² ਹੋਵੇਗੀ। ਵਸਤੂ ਜਿਵੇਂ-ਜਿਵੇਂ ਥੱਲੇ ਡਿੱਗਦੀ ਹੈ, ਇਸਦੀ ਸਥਿਤਿਜ ਉਰਜਾ ਘੱਟ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਗਤਿਜ ਉਰਜਾ ਵੱਧਦੀ ਜਾਂਦੀ ਹੈ। ਜਦੋਂ ਵਸਤੂ ਧਰਤੀ ਉੱਤੇ ਪਹੁੰਚਣ ਵਾਲੀ ਹੁੰਦੀ ਹੈ ਤਾਂ h = 0 ਹੋਵੇਗੀ ਅਤੇ ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਵਸਤੂ ਦਾ ਅੰਤਿਮ ਵੇਗ V ਅਧਿਕਤਮ ਹੋ ਜਾਵੇਗਾ। ਇਸ ਲਈ ਹਣ ਗਤਿਜ ਉਰਜਾ ਅਧਿਕਤਮ ਅਤੇ ਸਥਿਤਿਜ ਉਰਜਾ ਬਹੁਤ ਘੱਟ ਹੋਵੇਗੀ। ਇਸ ਤੋਂ ਇਲਾਵਾ ਸਾਰੇ ਬਿੰਦੂਆਂ ਉੱਤੇ ਵਸਤੂ ਦੀ ਸਥਿਤਿਜ ਉਰਜਾ ਅਤੇ ਗਤਿਜ ਉਰਜਾ ਦਾ ਜੋੜ ਸਮਾਨ ਰਹਿੰਦਾ ਹੈ। ਅਰਥਾਤ

ਸੰਬਤਿਜ ਉਰਜਾ + ਗਤਿਜ ਉਰਜਾ = ਸਥਿਰ

ਜਾਂ mgh +
$$\frac{1}{2}$$
 mv² = ਸਥਿਰ (11.7)

ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਤਿਜ ਊਰਜਾ ਅਤੇ ਸਥਿਤਿਜ ਊਰਜਾ ਦਾ ਜੋੜ ਉਸਦੀ ਕੁੱਲ ਯੰਤਰਿਕ ਉਰਜਾ ਹੈ।

ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਪਿੰਡ ਦੇ ਮੁਕਤ ਰੂਪ ਤੋਂ ਡਿੱਗਦੇ ਸਮੇਂ, ਇਸ ਦੇ ਪੱਥ ਵਿੱਚ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ ਸਥਿਤਿਜ ਊਰਜਾ ਵਿੱਚ ਜਿੰਨੀ ਕਮੀ ਹੁੰਦੀ ਹੈ। ਗਤਿਜ ਊਰਜਾ ਵਿੱਚ ਉਨਾ ਹੀ ਵਾਧਾ ਹੈ। (ਇੱਥੇ ਪਿੰਡ ਦੀ ਗਤੀ ਉੱਤੇ ਵਾਯੂ ਪ੍ਰਤੀਰੋਧ ਦੇ ਪ੍ਰਭਾਵ ਆਦਿ ਦਾ ਧਿਆਨ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਗੁਰੂਤਵ ਸਥਿਤਿਜ ਊਰਜਾ ਦਾ ਗਤਿਜ ਉਰਜਾ ਵਿੱਚ ਨਿਰੰਤਰ ਰੁਪਾਂਤਰਣ ਹੋ ਰਿਹਾ ਹੈ।


ਕਿਰਿਆ 11.15

20kg ਪੁੰਜ ਦਾ ਕੋਈ ਪਿੰਡ 4m ਦੀ ਉੱਚਾਈ ਤੋਂ ਮੁਕਤ ਰੂਪ ਨਾਲ ਸ਼ੁੱਟਿਆ ਜਾਂਦਾ ਹੈ। ਨਿਮਨ ਸਾਰਣੀ ਦੇ ਅਨੁਸਾਰ ਹਰੇਕ ਸਥਿਤੀ ਵਿੱਚ ਸਥਿਤਿਜ ਊਰਜਾ ਅਤੇ ਗਤਿਜ ਊਰਜਾ ਦੀ ਗਣਨਾ ਕਰਕੇ, ਸਾਰਣੀ ਵਿੱਚ ਖਾਲੀ ਸਥਾਨਾਂ ਨੂੰ ਭਰੋ।

172

ਵਿਗਿਆਨ

ਜਾਂ

11.3 ਕਾਰਜ ਕਰਨ ਦੀ ਦਰ (Rate of Doing Work)

ਕੀ ਅਸੀਂ ਸਾਰੇ ਇੱਕ ਹੀ ਦਰ ਨਾਲ ਕਾਰਜ ਕਰਦੇ ਹਾਂ ? ਕੀ ਮਸ਼ੀਨਾਂ ਊਰਜਾ ਦਾ ਉਪਯੋਗ ਅਤੇ ਰੂਪਾਂਤਰਣ ਸਮਾਨ ਦਰ ਨਾਲ ਕਰਦੀਆਂ ਹਨ? ਏਜੰਟ ਜੋ ਊਰਜਾ ਰੂਪਾਂਤਰ ਕਰਦੇ ਹਨ, ਵਿਭਿੰਨ ਦਰਾਂ ਨਾਲ ਕਾਰਜ ਕਰਦੇ ਹਨ। ਆਉ ਇਸ ਨੂੰ ਨਿਮਨ ਕਿਰਿਆਕਲਾਪ ਨਾਲ ਸਮਝੀਏ।

ਕਿਰਿਆ

_11.16

- ਦੇ ਬੱਚੇ, ਮੰਨ ਲਊ A ਅਤੇ B ਦੇ ਬਾਰੇ ਵਿੱਚ ਵਿਚਾਰ ਕਰੀਏ। ਮੰਨ ਲਉ ਦੋਵਾਂ ਦਾ ਪੁੱਜ ਸਮਾਨ ਹੈ। ਦੋਵੇਂ ਰੱਸੇ ਉੱਤੇ ਅਲੱਗ-ਅਲੱਗ ਚੜ੍ਹਣਾ ਆਰੰਭ ਕਰਦੇ ਹਨ। ਦੋਵੇਂ 8m ਦੀ ਉੱਚਾਈ ਤੱਕ ਪਹੁੰਚਦੇ ਹਨ। ਮੰਨ ਲਊ ਇਸ ਕਾਰਜ ਨੂੰ ਕਰਨ ਵਿੱਚ A. 15s ਲੈਂਦਾ ਹੈ ਅਤੇ B. 20s ਲੈਂਦਾ ਹੈ। ਹਰੇਕ ਬੱਚੇ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਕਿੰਨਾ ਹੈ ?
- ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਸਮਾਨ ਹੈ। ਅਗਰ A ਨੇ ਕਾਰਜ ਕਰਨ ਦੇ ਲਈ B ਦੇ ਨਾਲੋਂ ਘੱਟ ਸਮਾਂ ਲਿਆ।
- ਕਿਸ ਬੱਚੇ ਨੇ ਦਿੱਤੇ ਹੋਏ ਸਮੇਂ, ਮੰਨ ਲਉ। s ਵਿੱਚ ਅਧਿਕ ਕਾਰਜ ਕੀਤਾ।

ਕਾਰਜ ਅਤੇ ਊਰਜਾ

ਇੱਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਵਿਅਕਤੀ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਕਾਰਜ ਨੂੰ ਘੱਟ ਸਮੇਂ ਵਿੱਚ ਪੂਰਾ ਕਰ ਸਕਦਾ ਹੈ।ਅਧਿਕ ਸ਼ਕਤੀਸ਼ਾਲੀ ਵਾਹਨ ਘੱਟ ਸ਼ਕਤੀਸ਼ਾਲੀ ਵਾਹਨ ਦੇ ਨਾਲੋਂ ਕਿਸੇ ਯਾਤਰਾ ਨੂੰ ਘੱਟ ਸਮੇਂ ਵਿੱਚ ਪੂਰੀ ਕਰ ਸਕਦਾ ਹੈ।ਅਸੀਂ ਮੋਟਰਬਾਈਕ ਅਤੇ ਮੋਟਰਕਾਰ ਜਿਹੀ ਮਸ਼ੀਨਾਂ ਦੀ ਸ਼ਕਤੀ ਦੇ ਬਾਰੇ ਗੱਲ ਕਰਦੇ ਹਾਂ। ਇਨ੍ਹਾਂ ਵਾਹਨਾਂ ਦੇ ਵਰਗੀਕਰਨ ਦਾ ਆਧਾਰ ਇਹ ਹੈ ਕਿ ਇਹ ਕਿੰਨੀ ਤੇਜ਼ੀ ਨਾਲ ਊਰਜਾ ਪਰਿਵਰਤਨ ਜਾਂ ਕਾਰਜ ਕਰਦੇ ਹਨ, ਅਰਥਾਤ ਕਾਰਜ ਕਿੰਨੀ ਜਲਦੀ ਜਾਂ ਦੇਰੀ ਨਾਲ ਕੀਤਾ ਗਿਆ।ਸ਼ਕਤੀ ਦੀ ਪਰਿਭਾਸ਼ਾ ਇਸ ਤਰ੍ਹਾਂ ਹੈ।

ਕਾਰਜ ਕਰਨ ਦੀ ਦਰ ਜਾਂ ਊਰਜਾ ਰੂਪਾਂਤਰਣ ਦੀ ਦਰ ਨੂੰ ਸ਼ਕਤੀ ਕਹਿੰਦੇ ਹਨ।ਅਗਰ ਕੋਈ ਏਜੰਟ।ਸਮੇਂ ਵਿੱਚ W ਕਾਰਜ ਕਰਦਾ ਹੈ, ਤਾਂ ਸ਼ਕਤੀ ਦਾ ਮਾਨ ਹੋਵੇਗਾ—

ਸ਼ਕਤੀ ਦੀ ਮਾਤ੍ਰਕ ਵਾਟ ਹੈ ਅਤੇ ਇਸਦਾ ਪ੍ਰਤੀਕ W ਹੈ। ਇਹ ਮਾਤ੍ਰਕ ਜੈਮਸ ਵਾਟ (1736 – 1819) ਦੇ ਸਮਾਨ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ)। ਵਾਟ ਉਸ ਏਜੰਟ ਦੀ ਸ਼ਕਤੀ ਹੈ ਜੋ 1 ਸੈਕਿੰਡ ਵਿੱਚ 1 ਜੂਲ ਕਾਰਜ ਕਰਦਾ ਹੈ। ਅਸੀਂ ਇਹ ਵੀ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਅਗਰ ਊਰਜਾ ਦੇ ਉਪਯੋਗ ਦੀ ਦਰ 1Js⁻¹ ਹੋਵੇ ਤਾਂ ਸ਼ਕਤੀ 1W ਹੋਵੇਗੀ।

1 ਵਾਟ = 1 ਜੂਲ/ਸੈਕਿੰਡ

ਜਾਂ 1 W = 1 Js⁻¹

ਅਸੀਂ ਊਰਜਾ ਸਥਾਨਅੰਤਰਿਤ ਦੀ ਉੱਚ ਦਰਾਂ ਨੂੰ ਕਿਲੋਵਾਟ (kW) ਵਿੱਚ ਦਰਸਾਉਂਦੇ ਹਾਂ।

1 ਕਿਲੋਵਾਟ = 1000 ਵਾਟ

1 kW = 1000 W ਜਾਂ 100035J

173

ਕਿਸੇ ਏਜੰਟ ਦੀ ਸ਼ਕਤੀ ਸਮੇਂ ਦੇ ਨਾਲ ਬਦਲ ਸਕਦੀ ਹੈ। ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਏਜੰਟ ਭਿੰਨ-ਭਿੰਨ ਸਮੇਂ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਵਿਭਿੰਨ ਕਾਰਜ ਕਰ ਸਕਦਾ ਹੈ। ਇਸ ਲਈ ਔਸਤ ਸ਼ਕਤੀ ਦੀ ਅਵਧਾਰੇਨਾ ਲਾਭਪ੍ਰਦ ਹੈ। ਔਸਤ ਸ਼ਕਤੀ ਨੂੰ ਅਸੀਂ ਕੁੱਲ ਉਪਭੋਗ ਕੀਤੀ ਗਈ ਊਰਜਾ ਨੂੰ ਕੁੱਲ ਲਏ ਗਏ ਸਮੇਂ ਨਾਲ ਵਿਭਾਜਿਤ ਕਰਕੇ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ।

ਉਦਾਹਰਣ 11.7. ਦੋ ਲੜਕੀਆਂ ਜਿਸ ਵਿੱਚ ਹਰੇਕ ਦਾ ਭਾਰ 400N ਹੈ ਇੱਕ ਰੱਸੇ ਉੱਤੇ 8m ਦੀ ਉੱਚਾਈ ਤੱਕ ਚੜ੍ਹਦੀ ਹੈ। ਅਸੀਂ ਇੱਕ ਲੜਕੀ ਦਾ ਨਾਂ A ਰੱਖਿਆ ਹੈ ਅਤੇ ਦੂਸਰੀ ਦਾ B। ਇਸ ਕਾਰਜ ਨੂੰ ਪੂਰਾ ਕਰਨ ਵਿੱਚ ਲੜਕੀ A, 20s ਦਾ ਸਮਾਂ ਲੈਂਦੀ ਹੈ ਜਦੋਂ ਕਿ ਲੜਕੀ B, 50s ਦਾ ਸਮਾਂ ਲੈਂਦੀ ਹੈ। ਹਰੇਕ ਲੜਕੀ ਦੁਆਰਾ ਵਰਤੀ ਗਈ ਸ਼ਕਤੀ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।

ਹੱਲ—

(i) ਲੜਕੀ A ਦੁਆਰਾ ਵਰਤੀ ਗਈ ਸ਼ਕਤੀ— ਲੜਕੀ ਦਾ ਭਾਰ mg = 400 N ਵਿਸਥਾਪਨ (ਉੱਚਾਈ) h = 8m ਲਿਆ ਗਿਆ ਸਮਾਂ = 20s ਸਮੀਕਰਨ (11.8) ਤੋਂ

ਸ਼ਕਤੀ P= ਕੀਤਾ ਗਿਆ ਕਾਰਜ/ਲਿਆ ਗਿਆ ਸਮਾਂ

 $=\frac{mgh}{t}$

 $\frac{400\,\mathrm{N}\times8\,\mathrm{m}}{20\,\mathrm{s}}$

= 160W

(ii) ਲੜਕੀ B ਦੁਆਰਾ ਵਰਤੀ ਗਈ ਉਰਜਾ ਸ਼ਕਤੀ-

ਲੜਕੀ ਦਾ ਭਾਰ mg = 400 N

ਵਿਸਥਾਪਨ (ਉੱਚਾਈ) h = 8m

ਲਿਆ ਗਿਆ ਸਮਾਂ t = 50s

174

ਸ਼ਕਤੀ P = $\frac{mgh}{t}$

 $=\frac{400\,\mathrm{N}\times8\,\mathrm{m}}{50\,\mathrm{s}}$

= 64W

ਲੜਕੀ A ਦੁਆਰਾ ਵਰਤੀ ਗਈ ਸ਼ਕਤੀ 160W ਅਤੇ ਲੜਕੀ B ਦੁਆਰਾ ਵਰਤੀ ਗਈ ਸ਼ਕਤੀ 64W ਹੈ। ਉਦਾਹਰਨ 11.8. 50 kg ਪੁੰਜ ਦਾ ਇੱਕ ਲੜਕਾ ਦੌੜ ਕੇ 45 ਪੌੜੀਆਂ 9s ਵਿੱਚ ਚੜ੍ਹਦਾ ਹੈ। ਜੇਕਰ ਹਰੇਕ ਪੌੜੀ ਦੀ ਉੱਚਾਈ 15cm ਹੋਵੇ ਤਾਂ ਉਸਦੀ ਸ਼ਕਤੀ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ। g ਦਾ ਮੁੱਲ 10ms^{-2} ਲਉ। ਹੱਲ— ਲੜਕੇ ਦਾ ਭਾਰ mg= $50 \text{kg} \times 10 \text{ms}^{-2} = 500 \text{N}$ 45 ਪੌੜੀਆਂ ਦੀ ਕੁੱਲ ਉੱਚਾਈ $h=45 \times 15/100m = 6.75 \text{m}$ ਚੜ੍ਹਣ ਵਿੱਚ ਲੱਗਾ ਸਮਾਂ t = 9 sਸਮੀਕਰਨ (11.8) ਤੋਂ ਸ਼ਕਤੀ P= ਕੀਤਾ ਗਿਆ ਕੰਮ/ਲਿਆ ਗਿਆ ਸਮਾਂ $= \frac{mgh}{t}$ $= \frac{500 \text{N} \times 6.75m}{9 \text{S}}$

= 375 W

ਲੜਕੇ ਦੀ ਸ਼ਕਤੀ 375W ਹੈ।

।. ਸ਼ਕਤੀ ਕੀ ਹੈ ?

2. 1 ਵਾਟ ਸ਼ਕਤੀ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੋ।

3. ਇੱਕ ਲੈਂਪ 1000J ਬਿਜਲੀ ਊਰਜਾ 10s ਵਿੱਚ ਵਰਤਦਾ ਹੈ। ਇਸ ਦੀ ਸ਼ਕਤੀ ਕਿੰਨੀ ਹੈ?

4. ਔਸਤ ਸ਼ਕਤੀ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰੇ।

11.3.1. ਉਰਜਾ ਦੀ ਕਮਰਸ਼ਲ ਮਾਤ੍ਕ

(Commercial Unit of Energy)

ਜੂਲ ਊਰਜਾ ਦੀ ਬਹੁਤ ਛੋਟੀ ਮਾਤਕ ਹੈ। ਇਸ ਲਈ ਇਹ ਊਰਜਾ ਦੀ ਵੱਡੀ ਰਾਸ਼ੀ ਨੂੰ ਵਿਅਕਤ ਕਰਨ ਦੇ ਲਈ ਅਸੁਵਿਧਾਜਨਕ ਹੈ। ਇਸ ਲਈ ਅਸੀਂ ਊਰਜਾ ਦਾ ਇੱਕ ਵੱਡਾ ਮਾਤ੍ਕ ਉਪਯੋਗ ਵਿੱਚ ਲਿਆਉਂਦੇ ਹਨ ਜਿਸ ਨੂੰ ਕਿਲੋਵਾਟ ਘੰਟਾ (kWh) ਕਹਿੰਦੇ ਹਨ।

1kWh ਤੋਂ ਕੀ ਭਾਵ ਹੈ ? ਮੰਨ ਲਉ ਸਾਡੇ ਕੋਲ ਇੱਕ ਮਸ਼ੀਨ ਹੈ ਜੋ ਇੱਕ ਸੈਕਿੰਡ ਵਿੱਚ 1000J ਊਰਜਾ ਯੋਗ ਵਿੱਚ ਲਿਆਉਂਦੀ ਹੈ। ਅਗਰ ਇਸ ਮਸ਼ੀਨ ਨੂੰ ਲਗਾਤਾਰ ਇੱਕ ਘੰਟੇ ਤੱਕ ਉਪਯੋਗ ਵਿੱਚ ਲਿਆਂਦਾ ਜਾਵੇ ਤਾਂ ਇਹ ਇੱਕ

ਵਿਗਿਆਨ

ਕਿਲੋਵਾਟ ਘੰਟਾ (1kWh) ਊਰਜਾ ਖਰਚ ਕਰੇਗੀ । ਇਸ ਪ੍ਰਕਾਰ ਇੱਕ ਕਿਲੋਵਾਟ ਘੰਟਾ (1kWh) ਊਰਜਾ ਦੀ ਉਹ ਮਾਤਰਾ ਹੈ ਜੋ 1kWh ਦੇ ਕਿਸੇ ਸਰੋਤ ਨੂੰ ਇੱਕ ਘੰਟੇ ਤੱਕ ਉਪਯੋਗ ਕਰਨ ਵਿੱਚ ਖ਼ਰਚ ਹੋਵੇਗੀ।

$$1kWh = 1kW \times 1h$$

 $= 1000W \times 3600s$

= 3600000J

 $1 \text{ kWh} = 3.6 \times 10^6 \text{J}$

ਘਰਾਂ ਵਿੱਚ, ਉਦਯੋਗਾਂ ਵਿੱਚ ਅਤੇ ਕਮਰਸ਼ਲ ਸੰਸਥਾਨਾਂ ਵਿੱਚ ਖਰਚ ਹੋਣ ਵਾਲੀ ਊਰਜਾ ਨੂੰ ਕਿਲੋਵਾਟ ਘੰਟਾ ਵਿੱਚ ਦਰਸਾਉਂਦੇ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਇੱਕ ਮਹੀਨੇ ਵਿੱਚ ਉਪਯੋਗ ਕੀਤੀ ਗਈ ਬਿਜਲੀ ਊਰਜਾ ਨੂੰ 'ਯੂਨਿਟ' ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਉਂਦੇ ਹਨ। ਇੱਥੇ 1 'ਯੂਨਿਟ' ਦਾ ਅਰਥ ਹੈ 1kWh। ਕੀਪ

ਉਦਾਹਰਣ 11.9. 60W ਦਾ ਇੱਕ ਬਿਜਲੀ ਬਲਬ ਪ੍ਰਤੀਦਿਨ 6 ਘੰਟੇ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਬਲ ਦੁਆਰਾ ਇੱਕ ਦਿਨ ਵਿੱਚ ਖਰਚ ਕੀਤੀ ਗਈ ਊਰਜਾ ਦੀ 'ਯੂਨਿਟ' ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।

ਹੱਲ—

ਜਾਂ

ਬਿਜਲੀ ਬਲਬ ਦੀ ਸ਼ਕਤੀ = 60W

= 0.06 kW ਉਪਯੋਗ ਕੀਤਾ ਗਿਆ ਸਮਾਂ t = 6hਉਰਜਾ = ਸ਼ਕਤੀ × ਲਿਆ ਗਿਆ ਸਮਾਂ = 0.06 kW × 6h = 0.36 kWh = 0.36 ਯੂਨਿਟ ਬਲਬ ਦੁਆਰਾ 0.36 ਯੂਨਿਟ ਖਰਚ ਹੋਵੇਗੀ। ਕਿਰਿਆ 11.17

ਇਨ੍ਹਾਂ ਦੇ ਵੀ ਬਣਤਰ ਦਾ ਬਰੀਕੀ ਨਾਲ ਪ੍ਰੀਖਣ ਕਰੋ। ਪ੍ਰਤੀਦਿਨ ਸਵੇਰੇ ਅਤੇ ਸ਼ਾਮ 6.30 ਵਜੇ ਮੀਟਰ ਦਾ ਪ੍ਰਤ੍ਹ ਪਾਨਯੋਧ ਨੋਟ ਕਰੋ। ਦਿਨ ਦੇ ਸਮੇਂ ਕਿੰਨੀਆਂ 'ਯੂਨਿਟਾਂ' ਖਰਚ ਹੁੰਦੀਆਂ ਹਨ ? ਰਾਤ ਦੇ ਸਮੇਂ ਕਿੰਨੀ 'ਯੂਨਿਟਾਂ' ਖਰਚ ਹੁੰਦੀਆਂ ਹਨ ? ਇਸ ਕਿਰਿਆਕਲਾਪ ਨੂੰ ਲਗਭਗ ਇੱਕ ਹਫ਼ਤੇ ਤੱਕ ਕਰੋ। ਆਪਣੇ ਪ੍ਰੀਖਣਾਂ ਨੂੰ ਸਾਰਣੀ ਬੱਧ ਕਰੋ । ਆਪਣੇ ਘੰਕੜਿਆਂ ਤੋਂ ਸਿੱਟਾ ਨਿਕਾਲੋ । ਆਪਣੇ ਪ੍ਰੀਖਣਾਂ ਦੀ ਤੁਲਨਾ ਬਿਜਲੀ ਦੇ ਮਾਸਿਕ ਬਿਲ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਨਾਲ ਕਰੋ।

ਤੁਸਾ ਕੀ

ਸਿੱਖਿਆ

- ਕਿਸੇ ਵਸਤੂ ਉੱਤੇ ਕੀਤਾ ਗਿਆ ਕਾਰਜ, ਉਸ ਉੱਤੇ ਲਗਾਏ ਗਏ ਬਲ ਦੇ ਪਰਿਮਾਣ ਅਤੇ ਬਲ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਉਸ ਦੇ ਦੁਆਰਾ ਤਹਿ ਕੀਤੀ ਗਈ ਦੂਰੀ ਦੇ ਗੁਣਨਫਲ ਨਾਲ ਪਰਿਭਾਸ਼ਿਤ ਹੁੰਦਾ ਹੈ। ਕਾਰਜ ਦਾ ਮਾਤ੍ਕ ਜੂਲ ਹੈ, ਅਰਥਾਤ 1 ਜੂਲ = 1 ਨਿਊਟਨ × 1 ਮੀਟਰ।
- ਕਿਸੇ ਵਸਤੂ ਦਾ ਵਿਸਥਾਪਨ ਜ਼ੀਰੋ ਹੈ ਤਾਂ ਬਲ ਦੁਆਰਾ ਉਸ ਵਸਤੂ ਉੱਤੇ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਜ਼ੀਰੋ ਹੋਵੇਗਾ।
- ਅਗਰ ਕਿਸੇ ਵਸਤੂ ਵਿੱਚ ਕਾਰਜ ਕਰਨ ਦੀ ਸਮਰੱਥਾ ਹੋਵੇ ਤਾਂ ਇਹ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਉਸ ਵਿੱਚ ਊਰਜਾ ਹੈ। ਊਰਜਾ ਦਾ ਮਾਤ੍ਕ ਉਹੀ ਹੈ ਜੋ ਕਾਰਜ ਦਾ ਹੈ।

ਕਾਰਜ ਅਤੇ ਊਰਜਾ

175

ਕਿਸੇ ਗਤੀਮਾਨ ਵਸਤੂ ਵਿੱਚ ਉਸ ਦੀ ਗਤੀ ਦੇ ਕਾਰਨ ਊਰਜਾ ਨੂੰ ਗਤਿਜ ਊਰਜਾ ਕਹਿੰਦੇ ਹਨ। v ਵੇਗ ਨਾਲ ਗਤੀਸ਼ੀਲ ਕਿਸੀ m ਦ੍ਵਮਾਨ ਦੀ ਵਸਤੂ ਦੀ ਗਤਿਜ

ਊਰਜਾ = $\frac{1}{2}mV^2$ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।

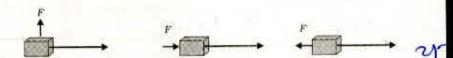
- ਵਸਤੂ ਦੁਆਰਾ ਉਸ ਦੀ ਸਥਿਤੀ ਜਾਂ ਆਕ੍ਰਿਤੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਦੇ ਕਾਰਨ ਪ੍ਰਾਪਤ ਊਰਜਾ ਨੂੰ ਸਥਿਤਿਜ ਊਰਜਾ ਕਹਿੰਦੇ ਹਨ। ਪ੍ਰਿਥਵੀ ਦੇ ਤਲ ਤੋਂ h ਉੱਚਾਈ ਤੱਕ ਉਠਾਈ ਗਈ ਕਿਸੀ m ਦ੍ਵਮਾਨ ਦੀ ਵਸਤੂ ਦੀ ਗੁਰੂਤਵ ਸਥਿਤਿਜ ਊਰਜਾ mgh ਹੋਵੇਗੀ।
- ਊਰਜਾ ਸੁਰੱਖਿਅਣ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਊਰਜਾ ਦਾ ਕੇਵਲ ਇੱਕ ਰੂਪ ਤੋਂ ਦੂਸਰੇ ਰੂਪ ਵਿੱਚ ਰੂਪਾਂਤਰਣ ਹੋ ਸਕਦਾ ਹੈ।ਇਸਨੂੰ ਨਾ ਤਾਂ ਪੈਦਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਨਾ ਹੀ ਨਸ਼ਟ। ਰੂਪਾਂਤਰਣ ਦੇ ਪਹਿਲੇ ਅਤੇ ਰੂਪਾਂਤਰਣ ਦੇ ਮਗਰੋਂ ਕੁੱਲ ਊਰਜਾ ਸ਼ਦੇਵ ਅਚਿਰ ਰਹਿੰਦੀ ਹੈ।
- ਪ੍ਰਕ੍ਰਿਤੀ ਵਿੱਚ ਊਰਜਾ ਵਿਭਿੰਨ ਰੂਪਾਂ ਵਿੱਚ ਮੌਜੂਦ ਰਹਿੰਦੀ ਹੈ, ਜਿਸ ਤਰ੍ਹਾਂ ਗਤਿਜ ਊਰਜਾ, ਸਥਿਤਿਜ ਊਰਜਾ, ਊਸ਼ਮਾ ਊਰਜਾ, ਰਸਾਇਣਿਕ ਊਰਜਾ ਆਦਿ। ਕਿਸੇ ਵਸਤੂ ਦੀ ਗਤਿਜ ਅਤੇ ਸਥਿਤਿਜ ਊਰਜਾ ਦੇ ਜੋੜ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਕੁੱਲ ਯਾਂਤਰਿਕ ਊਰਜਾ ਕਹਿੰਦੇ ਹਨ।
- ਕਾਰਜ ਕਰਨ ਦੀ ਦਰ ਨੂੰ ਸ਼ਕਤੀ ਕਹਿੰਦੇ ਹਨ। ਸ਼ਕਤੀ ਦਾ SI ਮਾਤ੍ਕ ਵਾਟ ਹੈ। 1W = 1J/s
- 1 kWh ਦੇ ਦਰ ਨਾਲ ਇੱਕ ਘੰਟੇ ਵਿੱਚ ਖਰਚ ਹੋਈ ਊਰਜਾ ਇੱਕ ਕਿਲੋਵਾਟ ਘੰਟਾ (1kWh) ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।

ਅਭਿਆਸ

- ਹੇਠ ਲਿਖੀਆਂ ਸੂਚੀਬੱਧ ਕਿਰਿਆਵਾਂ ਨੂੰ ਧਿਆਨ ਨਾਲ ਦੇਖੋ। ਆਪਣੀ ਕਾਰਜ ਸ਼ਬਦ ਦੀ ਵਿਆਖਿਆ ਦੇ ਆਧਾਰ ਤੇ ਤਰਕ ਦਿਉ ਕਿ ਇਸ ਵਿੱਚ ਕਾਰਜ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਨਹੀਂ।
 - ਸੁਮਾ ਇੱਕ ਤਾਲਾਬ ਵਿੱਚ ਤੈਰ ਰਹੀ ਹੈ।
 - ਇੱਕ ਗਧੇ ਨੇ ਆਪਣੀ ਪਿੱਠ ਉੱਤੇ ਬੋਝਾ ਉਠਾਇਆ ਹੈ।
 - ਇੱਕ ਪਵਨ ਚੱਕੀ (ਪੌਣ ਮਿੱਲ) ਖ਼ੁਹ ਤੋਂ ਪਾਣੀ ਉਠਾ ਰਹੀ ਹੈ।
 - ਇੱਕ ਹਰੇ ਪੌਦੇ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਸੰਸ਼ਲੇਸ਼ਣ ਦੀ ਕਿਰਿਆ ਹੋ ਰਹੀ ਹੈ।
 - ਇੱਕ ਇੰਜਣ ਗੱਡੀ ਨੂੰ ਖਿੱਚ ਰਿਹਾ ਹੈ।
 - ਅਨਾਜ ਦੇ ਦਾਣੇ ਸੁਰਜ ਦੀ ਧੁੱਪ ਵਿੱਚ ਸ਼ੁੱਕ ਰਹੇ ਹਨ।
 - ਇੱਕ ਮਾਲ-ਕਿਸ਼ਤੀ ਪ੍ਰਵਨੇ ਊਰਜਾ ਦੇ ਕਾਰਨ ਗਤੀਸ਼ੀਲ ਹੈ।
- ਇੱਕ ਵਸਤੂ ਨੂੰ ਧਰਤੀ ਤੋਂ ਕਿਸੇ ਕੋਣ ਤੋਂ ਡਿਰਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਇੱਕ ਵਕ੍-ਪੱਥ ਉੱਤੇ ਚੱਲਦਾ ਹੈ ਅਤੇ ਵਾਪਸ ਧਰਤੀ ਉੱਤੇ ਆ ਡਿੱਗਦਾ ਹੈ। ਵਸਤੂ ਦੇ ਪੱਥ ਦੇ ਆਰੈਭਿਕ ਅਤੇ ਅੰਤਿਮ ਬਿੰਦੂ ਇੱਕ ਹੀ ਹੋਰੀਜ਼ੈਨਟਲ ਰੇਖਾ ਉੱਤੇ ਸਥਿਤ ਹੈ। ਵਸਤੂ ਉੱਤੇ ਗੁਰੂਤਵ ਬਲ ਦੁਆਰਾ ਕਿੰਨਾ ਕਾਰਜ ਕੀਤਾ ਗਿਆ?

176

ਵਿਗਿਆਨ


- ਇੱਕ ਬੈਂਟਰੀ ਬਲਬ ਜਲਾਉਂਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਊਰਜਾ ਪਰਿਵਰਤਨਾਂ ਦਾ ਵਰਣਨ ਕਰੋ।
- 4. 20kg ਪੁੰਜ ਉੱਤੇ ਲੱਗਣ ਵਾਲਾ ਕੋਈ ਬਲ ਇਸ ਦੇ ਵੇਗ ਨੂੰ 5ms⁻¹ ਤੋਂ 2ms⁻¹ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਰ ਦੇਂਦਾ ਹੈ। ਬਲ ਦੁਆਰਾ ਕੀਤੇ ਗਏ ਕਾਰਜ ਦਾ ਪਰਿਕਲਪਨ ਕਰੋ।
- 5. 10kg ਦ੍ਵਮਾਨ ਦੀ ਇੱਕ ਵਸਤੂ ਮੇਜ਼ ਉੱਤੇ A ਬਿੰਦੂ ਉੱਤੇ ਰੱਖੀ ਹੈ। ਇਸਨੂੰ B ਬਿੰਦੂ ਤੱਕ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਅਗਰ A ਅਤੇ B ਨੂੰ ਮਿਲਾਉਣ ਵਾਲੀ ਰੇਖਾ ਹੋਗੇਜ਼ੈਨਟਲ ਹੈ ਤਾਂ ਵਸਤੂ ਉੱਤੇ ਗੁਰੂਤਵ ਬਲ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਕਿੰਨਾ ਹੋਵੇਗਾ ? ਆਪਣੇ ਉੱਤਰ ਦੀ ਵਿਆਖਿਆ ਕਰੋ।
- ਮੁਕਤ ਰੂਪ ਵਿੱਚ ਡਿੱਗਦੇ ਇੱਕ ਪਿੰਡ ਦੀ ਸਥਿਤਿਜ ਊਰਜਾ ਲਗਾਤਾਰ ਘੱਟ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਕੀ ਇਹ ਊਰਜਾ ਸੁਰੱਖਿਅਣ ਨਿਯਮ ਦਾ ਉਲੰਘਣ ਕਰਦੀ ਹੈ ? ਕਾਰਨ ਦੱਸੋ।
- 7. ਜਦੋਂ ਤੁਸੀਂ ਸਾਈਕਲ ਚਲਾਉਂਦੇ ਹੋ ਤਾਂ ਕਿੱਥੋਂ-ਕਿੱਥੋਂ ਊਰਜਾ ਰੂਪਾਂਤਰਣ ਹੁੰਦੀ ਹੈ ?
- 8. ਜਦੋਂ ਤੁਸੀਂ ਸਾਰੀ ਸ਼ਕਤੀ ਲਗਾ ਕੇ ਇੱਕ ਵੱਡੀ ਚਟਾਨ ਨੂੰ ਧੱਕਣਾ ਚਾਹੁੰਦੇ ਹੋ ਅਤੇ ਇਸ ਨੂੰ ਹਿਲਾਉਣ ਵਿੱਚ ਅਸਫ਼ਲ ਹੋ ਜਾਂਦੇ ਹੋ ਕਿ ਇਸ ਅਵਸਥਾ ਵਿੱਚ ਊਰਜਾ ਦਾ ਸਥਾਨਾਂਤਰਣ ਹੁੰਦਾ ਹੈ ? ਆਪ ਦੁਆਰਾ ਖਰਚ ਕੀਤੀ ਗਈ ਊਰਜਾ ਕਿੱਥੇ ਚਲੀ ਜਾਂਦੀ ਹੈ ?
- ਕਿਸੇ ਘਰ ਵਿੱਚ ਇੱਕ ਮਹੀਨੇ ਵਿੱਚ ਊਰਜਾ ਦੀ 250 'ਯੂਨਿਟ' ਖਰਚ ਹੋਈ। ਇਹ ਊਰਜਾ ਜੂਲ ਵਿੱਚ ਕਿੰਨੀ ਹੋਵੇਗੀ ?
- 10. 40kg ਪੁੰਜ ਦਾ ਇੱਕ ਪਿੰਡ ਧਰਤੀ ਤੋਂ 5m ਦੀ ਉੱਚਾਈ ਤੱਕ ਉਠਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੀ ਸਥਿਤਿਜ ਊਰਜਾ ਕਿੰਨੀ ਹੈ ਅਗਰ ਪਿੰਡ ਨੂੰ ਮੁਕਤ ਰੂਪ ਨਾਲ ਡਿੱਗਣ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਜਦੋਂ ਪਿੰਡ ਠੀਕ ਅੱਧੇ ਰਸਤੇ ਉੱਤੇ ਹੈ ਉਸ ਸਮੇਂ ਇਸ ਗਤਿਜ ਊਰਜਾ ਦਾ ਪਰਿਕਲਨ ਕਰੋ (g = 10ms⁻²)
- ਪ੍ਰਿਥਵੀ ਦੇ ਚਾਰੇ ਪਾਸੇ ਘੁੰਮਦੇ ਹੋਏ ਕਿਸੇ ਉਪਗ੍ਰਹਿ ਉੱਤੇ ਗੁਰੂਤਵ ਬਲ ਦੁਆਰਾ ਕਿੰਨਾ ਕਾਰਜ ਕੀਤਾ ਜਾਵੇਗਾ ? ਆਪਣੇ ਉੱਤਰ ਨੂੰ ਤਰਕਸੰਗਤ ਬਣਾਉ।
- 12. ਕੀ ਕਿਸੇ ਪਿੰਡ ਉੱਤੇ ਲੱਗਣ ਵਾਲੇ ਕਿਸੇ ਵੀ ਬਲ ਦੀ ਅਨੁਪਰਸਥਿਤੀ (ਮੌਜੂਦਗੀ) ਵਿੱਚ ਇਸਦਾ ਵਿਸਥਾਪਨ ਹੋ ਸਕਦਾ ਹੈ ? ਸੋਚੋ। ਇਸ ਪ੍ਰਸ਼ਨ ਦੇ ਬਾਰੇ ਵਿੱਚ ਆਪਣੇ ਮਿੱਤਰਾਂ ਅਤੇ ਅਧਿਆਪਕਾਂ ਨਾਲ ਵਿਚਾਰ ਵਟਾਂਦਰਾ ਕਰੋ।
- 13. ਕੋਈ ਮਨੁੱਖ ਘਾਹ ਭੂਸ ਦੀ ਇੱਕ ਪੰਡ ਨੂੰ ਆਪਣੇ ਸਿਰ ਉੱਤੇ 30 ਮਿੰਟ ਤੱਕ ਰੱਖਦਾ ਹੈ ਅਤੇ ਥੱਕ ਜਾਂਦਾ ਹੈ। ਕੀ ਉਸਨੇ ਕੁਝ ਕਾਰਜ ਕੀਤਾ ਜਾਂ ਨਹੀਂ ? ਆਪਣੇ ਉੱਤਰ ਨੂੰ ਤਰਕਸੰਗਤ ਬਣਾਉ।
- 14. ਇੱਕ ਬਿਜਲੀ-ਹੀਟਰ (ਊਸ਼ਮਿਕ) ਦੀ ਘੋਸ਼ਿਤ ਸ਼ਕਤੀ 1500W ਹੈ। 10 ਘੰਟੇ ਵਿੱਚ ਇਹ ਕਿੰਨੀ ਊਰਜਾ ਉਪਯੋਗ ਕਰੇਗਾ ? 2388 8
- 15. ਜਦੋਂ ਅਸੀਂ ਕਿਸੀ ਸਰਲ ਲਿਲਕ ਦੇ ਗੋਲਕੇ ਨੂੰ ਇੱਕ ਤਰਫ਼ ਲੈ ਕੇ ਜਾ ਕੇ ਛੱਡਦੇ ਹਾਂ ਤਾਂ ਇਹ ਡੋਲਨ ਲੱਗਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਊਰਜਾ ਪਰਿਵਰਤਨਾਂ ਦੀ ਚਰਚਾ ਕਰਦੇ ਹੋਏ ਊਰਜਾ ਸੁਰੱਖਿਅਣ ਦੇ ਨਿਯਮ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰੋ। ਗੋਲਕ ਕੁਝ ਸਮੇਂ ਬਾਅਦ

ਕਾਰਜ ਅਤੇ ਉਰਜਾ

177

ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਕਿਉਂ ਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸਦੀ ਊਰਜਾ ਦਾ ਕੀ ਹੁੰਦਾ ਹੈ ? ਕੀ ਇਹ ਊਰਜਾ ਸੁਰੱਖਿਅਣ ਨਿਯਮ ਦਾ ਉਲੰਘਣ ਹੈ ?

- 16. m ਪੁੰਜ ਦਾ ਇੱਕ ਪਿੰਡ ਇੱਕ ਨਿਯਤ ਵੇਗ V ਨਾਲ ਗਤੀਸ਼ੀਲ ਹੈ। ਪਿੰਡ ਉੱਤੇ ਕਿੰਨਾ ਕਾਰਜ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਇਹ ਵਿਰਾਮ ਅਵਸਥਾ ਵਿੱਚ ਆ ਜਾਵੇ ?
- 1500kg ਪੁੰਜ ਦੀ ਕਾਰ ਨੂੰ ਜੋ 60km/h ਦੇ ਵੇਗ ਨਾਲ ਚੱਲ ਰਹੀ ਹੈ, ਰੋਕਣ ਦੇ ਲਈ ਕੀਤੇ ਗਏ ਕਾਰਜ ਦਾ ਪਰਿਕਲਣ ਕਰੋ।
- 18. ਹੇਠਾਂ ਵਿੱਚ ਹਰੇਕ ਸਥਿਤੀ ਵਿੱਚ ਦ੍ਰਵਮਾਨ ਦੇ ਇੱਕ ਪਿੰਡ ਉੱਤੇ ਇੱਕ ਬਲ F ਲੱਗ ਰਿਹਾ ਹੈ। ਵਿਸਥਾਪਨ ਦੀ ਦਿਸ਼ਾ ਪੱਛਮ ਤੋਂ ਪੂਰਬ ਵੱਲ ਹੈ ਜੋ ਇੱਕ ਲੰਬੇ ਤੀਰ ਨਾਲ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤੀ ਗਈ ਹੈ। ਚਿੱਤਰਾਂ ਨੂੰ ਧਿਆਨਪੂਰਵਕ ਦੇਖੋ ਅਤੇ ਦੱਸੋ ਕਿ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਰਿਣਾਤਮਕ ਹੈ ਜਾਂ ਜ਼ੀਰੋ ਹੈ।

- 19. ਸੋਨੀ ਕਹਿੰਦੀ ਹੈ ਕਿ ਕਿਸੀ ਵਸਤੂ ਉੱਤੇ ਪ੍ਰਵੇਗ ਜ਼ੀਰੋ ਹੋ ਸਕਦਾ ਹੈ ਚਾਹੇ ਉਸ ਉੱਤੇ ਕੋਈ ਬਲ ਕਾਰਜ ਕਰ ਰਿਹਾ ਹੋਵੇ। ਕੀ ਤੁਸੀਂ ਇਸ ਨਾਲ ਸਹਿਮਤ ਹੋ ? ਦੱਸੋ ਕਿਉਂ ?
- 20. ਚਾਰ ਸੁਰੇਤੀਆਂ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਹਰੇਕ ਦੀ ਸ਼ਕਤੀ 500W ਹੈ। 10 ਘੰਟੇ ਤੱਕ ਉਸ ਯੋਗ ਵਿੱਚ ਲਿਆਂਦੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਦੇ ਦੁਆਰਾ ਖਰਚ ਕੀਤੀ ਗਈ ਊਰਜਾ kWh ਵਿੱਚ ਪਰੀਕਲਿਤ ਕਰੋ।
- 21. ਮੁਕਤ ਰੂਪ ਵਿੱਚ ਡਿੱਗਦਾ ਇੱਕ ਪਿੰਡ ਜੋ ਧਰਤੀ ਤੱਕ ਪਹੁੰਚਣ ਤੱਕ ਰੁਕ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੀ ਗਤਿਜ ਊਰਜਾ ਦਾ ਕੀ ਹੁੰਦਾ ਹੈ ?

wnloaded from https:// www.studiestoday.com

178

ਅਧਿਆਇ 12

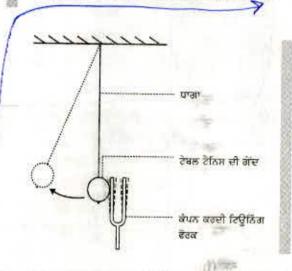
ਅਸੀਂ ਹਰ ਰੋਜ਼ ਭਿੰਨ-ਭਿੰਨ ਸ਼੍ਰੋਤਾਂ ; ਜਿਵੇਂ - ਮਨੁੱਖਾਂ, ਪ੍ਰੰਛੀਆਂ, ਘੰਟੀਆਂ, ਮਸ਼ੀਨਾਂ, ਗੱਡੀਆਂ, ਟੈਲੀਵਿਜ਼ਨ, ਰੇਡਿਓ ਆਦਿ ਦੀਆਂ ਧੁਨੀਆਂ ਸੁਣਦੇ ਹਾਂ। ਧੁਨੀ ਉਰਜਾ ਦਾ ਇੱਕ ਰੂਪ ਹੈ ਜੋਂ ਸਾਡੇ ਕੰਨਾਂ ਵਿੱਚ ਸੁਣਨ ਦਾ ਅਨੁਭਵ ਪੈਦਾ ਕਰਦੀ ਹੈ। ਊਰਜਾ ਦੇ ਹੋਰ ਰੂਪ ਵੀ ਹਨ; ਜਿਵੇਂ-ਯੰਤ੍ਰਿਕ ਉਰਜਾ, ਤਾਪ ਉਰਜਾ, ਪ੍ਰਕਾਸ਼ ਉਰਜਾ ਆਦਿ। ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਉਰਜਾ ਦਾ ਅਧਿਐਨ ਕਰ ਚੁੱਕੇ ਹਾਂ। ਤੁਹਾਨੂੰ ਉਰਜਾ ਦੇ ਸੁਰੱਖਿਅਣ ਬਾਰੇ ਪਤਾ ਹੈ। ਇਸ ਅਨਸਾਰ ਅਸੀਂ ਨਾ ਤਾਂ ਉਰਜਾ ਪੈਦਾ ਕਰ ਸਕਦੇ ਹਾਂ ਅਤੇ ਨਾ ਹੀ ਨਸ਼ਟ ਕਰ ਸਕਦੇ ਹਾਂ। ਅਸੀਂ ਕੇਵਲ ਇਸ ਨੂੰ ਇੱਕ ਰੂਪ ਤੋਂ ਦੂਜੇ ਰੂਪ ਵਿੱਚ ਬਦਲ ਸਕਦੇ ਹਾਂ। ਜਦੋਂ ਤੁਸੀਂ ਤਾੜੀ ਮਾਰਦੇ ਹੋ ਤਾਂ ਧਨੀ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਕੀ ਤੁਸੀਂ ਆਪਣੀ ਉਰਜਾ ਦਾ ਉਪਯੋਗ ਕੀਤੇ ਬਿਨਾਂ ਧੁਨੀ ਪੈਦਾ ਕਰ ਸਕਦੇ ਹੋ ? ਧੁਨੀ ਪੈਦਾ ਕਰਨ ਲਈ ਤੁਸੀਂ ਉਰਜਾ ਦੇ ਕਿਸ ਰੂਪ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਹੈ? ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਇਹ ਸਿੱਖਾਂਗੇ ਕਿ ਧਨੀ ਕਿਵੇਂ ਪੈਦਾ ਹੁੰਦੀ ਹੈ ਅਤੇ ਕਿਸੇ ਮਾਧਿਅਮ ਵਿੱਚ ਇਹ ਕਿਸ ਤਰਾਂ ਪ੍ਵਾਹਿਤ (Transmitted) ਹੋ ਕੇ ਸਾਡੇ ਕੰਨਾਂ ਤੱਕ ਪੱਜਦੀ ਹੈ।

12.1 ਧੁਨੀ ਦਾ ਉਤਪਾਦਨ (Production of

Sound)

ਕਿਰਿਆ

12.1


ਇੱਕ ਟਿਊਨਿੰਗ ਫੋਰਕ ਲਵੋ ਅਤੇ ਇਸ ਦੀ ਇੱਕ ਬਾਹੀ ਨੂੰ ਰਬੜ ਪੈਂਡ ਉੱਤੇ ਮਾਰ ਕੇ ਇਸ ਵਿੱਚ ਕੈਪਨ ਪੈਦਾ ਕਰੋ। ਇਸਨੂੰ ਆਪਣੇ ਕੰਨ ਦੇ ਨਜ਼ਦੀਕ ਲੈ ਕੇ ਆਉ। ਕੀ ਤੁਹਾਨੂੰ ਕਿਸੇ ਕਿਸਮ ਦੀ ਧੁਨੀ ਸੁਣਾਈ ਦਿੰਦੀ ਹੈ ?

ਕੰਪਨ ਕਰ ਰਹੇ ਚਿਮਟੇ ਰੂਪੀ ਯੰਤਰ (Tuning Fork) ਦੀ

युर्ठा (Sound)

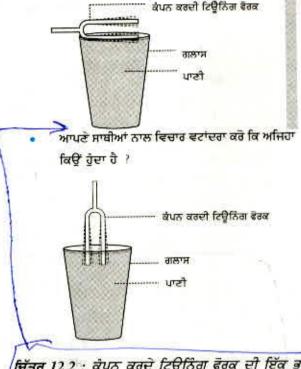
ਇੱਕ ਬਾਹੀ ਨੂੰ ਆਪਣੀ ਉਂਗਲ ਨਾਲ ਛੁਹੇ ਅਤੇ ਆਪਣੇ ਅਨੁਭਵ ਨੂੰ ਆਪਣੇ ਮਿੱਤਰਾਂ ਨਾਲ ਸਾਂਝਾ ਕਰੋ।

ਹੁਣ ਇੱਕ ਟੇਬਲ ਟੈਨਿਸ ਜਾਂ ਇੱਕ ਛੋਟੀ ਪਲਾਸਟਿਕ ਦੀ ਗੇਂਦ ਨੂੰ ਇੱਕ ਧਾਗੇ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਕਿਸੇ ਟੇਗਣੀ (support) ਤੇ ਲਟਕਾਉ। (ਇੱਕ ਵੱਡੀ ਸੂਈ ਅਤੇ ਧਾਗਾ ਲਉ, ਧਾਗੇ ਦੇ ਇੱਕ ਸਿਰੇ ਤੇ ਗੰਢ ਮਾਰੇ ਅਤੇ ਸੂਈ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਧਾਗੇ ਨੂੰ ਗੇਂਦ ਵਿੱਚੋਂ ਦੀ ਲੰਘਾਓ), ਫਿਰ ਕੰਪਨ ਕਰ ਰਹੇ ਚਿਮਟੇ ਰੂਪੀ ਬਾਹੀ ਨਾਲ ਗੇਂਦ ਨੂੰ ਛੁਹੋ। (ਚਿੱਤਰ 12.1)

ਦੇਖੋ ਕੀ ਹੁੰਦਾ ਹੈ ? ਆਪਣੇ ਮਿੱਤਰਾਂ ਨਾਲ ਵਿਚਾਰ ਵਟਾਂਦਰਾ

ਚਿੱਤਰ 12.1 : ਕੰਪਨ ਕਰਦਾ ਟਿਊਨਿੰਗ ਫੋਰਕ ਲਟਕਦੀ ਹੋਈ ਟੇਬਲ ਟੈਨਿਸ ਦੀ ਗੇਂਦ ਨੂੰ ਛੂੰਹਦਾ ਹੋਇਆ ਪ੍ਰੇ ਧਕਦਾ ਹੈ।

> ਕਰੋ ਅਤੇ ਦੋਵਾਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਅੰਤਰ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਦਾ ਯਤਨ ਕਰੇ।


ਇੱਕ ਬੀਕਰ ਜਾਂ ਗਲਾਸ ਨੂੰ ਉੱਪਰ ਤੱਕ ਪਾਣੀ ਨਾਲ ਭਰੋ।

12.2

Downloaded from https:// www.studiestoday.com

ਕਿਰਿਆ

ਕੰਪਨ ਕਰਦੇ ਚਿਮਟਾ ਰੂਪੀ ਯੋਤਰ (ਟਿਊਨਿੰਗ ਵੋਰਕ) ਦੀ ਇੱਕ ਬਾਹੀ ਨੂੰ ਪਾਣੀ ਦੀ ਸਤਹ ਨੂੰ ਚਿੱਤਰ 12.2 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਛੁਹੋ। ਹੁਣ ਚਿੱਤਰ 12.3 ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਕੰਪਨ ਕਰਦੇ ਚਿਮਟਾ ਰੂਪੀ ਯੰਤਰ ਦੀਆਂ ਦੋਵੇਂ ਬਾਹੀਆਂ ਪਾਣੀ ਵਿੱਚ ਡੁਬੇਵੇ। ਦੇਖੋ ਦੋਵਾਂ ਹਾਲਾਤਾਂ ਵਿੱਚ ਕੀ ਹੁੰਦਾ ਹੈ ?

ਚਿੱਤਰ 12.2 : ਕੰਪਨ ਕਰਦੇ ਟਿਊਨਿਗ ਫਰਕ ਦੀ ਇਕ ਭੂਜਾ ਪਾਣੀ ਨੂੰ ਛੁੰਹਦੀ ਹੋਈ

ਚਿੱਤਰ 12.3 : ਕੰਪਨ ਕਰਦੇ ਟਿਊਨਿੰਗ ਫੋਰਕ ਦੀਆਂ ਦੋਵੇਂ ਭੁਜਾਵਾਂ ਪਾਣੀ ਵਿੱਚ ਡੁੱਬੀਆਂ ਹੋਈਆਂ

ਉਪਰੋਕਤ ਕਿਰਿਆਵਾਂ ਤੋਂ ਤੁਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢੋਗੇ? ਕੀ ਤੁਸੀਂ ਕਿਸੇ ਕੰਪਨ ਕਰਦੀ ਵਸਤੂ ਤੋਂ ਬਿਨਾਂ ਧੁਨੀ ਉਤਪੰਨ ਕਰ ਸਕਦੇ ਹੋ?

ਹੁਣ ਤੱਕ ਵਰਨਣ ਕੀਤੀਆਂ ਉਪਰੋਕਤ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਅਸੀਂ ਕੰਪਨ ਕਰਕੇ ਚਿਮਟਾ ਰੂਪੀ ਯੰਤਰ ਨਾਲ ਧੁਨੀ ਉਤਪੰਨ ਕੀਤੀ। ਅਸੀਂ ਭਿੰਨ-ਭਿੰਨ ਵਸਤੂਆਂ ਵਿੱਚ ਤੁਣਕਾ ਮਾਰ ਕੇ, ਖੁਰਚ ਕੇ, ਰਗੜ ਕੇ, ਫੂਕ-ਮਾਰ ਕੇ ਜਾਂ ਉਹਨਾਂ ਨੂੰ ਹਿਲਾ ਕੇ ਧੁਨੀ ਉਤਪੰਨ ਕਰ ਸਕਦੇ ਹਾਂ। ਉਪਰੋਕਤ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਅਸੀਂ ਵਸਤੂਆਂ ਨੂੰ ਕੀ ਕਰਦੇ ਹਾਂ? ਜਦੋਂ ਅਸੀਂ ਵਸਤੂਆਂ ਦਾ ਕੰਪਨ ਕਰਦੇ ਹਾਂ ਤਾਂ ਧੁਨੀ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਕੰਪਨ ਦਾ ਅਰਥ ਹੁੰਦਾ ਹੈ ਕਿਸੇ ਵਸਤੂ ਦਾ ਤੇਜ਼ੀ ਨਾਲ ਬਾਰ-ਬਾਰ ਇੱਧਰ-ਉੱਧਰ ਗਤੀ ਕਰਨਾ। ਮਨੁੱਖੀ ਅਵਾਜ਼ ਦੀ ਧੁਨੀ ਉਹਨਾਂ ਦੇ ਕੰਠ ਤੰਤੂਆਂ (ਸੰਘ ਵਿੱਚ ਜਾਂ ਗਲੇ ਵਿੱਚ) ਵਿੱਚ ਕੰਪਨ (Vibration) ਹੋਣ ਕਰਕੇ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਕੋਈ ਪੰਛੀ ਆਪਣੇ ਖੰਭਾਂ ਨੂੰ ਫੜਫੜਾਉਂਦਾ ਹੈ ਤਾਂ ਕੀ ਤੁਸੀਂ ਕੋਈ ਪੁਨੀ ਸੁਣਦੇ ਹੋ ? ਕੀ ਤੁਹਾਨੂੰ ਪਤਾ ਹੈ ਕਿ ਮੱਖੀਆਂ ਭਿੰਨ-ਭਿਣਾਉਂਦੀ ਧੁਨੀ ਕਿਵੇਂ ਉਤਪੰਨ ਕਰਦੀਆਂ ਹਨ। ਇੱਕ ਤਣੇ (ਖਿੱਚੇ) ਹੋਏ ਰਬੜ ਦੇ ਛੱਲੇ ਨੂੰ ਵਿੱਚੋਂ ਖਿੱਚ ਕੇ ਛੱਡਣ ਤੇ ਉਹ ਕੰਪਨ ਕਰਦਾ ਹੈ ਅਤੇ ਧੁਨੀ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਤੁਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਪਹਿਲਾਂ ਨਹੀਂ ਕੀਤਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਕਰੋ ਅਤੇ ਤਣੇ ਹੋਏ ਰਬੜ ਦੇ ਛੱਲੇ ਦੀਆਂ ਕੰਪਨਾਂ ਨੂੰ ਦੇਖੋ।

ਕਿਰਿਆ_____12.3

ਭਿਨ-ਭਿੰਨ ਸੰਗੀਤ ਯੰਤਰਾਂ ਦੀ ਸੂਚੀ ਬਣਾਉ ਅਤੇ ਆਪਣੇ ਸਾਥੀ ਮਿੱਤਰਾਂ ਨਾਲ ਵਿਚਾਰ ਵਟਾਂਦਰਾ ਕਰੋ ਕਿ ਇਨ੍ਹਾਂ ਸੰਗੀਤ ਯੰਤਰਾਂ ਦਾ ਕਿਹੜਾ ਭਾਗ ਧੁਨੀ ਪੈਦਾ ਕਰਨ ਲਈ ਕੰਪਨ ਪੈਦਾ ਕਰਦਾ ਹੈ ?

12.2 ਧੁਨੀ ਦਾ ਸੰਚਾਰ (Propagation of Sound)

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕੰਪਨ ਕਰ ਰਹੀਆਂ ਵਸਤੂਆਂ ਧੁਨੀ ਯਾਣਾ ਪਾਣਾ ਯਾਣਾ ਚਿੱਤਰ 12.2 : ਕੰਪਨ ਕਰਦੇ ਟਿਊਨਿੰਗ ਫੋਰਕ ਦੀ ਇੱਕ ਭੂਜਾ ਮਿੱਤਰ 12.2 : ਕੰਪਨ ਕਰਦੇ ਟਿਊਨਿੰਗ ਫੋਰਕ ਦੀ ਇੱਕ ਭੂਜਾ ਮਿੱਤਰ 12.2 : ਕੰਪਨ ਕਰਦੇ ਟਿਊਨਿੰਗ ਫੋਰਕ ਦੀ ਇੱਕ ਭੂਜਾ ਮਿੱਤਰ 12.2 : ਕੰਪਨ ਕਰਦੇ ਟਿਊਨਿੰਗ ਫੋਰਕ ਦੀ ਇੱਕ ਭੂਜਾ ਮਿੱਤਰ 12.2 : ਕੰਪਨ ਕਰਦੇ ਟਿਊਨਿੰਗ ਫੋਰਕ ਦੀ ਇੱਕ ਭੂਜਾ

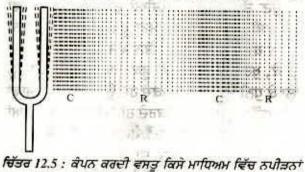
> ਪੈਦਾ ਕਰ ਦਿੰਦੀ ਹੈ। ਇਹ ਕਣ ਕੰਪਨ ਕਰਦੀ ਵਸਤੂ ਤੋਂ ਬੁੰਦ ਗਤੀ ਕਰਕੇ ਸਾਡੇ ਕੰਨਾਂ ਤੱਕ ਨਹੀਂ ਪਹੁੰਚਦੇ। ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਕੰਪਨ ਕਰ ਰਹੀ ਵਸਤ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਰਹਿਣ ਵਾਲੇ ਮਾਧਿਅਮ ਦੇ ਕਣ (ਅਰੰਭਿਕ ਕਣ) ਆਪਣੀ ਸੰਤੁਲਿਤ ਅਵਸਥਾ ਤੇ ਹਿਲ-ਜੂਲ ਕਰਦੇ ਹਨ। ਇਹ ਕਣ ਆਪਣੇ ਨਜ਼ਦੀਕੀ ਕਣਾਂ ਤੇ ਬਲ ਲਗਾਉਂਦੇ ਹਨ। ਜਿਸਦੇ ਫਲਸਰੂਪ (ਨਤੀਜੇ ਵੱਜੋਂ) ਨਜ਼ਦੀਕੀ ਕਣ ਆਪਣੀ ਸੰਤਲਿਤ ਅਵਸਥਾ ਤੋਂ ਵਿਸਥਾਪਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਨਜ਼ਦੀਕੀ ਕਣਾਂ ਨੂੰ ਵਿਸਥਾਪਿਤ ਕਰਨ ਮਗਰੋਂ ਅਰੰਭਿਕ ਕਣ ਆਪਣੀ ਸ਼ੁਰੂ ਵਾਲੀ ਸਥਿਤੀ (ਮੁਲ-ਅਵਸਥਾ) ਵਿੱਚ ਆ ਜਾਂਦੇ ਹਨ। ਮਾਧਿਅਮ ਵਿੱਚ ਇਹ ਕਿਰਿਆ ਉਦੋਂ ਤੱਕ ਚਲਦੀ ਰਹਿੰਦੀ ਹੈ ਜਦੋਂ ਤਕ ਕਿ ਧਨੀ ਸਾਡੇ ਕੰਨਾਂ ਤੱਕ ਨਹੀਂ ਪਹੁੰਚ ਜਾਂਦੀ। ਮਾਧਿਅਮ ਵਿੱਚ ਧੁਨੀ ਸ਼੍ਰੋਤ ਦੁਆਰਾ ਉਤਪੰਨ (ਹਿਲਜੂਲ) ਹਰਕਤ ਮਾਧਿਅਮ ਵਿੱਚੋਂ ਦੀ ਹੁੰਦੀ ਹੋਈ ਸੰਚਾਰ ਕਰਦੀ ਅੱਗੇ ਚਲਦੀ ਹੈ ਅਤੇ ਨਾ ਕਿ ਮਾਧਿਅਮ ਦੇ ਕਣ।ਬਾਕਸ ਅੰਦਰ ਚਿੱਤਰ ਅਤੇ ਮੈਟੀਰਿਅਲ ਲਿਖੋ।

180

ਵਿਗਿਆਨ

ਕੀ ਧੁਨੀ ਇੱਕ ਪ੍ਰਕਾਸ਼ ਧੱਬੇ ਨੂੰ ਨਚਾ ਸਕਦੀ ਹੈ ?

ਇੱਕ ਟੀਨ ਦਾ ਡੱਬਾ ਲਉ। ਇਸ ਦੇ ਦੋਵੇਂ ਸਿਰਿਆਂ ਨੂੰ ਕੱਟ ਕੇ ਖੋਖਲਾ ਵੇਲਨ ਬਣਾ ਲਉ। ਇੱਕ ਗੁਬਾਰਾ ਲਉ, ਉਸ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਕੱਟੋ ਕਿ ਉਸਦੀ ਇੱਕ ਝਿੱਲੀ ਬਣ ਜਾਵੇ। ਇਸ ਝਿੱਲੀ ਨੂੰ ਖਿੱਚਕੇ ਡੱਬੇ ਦੇ ਇੱਕ ਖੁੱਲੇ ਸਿਰੇ ਉਪਰ ਤਾਣ ਦਿਓ। ਗੁਬਾਰੇ ਦੇ ਚਾਰੇ ਪਾਸੇ ਇੱਕ ਰਬੜ ਦਾ ਛੱਲਾ ਲਪੇਟ ਦਿਓ। ਸਮਤਲ ਦਰਪਣ ਦਾ ਇੱਕ ਛੋਟਾ ਟੁਕੜਾ ਲਉ। ਦਰਪਣ ਦੇ ਇਸ ਟੁਕੜੇ ਨੂੰ ਗੂੰਦ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਗੁਬਾਰੇ ਉਪਰ ਇਸ ਤਰ੍ਹਾਂ ਚਿਪਕਾਓ ਕਿ ਉਸਦੀ ਚਮਕਦਾਰ ਸਤ੍ਹਾ ਉੱਪਰ ਵੱਲ ਹੋਵੇ। ਇੱਕ ਝਿਰੀ (Slit) ਵਿੱਚੋਂ ਆ ਰਹੀ ਰੋਸ਼ਨੀ ਨੂੰ ਦਰਪਣ ਉੱਪਰ ਪੈਣ ਦਿਉ। ਪਰਾਵਰਤਨ ਹੋਣ ਮਗਰੋਂ ਪ੍ਰਕਾਸ਼ ਦਾ ਧੱਬਾ (spot) ਦੀਵਾਰ ਤੇ ਪਹੁੰਚਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 12.4 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਡੱਬੇ ਦੇ ਖੁੱਲ੍ਹੇ ਭਾਗ ਵਿੱਚ ਸਿੱਧੇ ਹੀ ਗੱਲ ਕਰੋ ਜਾਂ ਚੀਖੋ ਅਤੇ ਦੀਵਾਰ ਉੱਤੇ ਪ੍ਰਕਾਸ਼ ਦੇ ਧੱਬੇ ਦਾ ਨੱਚਣ ਦੇ ਕਾਰਨ ਬਾਰੇ ਆਪਣੇ ਦੋਸਤਾਂ ਨਾਲ ਚਰਚਾ ਕਰੋ।


ਚਿੱਤਰ 12.4 : ਪ੍ਰਕਾਸ਼ ਸ਼੍ਰੋਤ ਤੋਂ ਆਉਣ ਵਾਲਾ ਇੱਕ ਪ੍ਰਕਾਸ਼ ਪੁੰਜ ਪਰਾਵਰਤਕ ਉੱਪਰ ਗਿਰਾਇਆ ਜਾਂਦਾ ਹੈ। ਪਰਾਵਰਤਿਤ ਪ੍ਰਕਾਸ਼ ਦੀਵਾਰ ਉੱਤੇ ਪੈ ਰਿਹਾ ਹੈ।

ਤਰੰਗ ਇੱਕ ਹਿਲਜੁਲ (disturbance) ਹੈ ਜਿਹੜੀ ਕਿਸੇ ਮਾਧਿਅਮ ਵਿੱਚੋਂ ਹੋ ਕੇ ਗਤੀ ਕਰਦੀ ਹੈ ਅਤੇ ਮਾਧਿਅਮ ਦੇ ਕਣ ਨੇੜੇ ਦੇ ਕਣਾਂ ਵਿੱਚ ਗਤੀ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਮਾਧਿਅਮ ਦੇ ਕਣ ਖੁਦ ਅੱਗੇ ਨਹੀਂ ਤੁਰਦੇ ਸਗੇ ਹਿਲਜੁਲ ਨੂੰ ਅੱਗੇ ਤੋਰ ਦਿੰਦੇ ਹਨ। ਕਿਸੇ ਮਾਧਿਅਮ ਵਿੱਚ ਧੁਨੀ ਸੰਚਾਰ ਦੇ ਸਮੇਂ ਠੀਕ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦਾ ਹੈ। ਇਸ ਕਰਕੇ ਧੁਨੀ ਨੂੰ ਤਰੰਗਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਜਾਣਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਮਾਧਿਅਮ ਵਿੱਚ ਕਣਾਂ ਦਾ ਗਤੀ ਕਰਨਾ ਧੁਨੀ ਤਰੰਗਾਂ ਦੀ ਪਛਾਣ ਹੈ (ਵਿਸ਼ੇਸ਼ਤਾ ਹੈ) ਅਤੇ ਇਸ ਲਈ ਇਹਨਾਂ ਨੂੰ ਯੰਤਰਿਕ ਤਰੰਗਾਂ (Mechanical waves) ਕਹਿੰਦੇ ਹਨ।

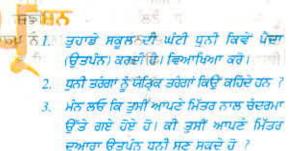
ਧੁਨੀ ਦੇ ਸੰਚਾਰ ਲਈ ਹਵਾ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਆਮ ਵਰਤਿਆ ਜਾਣ ਵਾਲਾ ਮਾਧਿਅਮ ਹੈ। ਜਦੋਂ ਕੋਈ ਵਸਤੂ ਕੰਪਨ ਕਰਦੀ ਹੋਈ ਅੱਗੇ ਵੱਲ ਵਧਦੀ ਹੈ ਤਾਂ ਇਹ ਆਪਣ ਸਾਹਮਣੇ ਦੀ ਹਵਾ ਨੂੰ ਧੱਕਦੀ ਹੋਈ ਨਪੀੜਦੀ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਇੱਕ ਉੱਚ ਦਬਾਅ ਵਾਲਾ ਖੇਤਰ ਪੈਦਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਖੇਤਰ ਨੂੰ ਨਪੀੜਨ ਜਾਂ ਦਾਬ (compression) ਕਹਿੰਦੇ ਹਨ। (ਚਿੱਤਰ 12.5) ਇਹ ਦਾਬ ਜਾਂ ਨਪੀੜਨ, ਕੰਪਨ ਕਰ ਰਹੀ ਵਸਤੂ ਤੋਂ ਦੂਰ ਅੱਗੇ ਵੱਲ ਗਤੀ ਕਰਦਾ ਹੈ। ਜਦੋਂ ਕੰਪਨ ਕਰਦੀ ਵਸਤੂ ਪਿੱਛੇ ਵੱਲ ਕੰਪਨ ਕਰਦੀ ਹੈ ਤਾਂ ਇੱਕ ਘੱਟ ਦਾਬ ਵਾਲਾ ਖੇਤਰ ਉਤਪੰਨ ਹੋ ਜਾਂਦਾ ਹੈ ਜਿਸਨੰ ਨਿਖੇੜਨ

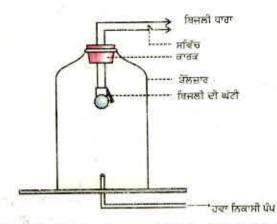
ਧਨੀ

ਜਾਂ ਵਿਰਲ (Refraction) ਕਹਿੰਦੇ ਹਨ। (ਚਿੱਤਰ 12.5.)। ਜਦੋਂ ਵਸਤੂ ਕੰਪਨ ਕਰਦੀ ਹੈ ਭਾਵ ਅੱਗੇ ਅਤੇ ਪਿੱਛੇ ਤੇਜ਼ੀ ਨਾਲ ਗਤੀ ਕਰਦੀ ਹੈ ਤਾਂ ਇਹੋ ਨਪੀੜਨ (C) ਅਤੇ ਨਿਖੇੜਨ (R) ਧੁਨੀ ਤਰੰਗਾਂ ਬਣਾਉਂਦੇ ਹਨ ਜਿਹੜੀ ਮਾਧਿਅਮ ਵਿੱਚ ਦੀ ਹੋ ਕੇ ਅਗਾਂਹ ਤੁਰਦੀ ਹੈ (ਸੰਚਾਰ ਕਰਦੀ ਹੈ)। ਨਪੀੜਨ (C) ਉੱਚ ਦਬਾਅ (region of high pressure) ਦਾ ਖੇਤਰ ਅਤੇ ਵਿਰਲ (Rarefaction) ਘੱਟ ਦਬਾਅ ਦਾ ਖੇਤਰ (region of low pressure) ਹੈ। ਦਬਾਅ (pressure) ਕਿਸੇ ਮਾਧਿਅਮ ਦੇ ਦਿੱਤੇ ਆਇਤਨ (given volume) ਵਿੱਚ ਕਣਾਂ (particles) ਦੀ ਸੰਖਿਆ ਨਾਲ ਸਬੰਧਿਤ ਹੈ। ਕਿਸੇ ਮਾਧਿਅਮ ਵਿੱਚ ਕਣਾਂ ਦੀ

(C) ਅਤੇ ਵਿਰਲਾਂ(R) ਦੀ ਲੜੀ ਉਤਪੰਨ ਕਰਦੇ ਹੋਏ।

181


ਵੱਧ ਘਣਤਾ (more density of the particles) ਅਧਿਕ ਦਬਾਅ (more pressure) ਅਤੇ ਘੱਟ ਘਣਤਾ (low density) ਘੱਟ ਦਬਾਅ (low pressure) ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਇੱਕ ਮਾਧਿਅਮ ਵਿੱਚ ਧੁਨੀ ਦਾ ਸੰਚਾਰ (propagation of sound) ਘਣਤਾ ਪਰਿਵਰਤਨ ਦੇ ਸੰਚਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਵੀ ਵੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।

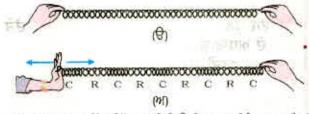

।. ਕਿਸੇ ਮਾਧਿਅਮ ਵਿੱਚ ਕੰਪਨ ਕਰਦੀ ਵਸਤੂ ਦੁਆਰਾ ਉਤਪੰਨ ਹੋਈ ਧੁਨੀ ਤੁਹਾਡੇ ਕੋਨਾਂ ਤੱਕ ਕਿਵੇਂ ਪਹੁੰਚਦੀ ਹੈ ?

12.2.1. ਧੁਨੀ ਸੰਚਾਰ ਲਈ ਮਾਧਿਅਮ ਲੋੜੀਂਦਾ ਹੈ (Sound needs a Medium To Travel)

ਪੂਨੀ ਇਕ ਯੰਤ੍ਰਿਕ ਤਰੰਗ ਹੈ ਅਤੇ ਇਸਦੇ ਸੰਚਾਰ ਲਈ ਕਿਸੇ ਮਾਧਿਅਮ ਜਿਵੇਂ- ਹਵਾ, ਪਾਣੀ, ਸਟੀਲ ਆਦਿ ਦੀ ਲੋੜ ਪੈਂਦੀ ਹੈ। ਇਹ ਖਲਾਅ (ਨਿਰਵਾਯੂ vaccum) ਵਿੱਚ ਨਹੀਂ ਚਲ ਸਕਦੀ। ਇਸਨੂੰ ਹੇਠਲੇ ਪ੍ਰਯੋਗ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਪ੍ਰਯੋਗ : ਇੱਕ ਬਿਜਲੀ ਦੀ ਘੰਟੀ (electric bell) ਅਤੇ ਇੱਕ ਕੱਚ ਦਾ ਹਵਾ ਬੰਦ (air tight) ਬੈੱਲਜ਼ਾਰ ਲਉ। ਬਿਜਲੀ ਦੀ ਘੰਟੀ ਨੂੰ ਬੈੱਲਜ਼ਾਰ ਵਿੱਚ ਲਟਕਾਓ। ਬੈੱਲਜ਼ਾਰ ਨੂੰ ਚਿੱਤਰ 12.6 ਦੀ ਤਰ੍ਹਾਂ ਹਵਾ-ਨਿਕਾਸੀ ਪੰਪ (ਨਿਰਵਾਯੂ ਪੰਪ (Vacuum pump) ਨਾਲ ਜੋੜੇ। ਘੰਟੀ ਦਾ ਸਵਿੱਚ ਦਬਾਉਣ ਤੇ ਤੁਹਾਨੂੰ ਉਸਦੀ ਧੁਨੀ ਸੁਣਾਈ ਦੇਵੇਗੀ। ਹੁਣ ਹਵਾ-ਨਿਕਾਸੀ ਪੰਪ ਨੂੰ ਚਲਾਉ। ਜਦੋਂ ਬੈੱਲਜ਼ਾਰ ਦੀ ਹਵਾ ਹੌਲੀ-ਹੌਲੀ ਬਾਹਰ ਨਿਕਲਦੀ ਹੈ, ਘੰਟੀ ਦੀ ਧੁਨੀ ਮੱਧਮ ਹੋ ਜਾਂਦੀ ਹੈ, ਜਦੋਂ ਕਿ ਉਸ ਵਿੱਚ ਸ਼ੁਰੂ ਵਾਲੀ ਹੀ ਬਿਜਲੀ ਧਾਰਾ (electric current) ਗੁਜ਼ਰ ਰਹੀ ਹੈ। ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਜਦੋਂ ਬੈੱਲਜ਼ਾਰ ਵਿੱਚ ਬਹੁਤ ਘੱਟ ਹਵਾ ਬਾਕੀ ਰਹਿ ਜਾਂਦੀ ਹੈ ਤਾਂ ਤੁਹਾਨੂੰ ਬਹੁਤ ਮੱਧਮ ਧੁਨੀ (feeble sound) ਸੁਣਾਈ ਦਿੰਦੀ ਹੈ। ਜੇਕਰ ਬੈੱਲਜ਼ਾਰ ਦੀ ਸਾਰੀ ਹਵਾ ਬਾਹਰ ਕੱਢ ਦਿੱਤੀ ਜਾਵੇ ਤਾਂ ਕੀ ਹੋਵੇਗਾ ? ਕੀ ਤੁਸੀਂ ਫਿਰ ਵੀ ਘੰਟੀ ਦੀ ਧੁਨੀ ਨੂੰ ਸੁਣ ਸਕਦੇ ਹੋ।

ਚਿੱਤਰ 12.6:ਖਲਾਅ (Vacuum) ਵਿੱਚ ਧੁਨੀ ਦਾ ਸੇਚਾਰ ਨਹੀਂ ਹੋ ਸਕਦਾ ਇਹ ਦਰਸਾਉਣ ਲਈ ਬੈੱਲਜ਼ਾਰ ਦਾ ਪ੍ਰਯੋਗ


12.2.2 ਧੁਨੀ ਤਰੰਗਾਂ ਲੰਬੇ-ਦਾਅ ਤਰੰਗਾਂ (ਲਾਂਗੀ ਚਿਊਡੀਨਲ)ਹਨ I(Sound Waves are Longitudinal)

<u>ਕਿਰਿਆ</u> 12.4

ਇੱਕ ਸਪਰਿੰਗ ਲਓ। ਹੁਣ ਸਪਰਿੰਗ ਨੂੰ ਚਿੱਤਰ 12.7(a) ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਬਿੱਚੋ। ਆਪਣੇ ਮਿੱਤਰ ਵੱਲ ਸਪਰਿੰਗ ਨੂੰ ਇੱਕ ਤਿੱਖਾ ਝਟਕਾ ਦਿਉ।

ਤੁਸੀਂ ਕੀ ਵੇਖਦੇ ਹੋ ? ਅਗਰ ਤੁਸੀਂ ਆਪਣੇ ਹੱਥ ਨਾਲ ਸਪਰਿੰਗ ਨੂੰ ਲਗਾਤਾਰ ਅੱਗੇ-ਪਿੱਛੇ ਧੱਕਾ ਦਿੰਦੇ ਅਤੇ ਖਿੱਚਦੇ ਰਹੋ (pushing and pulling alternatively) ਜੇਕਰ ਤੁਸੀਂ ਸਪਰਿੰਗ ਉੱਤੇ ਇੱਕ ਨਿਸ਼ਾਨ ਲੱਗਾ ਦਿਉ ਤਾਂ ਤੁਸੀਂ ਦੇਖੋਗੇ ਸਪਰਿੰਗ ਉੱਤੇ ਲਗਾ ਨਿਸ਼ਾਨ ਹਲਚਲ ਦੇ ਸੰਚਾਰ ਦੀ ਦਿਸ਼ਾ ਦੇ ਸਮਾਨਾਂਤਰ ਅੱਗੇ ਪਿੱਛੇ ਗਤੀ ਕਰਦਾ ਹੈ।

ਉਹ ਖੇਤਰ ਜਿਥੇ ਸਪਰਿੰਗ ਦੀਆਂ ਕੁੰਡਲੀਆਂ (coils) ਨੇੜੇ-ਨੇੜੇ ਆ ਜਾਂਦੀਆਂ ਹਨ, ਨੂੰ ਨਪੀੜਨ (compressions) ਅਤੇ ਉਹ ਖੇਤਰ ਜਿਥੇ ਕੁੰਡਲੀਆਂ ਦੂਰ-ਦੂਰ ਹੋ ਜਾਂਦੀਆ ਹਨ ਨੂੰ-ਵਿਰਲ R-rarefactions ਕਹਿੰਦੇ ਹਨ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਕਿਸੇ ਮਾਧਿਅਮ ਵਿੱਚ ਧੁਨੀ ਨਿਖੇੜਨਾਂ (C) ਅਤੇ ਵਿਰਲਾਂ

ਚਿੱਤਰ 12.7 : ਸਪਰਿੰਗ ਵਿੱਚ ਲਾਂਗੀ ਚਿਊਡੀਨਲ ਜਾਂ ਲੰਬੇ ਦਾਅ ਤਰੇਗਾਂ

ਵਿਗਿਆਨ

182

Downloaded from https:// www.studiestoday.com

Ś

HAT

(R) ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਚਾਰ ਕਰਦੀ ਜਾਂ ਅਗਾਂਹ ਤਰਦੀ ਹੈ। ਹਣ ਤਸੀਂ ਕਿਸੇ ਸਪਰਿੰਗ ਵਿੱਚ ਹਿਲਜਲ (disturbance) ਦੇ ਸੰਚਾਰ ਦੀ (ਅਗਾਂਹ ਤਰਨ ਦੀ) ਕਿਸੇ ਮਾਧਿਅਮ ਵਿੱਚ ਧਨੀ ਦੇ ਸੰਚਾਰ ਨਾਲ ਤਲਨਾ ਕਰ ਸਕਦੇ ਹੈ। ਇਹਨਾਂ ਤਰੇਗੀ ਨੂੰ ਲੰਬੇ-ਦਾਅ ਜਾਂ ਲਾਂਗੀ ਚਿਊਡੀਨਲ ਤਰੇਗਾਂ (longitudinal waves) ਕਹਿੰਦੇ ਹਨ। ਇਹਨਾਂ ਤਰੰਗਾਂ ਵਿੱਚ ਮਾਧਿਅਮ ਦੇ ਕਣਾਂ ਦਾ ਵਿਸਥਾਪਨ (ਹਰਕਤ ਜਾਂ ਉਤੇਜਨਾ ਦੌਰਾਨ ਕਣ ਦੀ ਵਿਰਾਮ ਅਵਸਥਾਂ ਤੋਂ ਦੁਰੀ) displacement ਸੰਚਾਰ ਕਰ ਰਹੀ ਜਾਂ ਚਲ ਰਹੀ ਉਤੇਜਨਾ (ਹਰਕਤ disturbance) ਦੀ ਦਿਸ਼ਾ ਦੇ ਸਮਾਨਅੰਤਰ ਹੁੰਦਾ ਹੈ ? ਮਾਧਿਅਮ ਦੇ ਕਣ ਇੱਕ ਤੋਂ ਦੂਜੀ ਥਾਂ ਤੱਕ ਗਤੀ ਨਹੀਂ ਕਰਦੇ ਪਰੰਤ ਆਪਣੀ ਵਿਰਾਮ original position ਅਵਸਥਾ ਦੇ ਅੱਗੇ-ਪਿੱਛੇ ਹਿਲ-ਜਲ/ਡੋਲਨ (oscillate) ਕਰਦੇ ਹਨ। ਠੀਕ ਇਸੇ ਤਰਾਂ ਧਨੀ ਤਰੰਗਾਂ ਸੰਚਾਰ ਕਰਦੀਆਂ ਹਨ ਅਤੇ ਇਸ ਕਰਕੇ ਧੁਨੀ ਤਰੰਗਾਂ ਨੂੰ ਲੰਬੇ-ਦਾਅ ਜਾਂ ਲਾਂਗੀ ਚਿਊਡੀਨਲ ਤਰੰਗਾਂ ਕਹਿੰਦੇ ਹਨ।

ਇੱਕ ਹੋਰ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਤਰੰਗ ਵੀ ਹੈ। ਜਿਸਨੰ ਆਡੇ-ਦਾਅ ਜਾਂ ਟਾਂਸਵਰਸ ਤਰੰਗ (transverse wave) ਕਹਿੰਦੇ ਹਨ। ਆਡੇ-ਦਾਅ ਜਾਂ ਟਾਂਸਵਰਸ ਤਰੰਗ ਵਿੱਚ ਮਾਧਿਅਮ ਦੇ ਕਣ. ਤਰੰਗ ਸੰਚਾਰ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਗਤੀ ਨਹੀਂ ਕਰਦੇ ਪਰੰਤ ਤਰੇਗਾਂ ਦੇ ਚਲਣ ਦਿਸ਼ਾ ਦੇ ਲੈਬਰੂਪ ਆਪਣੀ ਵਿਰਾਮ ਅਵਸਥਾ ਦੇ ਉੱਪਰ-ਹੇਠਾਂ ਕੰਪਨ ਕਰਦੇ ਹਨ। ਇਸ ਪਕਾਰ ਦੀਆਂ ਤਰੰਗਾ ਨੂੰ ਆਡੇ-ਦਾਅ ਤਰੰਗਾਂ ਕਹਿੰਦੇ ਹਨ।

ਸੋ, ਆਡੇ-ਦਾਅ (transverse) ਤਰੰਗ, ਉਹ ਤਰੰਗ ਹੈ ਜਿਸ ਵਿੱਚ ਮਾਧਿਅਮ ਦੇ ਕਣ ਆਪਣੀ ਮੂਲ ਅਵਸਥਾ ਤੇ (about mean position) ਤਰੇਗ ਦੇ ਸੰਚਾਰ ਦੀ ਦਿਸ਼ਾ ਦੇ ਲੰਬਮਈ (perpendicular to the direction of wave prepagation) ਗਤੀ ਕਰਦੇ ਹਨ। ਪਕਾਸ਼ ਵੀ ਆਡੇ-ਦਾਅ ਜਾਂ ਟਾਂਸਵਰਸ ਤਰੰਗ ਹੈ ਲੋਕਿਨ ਪ੍ਰਕਾਸ਼ ਦੇ ਸੰਚਾਰ ਵਿੱਚ ਡੋਲਨ (oscillations) ਮਾਧਿਅਮ ਦੇ ਕਣਾਂ ਜਾਂ ਉਹਨਾਂ ਦੇ ਦਬਾਅ (pressure) ਜਾਂ ਘਣਤਾ (density) ਦੇ ਨਿਰਭਰ ਨਹੀਂ ਹੁੰਦੇ।

ਪ੍ਰਕਾਸ਼ ਤਰੰਗਾਂ ਯਾਂਤ੍ਰਿਕ ਤਰੰਗਾਂ ਨਹੀਂ ਹਨ ।

ਆਡੇ-ਦਾਅ ਤਰੰਗਾਂ ਬਾਰੇ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਤੁਸੀਂ ਉਪਰਲੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕਰੋਗੇ।

12.2.3 ਧੁਨੀ ਤਰੰਗਾਂ ਦੇ ਲੱਛਣ (Characteristics of A Sound Wave)

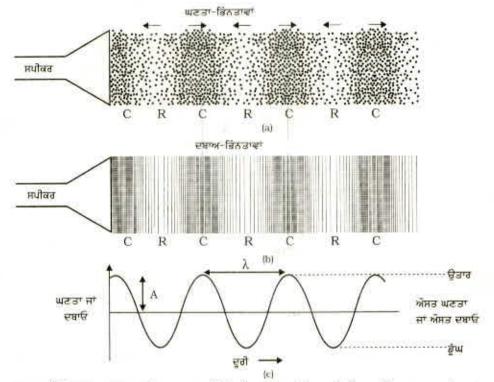
ਅਸੀਂ ਇੱਕ ਧਨੀ ਤਰੰਗ ਦਾ ਵਿਵਰਣ ਇਸ ਦੇ ਹੇਠ ਦਿੱਤੇ ਲੱਛਣ ਦੇ ਅਧਾਰ ਤੇ ਕਰ ਸਕਦੇ ਹਾਂ-

- ਆਵਰਤੀ (frequency)
- ਅਯਾਮ (amplitude)
- ਚਾਲ (speed)

ਧੁਨੀ ਤਰੇਗ ਨੂੰ ਗਰਾਫ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਚਿੱਤਰ 12.8(c) ਵਿੱਚ ਵਿਖਾਇਆ ਗਿਆ ਹੈ ਜੋ ਕਿ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਜਦੋਂ ਧਨੀ ਤਰੰਗ ਮਾਧਿਅਮ ਵਿੱਚ ਗਤੀ ਕਰਦੀ ਹੈ ਤਾਂ ਦਬਾਅ (pressure) ਅਤੇ ਘਣਤਾ (density) ਵਿੱਚ ਕਿਵੇਂ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਨਿਸ਼ਚਤ ਸਮੇਂ ਤੇ ਮਾਧਿਅਮ ਦੀ ਘਣਤਾ ਅਤੇ ਦਬਾਅ ਦੋਵੇਂ ਹੀ ਆਪਣੇ ਔਸਤ ਮਾਨ ਤੋਂ ਉੱਪਰ ਅਤੇ ਹੇਨਾਂ (ਵੱਧ-ਘੱਟ) ਦੂਰੀ ਦੇ ਨਾਲ ਬਦਲਦੇ ਹਨ। ਚਿੱਤਰ 12.8(a) ਅਤੇ 12.8(b) ਦਰਸਾਉਂਦੇ ਹਨ ਕਿ ਜਦੋਂ ਧਨੀ ਮਾਧਿਅਮ ਵਿੱਚ ਅਗਾਂਹ ਚਲਦੀ ਹੈ। (ਸੰਚਾਰ ਕਰਦੀ ਹੈ) ਤਾਂ ਘਣਤਾ ਅਤੇ ਦਬਾਅ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਦੇ ਬਦਲਾਅ ਹੁੰਦੇ ਹਨ।

ਨਪੀੜਨ ਉਹ ਖੇਤਰ ਹੈ ਜਿੱਥੇ ਮਾਧਿਅਮ ਦੇ ਕਣ ਨੇੜੇ-ਨੇੜੇ ਆ ਜਾਂਦੇ ਹਨ ਅਤੇ ਇਹਨਾਂ ਨੂੰ ਵਕਰ (curve) ਦੇ ਉਪਰਲੇ ਭਾਗ ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ (ਚਿੱਤਰ 12.8(c)) ਸਿਖਰ (peak) ਅਧਿਕਤਮ ਨਪੀੜਨ ਦੇ ਖੇਤਰ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਨਪੀੜਨ ਉਹ ਖੇਤਰ ਹੈ ਜਿੱਥੇ-ਜਿੱਥੇ ਘਣਤਾ ਅਤੇ ਦਬਾਅ ਦੋਵੇਂ ਹੀ ਵੱਧ ਘੱਟ ਹੁੰਦੇ ਹਨ। ਨਿਖੇੜਨ ਘੱਟ ਦਬਾਅ ਦਾ ਉਹ ਖੇਤਰ ਹੈ ਜਿਥੇ ਕਣ ਦੂਰ-ਦੂਰ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਘਾਟੀ (valley) ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਹਨਾਂ ਨੂੰ ਵਕਰ ਦੇ ਹੇਠਲੇ ਭਾਗ ਨਾਲ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਚਿੱਤਰ 12.8(c) ਸਿਖਰ ਨੂੰ ਤਰੰਗ ਦਾ ਉਚਾਣ (crest) ਅਤੇ ਘਾਟੀ ਨੂੰ ਸਿਚਾਣ (trough) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਦੋ ਕਮਵਾਰ ਨਪੀੜਨਾਂ (C) ਜਾਂ ਦੋ ਕਮਵਾਰ ਨਿਖੇੜਨਾਂ (R) ਦੇ ਵਿਚਕਾਰ ਦੀ ਦੂਰੀ ਨੂੰ ਤਰੰਗ ਲੰਬਾਈ (wave length) ਕਹਿੰਦੇ ਹਨ। ਤਰੰਗ ਲੰਬਾਈ ਨੂੰ ਆਮ ਤੌਰ ਤੇ (ਗੀਕ ਅੱਖਰ ਲੈਮਡਾ) ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਗਟਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੀ S.I. ਇਕਾਈ (unit) ਮੀਟਰ (m) ਹੈ।


ਹੈਨਰਿਕ ਰੁਡੋਲਫ ਹਰਟਜ਼ ਦਾ ਜਨਮ 22 ਫਰਵਰੀ 1857 ਨੂੰ ਹੈੱਮਬਰਗ, ਜਰਮਨੀ ਵਿੱਚ ਹੋਇਆ ਅਤੇ ਉਹਨਾਂ ਦੀ ਸਿੱਖਿਆ ਵਾਰਲਿਨ ਵਿਸ਼ਵ ਵਿਦਿਆਲਿਆ ਵਿੱਚ ਹੋਈ। ਉਹਨਾਂ ਹਨਕਿ ਭੁਡੋਲਵ ਹਰਟਜ਼ ਨੇ ਜੇ.ਸੀ. ਮੈਕਸਵੈੱਲ ਦੇ ਬਿਜਲੀ-

ਚੰਬਕੀ ਸਿਧਾਂਤ ਦੀ ਪਯੋਗਾਂ ਦੁਆਰਾ ਪੁਸ਼ਟੀ ਕੀਤੀ। ਉਹਨਾਂ ਨੂੰ ਰੇਡਿਓ, ਟੈਲੀਫੋਨ, ਟੈਲੀਗ੍ਰਾਫੀ ਅਤੇ ਟੈਲੀਵਿਜ਼ਨ ਦੇ ਭਵਿੱਖ ਵਿੱਚ ਵਿਕਾਸ ਦੀ ਨੀਂਹ ਰੱਖੀ। ਉਹਨਾਂ ਨੇ ਪਕਾਸ਼ ਬਿਜਲਈ ਪਭਾਵ ਦੀ ਵੀ ਖੋਜ ਕੀਤੀ ਜਿਸਦੀ ਬਾਅਦ ਵਿੱਚ ਅਲਬਰਟ ਆਈਨਸਟਾਈਨ ਨੇ ਵਿਆਖਿਆ ਕੀਤੀ। ਆਵਰਤੀ ਦੀ SI ਇਕਾਈ ਦਾ ਨਾਮ ਉਹਨਾਂ ਦੇ ਸਨਮਾਨ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ।

183

Downloaded from https:// www.studiestoday.com

पठी

ਚਿੱਤਰ 12.8 : ਚਿੱਤਰ 12.8(a) ਅਤੇ 12.8(b) ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ ਕਿ ਧੁਨੀ ਘਣਤਾ ਅਤੇ ਦਬਾਅ ਦੇ ਉਤਰਾਅ-ਚੜਾਅ ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਚਾਰਿਤ ਹੁੰਦੀ ਹੈ। ਚਿੱਤਰ 12.8(c) ਵਿੱਚ ਘਣਤਾ ਅਤੇ ਦਬਾਅ ਦੇ ਬਦਲਾਓ ਨੂੰ ਗਰਾਫ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

ਆਵਿਤੀ (frequency) ਤੋਂ ਸਾਨੂੰ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਕੋਈ ਘਟਨਾ ਕਿੰਨੀ ਛੇਤੀ-ਛੇਤੀ ਵਾਪਰਦੀ ਹੈ। ਮੰਨ ਲਓ ਤੁਸੀਂ ਕਿਸੇ ਢੋਲ (drum) ਨੂੰ ਮਾਰ-ਮਾਰ ਕੇ ਵਜਾ ਰਹੇ ਹੋ। ਤੁਸੀਂ ਢੋਲ ਨੂੰ ਇੱਕ ਸੈਕਿੰਡ ਵਿੱਚ ਜਿੰਨੀ ਵਾਰੀ ਮਾਰੋਗੇ ਉਹ ਤੁਹਾਡੇ ਦੁਆਰਾ ਢੋਲ ਨੂੰ ਮਾਰਨ ਦੀ ਆਵਿ੍ਤੀ (frequency) ਹੈ। ਸਾਨੂੰ ਪਤਾ ਹੈ ਕਿ ਜਦੋਂ ਧੁਨੀ ਕਿਸੇ ਮਾਧਿਅਮ ਵਿਚੋਂ ਦੀ ਗੁਜ਼ਰਦੀ ਹੈ ਤਾਂ ਮਾਧਿਅਮ ਦੀ ਘਣਤਾ (density) ਉਚਤਮ ਅਤੇ ਨਿਊਨਤਮ ਮਾਨ ਵਿੱਚਕਾਰ ਬਦਲਦੀ ਹੈ। ਘਣਤਾ ਦੇ ਉਚਤਮ ਮਾਪ ਤੋਂ ਨਿਊਨਤਮ ਮਾਪ ਤੱਕ ਬਦਲਣ ਅਤੇ ਫਿਰ ਅਧਿਕਤਮ ਮਾਨ ਤੱਕ ਆਉਣ ਤੇ ਇਕ ਡੋਲਨ ਪੁਰਾ ਹੁੰਦਾ ਹੈ। ਇਕਾਈ ਸਮੇਂ ਵਿੱਚ ਇਹਨਾਂ ਡੋਲਨਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਨੂੰ ਤਰੰਗ ਦੀ ਆਵਿ੍ਤੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ ਅਸੀਂ ਇਕਾਈ ਸਮੇਂ ਵਿੱਚ ਆਪਣੇ ਕੋਲੋਂ ਦੀ ਗੁਜ਼ਰਨ ਵਾਲੀਆਂ ਨਪੀੜਨਾਂ (C) ਜਾਂ ਨਿਖੇੜਨਾਂ (R) ਦੀ ਗਿਣਤੀ ਕਰ ਸਕੀਏ ਤਾਂ ਸਾਨੂੰ ਧੂਨੀ ਤਰੰਗ ਦੀ ਆਵਰਤੀ ਦਾ ਪਤਾ ਚਲ ਜਾਏਗਾ। ਇਸਨੂੰ ਆਮ ਤੌਰ ਤੇ v ਗ੍ਰੀਕ ਅੱਖਰ ਨਿਊ ਨਾਲ ਪ੍ਰਗਟਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੀ SI ਇਕਾਈ ਹਰਟਜ਼ (Hertz ਪ੍ਰਤੀਕ Hz ਹੈ।

ਦੋਂ ਕ੍ਰਮਵਾਰ ਨਪੀੜਨਾਂ ਜਾਂ ਦੋ ਕ੍ਰਮਵਾਰ ਨਿਖੇੜਨਾਂ ਨੂੰ

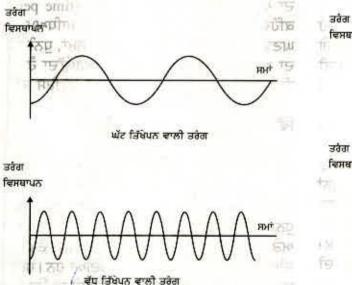
ਕਿਸੇ ਨਿਸਚਿਤ ਬਿੰਦੂ ਤੋਂ ਗੁਜ਼ਰਨ ਵਿੱਚ ਲੱਗੇ ਸਮੇਂ ਨੂੰ ਤਰੰਗ ਦਾ ਆਵਰਤ ਕਾਲ ਜਾਂ ਮਿਆਦ ਕਾਲ (time period) ਕਹਿੰਦੇ ਹਨ। ਤੁਸੀਂ ਕਹਿ ਸਕਦੇ ਹੋ ਕਿ ਮਾਧਿਅਮ ਵਿੱਚ ਘਣਤਾ ਦੇ ਇੱਕ ਪੂਰਨ ਡੋਲਨ ਨੂੰ ਲੱਗਾ ਸਮਾਂ, ਧੁਨੀ ਤਰੰਗ ਦਾ ਆਵਰਤ ਕਾਲ (time period) ਕਹਾਉਂਦਾ ਹੈ। ਇਸ ਨੂੰ T ਅੱਖਰ ਨਾਲ ਪ੍ਰਗਟਾਇਆ ਜਾਂਦਾ ਹੈ ਇਸ ਦੀ SI ਇਕਾਈ ਸੈਕਿੰਡ (s) ਹੈ। ਆਵਰਤ ਕਾਲ ਅਤੇ ਆਵ੍ਰਿਤੀ ਦੇ ਵਿੱਚ ਸਬੰਧ ਹੇਠ ਲਿਖੇ ਅਨਸਾਰ ਹਨ :

275

ਵਿਗਿਆਨ

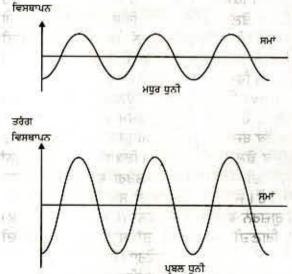
$$v = \frac{1}{T}$$

ਕਿਸੇ ਆਰਕੈਸਟ੍ਰਾ ਵਿੱਚ ਵਾਇਲਨ (violin) ਅਤੇ ਇੱਕ ਤੂਤੀ (flute) ਨੂੰ ਇੱਕੋ ਸਮੇਂ ਵਜਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਦੋਵੇਂ ਧੁਨੀਆਂ ਇੱਕ ਹੀ ਮਾਪਿਅਮ (ਹਵਾ) ਵਿੱਚ ਚਲਦੀਆਂ ਹਨ ਅਤੇ ਇੱਕੋ ਸਮੇਂ ਸਾਡੇ ਕੰਨਾਂ ਤੱਕ ਪੁੱਜਦੀਆਂ ਹਨ। ਦੋਵੇਂ ਸ਼੍ਰੋਤਾਂ ਦੀਆਂ ਧੁਨੀਆਂ ਇੱਕੋ ਚਾਲ ਨਾਲ ਚਲਦੀਆਂ ਹਨ। ਪਰੰਤੂ ਜੋ ਧੁਨੀਆਂ (ਦੋਵੇਂ ਸ਼੍ਰੋਤਾਂ ਤੋਂ) ਅਸੀਂ ਗ੍ਰਹਿਣ ਕਰਦੇ ਹਾਂ ਉਹ ਭਿੰਨ-ਭਿੰਨ ਹਨ। ਅਜਿਧੀ ਧੁਨੀ ਨਾਲ ਜੁੜੇ ਵੱਖ-ਵੱਖ ਜਾਂ ਲੱਛਣਾਂ (characteristics) ਕਰਕੇ ਹੈ। ਤਿੱਖਾਪਣ (pitch) ਇਹਨਾਂ ਲੱਛਣਾਂ ਵਿੱਚ ਇੱਕ ਹੈ।


ਕਿਸੇ ਸਰੋਤ ਤੋਂ ਉਤਪੰਨ ਧੁਨੀ (emitted sound) ਦੀ ਆਵਰਤੀ (interprety the frequency) ਨੂੰ ਦਿਮਾਗ ਕਿਸ ਤਰ੍ਹਾਂ ਅਨੁਭਵ ਕਰਦਾ ਹੈ।ਉਸ ਨੂੰ ਤਿੱਖਾਪਣ (pitch) ਕਹਿੰਦੇ ਹਨ। ਕਿਸੇ ਸ਼੍ਰੋਤ ਦਾ ਕੰਪਨ ਜਿੰਨਾ ਜ਼ਿਆਦਾ ਜਲਦੀ ਹੋਵੇਗਾ। ਉਸਦੀ ਆਵਰਤੀ ਉਨੀ ਜ਼ਿਆਦਾ ਹੋਵੇਗੀ ਅਤੇ ਉਸਦਾ ਤਿੱਖਾਪਣ (pitch) ਵੀ ਜ਼ਿਆਦਾ ਹੋਵੇਗਾ। ਇਸੇ ਤਰ੍ਹਾਂ ਜਿਸ ਧੁਨੀ ਦਾ ਤਿੱਖਾਪਣ (pitch) ਘੱਟ ਹੋਵੇਗਾ। ਉਸਦੀ ਆਵਰਤੀ ਵੀ ਘੱਟ ਹੋਵੇਗੀ ਜਿਵੇਂ ਚਿੱਤਰ 12.9 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਲਈ ਜ਼ਿਆਦਾ ਤਿੱਖੇਪਣ ਵਾਲੀ ਧੁਨੀ ਵਿੱਚ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਬਿੰਦੂ ਤੋਂ ਇਕਾਈ ਸਮੇਂ ਵਿੱਚ ਲੰਘ ਰਹੇ ਨਪੀੜਨਾਂ ਜਾਂ ਨਿਖੇੜਨਾਂ ਦੀ ਸੰਖਿਆ ਜ਼ਿਆਦਾ ਹੋਵੇਗੀ।

ਵੱਖ-ਵੱਖ ਆਕਾਰਾਂ ਅਤੇ ਸ਼ਕਲਾਂ ਵਾਲ਼ੀਆਂ ਵਸਤੂਆਂ ਵੱਖ-ਵੱਖ ਆਵਰਤੀਆਂ ਦੇ ਨਾਲ ਕੰਪਨ ਕਰਦੀਆਂ ਹਨ। ਅਤੇ ਵੱਖ-ਵੱਖ ਤਿੱਖੇਪਣ ਦੀਆਂ ਧੁਨੀਆਂ ਪੈਦਾ ਕਰਦੀਆਂ ਹਨ। ਧੁਨੀ ਲਈ ਇਸਦੀ ਇਕਾਈ ਦਬਾਅ ਜਾਂ ਘਣਤਾ ਹੋਵੇਗੀ।

ਕਿਸੇ ਮਾਧਿਅਮ ਵਿੱਚ ਮੂਲ ਸਥਿਤੀ ਦੇ ਦੋਵੇਂ ਪਾਸੇ ਅਧਿਕਤਮ ਵਿਸਥਾਪਨ ਨੂੰ ਤਰੰਗ ਦਾ ਅਯਾਮ (amplitude) ਕਹਿੰਦੇ ਹਨ। ਇਸ ਨੂੰ ਆਮ ਤੌਰ ਤੇ ਅੱਖਰ A ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 12.8 (c) ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ। ਧੁਨੀ ਦੇ ਲਈ ਇਸ ਦੀ ਇਕਾਈ ਦਬਾਅ ਜਾਂ ਘਣਤਾ ਵਾਲੀ ਹੋਵੇਗੀ।


ਧਨੀ ਦੀ ਪਬਲਤਾ (loudness) ਜਾਂ ਮਧੁਰਤਾ (softness) ਦਾ ਅਨੁਮਾਨ : ਇਸ ਦੇ ਅਯਾਮ (amplitude) ਤੋਂ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ। ਧਨੀ ਤਰੰਗ ਦਾ ਅਯਾਮ ਵਸਤ ਨੂੰ ਕੰਪਨ (vibrate) ਕਰਾਉਣ ਲਈ ਲਗਾਏ ਗਏ ਬਲ (force) ਤੋਂ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਅਸੀਂ ਕਿਸੇ ਮੇਜ ਉਪਰ ਹੌਲੀ ਦੇ ਕੇ ਸੱਟ ਮਾਰੀਏ (strike a table gently) ਤਾਂ ਸਾਨੂੰ ਇੱਕ ਮਧੁੱਰ ਧੁਨੀ (soft sound) ਸੁਣਾਈ ਦੇਵੇਗੀ ਕਿਉਂਕਿ ਅਸੀਂ ਘੱਟ ਉਰਜਾ (less energy) ਵਾਲੀ ਧਨੀ ੳਤਪੰਨ ਕਰਦੇ ਹਾਂ। ਜੇਕਰ ਅਸੀਂ ਮੇਜ਼ ੳਪਰ ਜ਼ੋਰ ਨਾਲ ਸੱਟ ਮਾਰੀਏ (hit the table hard) ਤਾਂ ਸਾਨੂੰ ਪ੍ਰਬਲ ਧੂਨੀ ਸੁਣਾਈ ਦੇਵੇਗੀ। ਕੀ ਤਸੀਂ ਇਸ ਦਾ ਕਾਰਣ ਦੱਸ ਸਕਦੇ ਹੋ ? ਪ੍ਰਬਲ ਧੁਨੀ (Loud Sound) ਵੱਧ ਦੂਰੀ ਤੱਕ ਚੱਲ ਸਕਦੀ ਹੈ ਕਿਉਂਕਿ ਇਹ ਵੱਧ ੳਰਜਾ ਨਾਲ ਲਿਪਤ ਜਾਂ ਸੰਬੰਧਿਤ ਹੈ (as it is associated with high energy) ਧੂਨੀ ਤਰੰਗ ਆਪਣੇ ਸੋਤ ਤੋਂ ਉਤਪੰਨ ਹੋਣ ਉਪਰੰਤ ਫੈਲ ਜਾਂਦੀ ਹੈ। ਜਿਉਂ-ਜਿਉਂ ਇਹ (ਧੁਨੀ) ਸ਼੍ਰੋਤ ਤੋਂ ਦੂਰ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ ਇਸਦਾ ਅਯਾਮ (amplitude) ਅਤੇ ਇਸਦੀ ਪਬਲਤਾ (loudness) ਦੋਵੇਂ ਹੀ ਘੱਟ ਹੁੰਦੇ ਜਾਂਦੇ ਹਨ। ਚਿੱਤਰ 12.10 ਵਿੱਚ ਸਮਾਨ ਆਵਰਤੀ (same frequency) ਦੀ ਪਬਲ ਧਨੀ ਅਤੇ ਮਧੁਰ ਧੁਨੀ ਦੇ ਤਰੰਗ ਸਰਪਾਂ (wave shapes) ਨੰ ਦਿਖਾਇਆ ਗਿਆ ਹੈ।

ਗੁਣਵਤਾ (timber) ਧੂਨੀ ਦਾ ਉਹ ਲੱਛਣ ਹੈ ਜੋ ਸਾਨੂੰ

ਚਿੱਤਰ 12.9 : ਘੱਟ ਤਿੱਖੇਪਣ ਦੀ ਧੁਨੀ ਦੀ ਆਵ੍ਰਿਤੀ ਘੱਟ ਅਤੇ ਵੱਧ ਤਿੱਖੇਪਣ ਦੀ ਧੁਨੀ ਦੀ ਆਵਿਤੀ ਵੱਧ ਹੁੰਦੀ ਹੈ।

ਧੁਨੀ

ਚਿੱਤਰ 12.10 : ਧੀਮੀ ਧੁਨੀ ਦਾ ਅਯਾਮ ਘੱਟ ਹੁੰਦਾ ਹੈ ਅਤੇ ਤੇਜ਼ ਧੁਨੀ ਦਾ ਅਯਾਮ ਜ਼ਿਆਦਾ ਹੁੰਦਾ ਹੈ।

185

ਦੋ ਸਮਾਨ ਤਿੱਖੇਪਣ ਅਤੇ ਉੱਚਾਪਨ ਦੀਆਂ ਇੱਕੋ ਜਿਹੀਆਂ ਧਨੀਆਂ ਵਿੱਚ ਅੰਤਰ ਸਮਝਣ ਲਈ ਸਹਾਈ ਹੁੰਦਾ ਹੈ। ਉਹ ਧੂਨੀ ਜਿਹੜੀ ਮਨ ਨੂੰ ਜ਼ਿਆਦਾ ਚੰਗੀ ਲੱਗੇ ਉਸਨੂੰ ਵੱਧ ਗਣਵਤਾ ਵਾਲੀ ਧਨੀ (Rich quality sound) ਕਹਿੰਦੇ ਹਨ। ਇਕੱਲੀ ਆਵਿਤੀ ਵਾਲੀ ਧਨੀ ਨੂੰ ਟੋਨ (Tone) ਕਹਿੰਦੇ ਹਨ। ਅਨੇਕ ਬਹੁਤੀਆਂ ਆਵਿਤੀਆਂ ਦੇ ਮਿਸ਼ਰਣ ਤੋਂ ਉਪਜੀ ਧਨੀ ਨੂੰ ਸਰ (Note) ਕਹਿੰਦੇ ਹਨ। ਸ਼ੋਰ (Noise) ਕੰਨ ਲਈ ਆਨੰਦਮਈ ਨਹੀਂ ਹੁੰਦਾ ਜਦਕਿ ਸੰਗੀਤ ਸਣਨ ਵਿੱਚ ਸਖਮਈ ਹੰਦਾ ਹੈ ਅਤੇ ਵੱਧ ਗੁਣਵਤਾ ਵਾਲਾ ਹੁੰਦਾ ਹੈ।

> Ho 1. ਤਰੇਗ ਦਾ ਕਿਹੜਾ ਗੁਣ ਹੇਠ ਦਿੱਤਿਆਂ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦਾ ਹੈ 1a)ਉੱਚਾਪਨ(b) ਤਿੱਖਾਪਣ 2. ਅਨਮਾਨ ਲਗਾਓ ਕਿ ਹੇਠ ਦਿੱਤਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੀ ਧਨੀ ਦਾ ਤਿੱਖਾਪਣ ਜ਼ਿਆਦਾ ਹੈ 7 (a) ਗਿਟਾਰ (b) ਕਾਰ ਦਾ ਹਾਰਨ

ਤਰੰਗ ਉਪਰ ਸਥਿਤ ਕਿਸੇ ਬਿੰਦੂ ਜਿਵੇਂ ਇਕ ਨਪੀੜਨ ਜਾਂ ਇੱਕ ਵਿਰਲ ਦੁਆਰਾ ਇਕਾਈ ਸਮੇਂ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦਰੀ, ਤਰੰਗ ਵੇਗ (Speed of Sound) ਅਖਵਾਉਂਦੀ ਹੈ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ

ਵੇਗ =
$$\frac{\underline{v}}{\pi \lambda^{\dagger}}$$

 $\nu = \frac{\lambda}{T} = \lambda \times \frac{1}{T}$

ਇਥੇ λ ਧਨੀ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਹੈ। ਇਹ ਤਰੰਗ ਦੁਆਰਾ ਇੱਕ ਆਵਰਤ ਕਾਲ (T- time period) ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਦਰੀ ਹੈ। ਇਸ ਲਈ

$$v = \lambda v \left(\because \frac{1}{T} = v \right)$$
$$v = \lambda v$$

नां

186

ਵੇਗ = ਤਰੰਗ ਲਬਾਈ × ਆਵਿਤੀ

ਕਿਸੇ ਮਾਧਿਅਮ ਦੇ ਲਈ ਇਕੋ ਜਿਹੀਆਂ ਪ੍ਰਸਥਿਤੀਆਂ ਵਿੱਚ ਧੂਨੀ ਦਾ ਵੇਗ ਸਾਰੀਆਂ ਹੀ ਆਵਿਤੀਆਂ ਦੇ ਲਈ ਲਗਭਗ ਸਥਿਰ ਰਹਿੰਦਾ ਹੈ।

ਉਦਾਹਰਣ 12.1 ਕਿਸੇ ਧੁਨੀ ਤਰੰਗ ਦੀ ਆਵਿ੍ਤੀ 2 kHz ਹੈ ਅਤੇ ਉਸਦੀ ਤਰੰਗ ਲੰਬਾਈ 35 cm ਹੈ। ਇਹ 1.5 km ਦੂਰੀ ਤੈਅ ਕਰਨ ਵਿੱਚ ਕਿੰਨਾ ਸਮਾਂ ਲਵੇਗੀ ?

ਹੱਲ :

ਦਿੱਤਾ ਹੈ. ਆਵਿਤੀ, v = 2 kHz = 2000 Hz ਤਰੇਗ ਲੰਬਾਈ, λ= 35 cm = 0.35 m ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ, ਤਰੰਗ ਵੇਗ v

= ਤਰੰਗ ਲੰਬਾਈ × ਆਵਰਤੀ

 $V = \lambda v$

 $= 0.35 \text{ m} \times 2000 \text{ Hz} = 700 \text{ m/s}$

ਤਰੰਗ ਨੂੰ 1.5 km ਦੂਰੀ ਤੈਅ ਕਰਨ ਵਿੱਚ ਲੱਗਣ ਵਾਲਾ ਸਮਾਂ

$$t = \frac{d}{v} = \frac{1.5 \times 1000 \, m}{700 \, m s^{-1}} = \frac{15}{7} s = 2.1s$$

ਧਨੀ 1.5 km ਤੈਅ ਕਰਨ ਵਿੱਚ 2.1s ਲਵੇਗੀ।

ਸ਼ਨ

EOS

H5

- ਕਿਸੇ ਧੁਨੀ ਤਰੰਗ ਦੀ ਤਰੰਗ ਲੰਬਾਈ, ਆਵਰਤੀ, ਆਵਰਤ ਕਾਲ (time period) ਅਤੇ ਅਯਾਮ ਤੋਂ ਕੀ ਭਾਵ ਹੈ 7
- ਕਿਸੇ ਧਨੀ ਤਰੇਗ ਦੀ ਤਰੇਗ ਲੰਬਾਈ (ਪ) ਅਤੇ ਆਵਰਤੀ ਉਸ ਦੇ ਵੇਗ (v) ਨਾਲ ਕਿਵੇਂ ਸੋਬੰਧਿਤ TIA JT ?
- 3. ਕਿਸੇ ਦਿੱਤੇ ਗਏ ਮਾਧਿਅਮ ਵਿੱਚ ਇੱਕ/ਤਰੇਗ THE ਦੀ ਆਵਰਤੀ frequency 220 Hz ਅਤੇ ਵੇਗ (velocity 440 m/s) ਹੈ। ਇਸ ਤਰੇਗ ਦੀ ਤਰੇਗ ਲੰਬਾਈ ਪਤਾ ਕਰੇ।
 - 4. ਕਿਸੇ ਧੁਨੀ ਸ਼ੋਤ ਤੋਂ 450 m ਦੀ ਦੂਰੀ ਤੇ ਬੈਠਾ ਹੋਇਆ ਕੋਈ ਮਨੁੱਖ 500 Hz ਦੀ ਧੁਨੀ ਸੁਣਦਾ ਹੈ। ਸੋਤ ਤੋਂ ਮਨੱਖ ਤੱਕ ਪਹੁੰਚਣ ਵਾਲੇ ਦੇ ਕਮਵਾਰ ਨਪੀੜਨਾਂ (two successive compression) ਵਿੱਚ ਕਿੰਨਾ ਸਮਾਂ-ਅੰਤਰਾਲ ਹੋਵੇਗਾ ?

ਕਿਸੇ ਇਕਾਈ ਖੇਤਰਫਲ ਵਿੱਚੋਂ ਦੀ ਇੱਕ ਸੈਕਿੰਡ ਵਿੱਚ ਗੁਜ਼ਰਨ ਵਾਲੀ ਧੁਨੀ ਉਰਜਾ ਨੂੰ ਧੁਨੀ ਦੀ ਤੀਬਰਤਾ (intensity of sound) ਕਹਿੰਦੇ ਹਨ। ਅਸੀਂ ਅਕਸਰ ਕਦੇ-ਕਦੇ ਉੱਚਾਪਨ (loudness) ਅਤੇ 'ਤੀਬਰਤਾ' (intensity) ਸ਼ਬਦਾਂ ਦੀ

ਵਿਗਿਆਨ

ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ ਲੇਕਿਨ ਇਹਨਾਂ ਦਾ ਭਾਵ ਇੱਕ ਨਹੀਂ ਹੈ। ਉੱਚਾਪਨ ਧੁਨੀ ਦੇ ਲਈ ਕੰਨਾਂ ਦੀ ਸੰਵੇਦਨਸ਼ੀਲਤਾ ਦਾ ਮਾਪ ਹੈ। ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਜੇਕਰ ਦੋ ਸਮਾਨ ਤੀਬਰਤਾ ਦੀ ਧੁਨੀਆਂ ਹੋਣ ਤਾਂ ਅਸੀਂ ਇੱਕ ਨੂੰ ਦੂਸਰੀ ਦੇ ਮੁਕਾਬਲੇ ਅਧਿਕ ਪ੍ਰਬਲ ਧੁਨੀ ਦੇ ਰੂਪ ਵਿੱਚ ਸੁਣ ਸਕਦੇ ਹਾਂ ਕਿਉਂਕਿ ਸਾਡੇ ਕੈਨ ਇਸਦੇ ਲਈ ਵੱਧ ਸੰਵੇਦਨਸ਼ੀਲ ਹਨ।

12.2.4. ਵੱਖ-ਵੱਖ ਮਾਧਿਅਮਾਂ ਵਿੱਚ ਧੁਨੀ ਦੀ

বাস্ত (Speed of Sound in Different Media)

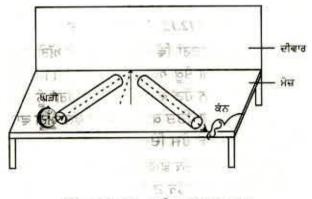
ਕਿਸੇ ਮਾਧਿਅਮ ਵਿੱਚ ਧੂਨੀ ਇੱਕ ਨਿਸਚਿਤ ਚਾਲ ਨਾਲ ਅਗਾਂਹ (ਸ਼ੋਤ ਤੋਂ ਪਰ੍ਹੇ ਵੱਲ) ਚਲਦੀ ਹੈ। ਬੱਦਲ ਗਰਜਣ ਦੀ ਅਵਾਜ਼ ਪ੍ਰਕਾਸ਼ ਦੀ ਚਮਕ ਦਿਖਾਈ ਦੇਣ ਤੋਂ ਕੁਝ ਦੇਰ ਬਾਅਦ ਸੁਣਾਈ ਦੇਂਦੀ ਹੈ। ਇਸ ਲਈ ਅਸੀਂ ਇਹ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹਾਂ ਕਿ ਧਨੀ ਦੀ ਚਾਲ ਪਕਾਸ਼ ਦੀ ਚਾਲ ਨਾਲੋਂ ਬਹੁਤ ਘੱਟ ਹੈ। ਧਨੀ ਦੀ ਚਾਲ ਉਸ ਮਾਧਿਅਮ ਦੇ ਗੁਣਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਉਹ ਅਗਾਂਹ ਤੁਰਦੀ ਹੈ ਜਾਂ ਗੁਜ਼ਰਦੀ ਹੈ ਤੁਸੀਂ ਇਸ ਸੰਬੰਧ ਨੂੰ ਉਚੀਆਂ ਸ਼ੋਣੀਆਂ ਵਿੱਚ ਸਿੱਖੋਗੇ। ਕਿਸੇ ਮਾਧਿਅਮ ਵਿੱਚ ਧਨੀ ਦੀ ਚਾਲ ਮਾਧਿਅਮ ਦੇ ਤਾਪਮਾਨ ਉੱਪਰ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਜਦੋਂ ਠੋਸ ਤੋਂ ਗੈਸ ਅਵਸਥਾ ਦੇ ਵਲ ਜਾਂਦੇ ਹਾਂ ਤਾਂ ਧਨੀ ਦੀ ਚਾਲ ਘੱਟ ਹੁੰਦੀ ਜਾਂਦੀ ਹੈ। ਕਿਸੇ ਵੀ ਮਾਧਿਅਮ ਵਿੱਚ ਤਾਪਮਾਨ ਵਧਾਉਣ ਤੇ ਧੁਨੀ ਦੀ ਚਾਲ ਵੀ ਵੱਧਦੀ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ ਹਵਾ ਵਿੱਚ ਧਨੀ ਦੀ ਚਾਲ 0°C ਤੇ 331 ms⁻¹ ਅਤੇ 22°C ਤੇ 344 ms⁻¹ ਹੈ। ਸਾਰਣੀ 12.1 ਵਿੱਚ ਵੱਖ-ਵੱਖ ਮਾਧਿਅਮਾਂ ਵਿੱਚ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਤਾਪਮਾਨ ਤੇ ਧਨੀ ਦੀ ਚਾਲ ਨੂੰ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਨੂੰ ਤੁਹਾਨੂੰ ਯਾਦ ਰੱਖਣ ਦੀ ਲੋੜ ਨਹੀਂ ਹੈ ।

25°C ਤੇ ਧੁਨੀ ਦੀ ਚਾਲ		
ਅਵਸਥਾ	ਪਦਾਰਬ	ਚਾਲ m/s ਵਿੱਚ
ਠੌਸ	ਐਲੂਮੀਨੀਅਮ	6420
	ਨਿਕਲ	6040
	ਸਟੀਲ	5960
	ਲੋਹਾ	5950
	ਪਿੱਤਲ	4700
	ਫਿਲਿਟ	3980
ट् र	ਪਾਣੀ (ਸਮੁੰਦਰੀ)	1531
	ਪਾਣੀ (ਕਸ਼ੀਦਣ)	1498
	ਈਥੋਨੋਲ	1207
	ਮੀਬੇਨੋਲ	1103
ਗੈਸ	ਹਾਈਡ੍ਰੋਜਨ	1284
	ਹੀਲੀਅਮ	965
	ਵਾਯੂ (ਹਵਾ)	346
	ਆਕਸੀਜਨ	316
	ਸਲਫਰ ਡਾਈਆਕਸਾਈਡ	213

ਧੁਨੀ ਬੁਮ (Sonic Boom) : ਜਦੋਂ ਕੋਈ ਵਸਤੁ ਧੁਨੀ ਦੀ ਚਾਲ ਤੋਂ ਵੱਧ ਤੇਜ਼ੀ ਨਾਲ ਗਤੀ ਕਰਦੀ ਹੈ ਤਾਂ ਉਸ ਨੂੰ ਪੁਰਾਸਰਵਣ ਚਾਲ ਨਾਲ ਚਲਦੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਬੰਦਕ ਦੀ ਗੋਲੀ, ਜੈੱਟ ਹਵਾਈ ਜਹਾਜ਼ ਆਦਿ ਆਮਤੌਰ ਤੇ ਪੰਰਾਸਰਵਣ ਚਾਲ (Supersonic speed) ਨਾਲ ਚਲਦੇ ਹਨ। ਜਦੋਂ ਧਨੀ ਉਤਪਾਦਕ ਸੋਤ ਧੁਨੀ ਦੀ ਗਤੀ ਨਾਲੋਂ ਵੱਧ ਤੇਜ਼ੀ ਨਾਲ ਗਤੀ ਕਰਦਾ ਹੈ ਤਾਂ ਉਹ ਹਵਾ ਵਿੱਚ ਘਾਤਕ ਤਰੰਗਾਂ (Shock waves) ਉਤਪੰਨ ਕਰਦਾ ਹੈ। ਇਹਨਾਂ ਘਾਤਕ ਤਰੇਗਾਂ ਵਿੱਚ ਬਹੁਤ ਜ਼ਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਘਾਤਕ ਉਰਜਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਘਾਤਕ ਤਰੰਗਾਂ ਨਾਲ ਸਬੰਧਿਤ ਵਾਯ-ਦਬਾਅ ਪਰਿਵਰਤਨ ਤੋਂ ਇੱਕ ਬਹੁਤ ਤੇਜ਼ ਅਤੇ ਪਭਾਵਸ਼ਾਲੀ ਧਨੀ ੳਤਪੰਨ ਹੋਦੀ ਹੈ ਜਿਸ ਨੂੰ ਧੂਨੀ ਬੁਮ ਕਹਿੰਦੇ ਹਨ। ਪਰਾਸਰਵਣ ਹਵਾਲੀ ਜਹਾਜ਼ ਦੁਆਰਾ ਉਤਪੰਨ ਇਸ ਧੁਨੀ ਬੁਮ ਵਿੱਚ ਇੰਨੀ ਮਾਤਰਾ ਵਿੱਚ ਉਰਜਾ ਹੁੰਦੀ ਹੈ ਕਿ ਇਹ ਖਿੜਕੀਆਂ ਦੇ ਸ਼ੀਸ਼ਿਆਂ ਨੂੰ ਤੋੜ ਸਕਦੀ ਹੈ ਅਤੇ ਇਥੋਂ ਤੱਕ ਕਿ ਇਮਾਰਤਾਂ ਨੂੰ ਵੀ ਨਕਸਾਨ ਪਹੁੰਚਾ ਸਕਦੀ ਹੈ।

ਧੂਨੀ

ਸਨ 1. ਹਵਾ, ਪਾਣੀ ਜਾਂ ਲੋਹੇ ਵਿੱਚੋਂ ਕਿਸ ਮਾਧਿਅਮ ਵਿੱਚ ਧੁਨੀ ਸਭ ਤੋਂ ਤੇਜ਼ ਚਲਦੀ ਹੈ ?


12.3 ਧਨੀ ਦਾ ਪਰਾਵਰਤਨ (Reflection of Sound) ਕਿਸੇ ਠੋਸ ਜਾਂ ਦਵ ਨਾਲ ਟਕਰਾ ਕੇ ਧੁਨੀ ਉਸੇ ਤਰ੍ਹਾਂ ਵਾਪਸ ਹੋ ਜਾਂਦੀ ਹੈ ਜਿਵੇਂ ਕੋਈ ਰਬੜ ਦੀ ਗੇਂਦ ਦੀਵਾਰ ਨਾਲ ਟਕਰਾ ਕੇ ਵਾਪਸ ਆ ਜਾਂਦੀ ਹੈ। ਪ੍ਰਕਾਸ਼ ਦੀ ਤਰ੍ਹਾਂ ਧੁਨੀ ਵੀ ਕਿਸੇ ਠੋਸ ਜਾਂ ਦਵ ਦੀ ਸਤ੍ਹਾ ਤੋਂ ਪਰਾਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਪਰਾਵਰਤਨ ਦੇ ਉਹਨਾਂ ਨਿਯਮਾਂ ਦੀ ਪਾਲਣਾ ਕਰਦੀ ਹੈ ਜਿਨ੍ਹਾਂ ਦਾ ਅਧਿਐਨ ਤੁਸੀਂ ਪਿਛਲੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਕਰ ਚੁੱਕੇ ਹੋ। ਪਰਾਵਰਤਿਤ ਸਤ੍ਹਾ ਉਪਰ ਅਪਾਤੀ ਬਿੰਦ ਤੇ ਖਿਚੇ ਗਏ ਲੰਬ ਨਾਲ ਧੁਨੀ ਦੀ ਅਪਾਤੀ ਹੋਣ ਦੀ ਦਿਸ਼ਾ ਅਤੇ ਪਰਾਵਰਤਨ ਹੋਣ ਦੀ ਦਿਸ਼ਾ ਦੇ ਵਿਚਕਾਰ ਬਣੇ ਕੋਣ ਆਪਸ ਵਿੱਚ ਬਰਾਬਰ ਹੈਦੇ ਹਨ ਅਤੇ ਇਹ ਤਿੰਨੋਂ (ਅਪਾਤੀ ਧਨੀ ਦੀ ਦਿਸ਼ਾ, ਪਰਾਵਰਤਿਤ ਧੁਨੀ ਦੀ ਦਿਸ਼ਾ ਅਤੇ ਲੰਬ) ਇੱਕ ਹੀ ਤਲ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਧੁਨੀ ਤਰੰਗਾਂ ਦੇ ਪਰਾਵਰਤਨ ਹੋਣ ਦੇ ਲਈ ਵੱਡੇ ਅਕਾਰ ਦੀ ਰਕਾਵਟ ਦਾ ਹੋਣਾ ਜ਼ਰੂਰੀ ਹੈ ਉਹ ਭਾਵੇਂ ਪਾਲਿਸ਼ ਕੀਤੀ ਹੋਈ ਹੋਵੇ ਜਾਂ ਖਰਦਰੀ।

ਕਿਰਿਆ

188

12.5

ਚਿੱਤਰ 12.11 ਦੀ ਤਰ੍ਹਾਂ ਦੋ ਇਕੋ ਜਿਹੇ ਪਾਈਪ ਲਉ। ਤੁਸੀਂ ਚਾਰਟ ਪੇਪਰ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਵੀ ਇਸ ਤਰ੍ਹਾਂ ਪਾਈਪ ਬਣਾ ਸਕਦੇ ਹੋ।

ਚਿੱਤਰ 12.11: ਧੁਨੀ ਦਾ ਪਰਾਵਰਤਨ

ਪਾਈਪਾਂ ਦੀ ਲੰਬਾਈ ਠੀਕ ਵਾਧੂ (Sufficiently long) ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।

ਇਹਨਾਂ ਨੂੰ ਦੀਵਾਰ ਦੇ ਨਜ਼ਦੀਕ ਕਿਸੇ ਮੇਜ਼ ਉੱਪਰ ਟਿਕਾਉ।

ਇੱਕ ਪਾਈਪ ਦੇ ਖੁੱਲੇ ਸਿਰੇ ਦੇ ਕੋਲ ਇੱਕ ਘੜੀ ਰਖੋ ਅਤੇ ਦੂਜੇ ਪਾਈਪ ਦੇ ਵੱਲੋਂ ਘੜੀ ਦੀ ਅਵਾਜ਼ ਸੁਣਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।

ਦੋਵੇਂ ਪਾਈਪਾਂ ਦੀ ਸਥਿਤੀ ਕੁਝ ਇਸ ਪ੍ਰਕਾਰ ਰੱਖੋ ਜਿਸ ਵਿੱਚ ਤੁਹਾਨੂੰ ਘੜੀ ਦੀ ਅਵਾਜ਼ ਠੀਕ ਪ੍ਰਕਾਰ ਸਪਸ਼ਟ ਸੁਣਾਈ ਦੇਣ ਲਗੇ।

ਇਹਨਾਂ ਪਾਈਪਾਂ ਦੁਆਰਾ ਬਣੇ ਆਪਾਤੀ ਕੋਣ ਅਤੇ ਪਰਾਵਰਤਿਤ ਕੋਣ ਨੂੰ ਮਾਪੋ ਅਤੇ ਇਹਨਾਂ ਦੇ ਵਿੱਚ ਸਬੰਧ ਦੇਖੋ।

ਸੱਜੇ ਪਾਸੇ ਵਾਲੇ ਪਾਈਪਾਂ ਨੂੰ ਥੋੜ੍ਹਾ ਜਿਹਾ ਉਪਰ ਵੱਲ ਉਠਾਓ ਅਤੇ ਦੇਖੋ ਕੀ ਹੁੰਦਾ ਹੈ।

12.3.1. ਗੁੰਜ (Echo)

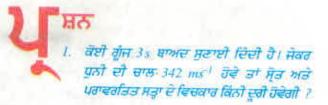
ਕਿਸੇ ੳਚਿਤ ਪਰਾਵਰਤਿਕ (Reflecting) ਵਸਤੂ ਜਿਵੇਂ ਕੋਈ ਇਮਾਰਤ ਜਾਂ ਪਹਾੜ ਕੇ ਨੇੜ ਜੇਕਰ ਤੁਸੀਂ ਜ਼ੋਰ ਨਾਲ ਚੀਖੋ ਜਾਂ ਤਾੜੀ ਵਜਾਓ ਤਾਂ ਤਹਾਨੂੰ ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਉਹੀ ਅਵਾਜ਼ ਫਿਰ ਸੁਣਾਈ ਦੇਵੇਗੀ। ਤੁਹਾਨੂੰ ਸੁਣਾਈ ਦੇਣ ਵਾਲੀ ਇਸ ਧੁਨੀ ਅਵਾਜ਼ ਨੂੰ ਗੁੰਜ (echo) ਕਹਿੰਦੇ ਹਨ। ਸਾਡੇ ਦਿਮਾਗ ਵਿੱਚ ਧੁਨੀ ਦਾ ਪ੍ਰਭਾਵ ਲਗਭਗ $0.1 \operatorname{s} \left(\frac{1}{10} \operatorname{s} \right)$ ਤੱਕ ਬਣਿਆ ਰਹਿੰਦਾ ਹੈ। ਸਪਸ਼ਟ ਗੂੰਜ (echo) ਸੁਣਨ ਲਈ ਮੂਲ ਧੂਨੀ ਅਤੇ ਪਰਾਵਰਤਿਡ ਧੂਨੀ ਦੇ ਵਿਚਕਾਰ 0.1 s ਦਾ ਸਮਾ ਅੰਤਰ ਜ਼ਰੂਰੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈਅਜੇਕਰ ਅਸੀਂ ਦਿੱਤੇ ਗਏ ਤਾਪਮਾਨ ਜਿਵੇਂ ਕਿਾ22°C ਤੇ ਧੁਨੀ ਦੀ ਚਾਲ 344 m/s ਮੰਨ ਲਈਏ ਤਾਂ ਧੁਨੀ ਨੂੰ ਰੁਕਾਵਟ ਤੱਕ ਜਾਣ ਅਤੇ ਪਰਾਵਰਤਨ ਦੇ ਬਾਅਦ ਵਾਪਸ ਸ਼ੋਤ ਤੱਕ ਆਉਣ ਨੂੰ 0.1s ਦਾ ਸਮਾਂ ਲੱਗਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਲਈ ਪਰਾਵਰਤਿਕ ਸਤ੍ਹਾ ਤੱਕ ਜਾਣ ਅਤੇ ਵਾਪਸ ਆਉਣ ਤੱਕ ਧਨੀ ਦੁਆਰਾ ਤਹਿ ਕੀਤੀ ਕੁੱਲ ਦੂਰੀ ਘੱਟ ਤੋਂ ਘੱਟ (344 m/s) × 0.1 s = 34.4 m ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਇਸ ਲਈ ਸਪਸ਼ਟ ਗੁੰਜ (echo) ਸੁਣਨ ਲਈ ਰੁਕਾਵਟ ਦੀ ਧੁਨੀ ਸ਼੍ਰੋਤ ਤੋਂ ਘੱਟੋ ਘੱਟ ਦੂਰੀ ਧੁਨੀ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਕੁੱਲ ਦੂਰੀ ਨਾਲੋਂ ਅੱਧੀ ਯਾਨਿ ਕਿ 17.2 m ਜ਼ਰੂਰ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। ਇਹ ਦੂਰੀ ਹਵਾ ਦੇ ਤਾਪਮਾਨ ਨਾਲ ਬਦਲ ਜਾਂਦੀ ਹੈ ਕਿਉਂਕਿ ਤਾਪਮਾਨ ਨਾਲ ਧਨੀ ਦੇ ਵੇਗ ਵਿੱਚ ਵੀ ਪਰਿਵਰਤਨ ਹੋ ਜਾਂਦਾ ਹੈ। ਧੁਨੀ ਦੇ ਬਾਰੰਬਾਰ ਪਰਾਵਰਤਨ

ਵਿਗਿਆਨ

ਦੇ ਕਾਰਨ ਸਾਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਗੂੰਜ ਸੁਣਾਈ ਦੇ ਸਕਦੀ ਹੈ।ਬੱਦਲਾਂ ਦੀ ਗਰਜ ਦੀ ਧੁਨੀ ਕਈ ਪਰਾਵਰਤਿਕ ਸਤ੍ਹਾਵਾਂ ਜਿਵੇਂ ਬੱਦਲਾਂ ਅਤੇ ਜ਼ਮੀਨ (clouds and land) ਤੋਂ ਬਾਰੰਬਾਰ ਪਰਾਵਰਤਨ ਦੇ ਫਲਸਰੁਪ ਪੈਦਾ ਹੁੰਦੀ ਹੈ।

12.3.2 ਬਹੁਗੂੰਜ (Reverberation)

ਕਿਸੇ ਵੱਡੇ ਹਾਲ ਵਿੱਚ ਉਤਪੰਨ ਹੋਣ ਤੋਂ ਬਾਅਦ ਧੁਨੀ ਦੀਵਾਰਾਂ ਤੋਂ ਬਾਰ-ਬਾਰ ਪਰਾਵਰਤਨ ਦੇ ਕਾਰਨ ਕਾਫੀ ਸਮੇਂ ਤੱਕ ਬਣੀ ਰਹਿੰਦੀ ਹੈ ਜਦੋਂ ਤੱਕ ਇਹ ਇੰਨੀ ਮੱਧਮ (ਧੀਮੀ) ਹੋ ਜਾਵੇ ਕਿ ਇਹ ਸੁਣਾਈ ਹੀ ਨਾ ਦੇਵੇ। ਇਹ ਬਾਰ-ਬਾਰ ਪਰਾਵਰਤਨ, ਜਿਸਦੇ ਕਾਰਨ ਧੁਨੀ ਲਗਾਤਾਰ ਬਣੀ ਰਹਿੰਦੀ ਹੈ, ਨੂੰ ਬਹੁਗੂੰਜ ਕਹਿੰਦੇ ਹਨ। ਕਿਸੇ ਸਭਾ ਭਵਨ ਜਾਂ ਵੱਡੇ ਹਾਲ ਵਿੱਚ ਅਤਿ ਅਧਿਕ ਬਹੁਗੂੰਜ ਬਿਲਕੁਲ ਬਰਦਾਸ਼ਤ ਤੋਂ ਬਾਹਰ ਹੈ, ਨੂੰ ਘੱਟ ਕਰਨ ਦੇ ਲਈ ਸਭਾ ਭਵਨਾਂ ਦੀਆਂ ਛੱਤਾਂ ਅਤੇ ਦੀਵਾਰਾਂ ਉਪਰ ਧੁਨੀ ਸੰਖਕ (Sound Absorbent) ਪਦਾਰਥ ਜਿਵੇਂ ਨਪੀੜੇ ਹੋਏ ਫਾਈਬਰ ਬੋਰਡ, ਖੁਰਦਰਾ ਪਲਾਸਟਰ ਜਾਂ ਪਰਦੇ ਲੱਗੇ ਹੁੰਦੇ ਹਨ। ਸੀਟਾਂ ਦੇ ਪਦਾਰਥ ਦੀ ਚੋਣ ਵੀ ਇਹਨਾਂ ਦੇ ਧੁਨੀ ਸੋਖਣ ਦੇ ਗੁਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

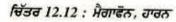

BH

ਉਦਾਹਰਣ 12.2. ਇੱਕ ਮਨੁੱਖ ਕਿਸੇ ਖੜੀ ਚਟਾਨ ਦੇ ਖਾਸ਼ ਤਾੜੀ ਵਜਾਉਂਦਾ ਹੈ ਅਤੇ ਉਸਦੀ ਗੂੰਜ ਤੇ ਓ ਬਾਅਦੇ ਸੁਣਾਈ ਦੇਂਦੀ ਹੈ। ਜੇਕਰ ਧੁਨੀ ਦੀ ਚਾਲਾ 346 ms⁻¹ ਲਈ ਜਾਵੇ, ਤਾਂ ਚਟਾਨ ਅਤੇ ਮਨੁੱਖ ਦੇ ਵਿਚਕਾਰ ਦੀ ਦੂਰੀ ਕਿੰਨੀ ਹੋਵੇਗੀ ?

ਹੱਲ–

ਧੁਨੀ ਦੀ ਚਾਲ, $v = 346 \text{ ms}^{-1}$ ਗੂੰਜ ਸੁਣਨ ਦੇ ਲਈ ਲਿਆ ਗਿਆ ਸਮਾਂ, t = 5.8ਧੁਨੀ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਕੁੱਲ ਦੂਰੀ = $v \times t = 346 \text{ ms}^{-1} \times 58 = 1730 \text{ m}$ 5s ਵਿੱਚ ਧੁਨੀ ਨੇ ਚਟਾਨ ਅਤੇ ਮਨੁੱਖ ਦੇ ਵਿਚਕਾਰ ਦੋ ਗੁਣਾਂ ਦੂਰੀ ਤੈਅ ਕੀਤੀ। ਇਸ ਕਰਕੇ ਚਟਾਨ ਅਤੇ

ਮਨੁੱਖ ਦੇ ਵਿਚਕਾਰ ਦੀ ਦੂਰੀ = 1730 m/2 = 865 m



12.3.3 ਧੁਨੀ ਦੇ ਪਰਾਵਰਤਨਾਂ ਦੇ ਉਪਯੋਗ

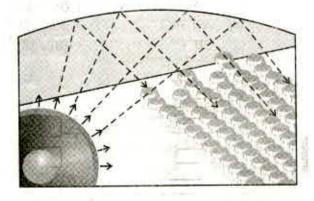
(Uses of Multiple Reflection of Sound)

 ਮੈਗਾਫੋਨ ਜਾਂ ਲਾਊਡ ਸਪੀਕਰ, ਹਾਰਨ, ਤੂਤੀ, ਸ਼ਹਿਨਾਈ ਵਰਗੇ ਸੰਗੀਤਕ ਯੰਤਰ ਇਸ ਪ੍ਰਕਾਰ ਬਣਾਏ ਜਾਂਦੇ ਹਨ ਕਿ ਧੁਨੀ ਸਾਰੀਆਂ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਫੈਲੇ ਬਿਨਾਂ ਕੇਵਲ ਇੱਕ ਖ਼ਾਸ ਦਿਸ਼ਾ ਵਿੱਚ ਹੀ ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 12.12 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

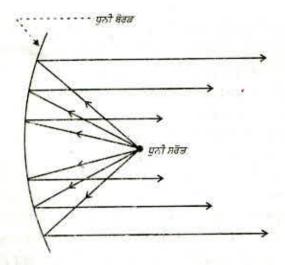
ਇਹਨਾਂ ਯੰਤਰਾਂ ਵਿੱਚ ਇੱਕ ਨਲੀ ਦੇ ਅੱਗੇ ਵਾਲਾ ਖੁੱਲ੍ਹਾ ਭਾਗ ਸ਼ੰਕੂ ਆਕਾਰ ਦਾ ਹੁੰਦਾ ਹੈ। ਇਹ ਸ੍ਰੋਤ ਤੋਂ ਉਤਪੰਨ ਹੋਣ ਵਾਲੀਆਂ ਧੁਨੀ ਤਰੰਗਾਂ ਨੂੰ ਬਾਰ-ਬਾਰ ਪਰਾਵਰਤਿਤ ਕਰਕੇ ਸ਼੍ਰੋਤਿਆਂ ਵੱਲ ਅੱਗੇ ਵਾਲੀ ਦਿਸ਼ਾ ਵਿੱਚ ਭੇਜ ਦਿੰਦਾ ਹੈ।

 ਸਟੈਥੋਸਕੋਪ ਇੱਕ ਡਾਕਟਰੀ ਯੰਤਰ ਹੈ ਜਿਹੜਾ ਸ਼ਰੀਰ ਦੇ ਅੰਦਰ ਮੁਖਤੌਰ ਤੇ ਦਿਲ ਅਤੇ ਫੇਫੜਿਆਂ ਵਿੱਚ, ਉਤਪੰਨ ਹੋਣ ਵਾਲੀ ਧੁਨੀ ਨੂੰ ਸੁਣਨ ਦੇ ਕੰਮ

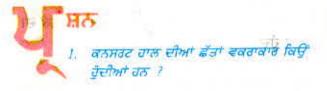
189



ਆਉਂਦਾ ਹੈ। ਸਟੈਬੋਸਕੋਪ ਵਿੱਚ ਮਰੀਜ਼ ਦੇ ਦਿਲ ਦੀ ਧੜਕਣ ਦੀ ਧੁਨੀ, ਵਾਰ-ਵਾਰ ਪਰਾਵਰਤਨ ਦੇ ਕਾਰਨ ਡਾਕਟਰ ਦੇ ਕੰਨਾਂ ਤੱਕ ਪਹੁੰਚਦੀ ਹੈ (ਚਿੱਤਰ 12.13)


ਚਿੱਤਰ 12.13: ਸਟੈਬੋਸਕੋਪ

3. ਕਨਸਰਟ ਹਾਲ (concert halls), ਸੰਮੇਲਨ ਹਾਲ (conference halls) ਅਤੇ ਸਿਨੇਮਾ ਹਾਲਾਂ (cinema halls) ਦੀਆਂ ਛੱਤਾਂ ਵਕਰਾਕਾਰ (curved) ਬਣਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਤਾਂ ਕਿ ਪਰਾਵਰਤਨ ਹੋਣ ਤੇ ਧੁਨੀ ਹਾਲ ਦੇ ਸਾਰੇ ਭਾਗਾਂ ਵਿੱਚ ਪਹੁੰਚ ਜਾਵੇ, ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 12.14 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਕਦੇ-ਕਦੇ ਵਕਰਾਕਾਰ ਧੁਨੀ ਬੋਰਡਾਂ (curved sound board) ਨੂੰ ਮੰਚ ਦੇ ਪਿਛੇ ਰੱਖ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਜਿਸ ਨਾਲ ਕਿ ਧੁਨੀ, ਧੁਨੀ ਬੋਰਡ ਤੋਂ ਪਰਾਵਰਤਨ ਹੋਣ ਦੇ ਬਾਅਦ ਇੱਕੋ ਜਿਹੀ ਪੂਰੇ ਹਾਲ ਵਿੱਚ ਫੈਲ ਜਾਵੇ? (ਚਿੱਤਰ 12.15)



ਚਿੱਤਰ 12.14: ਸੰਮੇਲਨ ਹਾਲ ਦੀ ਵਕਰਾਕਾਰ ਛੱਤ

190

12.4 ਸੁਣਨਯੋਗ ਸੀਮਾ (Range of Hearing)

ਅਸੀਂ ਸਾਰੀਆਂ ਆਵਰਤੀਆਂ ਵਾਲੀਆਂ ਧਨੀਆਂ ਨਹੀਂ ਸਣ ਸਕਦੇ। ਮਨੱਖਾਂ ਵਿੱਚ ਧੁਨੀ ਦੀ ਸੁਣਨਯੋਗ ਸ਼ੀਆਂ ਲਗਭਗ 20 Hz ਤੋਂ 20,000 Hz (1 Hz = 1 cycle/s) ਹੁੰਦੀ ਹੈ। ਪੰਜ਼ਗਸਾਲ ਤੋਂ ਘੱਟ ਉਮਰ ਦੇ ਬੱਚੇ ਅਤੇ ਭਿਝ ਜੀਵ ਜਿਵੇਂ ਕੱਤੇ 25 kHz ਤੱਕ ਦੀ ਧੁਨੀ ਸੁਣ ਸਭਦੇ ਹਨ। ਜਿਉਂ-ਜਿਉਂ ਵਿਅਕਤੀਆਂ ਦੀ ਉਮਰ ਵੱਧਦੀ ਜਾਂਦੀ ਹੈ। ਉਹਨਾਂ ਦੇ ਕੰਨ ਉਚ-ਆਵਰਤੀਆਂ ਵਾਲੀਆਂ ਧੁਨੀਆਂ ਲਈ ਘੱਟ ਅਨੁਭਵੀ ਹੁੰਦੇ ਜਾਂਦੇ ਹਨ। 20 Hz ਤੋਂ ਘੱਟ ਆਵਰਤੀ ਦੀਆਂ ਧੁਨੀਆਂ ਨੂੰ ਨੀਮ ਧੁਨੀ (Infrasonic waves) ਕਹਿੰਦੇ ਹਨ। ਜੇਕਰ ਅਸੀਂ ਨੀਮ ਧੁਨੀ ਨੂੰ ਸੁਣ ਪਾਉਂਦੇ ਤਾਂ ਅਸੀਂ ਕਿਸੇ ਪੈਂਡਲਮ ਦੀਆਂ ਕੰਪਨਾਂ ਨੂੰ ਉਵੇਂ ਹੀ ਸੁਣ ਸਕਦੇ ਹੁੰਦੇ ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਕਿਸੇ ਮੱਖੀ ਦੇ ਖੰਭਾਂ ਦੀਆਂ ਕੰਪਨਾਂ ਨੂੰ ਸੁਣ ਸਕਦੇ ਹਾਂ। ਗੈਂਡੇ (ਰਾਈਨੋਸਿਰਸ) 5 Hz ਤੱਕ ਦੀ ਆਵ੍ਰਿਤੀ ਵਾਲੀ ਨੀਮ ਧੁਨੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਸੰਪਰਕ ਕਰਦੇ ਹਨ। ਵੇਲ ਅਤੇ ਹਾਥੀ ਨੀਮ ਧੁਨੀ ਦੀ ਸੁਣਨਯੋਗ ਸ਼ੀਮਾ ਵਿੱਚ ਧੁਨੀਆਂ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਇਹ ਵੇਖਿਆ ਗਿਆ ਹੈ ਕਿ ਕੁਝ ਜੀਵ ਭੁਚਾਲ ਤੋਂ

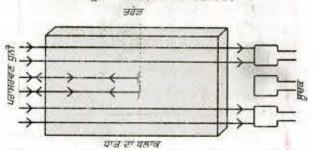
ਵਿਗਿਆਨ

ਪਹਿਲਾਂ ਪਰੇਸ਼ਾਨ ਹੋ ਜਾਂਦੇ ਹਨ। ਭੂਚਾਲ ਬਾਤਕ ਤਰੇਗਾਂ ਤੋਂ ਪਹਿਲਾਂ ਘੱਟ ਆਵਿ੍ਤੀ ਦੀ ਨੀਮ ਧੁਨੀ ਉਤਪੰਨ ਕਰਦੇ ਹਨ, ਜੋ ਸੰਭਵ ਤੌਰ ਤੇ ਜੀਵਾਂ ਨੂੰ ਸਾਵਧਾਨ ਕਰ ਦੇਂਦੀਆਂ ਹਨ। 20 KHz ਤੋਂ ਵੱਧ ਆਵਿ੍ਤੀ ਵਾਲੀਆਂ ਧੁਨੀਆਂ ਨੂੰ ਪਰਾਸਰਵਣ ਧੁਨੀ ਜਾਂ ਪਰਾਧੁਨੀ (Ultrasound) ਕਹਿੰਦੇ ਹਨ। ਡਾਲਫਿਨ, ਚਮਗਾਦੜ ਅਤੇ ਪਰਪਾਈਜ ਪਰਾਧੁਨੀ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਕੁਝ ਪ੍ਰਜਾਤੀਆਂ ਦੇ ਪਤੰਗਿਆਂ ਦੇ ਸਰਵਣ ਯੇਤਰ ਬਹੁਤ ਅਨੁਭਵੀ ਹੁੰਦੇ ਹਨ ਇਹ ਪਤੰਗੇ ਚਮਗਾਦੜਾਂ ਦੁਆਰਾ ਉਤਪੰਨ ਕੀਤੀ ਉੱਚ ਆਵਿ੍ਤੀ ਵਾਲੀ ਚੀਂ-ਚੀਂ ਦੀ ਧੁਨੀ ਨੂੰ ਸੁਣ ਸਕਦੇ ਹਨ। ਉਹਨਾਂ ਨੂੰ ਆਪਣੇ ਇਰਦ-ਗਿਰਦ ਉਡਦੀ ਹੋਈ ਚਮਗਾਦੜ ਦੀ ਜਾਣਕਾਰੀ ਮਿਲ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਆਪਣੇ ਆਪਨੂੰ ਫੜੇ ਜਾਣ ਤੋਂ ਬਚਾਈ ਰੱਖਦੇ ਹਨ। ਚੂਹੇ ਵੀ ਪਰਾਸਰਵਣ ਧੁਨੀ ਉਤਪੰਨ ਕਰਕੇ ਕੁਝ ਖੇਡਾਂ ਖੇਡਦੇ ਹਨ।

ਸੁਣਨ ਸਹਾਇਕ ਯੰਤਰ (Hearing Air) : ਜਿਹੜੇ ਲੋਕਾਂ ਨੂੰ ਘੱਟ ਸੁਣਾਈ ਦਿੰਦਾ ਹੈ, ਉਹਨਾਂ ਨੂੰ ਇਸ ਯੰਤਰੇ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਇਹ ਬੈਟਰੀ ਨਾਲ ਚਲਣ ਵਾਲਾ ਇਕ ਇਲੈੱਕਟ੍ਰਾਨਿਕ ਉਪਕਰਣ ਹੈ। ਇਸ ਵਿੱਚ ਇਕ ਛੋਟਾ ਜਿਹਾ ਮਾਈਕ੍ਰੋਫੋਨ, ਇੱਕ ਐਮਪਲੀ ਫਾਈਅਰ ਅਤੇ ਸਪੀਕਰ ਹੁੰਦਾ ਹੈ। ਜਦੋਂ ਧੁਨੀ ਮਾਈਕ੍ਰੋਫੋਨ ਤੇ ਪਹੁੰਚਦੀ ਹੈ ਤਾਂ ਇਹ ਧੁਨੀ ਤਰੰਗਾਂ ਨੂੰ ਬਿਜਲਈ ਸੰਕੇਤਾਂ ਵਿੱਚ ਬਦਲ ਦੇਂਦਾ ਹੈ। ਐਮਪਲੀ ਫਾਈਅਰ ਇਹਨਾਂ ਬਿਜਲਈ ਸੰਕੇਤਾਂ ਨੂੰ ਵੱਡਾ ਕਰ ਦਿੰਦਾ ਹੈ। ਇਹ ਸੰਕੇਤ ਸਪੀਕਰ ਦੁਆਬਾ ਧੁਨੀ ਤਰੰਗਾਂ ਵਿੱਚ ਬਦਲ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ। ਇਹ ਬੁਲੀ ਤਰੰਗਾਂ ਕੰਨ ਦੇ ਡਾਇਆਫ੍ਰਾਮ ਤੇ ਪੈਂਦੀਆਂ ਹਨ ਅਤੇ ਵਿਅਕਤੀ ਨੂੰ ਧੁਨੀ ਸਾਫ਼ ਸੁਣਾਈ ਦਿੰਦੀ ਹੈਜ

HO

 ਆਮ ਮਨੁੱਖ ਲਈ ਸ਼ੁਣਨ ਸੀਮਾ ਕੀ ਹੈ ?
 ਹੇਠ ਦਿੱਤਿਆਂ ਨਾਲ ਸਬੰਧਿਤ ਆਵਰਤੀਆਂ ਦੀ ਸ਼ੀਮਾ ਕੀ ਹੈ ?
 (a) ਨੀਮ ਧੁਨੀ
 (b) ਪਰਾਧੁਨੀ


12.5 ਪ੍ਰਭਾਧੁਨੀ ਦੇ ਉਪਯੋਗ (Uses of

Ultrasound)

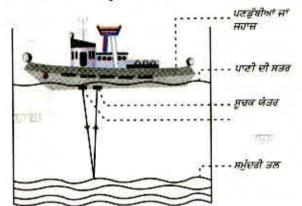
पठी

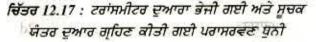
ਪਰਾਧੁਨੀਆਂ ਉਚ ਆਵਰਤੀ ਦੀਆਂ ਤਰੰਗਾਂ ਹਨ। ਪਰਾਧੁਨੀਆਂ ਰੁਕਾਵਟਾਂ ਹੋਣ ਦੇ ਬਾਵਜੂਦ ਵੀ ਇੱਕ ਨਿਸ਼ਚਿਤ ਪੱਥ ਤੇ ਲੰਘ ਜਾਂਦੀਆਂ ਹਨ ਉਦਯੋਗਾਂ ਅਤੇ ਚਿਕਿਤਸਾ ਦੇ ਖੇਤਰ ਵਿੱਚ ਪਰਾਧੁਨੀਆਂ ਦੀ ਵੱਡੇ ਪੱਧਰ ਤੇ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

- ਪਰਾਧੁਨੀ ਨੂੰ ਆਮਤੌਰ ਤੇ ਉਹ ਭਾਗਾਂ ਨੂੰ ਸਾਫ਼ ਕਰਨ ਵਿੱਚ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਜਿਹਨਾਂ ਤੱਕ ਪਹੁੰਚਨਾ ਔਖਾ ਹੁੰਦਾ ਹੈ।ਜਿਵੇਂ ਸਪਿਰਲਾਕਾਰ ਨਲੀ। ਟੇਢੇ-ਮੇਢੇ ਆਕਾਰ ਵਾਲੇ ਪੁਰਜੇ, ਇਲੈਕਟਾਨਿਕ ਉਪਕਰਣ ਆਦਿ। ਜਿਹੜੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਸਾਫ ਕਰਨਾ ਹੁੰਦਾ ਹੈ। ਉਹਨਾਂ ਨੂੰ ਸਾਫ ਕਰਨ ਵਾਲੇ ਘੋਲ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਘੋਲ ਵਿੱਚ ਪਰਾਸਰਵਣ ਤਰੰਗਾਂ ਭੇਜੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਉਚ ਆਵਿਤੀ ਦੇ ਕਾਰਨ, ਧੂੜ, ਚਿਕਨਾਈ ਅਤੇ ਗੰਦਗੀ ਦੇ ਕਣ ਅਲੱਗ ਹੋ ਕੇ ਹੇਠਾਂ ਡਿੱਗ ਜਾਂਦੇ ਹਨ। ਇਸ ਪ੍ਰਕਾਰ ਵਸਤੂ ਚੰਗੀ ਤਰ੍ਹਾਂ ਸਾਫ਼ ਹੋ ਜਾਂਦੀ ਹੈ।
- ਪਰਾਸਰਵਣ ਤਰੰਗਾਂ ਦਾ ਉਪਯੋਗ ਧਾਤ ਦੇ ਬਲਾਕਾਂ ਵਿੱਚ ਦਰਾਰਾਂ ਅਤੇ ਹੋਰ ਨਕਸਾਂ ਦਾ ਪਤਾ ਲਗਾਉਣ ਲਈ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਧਾਤਵੀ ਵਸਤੂਆਂ ਨੂੰ ਅਕਸਰ ਵੱਡੇ-ਵੱਡੇ ਭਵਨਾਂ, ਪਲਾਂ, ਮਸ਼ੀਨਾਂ ਅਤੇ ਵਿਗਿਆਨਕ ਉਪਕਰਣਾਂ ਨੂੰ ਬਣਾਉਣ ਵਾਸਤੇ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਇਆ ਜਾਂਦਾ ਹੈ। ਧਾਤਾਂ ਦੇ ਬਲਾਕਾਂ ਵਿੱਚ ਦਰਾਰਾਂ ਜਾਂ ਛੇਕ ਜੋ ਬਾਹਰ ਤੋਂ ਦਿਖਾਈ ਨਹੀਂ ਦਿੰਦੇ। ਭਵਨ ਜਾਂ ਪਲ ਦੀ ਬਣਤਰ ਦੀ ਮਜਬਤੀ ਘੱਟ ਕਰ ਦਿੰਦੇ ਹਨ। ਪਰਾਸਰਵਣ ਤਰੇਗਾਂ ਧਾਤ ਦੇ ਬਲਾਕ ਵਿੱਚੋਂ ਦੀ ਲੰਘਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਆਰ-ਪਾਰ ਹੋਣ ਵਾਲੀਆਂ ਤਰੇਗਾਂ ਦਾ ਪਤਾ ਲਗਾਉਣ ਲਈ ਸੂਚਕਯੰਤਰ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ ਥੋੜਾ ਜਿਹਾ ਵੀ ਨਕਸ ਹੁੰਦਾ ਹੈ ਪਰਾ ਧੁਨੀ ਤਰੇਗਾਂ ਪੁਰਾਵਰਵਿਤ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਜੋ ਦੋਸ਼ ਜਾਂ ਨਕਸ ਹੋਣ ਦੀ ਪਸਥਿਤੀ ਨੂੰ ਦਰਸਾੳਂਦੀ ਹੈ। (ਚਿੱਤਰ 12.16)

ਚਿੱਤਰ 12.16 : ਪਰਾਸਰਵਣਾ ਧੁਨੀ ਧਾਤ ਦੇ ਬਲਾਕ ਵਿੱਚ ਦੋਸ਼ ਵਾਲੇ ਸਥਾਨ ਤੋਂ ਪਰਾਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ।

191


ਆਮ ਧੁਨੀ ਜਿਸਦੀ ਤਰੰਗ ਲੰਬਾਈ ਵੱਧ ਹੁੰਦੀ ਹੈ ਦੋਸ਼ ਯੁਕਤ ਸਥਾਨ ਦੇ ਕੋਣਿਆਂ ਤੋਂ ਮੁੜ ਕੇ ਸੂਚਕ ਯੰਤਰ ਤੱਕ ਪਹੁੰਚ ਜਾਂਦੀ ਹੈ। ਇਸ ਕਰਕੇ ਇਸ ਧੁਨੀ ਦਾ ਉਪਯੋਗ ਇਸ ਕੰਮ ਲਈ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ।


- ਪਰਾਸਰਵਣ ਧੁਨੀ ਤਰੰਗਾਂ ਨੂੰ ਦਿਲ ਦੇ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ ਤੋਂ ਪਰਾਵਰਤਿਤ ਕਰਵਾ ਕੇ ਦਿਲ ਦਾ ਪ੍ਰਤੀਬਿੰਬ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਕਨੀਕ ਨੂੰ "ਈਕੋਕਾਰਡੀਓਗਰਾਫ਼ੀ" (ECG) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
- ਪਰਾਸਰਵਣ ਧਨੀ ਜਾਂਚ ਯੰਤਰ ਇੱਕ ਅਜਿਹਾ ਯੰਤਰ ਹੈ ਜੋ ਪਰਾਧਨੀ ਤਰੰਗਾਂ ਦਾ ਉਪਯੋਗ ਕਰਕੇ ਮਨੁੱਖੀ ਸਰੀਰ ਦੇ ਅੰਦਰੁਨੀ ਅੰਗਾਂ ਦਾ ਪ੍ਰਤੀਬਿੰਬ ਪਾਪਤ ਕਰਨ ਲਈ ਵਰਤੋਂ ਵਿੱਚ ਲਿਆਇਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਜਾਂਚ ਯੰਤਰ ਨਾਲ ਰੋਗੀ ਦੇ ਅੰਗਾਂ ਜਿਵੇਂ-ਜਿਗਰ (liver), ਪਿੱਤਾ (gallblader), ਬੱਚੇਦਾਨੀ (uterus), ਗੁਰਦੇ (kidney) ਆਦਿ ਦਾ ਪਤੀਬਿੰਬ ਪਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਜਾਂਚ ਯੰਤਰ ਸ਼ਰੀਰ ਦੀਆਂ ਅਸਮਾਨਤਾਵਾਂ ਜਿਵੇਂ ਪਿੱਤੇ ਜਾਂ ਗਰਦੇ ਵਿੱਚ ਪੱਥਰੀ ਅਤੇ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ ਵਿੱਚ ਰਸੌਲੀਆਂ ਦਾ ਪਤਾ ਲਗਾਉਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ। ਇਸ ਤਕਨੀਕ ਵਿੱਚ ਪਰਾਸਰਵਣ ਧੁਨੀ ਤਰੰਗਾਂ ਸਰੀਰ ਦੇ ਤੰਤੂਆਂ ਵਿੱਚ ਦੀ ਗੁਜ਼ਰਦੀਆਂ ਹਨ। ਅਤੇ ੳਸ ਥਾਂ ਤੋਂ ਪਰਾਵਰਤਿਤ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਜਿਸ ਥਾਂ ਤੇ ਤੰਤਆਂ ਦੀ ਘਣਤਾ ਵਿੱਚ ਅੰਤਰ ਹੰਦਾ ਹੈ । ਇਸ ਤੋਂ ਉਪਰੰਤ ਇਹਨਾਂ ਤਰੰਗਾਂ ਨੂੰ ਬਿਜਲਈ ਸੰਕੇਤਾਂ ਵਿੱਚ ਤਬਦੀਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜਿਸਦੇ ਨਾਲ ਉਸ ਦੋਸ਼ ਯੁਕਤ ਥਾਂ ਦਾ ਪਤੀਬਿੰਬ ਬਣਾ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਇਹਨਾਂ ਪ੍ਰਤੀਬਿੰਬਾਂ ਨੂੰ ਮਾਨੀਟਰ ਉਪਰ ਪ੍ਰਦਰਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਾਂ ਫਿਲਮ ਉਪਰ ਉਤਾਰ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਕਨੀਕ ਨੂੰ "ਅਲਟਰਾਸੋਨੋਗ੍ਰਾਫ਼ੀ' (Ultra Sonography) ਕਹਿੰਦੇ ਹਨ। ਅਲਟਾਸੋਨੋਗਾਫ਼ੀ ਦੀ ਵਰਤੋਂ ਗਰਭ ਅਵਸਥਾ ਵਿੱਚ ਭਰਣ ਦੀ ਜਾਂਚ ਅਤੇ ਉਸਦੇ ਜਨਮਜਾਤ ਨੁਕਸ ਅਤੇ ਉਸਦੇ ਵਿਕਾਸ ਵਿੱਚ ਉਣਤਾਈਆਂ ਦਾ ਪਤਾ ਲਗਾਉਣ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
 - ਪਰਾਸਰਵਣ ਧੁਨੀ ਦੀ ਵਰਤੋਂ ਗੁਰਦੇ ਦੀ ਛੋਟੀ ਪੱਥਰੀ ਨੂੰ ਬਰੀਕ ਕਣਾਂ ਵਿੱਚ ਤੋੜਨ ਲਈ ਵੀ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਹ ਕਣ ਪਿਸ਼ਾਬ ਨਾਲ ਬਾਹਰ ਨਿਕਲ ਜਾਂਦੇ ਹਨ।

192

12.5.1 ਸੋਨਾਰ (Sonar)

ਸੋਨਾਰ (SONAR) ਸ਼ਬਦ Sound Navigation and Ranging ਤੋਂ ਬਣਿਆ ਹੈ।ਸੋਨਾਰ ਇੱਕ ਐਸਾ ਯੰਤਰ ਹੈ ਜਿਸ ਵਿੱਚ, ਪਾਣੀ ਅੰਦਰ ਪਈਆਂ ਵਸਤੂਆਂ ਦੀ ਦੂਰੀ, ਦਿਸ਼ਾ ਅਤੇ ਚਾਲ ਮਾਪਣ ਲਈ ਪਰਾਸਰਵਣ ਧੁਨੀ ਤਰੰਗਾਂ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਸੋਨਾਰ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ ? ਸੋਨਾਰ ਵਿੱਚ ਇਕ ਟਰਾਂਸਮੀਟਰ (ਤਰੰਗਾਂ ਭੇਜਣ ਵਾਲਾ ਯੰਤਰ) ਅਤੇ ਇੱਕ ਸੂਚਕ ਯੰਤਰ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਕਿਸੇ ਕਿਸ਼ਤੀ ਜਾਂ ਜਹਾਜ਼ ਵਿੱਚ ਚਿੱਤਰ 12.17 ਦੀ ਤਰ੍ਹਾਂ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ।

ਟਰਾਂਸਮੀਟਰ ਪਰਾਧੁਨੀ ਤਰੰਗਾਂ ਉਤਪੰਨ ਕਰਦਾ ਅਤੇ ਛੱਡਦਾ ਹੈ। ਇਹ ਤਰੰਗਾਂ ਪਾਣੀ ਵਿੱਚ ਚਲਦੀਆਂ ਹੋਨ ਅਤੇ ਸਮੁੰਦਰੀ ਤਲ ਵਿੱਚ ਪਈ ਵਸਤੂ ਦੇ ਨਾਲ ਟਕਰਾਉਣ ਤੋਂ ਬਾਅਦ ਪਰਾਵਰਤਿਤ ਹੋ ਕੇ ਸੂਚਕ ਯੰਤਰ ਦੁਆਰਾ ਗ੍ਰਹਿਣ ਕਰ ਲਈਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਸੂਚਕ ਯੰਤਰ ਪਰਾਧੁਨੀ ਤਰੰਗਾਂ ਨੂੰ ਬਿਜਲਈ ਸੰਕੇਤਾਂ ਵਿੱਚ ਬਦਲ ਦੇਂਦਾ ਹੈ ਜਿਸਦੀ ਉਚਿਤ ਜਾਂ ਸਹੀ ਰੂਪ ਵਿੱਚ ਵਿਆਖਿਆ ਕਰ ਲਈ ਜਾਂਦੀ ਹੈ। ਪਾਣੀ ਵਿੱਚ ਧੁਨੀ ਦੀ ਚਾਲ ਅਤੇ ਧੁਨੀ ਦੇ ਧੁਨੀ ਸ੍ਰੋਤ ਤੋਂ ਜਾਣ ਅਤੇ ਆਉਣ ਦਾ ਸਮਾਂ-ਅੰਤਰਾਲ ਪਤਾ ਕਰਕੇ ਉਸ ਵਸਤੂ ਦੀ ਦੂਰੀ ਪਤਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਜਿਸ ਤੋਂ ਧੁਨੀ ਤਰੰਗ ਪਰਾਵਰਤਿਤ ਹੋਈ ਹੈ। ਮੰਨ ਲਓ ਪਰਾਸਰਵਣ ਧੁਨੀ ਸੰਕੇਤ ਦੇ ਭੇਜਣ ਅਤੇ ਵਾਪਸ ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਸਮਾਂ ਅੰਤਰਾਲ '7' ਹੈ ਅਤੇ ਸਮੁੰਦਰੀ ਜਲ ਵਿੱਚ ਧੁਨੀ ਦੀ ਚਾਲ 'v' ਹੈ। ਤਦ ਸਤ੍ਹਾ ਤੋਂ ਵਸਤੂ ਦੀ ਦੂਰੀ 2*d* ਹੋਵੇਗੀ।

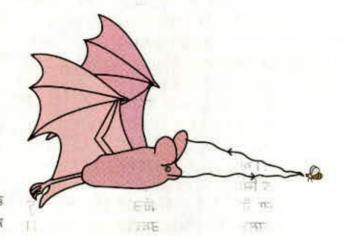
 $2d = v \times t$

ਵਿਗਿਆਨ

ਉਪਰੋਕਤ ਵਿਧੀ ਨੂੰ ਗੂੰਜ ਰੇਂਜਿੰਗ (Ecno Ranging) ਕਹਿੰਦੇ ਹਨ ਸੋਨਾਰ ਦੀ ਤਕਨੀਕ ਦਾ ਉਪਯੋਗ ਸਮੁੰਦਰ ਦੀ ਡੂੰਘਾਈ ਪਤਾ ਕਰਨ ਅਤੇ ਸਮੁੰਦਰ ਅੰਦਰ ਸਥਿਤ ਚਟਾਨਾਂ, ਘਾਟੀਆਂ, ਪਣਡੁੱਬੀਆਂ, ਬਰਫ ਦੇ ਤੋਂਦੇ, ਡੁੱਬੇ ਹੋਏ ਜਹਾਜ਼ ਆਦਿ ਦੀ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਉਦਾਹਰਣ 12.3 : ਇੱਕ ਜਹਾਜ਼ ਪਰਾਸਰਵਣ ਧੁਨੀ ਉਤਸਰਜਿਤ ਕਰਦਾ ਹੈ ਜੋ ਸਮੁੰਦਰ ਤਲ ਤੋਂ ਪਰਾਵਰਤਿਤ ਹੋ ਕੇ 3.42s ਤੋਂ ਬਾਅਦ ਟੋਹੀ ਜਾਂਦੀ ਹੈ। (detected) ਜੇਕਰ ਸਮੁੰਦਰੀ ਪਾਣੀ ਵਿੱਚ ਪਰਾਸਰਵਣ ਧੁਨੀ ਦੀ ਚਾਲ 1531 m/s ਹੋਵੇ, ਤਾਂ ਸਮੁੰਦਰ ਤਲ (seabed) ਤੋਂ ਜਹਾਜ਼ ਦੀ ਕਿੰਨੀ ਦੂਰੀ ਹੋਵੇਗੀ ?

ਹੱਲ :


ਧੁਨੀ ਤਰੰਗ ਭੇਜਣ ਅਤੇ ਟੋਹੇ ਜਾਣ ਦੇ ਵਿਚਕਾਰ ਲਗਾ ਸਮਾਂ

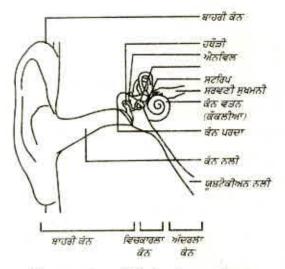
t = 3.42s

ਸਮੁੰਦਰੀ ਪਾਣੀ ਵਿੱਚ ਪਰਾਸਰਵਣ ਧੁਨੀ ਦੀ ਗਤੀ v = 1531m/s ਪ੍ਰਾਸਰਵਣ ਧੁਨੀ ਦੁਆਰਾ ਚਲੀ ਗਈ ਦੂਰੀ = 2d ਜਿਸ਼ੇ d = ਸਮੁੰਦਰ ਦੀ ਡੂੰਘਾਈ

2d5=1ਧੁਨੀ ਦੀ ਚਾਲ × ਸਮਾਂ ਭਾਛੱਡ =21531m/s × 3.42s = 5236m d = 5236m/2 = 2618m ਇਸ ਲਈ ਜਹਾਜ਼ ਤੋਂ ਸਮੁੰਦਰ ਤਲ ਦੀ ਦੂਰੀ 2618m ਜਾਂ 2.618km ਹੈ

ਸਨ 1. ਇੱਕ ਪਣਡੁੱਬੀ ਸੋਨਾਰ ਪਰਾਸਰਵਣ ਧੁਨੀ ਛੱਡਦਾ ਹੈ ਜਿਹੜੀ ਪਾਣੀ ਦੇ ਅੰਦਰ ਇੱਕ ਖੜ੍ਹੀ ਚਟਾਨ ਨਾਲ ਟਕਰਾ ਕੇ 1.02s ਮਗਰੋ ਵਾਪਸ ਆਉਂਦੀ ਹੈ। ਜੇਕਰ ਖਾਰੇਪਾਣੀ ਵਿੱਚ ਧੁਨੀ ਦੀ ਚਾਲ 1531m/s ਹੋਵੇ, ਤਾਂ ਚਟਾਨ ਦੀ ਦੂਰੀ ਪਤਾ ਕਰੋ। ਜਿਵੇਂ ਕਿ ਪਹਿਲਾਂ ਵਰਣਨ ਕੀਤਾ ਗਿਆ ਹੈ, ਚਮਗਾਦੜ ਹਨੇਰੀ ਰਾਤ ਵਿੱਚ ਆਪਣੇ ਭੋਜਨ ਨੂੰ ਖੋਜਣ ਦੇ ਲਈ ਉੱਡਦੇ ਸਮੇਂ ਪਰਾਸਰਵਣ ਧੁਨੀ ਤਰੰਗਾਂ ਉਤਸਰਜਿਤ ਕਰਦੀ ਹੈ ਅਤੇ ਪਰਾਵਰਤਨ ਦੇ ਬਾਅਦ ਇਹਨਾਂ ਦੀ ਟੋਹ ਲਗਾ ਲੈਂਦੀ ਹੈ। ਚਮਗਾਦੜ ਦੁਆਰਾ ਉਤਪੰਨ ਉਚ ਤਿੱਖੇਪਨ ਵਾਲੀਆਂ ਪਰਾਧੁਨਿਕ ਚੀਂ–ਚੀਂ ਦੀਆਂ ਅਵਾਜ਼ਾਂ ਰੁਕਾਵਟਾਂ ਜਾਂ ਪਤੰਗਿਆਂ ਤੋਂ ਪਰਾਵਰਤਿਤ ਹੋ ਕੇ ਚਮਗਾਦੜ ਦੇ ਕੰਨਾਂ ਤੱਕ ਪਹੁੰਚਦੀਆਂ ਹਨ। (ਚਿੱਤਰ 12.18)। ਇਹਨਾਂ ਪਰਾਵਰਤਿਤ ਅਵਾਜ਼ਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਤੋਂ ਚਮਗਾਦੜ ਨੂੰ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਰੁਕਾਵਟ ਜਾਂ ਪਤੰਗਾ (ਸ਼ਿਕਾਰ) ਕਿੱਥੇ ਹੈ ਅਤੇ ਕਿਸ ਪ੍ਰਕਾਰ ਦਾ ਹੈ। ਪਰਪਾਈਜ਼ ਮੱਛੀਆਂ ਵੀ ਹਨੇਰੇ ਵਿੱਚ ਸੰਚਾਲਨ ਅਤੇ ਭੋਜਨ ਦੀ ਤਲਾਸ਼ ਵਿੱਚ ਪਰਾਸਰਵਣ ਧੁਨੀ ਦਾ ਉਪਯੋਗ ਕਰਦੀਆਂ ਹਨ।

ਚਿੱਤਰ 12.18 : ਚਮਗਾਂਦੜ ਦੁਆਰਾ ਪਰਾਸਰਵਣ ਧੁਨੀ ਉਤਸਰਜਿੱਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਰੁਕਾਵਟ ਜਾਂ ਪਤੰਗਿਆਂ ਦੁਆਰਾ ਪਰਾਵਰਤਿਤ ਹੁੰਦੀ ਹੈ।


12.6 ਮਨੁੱਖੀ ਕੰਨ ਦੀ ਰਚਨਾ (Structure of

TOF

193

Human Ear)

ਅਸੀਂ ਕਿਵੇਂ ਸੁਣਦੇ ਹਾਂ } ਅਸੀਂ ਇੱਕ ਅਤਿਸ਼ੰਵੇਦਨਸ਼ੀਲ ਯੁਕਤੀ ਜਿਸ ਨੂੰ ਕੰਨ ਕਹਿੰਦੇ ਹਨ, ਦੀ ਸਹਾਇਡਾ ਨਾਲ ਸੁਣ ਪਾਉਂਦੇ ਹਾਂ। ਇਹ ਸ਼ੁਰਵਣੀ (Auditory) ਅਤਿਵਿਤੀਆਂ (ਜਾਂ ਸੁਣਨਯੋਗ ਆਵਿਤੀਆਂ) ਦੁਆਰਾ ਹਵਾ ਵਿੱਚ ਹੋਣ-ਵਾਲੇ ਦਬਾਅ-ਪਰਿਵਰਤਨਾਂ ਨੂੰ ਬਿਜਲਈ ਸੰਕੇਤਾਂ ਵਿੱਚ ਤਬਦੀਲ ਕਰ ਦੇਂਦਾ ਹੈ ਜੋ ਸਰਵਣੀ ਤੰਤੁਆਂ ਤੋਂ ਹੁੰਦੇ ਹੋਏ

ਚਿੱਤਰ 12.19 : ਮਨੁੱਖੀ ਕੈਨ ਦੇ ਸਰਵਣੀ ਭਾਗ

ਦਿਮਾਗ ਤੱਕ ਪਹੁੰਚਦੇ ਹਨ। ਮਨੁੱਖੀ ਕੰਨ ਦੁਆਰਾ ਸੁਣਨ ਦੀ ਪ੍ਰਕ੍ਰਿਆ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਸੀਂ ਇੱਥੇ ਚਰਚਾ ਕਰਾਂਗੇ।

ਬਾਹਰੀ ਕੰਨ ਨੂੰ 'ਪਿੰਨਾ' ਕਹਿੰਦੇ ਹਨ। ਇਹ ਆਲੇ-ਦੁਆਲੇ ਤੋਂ ਧੁਨੀ ਨੂੰ ਇਕੱਠਾ ਕਰਦਾ ਹੈ। ਇਕੱਠੀ ਕੀਤੀ ਧਨੀ ਕੰਨ ਨਾਲੀ ਵਿੱਚੋਂ ਦੀ ਗੁਜ਼ਰਦੀ ਹੈ। ਕੰਨ ਨਾਲੀ ਦੇ ਸਿਰੇ ਉਪਰ ਇੱਕ ਪਤਲੀ ਝਿੱਲੀ (ਪਰਦਾ-thin membrane) ਹੁੰਦੀ ਹੈ। ਜਿਸਨੂੰ ਕੰਨ ਦਾ ਡੋਲ (Ear Drum) ਕਹਿੰਦੇ ਹਨ। ਜਦੋਂ ਮਾਧਿਅਮ ਦੇ ਨਪੀੜਨ ਕੰਨ ਤੱਕ ਪਜਦੇ ਹਨ ਤਾਂ ਝਿੱਲੀ ਦੇ ਬਾਹਰ ਵੱਲ ਲੱਗਣ ਵਾਲਾ ਦਬਾਅ ਵੱਧ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਕੈਨ ਨੂੰ ਅੰਦਰ ਵਲ ਧੱਕਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਨਿਖੇੜਨਾਂ ਦੇ ਪਹੁੰਚਣ ਤੇ ਕੰਨ ਬਾਹਰ ਵਲ ਗਤੀ ਕਰਦਾ ਹੈ। ਇਸ ਤਰਾਂ ਕੰਨ ਪਰਦਾ ਕੰਪਨ ਕਰਦਾ ਹੈ। ਕੰਨ ਦੇ ਮੱਧ ਭਾਗ ਵਿੱਚ ਲੱਗੀਆਂ ਤਿੰਨ ਹੱਡੀਆਂ (ਹਥੌੜੀ, ਐਨਵਿਲ, ਸਟਰਿੱਪ) ਇਹਨਾਂ ਕੰਪਨਾਂ ਨੂੰ ਕਈ ਗੁਣਾ ਵੱਡਾ ਕਰ ਦੇਂਦੀਆਂ ਹਨ। ਮੱਧ ਕੰਨ, ਧਨੀ ਤਰੰਗਾਂ ਦੁਆਰਾ ਮਿਲਣ ਵਾਲੇ ਇਹਨਾਂ ਦਬਾਅ ਪਰਿਵਰਤਨਾਂ ਨੂੰ ਅੰਦਰਲੇ ਕੰਨ ਤੱਕ ਪਹੁੰਚਾ ਦੇਂਦਾ ਹੈ। ਅੰਦਰਲੇ ਕੰਨ ਇੱਕ ਕੰਨ ਵਤਰਾਂ (Cochlea) ਦੁਆਰਾ ਇਹਨਾਂ ਦਬਾਓ ਪਰਿਵਰਤਨਾਂ ਨੂੰ ਬਿਜਲੀ ਸੈਕੇਤਾਂ ਵਿੱਚ ਬਦਲ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਹਨਾਂ ਬਿਜਲਈ ਸੰਕੇਤਾਂ ਨੂੰ ਸੁਣਨ ਤੰਤਆਂ (Auditory nerves) ਦੁਆਰਾ ਦਿਮਾਗ ਤੱਕ ਭੇਜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਅਤੇ ਦਿਮਾਗ ਇਹਨਾਂ ਦੀ ਧਨੀ ਰਪ ਵਿੱਚ ਵਿਆਖਿਆ ਕਰਦਾ ਹੈ।

OPT: 1

100

0.087 [1

-	
বা	
eve	
HITH	ЪΠ

ਤਸੀਂ

- ਧੁਨੀ ਭਿੰਨ-ਭਿੰਨ ਵਸਤੂਆਂ ਦੀ ਕੰਪਨ ਕਾਰਨ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ।
- ਧੁਨੀ ਕਿਸੇ ਪਦਾਰਥ ਮਾਧਿਅਮ ਵਿੱਚ ਲੰਬੇ-ਦਾਅ ਤਰੰਗਾਂ ਜਾਂ ਲਾਂਗੀਚਿਊਡੀਨਲ ਤਰੰਗਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਚਲਦੀ (ਜਾਂ ਸੰਚਾਰ ਕਰਦੀ) ਹੈ।
- ਧੁਨੀ ਮਾਧਿਅਮ ਦੇ ਨਪੀੜਨਾਂ (compression) ਅਤੇ ਨਿਖੇੜਨਾਂ (Refraction) ਦੇ ਰੂਪ ਵਿੱਚ ਚਲਦੀ ਹੈ।
- ਧੁਨੀ ਸੰਚਾਰ ਵਿੱਚ ਮਾਧਿਅਮ ਦੇ ਕਣ ਗਤੀ ਨਹੀਂ ਕਰਦੇ, ਕੇਵਲ ਉਤੇਜਨਾ (ਹਰਕਤ)
 ਅਤੇ ਧੁਨੀ ਊਰਜਾ ਹੀ ਸੰਚਾਰ ਕਰਦੀ ਹੈ।
- ਧੁਨੀ ਖਲਾਅ ਜਾਂ ਨਿਰਵਾਯੂ ਵਿੱਚ ਸੰਚਾਰ ਨਹੀਂ ਕਰ ਸਕਦੀ।
- ਘਣਤਾ ਦੇ ਅਧਿਕਤਮ ਮਾਨ ਤੋਂ ਨਿਊਨਤਮ ਅਤੇ ਫਿਰ ਅਧਿਕਤਮ ਮਾਨ ਤੱਕ ਦੇ ਪਰਿਵਰਤਨ ਨਾਲ ਇੱਕ ਪੂਰਾ ਡੋਲਣ ਹੁੰਦਾ ਹੈ।
- ਦੇ ਕ੍ਰਮਵਾਰ ਨਪੀੜਨਾਂ (C) ਜਾਂ ਨਿਖੇੜਨਾਂ (R) ਦੇ ਵਿਚਕਾਰ ਦੀ ਦੂਰੀ ਨੂੰ ਤਰੰਗ ਲੰਬਾਈ ਕਹਿੰਦੇ ਹਨ।
- ਤਰੰਗ ਦੁਆਰਾ ਮਾਧਿਅਮ ਦੀ ਘਣਤਾ ਜਾਂ ਦਬਾਅ ਦੇ ਇੱਕ ਪੂਰੇ ਡੋਲਣ ਦੇ ਲਈ ਲਏ ਗਏ ਸਮੇਂ ਨੂੰ ਆਵਰਤ ਕਾਲ ਕਹਿੰਦੇ ਹਨ।

194

ਵਿਗਿਆਨ

- **ਇਕਾਈ ਸਮੇਂ** ਵਿੱਚ ਪੂਰੇ ਹੋਣ ਵਾਲੇ ਡੋਲਣਾਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਨੂੰ ਆਵਿ੍ਤੀ (v) ਕਹਿੰਦੇ ਹਨ v = ¹/_T
- ਧੁਨੀ ਦਾ ਵੇਗ (ν), ਆਵਰਤੀ (ν) ਅਤੇ ਤਰੰਗ ਲੰਬਾਈ (λ) ਵਿੱਚ ਸਬੰਧ v = λv ਹੈ।
- ਧੁਨੀ ਦੀ ਚਾਲ ਮੁਖ ਤੌਰ ਤੇ ਸੰਚਾਰਿਤ ਹੋਣ ਵਾਲੇ ਮਾਧਿਅਮ ਦੀ ਪ੍ਰਕ੍ਰਿਤੀ (ਸੁਭਾਅ) ਅਤੇ ਤਾਪਮਾਨ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।
- ਧੁਨੀ ਦਾ ਪਰਾਵਰਤਨ ਦੇ ਨਿਯਮ ਅਨੁਸਾਰ ਧੁਨੀ ਦੇ ਅਪਾਤੀ ਹੋਣ ਦੀ ਦਿਸ਼ਾ ਅਤੇ ਪਰਾਵਰਤਨ ਹੋਣ ਦੀ ਦਿਸ਼ਾ ਅਪਾਤੀ ਬਿੰਦੂ ਪਰਾਵਰਤਕ ਸਤ੍ਹਾ ਉਪਰ ਖਿੱਚੇ ਲੰਬ ਨਾਲ ਬਰਾਬਰ ਕੋਣ ਬਣਾਉਂਦੇ ਹਨ ਅਤੇ ਇਹ ਤਿੰਨ ਇਕ ਹੀ ਤਲ ਵਿੱਚ ਹੁੰਦੇ ਹਨ।
- ਸਪਸ਼ਟਾ (Distinct) ਗੂੰਜ ਸੁਣਨ ਲਈ ਮੂਲ ਧੁਨੀ ਅਤੇ ਪਰਾਵਰਤਿਤ ਧੁਨੀ ਦੇ ਵਿਚਕਾਰ ਘੱਟ ਤੋਂ ਘੱਟ 0.1 s ਦਾ ਸਮਾਂ ਅੰਤਰਾਲ ਜ਼ਰੂਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।
- ਕਿਸੇ ਆਡੀਟੋਰੀਅਮ (ਸਭਾਹਾਲ) ਵਿੱਚ ਧੁਨੀ ਦਾ ਨਿਰੰਤਰ ਬਣੇ ਰਹਿਣਾ ਧੁਨੀ ਦੇ ਬਾਰ-ਬਾਰ ਪਰਾਵਰਤਨਾਂ ਦੇ ਕਾਰਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਬਹੁਗੂੰਜ ਕਹਿੰਦੇ ਹਨ।
- ਧੁਨੀ ਦੇ ਗੁਣੀ ਜਿਵੇਂ ਤਿੱਖਾਪਨ, ਉੱਚਾਪਨ ਅਤੇ ਗੁਣਵਤਾ ਸਬੰਧਿਤ ਤਰੰਗਾਂ ਦੇ ਗੁਣਾਂ ਦੁਆ<mark>ਰਾ</mark> ਨਿਰਧਾਰਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ।
- ਪ੍ਰਬਲਤਾ ਧੁਨੀ ਦੀ ਤੀਬਰਤਾ ਦੇ ਲਈ ਕੰਨਾਂ ਸਰੀਰਕ ਪ੍ਰਤੀਕਿਰਿਆ ਹੈ।
- ਕਿਸੇ ਇਕਾਈ ਖੇਤਰਫਲ ਵਿੱਚੋਂ ਇੱਕ ਸੈਕਿੰਡ ਵਿੱਚ ਗੁਜ਼ਰਨ ਵਾਲੀ ਧੁਨੀ ਊਰਜਾ ਨੂੰ ਧੁਨੀ ਦੀ ਤੀਬਰਤਾ ਕਹਿੰਦੇ ਹਨ।
- ਮਨੁੱਖਾਂ ਲਈ ਸੁਣਨਯੋਗ ਆਵ੍ਰਿਤੀ ਹੱਦਬੰਦੀ ਜਾਂ ਸੀਮਾਂ 20 Hz ਤੋਂ 20 kHz ਤੱਕ ਹੈ।
- ਸੁਣਨਯੋਗ ਸੀਮਾਂ ਤੋਂ ਘੱਟ ਆਵਰਤੀਆਂ ਦੀ ਧੁਨੀ ਨੂੰ 'ਨੀਮਧੁਨੀ' ਅਤੇ ਵੱਧ ਆਵਰਤੀਆਂ ਦੀ ਧੁਨੀ ਨੂੰ ''ਪਰਾਸਰਵਣੀ ਧੁਨੀ'' ਕਹਿੰਦੇ ਹਨ।
- ਪਰਾਸਰਵਣੀ ਧੁਨੀ ਦੇ ਚਿਕਿਤਸਾ ਅਤੇ ਉਦਯੋਗਿਕ ਖ਼ੇਤਰੀ ਵਿੱਚ ਕਾਫੀ ਉਪਯੋਗ ਹਨ।
- ਸੋਨਾਰ ਦੀ ਤਕਨੀਕ ਦਾ ਉਪਯੋਗ ਸਮੁੰਦਰ ਦੀ ਡੂੰਘਾਈ ਪਤਾ ਕਰਨ ਅਤੇ ਪਾਣੀ ਦੇ ਹੇਠਾਂ ਚਟਾਨਾਂ, ਘਾਟੀਆਂ, ਪਣਡੁਬੀਆਂ, ਬਰਫ਼ ਦੇ ਤੋਂਦੇ (ice berg), ਡੁੱਬੇ ਹੋਏ ਜਹਾਜ਼ਾਂ ਆਦਿ ਦਾ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਅਭਿਆਸ

- ਧੁਨੀ ਕੀ ਹੈ ਅਤੇ ਇਹ ਕਿਵੇਂ ਉਤਪੰਨ ਹੁੰਦੀ ਹੈ ?
- ਇੱਕ ਚਿੱਤਰ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਵਰਣਨ ਕਰੋ ਕਿ ਧੁਨੀ ਦੇ ਸ਼ੋਤ ਨੇੜੇ ਵਾਯੂ ਵਿੱਚ ਨਪੀੜਨ (compressions) ਅਤੇ ਵਿਰਲਾ (rarefaction) ਕਿਵੇਂ ਉਤਪੰਨ ਹੁੰਦੇ ਹਨ ?
- ਕਿਹੜੇ ਪ੍ਰਯੋਗ ਨਾਲ ਇਹ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਧੁਨੀ ਸੰਚਾਰਣ ਦੇ ਲਈ ਪਦਾਰਥਮਈ ਮਾਧਿਅਮ (material medium) ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।

195

y EN

1- 6

196

4. ਧੂਨੀ ਨੂੰ ਲੰਬੇ-ਦਾਅ ਜਾਂ ਲਾਂਗੀਚਿਊਡੀਨਲ ਤਰੰਗ ਕਿਉਂ ਕਹਿੰਦੇ ਹਨ ?

- 5. ਧੁਨੀ ਦਾ ਕਿਹੜਾ ਗੁਣ ਕਿਸੇ ਹਨੇਰੇ ਕਮਰੇ ਵਿੱਚ ਹੋਰ ਸਾਥੀਆਂ ਨਾਲ ਬੈਠੇ ਤੁਹਾਡੇ ਮਿੱਤਰ ਦੀ ਅਵਾਜ਼ ਪਹਿਚਾਣਨ ਵਿੱਚ ਤੁਹਾਡੀ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ ?
- ਬਦਲ ਦੀ ਗਰਜ ਅਤੇ ਚਮਕ ਨਾਲ-ਨਾਲ ਇਕੋ ਸਮੇਂ ਉਤਪੰਨ ਹੁੰਦੇ ਹਨ। ਪਰੰਤੂ ਚਮਕ ਦਿਖਾਈ ਦੇਣ ਦੇ ਕੁਝ ਸੈਕਿੰਡ ਬਾਅਦ ਗਰਜ ਸੁਣਾਈ ਦੇਂਦੀ ਹੈ। ਅਜਿਹਾ ਕਿਉਂ ਹੁੰਦਾ ਹੈ।
- 7. ਕਿਸੇ ਵਿਅਕਤੀ ਦੀ ਔਸਤ ਸੁਣਨਯੋਗ ਸੀਮਾ (hearing range) 20 Hz ਤੋਂ 20 kHz ਹੈ। ਇਹਨਾਂ ਦੋ ਆਵ੍ਰਿਤੀਆਂ ਦੇ ਲਈ ਧੁਨੀ ਤਰੰਗਾਂ ਦੀ ਤਰੰਗ ਲੰਬਾਈ ਪਤਾ ਕਰੋ। ਹਵਾ ਵਿੱਚ ਧੁਨੀ ਦਾ ਵੇਗ 344 ms⁻¹ ਹੈ।
- 8. ਦੋ ਬੱਚੇ ਕਿਸੇ ਐਲੂਮੀਨੀਅਮ ਪਾਈਪ ਦੇ ਦੋਵੇਂ ਸਿਰਿਆਂ ਤੇ ਹਨ। ਇੱਕ ਬੱਚਾ ਪਾਈਪ ਦੇ ਸਿਰੇ ਤੇ ਪੱਥਰ ਨਾਲ ਸੱਟ ਮਾਰਦਾ ਹੈ। ਦੂਜੇ ਸਿਰੇ ਤੇ ਬੈਠੇ ਬੱਚਾ ਤੱਕ ਹਵਾ ਅਤੇ ਐਲੂਮੀਨੀਅਮ ਵਿੱਚ ਦੀ ਜਾਣ ਵਾਲੀ ਧੁਨੀ ਤਰੰਗਾਂ ਦੁਆਰਾ ਲਏ ਗਏ ਸਮੇਂ ਦਾ ਅਨੁਪਾਤ (ratio) ਪਤਾ ਕਰੋ।
- 9. ਕਿਸੇ ਧੁਨੀ ਸ਼੍ਰੇਤ ਦੀ ਆਵਰਤੀ 100 Hz ਹੈ।ਇੱਕ ਮਿੰਟ ਵਿੱਚ ਇਹ ਕਿੰਨੀ ਵਾਰ ਕੰਪਨ ਕਰੇਗਾ ?
- ਕੀ ਧੁਨੀ ਪਰਾਵਰਤਨਾਂ ਦੇ ਉਹਨਾਂ ਨਿਯਮਾਂ ਦਾ ਪਾਲਣ ਕਰਦੀ ਹੈ ਜਿਹਨਾਂ ਦਾ ਪਾਲਣ ਪ੍ਰਕਾਸ਼ ਦੀਆਂ ਤਰੰਗਾਂ ਕਰਦੀਆਂ ਹਨ ? ਇਹਨਾਂ ਨਿਯਮਾਂ ਨੂੰ ਸਮਝਾਓ।
- 11. ਕਿਸੇ ਦੂਰ ਪਈ ਵਸਤੂ ਤੋਂ ਧੁਨੀ ਪਰਾਵਰਤਿਤ ਹੋਣ ਕਰਕੇ ਗੂੰਜ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਮੰਨ ਲਓ ਧੁਨੀ ਸ਼੍ਰੋਤ ਅਤੇ ਪਰਾਵਰਤਿਤ ਸਤ੍ਹਾ (ਦੂਰ ਪਈ ਵਸਤੂ) ਵਿੱਚਕਾਰ ਦੂਰੀ ਸਥਿਰ ਰਹੇ ਤਾਂ ਕਿਸ ਦਿਨ ਗੂੰਜ (echo) ਜਲਦੀ ਸੁਣਾਈ ਦੇਵੇਗੀ-(i) ਜਿਸ ਦਿਨ ਤਾਪਮਾਨ ਵਧ ਹੈ ? (ii) ਜਿਸ ਦਿਨ ਤਾਪਮਾਨ ਘੱਟ ਹੈ ?
- ਧੂਨੀ ਤਰੰਗਾਂ ਦੇ ਪਰਾਵਰਤਨ ਦੇ ਦੋ ਵਿਹਾਰਕ ਉਪਯੋਗ ਲਿਖੋ।
- 13. 500 ਮੀਟਰ ਉੱਚੀ ਕਿਸੀ ਮੀਨਾਰ ਦੀ ਚੋਟੀ ਤੋਂ ਇੱਕ ਪੱਥਰ ਮੀਨਾਰ ਦੇ ਅਧਾਰ ਉਪਰ ਸਥਿਤ ਇੱਕ ਪਾਣੀ ਦੇ ਤਲਾਬ ਵਿੱਚ ਸੁੱਟਿਆ ਜਾਂਦਾ ਹੈ। ਪਾਣੀ ਵਿੱਚ ਇਸਦੇ ਡਿੱਗਣ ਦੀ ਧੁਨੀ ਚੋਟੀ ਉੱਤੇ ਕਦੋਂ ਸੁਣਾਈ ਦੇਵੇਗੀ? (g = 10 m/s² ਅਤੇ ਧੁਨੀ ਦੀ ਚਾਲ = 340 m/s)
- 14. ਇੱਕ ਧੁਨੀ ਤਰੰਗ 339 m/s ਦੀ ਚਾਲ ਨਾਲ ਚੱਲ ਸਕਦੀ ਹੈ। ਜੇਕਰ ਇਸਦੀ ਤਰੰਗ ਲੰਬਾਈ 1.5 m ਹੋਵੇ, ਤਾਂ ਤਰੰਗ ਦੀ ਆਵ੍ਰਿਤੀ ਕਿੰਨੀ ਹੋਵੇਗੀ ? ਕੀ ਇਹ ਸੁਣਨਯੋਗ ਹੋਵੇਗੀ ?
- 15. ਬਹੁਗੂੰਜ (reverberation) ਕੀ ਹੈ ? ਇਸ ਨੂੰ ਕਿਵੇਂ ਘੱਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ?
- 16. ਧੁਨੀ ਦੇ ਉੱਚੇਪਨ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ? ਇਹ ਕਿਹੜੇ ਕਾਰਕਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ?
- ਚਮਗਾਦੜ ਆਪਣਾ ਸ਼ਿਕਾਰ ਫੜਨ ਲਈ ਪਰਾਧੁਨੀ ਦਾ ਉਪਯੋਗ ਕਿਵੇਂ ਕਰਦਾ ਹੈ ? ਵਰਣਨ ਕਰੋ।

ਵਿਗਿਆਨ

- 18. ਵਸਤੂਆਂ ਨੂੰ ਸਾਫ਼ ਕਰਨ ਲਈ ਪਰਾਸਰਵਣ ਧੁਨੀ ਦਾ ਉਪਯੋਗ ਕਿਵੇਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?
- 19. ਸੋਨਾਰ ਦੀ ਕਾਰਜ ਵਿਧੀ (working) ਅਤੇ ਉਪਯੋਗਾਂ ਦਾ ਵਰਣਨ ਕਰੋ।
- 20. ਇੱਕ ਪਣਡੁੱਬੀ ਉਪਰ ਲੱਗਿਆ ਸੋਨਾਰ ਯੰਤਰ ਸੰਕੇਤ ਭੇਜਦਾ ਹੈ ਅਤੇ ਰੂੰਜ (echo) 5s ਬਾਅਦ ਗ੍ਰਹਿਣ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਪਣਡੁੱਬੀ ਤੋਂ ਵਸਤੂ ਦੀ ਦੂਰੀ 3625 m ਹੋਵੇ ਤਾਂ ਧੁਨੀ ਦੀ ਚਾਲ ਦਾ ਪਤਾ ਕਰੋ।
- ਕਿਸੇ ਧਾਤ ਦੇ ਬਲਾਕ ਵਿੱਚ ਦੋਸ਼ਾਂ (defects) ਦਾ ਪਤਾ ਲਗਾਉਣ ਦੇ ਲਈ ਪਰਾਸਰਵਣ ਧੁਨੀ ਦਾ ਉਪਯੋਗ ਕਿਵੇਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ? ਵਰਣਨ ਕਰੋ।
- 22. ਮਨੁੱਖੀ ਕੰਨ ਕਿਸ ਤਰ੍ਹਾਂ ਕੰਮ ਕਰਦਾ ਹੈ ? ਵਰਣਨ ਕਰੋ।

ল কিচ্চি গ লি ক্ষিণ্ডিচ

24 124

日日第月

ਹਨ ਦ ਸੰਨਾਬ ਹੋ ਸ਼ਾਣਾ ਜਣਾਸ਼

15

1976

पुती

Downloaded from https:// www.studiestoday.c

197

ਅਸੀਂ ਬਿਮਾਰ ਕਿਉਂ ਹੁੰਦੇ ਹਾਂ (Why Do We Fall Ill)

বিলিপ্সা

ਧਆਇ 13

1153

ਅਸੀਂ ਲਾਤੂਰ, ਭੁਜ, ਕਸ਼ਮੀਰ ਆਦਿ ਵਿੱਚ ਆਏ ਭੁਚਾਲ ਅਤੇ ਤਟਵਰਤੀ ਭਾਗ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਵਾਲੇ ਚੱਕਰਵਾਤ ਬਾਰੇ ਸੁਣਿਆ ਹੈ। ਜੇਕਰ ਇਹ ਘਟਨਾਵਾਂ ਸਾਡੇ ਨੇੜੇ-ਤੇੜੇ ਘਟੀਆਂ ਹੋਣ ਤਾਂ ਕਲਪਨਾ ਕਰੋ ਕਿ ਲੋਕਾਂ ਦੀ ਸਿਹਤ ਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪਵੇਗਾ?

13.1

ਇਨ੍ਹਾਂ ਆਪਦਾਵਾਂ ਦੇ ਅਸਲ ਵਿੱਚ ਵਾਪਰਨ ਨਾਲ ਉਸ ਸਮੇਂ ਸਾਡੇ ਤੇ ਕੀ ਪ੍ਰਭਾਵ ਪੈਣਗੇ ?

ਆਪਦਾ ਆਉਣ ਤੋਂ ਬਾਅਦ ਕਿੰਨੇ ਸਮੇਂ ਤੱਕ ਸਿਹਤ ਸਬੰਧੀ ਵੱਖ-ਵੱਖ ਸਮੱਸਿਆਵਾਂ ਸਾਡੇ ਸਾਹਮਣੇ ਆਉਂਦੀਆਂ ਰਹਿਣਗੀਆਂ।

ਸਾਡੇ ਤੇ ਪੈਣ ਵਾਲੇ ਇਨ੍ਹਾਂ ਪ੍ਰਭਾਵਾਂ ਵਿੱਚੋਂ ਕੁਝ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਇੱਕ ਗਰੁੱਪ 'ਚ ਅਤੇ ਬਾਅਦ 'ਚ ਪੈਣ ਵਾਲੇ ਕੁਝ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਦੂਜੇ ਗਰੁਪ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ।

ਇਸ ਕਿਰਿਆ ਦੌਰਾਨ ਸਾਨੂੰ ਇਹ ਅਨੁਭਵ ਹੁੰਦਾ ਹੈ ਕਿ ਮਨੁੱਖੀ ਸਮੁਦਾਇ ਵਿੱਚ ਸਿਹਤ ਅਤੇ ਰੋਗ ਇੱਕ ਜਟਿਲ ਸਮੱਸਿਆ ਹੈ ਜਿਸ ਲਈ ਇੱਕ-ਦੂਜੇ ਨਾਲ ਸਬੰਧਿਤ ਅਨੇਕਾਂ ਕਾਰਕ ਉਤਰਦਾਈ ਹਨ। ਅਸੀਂ ਇਹ ਵੀ ਅਨੁਭਵ ਕਰਦੇ ਹਾਂ ਕਿ ਸਿਹਤ ਅਤੇ ਰੋਗ ਦਾ ਅਰਥ ਆਪਣੇ ਆਪ 'ਚ ਹੀ ਬਹੁਤ ਜਟਿਲ ਹੈ। ਜਦੋਂ ਅਸੀਂ ਪੁੱਛਦੇ ਹਾਂ ਕਿ ਬਿਮਾਰੀਆਂ ਦੇ ਕੀ ਕਾਰਨ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਰੋਕਥਾਮ ਕਿਵੇਂ ਹੋਵੇਗੀ ਤਾਂ ਸਾਨੂੰ ਇਨ੍ਹਾਂ ਧਾਰਨਾਵਾਂ ਦੇ ਅਰਥ ਸਮਝਣੇ ਹੋਣਗੇ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਸੈੱਲ ਸਾਡੇ ਜੀਵਨ ਦੀਆਂ ਮੌਲਿਕ ਇਕਾਈਆਂ ਹਨ। ਸੈੱਲ ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਰਸਾਇਣਕ ਪਦਾਰਥਾਂ ਜਿਵੇਂ ਪ੍ਰੋਟੀਨ, ਕਾਰਬੋਹਾਈਡ੍ਰੇਟ, ਚਰਬੀ ਜਾਂ ਲਿਪਿਡ ਆਦਿ ਤੋਂ ਬਣੇ ਹੁੰਦੇ ਹਨ ਭਾਵੇਂ ਚਿੱਤਰ ਵਿੱਚ ਇਹ ਸਥਿਰ ਦਿਖਾਈ ਦਿੰਦੇ ਹਨ ਪਰੰਤੂ ਇਹ ਬਹੁਤ ਕਿਰਿਆਸ਼ੀਲ ਹੰਦੇ ਹਨ ਅਤੇ ਹਰ ਸਮੇਂ ਇਨ੍ਹਾਂ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਚਲਦੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ। ਸੈੱਲ ਇੱਕ ਥਾਂ ਤੋਂ ਦੂਜੀ ਥਾਂ ਗਤੀ ਕਰਦੇ ਹਨ। ਇੱਥੋਂ ਤੱਕ ਕਿ ਜਿਹੜੇ ਸੈੱਲ ਗਤੀ ਨਹੀਂ ਕਰਦੇ ਉਨ੍ਹਾਂ ਵਿੱਚ ਵੀ ਕੁਝ ਨਾ ਕੁਝ ਮੁਰੰਮਤ ਦਾ ਕੰਮ ਚਲਦਾ ਰਹਿੰਦਾ ਹੈ। ਨਵੇਂ-ਨਵੇਂ ਸੈੱਲ ਬਣਦੇ ਰਹਿੰਦੇ ਹਨ। ਸਾਡੇ ਅੰਗਾਂ ਅਤੇ ਟਿਸ਼ੂਆਂ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਵਿਸ਼ੇਸ਼ ਕਿਰਿਆਵਾਂ ਚਲਦੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ। ਜਿਵੇਂ ਦਿਲ ਧੜਕਦਾ ਰਹਿੰਦਾ ਹੈ, ਫੇਫੜੇ ਸਾਹ ਲੈਂਦੇ ਹਨ, ਗੁਰਦੇ ਮੂਤਰ ਬਣਾਉਂਦੇ ਹਨ ਅਤੇ ਦਿਮਾਗ਼ ਸੋਚਦਾ ਰਹਿੰਦਾ ਹੈ।

ਇਹ ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ ਆਪਸ ਵਿੱਚ ਸੰਬੰਧਿਤ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਜੇ ਗੁਰਦੇ ਸਹੀ ਤਰ੍ਹਾਂ ਮੂਤਰ ਨਹੀਂ ਬਣਾ ਰਹੇ ਤਾਂ ਸਰੀਰ ਵਿੱਚ ਜਹਿਰੀਲੇ ਅੰਸ਼ ਇਕੱਠੇ ਹੋ ਜਾਣਗੇ ਅਜਿਹੀ ਹਾਲਤ ਵਿੱਚ ਦਿਮਾਗ਼ ਠੀਕ ਤਰ੍ਹਾਂ ਸੋਚ ਨਹੀਂ ਸਕੇਗਾ। ਇਨ੍ਹਾਂ ਸਾਰੀਆਂ ਆਪਸੀ ਕਿਰਿਆਵਾਂ ਨੂੰ ਕਰਨ ਲਈ ਊਰਜਾ ਅਤੇ ਕੱਚੇ ਮਾਲ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਇਹ ਕੱਚਾ ਮਾਲ ਸਾਡੇ ਸਰੀਰ ਨੂੰ ਬਾਹਰੋਂ ਵਾਤਾਵਰਣ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ਜਾਂ ਇਹ ਕਹਿ ਲਈਏ ਕਿ ਸੈੱਲਾਂ ਅਤੇ ਟਿਸ਼ੂਆਂ ਨੂੰ ਕੰਮ ਕਰਨ ਲਈ ਭੋਜਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਇਹ ਜਿਹਾ ਕੋਈ ਵੀ ਕਾਰਕ ਜਿਹੜਾ ਸੈੱਲਾਂ ਅਤੇ ਟਿਸ਼ੂਆਂ ਨੂੰ ਉਚਿਤ ਪ੍ਰਕਾਰ ਦੇ ਕੰਮ ਕਰਨ ਤੋਂ ਰੋਕਦਾ ਹੈ ਉਹ ਸਾਡੇ ਸਰੀਰ ਦੀ ਸਮੁੱਚੀ ਕਿਰਿਆ ਲਈ ਕਮੀ ਦਾ ਕਾਰਨ ਹੋਏਗਾ।

ਉਪਰੋਕਤ ਸਾਰੇ ਤੱਥਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖ ਕੇ ਅਸੀਂ ਸਿਹਤ ਅਤੇ ਰੋਗਾਂ ਦੀਆਂ ਧਾਰਨਾਵਾਂ ਨੂੰ ਸਮਝਾਂਗੇ।

13.1 ਸਿਹਤ ਅਤੇ ਇਸ ਦੇ ਵਿਗਾੜ (Health and its Failure)

13.1.1 ਸਿਹਤ ਦਾ ਮਹੱਤਵ (The Significance of Health) : ਅਸੀਂ ਸਾਰਿਆਂ ਨੇ 'ਸਿਹਤ' ਸ਼ਬਦ ਬਾਰੇ ਸੁਣਿਆ ਹੈ ਅਤੇ ਇਸ ਸ਼ਬਦ ਦੀ ਵਰਤੋਂ ਵੀ ਅਸੀਂ ਅਕਸਰ

ਹੀ ਕਰਦੇ ਹਾਂ ਜਿਵੇਂ ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ 'ਮੇਰੀ ਦਾਦੀ ਦੀ ਸਿਹਤ ਠੀਕ ਨਹੀਂ ਹੈ'।ਸਾਡੇ ਅਧਿਆਪਕ ਵੀ ਇਸ ਸ਼ਬਦ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ ਜਦੋਂ ਉਹ ਕਹਿੰਦੇ ਹਨ ਇਹ ਸਿਹਤਮੰਦ ਧਾਰਨਾ ਨਹੀਂ ਹੈ। ਇਸ 'ਸਿਹਤ' ਸ਼ਬਦ ਦਾ ਮਤਲਬ ਕੀ ਹੈ ?

ਜੇਕਰ ਅਸੀਂ ਇਸ ਵਿਸ਼ੇ ਤੋਂ ਵਿਚਾਰ ਕਰੀਏ ਤਾਂ ਸਾਨੂੰ ਪਤਾ ਲੱਗੇਗਾ ਕਿ ਇਸਦਾ ਭਾਵ ਤੰਦਰੁਸਤ ਰਹਿਣ ਤੋਂ ਹੈ। ਅਸੀਂ ਇਸ ਤੰਦਰੁਸਤੀ ਦਾ ਭਾਵ ਪ੍ਰਭਾਵੀ ਕਾਰਜ ਕਰ ਸਕਣ ਦੀ ਸਮਰੱਥਾ ਤੋਂ ਲੈ ਸਕਦੇ ਹਾਂ। ਸਾਡੀ ਦਾਦੀ ਮਾਂ ਲਈ ਬਜ਼ਾਰ ਜਾ ਸਕਣ ਅਤੇ ਆਂਢ-ਗੁਆਂਢ 'ਚ ਜਾ ਸਕਣ ਦੇ ਯੋਗ ਹੋਣਾ ਚੰਗੀ ਸਿਹਤ ਦੀ ਨਿਸ਼ਾਨੀ ਹੈ ਜੇਕਰ ਉਹ ਇਹ ਸਭ ਕੁਝ ਕਰ ਸਕਣ ਦੇ ਯੋਗ ਨਹੀਂ ਤਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਉਨ੍ਹਾਂ ਦੀ ਸਿਹਤ ਠੀਕ ਨਹੀਂ ਹੈ। ਜੇ ਤੁਹਾਡੀ ਰੁਚੀ ਜਮਾਤ ਵਿੱਚ ਪੜ੍ਹਨ ਦੀ ਅਤੇ ਅਧਿਆਪਕ ਤੋਂ ਕੁਝ ਸਿੱਖਣ ਦੀ ਹੈ ਤਾਂ ਤੁਸੀਂ ਸਿਹਤਮੰਦ ਹੋ ਅਤੇ ਜੇਕਰ ਰੁਚੀ ਨਹੀਂ ਹੈ ਤਾਂ ਤੁਸੀਂ ਸਿਹਤਮੰਦ ਨਹੀਂ ਹੋ। ਇਸ ਲਈ ਸਿਹਤ ਉਹ ਅਵਸਥਾ ਹੈ ਜਿਸ ਦੇ ਅਧੀਨ ਸਰੀਰਕ, ਮਾਨਸਿਕ ਅਤੇ ਸਮਾਜਿਕ ਕਾਰਜ ਪੂਰੀ ਸਮਰੱਥਾ ਨਾਲ ਉਚਿਤ ਤਰੀਕੇ ਨਾਲ ਕੀਤੇ ਜਾ ਸਕਣ।

13.1.2. ਵਿਅਕਤੀਗਤ ਅਤੇ ਸਮੁਦਾਇਕ ਸਮੱਸਿਆਵਾਂ : ਦੋਨੋਂ ਹੀ ਸਿਹਤ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀਆਂ ਹਨ।

ਸਿਹਤ ਕਿਸੇ ਵਿਅਕਤੀ ਦੀ ਸਰੀਰਕ, ਮਾਨਸਿਕ ਅਤੇ ਸਮਾਜਿਕ ਸਮਰੱਥਾ ਦੀ ਸਥਿਤੀ ਹੈ ਤੇ ਕੋਈ ਵੀ ਵਿਅਕਤੀ ਇਸ ਨੂੰ ਇਕੱਲੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਨਹੀਂ ਕਰ ਸਕਦਾ। ਸਾਰੇ ਜੀਵਾਂ ਦੀ ਸਿਹਤ ਉਨ੍ਹਾਂ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਅਤੇ ਵਾਤਾਵਰਣ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਵਾਤਾਵਰਣ ਵਿੱਚ ਭੌਤਿਕ ਕਾਰਕ ਵੀ ਆਉਂਦੇ ਹਨ। ਇਸ ਲਈ ਉਦਾਹਰਣ ਵਜੋਂ ਚੱਕਰਵਾਤ ਸਮੇਂ ਸਾਡੀ ਸਿਹਤ ਅਨੇਕਾਂ ਤਰੀਕਿਆਂ ਨਾਲ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀ ਹੈ।

ਪਰੰਤੂ ਉਸ ਤੋਂ ਵੀ ਮਹੱਤਵਪੂਰਣ ਇਹ ਹੈ ਕਿ ਮਨੁੱਖ ਸਮਾਜ ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ। ਇਸ ਲਈ ਸਾਡਾ ਸਮਾਜਿਕ ਵਾਤਾਵਰਣ ਨਿੱਜੀ ਸਿਹਤ ਲਈ ਵੱਧ ਮਹੱਤਵਪੂਰਣ ਹੈ। ਅਸੀਂ ਪਿੰਡਾਂ, ਸ਼ਹਿਰਾਂ ਜਾਂ ਕਸਬਿਆਂ ਵਿੱਚ ਰਹਿੰਦੇ ਹਾਂ। ਅਜਿਹੀਆਂ ਥਾਵਾਂ ਤੇ ਸਾਡਾ ਭੌਤਿਕ ਵਾਤਾਵਰਣ ਵੀ ਸਮਾਜਿਕ ਵਾਤਾਵਰਣ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ ਹੁੰਦਾ ਹੈ। ਜ਼ਰਾ ਸੋਚੋ ਜੇਕਰ ਕੂੜਾ-ਕਰਕਟ ਉਠਾਣ ਵਾਲੀ ਏਜੰਸੀ ਕਚਰੇ ਦਾ ਨਿਪਟਾਰਾ ਨਾ ਕਰੇ ਤਾਂ ਕੀ ਹੋਵੇਗਾ ? ਸੋਚੋ ਜੇਕਰ ਨਾਲੀਆਂ ਸਾਫ ਨਾ ਹੋਣ ਤਾਂ ਕੀ ਹੋਵੇਗਾ ? ਜੇਕਰ ਜ਼ਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਕੂੜਾ-ਕਰਕਟ ਗਲੀਆਂ ਵਿੱਚ ਸ਼ੁੱਟਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਗਲੀਆਂ ਅਤੇ ਖ਼ੁੱਲੀਆਂ ਥਾਵਾਂ ਤੇ ਪਾਣੀ ਖੜ੍ਹਾ ਰਹਿੰਦਾ ਹੈ ਤਾਂ ਸਿਹਤ ਖਰਾਬ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਸਮੁਦਾਇਕ ਸਿਹਤ, ਨਿੱਜੀ ਸਿਹਤ ਲਈ ਮਹੱਤਵਪੂਰਨ ਹੈ।

ਕਿਰਿਆ_____13.2

ਪਤਾ ਕਰੋ ਕਿ ਸਥਾਨਕ (ਪੰਚਾਇਤ ਜਾਂ ਨਗਰਨਿਗਮ) ਅਧਿਕਾਰੀਆਂ ਨੇ ਸਾਫ਼ ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਲਈ ਕੀ ਪ੍ਯੋਗ ਕੀਤੇ ਹਨ?

ਕੀ ਤੁਹਾਡੇ ਮੁਹੱਲੇ ਵਿਚ ਸਾਰੇ ਨਿਵਾਸੀਆਂ ਨੂੰ ਸਵੱਛ ਪਾਣੀ ਪ੍ਰਾਪਤ ਹੋ ਰਿਹਾ ਹੈ ?

13.3

ਕਿਰਿਆ

ਪਤਾ ਕਰੋ ਕਿ ਤੁਹਾਡੇ ਮੁਹੱਲੇ ਵਿੱਚ ਪੈਦਾ ਠੋਸ ਕਚਰੇ ਜਾਂ ਕੂੜੇ-ਕਰਕਟ ਦੇ ਨਿਪਟਾਰੇ ਲਈ ਨਗਰ-ਨਿਗਮ ਜਾਂ ਪੰਚਾਇਤ ਨੇ ਕੀ ਪ੍ਬੰਧ ਕੀਤਾ ਹੈ?

ਕੀ ਇਹ ਪ੍ਰਬੰਧ ਸੰਭੋਸ਼ਜਨਕ ਹਨ ?

ਜੇਕਰ ਸੰਤੋਸ਼ਜਨਕ ਨਹੀਂ ਹਨ ਤਾਂ ਤੁਸੀਂ ਇਸ ਦੇ ਨਿਪਟਾਰੇ ਲਈ ਕੀ ਸੁਝਾਅ ਦਿਉਗੇ ?

ਤੁਸੀਂ ਆਪਣੇ ਘਰ ਵਿੱਚ ਹਰ ਰੋਜ਼/ਹਫਤੇ ਵਿੱਚ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਠੋਸ ਕੁੜੇ ਕਰਕਟ ਨੂੰ ਘਟਾਉਣ ਲਈ ਕੀ ਕਰੋਗੇ ?

ਚੰਗੀ ਸਿਹਤ ਲਈ ਭੋਜਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਭੋਜਨ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕੰਮ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਇਸ ਲਈ ਸਾਨੂੰ ਕੰਮ ਕਰਨ ਦੇ ਮੌਕੇ ਲੱਭਣੇ ਪੈਂਦੇ ਹਨ। ਚੰਗਾ ਕੰਮ ਕਰਨ ਲਈ ਚੰਗੀ ਵਿਅਕਤੀਗਤ ਸਿਹਤ ਲੋੜੀਂਦੀ ਹੈ।

ਸਿਹਤਮੰਦ ਰਹਿਣ ਲਈ ਸਾਨੂੰ ਖੁਸ਼ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ। ਜੇਕਰ ਕਿਸੇ ਨਾਲ ਸਾਡਾ ਵਤੀਰਾ ਠੀਕ ਨਹੀਂ ਹੈ ਅਤੇ ਅਸੀਂ ਆਪਸ ਵਿੱਚ ਲੜਦੇ ਹਾਂ ਤਾਂ ਇਸ ਦਾ ਮਤਲਬ ਅਸੀਂ ਖੁਸ਼ ਅਤੇ ਸਿਹਤਮੰਦ ਨਹੀਂ ਹਾਂ। ਇਸ ਲਈ ਨਿੱਜੀ ਸਿਹਤ ਲਈ ਸਮਾਜਿਕ ਬਰਾਬਰਤਾ ਅਤੇ ਆਪਸੀ ਸਾਂਝ ਜ਼ਰੂਰੀ ਹੈ। ਅਸੀਂ ਇਸੇ ਤਰ੍ਹਾਂ ਲੱਭ ਸਕਦੇ ਹਾਂ ਕਿ ਅਨੇਕ ਸਮੁਦਾਇਕ ਸਮੱਸਿਆਵਾਂ ਸਾਡੀ ਨਿੱਜੀ ਸਿਹਤ ਨੂੰ ਕਿਵੇਂ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀਆਂ ਹਨ।

ਅਸੀਂ ਬਿਮਾਰ ਕਿਉਂ ਹੁੰਦੇ ਹਾਂ

199

13.1.3. ਸਿਹਤਮੰਦ ਰਹਿਣ ਅਤੇ ਰੋਗਮੁਕਤ ਹੋਣ 'ਚ ਅੰਤਰ (Difference between Health & Disease free)

ਜੇ ਸਾਡੇ ਲਈ ਸਿਹੰਤ ਦਾ ਇਹ ਮਤਲਬ ਹੈ ਤਾਂ ਫਿਰ ਰੋਗ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ? ਅੰਗਰੇਜ਼ੀ ਸ਼ਬਦ (DIS+EASE) ਤੋਂ ਆਪਣੇ ਆਪ ਹੀ ਇਸ ਦਾ ਨਾਂ ਪਤਾ ਲਗਦਾ ਹੈ ਜਿਸ ਨੂੰ ਅਸੀਂ ਬੇਚੈਨੀ ਵਾਲਾ ਆਰਾਮ ਕਹਿ ਸਕਦੇ ਹਾਂ। ਰੋਗ ਦਾ ਦੂਜਾ ਅਰਥ ਹੈ ਬੇਅਰਾਮੀ ਜਾਂ ਅਸੁਵਿਧਾਜਨਕ। ਪਰ ਇਸ ਸ਼ਬਦ ਦੇ ਅਰਥ ਦੀ ਵਰਤੋਂ ਬਹੁਤ ਸੀਮਿਤ ਹੈ। ਅਸੀਂ ਆਮ ਤੌਰ ਤੇ ਰੋਗ ਹੋਣ ਦੀ ਉਦੋਂ ਗੱਲ ਕਰਦੇ ਹਾਂ ਜਦੋਂ ਸਾਨੂੰ ਬੇਅਰਾਮੀ ਜਾਂ ਅਸੁਵਿਧਾ ਦਾ ਅਸਲ ਕਾਰਨ ਪਤਾ ਹੋਵੇ ਪਰ ਇਸਦਾ ਅਰਥ ਇਹ ਬਿਲਕੁਲ ਨਹੀਂ ਹੈ ਸਾਨੂੰ ਉਸਦਾ ਅਸਲ ਕਾਰਨ ਜ਼ਰੂਰ ਪਤਾ ਹੋਵੇ। ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇਹ ਵਿਅਕਤੀ ਦਸਤ ਤੋਂ ਪੀੜਿਤ ਹੈ ਭਾਵੇਂ ਸਾਨੂੰ ਦਸਤ ਲੱਗਣ ਦੇ ਕਾਰਨ ਨਾ ਪਤਾ ਹੋਣ।

ਹੁਣ ਸਾਨੂੰ ਇਹ ਪਤਾ ਲੱਗ ਗਿਆ ਹੈ ਕਿ ਬਿਨਾਂ ਕਿਸੇ ਖਾਸ ਰੋਗ ਹੋਣ ਦੇ ਵੀ ਅਸੀਂ ਮਾੜੀ ਸਿਹਤ ਦੇ ਹੋ ਸਕਦੇ ਹਾਂ। ਸਿਰਫ ਕਿਸੇ ਰੋਗ ਦਾ ਨਾ ਹੋਣਾ ਹੀ ਸਿਹਤਮੰਦ ਹੋਣਾ ਨਹੀਂ ਹੈ। ਕਿਸੇ ਡਾਂਸਰ ਵਾਸਤੇ ਚੰਗੀ ਸਿਹਤ ਤੋਂ ਭਾਵ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਢੰਗ ਨਾਲ ਸਰੀਰ ਵਿੱਚ ਹਿੱਲਜੁਲ ਤੇ ਹਰਕਤ ਪੈਦਾ ਕਰਨਾ ਹੈ। ਜਦੋਂ ਕਿ ਕਿਸੇ ਗਾਉਣ ਵਾਲੇ ਲਈ ਲੰਬਾ ਸਾਹ ਲੈ ਕੇ ਆਪਣੀਆਂ ਬੰਸਰੀ ਦੀ ਧੁੰਨ ਨੂੰ ਲੈਅ-ਬੱਧ ਕਰ ਸਕਣ ਦੀ ਸਮਰਥਾ ਹੁੰਦੀ ਹੈ। ਆਪਣੇ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ ਸਮਰੱਥਾ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਮੌਕਾ ਵੀ ਚੰਗੀ ਸਿਹਤ ਲਈ ਜ਼ਰੂਰੀ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਬਿਨਾਂ ਕਿਸੇ ਰੋਗ ਦੇ ਲੱਛਣਾਂ ਦੇ ਵੀ ਮਾੜੀ ਸਿਹਤ ਦਾ ਸ਼ਿਕਾਰ ਹੋ ਸਕਦੇ ਹਾਂ। ਇਹੀ ਕਾਰਨ ਹੈ ਕਿ ਜਦੋਂ ਅਸੀਂ ਸਿਹਤ ਦੇ ਬਾਰੇ ਸੋਚਦੇ ਹਾਂ ਅਸੀਂ ਸਮਾਜ ਅਤੇ ਸਮੁਦਾਇ ਬਾਰੇ ਵੀ ਸੋਚਦੇ ਹਾਂ। ਪਰ ਰੋਗ ਦੇ ਬਾਰੇ ਸੋਚਦੇ ਸਮੇਂ ਅਸੀਂ ਸਿਰਫ ਆਪਣੇ ਬਾਰੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ।

ਚੰਗੀ ਸਿਹਤ ਦੀਆਂ ਕੋਈ ਦੇ ਨਿਸ਼ਾਨੀਆਂ ਦੱਸੇ।

- . Gon mos ern der e isa ann en i
- 2. ਰੋਗ ਮੁਕਤ ਹੋਣ ਦੀਆਂ ਕੋਈ ਦੇ ਨਿਸ਼ਾਨੀਆਂ ਦੱਸੋ।
- ਕੀ ਉਪਰੋਕਤ ਦੋਨਾਂ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਇੱਕ ਹੀ ਹਨ ਜਾਂ ਵੱਖ-ਵੱਖ। ਕਿਉਂ ?

13.2 ਰੋਗ ਅਤੇ ਇਸਦੇ ਕਾਰਨ (Disease and

its Causes)

13.2.1. ਰੋਗ ਕਿਸ ਤਰ੍ਹਾਂ ਨਜ਼ਰ ਆਉਂਦੇ ਹਨ ? (What does disease look like ?)

ਆਓ ਰੋਗਾਂ ਬਾਰੇ ਥੋੜ੍ਹਾ ਹੋਰ ਜਾਣੀਏ। ਪਹਿਲਾਂ ਇਹ ਕਿ ਸਾਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਸਾਨੂੰ ਕੋਈ ਰੋਗ ਹੈ ? ਭਾਵ ਕਿਵੇਂ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਸਗੇਰ ਵਿੱਚ ਕੁਝ ਦੋਸ਼ ਹਨ ? ਅਸੀਂ ਪਾਠ 6 ਵਿੱਚ ਪੜ੍ਹਿਆ ਹੈ ਕਿ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਅਨੇਕਾਂ ਤਰ੍ਹਾਂ ਦੇ ਟਿਸ਼ੂ ਹੁੰਦੇ ਹਨ। ਇਹ ਟਿਸ਼ੂ ਸਾਡੇ ਸਰੀਰ ਦੀਆਂ ਅੰਗਪ੍ਣਾਲੀਆਂ ਜਾਂ ਕਿਰਿਆਤਮਕ ਪ੍ਣਾਲੀਆਂ ਬਣਾਉਂਦੇ ਹਨ ਜੋ ਸਾਡੇ ਸਰੀਰ ਦੇ ਕਾਰਜ ਨੇਪਰੇ ਚੜ੍ਹਾਉਂਦੀਆਂ ਹਨ। ਹਰ ਅੰਗਪ੍ਣਾਲੀ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ ਅੰਗ ਆਪਣਾ ਵਿਸ਼ੇਸ਼ ਕੰਮ ਕਰਦੇ ਹਨ। ਜਿਵੇਂ ਪਾਚਣ-ਪ੍ਣਾਲੀ ਵਿੱਚ ਮਿਹਦਾ ਅਤੇ ਅੰਤੜੀ ਹੁੰਦੇ ਹਨ ਜੋ ਖਾਧੇ ਹੋਏ ਭੋਜਨ ਨੂੰ ਪਚਾਉਣ ਦਾ ਕੰਮ ਕਰਦੇ ਹਨ। ਪੇਸ਼ੀਆਂ ਅਤੇ ਹੱਡੀਆਂ ਤੋਂ ਬਣੀ ਪੇਸ਼ੀ ਪਿੰਜਰ ਪ੍ਣਾਲੀ ਸਾਡੇ ਸਰੀਰ ਦੇ ਅੰਗਾਂ ਨੂੰ ਇਕੱਠਿਆਂ ਜੋੜ ਕੇ ਰੱਖਦੀ ਹੈ ਅਤੇ ਸਰੀਰਕ ਅੰਗਾਂ ਵਿੱਚ ਹਿਲਜੂਲ ਪੈਦਾ ਕਰਦੀ ਹੈ।

ਜਦੋਂ ਕੋਈ ਰੋਗ ਹੁੰਦਾ ਹੈ ਤਾਂ ਸਰੀਰ ਦੀ ਕਿਸੇ ਪ੍ਣਾਲੀ ਵਿੱਚ ਸੰਰਚਨਾਤਮਕ ਜਾਂ ਕਿਰਿਆਤਮਕ ਖਰਾਬੀ ਆਉਣ ਲਗਦੀ ਹੈ। ਇਸ ਖਰਾਬੀ ਨਾਲ ਬਿਮਾਰੀ ਦੇ ਲੱਛਣ ਉਭਰਨ ਲਗਦੇ ਹਨ। ਬਿਮਾਰੀ ਦੇ ਲੱਛਣਾਂ ਤੋਂ ਹੀ ਸਾਨੂੰ ਸਿਹਤ ਖਰਾਬ ਹੋਣ ਦਾ ਪਤਾ ਲਗਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਸਿਰ ਦਰਦ, ਖਾਂਸੀ, ਦਸਤ ਜਾਂ ਜਖਮ 'ਚੋਂ ਮਵਾਦ (ਪਸ) ਨਿਕਲਣਾ ਸਭ ਰੋਗਾਂ ਦੇ ਲੱਛਣ ਹਨ। ਇਨ੍ਹਾਂ ਲੱਛਣਾਂ ਤੋਂ ਕਿਸੇ ਨਾ ਕਿਸੇ ਰੋਗਾ ਹੋਣ ਬਾਰੇ ਪਤਾ ਲੱਗਦਾ ਹੈ ਪਰ ਇਹ ਨਹੀਂ ਪਤਾ ਲਗਦਾ ਕਿ ਕਿਹੜਾ ਰੋਗ ਹੈ ? ਉਦਾਹਰਣ ਵਜੋਂ ਸਿਰਦਰਦ ਦਾ ਕਾਰਨ ਪ੍ਰੀਖਿਆ ਦਾ ਡਰ, ਦਿਮਾਗ਼ ਦੀਆਂ ਝਿੱਲੀਆਂ ਦੀ ਸੋਜ (Meningitis) ਜਾਂ ਦਰਜਨਾਂ ਹੋਰ ਬਿਮਾਰੀਆਂ 'ਚੋਂ ਕੋਈ ਇੱਕ ਹੋ ਸਕਦਾ ਹੈ।

ਰੋਗ ਦੇ ਚਿੰਨ੍ਹ ਉਹ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਡਾਕਟਰ ਲੱਛਣਾਂ ਦੇ ਆਧਾਰ ਤੇ ਦੇਖਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੇ ਆਧਾਰ ਤੇ ਡਾਕਟਰ ਕਿਸੇ ਖਾਸ ਬਿਮਾਰੀ ਹੋਣ ਦਾ ਅੰਦਾਜ਼ਾ ਲਗਾਉਂਦੇ ਹਨ। ਪ੍ਯੋਗਸ਼ਾਲਾ ਵਿੱਚ ਕੀਤੇ ਕੁੱਝ ਪ੍ਯੋਗ ਦੇ ਆਧਾਰ ਤੇ ਉਹ ਰੋਗ ਬਾਰੇ ਸਹੀ ਪਤਾ ਲਗਾਉਂਦੇ ਹਨ।

13.1.3. ਅਲਪਕਾਲੀਨ ਅਤੇ ਦੀਰਘਕਾਲੀਨ ਰੋਗ (Acute & Chronic diseases)

ਰੋਗਾਂ ਦੇ ਹੋਣ ਦੇ ਕਾਰਨ ਕਈ ਕਾਰਕਾਂ ਤੇ ਨਿਰਭਰ ਹੋਣ ਕਰਕੇ ਵੱਖ-ਵੱਖ ਹੋ ਸਕਦੇ ਹਨ। ਇੱਕ ਸਭ ਤੋਂ ਸਪੱਸ਼ਟ

200

ਵਿਗਿਆਨ

ਕਾਰਕ ਜਿਸ ਤੋਂ ਰੋਗ ਦਾ ਪਤਾ ਚਲਦਾ ਹੈ ਉਹ ਹੈ, ਇਸਦੀ ਠਹਿਰ। ਕਈ ਰੋਗ ਬਹੁਤ ਥੋੜ੍ਹੀ ਦੇਰ ਰਹਿੰਦੇ ਹਨ, ਇਨ੍ਹਾਂ ਨੂੰ ਅਲਪ-ਕਾਲੀਨ ਰੋਗ ਕਹਿੰਦੇ ਹਨ। ਅਸੀਂ ਸਭ ਨੇ ਅਨੁਭਵ ਕੀਤਾ ਹੈ ਕਿ ਠੰਢ-ਜੁਕਾਮ ਕੁੱਝ ਕੁ ਦਿਨ ਹੀ ਰਹਿੰਦਾ ਹੈ। ਦੂਜੇ ਪਾਸੇ ਕੁਝ ਅਜਿਹੇ ਰੋਗ ਹੁੰਦੇ ਹਨ ਜਿਹੜੇ ਲੰਬਾ ਸਮਾਂ ਜਾਂ ਪੂਰਾ ਜੀਵਨ-ਕਾਲ ਰਹਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਰੋਗਾਂ ਨੂੰ ਦੀਰਘ-ਕਾਲੀਨ ਰੋਗ ਕਹਿੰਦੇ ਹਨ। ਇੱਕ ਅਜਿਹੇ ਰੋਗ ਦੀ ਉਦਾਹਰਣ ਐਲੀਫੈਂਟੀਐਸਿਸ (ਹਾਥੀ-ਪੈਰ) ਰੋਗ ਹੈ। ਇਹ ਭਾਰਤ ਦੇ ਕੁਝ ਖੇਤਰਾਂ ਵਿੱਚ ਆਮ ਪਾਇਆ ਜਾਣ ਵਾਲਾ ਰੋਗ ਹੈ।

ਕਿਰਿਆ

_13.4

- ਆਪਣੇ ਆਂਢ-ਗੁਆਂਢ ਵਿੱਚ ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ ਦਾ ਸਰਵੇਖਣ ਕਰੇ।
- ਪਿਛਲੇ ਤਿੰਨ ਮਹੀਨਿਆਂ ਵਿੱਚ ਕਿੰਨੇ ਲੋਕਾਂ ਨੂੰ ਅਲਪ-ਕਾਲੀਨ ਰੋਗ ਹੋਏ ਹਨ ?
- ਪਿਛਲੇ ਤਿੰਨ ਮਹੀਨਿਆਂ ਵਿੱਚ ਕਿੰਨੇ ਲੋਕ ਦੀਰਘ-ਕਾਲੀਨ ਰੋਗਾਂ ਨਾਲ ਪੀੜਿਤ ਹੋਏ ਹਨ?
- ਤੁਹਾਡੇ ਖੇਤਰ ਵਿੱਚ ਕੁੱਲ ਕਿੰਨੇ ਲੋਕ ਦੀਰਘ-ਕਾਲੀਨ ਰੋਗਾਂ ਨਾਲ ਪੀੜਿਤ ਹਨ ?
- ਕੀ ਪ੍ਰਸ਼ਨ । ਅਤੇ ਪ੍ਰਸ਼ਨ 2 ਦੇ ਉੱਤਰ ਵੱਖ-ਵੱਖ ਹਨ ?
- ਕੀ ਪ੍ਰਸ਼ਨ 2 ਅਤੇ ਪ੍ਰਸ਼ਨ 3 ਦੇ ਉੱਤਰ ਵੱਖ-ਵੱਖ ਹਨ ?
 - ਤੁਹਾਡੀ ਸੋਚ ਮੁਤਾਬਿਕ ਇਨ੍ਹਾਂ ਅੰਤਰਾਂ ਦੇ ਕੀ ਕਾਰਨ ਹੈ ਸਕਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਅੰਤਰਾਂ ਦੇ ਜਨ-ਸੱਖਿਆ ਦੀ ਆਮ-ਸਿਹਤ ਤੇ ਕੀ ਪੁਭਾਵ ਹੋਣਗੇ ?

13.2.3. ਦੀਰਘ-ਕਾਲੀਨ ਰੋਗ ਅਤੇ ਮੰਦੀ ਸਿਹਤ (Chronic diseases & poor health)

ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਅਲਪ-ਕਾਲੀਨ ਅਤੇ ਦੀਰਘ-ਕਾਲੀਨ ਰੋਗਾਂ ਦੇ ਸਾਡੀ ਸਿਹਤ ਤੇ ਅਲੱਗ-ਅਲੱਗ ਪ੍ਰਭਾਵ ਹਨ, ਕੋਈ ਵੀ ਰੋਗ ਹੋਵੇ ਉਹ ਸਾਡੇ ਸਰੀਰ ਦੇ ਕਿਸੇ ਭਾਗ ਵਿੱਚ ਰੁਕਾਵਟ ਕਰਦਾ ਹੈ ਜਾਂ ਸਾਡੀ ਸਿਹਤ ਵਿੱਚ ਖਰਾਬੀ ਕਰ ਸਕਦਾ ਹੈ। ਕਿਉਂਕਿ ਠੀਕ ਸਿਹਤ ਵਾਸਤੇ ਸਰੀਰ ਦੇ ਸਾਰੇ ਅੰਗਾਂ ਦਾ ਠੀਕ ਕੰਮ ਕਰਨਾ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ। ਪਰੰਤੂ ਅਲਪ-ਕਾਲੀਨ ਰੋਗ ਜੋ ਬਹੁਤ ਘੱਟ ਸਮੇਂ ਲਈ ਰਹਿੰਦਾ ਹੈ, ਉਸ ਨੂੰ ਆਮ ਸਿਹਤ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਨ ਦਾ ਸਮਾਂ ਚੀ ਨਹੀਂ ਮਿਲਦਾ ਜਦੋਂ ਕਿ ਦੀਰਘ-ਕਾਲੀਨ ਰੋਗ ਸਾਡੀ ਸਿਹਤ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰੇਗਾ।

ਉਦਾਹਰਣ ਵਜੋਂ ਖਾਂਸੀ-ਜੁਕਾਮ ਬਾਰੇ ਸੋਚੋ ਜੋ ਸਾਨੂੰ ਸਭ ਨੂੰ ਅਕਸਰ ਹੀ ਹੁੰਦਾ ਰਹਿੰਦਾ ਹੈ। ਸਾਡੇ ਵਿੱਚੋਂ ਜ਼ਿਆਦਾਤਰ ਲੋਕ ਇੱਕ ਹਫ਼ਤੇ ਵਿੱਚ ਹੀ ਠੀਕ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਸਾਡੀ ਸਿਹਤ ਤੇ ਵੀ ਮਾੜਾ ਪ੍ਰਭਾਵ ਨਹੀਂ ਪੈਂਦਾ। ਖਾਂਸੀ ਜੁਕਾਮ ਨਾਲ ਸਾਡਾ ਭਾਰ ਵੀ ਘੱਟ ਨਹੀਂ ਹੁੰਦਾ, ਸਾਡਾ ਸਾਹ ਵੀ ਨਹੀਂ ਫੁਲਦਾ ਅਤੇ ਅਸੀਂ ਸਾਰਾ ਦਿਨ ਥਕਾਵਟ ਵੀ ਮਹਿਸੂਸ ਨਹੀਂ ਕਰਦੇ ਪਰ ਜਦੋਂ ਅਸੀਂ ਫ਼ੇਫ਼ੜਿਆਂ ਦੀ ਟੀ.ਬੀ. ਵਰਗੇ ਦੀਰਘ–ਕਾਲੀਨ ਰੋਗ ਦੀ ਜਕੜ ਵਿੱਚ ਆ ਜਾਂਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਸਾਲਾਂ-ਬੱਧੀ ਬਿਮਾਰ ਰਹਿੰਦੇ ਹਾਂ, ਸਾਡਾ ਭਾਰ ਘਟ ਜਾਂਦਾ ਹੈ ਅਤੇ ਅਸੀਂ ਹਰ ਵੇਲੇ ਥੱਕੇ-ਥੱਕੇ ਮਹਿਸੂਸ ਕਰਦੇ ਹਾਂ।

ਜੇਕਰ ਤੁਸੀਂ ਕਿਸੇ ਅਲਪ-ਕਾਲੀਨ ਰੋਗ ਤੋਂ ਪੀੜਿਤ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕੁਝ ਦਿਨ ਸਕੂਲ ਨਹੀਂ ਜਾ ਸਕੋਗੇ ਪਰ ਜੇਕਰ ਤੁਸੀਂ ਦੀਰਘ-ਕਾਲੀਨ ਰੋਗ ਤੋਂ ਪੀੜਿਤ ਹੋ ਤਾਂ ਤੁਹਾਨੂੰ ਸਕੂਲ ਵਿੱਚ ਹੋ ਰਹੀ ਪੜ੍ਹਾਈ ਸਮਝਣ ਵਿੱਚ ਕਠਿਨਾਈ ਹੋਵੇਗੀ ਅਤੇ ਤੁਹਾਡੀ ਸਿੱਖਣ ਅਤੇ ਸਮਝਣ ਦੀ ਸ਼ਕਤੀ ਵੀ ਘਟ ਜਾਵੇਗੀ ਅਤੇ ਲੰਬੇ ਸਮੇਂ ਲਈ ਸਾਡੀ ਸਿਹਤ ਖਰਾਬ ਰਹੇਗੀ। ਇਸ ਲਈ ਦੀਰਘ-ਕਾਲੀਨ ਰੋਗ ਅਲਪ-ਕਾਲੀਨ ਰੋਗਾਂ ਦੇ ਮੁਕਾਬਲੇ ਲੋਕਾਂ ਦੀ ਸਿਹਤ ਤੇ ਲੰਬੇ ਸਮੇਂ ਲਈ ਮਾੜਾ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ।

13.2.4. ਰੋਗਾਂ ਦੇ ਕਾਰਨ (Causes of Diseases)

ਰੋਗਾਂ ਦੇ ਕੀ ਕਾਰਨ ਹਨ ? ਜਦੋਂ ਅਸੀਂ ਰੋਗਾਂ ਦੇ ਕਾਰਨਾਂ ਬਾਰੇ ਸੋਚਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਯਾਦ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਕਾਰਨਾਂ ਦੇ ਬਹੁਤ ਸਾਰੇ ਪੱਧਰ ਹਨੂ। ਆਓ ਇੱਕ ਉਦਾਹਰਣ ਲਈਏ। ਜੇਕਰ ਕਿਸੇ ਛੋਟੇ ਬੱਚੇ ਨੂੰ ਦਸਤ ਲੱਗੇ ਹਨ ਤਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਇਹ ਵਿਸ਼ਾਣੂ (Virus) ਦੇ ਕਾਰਨ ਹੈ ਇਸ ਲਈ ਬੀਮਾਰੀ ਦਾ ਅਲਪ-ਕਾਲੀਨ ਕਾਰਨ ਵਾਇਰਸ ਹੈ।

ਪਰੰਤੂ ਅਗਲਾ ਪ੍ਰਸ਼ਨ ਉਠਦਾ ਹੈ ਵਿਸ਼ਾਣੂ ਕਿਥੋਂ ਆਇਆ ? ਮੰਨ ਲਉ ਅਸੀਂ ਪਤਾ ਲਗਾ ਲਿਆ ਕਿ ਇਹ ਵਿਸ਼ਾਣੂ ਗੰਦੇ ਪਾਣੀ ਪੀਣ ਕਰਕੇ ਸਰੀਰ ਵਿੱਚ ਦਾਖਲ ਹੋਇਆ ਪਰ ਇਹੀ ਪਾਣੀ ਹੋਰ ਕਈ ਬੱਚਿਆਂ ਨੇ ਵੀ ਪੀਤਾ ਹੋਵੇਗਾ। ਇਹਦਾ ਕੀ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਇੱਕ ਬੱਚੇ ਨੂੰ ਹੀ ਦਸਤ ਲੱਗੇ ਅਤੇ ਬਾਕੀਆਂ ਨੂੰ ਨਹੀਂ ?

ਇੱਕ ਕਾਰਨ ਇਹ ਹੋ ਸਕਦਾ ਹੈ ਇਹ ਬੱਚਾ ਸਿਹਤਮੰਦ ਨਹੀਂ ਸੀ। ਨਤੀਜੇ ਵਜੋਂ ਇਹ ਹੋਇਆ ਕਿ ਜਦੋਂ ਇਹ ਬੱਚਾ ਕਿਸੇ ਰੋਗਾਣੂ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਂਦਾ ਹੈ ਤਾਂ ਇਹ ਬੀਮਾਰ ਹੋ ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਕਿ ਦੂਜੇ ਬੱਚੇ ਨਹੀਂ। ਇਸ ਬੱਚੇ ਦੇ

ਅਸੀਂ ਬਿਮਾਰ ਕਿਉਂ ਹੁੰਦੇ ਹਾਂ

201

ਤੰਦਰੁਸਤ ਨਾ ਹੋਣ ਦਾ ਕੀ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ ? ਸ਼ਾਇਦ ਇਹ ਬੱਚਾ ਖੁਰਾਕ ਠੀਕ ਨਹੀਂ ਲੈ ਰਿਹਾ ਅਤੇ ਕੁਪੋਸ਼ਣ (Malnutrition) ਦਾ ਸ਼ਿਕਾਰ ਹੈ। ਇਸ ਲਈ ਚੰਗੀ ਤੇ ਪੋਸ਼ਕ ਖੁਰਾਕ ਨਾ ਲੈਣਾ ਬਿਮਾਰੀ ਹੋਣ ਦਾ ਦੂਜਾ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ। ਅੱਗੇ ਪੜਚੋਲ ਕਰੀਏ ਤਾਂ ਬੱਚਾ ਚੰਗੀ ਖੁਰਾਕ ਕਿਉਂ ਨਹੀਂ ਲੈ ਰਿਹਾ। ਸ਼ਾਇਦ ਉਸ ਦੇ ਘਰ ਦੇ ਆਰਥਿਕ ਹਾਲਾਤ ਠੀਕ ਨਾ ਹੋਣ।

ਇਹ ਵੀ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਬੱਚੇ ਦੇ ਅਨੁਵੰਸ਼ਕ (Genetic) ਗੁਣ ਕੁਝ ਅਜਿਹੇ ਹੋਣ ਕਿ ਜਦੋਂ ਉਹ ਰੋਗਾਣੂ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਂਦਾ ਹੈ ਤਾਂ ਉਸਨੂੰ ਦਸਤ ਲੱਗ ਜਾਂਦੇ ਹੋਣ। ਰੋਗਾਣੂ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਣ ਤੋਂ ਬਿਨਾ ਅਨੁਵੰਸ਼ਕ ਗੁਣ ਅਤੇ ਕੁਪੋਸ਼ਣ ਇਕੱਲੇ ਦਸਤ ਲੱਗਣ ਦਾ ਕਾਰਨ ਨਹੀਂ ਬਣਦੇ ਪਰੰਤੂ ਉਹ ਬਿਮਾਰੀ ਦਾ ਕਾਰਨ ਜ਼ਰੂਰ ਬਣਦੇ ਹਨ।

ਬੱਚੇ ਲਈ ਸਾਫ਼ ਸੁਥਰਾ ਖੀਣ ਦਾ ਪਾਣੀ ਉਪਲੱਬਧ ਕਿਉਂ ਨਹੀਂ ਸੀ ?ਸ਼ਾਇਦ ਸਿੱਥੇ ਬੱਚੇ ਦਾ ਪਰਿਵਾਰ ਰਹਿੰਦਾ ਹੈ, ਉਥੇ ਜਨਤਕ ਸੇਵਾਵਾਂ ਘੱਟ ਹੋਣ। ਇਸ ਲਈ ਗਰੀਬੀ ਅਤੇ ਜਨਤਕ ਸੇਵਾਵਾਂ ਦੀ ਘਾਟ ਬਿਮਾਰੀ ਦਾ ਤੀਜਾ ਕਾਰਨ ਹੋਇਆ।

ਇਸ ਲਈ ਇਹ ਗੱਲ ਸਾਫ ਹੈ ਕਿ ਸਾਰੀਆਂ ਬਿਮਾਰੀਆਂ ਦਾ ਕੋਈ ਨਾ ਕੋਈ ਤੁਰੰਤ ਕਾਰਨ ਅਤੇ ਕੁਝ ਸਹਾਇਕ ਕਾਰਨ ਹੁੰਦੇ ਹਨ ਅਤੇ ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੇ ਰੋਗਾਂ ਦਾ ਕੋਈ ਇੱਕ ਨਹੀਂ ਬਲਕਿ ਕਈ ਕਾਰਨ ਹੁੰਦੇ ਹਨ।

13.2.5. ਛੁਤ ਅਤੇ ਅਛੁਤ ਦੇ ਕਾਰਨ

(Causes of communicable and noncommunicable diseases)

ਅਸੀਂ ਦੇਖਿਆ ਹੈ ਕਿ ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਕੋਈ ਵਿਸ਼ੇ ਬਾਰੇ ਸੋਚਦੇ ਹਾਂ ਸਾਨੂੰ ਜਨਤਕ ਸਿਹਤ ਅਤੇ ਸਿਹਤ ਸੰਬੰਧੀ ਕਾਰਕਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਣਾ ਜ਼ਰੂਰੀ ਹੈ। ਇਸ ਵਿਸ਼ੇ ਤੇ ਹੋਰ ਚਰਚਾ ਕਰਦੇ ਹਾਂ। ਰੋਗ ਦੇ ਤਤਕਾਲੀ ਕਾਰਨਾਂ ਬਾਰੇ ਸੋਚਣਾ ਚੰਗਾ ਹੋਵੇਗਾ ਕਿਉਂਕਿ ਇਹ ਦੋਵੇਂ ਤਰੀਕਿਆਂ ਦੇ ਕਾਰਨ ਹੋ ਸਕਦੇ ਹਨ। ਰੋਗਾਂ ਦੇ ਕਾਰਨ ਦਾ ਇੱਕ ਵਰਗ ਹੈ, ਛੂਤ ਦੇ ਕਾਰਕ ਜੋ ਜ਼ਿਆਦਾਤਰ ਸੂਖਮਜੀਵ ਹੁੰਦੇ ਹਨ। ਉਹ ਰੋਗ ਜਿਨ੍ਹਾਂ ਦੇ ਤੱਤਕਾਲੀਨ ਕਾਰਕ ਸੂਖਮਜੀਵ ਹੁੰਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਨੂੰ ਛੂਤ ਰੋਗ (Communicable Disease) ਕਹਿੰਦੇ ਹਨ। ਇਸਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਸੂਖਮ ਜੀਵ ਸਮੁਦਾਇ ਵਿੱਚ ਫੈਲ ਸਕਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਨਾਲ ਹੋਣ ਵਾਲੇ ਰੋਗ ਵੀ ਇਨ੍ਹਾਂ ਦੇ ਨਾਲ ਹੀ ਫੈਲ ਜਾਂਦੇ ਹਨ।

ਇਸ ਵਿਸ਼ੇ ਤੇ ਸੋਚੋ

- ਕੀ ਰੋਗੀ ਵਿਅਕਤੀ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਣ ਨਾਲ ਸਾਰੇ ਰੋਗ ਫੈਲਦੇ ਹਨ ?
- 2. ਅਜਿਹੇ-ਕਿਹੜੇ ਰੋਗ ਹਨ ਜੋ ਨਹੀਂ ਫੈਲਦੇ ?
- ਜਿਹੜੇ ਰੋਗ, ਰੋਗੀ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਣ ਤੇ ਨਹੀਂ ਫੈਲਦੇ ਉਹ ਮਨੁੱਖਾਂ ਵਿੱਚ ਕਿਵੇਂ ਹੋ ਜਾਂਦੇ ਹਨ ?

ਦੂਜੇ ਪਾਸੇ ਕੁਝ ਰੋਗ ਅਜਿਹੇ ਹਨ ਜੋ ਛੂਤ ਦੇ ਕਾਰਨਾਂ ਕਰਕੇ ਨਹੀਂ ਹੁੰਦੇ। ਉਨ੍ਹਾਂ ਦੇ ਕਾਰਨ ਹੋਰ ਹੁੰਦੇ ਹਨ। ਪਰ ਉਹ ਸੂਖਮਜੀਵਾਂ ਦੀ ਤਰ੍ਹਾਂ ਬਾਹਰੀ ਕਾਰਕ ਨਹੀਂ ਹੁੰਦੇ ਜੋ ਸਮੁਦਾਇ ਵਿੱਚ ਫੈਲ ਸਕਣ। ਸਗੋਂ ਇਨ੍ਹਾਂ ਰੋਗਾਂ ਦੇ ਕਾਰਨ ਅੰਦਰੂਨੀ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਅਛੂਤ ਦੇ ਰੋਗ (Non-communicable Disease) ਕਹਿੰਦੇ ਹਨ।

ਉਦਾਹਰਣ ਵਜੋਂ ਕੁਝ ਕੈਂਸਰ ਅਨੁਵੰਸ਼ਕ ਦੋਸ਼ਾਂ ਕਰਕੇ ਹੋ ਸਕਦੇ ਹਨ। ਲਹੂ ਦਾ ਉੱਚ ਦਬਾਉ ਕੰਮ ਦੇ ਜ਼ਿਆਦਾ ਬੋਝ ਹੋਣ ਕਰਕੇ ਜਾਂ ਘੱਟ ਕਸਰਤ ਕਰਨ ਕਰਕੇ ਹੋ ਸਕਦਾ ਹੈ ਤੁਸੀਂ ਹੋਰ ਵੀ ਕਈ ਬਿਮਾਰੀਆਂ ਬਾਰੇ ਸੋਚ ਸਕਦੇ ਹੋ ਜਿਨ੍ਹਾਂ ਦੇ ਕਾਰਨ ਛੂਤ ਦੇ ਨਹੀਂ ਹਨ।

ਪੈਪਟਿਕ ਅਲਸਰ (Peptic Ulcer) ਅਤੇ ਨੋਬਲ ਪੁਰਸਕਾਰ

ਬਹੁਤ ਸਾਲਾਂ ਤੱਕ ਹਰ ਕੋਈ ਇਹ ਸੋਚਦਾ ਰਿਹਾ ਕਿ ਪੈਪਟਿਕ ਅਲਸਰ (ਪੇਟ ਵਿਚਲੇ ਫੋੜੇ) ਜਿਹੜੇ ਪੇਟ ਵਿੱਚ ਅਤੇ ਆਂਤੜੀ ਦੇ ਇੱਕ ਹਿੱਸੇ ਵਿੱਚ ਅਮਲਤਾ (Acidity) ਸੈਬੰਧੀ ਦਰਦ ਅਤੇ ਖੂਨ ਦਾ ਰਿਸਾਵ ਕਰਦੇ ਹਨ, ਉਹ ਜ਼ਿੰਦਗੀ ਦੇ ਰਹਿਣ ਸਹਿਣ ਦੇ ਢੰਗਾਂ ਕਰਕੇ ਹੈ। ਹਰ ਕੋਈ ਸੋਚਦਾ ਸੀ ਕਿ ਸੰਘਰਸ਼ ਭਰੇ ਜੀਵਨ ਕਰਕੇ ਪੇਟ ਵਿੱਚ ਤੇਜ਼ਾਬ ਦਾ ਰਿਸਾਵ ਹੁੰਦਾ ਰਹਿੰਦਾ ਹੈ ਜਿਹਦੇ ਕਰਕੇ ਪੈਪਟਿਕ ਅਲਸਰ ਹੁੰਦੇ ਹਨ।

ਫਿਰ ਦੋ ਆਸਟ੍ਰੇਲੀਆਈ ਵਿਗਿਆਨੀਆਂ ਨੇ ਖੋਜ ਕੀਤੀ ਕਿ ਇੱਕ ਜੀਵਾਣੂ ਹੇਲਿਕੋਬੈਕਟਰ ਪਾਇਲੋਰੀ ਪੈਪਟਿਕ ਅਲਸਰ ਦਾ ਕਾਰਨ ਹੈ। ਪਰਥ (ਆਸਟ੍ਰੇਲੀਆ) ਦੇ ਇੱਕ ਰੋਗ ਵਿਗਿਆਨੀ ਰੋਬਿਨ ਵਾਰੇਨ ਜਿਸ ਦਾ ਜਨਮ 1937 'ਚ ਹੋਇਆ, ਨੇ ਇਸ ਛੋਟੇ-ਛੋਟੇ ਚਾਪ ਵਰਗੇ ਬੈਕਟੀਰੀਆ ਨੂੰ ਅਨੇਕਾਂ ਰੋਗੀਆਂ ਦੇ ਪੇਟ ਦੇ ਹੇਠਲੇ ਭਾਗ 'ਚ ਦੇਖਿਆ। ਬੈਰੀ ਮਾਰਸ਼ਲ (ਜਨਮ ਸਨ 1951) ਇੱਕ ਡਾਕਟਰ ਨੇ ਵਾਰੇਨ ਦੀ ਇਸ ਖੋਜ ਵਿੱਚ ਦਿਲਚਸਪੀ ਲਈ ਅਤੇ ਉਸਨੇ ਇਨ੍ਹਾਂ ਸ਼੍ਰੋਤਾਂ ਤੋਂ ਜੀਵਾਣੂਆਂ ਦੇ ਕਲਚਰ ਬਣਾਉਣ 'ਚ ਸਫਲਤਾ ਹਾਸਲ ਕੀਤੀ।

202

ਵਿਗਿਆਨ

ਇਲਾਜ ਅਧਿਐਨ ਸਮੇਂ ਮਾਰਸ਼ਲ ਅਤੇ ਵਾਰੇਨ ਨੇ ਪਤਾ ਲਗਾਇਆ ਕਿ ਰੋਗੀ ਦੇ ਪੈਪਟਿਕ ਅਲਸਰ ਦਾ ਇਲਾਜ ਤਾਂ ਹੀ ਹੋ ਸਕਦਾ ਹੈ ਜੇਕਰ ਜੀਵਾਣੂਆਂ ਨੂੰ ਪੇਟ ਵਿੱਚ ਹੀ ਮਾਰ ਦਿੱਤਾ ਜਾਵੇ। ਮਾਰਸ਼ਲ ਅਤੇ ਵਾਰੇਨ ਦੀ ਇਸ ਅਦਭੁੱਤ ਖੋਜ ਲਈ ਵਿਸ਼ਵ ਭਾਈਚਾਰਾ ਸ਼ੁਕਰਗੁਜਾਰ ਹੈ ਕਿ ਹੁਣ ਪੈਪਟਿਕ ਅਲਸਰ ਦੀਰਘਕਾਲੀਨ ਰੋਗ ਅਤੇ ਅਪੰਗ ਕਰਨ ਵਾਲਾ ਰੋਗ ਨਹੀਂ ਰਿਹਾ ਬਲਕਿ ਕੁਝ ਸਮੇਂ ਤੱਕ ਪ੍ਰਤੀਜੈਵਿਕ ਦਵਾਈਆਂ ਦੇ ਇਲਾਜ ਨਾਲ ਨੀਕ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਖੋਜ ਲਈ ਮਾਰਸ਼ਲ ਅਤੇ ਵਾਰੇਨ ਨੂੰ

(ਚਿੱਤਰ ਦੇਖੋ) ਸਰੀਰ ਕਿਰਿਆ ਵਿਗਿਆਨ ਅਤੇ ਔਸ਼ਧੀ ਵਿਗਿਆਨ (ਮੈਡੀਸਨ) ਦੇ ਖੇਤਰ ਵਿੱਚ ਸੰਨ 2005 ਵਿੱਚ ਸੰਯੁਕਤ ਰੂਪ 'ਚ ਨੋਬਲ ਪੁਰਸਕਾਰ ਪ੍ਰਦਾਨ ਕੀਤਾ ਗਿਆ।

ਜਿਹੜੇ ਤਰੀਕਿਆਂ ਨਾਲ ਬਿਮਾਰੀਆਂ ਫੈਲਦੀਆਂ ਹਨ ਅਤੇ ਜਿਹੜੇ ਤਰੀਕਿਆਂ ਨਾਲ ਉਨ੍ਹਾਂ ਦਾ ਇਲਾਜ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਮੁਦਾਇਕ ਪੱਧਰ ਤੇ ਉਨ੍ਹਾਂ ਤੋਂ ਬਚਾਅ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਉਹ ਬਿਮਾਰੀ ਦੀ ਕਿਸਮ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇਹ ਇਸ ਗੱਲ ਤੇ ਵੀ ਨਿਰਭਰ ਕਰੇਗਾ ਕਿ ਬਿਮਾਰੀ ਦਾ ਤੱਤਕਾਲੀਨ ਕਾਰਨ ਛੁਤ ਦਾ ਹੈ ਜਾਂ ਅਛੂਤ।

> ਅਜਿਹੇ ਤਿੰਨ ਕਾਰਨ ਲਿਖੇ ਜਿਸ ਕਰਕੇ ਤੁਸੀਂ ਸੋਚਦੇ ਹੋ ਕਿ ਤੁਸੀਂ ਬਿਮਾਰ ਹੋ ਅਤੇ ਡਾਕਵੂਰ ਕੋਲ ਜਾਣਾ ਚਾਹੁੰਦੇ ਹੋ। ਜੇਕਰ ਇਨ੍ਹਾਂ 'ਚੋਂ ਕੋਈ ਇੱਕ ਵੀ ਲੱਛਣ ਹੋਵੇ ਤਾ ਕੀ ਤੁਸੀਂ ਫਿਰ ਵੀ ਡਾਕਟਰ ਕੋਲ ਜਾਣਾ ਚਾਹੋਗੇ 7 ਕਿਉਂ ਜਾਂ ਕਿਉਂ ਨਹੀਂ ?

ਹੇਠ ਲਿਖਿਆਂ 'ਚੋਂ ਕਿਸ ਦੇ ਲੈਬੇ ਸਮੇਂ ਤੱਕ ਰਹਿਣ ਕਾਰਨ ਤੁਸੀਂ ਸਮਝਦੇ ਹੋ ਕਿ ਤੁਹਾਡੀ ਸਿਹਤ ਤੇ ਬੁਰਾ ਪ੍ਰਭਾਵ ਪਵੇਗਾ ਅਤੇ ਕਿਉਂ ?

- ਜੋਕਰ ਤੁਸੀਂ ਪੀਲੀਏ ਦੇ ਰੋਗ ਤੋਂ ਪੀੜਿਤ ਹੈ।
- ਜੇਕਰ ਤੁਹਾਡੇ ਸ਼ਗੋਰ ਤੋਂ ਜੋ ਹੈ।
- ਜੇਕਰ ਤੁਸੀਂ ਮੁੱਹਾਸਿਆਂ ਤੋਂ ਪੀੜਿਤ ਹੋ ਕਿਉਂ ?

13.3 ਛੂਤ ਦੇ ਰੋਗ (Communicable Diseases) 13.3.1 ਛੂਤ ਦੇ ਕਾਰਕ

(Agents of communicable diseases)

ਅਸੀਂ ਦੇਖਿਆ ਹੈ ਕਿ ਸਜੀਵ ਜਗਤ ਦੀ ਅਨੈਕਤਾ ਨੂੰ ਕੁੱਝ ਹੀ ਵਰਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਵਰਗੀਕਰਣ ਸਜੀਵਾਂ ਵਿੱਚ ਕੁਝ ਸਾਂਝੇ ਗੁਣਾਂ ਜਾਂ ਲੱਛਣਾਂ ਤੇ ਆਧਾਰਿਤ ਹੈ। ਜਿਹੜੇ ਸਜੀਵ ਬਿਮਾਰੀਆਂ ਫੈਲਾਉਂਦੇ ਹਨ ਉਹ ਇਨ੍ਹਾਂ ਅਨੇਕ ਵਰਗਾਂ ਵਿੱਚ ਆਉਂਦੇ ਹਨ।ਉਨ੍ਹਾਂ ਵਿਚੋਂ ਕੁਝ ਵਿਸ਼ਾਣੂ (ਵਾਇਰਸ), ਕੁਝ ਜੀਵਾਣੂ (ਬੈਕਟੀਰੀਆ) ਕੁੱਝ ਉਲੀਆਂ (ਫੰਜਾਈ) ਅਤੇ ਕੁਝ ਇਕ ਸੈੱਲੀ ਜੀਵ ਭਾਵ ਪ੍ਰੋਟੋਜੋਆ ਹਨ। ਕੁੱਝ ਬਿਮਾਰੀਆਂ ਬਹੁ ਸੈੱਲੀ ਜੀਵਾਂ ਜਿਵੇਂ ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਕਿਰਮਾਂ (worms) ਦੁਆਰਾ ਵੀ ਹੁੰਦੀਆਂ ਹਨ।

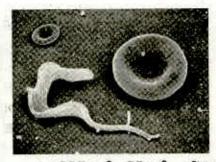
ਵਿਸ਼ਾਣੂਆਂ ਦੁਆਰਾ ਹੋਣ ਵਾਲੀਆਂ ਕੁੱਝ ਆਮ ਬਿਮਾਰੀਆਂ ਖਾਂਸੀ, ਜੁਕਾਮ, ਇਨਫਲੂਐਂਜਾ, ਡੇਂਗੂ, ਬੁਖਾਰ ਅਤੇ ਏਡਜ਼ ਹਨ। ਕੁੱਝ ਰੋਗ ਜਿਵੇਂ ਟਾਈਫਾਈਡ ਬੁਖਾਰ, ਹੈਜਾ, ਟੀ.ਬੀ. ਦਾ ਰੋਗ ਅਤੇ ਐਂਥਰੈਕਸ ਰੋਗ ਜੀਵਾਣੂਆਂ ਦੁਆਰਾ ਹੁੰਦੇ ਹਨ। ਬਹੁਤ ਸਾਰੇ ਚਮੜੀ ਰੋਗ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੀਆਂ ਉੱਲੀਆਂ ਨਾਲ ਹੁੰਦੇ ਹਨ। ਪ੍ਰੋਟੋਜੋਆ ਸੂਖਮ ਜੀਵ ਬਹੁਤ ਆਮ ਹੋਣ ਵਾਲੀਆਂ ਬਿਮਾਰੀਆਂ ਜਿਵੇਂ ਮਲੇਰੀਆ ਰੋਗ, ਕਾਲਾਜ਼ਾਰ ਰੋਗ ਕਰਦੇ ਹਨ। ਅਸੀਂ ਸਾਰਿਆਂ ਨੇ ਅੰਤੜੀ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਕਿਰਮ ਦੀ ਲਾਰ ਅਤੇ ਕਿਸਮਾਂ ਦੀਆਂ ਕਈ ਪ੍ਰਜਾਤੀਆਂ ਨਾਲ ਹੋਣ ਵਾਲੇ ਪੈਰ ਫੁਲਣ ਦੇਸ਼-ਰੋਗ (Elephantiasis) ਬਾਰੇ ਵੀ ਸਣਿਆ ਹੈ।

ਇਹ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਅਸੀਂ ਲਾਗ ਕਰਨ ਵਾਲੇ ਇਨ੍ਹਾਂ ਕਾਰਕਾਂ ਬਾਰੇ ਸੋਚੀਏ ? ਇਸਦਾ ਉੱਤਰ ਇਹ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਵਰਗਾਂ ਬਾਰੇ ਜਾਨਣਾ ਇਸ ਲਈ ਜ਼ਰੂਰੀ ਹੈ ਤਾਂਕਿ ਇਹ ਫੈਸਲਾ ਕੀਤਾ ਜਾ ਸਕੇ ਕਿ ਕਿਸ ਤਰ੍ਹਾਂ ਦਾ ਇਲਾਜ ਕਰਨਾ ਹੈ ? ਇਨ੍ਹਾਂ ਸਾਰੇ ਵਰਗਾਂ ਦੇ ਜੀਵਾਂ ਜਿਵੇਂ ਵਿਸ਼ਾਣੂਆਂ, ਜੀਵਾਣੂਆਂ ਆਦਿ ਦੇ ਕੁੱਝ ਸਾਂਝੇ ਜੈਵਿਕ ਗੁਣ ਹਨ।

ਉਦਾਹਰਣ ਵਜੋਂ ਸਾਰੇ ਵਿਸ਼ਾਣੂ ਪਰਪੋਸ਼ੀ ਦੇ ਸਰੀਰਕ ਸੈੱਲਾਂ ਵਿੱਚ ਰਹਿੰਦੇ ਹਨ ਪਰ ਜੀਵਾਣ ਅਜਿਹਾ ਨਹੀਂ ਕਰਦੇ।

ਅਸੀਂ ਬਿਮਾਰ ਕਿਉਂ ਹੁੰਦੇ ਹਾਂ

203


ਚਿੱਤਰ 13.1(a): ਰੋਗੀ ਕੋਸ਼ਿਕਾ ਵਿੱਚ ਬਾਹਰ ਨਿਕਲਦੇ SARS ਜੀਵਾਣੂ ਚਿੱਤਰ ਵਿੱਚ ਤੀਰ ਦੁਆਰਾ ਵਿਖਾਏ ਗਏ ਹਨ। ਚਿੱਤਰ ਵਿੱਚ ਸਫ਼ੈਦ ਰੋਖਾ 500 ਨੈਨੋਮੀਟਰ ਮਾਪ ਨੂੰ ਵਿਖਾਉਂਦੀ ਹੈ ਜੋ ਇੱਕ ਮਾਈਕਰੋਮੀਟਰ ਦਾ ਅੱਧ ਹੈ। ਇੱਕ ਮਾਈਕਰੋਮੀਟਰ ਇੱਕ ਮਿਲੀਮੀਟਰ ਦੇ ਇੱਕ ਹਜ਼ਾਰਵੇਂ ਭਾਗ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਇਹ ਮਾਪ ਚਿੱਤਰ ਸਾਨੂੰ ਬਹੁਤ ਸੂਖਮ ਵਸਤੂਆਂ ਵਿਖਾ ਰਿਹਾ ਹੈ।

> ਸਹਿਯੋਗ - ਇਮੇਜਿੰਗ ਇਨਫੈਕਸ਼ਨਸ ਡਿਸੀਜ਼, ਸੀ.ਡੀ.ਸੀ. ਯੂ.ਐਸ.ਏ. ਦਾ ਇਕ ਜਰਨਲ

ਚਿੱਤਰ 13.1(b): ਸਟੇਫਾਈਲੋਕੋਕਾਈ ਜੀਵਾਣੂ ਜਿਹੜਾ ਕਿਲਾਂ ਦਾ ਕਾਰਨ ਹੈ। ਉਪਰ ਖੱਬੇ ਪਾਸੇ ਦੀ ਰੇਖਾ ਨੂੰ 5 ਮਾਈਕ੍ਰੋਮੀਟਰ ਮਾਪ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ।

204

ਚਿੱਤਰ 13.1(c): ਪ੍ਰੋਟੋਜ਼ੋਆ ਟ੍ਰਿਪਨੋਸੋਮਾ ਇਹ ਨੀਂਦ ਦੀ ਬਿਮਾਰੀ (Sleeping Sickness) ਦਾ ਕਾਰਨ ਹੈ। ਟ੍ਰਿਪਨੋਸੋਮਾ ਨੂੰ ਲਾਲ ਰਕਤਾਣੂ ਦੇ ਨਾਲ ਦਿਖਾਇਆ ਗਿਆ ਹੈ ਜਿਸ ਤੋਂ ਆਪ ਨੂੰ ਉਸਦੇ ਆਕਾਰ ਦਾ ਪਤਾ ਲੱਗ ਸਕੇ, ਕਾਪੀਰਾਈਟ – ਉਰੇਗਾਜ਼ ਹੈਲਥ ਐਂਡ ਸਾਇੰਸ ਯੂਨੀਵਰਸਿਟੀ, ਯੂ.ਐਸ.

ਭਿੱਤਰ 13.1(d):ਲੇਸ਼ਮਾਨਿਆ– ਕਾਲਾਜ਼ਾਰ ਰੋਗ ਕਾਰਕ ਪ੍ਰੋਟੋਜ਼ੋਆ। ਇਹ ਜੀਵ ਅੰਡਾਕਾਰ ਅਤੇ ਹਰੇਕ ਵਿੱਚ ਛਾਂਟੇਦਾਰ ਸੰਰਚਨਾ ਹੁੰਦੀ ਹੈ। ਵੰਡ ਹੋ ਰਹੇ ਜੀਵ ਨੂੰ ਤੀਰ ਨਾਲ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।

161

ਚਿੱਤਰ 13.1(e) : ਇੱਕ ਪ੍ਰੌੜ ਗੋਲ ਕਿਸਮ ਦਾ ਚਿੱਤਰ (ਐਸਕੇਰਿਸ ਲੁੰਬਰੀ ਕਾਇਡਜ ਟੈਕਨੀਕਲ ਨਾਲ ਹੈ) ਇਹ ਛੋਟੀ ਆਂਦਰ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਸ ਦੇ ਉਪਰ ਬਣਿਆ ਹੋਇਆ 4 ਸੈ.ਮੀ. ਦੇ ਸਕੇਲ ਦਾ ਮਾਪ ਇੱਕ ਗੋਲ ਕਿਰਮ ਦੇ ਅਕਾਰ ਦੇ ਬਰਾਬਰ ਹੈ।

ਵਿਗਿਆਨ

ਵਿਸ਼ਾਣੂ, ਜੀਵਾਣੂ ਅਤੇ ਉੱਲੀਆਂ ਬਹੁਤ ਤੇਜ਼ੀ ਨਾਲ ਗੁਣਿਤ ਹੁੰਦੇ ਹਨ ਪਰੰਤੂ ਇਸਦੀ ਤੁਲਨਾ ਵਿੱਚ ਕਿਰਮਾਂ ਵਿੱਚ ਵਾਧਾ ਜਾਂ ਗੁਣਨ ਹੌਲੀ ਹੁੰਦਾ ਹੈ, ਵਰਗੀਕਰਨ ਦੇ ਅਨੁਸਾਰ ਸਾਰੇ ਜੀਵਾਣੂ, ਵਿਸ਼ਾਣੂਆਂ ਤੋਂ ਉਲਟ, ਇੱਕ ਦੂਜੇ ਦੇ ਬਹੁਤ ਨੇੜੇ ਹੁੰਦੇ ਹਨ। ਅਜਿਹਾ ਵਿਸ਼ਾਣੂਆਂ ਵਿੱਚ ਵੀ ਹੁੰਦਾ ਹੈ। ਇਸ ਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਅਨੇਕ ਜੈਵ-ਪ੍ਰਕਿਰਿਆਵਾਂ ਸਾਰੇ ਜੀਵਾਣੂਆਂ ਵਿੱਚ ਇਕ ਸਮਾਨ ਹੁੰਦੀਆਂ ਹਨ ਪਰ ਵਿਸ਼ਾਣੂ ਵਰਗ ਤੋਂ ਭਿੰਨ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਦੇ ਫਲਸਰੂਪ ਇੱਕ ਦਵਾਈ ਜੋ ਕਿਸੇ ਵਰਗ ਵਿੱਚ ਇੱਕ ਜੈਵ-ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਰੋਕਦੀ ਹੈ ਉਹ ਉਸ ਵਰਗ ਦੇ ਦੂਜੇ ਮੈਂਬਰਾਂ ਤੇ ਵੀ ਉਸੇ ਤਰ੍ਹਾਂ ਦਾ ਪ੍ਰਭਾਵ ਪਾਏਗੀ। ਪਰ ਇਹ ਦਵਾਈ ਦੂਜੇ ਵਰਗ ਨਾਲ ਸੰਬੰਧਿਤ ਰੋਗਾਣੂਆਂ ਤੇ ਕੋਈ ਪ੍ਰਭਾਵ ਨਹੀਂ ਪਾਏਗੀ।

ਅਸੀਂ ਪਤੀਜੈਵਿਕ ਦਵਾਈ (Antibiotic) ਦੀ ਹੀ ਉਦਾਹਰਣ ਲੈਂਦੇ ਹਾਂ। ਇਹ ਆਮ ਤੌਰ ਤੇ ਜੀਵਾਣੂਆਂ ਦੇ ਲਈ ਮਹੱਤਵਪੂਰਣ ਜੈਵ ਰਸਾਇਣਕ ਮਾਰਗ ਨੂੰ ਬੰਦ ਕਰ ਦਿੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਬਹੁਤ ਸਾਰੇ ਜੀਵਾਣੂ ਆਪਣੀ ਰੱਖਿਆ ਲਈ ਸੈੱਲ-ਭਿੱਤੀ ਜਾਂ ਸੈੱਲ ਕਵਚ ਬਣਾ ਲੈਂਦੇ ਹਨ। ਪੈਨਸਿਲੀਨ ਦਵਾਈ ਜੋ ਕਿ ਇੱਕ ਪਤੀਜੈਵਿਕ ਦਵਾਈ ਹੈ, ਜੀਵਾਣ ਦੀ ਸੈੱਲ ਭਿੱਤੀ ਬਣਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਰੋਕ ਦਿੰਦੀ ਹੈ। ਸਿੱਟੇ ਵਜੋਂ ਵਧਦੇ ਹੋਏ ਜੀਵਾਣੂ ਸੈਲ ਭਿੱਤੀ ਨਹੀਂ ਬਣਾ ਸਕਦੇ ਅਤੇ ਅਸਾਨੀ ਨਾਲ ਮਰ ਜਾਂਦੇ ਹਨ। ਮਨੁੱਖ ਦੇ ਸੈਲ, ਸੈਲ ਭਿੱਤੀ ਨਹੀਂ ਬਣਾ ਸਕਦੇ ਇਸ ਲਈ ਪੈਨਸਿਲੀਨ ਦਾ ਸਾਡੇ ਤੇ ਕੋਈ ਪਭਾਵ ਨਹੀਂ ਪੈਂਦਾ। ਪੈਨਸਿਲੀਨ ਦਵਾਈ ਇਹੋ ਜਿਹੇ ਸਾਰੇ ਜੀਵਾਣੂਆਂ ਦੇ ਉਪਰ ਪ੍ਰਭਾਵ ਪਾਏਗੀ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਸੈੱਲ ਭਿੱਤੀ ਬਣਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬਹੁਤ ਸਾਰੀਆਂ ਪ੍ਰਤੀਜੈਵਿਕ ਦਵਾਈਆਂ ਜੀਵਾਣੂਆਂ ਦੇ ਕਿਸੇ ਇੱਕ ਪ੍ਰਜਾਤੀ ਨੂੰ ਹੀ ਨਹੀਂ ਸਗੋਂ ਕਈ ਪ੍ਰਜਾਤੀਆਂ ਨੂੰ ਪਭਾਵਿਤ ਕਰਦੀਆਂ ਹਨ।

ਪਰੰਤੂ ਵਿਸ਼ਾਣੂਆਂ ਵਿੱਚ ਅਜਿਹੀ ਕੋਈ ਪ੍ਰਕਿਰਿਆ ਨਹੀਂ ਹੁੰਦੀ। ਇਹੀ ਕਾਰਨ ਹੈ ਕਿ ਕੋਈ ਵੀ ਪ੍ਰਤੀਜੈਵਿਕ ਦਵਾਈ ਵਿਸ਼ਾਣੂ ਦੀ ਲਾਗ ਵੇਲੇ ਅਸਰ ਜਾਂ ਪ੍ਰਭਾਵ ਨਹੀਂ ਪਾਉਂਦੀ। ਜੇਕਰ ਅਸੀਂ ਖਾਂਸੀ, ਜੁਕਾਮ ਤੋਂ ਪੀੜਿਤ ਹਾਂ ਤਾਂ ਐਂਟੀਬਾਇਟਕ ਲੈਣ ਨਾਲ ਰੋਗ ਦੀ ਤੀਬਰਤਾ ਜਾਂ ਉਸਦਾ ਸਮਾਂ ਘੱਟ ਨਹੀਂ ਹੁੰਦਾ। ਪਰੰਤੂ ਜੇ ਸਾਨੂੰ ਵਿਸ਼ਾਣੂਆਂ ਦੇ ਨਾਲ- ਨਾਲ ਜੀਵਾਣੂਆਂ ਦੀ ਲਾਗ (infection) ਹੋ ਗਈ ਹੈ ਤਾਂ ਐਂਟੀਬਾਈਓਟਿਕ ਜਾਂ ਪ੍ਰਤੀਜੈਵਿਕ ਦਵਾਈ ਕੰਮ ਕਰੇਗੀ। ਫਿਰ ਵੀ ਇਹ ਪ੍ਰਤੀਜੈਵਿਕ ਦਵਾਈ ਜੀਵਾਣੂ ਦੀ ਲਾਗ ਨੂੰ ਠੀਕ ਕਰੇਗੀ ਨਾ ਕਿ ਵਿਸ਼ਾਣੂ ਦੀ ਲਾਗ ਨੂੰ।

বিরিন্সা

ਪਤਾ ਕਰੋ ਕਿ ਤੁਹਾਡੀ ਜਮਾਤ ਵਿੱਚ ਕੁੱਝ ਦਿਨ ਪਹਿਲਾਂ ਕਿੰਨੇ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਜੁਕਾਮ, ਖਾਂਸੀ, ਬੁਖਾਰ ਹੋਇਆ ਸੀ।

13.5

ਉਨ੍ਹਾਂ ਨੂੰ ਬਿਮਾਰੀ ਕਿੰਨੇ ਦਿਨ ਤੱਕ ਰਹੀ ?

ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਿਨਿਆਂ ਨੇ ਐਂਟੀਬਾਈਉਟਿਕ ਦੀ ਵਰਤੋਂ ਕੀਤੀ। ਆਪਣੇ ਮਾਤਾ-ਪਿਤਾ ਨੂੰ ਪੁੱਛੋ ਕਿ ਐਂਟੀ-ਬਾਈਉਟਿਕ ਦਿੱਤੀ ਕਿ ਨਹੀਂ।

ਜਿਨ੍ਹਾਂ ਨੇ ਐਂਟੀਬਾਈਊਟਿਕ ਲਈ, ਉਹ ਕਿੰਨੇ ਦਿਨ ਬਿਮਾਰ ਰਹੇ ?

ਜਿਨ੍ਹਾਂ ਨੇ ਐਂਟੀਬਾਈਉਟਿਕ ਨਹੀਂ ਲਈ, ਉਹ ਕਿੰਨੇ ਦਿਨ ਤੱਕ ਬਿਮਾਰ ਰਹੇ ?

ਕੀ ਇਨ੍ਹਾਂ ਦੋਨਾਂ ਵਰਗਾਂ ਵਿੱਚ ਕੋਈ ਔਤਰ ਹੈ ?

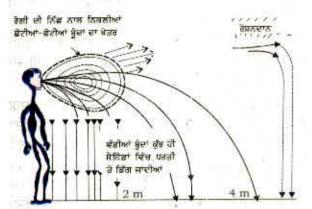
ਜੇਕਰ ਹੈ ਤਾਂ ਕਿਉਂ ? ਜੇਕਰ ਨਹੀਂ ਤਾਂ ਕਿਉਂ ਨਹੀਂ ?

13.3.2 ਰੋਗ ਫੈਲਣ ਦੇ ਸਾਧਨ

(Means of Spreading of diseases)

ਛੂਤ ਦੇ ਰੋਗ ਕਿਵੇਂ ਫੈਲਦੇ ਹਨ ? ਬਹੁਤ ਸਾਰੇ ਸੂਖਮਜੀਵੀ ਕਾਰਕ ਰੋਗੀ ਤੋਂ ਦੂਜੇ ਸਿਹਤਮੰਦ ਮਨੁੱਖਾਂ ਤੱਕ ਵੱਖ-ਵੱਖ ਤਰੀਕਿਆਂ ਦੁਆਰਾ ਫੈਲਦੇ ਹਨ ਅਰਥਾਤ ਇਨ੍ਹਾਂ ਦਾ ਸੰਚਾਰ ਹੋ ਸਕਦਾ ਹੈ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਨੂੰ ਸੰਚਾਰੀ ਰੋਗ ਵੀ ਕਹਿੰਦੇ ਹਨ।

ਅਜਿਹੇ ਰੋਗਾਂ ਦੇ ਸੂਖਮਜੀਵ ਹਵਾ ਦੁਆਰਾ ਫੈਲਦੇ ਹਨ। ਅਜਿਹਾ ਉਸ ਸਮੇਂ ਹੁੰਦਾ ਹੈ ਜਦੋਂ ਰੋਗੀ ਮਨੁੱਖ ਛਿੱਕ ਮਾਰਦਾ ਹੈ ਜਾਂ ਖਾਂਸੀ ਕਰਦਾ ਹੈ। ਉਸ ਸਮੇਂ ਉਸਦੇ ਮੂੰਹ ਜਾਂ ਨੱਕ ਵਿਚੋਂ ਛੋਟੀਆਂ-ਛੋਟੀਆਂ ਬੂੰਦਾਂ ਡਿਗਦੀਆਂ ਹਨ ਅਤੇ ਜੇਕਰ ਉਸਦੇ ਨੇੜੇ ਕੋਈ ਹੋਰ ਵਿਅਕਤੀ ਖੜਾ ਹੋਵੇ ਤਾਂ ਸਾਹ ਦੁਆਰਾ ਇਹ ਬੂੰਦਾਂ ਉਸਦੇ ਸਰੀਰ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰ ਜਾਂਦੀਆਂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਸੂਖਮਜੀਵਾਂ ਨੂੰ ਨਵੀਂ ਲਾਗ ਕਰਨ ਜਾਂ ਨਵਾਂ ਹਮਲਾ ਕਰਨ ਦਾ ਮੌਕਾ ਮਿਲ ਜਾਂਦਾ ਹੈ। ਹਵਾ ਦੁਆਰਾ ਫੈਲਣ ਵਾਲੇ ਰੋਗਾਂ ਦੇ ਉਦਾਹਰਣ ਹਨ- ਖਾਂਸੀ, ਜੁਕਾਮ, ਨਿਮੋਨੀਆ ਅਤੇ ਟੀ.ਬੀ. ਦਾ ਰੋਗ।

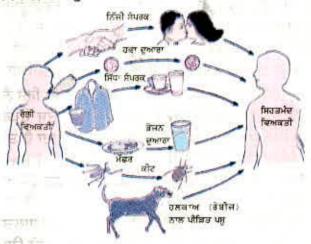

ਅਸੀਂ ਸਭ ਨੇ ਇਹ ਅਨੁਭਵ ਕੀਤਾ ਹੋਵੇਗਾ ਕਿ ਜਦੋਂ ਅਸੀਂ ਕਿਸੇ ਖਾਂਸੀ ਜੁਕਾਮ ਨਾਲ ਪੀੜਿਤ ਵਿਅਕਤੀ ਕੋਲ ਖੜ੍ਹਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਵੀ ਖਾਂਸੀ-ਜੁਕਾਮ ਹੋ ਜਾਂਦਾ ਹੈ। ਜਿੱਥੇ ਜ਼ਿਆਦਾ ਭੀੜ ਹੋਵੇਗੀ ਉੱਥੇ ਹਵਾ ਨਾਲ ਫੈਲਣ ਵਾਲੇ ਰੋਗ ਵੀ ਜ਼ਿਆਦਾ ਹੋਣਗੇ।

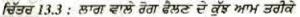
ਰੋਗ ਜਿਵੇਂ ਹੈਜਾ ਪਾਣੀ ਦੁਆਰਾ ਵੀ ਫੈਲ ਸਕਦਾ ਹੈ। ਜਦੋਂ ਛੂਤ ਵਾਲੇ ਰੋਗੀ ਦਾ ਮਲ ਮੂਤਰ ਪੀਣ ਵਾਲੇ ਪਾਣੀ ਵਿੱਚ ਮਿਲ ਜਾਂਦਾ ਹੈ ਅਤੇ ਜੇਕਰ ਕੋਈ ਸਿਹਤਮੰਦ

ਅਸੀਂ ਬਿਮਾਰ ਕਿਉਂ ਹੁੰਦੇ ਹਾਂ

205

ਵਿਅਕਤੀ ਜਾਣੇ-ਅਣਜਾਣੇ ਇਸ ਪਾਣੀ ਨੂੰ ਪੀਂਦਾ ਹੈ ਤਾਂ ਰੋਗਾਣੂਆਂ ਨੂੰ ਇੱਕ ਨਵਾਂ ਪੋਸ਼ੀ (Host) ਮਿਲ ਜਾਂਦਾ ਹੈ ਜਿਸ ਨਾਲ ਉਹ ਵਿਅਕਤੀ ਵੀ ਇਸ ਰੋਗ ਨਾਲ ਪੀੜਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹੇ ਰੋਗ ਜ਼ਿਆਦਾਤਰ ਪੀਣ ਵਾਲਾ ਸਾਫ ਪਾਣੀ ਨਾ ਮਿਲਣ ਕਾਰਨ ਫੈਲਦੇ ਹਨ। ਛੋਟੀਆਂ-ਛੋਟੀਆਂ ਬੂੰਦਾਂ ਹਵਾ ਦੇ ਵੇਗ ਨਾਲ ਘੰਟਿਆਂ ਬੱਧੀ ਵਾਤਾਵਰਣ ਵਿੱਚ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ।




ਚਿੱਤਰ 13.2 : ਹਵਾ ਨਾਲ ਸੰਚਾਲਿਤ ਰੋਗਾਂ ਦੀ ਲਾਗ ਰੋਗੀ ਦੇ ਨਾਲ ਖੜੇ ਵਿਅਕਤੀ ਨੂੰ ਲੱਗਣ ਦੀ ਜ਼ਿਆਦਾ ਸੰਭਾਵਨਾ ਹੁੰਦੀ ਹੈ। ਜ਼ਿਆਦਾ ਭੀੜ-ਭਾੜ ਵਾਲੇ ਅਤੇ ਬੇਦੇ ਘਰਾਂ ਵਿੱਚ ਲਾਗ ਵਾਲੀ ਬਿਮਾਰੀ ਦੀਆਂ ਬੂੰਦਾਂ ਦਾ ਜ਼ਿਆਦਾ ਖਤਰਾ ਰਹਿੰਦਾ ਹੈ ਅਤੇ ਹਵਾ ਸੰਚਾਲਿਤ ਰੋਗ ਜ਼ਿਆਦਾ ਫੈਲਦੇ ਹਨ।

ਲਿੰਗੀ ਸੰਬੰਧਾਂ ਦੁਆਰਾ ਦੋ ਵਿਅਕਤੀ ਸਰੀਰਕ ਰੂਪ ਵਿੱਚ ਇੱਕ ਦੂਜੇ ਦੇ ਸੰਪਰਕ ਵਿੱਚ ਆਉਂਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਕੋਈ ਸ਼ੱਕ ਨਹੀਂ ਕਿ ਕੁੱਝ ਸੂਖਮਜੀਵੀ ਰੋਗ ਜਿਵੇਂ ਸਾਈਫਿਲਿਸ (Syphilis) ਅਤੇ ਏਡਜ਼ ਦੇ ਰੋਗਾਣੂ ਲਿੰਗੀ ਸੰਬੰਧਾਂ ਸਮੇਂ ਇੱਕ ਸਾਥੀ ਤੋਂ ਦੂਜੇ ਸਾਥੀ ਤੱਕ ਪਹੁੰਚ ਜਾਂਦੇ ਹਨ ਜਦੋਂ ਕਿ ਅਜਿਹੇ ਲਿੰਗ ਸੰਚਾਰੀ ਰੋਗ ਆਮ ਸੰਪਰਕ ਜਿਵੇਂ ਹੱਥ ਮਿਲਾਉਣਾ ਅਤੇ ਗਲੇ ਮਿਲਣਾ ਜਾਂ ਖੇਡਾਂ ਜਿਵੇਂ ਕੁਸ਼ਤੀ ਜਾਂ ਕੋਈ ਹੋਰ ਗਤੀ ਵਿਧੀ ਜਿਸ ਰਾਹੀਂ ਅਸੀਂ ਸਮਾਜਿਕ ਤੌਰ ਤੇ ਇੱਕ ਦੂਜੇ ਨਾਲ ਮਿਲਦੇ ਹਾਂ, ਰਾਹੀਂ ਨਹੀਂ ਫੈਲਦੇ।

ਏਡਜ਼ ਦੀ ਬਿਮਾਰੀ ਲਿੰਗੀ ਸੰਬੰਧਾਂ ਤੋਂ ਇਲਾਵਾ ਖੂਨ ਚੜ੍ਹਾਉਣ ਨਾਲ ਵੀ ਫੈਲਦੀ ਹੈ। ਜਦੋਂ ਏਡਜ਼ ਦੇ ਰੋਗੀ ਦਾ ਖੂਨ ਕਿਸੇ ਸਿਹਤਮੰਦ ਵਿਅਕਤੀ ਨੂੰ ਚੜ੍ਹਾਇਆ ਜਾਂਦਾ ਹੈ ਜਾਂ ਰੋਗੀ ਮਾਤਾ ਤੋਂ ਗਰਭ ਅਵਸਥਾ ਦੌਰਾਨ ਅਤੇ ਦੁੱਧ ਚੁੰਘਾਉਣ ਤੇ ਬੱਚੇ ਨੂੰ ਹੋ ਸਕਦੀ ਹੈ।

ਅਸੀਂ ਇੱਕ ਅਜਿਹੇ ਵਾਤਾਵਰਣ ਵਿੱਚ ਰਹਿੰਦੇ ਹਾਂ ਜਿੱਥੇ ਸਾਡੇ ਤੋਂ ਇਲਾਵਾ ਹੋਰ ਵੀ ਬਹੁਤ ਸਾਰੇ ਜੀਵ-ਜੰਤੂ ਰਹਿੰਦੇ ਹਨ। ਇਸ ਤੋਂ ਵੀ ਇਨਕਾਰ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਕਿ ਬਹੁਤ ਸਾਰੀਆਂ ਬਿਮਾਰੀਆਂ ਜਾਨਵਰਾਂ ਦੁਆਰਾ ਵੀ ਫੈਲਦੀਆਂ ਹੋਣਗੀਆਂ। ਇਹ ਜਾਨਵਰ ਲਾਗ ਵਾਲੇ ਰੋਗਾਣੂ ਇੱਕ ਬਿਮਾਰ ਵਿਅਕਤੀ ਤੋਂ ਦੂਜੇ ਸਿਹਤਮੰਦ ਵਿਅਕਤੀ ਤੱਕ ਪਹੁੰਚਾਉਂਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਜਾਨਵਰ ਮਾਧਿਅਮ ਦਾ ਕੰਮ ਕਰਦੇ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਨੂੰ ਰੋਗਵਾਹਕ (Vector) ਕਹਿੰਦੇ ਹਨ। ਇੱਕ ਆਮ ਰੋਗਵਾਹਕ ਦੀ ਉਂਦਾਹਰਨ ਮੱਛਰ ਹੈ। ਮੱਛਰਾਂ ਦੀਆਂ ਬਹੁਤ ਸਾਰੀਆਂ ਪ੍ਰਜਾਤੀਆ ਵਿੱਚ ਮਾਦਾ ਮੱਛਰਾਂ ਨੂੰ ਲਹੂ ਦੇ ਰੂਪ ਵਿੱਚ ਬਹੁਤ ਪੋਸ਼ਕ ਭੋਜਨ ਚਾਹੀਦਾ ਹੁੰਦਾ ਹੈ ਤਾਂ ਕਿ ਉਹ ਪ੍ਰੋੜ ਆਂਡੇ ਦੇ ਸਕਣ। ਮੱਛਰ ਮਨੁੱਖ ਸਮੇਤ ਸਾਰੇ ਸਮਤਾਪੀ (ਗਰਮ ਲਹੂ ਵਾਲੇ) ਪ੍ਰਾਣੀਆਂ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਇੱਕ ਤੋਂ ਦੂਜੇ ਤੱਕ ਬਿਮਾਰੀ ਫੈਲਾਉਂਦਾ ਹੈ।

13.3.3 ਅੰਗ ਅਧਾਰਿਤ ਜਾਂ ਟਿਸ਼ੂ ਅਧਾਰਿਤ ਲਾਗ (Organ Specific and Tissue specific manifestations)

ਭਿੰਨ-ਭਿੰਨ ਸਾਧਨਾਂ ਦੁਆਰਾ ਰੋਗ ਉਤਪੰਨ ਕਰਨ ਵਾਲੇ ਸੂਖਮਜੀਵ ਸਰੀਰ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਦੇ ਹਨ। ਫਿਰ ਇਹ ਜਾਂਦੇ ਕਿੱਥੇ ਹਨ ? ਸੂਖਮਜੀਵਾਂ ਦੇ ਮੁਕਾਬਲੇ ਸਾਡਾ ਸਰੀਰ ਬਹੁਤ ਵੱਡਾ ਹੈ। ਇਸ ਲਈ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਬਹੁਤ ਸਾਰੀਆਂ ਥਾਵਾਂ ਜਿਵੇਂ ਅੰਗ, ਟਿਸ਼ੂ ਆਦਿ ਹਨ ਜਿੱਥੇ ਸੂਖਮਜੀਵ ਜਾ ਸਕਦੇ ਹਨ। ਕੀ ਸਾਰੇ ਸੂਖਮਜੀਵ ਇੱਕ ਹੀ ਅੰਗ ਜਾਂ ਟਿਸ਼ੂ ਵਿੱਚ ਜਾਂਦੇ ਹਨ ਜਾਂ ਇਹ ਵੱਖ-ਵੱਖ ਥਾਵਾਂ ਤੇ ਜਾਂਦੇ ਹਨ ?

ਸੂਖਮ ਜੀਵਾਂ ਦੀਆਂ ਭਿੰਨ-ਭਿੰਨ ਪ੍ਰਜਾਤੀਆਂ ਸਰੀਰ ਦੇ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ ਵਿੱਚ ਵਿਕਸਿਤ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ

206

ਵਿਗਿਆਨ

ਉਨ੍ਹਾਂ ਦੇ ਸਰੀਰ ਦੇ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ ਵਿੱਚ ਪ੍ਰਵੇਸ਼ ਕਰਨ ਦੀ ਥਾਂ ਦੇ ਅਧਾਰ ਤੇ ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ਇਹ ਹਵਾ ਵਿੱਚੋਂ ਨੱਕ ਰਾਹੀਂ ਪ੍ਰਵੇਸ਼ ਕਰਦੇ ਹਨ ਤਾਂ ਫਿਰ ਫੇਫੜਿਆਂ ਵਿੱਚ ਜਾਣਗੇ। ਅਜਿਹਾ ਜੀਵਾਣੂਆਂ ਤੋਂ ਹੋਣ ਵਾਲੇ ਟੀ.ਬੀ. ਦੇ ਰੋਗ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ਇਹ ਮੂੰਹ ਦੁਆਰਾ ਪ੍ਰਵੇਸ਼ ਕਰਨ ਤਾਂ ਇਹ ਭੋਜਨ ਨਲੀ ਵਿੱਚ ਰਹਿਣਗੇ ਜਿਵੇਂ ਕਿ ਟਾਈਫਾਈਡ ਰੋਗ ਕਰਨ ਵਾਲਾ ਜੀਵਾਣੂ ਅਤੇ ਜੇਕਰ ਇਹ ਜਿਗਰ ਵਿੱਚ ਜਾਣ ਵਾਲੇ ਵਿਸ਼ਾਣੂ ਹਨ ਤਾਂ ਇਹ ਪੀਲੀਏ ਦਾ ਰੋਗ ਕਰਨਗੇ।

ਪਰੰਤੂ ਹਮੇਸ਼ਾ ਇਹੀ ਨਹੀਂ ਹੁੰਦਾ। ਐਚ.ਆਈ.ਵੀ. (HIV) ਵਿਸ਼ਾਣੂ ਦੀ ਲਾਗ ਜੋ ਸਰੀਰ ਵਿੱਚ ਸਰੀਰਕ ਸਬੰਧਾਂ ਰਾਹੀਂ ਲਗਦੀ ਹੈ, ਲਸੀਕਾ ਗ੍ਰੰਬੀਆਂ ਵਿਚ ਫੈਲਦੀ ਹੈ ਜੋ ਸਾਰੇ ਸਰੀਰ ਵਿਚ ਮੌਜੂਦ ਹੁੰਦੀਆਂ ਹਨ। ਮਲੇਰੀਏ ਦਾ ਪਰਜੀਵੀ ਜੋ ਮੱਛਰ ਦੇ ਕੱਟਣ ਨਾਲ ਸਰੀਰ ਵਿੱਚ ਦਾਖਲ ਹੁੰਦਾ ਹੈ ਪਹਿਲਾਂ ਜਿਗਰ ਵਿੱਚ ਫਿਰ ਲਾਲ ਰਕਤਾਣੂਆਂ ਵਿੱਚ ਜਾਵੇਗਾ। ਇਸੇ ਤਰ੍ਹਾਂ ਜਪਾਨੀ ਪੈਰ-ਫੁੱਲਣ ਦਾ ਰੋਗ ਜਾਂ ਦਿਮਾਗ਼ੀ ਬੁਖਾਰ ਦਾ ਵਿਸ਼ਾਣੂ, ਮੱਛਰ ਦੇ ਕੱਟਣ ਨਾਲ ਸਰੀਰ ਵਿੱਚ ਦਾਖਲ ਹੋਵੇਗਾ ਪਰੰਤੂ ਦਿਮਾਗ ਵਿੱਚ ਲਾਗ ਫੈਲਾਏਗਾ।

ਇਸ ਲਈ ਬਿਮਾਰੀ ਦੇ ਲੱਛਣ, ਜਿਸ ਅੰਗ ਜਾਂ ਟਿਸ਼ੂ ਨੂੰ ਰੋਗਾਣੂ ਨੇ ਆਪਣਾ ਨਿਸ਼ਾਨਾ ਬਣਾਇਆ ਹੈ, ਉਸ ਉਪਰ ਨਿਰਭਰ ਕਰਨਗੇ। ਜੇਕਰ ਫੇਫੜਿਆਂ ਤੇ ਹਮਲਾ ਹੁੰਦਾ ਹੈ ਤਾਂ ਲੱਛਣ ਖਾਂਸੀ, ਜੁਕਾਮ ਜਾਂ ਸਾਹ ਫੁੱਲਣਾ ਹੋਵੇਗਾ। ਜੇਕਰ ਜਿਗਰ ਤੇ ਹਮਲਾ ਹੁੰਦਾ ਹੈ ਤਾਂ ਪੀਲੀਏ ਦਾ ਰੋਗ ਹੋਵੇਗਾ ਅਤੇ ਜੇ ਦਿਮਾਗ਼ ਨੂੰ ਨਿਸ਼ਾਨਾ ਬਣਾਇਆ ਗਿਆ ਹੈ ਤਾਂ ਸਿਰਦਰਦ, ਉਲਟੀ ਆਉਣਾ, ਚੱਕਰ ਅਤੇ ਬੇਹੋਸ਼ੀ ਦੀ ਹਾਲਤ ਹੋਵੇਗੀ। ਜੇ ਸਾਨੂੰ ਕਿਸੇ ਟਿਸ਼ੂ ਦੇ ਕੰਮ ਪਤਾ ਹੋਣ ਅਤੇ ਉਸ ਤੇ ਹੋਏ ਹਮਲੇ ਦਾ ਪਤਾ ਹੋਵੇ ਤਾਂ ਅਸੀਂ ਲਾਗ ਦੇ ਲੱਛਣਾਂ ਦਾ ਅਨੁਮਾਨ ਲਗਾ ਸਕਦੇ ਹਾਂ।

ਲਾਗ ਦੇ ਇਨ੍ਹਾਂ ਅੰਗ ਜਾਂ ਟਿਸ਼ੂ ਅਧਾਰਤ ਰੋਗਾਂ ਤੋਂ ਇਲਾਵਾ ਇਨ੍ਹਾਂ ਦੇ ਕੁੱਝ ਆਮ ਪ੍ਰਭਾਵ ਵੀ ਹੋਣਗੇ ਜ਼ਿਆਦਾਤਰ ਆਮ ਪ੍ਰਭਾਵ ਇਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ ਕਿ ਲਾਗ ਲੱਗਣ ਤੋਂ ਬਾਅਦ ਸਗੇਰ ਦੀ ਰੱਖਿਆਤਮਕ ਪ੍ਰਣਾਲੀ ਕ੍ਰਿਆਸ਼ੀਲ ਹੋ ਜਾਂਦੀ ਹੈ ਕਿ ਨਹੀਂ। ਇੱਕ ਕ੍ਰਿਆਸ਼ੀਲ ਰੱਖਿਆਤਮਕ ਪ੍ਰਣਾਲੀ ਪ੍ਰਭਾਵਿਤ ਟਿਸ਼ੂਆਂ ਦੇ ਚਾਰੇ ਪਾਸੇ ਲਾਗ ਦੇ ਰੋਗਾਣੂਆਂ ਨੂੰ ਮਾਰਨ ਲਈ ਬਹੁਤ ਸਾਰੇ ਸੈੱਲ ਬਣਾ ਦਿੰਦੀ ਹੈ। ਨਵੇਂ ਸੈੱਲਾਂ ਦੇ ਬਣਨ ਨੂੰ ਸੋਜਸ਼ ਕ੍ਰਿਆ (Inflammation) ਕਹਿੰਦੇ ਹਨ। ਸਿੱਟੇ ਵਜੋਂ ਕੁੱਝ ਖਾਸ ਪ੍ਰਭਾਵ ਜਿਵੇਂ ਉਸ ਹਿੱਸੇ ਦਾ ਸੁੱਜ ਜਾਣਾ ਅਤੇ ਦਰਦ ਹੋਣਾ ਅਤੇ ਆਮ ਪ੍ਰਭਾਵ ਜਿਵੇਂ ਬੁਖਾਰ ਹੋਣਾ ਆਦਿ ਹੋ ਜਾਂਦੇ ਹਨ।

ਅਸੀਂ ਬਿਮਾਰ ਕਿਉਂ ਹੁੰਦੇ ਹਾਂ

ਕੁੱਝ ਕੇਸਾਂ ਵਿੱਚ ਟਿਸ਼ੂ-ਆਧਾਰਤ ਲਾਗ ਕੁੱਝ ਬਹੁਤ ਆਮ ਜਿਹੇ ਪ੍ਰਭਾਵਾਂ ਦੇ ਲੱਛਣ ਦਰਸਾਉਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ HIV ਦੀ ਲਾਗ ਵਿੱਚ ਵਿਸ਼ਾਣੂ ਰੱਖਿਆਤਮਕ ਪ੍ਰਣਾਲੀ ਨੂੰ ਨਸ਼ਟ ਕਰਕੇ ਇਸਦੇ ਕਾਰਜ ਵਿੱਚ ਵਿਘਨ ਪਾਉਂਦਾ ਹੈ। ਇਸ ਲਈ HIV-AIDS ਦੇ ਬਹੁਤੇ ਪ੍ਰਭਾਵ ਇਸ ਲਈ ਹੁੰਦੇ ਹਨ ਕਿਉਂਕਿ ਸਾਡਾ ਸ਼ਰੀਰ ਸਾਨੂੰ ਹਰ ਰੋਜ਼ ਪੇਸ਼ ਆਉਣ ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਛੋਟੀਆਂ-ਮੋਟੀਆਂ ਲਾਗਾਂ ਤੋਂ ਵੀ ਨਹੀਂ ਬਚਾ ਸਕਦਾ। ਨਤੀਜੇ ਵਜੋਂ ਥੋੜ੍ਹਾ ਜਿਹਾ ਖਾਂਸੀ ਜੁਕਾਮ ਵੀ ਨਿਊਮੋਨੀਆ ਦਾ ਕਾਰਨ ਬਣ ਜਾਂਦਾ ਹੈ। ਭੋਜਨ ਨਲੀ 'ਚ ਹੋਈ ਥੋੜ੍ਹੀ ਜਿਹੀ ਲਾਗ ਵੀ ਟੱਟੀਆਂ-ਉਲਟੀਆਂ ਤੇ ਲਹੂ ਦੇ ਰਿਸਾਵ ਦਾ ਕਾਰਨ ਬਣ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇਹ ਦੂਜੇ ਹਮਲੇ ਹੀ ਏਡਜ਼-ਰੋਗੀ ਦੀ ਮੌਤ ਦਾ ਕਾਰਨ ਬਣਦੇ ਹਨ।

ਇੱਕ ਗੱਲ ਹੋਰ ਯਾਦ ਰੱਖਣ ਵਾਲੀ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਸਾਗ ਦੀਆਂ ਬਿਮਾਰੀਆਂ ਦੇ ਰੋਗਾਣੂਆਂ ਦੀ ਭਿਆਨਕੜਾ ਰੋਗਾਣੂਆਂ ਦੀ ਸਰੀਰ ਵਿੱਚ ਗਿਣਤੀ ਤੇ ਵੀ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਜੋ ਸਰੀਰ ਵਿਚ ਰੋਗਾਣੂਆਂ ਦੀ ਗਿਣਤੀ ਬਹੁਤ ਘੱਟ ਜਾਂ ਨਾਂ-ਮਾਤਰ ਹੈ ਤਾਂ ਰੋਗ ਦੀ ਲਾਗ ਬਹੁਤ ਥੋੜ੍ਹੀ ਅਤੇ ਅਣਗੋਲੀ ਹੋਵੇਗੀ ਪਰ ਜੇ ਉਨ੍ਹਾਂ ਹੀ ਰੋਗਾਣੂਆਂ ਦੀ ਗਿਣਤੀ ਸਰੀਰ ਵਿੱਚ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹੋਵੇ ਤਾਂ ਰੋਗ ਦੀ ਭਿਆਨਕਤਾ ਇੰਨੀ ਜ਼ਿਆਦਾ ਹੋਵੇਗੀ ਕਿ ਜ਼ਿੰਦਗੀ ਨੂੰ ਖਤਰਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਸਾਡੀ ਰੱਖਿਆਤਮਕ ਪ੍ਰਣਾਲੀ ਇਕ ਮੁੱਖ ਕਾਰਕ ਹੈ ਜਿਹੜਾ ਸਰੀਰ ਵਿੱਚ ਦਾਖਲ ਹੋਏ ਜਿਉਂਦੇ ਰਹਿ ਸਕਣ ਵਾਲੇ ਰੋਗਾਣੂਆਂ ਦੀ ਗਿਣਤੀ ਨੂੰ ਨਿਰਧਾਰਤ ਕਰਦੀ ਹੈ। ਅਸੀਂ ਇਸ ਵਿਸ਼ੇ ਤੇ ਇਸੇ ਪਾਠ ਵਿੱਚ ਬਾਅਦ ਵਿੱਚ ਚਰਚਾ ਕਰਾਂਗੇ।

13.3.4 ਇਲਾਜ ਦੇ ਸਿਧਾਂਤ (Principles of Treatment)

ਜਦੋਂ ਤੁਸੀਂ ਬਿਮਾਰ ਪੈਂਦੇ ਹੋ, ਤੁਹਾਡੇ ਪਰਿਵਾਰ ਦੇ ਮੈਂਬਰ ਤੁਹਾਡੇ ਲਈ ਕੀ ਕਰਦੇ ਹਨ ? ਕੀ ਤੁਸੀਂ ਕਦੇ ਸੋਚਿਆ ਹੈ ਕਿ ਤੁਸੀਂ ਕੁੱਝ ਸਮਾਂ ਸੌਣ ਤੋਂ ਬਾਅਦ ਚੰਗਾ ਕਿਉਂ ਮਹਿਸੂਸ ਕਰਦੇ ਹੋ ? ਇਲਾਜ ਵਿੱਚ ਦਵਾਈ ਦੀ ਵਰਤੋਂ ਕਦੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ?

ਹੁਣ ਤੱਕ ਅਸੀਂ ਜੋ ਸਿੱਖਿਆ ਹੈ ਉਸਦੇ ਅਧਾਰ ਤੇ ਇਉਂ ਲਗਦਾ ਹੈ ਕਿ ਲਾਗ ਦੇ ਰੋਗਾਂ ਦੇ ਇਲਾਜ ਦੇ ਦੋ ਤਰੀਕੇ ਹਨ, ਇੱਕ ਬਿਮਾਰੀ ਦੇ ਅਸਰ ਨੂੰ ਘਟਾਉਣਾ ਤੇ ਦੂਜਾ ਬਿਮਾਰੀ ਦੇ ਕਾਰਨ ਨੂੰ ਖਤਮ ਕਰਨਾ। ਪਹਿਲੇ ਤਰੀਕੇ ਲਈ ਅਸੀਂ ਅਜਿਹਾ ਇਲਾਜ ਕਰਦੇ ਹਾਂ ਜਿਸ ਨਾਲ ਬਿਮਾਰੀ ਦੇ ਲੱਛਣ ਘੱਟ ਹੋ ਜਾਂਦੇ ਹਨ। ਲੱਛਣ ਆਮ ਤੌਰ ਤੇ ਸੋਜਸ਼ ਦੇ ਕਾਰਨ ਹੁੰਦੇ ਹਨ ਉਦਾਹਰਣ ਵਜੋਂ ਅਸੀਂ ਉਹ ਦਵਾਈਆਂ ਲੈਂਦੇ ਹਾਂ

207

ਜੋ ਬੁਖਾਰ ਘੱਟ ਕਰਦੀਆਂ ਹਨ, ਦਰਦ ਹਟਾਉਂਦੀਆਂ ਹਨ ਜਾਂ ਦਸਤ ਘਟਾ ਦਿੰਦੀਆਂ ਹਨ।ਅਸੀਂ ਅਰਾਮ ਕਰਕੇ ਆਪਣੀ ਊਰਜਾ ਬਚਾ ਸਕਦੇ ਹਾਂ ਜੋ ਕਿ ਸਾਨੂੰ ਸਿਹਤਮੰਦ ਹੋਣ ਵਿੱਚ ਸਹਾਇਕ ਹੋਵੇਗੀ।

ਪਰੰਤੂ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਲੱਛਣ ਆਧਾਰਿਤ ਇਲਾਜ ਖ਼ੁਦ ਲਾਗ ਦੇ ਸੂਖਮਜੀਵਾਂ ਨੂੰ ਭਜਾਉਣਗੇ ਨਹੀਂ ਅਤੇ ਨਾ ਹੀ ਬਿਮਾਰੀ ਨੂੰ ਠੀਕ ਕਰਨਗੇ। ਇਸ ਲਈ ਸਾਨੂੰ ਸੂਖਮਜੀਵਾਂ ਨੂੰ ਮਾਰਨਾ ਹੀ ਪਵੇਗਾ।

ਅਸੀਂ ਸੂਖਮਜੀਵਾਂ ਨੂੰ ਕਿਵੇਂ ਮਾਰਦੇ ਹਾਂ ? ਇੱਕ ਤਰੀਕਾ ਸੂਖਮਜੀਵਾਂ ਨੂੰ ਮਾਰਨ ਵਾਲੀਆਂ ਦਵਾਈਆਂ ਵਰਤਣਾ ਹੈ। ਅਸੀਂ ਪਹਿਲਾ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ ਕਿ ਸੂਖਮਜੀਵਾਂ ਨੂੰ ਕਈ ਵਰਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਵਿਸ਼ਾਣੂ, ਜੀਵਾਣੂ, ਉਲੀਆਂ ਜਾਂ ਪ੍ਰੋਟੋਜੋਆ ਹੋ ਸਕਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਹਰ ਵਰਗ ਦੇ ਸਜੀਵਾਂ ਦੀਆਂ ਕੁੱਝ ਖਾਸ ਜੈਵ ਰਸਾਇਣ ਕਿਰਿਆਵਾਂ ਹੋਣਗੀਆਂ ਜਿਹੜੀਆਂ ਉਸੇ ਵਰਗ ਲਈ ਹੋਣਗੀਆਂ ਅਤੇ ਦੂਜੇ ਵਰਗਾਂ ਤੋਂ ਭਿੰਨ ਹੋਣਗੀਆਂ ਇਹ ਕ੍ਰਿਆਵਾਂ ਨਵੇਂ ਪਦਾਰਥਾਂ ਦੇ ਸੰਸਲੇਸ਼ਣ ਜਾਂ ਸਾਹ ਕਿਰਿਆ ਦਾ ਕੋਈ ਪੜਾਅ ਹੋ ਸਕਦੀਆਂ ਹਨ।

ਇਹ ਮਾਰਗ ਜਾਂ ਪੜਾਅ ਸਾਡੇ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦੇ। ਉਦਾਹਰਣ ਵਜੋਂ ਸਾਡੇ ਸੈੱਲ ਜਿਸ ਤਰੀਕੇ ਨਾਲ ਨਵੇਂ ਪਦਾਰਥਾਂ ਨੂੰ ਬਣਾਉਣ ਦੀ ਵਿਧੀ ਅਪਣਾਉਂਦੇ ਹਨ, ਉਹ ਬੈਕਟੀਰੀਆ ਦੀ ਵਿਧੀ ਨਾਲੋਂ ਭਿੰਨ ਹੁੰਦੀ ਹੈ। ਸਾਨੂੰ ਕੋਈ ਅਜਿਹੀ ਦਵਾਈ ਬਣਾਉਣੀ ਪਵੇਗੀ ਜਿਹੜੀ ਜੀਵਾਣੂ ਦੀ ਸੰਸਲੇਸ਼ਣ ਵਿਧੀ ਨੂੰ ਰੋਕ ਦੇਵੇ ਪਰ ਸਾਡੇ ਤੇ ਕੋਈ ਪ੍ਰਭਾਵ ਨਾ ਪਾਵੇ। ਇਹੀ ਸਭ ਕੁੱਝ ਪ੍ਰਤੀਜੈਵਿਕ ਦਵਾਈਆਂ (Antibiotics) ਰਾਹੀਂ ਹੁੰਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਤੋਂ ਅਸੀਂ ਸਭ ਜਾਣੂ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਦਵਾਈਆਂ ਵੀ ਹਨ ਜਿਹੜੀਆਂ ਮਲੇਰੀਆ ਪਰਜੀਵੀ ਵਰਗੇ ਪ੍ਰੋਟੋਜੋਆ ਨੂੰ ਮਾਰਦੀਆਂ ਹਨ।

ਐਂਟੀਵਾਇਰਲ ਦਵਾਈ ਬਣਾਉਣਾ ਐਂਟੀ ਬੈਕਟੀਰੀਅਲ ਦਵਾਈ (ਪ੍ਰਤੀਜੈਵਿਕ ਦਵਾਈ) ਬਣਾਉਣ ਦੇ ਮੁਕਾਬਲੇ ਮੁਸ਼ਕਲ ਹੈ। ਇਸਦਾ ਕਾਰਨ ਹੈ ਕਿ ਜੀਵਾਣੂ ਦੀ ਆਪਣੀ ਜੈਵ-ਰਸਾਇਣਕ ਪ੍ਰਣਾਲੀ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਕਿ ਵਿਸ਼ਾਣੂਆਂ ਵਿੱਚ ਆਪਣੀ ਜੈਵ-ਰਸਾਇਣਕ ਪ੍ਰਣਾਲੀ ਬਹੁਤ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਵਿਸ਼ਾਣੂ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਦਾਖਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਆਪਣੀ ਜੀਵਨ ਪ੍ਰਕਿਰਿਆ ਲਈ ਸਾਡੇ ਸਰੀਰ ਦੀ ਮਸ਼ੀਨਰੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ। ਇਸਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਇਸਦੇ ਮੁਕਾਬਲੇ ਵਿੱਚ ਵਿਸ਼ਾਣੂ ਅਧਾਰਿਤ ਲੱਛਣ ਘੱਟ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਕਮੀਆਂ ਦੇ ਬਾਵਜੂਦ ਹੁਣ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਐਂਟੀਵਾਇਰਲ ਦਵਾਈਆਂ ਉਪਲਬਧ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ HIV ਲਾਗ ਨੂੰ ਕੈਟਰੋਲ ਕਰਨ ਦੀ ਦਵਾਈ।

13.3.5 ਬਚਾਅ ਦੇ ਸਿਧਾਂਤ

(Principles of Preventions)

ਹੁਣ ਤੱਕ ਅਸੀਂ ਇਹ ਪੜ੍ਹਿਆ ਹੈ ਕਿ ਜੇ ਕਿਸੇ ਵਿਅਕਤੀ ਨੂੰ ਕੋਈ ਰੋਗ ਹੈ ਤਾਂ ਉਸਦੀ ਲਾਗ ਤੋਂ ਛੁਟਕਾਰਾ ਕਿਵੇਂ ਪਾਉਣਾ ਹੈ। ਪਰੰਤੂ ਲਾਗ ਦੀ ਬਿਮਾਰੀ ਨਾਲ ਨਿਪਟਣ ਦੀ ਇਸ ਵਿਧੀ ਵਿੱਚ ਤਿੰਨ ਖਾਮੀਆਂ ਹਨ, ਮੁਸ਼ਕਲ ਪਹਿਲੀ ਕਠਿਨਾਈ ਇਹ ਹੈ ਕਿ ਜਦੋਂ ਕੋਈ ਵਿਅਕਤੀ ਇਕ ਵਾਰ ਬਿਮਾਰ ਹੋ ਜਾਵੇ ਤਾਂ ਉਸਦੇ ਸਰੀਰਕ ਕਾਰਜਾਂ ਨੂੰ ਬਹੁਤ ਨੁਕਸਾਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਫਿਰ ਉਹ ਪੂਰੀ ਤਰ੍ਹਾਂ ਤੰਦਰੁਸਤ ਨਹੀਂ ਹੁੰਦਾ। ਦੂਜੀ ਇਹ ਕਿ ਇਲਾਜ ਕਰਨ ਤੇ ਲੰਬਾ ਸਮਾਂ ਲੱਗ ਸਕਦਾ ਹੈ ਭਾਵ ਸਹੀ ਇਲਾਜ ਹੋਣ ਤੋਂ ਬਾਅਦ ਵੀ ਰੋਗੀ ਨੂੰ ਲੰਬਾ ਸਮਾਂ ਬਿਸਤਰ ਤੇ ਅਰਾਮ ਕਰਨਾ ਪੈ ਸਕਦਾ ਹੈ। ਤੀਜੀ ਇਹ ਕਿ ਜੇਕਰ ਲਾਗ ਦਾ ਰੋਗੀ ਦੂਜੇ ਵਿਅਕਤੀਆਂ ਵਿੱਚ ਰੋਗ ਫੈਲਾਉਣ ਦਾ ਸ਼੍ਰੋਤ ਬਣ ਜਾਵੇ ਤਾਂ ਇਸ ਨਾਲ ਉਪਰੋਕਤ ਮੁਸ਼ਕਲਾਂ ਹੋਰ ਵੀ ਵਧ ਜਾਣਗੀਆਂ। ਇਸ ਲਈ ਰੋਗਾਂ ਤੋਂ ਬਚਾਅ ਕਰਨਾ ਇਲਾਜ ਨਾਲੋਂ ਚੰਗਾ ਹੈ।

ਅਸੀਂ ਰੋਗਾਂ ਤੋਂ ਬਚਾਅ ਕਿਵੇਂ ਕਰ ਸਕਦੇ ਹਾਂ ਇਸਦੇ ਦੋ ਤਰੀਕੇ ਹਨ। ਇੱਕ ਸਾਧਾਰਨ ਅਤੇ ਦੂਜਾ ਰੋਗ ਆਧਾਰਿਤ ਲਾਗ ਦੇ ਰੋਗਾਂ ਤੋਂ ਬਚਣ ਦਾ ਸਾਧਾਰਨ ਤੇ ਆਮ ਤਰੀਕਾ ਰੋਗੀ ਤੋਂ ਦੂਰ ਰਹਿਣਾ ਹੈ।ਅਸੀਂ ਲਾਗ ਵਾਲੇ ਸੂਖਮਜੀਵਾਂ ਤੋਂ ਕਿਵੇਂ ਬਚਾਅ ਕਰ ਸਕਦੇ ਹਾਂ ?

ਜੇ ਸਾਨੂੰ ਉਨ੍ਹਾਂ ਦੇ ਫੈਲਣ ਦੀਆਂ ਵਿਧੀਆਂ ਪਤਾ ਹਨ ਤਾਂ ਸਾਨੂੰ ਕੁੱਝ ਅਸਾਨੀ ਹੋਵੇਗੀ। ਹਵਾ ਨਾਲ ਫੈਲਣ ਵਾਲੇ ਸੂਖਮਜੀਵਾਂ ਤੋਂ ਬਚਾਅ ਵਾਸਤੇ ਸਾਨੂੰ ਚਾਹੀਦਾ ਹੈ ਕਿ ਅਸੀਂ ਖੁਲੀਆਂ ਥਾਵਾਂ ਤੇ ਰਹੀਏ ਅਤੇ ਭੀੜ-ਭੜੱਕੇ ਵਿੱਚ ਨਾ ਜਾਈਏ। ਪਾਣੀ ਨਾਲ ਫੈਲਣ ਵਾਲੇ ਸੂਖਮਜੀਵਾਂ ਤੋਂ ਬਚਣ ਲਈ ਸਾਫ-ਪਾਣੀ ਪੀਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਲਈ ਤੁਸੀਂ ਪਾਣੀ ਵਿੱਚ ਸੂਖਮਜੀਵਾਂ ਨੂੰ ਮਾਰਨ ਦਾ ਕੋਈ ਤਰੀਕਾ ਵੀ ਅਪਣਾ ਸਕਦੇ ਹੋ। ਰੋਗਵਾਹਕਾਂ ਰਾਹੀਂ ਫੈਲਣ ਵਾਲੇ ਰੋਗਾਂ ਤੋਂ ਬਚਾਅ ਲਈ ਸਾਨੂੰ ਸਾਫ ਵਾਤਾਵਰਣ ਵਿੱਚ ਰਹਿਣਾ ਚਾਹੀਦਾ ਹੈ। ਅਜਿਹੇ ਵਾਤਾਵਰਣ ਵਿੱਚ ਮੱਛਰ ਨਹੀਂ ਪੈਦਾ ਹੋਣਗੇ ਭਾਵ ਲਾਗ ਦੇ ਰੋਗਾਂ ਤੋਂ ਬਚਣ ਲਈ ਸਫਾਈ ਜ਼ਰੂਰੀ ਹੈ।

ਵਾਤਾਵਰਣ ਨਾਲ ਸੰਬੰਧਿਤ ਵਿਸ਼ਿਆਂ ਤੋਂ ਇਲਾਵਾ ਲਾਗ ਜਾਂ ਛੂਤ ਦੇ ਰੋਗਾਂ ਤੋਂ ਬਚਣ ਲਈ ਕੁੱਝ ਹੋਰ ਵੀ ਅਸਾਨ ਜਿਹੇ ਨਿਯਮ ਹਨ। ਇਨ੍ਹਾਂ ਨਿਯਮਾਂ ਨੂੰ ਸਮਝਣ ਤੋਂ ਪਹਿਲਾਂ ਅਸੀਂ ਇੱਕ ਪ੍ਰਸ਼ਨ ਪੁੱਛਦੇ ਹਾਂ ਜਿਸ ਵੱਲ ਹਾਲੇ ਤੱਕ

208

ਵਿਗਿਆਨ

ਧਿਆਨ ਨਹੀਂ ਗਿਆ। ਆਮ ਤੌਰ ਤੇ ਅਸੀਂ ਹਰ ਰੋਜ਼ ਬਹੁਤ ਸਾਰੇ ਲਾਗ ਦੇ ਰੋਗਾਂ ਦਾ ਸਾਹਮਣਾ ਕਰਦੇ ਹਾਂ। ਜੇਕਰ ਜਮਾਤ ਵਿੱਚ ਕਿਸੇ ਨੂੰ ਖਾਂਸੀ ਜੁਕਾਮ ਹੈ ਤਾਂ ਸੰਭਵ ਹੈ ਕਿ ਜਮਾਤ ਵਿੱਚ ਬੈਠੇ ਹੋਰ ਬੱਚਿਆਂ ਨੂੰ ਵੀ ਉਸ ਲਾਗ ਦਾ ਸਾਹਮਣਾ ਕਰਨਾ ਪੈ ਰਿਹਾ ਹੈ। ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਵਿਚੋਂ ਸਾਰਿਆਂ ਨੂੰ ਇਹ ਰੋਗ ਨਹੀਂ ਹੁੰਦਾ। ਅਜਿਹਾ ਕਿਉਂ ਨਹੀਂ ਹੁੰਦਾ ਹੈ?

ਇਸਦਾ ਕਾਰਨ ਹੈ ਕਿ ਸਾਡੇ ਸ਼ਰੀਰ ਵਿੱਚ ਰੱਖਿਆਤਮਕ ਪ੍ਰਣਾਲੀ ਮੌਜੂਦ ਹੁੰਦੀ ਹੈ ਜੋ ਰੋਗਾਣੂਆਂ ਨਾਲ ਲੜਨ ਦੀ ਸ਼ਕਤੀ ਰੱਖਦੀ ਹੈ। ਸਾਡੇ ਸ਼ਰੀਰ ਵਿੱਚ ਕੁੱਝ ਵਿਸ਼ੇਸ਼ ਸੈੱਲ ਹੁੰਦੇ ਹਨ ਜੋ ਰੋਗਾਣੂਆਂ ਨੂੰ ਮਾਰ ਦਿੰਦੇ ਹਨ। ਜਦੋਂ ਵੀ ਸਾਡੇ ਸ਼ਰੀਰ 'ਚ ਰੋਗਾਣੂ ਦਾਖਲ ਹੁੰਦੇ ਹਨ, ਇਹ ਸੈੱਲ ਕਿਰਿਆਸ਼ੀਲ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਰੋਗਾਣੂਆਂ ਨੂੰ ਮਾਰ ਮੁਕਾਉਂਦੇ ਹਨ ਫਿਰ ਸਾਨੂੰ ਰੋਗ ਨਹੀਂ ਹੁੰਦਾ। ਇਕ ਰੱਖਿਆਤਮਕ ਸੈੱਲ ਨਾਗ ਨੂੰ ਫੈਲਣ ਤੋਂ ਪਹਿਲਾਂ ਹੀ ਉਸ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦੀ ਹੈ। ਜਿਵੇਂ ਅਸੀਂ ਪਹਿਲਾਂ ਦੇਖਿਆ ਹੈ ਕਿ ਜੇਕਰ ਰੋਗਾਣੂਆਂ ਦੀ ਗਿਣਤੀ ਕਾਬੂ ਹੇਠ ਹੈ ਤਾਂ ਰੋਗ ਦੀ ਸ਼ਕਤੀ ਘੱਟ ਹੋਵੇਗੀ। ਕਹਿਣ ਦਾ ਭਾਵ ਲਾਗ ਦੇ ਰੋਗਾਣੂਆਂ ਦਾ ਹਮਲਾ ਹੋਣ ਦਾ ਅਰਥ ਇਹ ਨਹੀਂ ਸਾਨੂੰ ਕੋਈ ਵਿਸ਼ੇਸ਼ ਰੋਗ ਜ਼ਰੂਰ ਹੋਵੇਗਾ।

ਗੰਭੀਰ ਲਾਗ ਦੇ ਰੋਗਾਂ ਨਾਲ ਪੀੜਿਤ ਹੋਣਾ ਸਾਡੀ ਰੱਖਿਆਤਮਕ ਪ੍ਣਾਲੀ ਦੀ ਅਸਫਲਤਾ ਦੀ ਝਲਕ ਦਿੰਦਾ ਹੈ। ਰੱਖਿਆਤਮਕ ਪ੍ਣਾਲੀ, ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਮੌਜੂਦ ਹੋਰ ਪ੍ਣਾਲੀਆਂ ਦੀ ਤਰ੍ਹਾਂ ਸਫਲ ਨਹੀਂ ਹੋਵੇਗੀ ਜੇਕਰ ਸ਼ਾਨੂੰ ਸਹੀ ਮਾਤਰਾ 'ਚ ਭੋਜਨ ਤੇ ਪੋਸ਼ਣ ਪ੍ਰਾਪਤ ਨਾ ਹੋਵੇ। ਇਸ ਲਈ ਲਾਗ ਦੇ ਰੋਗਾਂ ਤੋਂ ਬਚਣ ਲਈ ਦੂਜੀ ਮੂਲ ਜ਼ਰੂਰਤ ਹੈ ਸਾਰਿਆਂ ਲਈ ਉਚਿਤ ਮਾਤਰਾ ਵਿੱਚ ਪੋਸ਼ਕ ਭੋਜਨ ਦੀ ਉਪਲੱਬਧਤਾ।

ਕਿਰਿਆ

ਆਪਣੇ ਮੁਹੱਲੇ ਵਿੱਚ ਇੱਕ ਸਰਵੇਖਣ ਕਰੋ। ਦਸ ਅਜਿਹੇ ਪਰਿਵਾਰਾਂ ਨਾਲ ਗੱਲ ਕਰੋ ਜਿਨ੍ਹਾਂ ਦਾ ਰਹਿਣ ਸਹਿਣ ਉੱਚੀ ਸਤਰ ਦਾ ਹੈ ਭਾਵ ਜੋ ਚੰਗੇ ਢੰਗ ਨਾਲ ਰਹਿੰਦੇ ਹਨ ਅਤੇ ਦਸ ਅਜਿਹੇ ਪਰਿਵਾਰ ਚੁਣੋ ਜੋ ਤੁਹਾਡੇ ਅਨੁਮਾਨ ਅਨੁਸਾਰ ਗਰੀਬ ਹਨ। ਇਨ੍ਹਾਂ ਦੇਨਾਂ ਪਰਿਵਾਰਾਂ ਵਿੱਚ ਪੰਜ ਸਾਲ ਤੋਂ ਘੱਟ ਉਮਰ ਦੇ ਬੱਚੇ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਹਰੇਕ ਬੱਚੇ ਦਾ ਕੱਦ ਨਾਪੋ ਅਤੇ ਉਮਰ ਲਿਖੋ। ਉਮਰ ਅਤੇ ਕੱਦ ਦਾ ਗ੍ਰਾਫ ਦੋਨੇ ਵਰਗਾਂ ਦੇ ਪਰਿਵਾਰਾਂ ਲਈ ਬਣਾਉ।

ਕੀ ਦੋਨੋਂ ਵਰਗਾਂ ਦੇ ਪਰਿਵਾਰਾਂ ਦੇ ਗ੍ਰਾਫਾਂ ਵਿੱਚ ਕੋਈ ਅੰਤਰ ਹੈ। ਜੇ ਹੈ ਤਾਂ ਕਿਉਂ।

ਜੇਕਰ ਕੋਈ ਅੰਤਰ ਨਹੀਂ ਹੈ ਤਾਂ ਕੀ ਤੁਸੀਂ ਇਹ ਸਿੱਟਾ ਕੱਢਦੇ ਹੋ ਕਿ ਸਿਹਤ ਲਈ ਅਮੀਰੀ ਅਤੇ ਗਰੀਬੀ ਦਾ ਕੋਈ ਮਹੱਤਵ ਨਹੀਂ। ਇਹ ਲਾਗ ਦੇ ਰੋਗਾਂ ਤੋਂ ਬਚਣ ਦੇ ਕੁੱਝ ਸਾਧਾਰਨ ਤਰੀਕੇ ਹਨ।ਫਿਰ ਵਿਸ਼ੇਸ਼ ਤਰੀਕੇ ਕਿਹੜੇ ਹਨ ? ਇਹ ਰੱਖਿਆਤਮਕ ਪ੍ਰਣਾਲੀ ਦੇ ਵਿਸ਼ੇਸ਼ ਗੁਣਾਂ ਨਾਲ ਸੰਬੰਧਿਤ ਹਨ ਜੋ ਅਕਸਰ ਹੀ ਰੋਗਾਣੂਆਂ ਨਾਲ ਲੜਦੀ ਰਹਿੰਦੀ ਹੈ। ਇਸਨੂੰ ਸਮਝਣ ਲਈ ਇੱਕ ਉਦਾਹਰਣ ਲੈਂਦੇ ਹਾਂ।

ਅੱਜ-ਕੱਲ੍ਹ ਦੁਨੀਆਂ ਦੇ ਕਿਸੇ ਵੀ ਹਿੱਸੇ ਵਿੱਚ ਚੇਚਕ ਦਾ ਰੋਗ ਨਹੀਂ ਹੈ।ਪਰੰਤੂ ਅੱਜ ਤੋਂ ਸੌ ਸਾਲ ਪਹਿਲਾਂ ਚੇਚਕ ਦੀ ਮਹਾਂਮਾਰੀ, ਆਮ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀ ਸੀ।ਅਜਿਹੀ ਮਹਾਂਮਾਰੀ ਵੇਲੇ ਲੋਕ ਇੱਕ ਰੋਗੀ ਦੇ ਨੇੜੇ ਆਉਣ ਤੋਂ ਬਹੁਤ ਡਰਦੇ ਸਨ ਕਿਉਂਕਿ ਉਨ੍ਹਾਂ ਨੂੰ ਰੋਗ ਦੀ ਮਾਰ 'ਚ ਆਉਣ ਦਾ ਡਰ ਰਹਿੰਦਾ ਸੀ।

ਪ੍ਰੰਤੂ ਲੋਕਾਂ ਦਾ ਅਜਿਹਾ ਵੀ ਇੱਕ ਵਰਗ ਸੀ ਜਿਹੜਾ ਚੇਚਕ ਤੋਂ ਬਿਲਕੁਲ ਨਹੀਂ ਡਰਦਾ ਸੀ। ਇਹ ਵਰਗ ਚੇਚਕ ਦੇ ਰੋਗੀਆਂ ਦੀ ਸੇਵਾ ਕਰਦਾ ਸੀ। ਇਹ ਉਨ੍ਹਾਂ ਲੋਕਾਂ ਦਾ ਵਰਗ ਸੀ ਜਿਨ੍ਹਾਂ ਨੂੰ ਪਹਿਲਾਂ ਭਿਆਨਕ ਚੇਚਕ ਦਾ ਰੋਗ ਹੋ ਚੁੱਕਿਆ ਸੀ ਅਤੇ ਉਹ ਬਚ ਗਏ ਸੀ ਪਰੰਤੂ ਉਨ੍ਹਾਂ ਦੇ ਸ਼ਰੀਰ ਤੇ ਚੇਚਕ ਦੇ ਬਹੁਤ ਸਾਰੇ ਦਾਗ ਸਨ। ਭਾਵ ਜੇ ਤੁਹਾਨੂੰ ਇੱਕ ਵਾਰ ਚੇਚਕ ਹੋ ਜਾਵੇ ਤਾਂ ਤੁਹਾਨੂੰ ਚੇਚਕ ਦਾ ਰੋਗ ਦੁਬਾਰਾ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਨਹੀਂ ਹੁੰਦੀ। ਇਸ ਲਈ ਇੱਕ ਵਾਰੀ ਇੱਕ ਰੋਗ ਦਾ ਹਮਲਾ ਹੋਣ ਤੋਂ ਬਾਅਦ ਦੁਬਾਰਾ ਉਸ ਰੋਗ ਦਾ ਹਮਲਾ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਬਹੁਤ ਘੱਟ ਨਹੀਂ ਹੁੰਦੀ ਹੈ।

ਇਹ ਇਸ ਲਈ ਹੁੰਦਾ ਹੈ ਕਿ ਜਦੋਂ ਕੋਈ ਰੋਗਾਣੂ ਰੱਖਿਆਤਮਕ ਪ੍ਰਣਾਲੀ ਤੋਂ ਪਹਿਲੀ ਵਾਰ ਹਮਲਾ ਕਰਦੇ ਹਨ ਤਾਂ ਸਾਡੀ ਪ੍ਰਣਾਲੀ ਰੋਗਾਣੂਆਂ ਵਿਰੁੱਧ ਪ੍ਰਤੀਕਿਰਿਆ ਕਰਦੀ ਹੈ ਅਤੇ ਫਿਰ ਰੋਗਾਣੂਆਂ ਦੇ ਵਿਸ਼ੇਸ਼ ਰੂਪ 'ਚ ਪਛਾਣ ਰੱਖਦੀ ਹੈ। ਅਗਲੀ ਵਾਰ ਉਹ ਰੋਗਾਣੂ ਜਾਂ ਉਹਦੇ ਨਾਲ ਮਿਲਦੇ ਜੁਲਦੇ ਰੋਗਾਣੂ ਦੁਬਾਰਾ ਹਮਲਾ ਕਰਦੇ ਹਨ ਤਾਂ ਰੱਖਿਆਤਮਕ ਪ੍ਰਣਾਲੀ ਪੂਰੀ ਸ਼ਕਤੀ ਨਾਲ ਉਸਨੂੰ ਨਸ਼ਟ ਕਰ ਦਿੰਦੀ ਹੈ। ਇਸ ਨਾਲ ਪਹਿਲੇ ਹਮਲੇ ਦੇ ਮੁਕਾਬਲੇ ਦੂਜਾ ਹਮਲਾ ਬਹੁਤ ਛੇਤੀ ਹੀ ਖਤਮ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਹ ਟੀਕਾਕਰਣ ਰੋਗ ਸੁਰੱਖਿਆ (Immunisation) ਦੇ ਨਿਯਮ ਦਾ ਅਧਾਰ ਹੈ।

ਹੁਣ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਟੀਕਾਕਰਣ ਦਾ ਸਧਾਰਨ ਨਿਯਮ ਇਹ ਹੈ ਕਿ ਸਰੀਰ ਵਿੱਚ ਵਿਸ਼ੇਸ਼ ਲਾਗ ਦਾ ਹਮਲਾ ਕਰਵਾ ਕੇ ਰੱਖਿਆਤਮਕ ਪ੍ਣਾਲੀ ਨੂੰ ਮੂਰਖ ਬਣਾ ਸਕਦੇ ਹਾਂ ਤਾਂ ਕਿ ਉਹ ਲਾਗ ਦੇ ਰੋਗਾਣੂਆਂ ਦੀ ਪਛਾਣ ਕਰ ਲਵੇ। ਇਹ ਉਨ੍ਹਾਂ ਰੋਗਾਣੂਆਂ ਦੀ ਨਕਲ ਕਰਦਾ ਹੈ ਜੋ ਟੀਕੇ ਦੁਆਰਾ ਸਰੀਰ ਵਿੱਚ ਪਹੁੰਚੇ ਹਨ ਅਤੇ ਜਿਨ੍ਹਾਂ ਵਿਰੁੱਧ ਅਸੀਂ ਰੋਗ ਸੁਰੱਖਿਆ ਪੈਦਾ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਾਂ। ਇਹ ਅਸਲ ਵਿੱਚ ਰੋਗ ਨਹੀਂ ਫੈਲਾਉਂਦੇ ਬਲਕਿ ਇਹ ਲਾਗ ਵਾਲੇ ਰੋਗਾਣੂਆਂ ਦਾ ਦੁਬਾਰਾ ਹਮਲਾ ਹੋਣ ਤੋਂ ਬਚਾਉਂਦੇ ਹਨ ਜੋ ਕਿ ਬਿਮਾਰੀ ਕਰ ਸਕਦੇ ਸਨ।

ਅਸੀਂ ਬਿਮਾਰ ਕਿਉਂ ਹੁੰਦੇ ਹਾਂ

209

ਰੋਗ ਸੁਰੱਖਿਆ

ਪਰੰਪਰਾ ਅਨੁਸਾਰ ਭਾਰਤੀ ਅਤੇ ਚੀਨੀ ਚਿਕਿਤਸਾ ਪ੍ਰਣਾਲੀ ਵਿੱਚ ਕਈ ਵਾਰੀ ਜਾਣ-ਬੁੱਝ ਕੇ ਚੇਚਕ ਤੋਂ ਪੀੜਿਤ ਰੋਗੀ ਦੀ ਚਮੜੀ ਨਾਲ ਸਿਹਤਮੰਦ ਵਿਅਕਤੀਆਂ ਦੀ ਚਮੜੀ ਰਗੜੀ ਜਾਂਦੀ ਸੀ। ਇਸ ਨਾਲ ਉਹ ਇਹ ਆਸ ਕਰਦੇ ਸਨ ਕਿ ਚੇਚਕ

ਰੋਗ ਦੇ ਕੁੱਝ ਰੋਗਾਣੂ ਸਿਹਤਮੰਦ ਵਿਅਕਤੀ ਦੇ ਸਰੀਰ ਵਿੱਚ ਪੈਦਾ ਕਰ ਦੇਣਗੇ।

ਇਸ ਰੋਗ ਪ੍ਰਤੀ ਸੁਰੱਖਿਆ ਬਾਰੇ ਦੋ ਸੌ ਸਾਲ ਪਹਿਲਾਂ ਇੱਕ ਔਗਰੇਜ਼ ਡਾਕਟਰ ਜਿਨਦਾ ਨਾਮ ਐਡਵਰਡ ਜੀਨਰ ਸੀ ਨੇ ਪਤਾ ਲਗਾਇਆ ਕਿ ਗਵਾਲੇ ਜਿਸ ਨੂੰ ਗਊ-ਚੇਚਕ ਹੋਈ ਹੈ ਉਨ੍ਹਾਂ ਨੂੰ ਮਹਾਂਮਾਰੀ ਦੌਰਾਨ ਵੀ ਚੇਚਕ ਨਹੀਂ ਹੋਇਆ। ਗਊ-ਚੇਚਕ ਇੱਕ ਹਲਕੀ ਕਿਸਮ ਦਾ ਚੇਚਕ ਹੈ। ਜੀਨਰ ਨੇ ਜਾਣ ਬੁੱਝ ਕੇ ਲੋਕਾਂ ਨੂੰ ਗਊ-ਚੇਚਕ ਹੋਣ ਦਿੱਤਾ (ਜਿਵੇਂ ਕਿ ਤਸਵੀਰ ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ)। ਇਸ ਨਾਲ ਉਸਨੇ ਪਤਾ ਲਗਾਇਆ ਕਿ ਉਹ ਲੋਕ ਚੇਚਕ ਤੋਂ ਪ੍ਰਤੀਰੋਧੀ ਹਨ। ਇਸਦਾ ਕਾਰਨ ਇਹ ਕਿ ਚੇਚਕ ਦਾ ਵਿਸ਼ਾਣੂ ਗਊ-ਚੇਚਕ ਦੇ ਵਿਸ਼ਾਣੂ ਦਾ ਨਿਕਟ ਸੰਬੰਧੀ ਹੈ। ਲਾਤੀਨੀ ਭਾਸ਼ਾ ਵਿੱਚ (ਗਊ) ਦਾ ਮਤਲਬ ਹੈ ਵੈਕਾ ਅਤੇ (ਗਊ ਚੇਚਕ) ਦਾ ਭਾਵ ਹੈ ਵੈਕਸੀਨੀਆ। ਇਨ੍ਹਾਂ ਸ਼ਾਬਦਿਕ ਅਰਥਾਂ ਤੋਂ ਹੀ ਸ਼ਬਦ ਵੈਕਸੀਨੇਸ਼ਨ (Vaccination) ਅਰਥਾਤ ਟੀਕਾਕਰਣ ਵਰਤੋਂ ਵਿੱਚ ਆਇਆ।

ਅਜਿਹੇ ਬਹੁਤ ਸਾਰੇ ਟੀਕੇ ਅੱਜ-ਕੱਲ੍ਹ ਉਪਲੱਬਧ ਹਨ ਜਿਨ੍ਹਾਂ ਰਾਹੀਂ ਲਾਗ ਜਾਂ ਛੂਤ ਦੇ ਰੋਗਾਂ ਦਾ ਬਚਾਅ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਰੋਗ ਆਧਾਰਿਤ ਬਚਾਅ ਸਾਧਨ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਟੈਟਨਸ, ਡਿਪਥੀਰੀਆ, ਕਾਲੀ ਖਾਂਸੀ, ਚੇਚਕ, ਪੋਲੀਓ ਆਦਿ ਦੇ ਟੀਕੇ ਉਪਲੱਬਧ ਹਨ। ਇਹ ਬੱਚਿਆਂ ਦੀ ਛੂਤ ਦੇ ਰੋਗਾਂ ਤੋਂ ਰੱਖਿਆ ਕਰਨ ਲਈ ਸਰਕਾਰੀ ਸਿਹਤ-ਕਾਰਜਕ੍ਰਮ ਹੈ। ਅਜਿਹੇ ਕਾਰਜਕ੍ਰਮ ਉਦੋਂ ਹੀ ਸਫਲ ਹੁੰਦੇ ਹਨ ਜਦੋਂ ਅਜਿਹੀਆਂ ਸਿਹਤ-ਸ਼ੁਵਿਧਾਵਾਂ ਸਾਰੇ ਬੱਚਿਆਂ ਨੂੰ ਪ੍ਰਾਪਤ ਹੋਣ।ਕੀ ਤੁਸੀਂ ਇਸਦਾ ਕਾਰਨ ਸੋਚ ਸਕਦੇ ਹੋ ਕਿ ਅਜਿਹਾ ਕਿਉਂ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ?

ਹੈਪੇਟਾਈਟਸ ਦੇ ਕੁੱਝ ਵਿਸ਼ਾਣੂ ਜਿਨ੍ਹਾਂ ਨਾਲ ਪੀਲੀਆ ਹੁੰਦਾ ਹੈ, ਪਾਣੀ ਦੁਆਰਾ ਫੈਲਦੇ ਹਨ। ਹੈਪੇਟਾਈਟਸ A ਲਈ ਟੀਕਾ ਉਪਲੱਬਧ ਹੈ। ਪਰੰਤੂ ਦੇਸ਼ ਦੇ ਜ਼ਿਆਦਾਤਰ ਭਾਗਾਂ ਵਿੱਚ ਜਦੋਂ ਬੱਚੇ ਦੀ ਉਮਰ ਪੰਜ ਸਾਲ ਦੀ ਹੋ ਜਾਂਦੀ ਹੈ ਤਦ ਤੱਕ ਉਹ ਹੈਪੇਟਾਈਟਸ A ਪ੍ਰਤੀ ਪ੍ਰਤਿਰਖਿਅਕ ਹੋ ਚੁੱਕਾ ਹੁੰਦਾ ਹੈ। ਇਸਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਉਹ ਪਾਣੀ ਦੁਆਰਾ ਵਿਸ਼ਾਣੂਆਂ ਦੇ ਪ੍ਰਭਾਵ ਵਿੱਚ ਆ ਚੁੱਕਾ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਪਰਿਸ਼ਬਿਤੀਆਂ ਵਿੱਚ ਕੀ ਤਸੀਂ ਇਸਦਾ ਟੀਕਾ ਲਗਵਾਉਗੇ ?

ਕਿਰਿਆ

ਹਲਕੇ ਕੁੱਤੇ ਜਾਂ ਦੂਜੇ ਜਾਨਵਰਾਂ ਦੇ ਕੱਟਣ ਨਾਲ ਰੈਬੀਜ ਵਿਸ਼ਾਣੂ ਫੈਲਦਾ ਹੈ। ਮਨੁੱਖ ਅਤੇ ਜਾਨਵਰ ਦੋਵਾਂ ਲਈ ਐਂਟੀ-ਰੈਬੀਜ ਟੀਕੇ ਉਪਲੱਬਧ ਹਨ। ਪਤਾ ਕਰੋ ਕਿ ਤੁਹਾਡੇ ਆਂਢ-ਗੁਆਂਢ ਵਿੱਚ ਸਥਾਨਕ ਪ੍ਰਸ਼ਾਸਨ ਰੈਬੀਜ਼ ਨੂੰ ਫੈਲਣ ਤੋਂ ਰੋਕਣ ਲਈ ਕੀ ਕਰ ਰਿਹਾ ਹੈ। ਕੀ ਇਹ ਯਤਨ ਕਾਫੀ ਹਨ ? ਜੇ ਨਹੀਂ ਤਾਂ ਤੁਹਾਡੇ ਇਸਦੇ ਸੁਧਾਰ ਬਾਰੇ ਕੀ ਸੁਝਾਅ ਹਨ।

13.7

ਸ਼ਨ

- ਜਦੋਂ ਤੁਸੀਂ ਬਿਮਾਰ ਹੁੰਦੇ ਹੋ ਤੁਹਾਨੂੰ ਅਕਸਰ ਹੀ ਵਧੀਆਂ ਤੇ ਪੋਸ਼ਕ ਭੋਜਨ ਖਾਣ ਦੀ ਸਲਾਹ ਕਿਉਂ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ ?
- ਛੂਤ ਦੇ ਰੋਗ ਫੈਲਣ ਦੇ ਕਿਹੜੇ ਕਿਹੜੇ ਤਰੀਕੇ ਹਨ 7
- ਛੂਤ ਦੇ ਰੋਗਾਂ ਨੂੰ ਫੈਲਣ ਤੋਂ ਰੋਕਣ ਲਈ ਤੁਹਾਡੇ ਸਕੂਲ ਵਿੱਚ ਕਿਹੜੀਆਂ ਕਿਹੜੀਆਂ ਸਾਵਧਾਨੀਆਂ ਜ਼ਰੂਰੀ ਹਨ ?
- 4. ਰੋਗ ਸੁਰੱਖਿਆ ਕੀ ਹੈ ?
- 5. ਤੁਹਾਡੇ ਪਿੰਡ ਦੀ ਡਿਸਪੇਸਰੀ ਵਿੱਚ ਟੀਕਾਕਰਣ ਦੇ ਕਿਹੜੇ ਕਾਰਜਕੁਮ ਉਪਲੇਬਧ ਹਨ? ਤੁਹਾਡੇ ਖੇਤਰ ਵਿੱਚ ਸਿਹਤ ਸਬੰਧੀ ਕਿਹੜੀ ਸਮੱਸਿਆ ਮੁੱਖ ਹੈ ?

210

<u>ৰি</u>ৰি।সদস

- ਸਿਹਤ ਵਿਅਕਤੀ ਦੀ ਸਰੀਰਕ, ਮਾਨਸਿਕ ਅਤੇ ਸਮਾਜਿਕ ਜੀਵਨ ਦੇ ਚੰਗੀ ਹਾਲਤ ਵਿੱਚ ਹੋਣ ਦੀ ਦਸ਼ਾ ਹੈ।
- ਕਿਸੇ ਦੀ ਸਿਹਤ ਉਸਦੇ ਭੌਤਿਕ ਵਾਤਾਵਰਣ ਅਤੇ ਆਰਥਿਕ ਹਾਲਤਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।
- ਰੋਗਾਂ ਨੂੰ ਉਨ੍ਹਾਂ ਦੀ ਠਹਿਰ ਦੇ ਆਧਾਰ ਤੇ ਅਲਪ-ਕਾਲੀਨ ਜਾਂ ਦੀਰਘ-ਕਾਲੀਨ ਰੋਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ।
- ਰੋਗ ਛੂਤ ਜਾਂ ਅਛੂਤ ਦੇ ਕਾਰਨਾਂ ਕਰਕੇ ਵੀ ਹੋ ਸਕਦੇ ਹਨ।
- ਛੂਤ ਦੇ ਕਾਰਕ ਸਜੀਵਾਂ ਦੇ ਵੱਖ-ਵੱਖ ਵਰਗਾਂ ਨਾਲ ਸੰਬੰਧ ਰੱਖ ਸਕਦੇ ਹਨ ਅਤੇ ਉਹ ਇੱਕ-ਸੈੱਲੀ (ਸੂਖਮਦਰਸ਼ੀ ਨਾਲ ਦੇਖੇ ਜਾਣ ਵਾਲੇ) ਜਾਂ ਬਹੁਸੈੱਲੀ ਹੋ ਸਕਦੇ ਹਨ।
- ਰੋਗ ਦਾ ਇਲਾਜ ਉਸਦੇ ਰੋਗਾਣੂ ਦੇ ਵਰਗ ਦੇ ਅਧਾਰ ਤੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
- ਛੂਤ ਦੇ ਕਾਰਕ ਹਵਾ, ਪਾਣੀ, ਸਰੀਰਕ ਸੰਪਰਕ ਅਤੇ ਰੋਗਵਾਹਕਾਂ ਰਾਹੀਂ ਫੈਲਦੇ ਹਨ।
- ਰੋਗਾਂ ਤੋਂ ਬਚਾਅ, ਸਫਲ ਇਲਾਜ ਨਾਲੋਂ ਵੀ ਚੰਗਾ ਹੈ।
- ਇਲਾਜ ਨਾਲੋਂ ਪਰਹੇਜ ਚੰਗਾ ਹੈ।
- ਛੂਤ ਦੇ ਰੋਗਾਂ ਤੋਂ ਬਚਾਉ ਜਨ-ਸਿਹਤ ਸਵੱਛਤਾ ਵਿਧੀਆਂ ਦੁਆਰਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਨਾਲ ਛੂਤ ਦੇ ਕਾਰਕ ਘੱਟ ਹੋ ਜਾਂਦੇ ਹਨ।
- ਛੂਤ ਦੇ ਰੋਗਾਂ ਤੋਂ ਟੀਕਾਕਰਣ ਦੁਆਰਾ ਵੀ ਬਚਾਅ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- ਛੂਤ ਦੇ ਰੋਗਾਂ ਤੋਂ ਬਚਾਅ ਨੂੰ ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਬਣਾਉਣ ਲਈ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਸਮੁਦਾਇਕ ਸਵੱਛਤਾ ਅਤੇ ਟੀਕਾਕਰਣ ਦੀ ਸੁਵਿਧਾ ਸਾਰਿਆਂ ਨੂੰ ਉਪਲੱਬਧ ਹੋਵੇ।

ਅਭਿਆਸ

- ਪਿਛਲੇ ਇੱਕ ਸਾਲ ਵਿੱਚ ਤੁਸੀਂ ਕਿੰਨੀ ਵਾਰ ਬਿਮਾਰ ਹੋਏ ? ਕੀ ਬਿਮਾਰੀ ਸੀ ?
 - (a) ਇਨ੍ਹਾਂ 'ਚੋਂ ਕੋਈ ਜਾਂ ਸਾਰੀਆਂ ਬਿਮਾਰੀਆਂ ਨੂੰ ਹਟਾਉਣ ਲਈ ਤੁਸੀਂ ਆਪਣੀਆਂ ਆਦਤਾਂ ਵਿੱਚ ਕਿਹੜੀ ਤਬਦੀਲੀ ਕਰੋਗੇ ?
 - (b) ਇਨ੍ਹਾਂ 'ਚੋਂ ਕੋਈ ਜਾਂ ਸਾਰੀਆਂ ਬਿਮਾਰੀਆਂ ਨੂੰ ਹਟਾਉਣ ਲਈ ਤੁਸੀਂ ਆਪਣੇ ਆਲ਼ੇ-ਦੁਆਲ਼ੇ 'ਚ ਕੀ ਤਬਦੀਲੀ ਕਰਨੀ ਚਾਹੋਗੇ ?
- ਸਮੁਦਾਇ ਵਿੱਚ ਇੱਕ ਡਾਕਟਰ/ਨਰਸ/ਹੈਲਥ ਵਰਕਰ ਆਮ ਲੋਕਾਂ ਨਾਲੋਂ ਰੋਗੀਆਂ ਦਾ ਜ਼ਿਆਦਾ ਸਾਹਮਣਾ ਕਰਦਾ ਹੈ। ਉਹ ਆਪਣੇ ਆਪ ਨੂੰ ਬਿਮਾਰ ਹੋਣ ਤੋਂ ਕਿਸ ਤਰ੍ਹਾਂ ਬਚਾਉਂਦਾ/ਬਚਾਉਂਦੀ ਹੈ?

ਅਸੀਂ ਬਿਮਾਰ ਕਿਉਂ ਹੁੰਦੇ ਹਾਂ

211

- 3. ਆਪਣੇ ਆਲ਼ੇ-ਦੁਆਲ਼ੇ ਵਿੱਚ ਇੱਕ ਸਰਵੇਖਣ ਕਰੋ ਅਤੇ ਪਤਾ ਲਗਾਉ ਕਿ ਕਿਹੜੀਆਂ-ਕਿਹੜੀਆਂ ਤਿੰਨ ਬਿਮਾਰੀਆਂ ਆਮ ਤੌਰ ਤੇ ਹੁੰਦੀਆਂ ਹਨ? ਇਨ੍ਹਾਂ ਬਿਮਾਰੀਆਂ ਨੂੰ ਫੈਲਣ ਤੋਂ ਰੋਕਣ ਲਈ ਆਪਣੇ ਸਥਾਨਿਕ ਪ੍ਰਸ਼ਾਸਨ ਨੂੰ ਤਿੰਨ ਸੁਝਾਅ ਦਿਉ।
- ਇੱਕ ਬੱਚਾ ਆਪਣੀ ਬਿਮਾਰੀ ਦੇ ਬਾਰੇ ਵਿੱਚ ਆਪਣੇ ਘਰਦਿਆਂ ਨੂੰ ਦੱਸ ਸਕਣ ਦੇ ਯੋਗ ਨਹੀਂ ਹੈ। ਸਾਨੂੰ ਕਿਸ ਗੱਲ ਤੋਂ ਪਤਾ ਲੱਗੇਗਾ ਕਿ
 - (a) ਬੱਚਾ ਬਿਮਾਰ ਹੈ।
 - (b) ਕੀ ਬਿਮਾਰੀ ਹੈ ?
- ਹੇਠ ਲਿਖਿਆਂ 'ਚੋਂ ਕਿਹੜੀਆਂ ਹਾਲਤਾਂ ਵਿੱਚ ਕਿਸੇ ਵਿਅਕਤੀ ਦੇ ਬਿਮਾਰ ਹੋਣ ਦੀ ਜ਼ਿਆਦਾ ਸੰਭਾਵਨਾ ਹੈ ਅਤੇ ਕਿਉ?
 - (a) ਜਦੋਂ ਉਹ ਮਲੇਗੀਏ ਤੋਂ ਠੀਕ ਹੋ ਰਿਹਾ ਹੈ ?
 - (b) ਜਦੋਂ ਉਹ ਮਲੇਰੀਏ ਤੋਂ ਠੀਕ ਹੋ ਗਿਆ ਹੈ ਅਤੇ ਕਿਸੇ ਚੇਚਕ (Chicken pox) ਦੇ ਰੋਗੀ ਦੀ ਦੇਖਭਾਲ ਕਰ ਰਿਹਾ ਹੈ ?
 - (c) ਜਦੋਂ ਉਸਨੇ ਮਲੇਰੀਏ ਤੋਂ ਠੀਕ ਹੋਣ ਤੋਂ ਬਾਅਦ ਚਾਰ ਦਿਨ ਦਾ ਵਰਤ ਰੱਖਿਆ ਅਤੇ ਕਿਸੇ ਚੇਚਕ ਦੇ ਰੋਗੀ ਦੀ ਦੇਖਭਾਲ ਕਰ ਰਿਹਾ ਹੈ।
- ਹੇਠ ਲਿਖਿਆਂ ਤੋਂ ਤੁਹਾਡੀ ਕਿਹੜੀਆਂ ਹਾਲਤਾਂ ਵਿੱਚ ਬਿਮਾਰ ਹੋਣ ਦੀ ਜ਼ਿਆਦਾ ਸੰਭਾਵਨਾ ਹੈ ਅਤੇ ਕਿਉ ?
 - (a) ਜਦੋਂ ਤੁਹਾਡੇ ਪੇਪਰ ਹੋ ਰਹੇ ਹੋਣ।
 - (b) ਜਦੋਂ ਤੁਸੀਂ ਬੱਸ ਜਾਂ ਟ੍ਰੇਨ ਵਿੱਚ ਦੋ ਦਿਨ ਦਾ ਸਫਰ ਕਰ ਕੇ ਹਟੇ ਹੋ।
 - (c) ਜਦੋਂ ਤੁਹਾਡਾ ਦੋਸਤ ਖਸਰੇ (Measles) ਤੋਂ ਪੀੜਿਤ ਹੈ।

212

120

ਅਧਿਆਇ 14

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਸਾਡੀ ਪ੍ਰਿਥਵੀ ਹੀ ਇੱਕ ਅਜਿਹਾ ਗ੍ਰਹਿ ਹੈ ਜਿੱਥੇ ਜੀਵਨ ਮੌਜੂਦ ਹੈ। ਪ੍ਰਿਥਵੀ ਤੇ ਜੀਵਨ ਬਹੁਤ ਸਾਰੇ ਕਾਰਕਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਅਸੀਂ ਇਹ ਵੀ ਜਾਣਦੇ ਹਾਂ ਕਿ ਜੀਵਨ ਲਈ ਢੁੱਕਵਾਂ ਤਾਪਮਾਨ, ਪਾਣੀ ਅਤੇ ਭੋਜਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਪ੍ਰਿਥਵੀ ਤੇ ਉਪਲੱਬਧ ਸਭ ਕਿਸਮਾਂ ਦੇ ਜੀਵਾਂ ਦੀਆਂ ਮੂਲ ਜ਼ਰੂਰਤਾਂ ਦੀ ਪੂਰਤੀ ਲਈ ਸੂਰਜ ਤੋਂ ਊਰਜਾ ਅਤੇ ਪ੍ਰਿਥਵੀ ਤੇ ਉਪਲੱਬਧ ਸਾਧਨਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।

ਧਰਤੀ ਤੇ ਇਹ ਸੰਸਾਧਨ ਕਿਹੜੇ-ਕਿਹੜੇ ਹਨ ?

ਇਹ ਸਥਲ, ਪਾਣੀ ਅਤੇ ਹਵਾ ਹਨ। ਧਰਤੀ ਦੀ ਸਭ ਤੋਂ ਬਾਹਰੀ ਪਰਤ ਨੂੰ ਸਥਲਮੰਡਲ ਕਹਿੰਦੇ ਹਨ। ਪ੍ਰਿਥਵੀ ਦੇ 75% ਭਾਗ ਉੱਤੇ ਪਾਣੀ ਹੈ। ਇਹ ਭੂਮੀਗਤ ਪਾਣੀ ਦੇ ਰੂਪ ਵਿੱਚ ਵੀ ਮਿਲਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਸਾਰਿਆਂ ਨੂੰ ਜਲਮੰਡਲ ਕਹਿੰਦੇ ਹਨ। ਹਵਾ, ਜਿਹੜੀ ਪੂਰੀ ਪ੍ਰਿਥਵੀ ਨੂੰ ਇੱਕ ਕੰਬਲ ਵਾਂਗ ਢੱਕ ਕੇ ਰੱਖਦੀ ਹੈ, ਉਸ ਨੂੰ ਵਾਯੂਮੰਡਲ ਕਹਿੰਦੇ ਹਨ। ਜੀਵਿਤ ਪਦਾਰਥ ਉੱਥੇ ਹੀ ਮਿਲਦੇ ਹਨ ਜਿੱਥੇ ਇਹ ਤਿੰਨੇ ਮਿਲਦੇ ਹਨ। ਜੀਵਨ ਨੂੰ ਸਹਾਰਾ ਦੇਣ ਵਾਲਾ ਪ੍ਰਿਥਵੀ ਦਾ ਇਹ ਘੇਰਾ, ਜਿੱਥੇ ਵਾਯੂਮੰਡਲ, ਸਥਲਮੰਡਲ ਅਤੇ ਜਲਮੰਡਲ ਇੱਕ ਦੂਜੇ ਨਾਲ ਮਿਲ ਕੇ ਜੀਵਨ ਨੂੰ ਸੰਭਵ ਬਣਾਉਂਦੇ ਹਨ, ਉਸ ਨੂੰ ਜੀਵ ਮੰਡਲ (biosphere) ਦੇ ਨਾਂ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ।

ਸਜੀਵ, ਜੀਵ ਮੰਡਲ ਦੇ ਜੈਵਿਕ ਘਟਕ ਨੂੰ ਬਣਾਉਂਦੇ ਹਨ। ਹਵਾ, ਪਾਣੀ ਅਤੇ ਮਿੱਟੀ ਜੀਵ ਮੰਡਲ ਦੇ ਨਿਰਜੀਵ ਘਟਕ ਹਨ। ਆਓ, ਹੁਣ ਇਨ੍ਹਾਂ ਨਿਰਜੀਵ ਘਟਕਾਂ ਜਿਹੜੇ ਪ੍ਰਿਥਵੀ ਤੇ ਜੀਵਨ ਨੂੰ ਚਲਾਉਣ ਲਈ ਜ਼ਰੂਰੀ ਹਨ, ਉਨ੍ਹਾਂ ਦੀ ਭੂਮਿਕਾ ਦਾ ਵਿਸਥਾਰ ਪੁਰਵਕ ਅਧਿਐਨ ਕਰਦੇ ਹਾਂ।

14.1 ਜੀਵਨ ਦਾ ਸਾਹ : ਹਵਾ

(The Breath of Life : Air)

ਅਸੀਂ ਪਹਿਲੇ ਅਧਿਆਇ ਵਿੱਚ ਹਵਾ ਦੇ ਘਟਕਾਂ ਬਾਰੇ ਪੜ

ਕੁਦਰਤੀ ਸੰਸਾਧਨ (Natural Resources)

ਚੁੱਕੇ ਹਾਂ। ਇਹ ਬਹੁਤ ਸਾਰੀਆਂ ਗੈਸਾਂ, ਜਿਵੇਂ ਨਾਈਟ੍ਰੋਜਨ, ਆਕਸੀਜਨ, ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਅਤੇ ਜਲਵਾਸ਼ਪ ਦਾ ਮਿਸ਼ਰਣ ਹੈ। ਇਹ ਜਾਨਣਾ ਮਜ਼ੇਦਾਰ ਹੈ ਕਿ ਪ੍ਰਿਥਵੀ ਉੱਤੇ ਜੀਵਨ ਹਵਾ ਦੇ ਘਟਕਾਂ ਦਾ ਨਤੀਜਾ ਹੈ। ਸ਼ੁਕਰ (Venus) ਅਤੇ ਮੰਗਲ (Mars) ਵਰਗੇ ਗ੍ਰਹਿਆਂ ਜਿੱਥੇ ਕੋਈ ਜੀਵਨ ਨਹੀਂ ਹੈ ਉੱਥੇ ਵਾਯੂਮੰਡਲ ਦਾ ਮੁੱਖ ਘਟਕ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਹੈ। ਅਸਲ ਵਿੱਚ ਸ਼ੁਕਿਰ ਅਤੇ ਮੰਗਲ ਗ੍ਰਹਿਆਂ ਤੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚ 95 ਤੋਂ 97 ਪ੍ਰਤੀਸ਼ਤ ਤਕ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਹੈ।

ਸਾਹੇ ਯੂਕੈਰਿਯੋਟਿਕ ਸੈੱਲਾਂ (Eukaryotic cells) ਅਤੇ ਬਹੁਤ ਬਾਰੀਆਂ ਪ੍ਰੋਕੈਰਿਯੋਟਿਕ ਸੈੱਲਾਂ (Prokaryotic cells) ਨੂੰ ਗਲੂਕੋਜ਼ ਅਣੂਆਂ ਨੂੰ ਤੋੜਨ ਅਤੇ ਉਨ੍ਹਾਂ ਤੋਂ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਆਕਸੀਜਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਅਧਿਆਇ 5 ਵਿੱਚ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ। ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੀ ਉਤਪਤੀ ਹੁੰਦੀ ਹੈ। ਦੂਜੀ ਪ੍ਕਿਰਿਆ, ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਆਕਸੀਜਨ ਦੀ ਖਪਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਪੈਦਾ ਹੁੰਦੀ ਹੈ, ਜਲਨ ਕਿਰਿਆ ਹੈ। ਇਸ ਵਿੱਚ ਮਨੁੱਖ ਦੀ ਉਹ ਸਕਿਰਿਆ ਹੀ ਨਹੀਂ ਜਿਹੜੀ ਊਰਜਾ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਬਾਲਣ ਨੂੰ ਜਲਾਉਂਦੇ ਹਾਂ, ਇਸ ਵਿੱਚ ਜੰਗਲਾਂ ਵਿੱਚ ਲੱਗੀ ਅੱਗ ਵੀ ਆਉਂਦੀ ਹੈ।

ਇਸ ਤੋਂ ਇਲਾਵਾ, ਸਾਡੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੀ ਮਾਤਰਾ ਇੱਕ ਪ੍ਰਤੀਸ਼ਤ ਦਾ ਇੱਕ ਛੋਟਾ ਜਿਹਾ ਭਾਗ ਹੈ ਕਿਉਂਕਿ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੋ ਵਿਧੀਆਂ ਨਾਲ ਸਥਿਰ ਹੁੰਦੀ ਹੈ-(i) ਹਰੇ ਪੌਦੇ ਸੂਰਜ ਦੀਆਂ ਕਿਰਨਾਂ ਦੀ ਹੋਂਦ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਨੂੰ ਗਲੂਕੋਜ਼ ਵਿੱਚ ਬਦਲ ਦਿੰਦੇ ਹਨ ਅਤੇ (ii) ਜ਼ਿਆਦਾਤਰ ਸਮੁੰਦਰੀ ਜੰਤੂ ਸਮੁੰਦਰੀ ਪਾਣੀ ਵਿੱਚ ਘੁਲੇ ਕਾਰਬੋਨੇਟਾਂ ਤੋਂ ਆਪਣੇ ਕਵਚ ਬਣਾਉਂਦੇ ਹਨ।

14.1.1 ਜਲਵਾਯੂ ਨਿਰਧਾਰਣ ਵਿੱਚ ਵਾਯੂਮੰਡਲ ਦੀ ਭੂਸਿਕਾ (Role of Atmosphere in Controlling Climate)

ਅਸੀਂ ਜਾਣ ਚੁੱਕੇ ਹਾਂ ਕਿ ਵਾਯੂਮੰਡਲ ਨੇ ਪ੍ਰਿਥਵੀ ਨੂੰ ਕੰਬਲ ਵਾਂਗ ਢੱਕਿਆ ਹੋਇਆ ਹੈ।ਅਸੀਂ ਇਹ ਵੀ ਜਾਣਦੇ ਹਾਂ ਕਿ ਹਵਾ ਤਾਪ ਦੀ ਕੁਚਾਲਕ ਹੈ। ਵਾਯੂਮੰਡਲ ਧਰਤੀ ਦੇ ਔਸਤ ਤਾਪਮਾਨ ਨੂੰ ਦਿਨ ਦੇ ਸਮੇਂ ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ ਪੂਰੇ ਸਾਲ ਲਗਭਗ ਸਥਿਰ (steady) ਰੱਖਦਾ ਹੈ। ਵਾਯੂਮੰਡਲ ਦਿਨ ਵਿੱਚ ਤਾਪਮਾਨ ਨੂੰ ਅਚਾਨਕ ਵਧਣ ਤੋਂ ਰੋਕਦਾ ਹੈ ਅਤੇ ਰਾਤ ਸਮੇਂ ਤਾਪ ਨੂੰ ਬਾਹਰੀ ਮੁਲਾੜ (Outer space) ਵਿੱਚ ਜਾਣ ਦੀ ਦਰ ਨੂੰ ਘੱਟ ਕਰਦਾ ਹੈ। ਚੰਦਰਮਾਂ ਦੇ ਬਾਰੇ ਸੋਚੋ ਜੋ ਸੂਰਜ ਤੋਂ ਲਗਭਗ ਉਨੀ ਹੀ ਦੂਰੀ ਤੇ ਹੈ ਜਿੰਨੀ ਕਿ ਪ੍ਰਿਥਵੀ। ਇਸ ਦੇ ਬਾਵਜੂਦ ਚੰਦਰਮਾਂ ਦੀ ਸਤ੍ਹਾ, ਜਿੱਥੇ ਵਾਯੂਮੰਡਲ ਨਹੀਂ ਹੈ, ਤੇ ਤਾਪਮਾਨ-190°C ਤੋਂ 110°C ਵਿੱਚ ਰਹਿੰਦਾ ਹੈ।

ਕਿਰਿਆ

14.1

ਹੇਠ ਲਿਖਿਆਂ ਦਾ ਤਾਪਮਾਨ ਮਾਪੋ :

(i) ਪਾਣੀ ਨਾਲ ਭਰਿਆ ਇੱਕ ਬੀਕਰ (ii) ਮਿੱਟੀ ਜਾਂ ਰੇਤ ਨਾਲ ਭਰਿਆ ਇੱਕ ਬੀਕਰ (iii) ਇੱਕ ਬੇਦ ਬੋਤਲ ਲਓ, ਜਿਸ ਵਿੱਚ ਬਰਮਾਮੀਟਰ ਲੱਗਿਆ ਹੋਵੇ। ਇਨ੍ਹਾਂ ਸਾਰਿਆਂ ਨੂੰ ਸੂਰਜ ਦੇ ਪ੍ਰਕਾਸ਼ ਵਿੱਚ ਤਿੰਨ ਘੰਟੇ ਤੱਕ ਰੱਖੋ। ਹੁਣ ਤਿੰਨਾਂ ਬਰਤਨਾਂ ਦੇ ਤਾਪਮਾਨ ਦਾ ਮਾਪ ਕਰੋ। ਉਸੇ ਸਮੇਂ ਛਾਂ ਵਿੱਚ ਵੀ ਤਾਪਮਾਨ ਨੂੰ ਵੇਖੋ।

ਹੁਣ ਉੱਤਰ ਦਿਉ

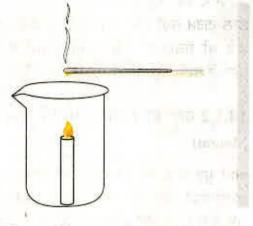
214

- 1. (i) ਜਾਂ (ii) ਵਿੱਚੋਂ ਕਿਸ ਦੇ ਤਾਪਮਾਨ ਦਾ ਮਾਪ ਵੱਧ ਹੈ।
- ਪ੍ਰਾਪਤ ਨਤੀਜੇ ਦੇ ਅਧਾਰ ਤੇ ਕਿਹੜਾ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਗਰਮ ਹੋਵੇਗਾ-ਸਥਲ ਜਾਂ ਸਮੁੰਦਰ।
- 3. ਕੀ ਛਾਂ ਵਿੱਚ ਹਵਾ ਦਾ ਤਾਪਮਾਨ ਰੋਤ ਅਤੇ ਪਾਣੀ ਦੇ ਤਾਪਮਾਨ ਦੇ ਬਰਾਬਰ ਹੋਵੇਗਾ ? ਤੁਸੀਂ ਇਸ ਦੇ ਕਾਰਨ ਬਾਰੇ ਕੀ ਸੋਚਦੇ ਹੋ ਅਤੇ ਤਾਪਮਾਨ ਨੂੰ ਛਾਂ ਵਿੱਚ ਕਿਉਂ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ ?
- 4. ਕੀ ਬੰਦ ਬੋਤਲ ਜਾਂ ਕੱਚ ਦੇ ਬਰਤਨ ਵਿੱਚ ਲਈ ਗਈ ਹਵਾ ਦਾ ਤਾਪਮਾਨ ਅਤੇ ਖੁੱਲ੍ਹੇ ਵਿੱਚ ਲਿਆ ਗਿਆ ਹਵਾ ਦਾ ਤਾਪਮਾਨ ਬਰਾਬਰ ਹਨ 7 ਇਸ ਦੇ ਕਾਰਨ ਬਾਰੇ ਤੁਸੀਂ ਕੀ ਸ਼ੋਚਦੇ ਹੋ ? ਕੀ ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਘਟਨਾਵਾਂ ਨਾਲ ਅਕਸਰ ਜਾਣ ਹੁੰਦੇ ਹਾਂ ?

ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਵੇਖਿਆ ਰੇਤ ਅਤੇ ਪਾਣੀ ਬਰਾਬਰ ਦਰ ਨਾਲ਼ ਗਰਮ ਨਹੀਂ ਹੁੰਦੇ। ਤੁਸੀਂ ਉਨ੍ਹਾਂ ਦੇ ਠੰਡੇ ਹੋਣ ਦੀ ਦਰ ਬਾਰੇ ਕੀ ਸੋਚਦੇ ਹੋ ? ਕੀ ਅਸੀਂ ਆਪਣੇ ਅਨੁਮਾਨ ਦੀ ਸਚਾਈ ਲਈ ਇੱਕ ਹੋਰ ਪ੍ਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ?

14.1.2 ਹਵਾ ਦੀ ਗਤੀ.....ਪੌਣਾਂ (Wind : Air in Motion)

ਅਸੀਂ ਪੂਰੇ ਦਿਨ ਦੀ ਗਰਮੀ ਤੋਂ ਬਾਅਦ ਸ਼ਾਮ ਨੂੰ ਵਗਣ ਵਾਲੀ ਠੰਡੀ ਹਵਾ ਨਾਲ ਰਾਹਤ ਮਹਿਸੂਸ ਕਰਦੇ ਹਾਂ। ਕਦੇ-ਕਦੇ ਕਈ ਦਿਨਾਂ ਤੱਕ ਵਧੇਰੇ ਗਰਮ ਮੌਸਮ ਤੋਂ ਬਾਅਦ ਵਰਖਾ ਹੁੰਦੀ ਹੈ। ਹਵਾ ਦੀ ਗਤੀ ਦਾ ਕੀ ਕਾਰਨ ਹੈ ਅਤੇ ਉਹ ਕਿਹੜੇ ਕਾਰਕ ਹਨ ਜਿਹੜੇ ਉਨ੍ਹਾਂ ਨੂੰ ਕਦੇ ਠੰਡੀ ਹਵਾ, ਕਦੇ ਤੇਜ਼ ਹਵਾ ਜਾਂ ਕਦੇ-ਕਦੇ ਤੂਫਾਨ ਦੇ ਰੂਪ ਵਿੱਚ ਗਤੀ ਪ੍ਰਵਾਨ ਕਰਦੇ ਹਨ ? ਵਰਖਾ ਦਾ ਕੀ ਕਾਰਨ ਹੈ ?


ਇਹ ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ ਸਾਡੇ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਹਵਾ ਦੇ ਗਰਮ ਹੋਣ ਅਤੇ ਜਲਵਾਸ਼ਪ ਬਣਨ ਦਾ ਨਤੀਜਾ ਹੈ। ਜਲਵਾਸ਼ਪ ਜੀਵਿਤ ਪ੍ਰਾਣੀਆਂ ਦੀਆਂ ਸਕਿਰਿਅਤਾਵਾਂ ਅਤੇ ਪਾਣੀ ਦੇ ਗਰਮ ਹੋਣ ਦੇ ਕਾਰਨ ਵਾਪਰਦੀਆਂ ਹਨ। ਸਥਲੀ ਭਾਗ ਜਾਂ ਜਲੀਭਾਗ ਤੋਂ ਹੋਣ ਵਾਲੇ ਵਿਕਿਰਣਾਂ ਦੇ ਪਰਾਵਰਤਨ ਅਤੇ ਪੁਨਰ ਵਿਕਿਰਣ (Re-radiation) ਕਾਰਨ ਵਾਯੂਮੰਡਲ ਗਰਮ ਹੁੰਦਾ ਹੈ। ਗਰਮ ਹੋਣ ਤੇ, ਹਵਾ ਵਿੱਚ ਸੰਵਹਿਣ ਧਾਰਾਵਾਂ (Convention current) ਉਤਪੰਨ ਹੁੰਦੀਆਂ ਹਨ। ਸੰਵਹਿਣ ਧਾਰਾਵਾਂ ਦੇ ਸੁਭਾਅ ਨੂੰ ਜਾਨਣ ਲਈ ਆਓ ਹੇਠ ਲਿਖੀ ਕਿਰਿਆ ਕਰੀਏ।

ਕਿਰਿਆ

14.2

- ਇੱਕ ਸੋਮਬੱਤੀ ਨੂੰ ਚੌੜੇ ਮੂੰਹ ਵਾਲੀ ਬੇਤਲ ਵਿੱਚ ਜਾਂ ਬੀਕਰ ਵਿੱਚ ਰੱਖੇ ਅਤੇ ਉਸ ਨੂੰ ਜਲਾਓ। ਇੱਕ ਅਗਰਬੱਤੀ ਨੂੰ ਜਲਾਓ ਅਤੇ ਉਸੇ ਬੋਤਲ ਦੇ ਮੂੰਹ ਕੋਲ ਲੈ ਜਾਓ। (ਚਿੱਤਰ 14.1)
- ਜਦੋਂ ਅਗਰਬੱਤੀ ਨੂੰ ਮੂੰਹ ਨੇੜੇ ਲਿਜਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਪ੍ਰੇਖਣ ਕਰੋ ਕਿ ਧੁੰਆਂ ਕਿਸ ਪਾਸੇ ਜਾਂਦਾ ਹੈ ?
- ਜਦੋਂ ਅਗਰਬੱਤੀ ਨੂੰ ਮੌਮਬੱਤੀ ਦੇ ਬੋੜ੍ਹਾ ਉੱਪਰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਧੁੰਆਂ ਕਿਸ ਪਾਸੇ ਜਾਂਦਾ ਹੈ ?
- ਦੂਜੇ ਭਾਗਾਂ ਵਿੱਚ ਜਦੋਂ ਅਗਰਬੱਤੀ ਨੂੰ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਧੁੰਆਂ ਕਿਸ ਪਾਸੇ ਜਾਂਦਾ ਹੈ ?

ਵਿਗਿਆਨ

ਚਿੱਤਰ 14.1 : ਹਵਾ ਦੇ ਅਸਮਾਨ ਤਾਪਨ ਨਾਲ ਹਵਾ ਪ੍ਰਵਾਹ

ਧੂੰਏਂ ਨਾਲ ਬਣਿਆ ਨਮੂਨਾ (Pattern) ਸਾਨੂੰ ਦੱਸਦਾ ਹੈ ਕਿ ਕਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਗਰਮ ਅਤੇ ਠੰਡੀਆਂ ਹਵਾਵਾਂ ਚੱਲਦੀਆਂ ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਜਦੋਂ ਹਵਾ ਸਥਲ ਅਤੇ ਜਲ ਦੇ ਵਿਕਿਰਣ ਕਾਰਨ ਗਰਮ ਹੁੰਦੀਆਂ ਹਨ ਤਾਂ ਇਹ ਉੱਪਰ ਵੱਲ ਜਾਂਦੀਆਂ ਹਨ। ਕਿਉਂਕਿ, ਜਲ ਨਾਲੋਂ ਸਥਲ ਜਲਦੀ ਗਰਮ ਹੁੰਦਾ ਹੈ ਇਸ ਲਈ ਸਥਲ ਦੇ ਉੱਪਰ ਦੀ ਹਵਾ ਜਲ ਦੇ ਉੱਪਰ ਦੀ ਹਵਾ ਨਾਲੋਂ ਛੇਤੀ ਗਰਮ ਹੋਵੇਗੀ।

ਇਸ ਲਈ ਜੇ ਅਸੀਂ ਤਟੀ ਖੇਤਰਾਂ ਨੂੰ ਦਿਨ ਵਿੱਚ ਵੇਖਦੇ ਹਾਂ ਤਾਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਸਥਲ ਦੇ ਉੱਪਰ ਦੀ ਹਵਾ ਤੇਜ਼ੀ ਨਾਲ ਗਰਮ ਹੋ ਕੇ ਉੱਪਰ ਉੱਠਣਾ ਸ਼ੁਰੂ ਕਰਦੀ ਹੈ। ਜਿਉਂ ਹੀ ਇਹ ਹਵਾ ਉੱਪਰ ਵੱਲ ਉੱਠਦੀ ਹੈ ਉੱਥੇ ਘੱਟ ਦਬਾਅ ਦਾ ਖੇਤਰ ਬਣ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਮੁੰਦਰ ਦੇ ਉੱਪਰ ਵਾਲੀ ਹਵਾ ਘੱਟ ਦਬਾਅ ਵਾਲੇ ਖੇਤਰ ਵੱਲ ਵਗਦੀ ਹੈ। ਇੱਕ ਖੇਤਰ ਤੋਂ ਦੂਜੇ ਖੇਤਰ ਵਿੱਚ ਹਵਾ ਦੀ ਗਤੀ ਪੌਣਾਂ ਦਾ ਨਿਰਮਾਣ ਕਰਦੀ ਹੈ। ਦਿਨ ਦੇ ਸਮੇਂ ਹਵਾ ਦੀ ਦਿਸ਼ਾ ਸਮੁੰਦਰ ਤੋਂ ਸਥਲ ਵੱਲ ਹੋਵੇਗੀ।

ਰਾਤ ਵੇਲੇ ਸਥਲ ਅਤੇ ਸਮੁੰਦਰ ਦੋਵੇਂ ਠੈਡੇ ਹੋਣ ਲੱਗਦੇ ਹਨ। ਕਿਉਂਕਿ ਸਥਲ ਦੀ ਬਜਾਏ ਪਾਣੀ ਹੌਲੀ-ਹੌਲੀ ਠੰਡਾ ਹੁੰਦਾ ਹੈ ਇਸ ਲਈ ਪਾਣੀ ਦੇ ਉੱਪਰ ਦੀ ਹਵਾ ਸਥਲ ਦੇ ਉੱਪਰ ਨਾਲ਼ੋਂ ਵੱਧ ਗਰਮ ਹੋਵੇਗੀ। ਉੱਪਰ ਦਿੱਤੀ ਗਈ ਪਰਿਚਰਚਾ ਦੇ ਅਧਾਰ ਤੇ ਤੁਸੀਂ ਹੇਠਲੇ ਵਿਸ਼ੇ ਬਾਰੇ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ:

 ਤੱਟੀ ਖੇਤਰਾਂ ਤੇ ਘੱਟ ਅਤੇ ਉੱਚ ਦਬਾਅ ਦੇ ਖੇਤਰ ਰਾਤ ਵੇਲੇ ਕਿਸ ਤਰ੍ਹਾਂ ਦੇ ਪ੍ਰਤੀਤ ਹੁੰਦੇ ਹਨ ?

ਤੱਟੀ ਖੇਤਰਾਂ ਵਿੱਚ ਰਾਤ ਸਮੇਂ ਹਵਾ ਦੀ ਦਿਸ਼ਾ ਕੀ ਹੋਵੇਗੀ ?

ਇਸੇ ਤਰ੍ਹਾਂ, ਹਵਾ ਦੀਆਂ ਸਾਰੀਆਂ ਗਤੀਆਂ ਵੱਖ-ਵੱਖ ਵਾਯੂਮੰਡਲੀ ਪ੍ਰਕਿਰਿਆਵਾਂ ਦਾ ਨਤੀਜਾ ਹੈ ਜੋ ਪ੍ਰਿਥਵੀ ਵਾਯੂਮੰਡਲ ਦੇ ਅਸਮਾਨ ਵਿਧੀਆਂ ਨਾਲ਼ ਗਰਮ ਹੋਣ ਦੇ ਕਾਰਨ ਹੁੰਦਾ ਹੈ। ਪਰ ਇਨ੍ਹਾਂ ਹਵਾਵਾਂ ਤੇ ਕਈ ਹੋਰ ਕਾਰਕ ਵੀ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ ਜਿਵੇਂ ਪ੍ਰਿਥਵੀ ਦੀ ਘੁੰਮਣ ਗਤੀ ਅਤੇ ਹਵਾ ਦੇ ਰਸਤੇ ਵਿੱਚ ਆਉਣ ਵਾਲੀਆਂ ਪਰਬਤ ਲੜੀਆਂ। ਅਸੀਂ ਇਨ੍ਹਾਂ ਕਾਰਕਾਂ ਬਾਰੇ ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਵਿਸਥਾਰ ਪੂਰਵਕ ਅਧਿਐਨ ਨਹੀਂ ਕਰਾਂਗੇ। ਪਰ ਇਸ ਬਾਰੇ ਸੋਚ ਸਕਦੇ ਹਾਂ : ਕਿਵੇਂ ਹਿਮਾਲਿਆ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਇਲਾਹਾਬਾਦ ਤੋਂ ਉੱਤਰ ਵੱਲ ਪ੍ਰਵਾਹਿਤ ਹੋਣ ਵਾਲੀ ਹਵਾ ਦੀ ਦਿਸ਼ਾ ਪਰਿਵਰਤਿਤ ਹੋ ਜਾਂਦੀ ਹੈ ?

14.1.3 ਵਰਖਾ (Rain)

ਆਓ ਅਸੀਂ ਇਸ ਪ੍ਰਸ਼ਨ ਤੇ ਵਿਚਾਰ ਕਰੀਏ ਕਿ ਬੱਦਲ ਕਿਵੇਂ ਬਣਦੇ ਹਨ ਅਤੇ ਵਰਖਾ ਕਰਦੇ ਹਨ ? ਅਸੀਂ ਇਸ ਲਈ ਇਕ ਸਧਾਰਣ ਪ੍ਰਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ ਜਿਸ ਤੋਂ ਪਤਾ ਲੱਗ ਸਕੇ ਕਿ ਕੁੱਝ ਕਾਰਕ ਜਲਵਾਯੂ ਨੂੰ ਕਿਵੇਂ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ।

ਕਿਰਿਆ ______14.3

- ਇੱਕ ਪਤਲੇ ਪਲਾਸਟਿਕ ਦੀ ਬੋਤਲ ਲਓ। ਇਸ ਵਿੱਚ 5 ml ਤੋਂ 10ml ਪਾਣੀ ਲਓ ਅਤੇ ਬੋਤਲ ਨੂੰ ਕੱਸ ਕੇ ਬੰਦ ਕਰੋ। ਇਸ ਨੂੰ ਚੰਗੀ ਤਰ੍ਹਾਂ ਹਿਲਾਓ ਅਤੇ 10 ਮਿੰਟ ਤੱਕ ਧੁੱਪ ਵਿੱਚ ਰੱਖੋ। ਇਸ ਨਾਲ ਬੋਤਲ ਵਿੱਚ ਮੌਜੂਦ ਹਵਾ ਜਲਵਾਸ਼ਪ ਨਾਲ ਸੰਤ੍ਰਿਪਤ ਹੋ ਜਾਂਦੀ ਹੈ।
- ਹੁਣ ਇਕ ਬਲਦੀ ਹੋਈ ਅਗਰਬੱਤੀ ਲਓ।ਬੋਤਲ ਦੇ ਢੱਕਣ ਨੂੰ ਖੋਲ੍ਹੋ ਅਤੇ ਇਸ ਅਗਰਬੱਤੀ ਦੇ ਧੂੰਏਂ ਦੀ ਕੁੱਝ ਮਾਤਰਾ ਨੂੰ ਬੋਤਲ ਦੇ ਅੰਦਰ ਜਾਣ ਦਿਓ।ਬੋਤਲ ਨੂੰ ਆਪਣੀ ਹਥੇਲੀ ਦੇ ਵਿੱਚ ਰੱਖ ਕੇ ਜਿੰਨੀ ਜ਼ੋਰ ਨਾਲ ਹੋ ਸਕੇ ਦਬਾਓ। ਕੁਝ ਸਮੇਂ ਤੱਕ ਇਤਜ਼ਾਰ ਕਰੋ ਅਤੇ ਬੋਤਲ ਨੂੰ ਛੱਡ ਦਿਊ।ਇੱਕ ਵਾਰ ਫਿਰ ਬੋਤਲ ਨੂੰ ਤੁਸੀਂ ਜਿੰਨੀ ਜ਼ੋਰ ਨਾਲ ਸੰਭਵ ਹੋਵੇ ਦਬਾਓ।

ਹੁਣ ਉੱਤਰ ਦਿਓ

 ਤੁਸੀਂ ਕਦੋਂ ਵੇਖਿਆ ਕਿ ਬੋਤਲ ਦੇ ਅੰਦਰ ਸਥਿਤ ਹਵਾ ਕੋਹਰੇ ਵਾਂਗ ਹੋ ਜਾਂਦੀ ਹੈ ?

215

ਕੁਦਰਤੀ ਸੰਸਾਧਨ

- 5% 2. ਇਹ ਕੋਹਰਾ ਜਾਂ ਧੁੰਧ ਕਦੋਂ ਖ਼ਤਮ ਹੁੰਦੀ ਹੈ ?
- ਿੱੱ 3. ਬੋਤਲ ਦੇ ਅੰਦਰ ਦਬਾਅ ਕਦੋਂ ਜ਼ਿਆਦਾ ਹੈ ?
- 4. ਕੋਹਰਾ ਜਾਂ ਧੁੰਧ ਵਿਖਾਈ ਦੇਣ ਦੀ ਹਾਲਤ ਵਿੱਚ ਬੋਤਲ
 ਦੇ ਅੰਦਰ ਦਾ ਦਬਾਅ ਘੱਟ ਹੈ ਜਾਂ ਵਧੇਰੇ ਹੈ ?
 - 5. ਇਸ ਪ੍ਰਯੋਗ ਲਈ ਬੋਤਲ ਦੇ ਅੰਦਰ ਧੂੰਏਂ ਦੀ ਜ਼ਰੂਰਤ ਕਿਉਂ ਹੈ ?
 - 6. ਕੀ ਹੋਵੇਗਾ ਜਦੋਂ ਇਸ ਪ੍ਰਯੋਗ ਨੂੰ ਬਿਨਾਂ ਅਗਰਬੱਤੀ ਦੇ ਧੁੰਏ ਨਾਲ ਕਰੋਗੇ ?

ਹੁਣ ਅਜਿਹੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ ਅਤੇ ਵੇਖੋ ਕਿ ਪੂਰਵ ਅਨੁਮਾਨ ਸਹੀ ਸੀ ਜਾਂ ਗ਼ਲਤ। ਬਹੁਤ ਛੋਟੇ ਪੱਧਰ ਤੇ ਉਪਰੋਕਤ ਪ੍ਯੋਗ ਨੂੰ ਦੁਹਰਾਓ, ਕੀ ਹੁੰਦਾ ਹੈ ਜਦ ਜਲਵਾਸ਼ਪ ਨਾਲ਼ ਭਰੀ ਹੋਈ ਹਵਾ ਉੱਚ ਦਬਾਅ ਵਾਲੇ ਖੇਤਰ ਤੋਂ ਘੱਟ ਦਬਾਅ ਵਾਲੇ ਖੇਤਰ ਵਿੱਚ ਜਾਂ ਇਸ ਦੇ ਉਲਟ ਵਗਦੀ ਹੈ।

ਦਿਨ ਵੇਲੇ ਜਦੋਂ ਜਲੀ ਭਾਗ ਗਰਮ ਹੋ ਜਾਂਦੇ ਹਨ, ਤਾਂ ਬਹੁਤ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਜਲਵਾਸ਼ਪ ਬਣ ਜਾਂਦੇ ਹਨ ਅਤੇ ਇਹ ਜਲਵਾਸ਼ਪ ਹਵਾ ਵਿੱਚ ਪ੍ਵਾਹਿਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਜਲਵਾਸ਼ਪ ਦੀ ਕੁਝ ਮਾਤਰਾ ਵੱਖ-ਵੱਖ ਜੈਵਿਕ ਕਿਰਿਆਵਾਂ ਕਾਰਨ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਚਲੀ ਜਾਂਦੀ ਹੈ। ਇਹ ਹਵਾ ਵੀ ਗਰਮ ਹੋ ਜਾਂਦੀ ਹੈ। ਗਰਮ ਹਵਾ ਆਪਣੇ ਨਾਲ਼ ਜਲਵਾਸ਼ਪ ਨੂੰ ਲੈ ਕੇ ਉੱਪਰ ਵੱਲ ਉੱਠ ਜਾਂਦੀ ਹੈ। ਜਿਉਂ ਹੀ ਹਵਾ ਉੱਪਰ ਜਾਂਦੀ ਹੈ ਇਹ ਫੈਲਦੀ ਹੈ ਅਤੇ ਠੰਡੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਠੰਡਾ ਹੋਣ ਦੇ ਕਾਰਨ ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਜਲਵਾਸ਼ਪ ਛੋਟੀਆਂ-ਛੋਟੀਆਂ ਪਾਣੀ ਦੀਆਂ ਬੂੰਦਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਘਣਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। ਪਾਣੀ ਦਾ ਇਹ ਸੰਘਣਨ (Condensation) ਸਹਿਜ ਹੁੰਦਾ ਹੈ ਜੇ ਕੁਝ ਕਣ ਨਾਭਿਕ ਵਾਂਗ ਕੰਮ ਕਰਕੇ ਆਪਣੇ ਆਲੇ-ਦੁਆਲੇ ਹੋਰ ਬੂੰਦਾਂ ਨੂੰ ਜਮ੍ਹਾਂ ਹੋਣ ਦਿੰਦੇ ਹਨ। ਆਮ ਤੌਰ ਤੇ ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਧੂੜ ਦੇ ਕਣ ਦੂਜੇ ਲਟਕਦੇ ਕਣ ਨਾਭਿਕ ਦੇ ਰੂਪ ਵਿੱਚ ਕਾਰਜ ਕਰਦੇ ਹਨ।

ਇੱਕ ਵਾਰ ਜਦ ਪਾਣੀ ਦੀਆਂ ਬੂੰਦਾਂ ਬਣ ਜਾਂਦੀਆਂ ਹਨ ਤਾਂ ਉਹ ਸੰਘਣਿਤ ਹੋਣ ਕਾਰਨ ਵੱਡੀਆਂ ਹੋ ਜਾਂਦੀਆਂ ਹਨ।ਜਦੋਂ ਇਹ ਬੂੰਦਾਂ ਵੱਡੀਆਂ ਅਤੇ ਭਾਰੀਆਂ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਤਾਂ ਇਹ ਵਰਖਾ ਦੇ ਰੂਪ ਵਿੱਚ ਹੇਠਾਂ ਵੱਲ ਡਿੱਗਦੀਆਂ ਹਨ। ਕਦੇ-ਕਦੇ ਜਦੋਂ ਹਵਾ ਦਾ ਤਾਪਮਾਨ ਕਾਫ਼ੀ ਘੱਟ ਹੋ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਹ ਬਰਫ਼, ਬਰਫ਼ ਵਾਲਾ ਮੀਂਹ ਜਾਂ ਗੜਿਆਂ (Hails) ਦੇ ਰੂਪ ਵਿੱਚ ਡਿੱਗਦੀਆਂ ਹਨ। ਵਰਖਾ ਦਾ ਪੈਟਰਨ, ਪਵਨਾਂ ਦੇ ਪੈਟਰਨ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਭਾਰਤ ਦੇ ਬਹੁਤ ਵੱਡੇ ਭੂਮੀ ਭਾਗ ਵਿੱਚ ਵਰਖਾ ਵਧੇਰੇ ਦੱਖਣ ਪੱਛਮ ਜਾਂ ਉੱਤਰ ਪੂਰਬੀ ਮਾਨਸੂਨ ਦੇ ਕਾਰਨ ਹੁੰਦੀ ਹੈ। ਅਸੀਂ ਮੌਸਮ ਸੂਚਨਾਵਾਂ ਵਿੱਚ ਵੀ ਸੁਣਿਆ ਹੈ ਕਿ ਬੰਗਾਲ ਦੀ ਖਾੜੀ ਵਿੱਚ ਹਵਾ ਦਾ ਦਬਾਅ ਘੱਟ ਹੋਣ ਕਾਰਨ ਕਈ ਖੇਤਰਾਂ ਵਿੱਚ ਵਰਖਾ ਹੋਈ।

ਚਿੱਤਰ 14.2 : ਭਾਰਤ ਦੇ ਬੱਦਲਾਂ ਦਾ ਉਪਗ੍ਰਹਿ ਦੁਆਰਾ ਦਰਸਾਇਆ ਚਿੱਤਰ

ਕਿਰਿਆ

14.4

- ਪੂਰੇ ਦੇਸ਼ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਵਰਖਾ ਦੇ ਪੈਟਰਨ ਬਾਰੇ ਅਖ਼ਬਾਰ ਜਾਂ ਟੈਲੀਵਿਜ਼ਨ ਦੇ ਮਾਧਿਅਮ ਰਾਹੀਂ ਮੌਸਮ ਸੂਚਨਾਵਾਂ ਦੀ ਜਾਣਕਾਰੀ ਇਕੱਠੀ ਕਰੋ। ਇਹ ਵੀ ਪਤਾ ਲਗਾਓ ਕਿ ਇੱਕ ਵਰਖਾ ਮਾਪਕ ਯੋਤਰ ਕਿਵੇਂ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਉਸ ਨੂੰ ਬਣਾਓ। ਵਰਖਾ ਮਾਪਕ ਯੰਤਰ ਨਾਲ ਸਹੀ ਡਾਟਾ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕਿਹੜੀਆਂ-ਕਿਹੜੀਆਂ ਸਾਵਧਾਨੀਆਂ ਲੈਣੀਆਂ ਜ਼ਰੂਰੀ ਹਨ ? ਹੁਣ ਹੇਠ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ :
 - (i) ਕਿਸ ਮਹੀਨੇ ਤੁਹਾਡੇ ਸ਼ਹਿਰ/ਨਗਰ/ਪਿੰਡ ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਵਰਖਾ ਹੋਈ ?
 - (ii) ਕਿਸ ਮਹੀਨੇ ਤੁਹਾਡੇ ਰਾਜ/ਕੇਂਦਰ ਸ਼ਾਸਤ ਪ੍ਰਦੇਸ਼ ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਵਰਖਾ ਹੋਈ ?
 - (iii) ਕੀ ਵਰਖਾ ਹਮੇਸ਼ਾ ਬੱਦਲ ਗੱਜਣ ਅਤੇ ਬਿਜਲੀ ਚਮਕਣ ਨਾਲ ਹੁੰਦੀ ਹੈ ? ਜੇ ਨਹੀਂ ਤਾਂ ਕਿਸ ਮੌਸਮ ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਵਰਖਾ, ਬੱਦਲ ਗੱਜਣ ਅਤੇ ਬਿਜਲੀ ਚਮਕਣ ਨਾਲ ਹੁੰਦੀ ਹੈ ?

ਕਿਰਿਆ_____

- 14.5
- ਲਾਇਬਰੇਰੀ ਵਿੱਚੋਂ ਮਾਨਸੂਨ ਅਤੇ ਚੱਕਰਵਾਤ ਦੇ ਬਾਰੇ ਵਿੱਚ ਹੋਰ ਵਧੇਰੇ ਜਾਣਕਾਰੀ ਇਕੱਠੀ ਕਰੋ। ਕਿਸੇ ਦੂਜੇ ਦੇਸ਼ ਦੀ

216


ਵਿਗਿਆਨ

ਵਰਖਾ ਦੇ ਪੈਟਰਨ ਦਾ ਪਤਾ ਲਗਾਓ। ਕੀ ਪੂਰੇ ਵਿਸ਼ਵ ਲਈ ਮਾਨਸੁਨ ਜ਼ਿੰਮੇਵਾਰ ਹੁੰਦਾ ਹੈ ?

14.1.4 ਹਵਾ ਪ੍ਰਦੂਸ਼ਣ (Air Pollution)

ਅਸੀਂ ਖ਼ਬਰਾਂ ਵਿੱਚ ਅਕਸਰ ਸੁਣਦੇ ਹਾਂ ਕਿ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਸਲਫ਼ਰ ਦੇ ਆਕਸਾਈਡਾਂ ਦਾ ਪੱਧਰ ਵੱਧ ਰਿਹਾ ਹੈ। ਲੋਕ ਅਕਸਰ ਦੁੱਖ ਪ੍ਰਗਟਾਉਂਦੇ ਹਨ ਕਿ ਉਨ੍ਹਾਂ ਦੇ ਬਚਪਨ ਤੋਂ ਲੈ ਕੇ ਹੁਣ ਤੱਕ ਹਵਾ ਦੀ ਗੁਣਵੱਤਾ ਵਿੱਚ ਕਮੀ ਆਈ ਹੈ। ਹਵਾ ਦੀ ਗੁਣਵੱਤਾ ਕਿਵੇਂ ਪ੍ਰਭਾਵਿਤ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਗੁਣਵੱਤਾ ਵਿੱਚ ਆਏ ਪਰਿਵਰਤਨ ਸਾਨੂੰ ਅਤੇ ਦੂਜੇ ਜੀਵਾਂ ਨੂੰ ਕਿਵੇਂ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ ?

ਪਥਰਾਟ ਬਾਲਣ ਜਿਵੇਂ ਕੋਲਾ ਅਤੇ ਪੈਟ੍ਰੋਲੀਅਮ ਪਦਾਰਥਾਂ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਸਲਫਰ ਦੀ ਮਾਤਰਾ ਬਹੁਤ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਜਦ ਇਹ ਬਾਲਣ ਬਲਦੇ ਹਨ ਤਾਂ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਸਲਫ਼ਰ ਵੀ ਇਸਦੇ ਨਾਲ ਬਲਦੇ ਹਨ ਅਤੇ ਇਹ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਸਲਫ਼ਰ ਵੱਖ-ਵੱਖ ਆਕਸਾਈਡ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਗੈਸਾਂ ਨੂੰ ਸਿਰਫ਼ ਸਾਹ ਦੇ ਰੂਪ ਵਿੱਚ ਲੈਣਾ ਹੀ ਖ਼ਤਰਨਾਕ ਨਹੀਂ ਹੈ ਸਗੋਂ ਇਹ ਵਰਖਾ ਦੇ ਪਾਣੀ ਵਿੱਚ ਮਿਲ ਕੇ ਤੇਜ਼ਾਬੀ ਵਰਖਾ ਵੀ ਕਰਦੇ ਹਨ। ਬਾਲਣਾਂ ਦਾ ਜਲਣਾ ਹਵਾ ਵਿੱਚ ਲਟਕਦੇ ਕਣਾਂ ਦੀ ਮਾਤਰਾ ਨੂੰ ਵੀ ਵਧਾ ਦਿੰਦਾ ਹੈ। ਇਹ ਲਟਕਦੇ ਕਣ ਬਿਨਾਂ ਜਲੇ ਕਾਰਬਨ ਕਣ ਜਾਂ ਪਦਾਰਥ ਹੋ ਸਕਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਹਾਈਡ੍ਰੋਕਾਰਬਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਸਾਰੇ ਪ੍ਰਦੁਸ਼ਕਾਂ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ

ਚਿੱਤਰ 14.3 : ਲਾਈਕੇਨ

ਵਿੱਚ ਮੌਜੂਦਗੀ ਦਿਖਣਯੋਗਤਾ (Visibility) ਨੂੰ ਘੱਟ ਕਰ ਸਕਦੀ ਹੈ। ਖਾਸ ਕਰਕੇ ਸਰਦੀ ਦੇ ਮੌਸਮ ਵਿੱਚ ਜਦੋਂ ਪਾਣੀ ਵੀ ਹਵਾ ਦੇ ਨਾਲ਼ ਸੰਘਣਿਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਸਮਾਂਗ (Smog) ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਇਹ ਹਵਾ ਪ੍ਰਦੂਸ਼ਣ ਵੱਲ ਸੰਕੇਤ ਕਰਦੇ ਹਨ। ਅਧਿਐਨਾਂ ਤੋਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਵਾਲੀ ਹਵਾ ਵਿੱਚ ਸਾਹ ਲੈਣ ਨਾਲ ਕੈਂਸਰ, ਦਿਲ ਦਾ ਰੋਗ ਜਾਂ ਐਲਰਜੀ ਵਰਗੀਆਂ ਬਿਮਾਰੀਆਂ ਹੋਣ ਦੀਆਂ ਸੰਭਾਵਨਾਵਾਂ ਵਧੇਰੇ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਇਨ੍ਹਾਂ ਹਾਨੀਕਾਰਕ ਪਦਾਰਥਾਂ ਦੇ ਵਧਣ ਨੂੰ ਹਵਾ ਪ੍ਰਦੂਸ਼ਣ (Air Pollution) ਕਹਿੰਦੇ ਹਨ।

ਕਿਰਿਆ____

14.6

ਲਾਈਕੇਨ ਨਾਂ ਦੇ ਜੀਵ ਹਵਾ ਵਿੱਚ ਮੌਜੂਦ ਸਲਫ਼ਰ-ਡਾਈਆਕਸਾਈਡ ਦੇ ਪੱਧਰ ਪ੍ਰਤੀ ਵਧੇਰੇ ਸੰਵੇਦੀ ਹੁੰਦੇ ਹਨ। ਜਿਵੇਂ ਕਿ ਅਨੁਭਾਗ 7.3.3. ਵਿੱਚ ਦੱਸਿਆ ਜਾ ਚੁੱਕਾ ਹੈ। ਇਹ ਆਮ ਤੌਰ 'ਤੇ ਰੁੱਖਾਂ ਦੇ ਛਿਲਕੇ ਤੇ ਪਤਲੇ ਹਰੇ ਅਤੇ ਚਿੱਟੇ ਰੰਗ ਦੀ ਪਰਤ ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਜੇ ਤੁਹਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਰੁੱਖਾਂ ਤੇ ਲਾਈਕੇਨ ਹੈ ਤਾਂ ਤੁਸੀਂ ਉਸ ਨੂੰ ਵੇਖ ਸਕਦੇ ਹੋ।

- ਭੀੜ-ਭਾੜ ਵਾਲੀ ਸੜਕ ਨੇੜੇ ਰੁੱਖਾਂ ਤੇ ਸਥਿਤ ਲਾਈਕੇਨ ਅਤੇ ਕੁਝ ਦੂਰੀ ਤੇ ਸਥਿਤ ਰੁੱਖਾਂ ਤੇ ਸਥਿਤ ਲਾਈਕੇਨ ਦੀ ਤੁਲਨਾ ਕਰੋ।
- ਸੜਕ ਦੇ ਨੇੜੇ ਸਥਿਤ ਰੁੱਖਾਂ ਤੇ, ਸੜਕ ਦੇ ਵੱਲ ਸਤ੍ਹਾ ਤੇ ਲੱਗੇ ਲਾਈਕੇਨ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਸੜਕ ਦੀ ਉਲਟ ਦਿਸ਼ਾ ਦੇ ਵੱਲ ਸਤ੍ਹਾ ਤੇ ਲੱਗੇ ਲਾਈਕੇਨ ਦੀ ਤੁਲਨਾ ਕਰੋ।

ਉੱਪਰ ਪ੍ਰਾਪਤ ਲੱਛਣਾਂ ਦੇ ਅਧਾਰ ਤੇ ਤੁਸੀਂ ਸੜਕ ਦੇ ਕੰਢੇ ਜਾਂ ਦੂਰ ਪ੍ਰਦੂਸ਼ਣ ਫੈਲਾਉਣ ਵਾਲੇ ਪਦਾਰਥਾਂ ਦੇ ਪੱਧਰ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ ?

- ਸ਼ਨ 1. ਸ਼ੁਕਰ ਅਤੇ ਮੰਗਲ ਗ੍ਰਹਿਆਂ ਦੇ ਵਾਯੂਮੰਡਲ ਨਾਲੋਂ ਸਾਡਾ ਵਾਯੂਮੰਡਲ ਕਿਵੇਂ ਭਿੰਨ ਹੈ ?
 - ਵਾਯੂਮੰਡਲ ਇੱਕ ਕੈਬਲ ਦੀ ਤਰ੍ਹਾਂ ਕਿਵੇਂ ਕਾਰਜ ਕਰਦਾ ਹੈ ?
 - 3. ਹਵਾ ਪ੍ਰਵਾਹ (ਪੌਣ) ਦੇ ਕੀ ਕਾਰਨ ਹਨ ?
 - 4. ਬੱਦਲਾਂ ਦਾ ਨਿਰਮਾਣ ਕਿਵੇਂ ਹੁੰਦਾ ਹੈ ?
 - ਮਨੁੱਖ ਦੀਆਂ ਤਿੰਨ ਕਿਰਿਆਵਾਂ ਦਾ ਵਰਨਣ ਕਰੋ ਜਿਹੜੀਆਂ ਹਵਾ ਪ੍ਰਦੂਸ਼ਣ ਵਿੱਚ ਸਹਾਇਕ ਹਨ।

ਕੁਦਰਤੀ ਸੰਸਾਧਨ

217

14.2 ਪਾਣੀ : ਇੱਕ ਅਦਭੁਤ ਦਵ (Water : A

Wonder Liquid)

ਪਾਣੀ ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਦੇ ਸਭ ਤੋਂ ਵੱਡੇ ਭਾਗ ਤੇ ਮੌਜੂਦ ਹੈ ਅਤੇ ਇਹ ਭੂਮੀਗਤ ਵੀ ਹੋ ਸਕਦਾ ਹੈ। ਪਾਣੀ ਦੀ ਕੁਝ ਮਾਤਰਾ ਜਲਵਾਸ਼ਪ ਦੇ ਰੂਪ ਵਿੱਚ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਵੀ ਮਿਲਦੀ ਹੈ। ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਮਿਲਣ ਵਾਲਾ ਵਧੇਰੇ ਪਾਣੀ ਸਮੁੰਦਰਾਂ ਅਤੇ ਮਹਾਂਸਾਗਰਾਂ ਵਿੱਚ ਹੈ ਅਤੇ ਇਹ ਖਾਰਾ ਹੈ। ਸ਼ੁੱਧ ਪਾਣੀ ਬਰਫ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਦੋਵਾਂ ਧਰੁਵਾਂ ਤੇ ਅਤੇ ਬਰਫ਼ ਨਾਲ਼ ਢੱਕੇ ਪਹਾੜਾਂ ਤੇ ਮਿਲਦਾ ਹੈ। ਭੂਮੀਗਤ ਜਲ, ਨਦੀਆਂ, ਝੀਲਾਂ ਅਤੇ ਤਲਾਬਾਂ ਦਾ ਪਾਣੀ ਵੀ ਸ਼ੁੱਧ ਹੁੰਦਾ ਹੈ। ਫਿਰ ਵੀ ਇਸ ਪਾਣੀ ਦੀ ਉਪਲੱਬਧਤਾ ਵੱਖ-ਵੱਖ ਥਾਵਾਂ ਤੇ ਵੱਖ-ਵੱਖ ਹੁੰਦੀ ਹੈ। ਗਰਮੀ ਵਿੱਚ ਵਧੇਰੇ ਥਾਵਾਂ ਤੇ ਪਾਣੀ ਦੀ ਕਮੀ ਹੁੰਦੀ ਹੈ। ਪੇਂਡੂ ਇਲਾਕਿਆਂ ਵਿੱਚ ਜਿੱਥੇ ਜਲ ਪੂਰਤੀ ਦੀ ਵਿਵਸਥਾ ਨਹੀਂ ਹੈ ਉੱਥੇ ਲੋਕਾਂ ਦਾ ਵਧੇਰੇ ਸਮਾਂ ਦੂਰ ਤੋਂ ਪਾਣੀ ਲਿਆਉਣ ਵਿੱਚ ਖ਼ਰਚ ਹੁੰਦਾ ਹੈ।

ਕਿਰਿਆ

14.7

- ਕਈ ਨਗਰ ਨਿਗਮ ਪਾਣੀ ਦੀ ਉਪਲੱਬਧਤਾ ਨੂੰ ਵਧਾਉਣ ਲਈ ਜਲ-ਭੰਡਾਰ ਤਕਨੀਕਾਂ ਤੇ ਕੰਮ ਕਰ ਰਹੇ ਹਨ।
- ਪਤਾ ਲਗਾਓ ਉਹ ਕਿਹੜੀਆਂ ਤਕਨੀਕਾਂ ਹਨ ਅਤੇ ਇਹ ਵਰਤੋਂ ਲਈ ਉਪਲੱਬਧ ਪਾਣੀ ਦੀ ਮਾਤਰਾ ਵਧਾਉਣ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਸਹਾਇਕ ਹਨ।

ਪਰ ਪਾਣੀ ਐਨਾ ਜ਼ਰੂਰੀ ਕਿਉਂ ਹੈ ? ਅਤੇ ਕੀ ਸਾਰੇ ਪ੍ਰਾਣੀਆਂ ਨੂੰ ਪਾਣੀ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ ? ਸਾਰੀਆਂ ਸੈੱਲ ਪ੍ਰਕਿਰਿਆਵਾਂ ਜਲ ਮਾਧਿਅਮ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ। ਸਾਰੀਆਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਜਿਹੜੀਆਂ ਸਾਡੇ ਸਰੀਰ ਵਿੱਚ ਜਾਂ ਸੈੱਲਾਂ ਦੇ ਅੰਦਰ ਹੁੰਦੀਆਂ ਹਨ, ਉਹ ਪਾਣੀ ਵਿੱਚ ਘੁਲ਼ੇ ਹੋਏ ਪਦਾਰਥਾਂ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ, ਉਹ ਪਾਣੀ ਵਿੱਚ ਘੁਲ਼ੇ ਹੋਏ ਪਦਾਰਥਾਂ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ। ਸਰੀਰ ਦੇ ਇੱਕ ਭਾਗ ਤੋਂ ਦੂਜੇ ਭਾਗ ਵਿੱਚ ਪਦਾਰਥਾਂ ਦਾ ਸੰਵਹਿਣ ਘੁਲ਼ੇ ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਜੀਵਤ ਪ੍ਰਾਣੀ ਜੀਵਤ ਰਹਿਣ ਲਈ ਆਪਣੇ ਸਰੀਰ ਵਿੱਚ ਪਾਣੀ ਦੀ ਮਾਤਰਾ ਨੂੰ ਸੰਤੁਲਿਤ ਬਣਾ ਕੇ ਰੱਖਦੇ ਹਨ। ਸਥਲੀ ਜੀਵਾਂ ਨੂੰ ਜੀਵਤ ਰਹਿਣ ਲਈ ਸ਼ੁੱਧ ਪਾਣੀ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਕਿਉਂਕਿ ਖਾਰੇ ਪਾਣੀ ਦੀ ਵਧੇਰੇ ਮਾਤਰਾ ਹੋਣ ਕਾਰਨ ਜੀਵਾਂ ਦਾ ਸਰੀਰ ਉਸ ਨੂੰ ਸਹਿਣ ਨਹੀਂ ਕਰ ਸਕਦਾ। ਇਸ ਲਈ ਪ੍ਰਾਣੀਆਂ ਅਤੇ ਪੌਦਿਆਂ ਨੂੰ ਧਰਤੀ ਤੇ ਜੀਵਤ ਰਹਿਣ ਲਈ ਅਸਾਨੀ ਨਾਲ ਪਾਣੀ ਉਪਲੱਬਧੀ ਦੇ ਸਰੋਤ ਜ਼ਰੂਰੀ ਹਨ।

বিবিশা

ਕਿਸੇ ਨਦੀ, ਤਲਾਬ ਜਾਂ ਝੀਲ ਦੇ ਨੇੜੇ ਥੋੜ੍ਹੀ ਜਿਹੀ ਥਾਂ ਚੁਣੋਂ (ਮੰਨ ਲਓ ਇੱਕ ਵਰਗ ਮੀਟਰ) ਇਸ ਖੇਤਰ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਵੱਖ-ਵੱਖ ਪੌਦਿਆਂ ਅਤੇ ਜੇਤੂਆਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਗਿਣੋਂ।ਹਰੇਕ ਪ੍ਰਜਾਤੀ (Species) ਦੀ ਵੱਖ-ਵੱਖ ਗਣਨਾ ਕਰੋ।

14.8

- ਇਸ ਦੀ ਤੁਲਨਾ ਸ਼ੁੱਕੇ ਅਤੇ ਪਥਰੀਲੇ ਭਾਗ ਦੇ ਓਨੇ ਹੀ ਵੱਡੇ ਖੇਤਰ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਜੰਤੂਆਂ ਅਤੇ ਪੈਂਦਿਆਂ ਨਾਲ਼ ਕਰੋ।
- ਕੀ ਦੋਵਾਂ ਖੇਤਰਾਂ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਪੌਦੇ ਅਤੇ ਜੰਤੂ ਇੱਕ ਹੀ ਤਰ੍ਹਾਂ ਦੇ ਹਨ ?

ਕਿਰਿਆ_____14.9

- ਆਪਣੇ ਸਕੂਲ ਦੇ ਅੰਦਰ ਜਾਂ ਸਕੂਲ ਦੇ ਨੇੜੇ ਵਰਤੋਂ ਵਿੱਚ ਨਾ ਆਉਣ ਵਾਲੀ ਕੁਝ ਭੂਮੀ ਨੂੰ ਚੁਣੋਂ (ਲਗਭਗ ਇਕ ਵਰਗ ਮੀਟਰ) ਅਤੇ ਉਸ ਦੀ ਨਿਸ਼ਾਨਦੇਹੀ ਕਰੋ।
- ਉਸੇ ਤਰ੍ਹਾਂ ਉਸ ਖੇਤਰ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਵੱਖ-ਵੱਖ ਜੰਤੂਆਂ ਅਤੇ ਪੌਦਿਆਂ ਅਤੇ ਹਰੇਕ ਸਪੀਸ਼ਿਜ ਦੇ ਜੀਵਾਂ ਦੀ ਸੰਖਿਆਵਾਂ ਦੀ ਗਣਨਾ ਕਰੋ।
- ਉਸੇ ਥਾਂ ਤੇ ਗਣਨਾ ਸਾਲ ਵਿੱਚ ਦੋ ਵਾਰ ਕਰੋ, ਇੱਕ ਵਾਰੀ ਗਰਮੀ ਜਾਂ ਸੁੱਕੇ ਮੌਸਮ ਵਿੱਚ ਅਤੇ ਦੂਜੀ ਵਾਰੀ ਵਰਖਾ ਦੇ ਮੰਸਮ ਤੋਂ ਬਾਅਦ।

ਹੁਣ ਉੱਤਰ ਦਿਓ

- । ਕੀ ਦੋਵੇਂ ਵਾਰ ਸੰਖਿਆਵਾਂ ਸਮਾਨ ਸਨ ?
- 2 ਕਿਸ ਜੋਸਮ ਵਿੱਚ ਤੁਹਾਨੂੰ ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੇ ਪੇਂਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਦੀ ਸੰਖਿਆ ਵਧੇਰੇ ਲੱਗੀ ?
- 3. ਹਰੇਕ ਕਿਸਮ ਦੇ ਜੀਵਾਂ ਦੀ ਸੋਖਿਆ ਕਿਸ ਮੌਸਮ ਵਿੱਚ ਵਧੇਰੇ ਸੀ ?

ਉਪਰੋਕਤ ਦੋਵਾਂ ਕਿਰਿਆਵਾਂ ਦੇ ਨਤੀਜਿਆਂ ਨੂੰ ਇਕੱਠੇ ਕਰਨ ਤੋਂ ਬਾਅਦ ਤੁਸੀਂ ਵਿਚਾਰ ਕਰੋ ਕਿ ਕੀ ਪਾਣੀ ਦੀ ਮਾਤਰਾ ਦੀ ਉਪਲੱਬਧਤਾ ਦਾ ਸੰਬੰਧ ਪੌਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਦੀ ਕਿੰਸਮ ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਸੰਖਿਆ ਨਾਲ਼ ਹੈ ਜਿਹੜੇ ਇੱਕ ਨਿਸ਼ਚਿਤ ਜਾਂ ਦਿੱਤੀ ਹੋਈ ਥਾਂ ਤੇ ਰਹਿ ਸਕਦੇ ਹਨ। ਜੇ ਸੰਬੰਧ ਹੈ ਤਾਂ ਦੱਸੇ ਕਿ ਤੁਹਾਨੂੰ ਕਿਸ ਖੇਤਰ ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕਿਸਮ ਅਤੇ ਜੀਵਨ ਦੀ ਉਪਲੱਬਧਤਾ ਮਿਲੇਗੀ,-200 ਸੈਂ. ਮੀ. ਵਰਖਾ ਵਾਲੇ ਖੇਤਰ ਜਾਂ 5 ਸੈਂ. ਮੀ. ਵਰਖਾ ਵਾਲੇ ਖੇਤਰ ਵਿੱਚ। ਐਟਲਸ ਵਿੱਚ ਵਰਖਾ ਦੇ ਪੈਟਰਨ ਵਾਲੇ ਨਕਸ਼ੇ ਨੂੰ ਵੇਖੋ ਅਤੇ ਇਹ ਦੱਸੋ ਕਿ ਭਾਰਤ ਦੇ ਕਿਸ ਰਾਜ

218

ਵਿਗਿਆਨ

ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਜੈਵ ਵਿਭਿੰਨਤਾ (biodiversity) ਹੋਵੇਗੀ ਅਤੇ ਕਿਸ ਰਾਜ ਵਿੱਚ ਘੱਟ। ਅੰਦਾਜ਼ਾ ਸਹੀ ਹੈ ਜਾਂ ਗ਼ਲਤ ਇਸ ਦੀ ਪਰਖ ਕਰਨ ਲਈ ਕੀ ਅਸੀਂ ਕਿਸੇ ਢੰਗ ਤੇ ਵਿਚਾਰ ਕਰ ਸਕਦੇ ਹਾਂ ?

ਪਾਣੀ ਦੀ ਉਪਲੱਬਧਤਾ ਹਰੇਕ ਸਪੀਸ਼ਿਜ ਦੇ ਵਰਗ ਜੋ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਖੇਤਰ ਵਿੱਚ ਜੀਵਤ ਰਹਿਣ ਵਿੱਚ ਸਮਰੱਥ ਹੈ, ਦੀ ਸੰਖਿਆ ਨੂੰ ਹੀ ਨਿਰਧਾਰਤ ਨਹੀਂ ਕਰਦੀ ਸਗੋਂ ਉਹ ਉੱਥੋਂ ਦੇ ਜੀਵਨ ਵਿੱਚ ਵਿਲੱਖਣਤਾ ਨੂੰ ਵੀ ਨਿਰਧਾਰਤ ਕਰਦੀ ਹੈ। ਭਾਵੇਂ ਪਾਣੀ ਦੀ ਉਪਲੱਬਧਤਾ ਹੀ ਸਿਰਫ਼ ਇਕ ਕਾਰਜ ਨਹੀਂ ਹੈ ਜਿਹੜਾ ਉਸ ਖੇਤਰ ਵਿੱਚ ਜੀਵਨ ਲਈ ਜ਼ਰੂਰੀ ਹੈ। ਦੂਜੇ ਕਾਰਕ ਜਿਵੇਂ ਤਾਪਮਾਨ ਅਤੇ ਮਿੱਟੀ ਦਾ ਸੁਭਾਅ ਵੀ ਮਹੱਤਵਪੂਰਨ ਹੈ। ਪਰ ਪਾਣੀ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਸਾਧਨ ਹੈ, ਜਿਹੜਾ ਜੀਵਨ ਨੂੰ ਸਥਲ ਤੇ ਨਿਰਧਾਰਤ ਕਰਦਾ ਹੈ।

14.2.1 ਜਲ ਪ੍ਰਦੂਸ਼ਣ (Water Pollution)

ਪਾਣੀ ਉਨ੍ਹਾਂ ਕੀਟਨਾਸ਼ਕਾਂ ਅਤੇ ਖਾਦਾਂ ਨੂੰ ਵੀ ਘੋਲ਼ ਲੈਂਦਾ ਹੈ ਜਿਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਅਸੀਂ ਖੇਤਾਂ ਵਿੱਚ ਕਰਦੇ ਹਾਂ ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਦਾ ਕੁਝ ਪ੍ਰਤੀਸ਼ਤ ਭਾਗ ਪਾਣੀ ਵਿੱਚ ਚਲਾ ਜਾਂਦਾ ਹੈ। ਸਾਡੇ ਸ਼ਹਿਰ ਜਾਂ ਪਿੰਡ ਦੇ ਨਾਲ਼ੇ ਦਾ ਪਾਣੀ ਅਤੇ ਉਦਯੋਗਾਂ ਦੀਆਂ ਬਹੁਤ ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਠੰਡਕ ਬਣਾ ਕੇ ਰੱਖਣ ਲਈ ਪਾਣੀ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਉਤਪੰਨ ਗਰਮ ਪਾਣੀ ਨੂੰ ਜਲ-ਭੰਡਾਰਾਂ ਵਿੱਚ ਵਾਪਸ ਭੇਜ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਜਦ ਬੰਨ੍ਹ (Dam) ਤੋਂ ਪਾਣੀ ਨੂੰ ਛੱਡਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਨਦੀਆਂ ਦੇ ਪਾਣੀ ਦੇ ਤਾਪਮਾਨ ਤੇ ਵੀ ਪ੍ਰਭਾਵ ਪੈਂਦਾ ਹੈ। ਡੂੰਘੇ ਜਲ-ਭੰਡਾਰਾਂ ਦੇ ਅੰਦਰ ਦਾ ਪਾਣੀ ਸੂਰਜ ਦੇ ਰਾਹੀਂ ਗਰਮ ਹੋ ਕੇ ਉਤਲੀ ਸਤ੍ਹਾ ਦੇ ਪਾਣੀ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਠੰਡਾ ਹੋਵੇਗਾ।

ਇਹ ਸਾਰੇ ਜਲ-ਭੈਡਾਰਾਂ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਜੀਵਾਂ ਦੀਆਂ ਕੁਝ ਕਿਸਮਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਤਰੀਕਿਆਂ ਨਾਲ਼ ਪ੍ਭਾਵਿਤ ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਕੁਝ ਜੀਵਾਂ ਦੇ ਵਧਣ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦੇ ਹਨ, ਅਤੇ ਕੁਝ ਜੀਵਾਂ ਨੂੰ ਹਾਨੀ ਪਹੁੰਚਾ ਸਕਦੇ ਹਨ। ਇਹ ਇਸ ਪ੍ਣਾਲੀ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਵੱਖ-ਵੱਖ ਜੀਵਾ ਦੇ ਸੰਤੁਲਨ ਨੂੰ ਵਿਗਾੜ ਸਕਦੇ ਹਨ। ਇਸ ਲਈ ਅਸੀਂ ਹੇਠ ਲਿਖੇ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਵਿਖਾਉਣ ਦੇ ਲਈ ਜਲ ਪ੍ਰਦੂਸ਼ਣ ਸ਼ਬਦ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ। ਜਲ ਭੰਡਾਰਾਂ ਵਿੱਚ ਅਣਇੱਛਤ ਪਦਾਰਥਾਂ ਦਾ ਮਿਲਣਾ। ਇਹ ਪਦਾਰਥ ਕੀਟਨਾਸ਼ਕ ਜਾਂ ਖਾਦਾਂ ਹੋ ਸਕਦੇ ਹਨ ਜਿਹੜੇ ਖੇਤਾਂ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਹਨ ਜਾਂ ਉਹ ਕਾਗਜ਼ ਉਦਯੋਗ ਵਿੱਚ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਜ਼ਹਿਰੀਲੇ ਪਦਾਰਥ ਜਿਵੇਂ ਪਾਰੇ ਦੇ ਲੂਣ ਹੋ ਸਕਦੇ ਹਨ। ਇਹ ਬਿਮਾਰੀ ਫੈਲਾਉਣ ਵਾਲੇ ਜੀਵ ਜਿਵੇਂ ਹੈਜਾ ਫੈਲਾਉਣ ਵਾਲੇ ਬੈਕਟੀਰੀਆ ਵੀ ਹੋ ਸਕਦੇ ਹਨ।

- ਇੱਛਤ ਪਦਾਰਥਾਂ ਨੂੰ ਜਲ ਭੰਡਾਰਾਂ ਤੋਂ ਹਟਾਉਣਾ। ਘੁਲ਼ੀ ਹੋਈ ਆਕਸੀਜਨ ਪਾਣੀ ਵਿੱਚ ਰਹਿਣ ਵਾਲੇ ਪੋਦਿਆਂ ਅਤੇ ਜੰਤੂਆਂ ਰਾਹੀਂ ਵਰਤੀ ਜਾਂਦੀ ਹੈ। ਕਿਸੇ ਵੀ ਤਰ੍ਹਾਂ ਦਾ ਪਰਿਵਰਤਨ ਜਿਹੜਾ ਇਸ ਘੁਲ਼ੀ ਹੋਈ ਆਕਸੀਜਨ ਦੀ ਮਾਤਰਾ ਨੂੰ ਘਟਾਉਂਦਾ ਹੈ ਉਸ ਦਾ ਜਲੀ-ਜੀਵਾਂ ਤੇ ਉਲਟਾ ਅਸਰ ਪਾਂਦਾ ਹੈ। ਜਲ-ਭੰਡਾਰ ਵਿੱਚੋਂ ਪੋਸ਼ਕਾਂ ਦੀ ਘਾਟ ਵੀ ਹੋ ਸਕਦੀ ਹੈ।
- 3. ਤਾਪਮਾਨ ਵਿੱਚ ਪਰਿਵਰਤਨ : ਜਲੀ ਜੀਵ ਜਿਸ ਜਲ-ਭੰਡਾਰ ਵਿੱਚ ਰਹਿੰਦੇ ਹਨ ਉਥੋਂ ਦੇ ਇੱਕ ਖਾਸ ਤਾਪਮਾਨ ਦੇ ਅਨੁਕੂਲ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਸ ਤਾਪਮਾਨ ਵਿੱਚ ਅਚਾਨਕ ਪਰਿਵਰਤਨ ਉਨ੍ਹਾਂ ਲਈ ਖਤਰਨਾਕ ਹੋਵੇਗਾ ਜਾਂ ਪ੍ਰਜਨਣ ਦੀ ਕਿਰਿਆ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰੇਗਾ। ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੇ ਜੰਤੂਆਂ ਦੇ ਆਂਡੇ ਅਤੇ ਲਾਰਵੇ ਤਾਪਮਾਨ ਪਰਿਵਰਤਨ ਪ੍ਰਤੀ ਸੰਵੇਦਨਸ਼ੀਲ ਹੁੰਦੇ ਹਨ।

 ਜੀਵਾਂ ਨੂੰ ਪਾਣੀ ਦੀ ਜ਼ਰੂਰਤ ਕਿਉਂ ਹੁੰਦੀ ਹੈ ।
 ਜਿਸ ਪਿੰਡ ਕਸਬੇ ਸ਼ਹਿਰ ਵਿੱਚ ਤੁਸੀਂ ਰਹਿੰਦੇ ਹੋ ਉੱਚੇ ਉਪਲੰਬਪ ਸ਼ੁੱਧ ਪਾਣੀ ਦਾ ਮੁੱਖ ਸਰੋੜ ਕਿਹੜਾ ਜੋ :

। ਕੀ ਤੁਸੀਂ ਕਿੱਸੇ ਕਿਰਿਆ ਦੇ ਬਾਰ ਵਿੱਚ ਜਾਣਦੇ ਹੋ ਜਿਹੜਾ ਇਸ ਪਾਣੀ ਦੇ ਸਰੋਤ ਨੂੰ ਪ੍ਰਦੂਸ਼ਿੰਤ ਕਰਦਾ ਹੋ 7

14.3 ਮਿੱਟੀ ਵਿੱਚ ਖਣਿਜ ਦੀ ਭਰਪੂਰਤਾ

(Abundance of Minerals in Soil)

ਇੱਕ ਖੇਤਰ ਵਿੱਚ ਜੀਵਨ ਦੀ ਵਿਲੱਖਣਤਾ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਵਾਲ਼ਾ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਸਾਧਨ ਮਿੱਟੀ ਹੈ। ਪਰ

ਕਦਰਤੀ ਸੰਸਾਸ਼ਨ

219

ਮਿੱਟੀ ਕੀ ਹੈ ਅਤੇ ਇਹ ਕਿਵੇਂ ਬਣਦੀ ਹੈ? ਧਰਤੀ ਦੀ ਸਭ ਦੀ ਬਾਹਰੀ ਪਰਤ ਨੂੰ ਪੇਪੜੀ (crust) ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਪਰਤ ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਖਣਿਜ ਜੀਵਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੇ ਪਾਲਣ-ਪੋਸ਼ਣ ਕਰਨ ਵਾਲੇ ਤੱਤ ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਪਰ ਜੇ ਇਹ ਖਣਿਜ ਵੱਡੀਆਂ ਚਟਾਨਾਂ ਨਾਲ ਜੁੜੇ ਹੁੰਦੇ ਹਨ ਤਾਂ ਇਹ ਜੀਵਾਂ ਲਈ ਉਪਲੱਬਧ ਨਹੀਂ ਹੋਣਗੇ। ਹਜ਼ਾਰਾਂ ਅਤੇ ਲੱਖਾਂ ਵਰ੍ਹਿਆਂ ਦੇ ਲੰਮੇ ਸਮੇਂ ਅੰਤਰਾਲ ਵਿੱਚ ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਜਾਂ ਉਸ ਦੇ ਨਾਲ ਮਿਲਣ ਵਾਲੀਆਂ ਚਟਾਨਾਂ ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੀਆਂ ਭੌਤਿਕ, ਰਸਾਇਣਿਕ ਅਤੇ ਕੁਝ ਜੈਵਿਕ ਕਿਰਿਆਵਾਂ ਰਾਹੀਂ ਟੁੱਟ ਜਾਂਦੀਆਂ ਹਨ। ਟੁੱਟਣ ਤੋਂ ਬਾਅਦ ਸਭ ਤੋਂ ਅੰਤ ਵਿੱਚ ਬਚਿਆ ਬਰੀਕ ਕਣ ਮਿੱਟੀ ਹੈ। ਪਰ ਕਿਹੜੇ ਕਾਰਕ ਜਾਂ ਪ੍ਰਕਿਰਿਆਵਾਂ ਹਨ ਜਿਨ੍ਹਾਂ ਨਾਲ ਮਿੱਟੀ ਬਣਦੀ ਹੈ ?

- ਸੂਰਜ (Sun) : ਸੂਰਜ ਦਿਨ ਵੇਲੇ ਚਟਾਨਾਂ ਨੂੰ ਗਰਮ ਕਰ ਦਿੰਦਾ ਹੈ ਜਿਸ ਨਾਲ ਉਹ ਫੈਲ ਜਾਂਦੀਆਂ ਹਨ। ਰਾਤ ਵੇਲੇ ਇਹ ਚਟਾਨਾਂ ਠੰਡੀਆਂ ਹੋ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਸ਼ੁੰਗੜ ਜਾਂਦੀਆਂ ਹਨ। ਕਿਉਂਕਿ ਚਟਾਨ ਦਾ ਹਰ ਭਾਗ ਅਸਮਾਨ ਰੂਪ ਨਾਲ ਫੈਲਦਾ ਅਤੇ ਸ਼ੁੰਗੜਦਾ ਹੈ, ਅਜਿਹਾ ਬਾਰ-ਬਾਰ ਹੋਣ ਨਾਲ ਚਟਾਨ ਵਿੱਚ ਤਰੇੜ ਆ ਜਾਂਦੀ ਹੈ ਅਤੇ ਅੰਤ ਵਿੱਚ ਇਹ ਵੱਡੀ ਚਟਾਨ ਟੁੱਟ ਕੇ ਛੋਟੇ-ਛੋਟੇ ਟਕੜਿਆਂ ਵਿੱਚ ਵੰਡੀ ਜਾਂਦੀ ਹੈ।
- ਜਲ (Water) : ਪਾਣੀ ਮਿੱਟੀ ਦੇ ਬਣਨ ਵਿੱਚ ਦੋ ਤਰ੍ਹਾਂ ਨਾਲ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ। ਪਹਿਲਾ ਸੂਰਜ ਦੇ ਤਾਪ ਤੋਂ ਬਣੇ ਚਟਾਨਾਂ ਦੀਆਂ ਤਰੇੜਾਂ ਵਿੱਚ ਜਾ ਸਕਦਾ ਹੈ। ਜੇ ਇਹ ਪਾਣੀ ਬਾਅਦ ਵਿੱਚ ਜੰਮ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਇਹ ਤਰੇੜ ਨੂੰ ਹੋਰ ਚੌੜਾ ਕਰੇਗਾ। ਕੀ ਤੁਸੀਂ ਸੋਚ ਸਕਦੇ ਹੋ ਕਿ ਅਜਿਹਾ ਕਿਉਂ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ? ਦੂਜਾ ਵਹਿੰਦਾ ਪਾਣੀ ਕਠੋਰ ਚਟਾਨਾਂ ਨੂੰ ਵੀ ਤੋੜ ਦਿੰਦਾ ਹੈ। ਤੇਜ਼ ਗਤੀ ਨਾਲ ਵਗਦਾ ਹੋਇਆ ਪਾਣੀ ਅਕਸਰ ਆਪਣੇ ਨਾਲ ਵੱਡੇ ਅਤੇ ਛੋਟੇ ਚਟਾਨਾਂ ਦੇ ਟੁਕੜਿਆਂ ਨੂੰ ਵਹਾ ਕੇ ਲੈ ਜਾਂਦਾ ਹੈ। ਇਹ ਚਟਾਨਾਂ ਦੂਜੀਆਂ ਚਟਾਨਾਂ ਨਾਲ ਟਕਰਾ ਕੇ ਛੋਟੇ-ਛੋਟੇ ਕਣਾਂ ਵਿੱਚ ਬਦਲ ਜਾਂਦੀਆਂ ਹਨ। ਪਾਣੀ ਚਟਾਨਾਂ ਦੇ ਇਨ੍ਹਾਂ ਕਣਾਂ ਨੂੰ ਆਪਣੇ ਨਾਲ

ਲੈ ਜਾਂਦਾ ਹੈ ਅਤੇ ਅੱਗੇ ਇਕੱਠਾ ਕਰ ਦਿੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਮਿੱਟੀ ਆਪਣੀ ਮੂਲ ਚਟਾਨ ਤੋਂ ਕਾਫ਼ੀ ਦੂਰ ਸਥਾਨ ਤੇ ਮਿਲਦੀ ਹੈ।

- ਹਵਾ (Air) : ਜਿਸ ਤਰ੍ਹਾਂ ਪਾਣੀ ਵਿੱਚ ਚਟਾਨਾਂ ਇੱਕ ਦੂਜੇ ਨਾਲ ਟਕਰਾਉਣ ਨਾਲ ਟੁੱਟਦੀਆਂ ਹਨ ਉਸੇ ਤਰ੍ਹਾਂ ਤੇਜ਼ ਹਵਾਵਾਂ ਵੀ ਚਟਾਨਾਂ ਨੂੰ ਤੋੜ ਦਿੰਦੀਆਂ ਹਨ। ਹਵਾ ਪਾਣੀ ਦੀ ਤਰ੍ਹਾਂ ਹੀ ਰੇਤ ਨੂੰ ਇੱਕ ਥਾਂ ਤੋਂ ਦੂਜੀ ਥਾਂ ਤਕ ਲੈ ਜਾਂਦੀ ਹੈ।
- ਜੀਵ (Organisms) : ਜੀਵ ਵੀ ਮਿੱਟੀ ਦੇ ਬਣਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ। ਲਾਈਕੇਨ ਜਿਸ ਬਾਰੇ ਅਸੀਂ ਪਹਿਲਾਂ ਪੜ੍ਹਿਆ ਹੈ, ਚਟਾਨਾਂ ਦੀ ਸਤ੍ਹਾ ਤੇ ਵੀ ਉੱਗਦੇ ਹਨ। ਵਧਣ ਦੌਰਾਨ ਉਹ ਇੱਕ ਪਦਾਰਥ ਛੱਡਦੇ ਹਨ ਜਿਹੜਾ ਚਟਾਨ ਦੀ ਸਤ੍ਹਾ ਨੂੰ ਪਾਊਡਰ ਵਾਂਗ ਕਰ ਦਿੰਦਾ ਹੈ ਅਤੇ ਮਿੱਟੀ ਦੀ ਇੱਕ ਪਤਲੀ ਪਰਤ ਦਾ ਨਿਰਮਾਣ ਕਰਦਾ ਹੈ। ਹੁਣ ਇਸ ਸਤ੍ਹਾ ਤੇ ਮਾੱਸ (moss) ਵਰਗੇ ਦੂਜੇ ਛੋਟੇ ਪੌਦੇ ਉੱਗਣ ਵਿੱਚ ਸਮਰੱਥ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਹ ਚਟਾਨ ਨੂੰ ਵਧੇਰੇ ਤੋੜਦੇ ਹਨ। ਵੱਡੇ ਰੁੱਖਾਂ ਦੀਆਂ ਜੜ੍ਹਾਂ ਕਦੇ-ਕਦੇ ਚਟਾਨਾਂ ਵਿੱਚ ਬਣੀਆਂ ਤਰੇੜਾਂ ਵਿੱਚ ਚਲੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਉਹ ਤਰੇੜਾਂ ਨੂੰ ਚੌੜਾ ਕਰ ਦਿੰਦੀਆਂ ਹਨ।

ਕਿਰਿਆ

14.10

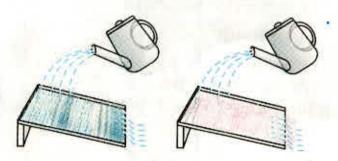
- ਹੁਣ ਮਿੱਟੀ ਲਓ ਅਤੇ ਉਸ ਨੂੰ ਪਾਣੀ ਦੇ ਭਰੇ ਬੀਕਰ ਵਿੱਚ ਪਾ ਦਿਓ। ਲਈ ਗਈ ਮਿੱਟੀ ਦੀ ਮਾਤਰਾ ਨਾਲੋਂ ਲਗਪਗ ਪੰਜ ਗੁਣਾਂ ਪਾਣੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਿੱਟੀ ਅਤੇ ਪਾਣੀ ਨੂੰ ਮਿਲਾਓ ਅਤੇ ਫਿਰ ਮਿੱਟੀ ਨੂੰ ਹੇਠਾਂ ਇਕੱਠਾ ਹੋਣ ਦਿਓ। ਕੁਝ ਸਮੇਂ ਬਾਅਦ ਪ੍ਰੇਖਣ ਕਰੋ।
- ਕੀ ਬੀਕਰ ਦੇ ਤਲ ਤੇ ਮਿੱਟੀ ਸਮਅੰਗੀ ਹੈ ਜਾਂ ਪਰਤਾਂ ਵਿੱਚ ਬਣੀ ਹੈ 7
- ਜੇ ਪਰਤਾਂ ਵਿੱਚ ਬਣੀ ਹੈ ਤਾਂ ਕਿਸ ਤਰ੍ਹਾਂ ਇੱਕ ਪਰਤ ਦੂਜੀ ਪਰਤ ਤੋਂ ਭਿੰਨ ਹੈ ?
- ਕੀ ਤੁਸੀਂ ਸੋਚ ਸਕਦੇ ਹੋ ਕਿ ਪਾਣੀ ਵਿੱਚ ਕੁਝ ਪਦਾਰਥ ਘੁਲੇ ਹੋਣਗੇ ? ਤੁਸੀਂ ਇਸ ਨੂੰ ਕਿਵੇਂ ਰੋਕੋਗੇ ?

ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ ਵੇਖਿਆ ਹੈ, ਮਿੱਟੀ ਇੱਕ ਮਿਸ਼ਰਣ ਹੈ। ਇਸ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਅਕਾਰ ਦੇ ਛੋਟੇ-ਛੋਟੇ ਟੁਕੜੇ ਮਿਲੇ

220

ਵਿਗਿਆਨ

ਹੁੰਦੇ ਹਨ। ਇਸ ਵਿੱਚ ਸੜੇ-ਗਲੇ ਜੀਵਾਂ ਦੇ ਟੁਕੜੇ ਵੀ ਮਿਲੇ ਹੁੰਦੇ ਹਨ, ਜਿਸ ਨੂੰ ਮਲੜ (humus) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤੋਂ ਇਲਾਵਾ, ਮਿੱਟੀ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੇ ਸੁਖਮ ਜੀਵ ਵੀ ਮਿਲੇ ਹੁੰਦੇ ਹਨ। ਮਿੱਟੀ ਦਾ ਫੈਸਲਾ ਉਸ ਵਿੱਚ ਮਿਲੇ ਕਣਾਂ ਦੇ ਔਸਤ ਅਕਾਰ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਮਿੱਟੀ ਦੇ ਗੁਣ ਨੂੰ ਉਸ ਵਿੱਚ ਮਲ੍ਹੜ ਦੀ ਮਾਤਰਾ ਅਤੇ ਮਿਲਣ ਵਾਲੇ ਸੁਖਮ ਜੀਵਾਂ ਦੇ ਅਧਾਰ ਤੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਮਿੱਟੀ ਦੀ ਰਚਨਾ ਦਾ ਮੁੱਖ ਕਾਰਕ ਮਲ੍ਹੜ ਹੈ ਕਿਉਂਕਿ ਇਹ ਮਿੱਟੀ ਨੂੰ ਸੋਖਕ ਬਣਾਉਂਦਾ ਹੈ ਅਤੇ ਹਵਾ ਅਤੇ ਪਾਣੀ ਨੂੰ ਧਰਤੀ ਅੰਦਰ ਜਾਣ ਵਿੱਚ ਸਹਾਇਕ ਹੁੰਦਾ ਹੈ। ਖਣਿਜ ਪੋਸ਼ਕ ਤੱਤ ਜੋ ਉਸ ਮਿੱਟੀ ਵਿੱਚ ਮਿਲਦੇ ਹਨ ਉਹ ਉਨ੍ਹਾਂ ਚਟਾਨਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ ਜਿਸ ਤੋਂ ਮਿੱਟੀ ਬਣੀ ਹੁੰਦੀ ਹੈ। ਕਿਸ ਮਿੱਟੀ ਵਿੱਚ ਕਿਹੜਾ ਪੌਦਾ ਹੋਵੇਗਾ ਇਹ ਇਸ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ ਕਿ ੳਸ ਮਿੱਟੀ ਵਿੱਚ ਪੋਸ਼ਕ ਤੱਤ ਕਿੰਨੇ ਹਨ, ਮਲ੍ਹੜ ਦੀ ਮਾਤਰਾ ਕਿੰਨੀ ਹੈ ਅਤੇ ਉਸ ਦੀ ਡੂੰਘਾਈ ਕਿੰਨੀ ਹੈ ? ਇਸ ਤਰ੍ਹਾਂ, ਮਿੱਟੀ ਦੀ ਉੱਪਰੀ ਪਰਤ ਵਿੱਚ ਜਿਸ ਵਿੱਚ ਮਿੱਟੀ ਦੇ ਕਣਾਂ ਦੇ ਇਲਾਵਾ ਮਲੁੜ ਅਤੇ ਜੀਵ ਮੌਜਦ ਹੁੰਦੇ ਹਨ, ਉਸ ਨੂੰ ਉੱਪਰੀ ਮਿੱਟੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਉੱਪਰੀ ਮਿੱਟੀ ਦੇ ਗੁਣ ਜਿਹੜੇ ਉਸ ਖੇਤਰ ਦੀ ਜੈਵਿਕ ਵਿਲੱਖਣਤਾ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਦੀ ਹੈ, ਵਿੱਚ ਇੱਕ ਮਹੱਤਵਪੂਰਣ ਕਾਰਕ ਹੈ।


ਆਧੁਨਿਕ ਖੇਤੀ ਵਿੱਚ ਕੀਟਨਾਸ਼ਕਾਂ ਅਤੇ ਖਾਦਾਂ ਦੀ ਬਹੁਤ ਵੱਡੀ ਮਾਤਰਾ ਵਿੱਚ ਵਰਤੋਂ ਹੋ ਰਹੀ ਹੈ। ਲੰਮੇ ਸਮੇਂ ਤੱਕ ਇਨ੍ਹਾਂ ਪਦਾਰਥਾਂ ਦੀ ਵਰਤੋਂ ਕਰਨ ਨਾਲ਼ ਮਿੱਟੀ ਦੇ ਸੂਖਮ ਜੀਵ ਮਰ ਜਾਂਦੇ ਹਨ ਅਤੇ ਮਿੱਟੀ ਦੀ ਬਣਤਰ ਨੂੰ ਨਸ਼ਟ ਕਰ ਸਕਦੇ ਹਨ ਜਿਹੜੇ ਕਿ ਮਿੱਟੀ ਦੇ ਪੋਸ਼ਕ ਤੱਤਾਂ ਦਾ ਪੁਨਰ ਚੱਕਰ (recycle) ਕਰਦੇ ਹਨ। ਮਲ੍ਹੜ ਬਣਾਉਣ ਵਿੱਚ ਸਹਾਇਕ ਭੂਮੀ ਵਿੱਚ ਮੌਜੂਦ ਗੰਡੋਇਆਂ ਨੂੰ ਵੀ ਇਹ ਖਤਮ ਕਰ ਸਕਦੇ ਹਨ। ਜੇ ਸੰਭਾਲ ਨਾ ਕੀਤੀ ਜਾਵੇ ਤਾਂ ਉਪਜਾਊ ਮਿੱਟੀ ਜਲਦੀ ਬੰਜਰ ਭੂਮੀ ਵਿੱਚ ਪਰਿਵਰਤਿਤ ਹੋ ਸਕਦੀ ਹੈ। ਲਾਭਦਾਇਕ ਘਟਕਾਂ ਦਾ ਮਿੱਟੀ ਤੋਂ ਹਟਣਾਂ ਅਤੇ ਹੋਰ ਦੂਜੇ ਹਾਨੀਕਾਰਕ ਪਦਾਰਥਾਂ ਦਾ ਮਿੱਟੀ ਵਿੱਚ ਮਿਲਣਾ ਜਿਹੜੇ ਮਿੱਟੀ ਦੀ ਉਪਜਾਊ ਸ਼ਕਤੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ ਅਤੇ ਉਸ ਵਿੱਚ ਮੌਜੂਦ ਜੈਵਿਕ ਵਿਲੱਖਣਤਾ ਨੂੰ ਨਸ਼ਟ ਕਰ ਦਿੰਦੇ ਹਨ। ਇਸ ਨੂੰ ਭੂਮੀ-ਪ੍ਰਦੂਸ਼ਣ (Soil Pollution) ਕਹਿੰਦੇ ਹਨ।

ਮਿੱਟੀ ਜਿਸ ਨੂੰ ਅਸੀਂ ਅੱਜ ਇੱਕ ਥਾਂ ਤੇ ਵੇਖਦੇ ਹਾਂ ਉਹ ਲੰਮੇ ਸਮੇਂ ਅੰਤਰਾਲ ਦੇ ਬਾਅਦ ਬਣੀ ਹੈ। ਭਾਵੇਂ ਮਿੱਟੀ ਨੂੰ ਬਣਾਉਣ ਵਾਲੇ ਕੁਝ ਕਾਰਕ ਇਸ ਨੂੰ ਦੂਜੇ ਥਾਂ ਤੇ ਪਹੁੰਚਾਉਣ ਦੇ ਲਈ ਵੀ ਜ਼ਿੰਮੇਵਾਰ ਹੋ ਸਕਦੇ ਹਨ। ਮਿੱਟੀ ਦੇ ਬਰੀਕ ਕਣ, ਵੱਗਦੀ ਹਵਾ ਜਾਂ ਪਾਣੀ ਦੇ ਨਾਲ ਹੀ ਸਥਾਨ ਅੰਤਰਿਤ ਹੋ ਸਕਦੇ ਹਨ। ਮਿੱਟੀ ਦੇ ਸਾਰਿਆਂ ਕਣਾਂ ਦੇ ਸਥਾਨ ਅੰਤਰਿਤ ਹੋ ਜਾਣ ਤੇ ਸਖ਼ਤ ਚਟਾਨ ਬਾਹਰ ਆ ਜਾਂਦੀ ਹੈ। ਇਸ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਸਾਧਨ ਮਿੱਟੀ ਦੀ ਹਾਨੀ ਹੋ ਜਾਂਦੀ ਹੈ ਕਿਉਂਕਿ ਚਟਾਨ ਤੇ ਉਪਜਾਊ ਸ਼ਕਤੀ ਬਹੁਤ ਘੱਟ ਹੁੰਦੀ ਹੈ।

ਕਿਰਿਆ

14.11

- ਇੱਕ ਹੀ ਤਰ੍ਹਾਂ ਦੀਆਂ ਦੋ ਟਰੇਆਂ ਲਓ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਮਿੱਟੀ ਨਾਲ ਭਰ ਦਿਉ। ਇੱਕ ਟਰੇਅ ਵਿੱਚ ਸਰ੍ਹੋਂ ਜਾਂ ਚੌਲ਼ ਜਾਂ ਹਰੇ ਚਨੇ ਦਾ ਪੌਦਾ ਉਗਾਓ ਅਤੇ ਦੋਹਾਂ ਟਰੇਆਂ ਵਿੱਚ ਤਦ ਤੱਕ ਪਾਣੀ ਦਿਓ ਜਦ ਤਕ ਕਿ ਜਿਸ ਟਰੇਅ ਵਿੱਚ ਪੌਦਾ ਉਗਾਇਆ ਹੈ ਉਹ ਪੈਂਦੇ ਦੇ ਫੈਲਾਅ ਨਾਲ਼ ਢੱਕ ਨਾ ਜਾਏ। ਇਹ ਸੁਨਿਸ਼ਚਿਤ ਕਰੋ ਕਿ ਦੋਵੇਂ ਟਰੇਆਂ ਇੱਕ ਹੀ ਕੋਣ ਤੇ ਝੁਕੀਆਂ ਹੋਣ। ਦੋਵਾਂ ਟਰੇਆਂ ਵਿੱਚ ਪਾਣੀ ਬਰਾਬਰ ਮਾਤਰਾ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਪਾਓ ਕਿ ਪਾਣੀ ਬਾਹਰ ਵੱਲ ਨਿਕਲ ਜਾਵੇ।
- ਟਰੇਆਂ ਤੋਂ ਬਾਹਰ ਜਾਣ ਵਾਲੀ ਮਿੱਟੀ ਦੀ ਮਾਤਰਾ ਦਾ ਅਧਿਐਨ ਕਰੇ। ਕੀ ਵਹਿਣ ਵਾਲੀ ਮਿੱਟੀ ਦੀ ਮਾਤਰਾ ਦੋਵਾਂ ਟਰੇਆਂ ਵਿੱਚ ਬਰਾਬਰ ਹੈ ?
- ਹੁਣ ਕੁਝ ਉਚਾਈ ਤੋਂ ਦੋਵਾਂ ਟਰੇਆਂ ਵਿੱਚ ਬਰਾਬਰ ਮਾਤਰਾ ਵਿੱਚ ਪਾਣੀ ਤਿੰਨ ਚਾਰ ਵਾਰ ਪਾਓ।
- ਹੁਣ ਮਿੱਟੀ ਦੀ ਮਾਤਰਾ ਦਾ ਅਧਿਐਨ ਕਰੋ ਜਿਹੜੀ ਟਰੇਆਂ ਵਿੱਚੋਂ ਬਾਹਰ ਨਿਕਲ ਗਈ ਹੈ। ਕੀ ਦੋਵਾਂ ਟਰੇਆਂ ਵਿੱਚ ਮਿੱਟੀ ਦੀ ਮਾਤਰਾ ਬਰਾਬਰ ਹੈ ?

ਚਿੱਤਰ 14:4 : ਵੱਗਦੇ ਪਾਣੀ ਦਾ ਉੱਪਰੀ ਮਿੱਟੀ ਅਤੇ ਸਤ੍ਹਾ ਦੀ ਮਿੱਟੀ ਤੇ ਪ੍ਰਭਾਵ

ਪੌਦਿਆਂ ਦੀਆਂ ਜੜ੍ਹਾਂ ਭੋਂ-ਖੋਰ (Soil erosion) ਨੂੰ ਰੋਕਣ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੀਆਂ ਹਨ।

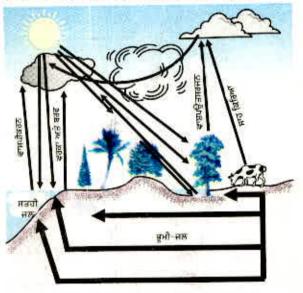
ਕੁਦਰਤੀ ਸੰਸਾਧਨ

221

ਵੱਡੇ ਪੱਧਰ ਤੇ ਜੰਗਲਾਂ ਦਾ ਕੱਟਣਾ (ਜਿਹੜੇ ਪੂਰੇ ਸੰਸਾਰ ਵਿੱਚ ਹੋ ਰਿਹਾ ਹੈ) ਨਾ ਸਿਰਫ਼ ਜੈਵਿਕ ਵਿਲੱਖਣਤਾ ਨੂੰ ਨਸ਼ਟ ਕਰ ਰਿਹਾ ਹੈ ਸਗੋਂ ਮਿੱਟੀ ਦੇ ਖ਼ੁਰਨ ਲਈ ਵੀ ਜ਼ਿੰਮੇਵਾਰ ਹੈ। ਬਨਸਪਤੀ ਲਈ ਸਹਾਇਕ ਉੱਪਰਲੀ ਮਿੱਟੀ, ਭੋਂ ਖੋਰ ਦੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ ਤੇਜ਼ੀ ਨਾਲ਼ ਘਟਾ ਸਕਦੀ ਹੈ । ਇਹ ਪਹਾੜੀ ਅਤੇ ਪਰਬਤੀ ਭਾਗਾਂ ਵਿੱਚ ਪ੍ਵੇਗ ਨਾਲ ਹੁੰਦਾ ਹੈ। ਮਿੱਟੀ ਦੇ ਖੁਰਨ ਦੀ ਇਸ ਕਿਰਿਆ (ਭੋਂ-ਖੋਰ) ਨੂੰ ਰੋਕਣਾ ਬਹੁਤ ਮੁਸ਼ਕਿਲ ਹੈ। ਸਤ੍ਹਾ ਤੇ ਮਿਲਣ ਵਾਲੀ ਬਨਸਪਤੀ, ਪਾਣੀ ਦੀਆਂ ਪਰਤਾਂ ਦੇ ਅੰਦਰ ਜਾਣ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੀ ਹੈ।

- ਸ਼ਨ
 - ਮਿੱਟੀ ਦਾ ਨਿਰਮਾਣ ਕਿਸ ਤਰ੍ਹਾਂ ਹੁੰਦਾ ਹੈ 🕴
 - डें-चेत वी ਹੈ ?
 - ਭੋਂ-ਖੋਰ ਨੂੰ ਰੋਕਣ ਅਤੇ ਘੱਟ ਕਰਨ ਦੇ ਕਿਹੜੇ-ਕਿਹੜੇ ਤਰੀਕੇ ਹਨ ?

14.4 ਜੈਵ ਰਸਾਇਣਿਕ ਚੱਕਰ


(Biogeochemical Cycle)

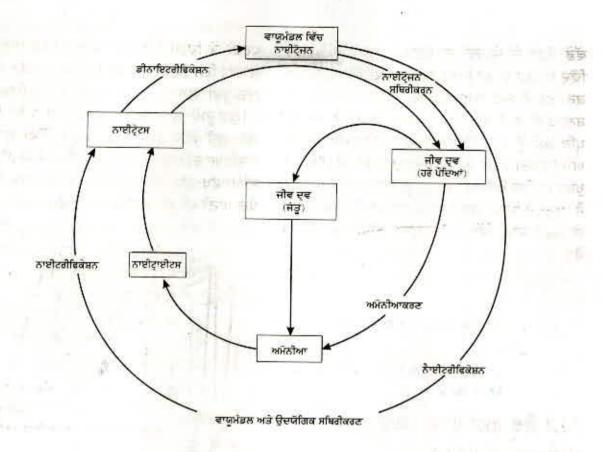
ਜੀਵ ਮੰਡਲ ਦੇ ਜੈਵਿਕ ਅਤੇ ਅਜੈਵਿਕ ਘਟਕਾਂ ਵਿੱਚ ਅੰਤਰ ਕਿਰਿਆ (interaction) ਜੀਵ ਮੰਡਲ ਨੂੰ ਗਤੀਸ਼ੀਲ ਅਤੇ ਸਥਿਰ ਬਣਾਉਂਦਾ ਹੈ। ਇਸ ਅੰਤਰ ਕਿਰਿਆ ਰਾਹੀਂ ਜੀਵਮੰਡਲ ਦੇ ਵੱਖ-ਵੱਖ ਘਟਕਾਂ ਵਿੱਚ ਪਦਾਰਥ ਅਤੇ ਊਰਜਾ ਦਾ ਸਥਾਨ ਅੰਤਰਣ ਹੁੰਦਾ ਹੈ। ਆਓ ਵੇਖਦੇ ਹਾਂ ਕਿ ਉਹ ਕਿਹੜੀਆਂ-ਕਿਹੜੀਆਂ ਕਿਰਿਆਵਾਂ ਹਨ ਜਿਹੜੀਆਂ ਸੰਤੁਲਨ ਨੂੰ ਬਣਾ ਕੇ ਰੱਖਦੀਆਂ ਹਨ।

14.4.1 ਜਲ-ਚੱਕਰ (Water-cycle)

ਤੁਸੀਂ ਵੇਖਿਆ ਹੈ ਕਿ ਜਲ-ਭੰਡਾਰਾਂ ਤੇ ਪਾਣੀ ਦੇ ਵਾਸ਼ਪੀਕਰਨ ਅਤੇ ਫਿਰ ਸੰਘਣਨ ਤੋਂ ਬਾਅਦ ਵਰਖਾ ਕਿਵੇਂ ਹੁੰਦੀ ਹੈ। ਪਰ ਅਸੀਂ ਸਮੁੰਦਰਾਂ ਨੂੰ ਸ਼ੁੱਕਦੇ ਹੋਏ ਨਹੀਂ ਵੇਖਿਆ, ਫਿਰ ਕਿਸ ਤਰ੍ਹਾਂ ਪਾਣੀ ਇਨ੍ਹਾਂ ਜਲ-ਭੰਡਾਰਾਂ ਵਿੱਚ ਵਾਪਸ ਆਉਂਦਾ ਹੈ ? ਪੂਰੀ ਪ੍ਰਕਿਰਿਆ ਨੂੰ, ਜਿਸ ਰਾਹੀਂ ਪਾਣੀ ਜਲਵਾਸ਼ਪ ਬਣਦਾ ਹੈ ਅਤੇ ਫਿਰ ਵਰਖਾ ਦੇ ਰੂਪ ਵਿੱਚ ਸਤ੍ਹਾ ਤੇ ਡਿੱਗਦਾ ਹੈ ਅਤੇ ਫਿਰ ਨਦੀਆਂ ਰਾਹੀਂ ਸਮੁੰਦਰ ਵਿੱਚ ਪਹੁੰਚ ਜਾਂਦਾ ਹੈ, ਜਲ-ਚੱਕਰ (Water-Cycle) ਕਹਿੰਦੇ ਹਨ। ਇਹ ਚੱਕਰ ਉਨਾ ਅਸਾਨ ਅਤੇ ਸਰਲ ਨਹੀਂ ਜਿੰਨਾ ਕਿ ਲਿਖਤ ਤੋਂ ਲੱਗਦਾ ਹੈ।ਉਹ ਸਾਰਾ ਪਾਣੀ ਜਿਹੜਾ

ਧਰਤੀ ਤੇ ਡਿਗਦਾ ਹੈ ਛੇਤੀ ਸਮੁੰਦਰ ਵਿੱਚ ਨਹੀਂ ਪੁੱਜਦਾ ਜਾਂਦਾ। ਇਸ ਵਿੱਚੋਂ ਕੁਝ ਮਿੱਟੀ ਦੇ ਅੰਦਰ ਚਲਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਭੂਮੀ-ਜਲ (Ground Water) ਦਾ ਹਿੱਸਾ ਬਣ ਜਾਂਦਾ ਹੈ। ਕੁਝ ਭੂਮੀ-ਜਲ ਝਰਨਿਆਂ ਰਾਹੀਂ ਸਤ੍ਹਾ ਤੇ ਆ ਜਾਂਦਾ ਹੈ ਜਾਂ ਅਸੀਂ ਇਸ ਨੂੰ ਆਪਣੀ ਵਰਤੋਂ ਲਈ ਖੂਹਾਂ ਅਤੇ ਨਲਕਿਆਂ ਦੀ ਮਦਦ ਨਾਲ ਸਤ੍ਹਾ ਤੇ ਲਿਆਉਂਦੇ ਹਾਂ। ਜੀਵਨ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਸਥਲੀ ਜੀਵ ਜੰਤੂ ਅਤੇ ਪੌਦੇ ਪਾਣੀ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ (ਚਿੱਤਰ 14.5)।

ਚਿੱਤਰ 14.5 : ਕੁਦਰਤ ਵਿੱਚ ਜਲ-ਚੱਕਰ


ਆਓ ਜਲ-ਚੱਕਰ ਵਿੱਚ ਪਾਣੀ ਦਾ ਕੀ ਹੁੰਦਾ ਹੈ, ਦੇ ਇੱਕ ਹੋਰ ਪਹਿਲੂ ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ। ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਪਾਣੀ ਬਹੁਤ ਜ਼ਿਆਦਾ ਪਦਾਰਥਾਂ ਨੂੰ ਘੋਲਣ ਵਿੱਚ ਸਮਰੱਥ ਹੈ। ਘੁਲਣ ਵਾਲੇ ਖਣਿਜਾਂ ਤੋਂ ਹੋ ਕੇ ਜਦੋਂ ਪਾਣੀ ਲੰਘਦਾ ਹੈ ਤਾਂ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕੁਝ ਖਣਿਜ ਪਾਣੀ ਵਿੱਚ ਘੁਲ ਜਾਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਨਦੀ ਬਹੁਤ ਸਾਰੇ ਪੋਸ਼ਕ ਤੱਤਾਂ ਨੂੰ ਸਤ੍ਹਾ ਤੋਂ ਸਮੁੰਦਰ ਵਿੱਚ ਲੈ ਜਾਂਦੀ ਹੈ ਅਤੇ ਇਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਸਮੰਦਰੀ ਜੀਵ ਜੰਤਆਂ ਦੁਆਰਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

14.4.2 ਨਾਈਟ੍ਰੋਜਨ ਚੱਕਰ (Nitrogen - Cycle)

ਸਾਡੇ ਵਾਯੂਮੰਡਲ ਦਾ 78 ਪ੍ਰਤੀਸ਼ਤ ਭਾਗ ਨਾਈਟ੍ਰੋਜਨ ਗੈਸ ਹੈ। ਇਹ ਗੈਸ ਜਿਹੜੀ ਜੀਵਨ ਲਈ ਜ਼ਰੂਰੀ ਬਹੁਤ ਸਾਰੇ ਅਣੂਆਂ ਦਾ ਹਿੱਸਾ ਹੈ, ਜਿਵੇਂ ਪ੍ਰੋਟੀਨ, ਨਿਊਕਲੀਅਕ ਐਸਿਡ, ਡੀ.ਐਨ.ਏ. ਅਤੇ ਆਰ.ਐਨ.ਏ., ਅਤੇ ਕੁਝ ਵਿਟਾਮਿਨ। ਨਾਈਟ੍ਰੋਜਨ ਦੂਜੇ ਜੈਵਿਕ ਯੌਗਿਕਾਂ ਵਿੱਚ ਵੀ ਮਿਲਦੀ ਹੈ,

222

ਵਿਗਿਆਨ

ਚਿੱਤਰ 14.6 : ਕੁਦਰਤ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਚੱਕਰ

ਜਿਵੇਂ ਐਲਕੇਲਾਇਡ ਅਤੇ ਯੂਰੀਆ। ਇਸ ਲਈ ਨਾਈਟੋਜਨ ਹਰ ਕਿਸਮ ਦੇ ਜੀਵਾਂ ਲਈ ਇੱਕ ਜ਼ਰੂਰੀ ਪੋਸ਼ਕ ਤੱਤ ਹੈ। ਸਾਰੇ ਜੀਵ ਦੁਆਰਾ ਵਾਯੁਮੰਡਲ ਵਿੱਚ ਮੌਜਦ ਨਾਈਟੋਜਨ ਦੀ ਸਿੱਧੀ ਵਰਤੋਂ ਨਾਲ ਜੀਵਨ ਅਸਾਨ ਹੋ ਜਾਵੇਗਾ। ਭਾਵੇਂ ਕੁਝ ਕਿਸਮ ਦੇ ਬੈਕਟੀਰੀਆ ਨੂੰ ਛੱਡ ਕੇ ਦੂਜੇ ਜੀਵ ਰੂਪ ਅਕਿਰਿਆਸ਼ੀਲ ਨਾਈਟ੍ਰੋਜਨ ਪਰਮਾਣੂਆਂ ਨੂੰ ਨਾਈਟ੍ਰੇਟਸ ਅਤੇ ਨਾਈਟ੍ਰਾਈਟਸ ਵਰਗੇ ਦੂਜੇ ਜ਼ਰੂਰੀ ਅਣੂਆਂ ਵਿੱਚ ਬਦਲਣ ਵਿੱਚ ਸਮਰੱਥ ਨਹੀਂ। ਨਾਈਟ੍ਰੋਜਨ 'ਸਥਿਰੀਕਰਣ' (Nitrogen Fixation) ਕਰਨ ਵਾਲੇ ਇਹ ਬੈਕਟੀਰੀਆ ਜਾਂ ਤਾਂ ਸੁਤੰਤਰ ਰੂਪ ਵਿੱਚ ਰਹਿੰਦੇ ਹਨ ਜਾਂ ਡਾਈਕਾੱਟ ਪੌਦਿਆਂ ਦੀਆਂ ਕਝ ਸਪੀਸ਼ੀਜ਼ ਦੇ ਨਾਲ ਮਿਲਦੇ ਹਨ। ਆਮ ਤੌਰ ਤੇ ਇਹ ਨਾਈਟ੍ਰੋਜਨ ਨੂੰ ਸਥਿਰ ਕਰਨ ਵਾਲੇ ਬੈਕਟੀਰੀਆ ਫਲੀਦਾਰ ਪੌਦਿਆਂ ਦੀਆਂ ਜੜ੍ਹਾਂ ਵਿੱਚ ਇਕ ਖਾਸ ਕਿਸਮ ਦੀ ਰਚਨਾ (ਮੂਲ ਗ੍ਰੰਥੀ/nodule) ਵਿੱਚ ਮਿਲਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਬੈਕਟੀਰੀਆ ਦੇ ਇਲਾਵਾ ਨਾਈਟ੍ਰੋਜਨ ਪਰਮਾਣੂ ਨਾਈਟ੍ਰੇਟਸ ਅਤੇ ਨਾਈਟ੍ਰਾਈਟਸ ਵਿੱਚ ਭੌਤਿਕ ਕਿਰਿਆਵਾਂ ਰਾਹੀਂ

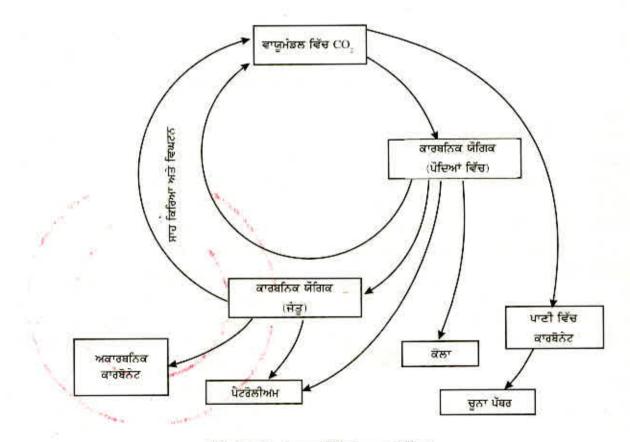
ਬਦਲਦੇ ਹਨ। ਬਿਜਲੀ ਚਮਕਣ ਸਮੇਂ ਹਵਾ ਵਿੱਚ ਪੈਦਾ ਹੋਇਆ ਉੱਚਾ ਤਾਪਮਾਨ ਅਤੇ ਦਬਾਅ ਨਾਈਟ੍ਰੋਜਨ ਨੂੰ ਨਾਈਟ੍ਰੋਜਨ ਦੇ ਆਕਸਾਈਡ ਵਿੱਚ ਬਦਲ ਦਿੰਦਾ ਹੈ। ਇਹ ਆਕਸਾਈਡ ਪਾਣੀ ਵਿੱਚ ਘੁਲ਼ ਕੇ ਨਾਈਟ੍ਰਿਕ ਐਸਿਡ (HNO₃) ਅਤੇ ਨਾਈਟ੍ਰਸ ਐਸਿਡ (HNO₂) ਬਣਾਉਂਦੇ ਹਨ ਅਤੇ ਵਰਖਾ ਨਾਲ਼ ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਤੇ ਡਿੱਗਦੇ ਹਨ। ਇਸ ਦੀ ਵਰਤੋਂ ਵੱਖ-ਵੱਖ ਜੀਵਾਂ ਦੁਆਰਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਨਾਈਟ੍ਰੋਜਨ-ਸੰਜੋਗੀ ਅਣੂ ਬਣਾਉਣ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਰੂਪਾਂ ਦੇ ਨਿਰਮਾਣ ਤੋਂ ਬਾਅਦ ਨਾਈਟ੍ਰੋਜਨ ਦਾ ਕੀ ਹੁੰਦਾ ਹੈ ? ਅਕਸਰ ਪੌਦੇ ਨਾਈਟ੍ਰੇਟਸ ਅਤੇ ਨਾਈਟ੍ਰਾਈਟਸ ਨੂੰ ਲੈਂਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਅਮੀਨੋ ਐਸਿਡ (amino acid) ਵਿੱਚ ਬਦਲ ਦਿੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਪ੍ਰੋਟੀਨ ਬਨਾਉਣ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਕੁਝ ਦੂਜੇ ਜੈਵ-ਰਸਾਇਣਿਕ ਬਦਲ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਨਾਈਟ੍ਰੋਜਨ ਵਾਲੇ ਦੂਜੇ ਗੁੰਝਲਦਾਰ ਯੋਗਿਕਾਂ ਨੂੰ ਬਣਾਉਣ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਪ੍ਰੋਟੀਨਾਂ ਅਤੇ ਦੂਜੇ ਗੁੰਝਲ਼ਦਾਰ ਯੋਗਿਕਾਂ ਦੀ ਵਰਤੋਂ ਜੰਤੂਆਂ ਦੁਆਰਾ ਕੀਤੀ

223

ਕੁਦਰਤੀ ਸੰਸਾਧਨ

ਜਾਂਦੀ ਹੈ। ਜਦੋਂ ਜੰਤੂ ਜਾਂ ਪੌਦੇ ਦੀ ਮੌਤ ਹੋ ਜਾਂਦੀ ਹੈ ਤਾਂ ਮਿੱਟੀ ਵਿੱਚ ਮੌਜੂਦ ਹੋਰ ਬੈਕਟੀਰੀਆ ਵੱਖ-ਵੱਖ ਯੌਗਿਕਾਂ ਵਿੱਚ ਮੌਜੂਦ ਨਾਈਟ੍ਰੋਜਨ ਨੂੰ ਨਾਈਟ੍ਰੇਟਸ ਅਤੇ ਨਾਈਟ੍ਰਾਈਟਸ ਵਿੱਚ ਬਦਲ ਦਿੰਦੇ ਹਨ ਅਤੇ ਹੋਰ ਤਰ੍ਹਾਂ ਦੇ ਬੈਕਟੀਰੀਆ ਇਨ੍ਹਾਂ ਨਾਈਟ੍ਰੇਟਸ ਅਤੇ ਨਾਈਟ੍ਰਾਈਟਸ ਨੂੰ ਨਾਈਟ੍ਰੋਜਨ ਤੱਤ ਵਿੱਚ ਬਦਲ ਦਿੰਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ, ਕੁਦਰਤ ਵਿੱਚ ਇੱਕ ਨਾਈਟ੍ਰੋਜਨ ਚੱਕਰ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਨਾਈਟ੍ਰੋਜਨ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਆਪਣੇ ਮੂਲ ਰੂਪ ਵਿੱਚੋਂ ਲੰਘਦੀ ਹੋਈ ਮਿੱਟੀ ਅਤੇ ਪਾਣੀ ਵਿੱਚ ਸਧਾਰਨ ਪ੍ਰਮਾਣੂ ਦੇ ਰੂਪ ਵਿੱਚ ਬਦਲਦੀ ਹੈ ਅਤੇ ਜੀਵਿਤ ਪ੍ਰਾਣੀਆਂ ਵਿੱਚ ਹੋਰ ਵਧੇਰੇ ਜਟਿਲ ਯੰਗਿਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਬਦਲ ਜਾਂਦਾ ਹੈ। ਫਿਰ ਇਹ ਸਧਾਰਨ ਪਰਮਾਣੂ ਦੇ ਰੂਪ ਵਿੱਚ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਵਾਪਸ ਆ ਜਾਂਦਾ ਹੈ।


14.4.3 ਕਾਰਬਨ-ਚੱਕਰ (Carbon-Cycle)

224

ਕਾਰਬਨ ਧਰਤੀ ਤੇ ਬਹੁਤ ਸਾਰੀਆਂ ਹਾਲਤਾਂ ਵਿੱਚ ਮਿਲਦਾ

ਹੈ। ਇਹ ਆਪਣੇ ਮੂਲ ਰੂਪ ਵਿੱਚ ਹੀਰੇ ਅਤੇ ਗਰੇਫਾਈਟ ਵਜੋਂ ਮਿਲਦਾ ਹੈ। ਯੰਗਿਕ ਦੇ ਰੂਪ ਵਿੱਚ ਇਹ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੇ ਰੂਪ ਵਿੱਚ, ਕਈ ਪਕਾਰ ਦੇ ਖਣਿਜਾਂ ਵਿੱਚ ਕਾਰਬੋਨੇਟ ਅਤੇ ਹਾਈਡੋਜਨ ਕਾਰਬੋਨੇਟ ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ਜਦੋਂ ਕਿ ਸਭ ਜੀਵ ਰੂਪ ਕਾਰਬਨ ਅਧਾਰਿਤ ਅਣੂਆਂ ਜਿਵੇਂ-ਪ੍ਰੋਟੀਨ, ਕਾਰਬੋਹਾਈਡੇਟਸ, ਚਰਬੀ, ਨਿਊਕਲੀਅਕ ਐਸਿਡ ਅਤੇ ਵਿਟਾਮਿਨ ਤੇ ਅਧਾਰਿਤ ਹੁੰਦੇ ਹਨ। ਬਹੁਤ ਸਾਰੇ ਜੰਤੂਆਂ ਦੇ ਬਾਹਰੀ ਅਤੇ ਅੰਦਰਲੇ ਕੰਕਾਲ ਵੀ ਕਾਰਬੋਨੇਟ ਨਮਕਾਂ ਤੋਂ ਬਣੇ ਹੁੰਦੇ ਹਨ। ਪ੍ਰਕਾਸ਼ ਸੰਸ਼ਲੇਸ਼ਣ ਦੀ ਕਿਰਿਆ ਜੋ ਸੂਰਜ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਉਨ੍ਹਾਂ ਸਾਰਿਆਂ ਪੌਦਿਆਂ ਵਿੱਚ ਹੁੰਦੀ ਹੈ ਜਿਨ੍ਹਾਂ ਵਿੱਚ ਕਲੋਰੋਫਿਲ ਹੁੰਦਾ ਹੈ। ਇਸ ਮੂਲ ਕਿਰਿਆ ਰਾਹੀਂ ਕਾਰਬਨ ਜੀਵਨ ਦੇ ਕਈ ਰੁਪਾਂ ਵਿੱਚ ਮਿਲੀ (incorporated) ਹੁੰਦੀ ਹੈ। ਇਹ ਕਿਰਿਆ ਵਾਯੁਮੰਡਲ ਵਿੱਚ ਜਾਂ ਪਾਣੀ ਵਿੱਚ ਘੁਲ਼ੀ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਨੂੰ ਗਲੂਕੋਜ਼ ਅਣੂਆਂ ਵਿੱਚ ਬਦਲ

ਵਿਗਿਆਨ

ਚਿੱਤਰ 14.7 : ਕੁਦਰਤ ਵਿੱਚ ਕਾਰਬਨ-ਚੱਕਰ

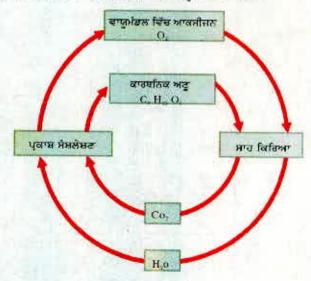
ਦਿੰਦੀ ਹੈ। ਇਹ ਗਲੂਕੋਜ਼ ਜਾਂ ਤਾਂ ਦੂਜੇ ਪਦਾਰਥਾਂ ਵਿੱਚ ਬਦਲ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ ਜਾਂ ਇਹ ਦੂਜੇ ਜੈਵਿਕ ਰੂਪ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਅਣੂਆਂ ਦੇ ਸੰਸ਼ਲੇਸ਼ਣ ਲਈ ਊਰਜਾ ਦਿੰਦੇ ਹਨ (ਚਿੱਤਰ 14.7)।

ਜੀਵਿਤ ਪ੍ਰਾਣੀਆਂ ਨੂੰ ਊਰਜਾ ਪ੍ਰਦਾਨ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਗਲੂਕੋਜ਼ ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ। ਸਾਹ ਕਿਰਿਆ ਰਾਹੀਂ ਗਲੂਕੋਜ਼ ਨੂੰ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਵਿੱਚ ਬਦਲਣ ਲਈ ਆਕਸੀਜਨ ਦੀ ਵਰਤੋਂ ਹੋ ਵੀ ਸਕਦੀ ਹੈ ਅਤੇ ਨਹੀਂ ਵੀ। ਇਹ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਵਾਪਸ ਚਲੀ ਜਾਂਦੀ ਹੈ ਜਲਨ ਦੀ ਕਿਰਿਆ ਜਿੱਥੇ ਬਾਲਣ ਦੀ ਵਰਤੋਂ ਭੋਜਨ ਬਣਾਉਣ ਤੇ ਗਰਮ ਕਰਨ, ਆਵਾਜਾਈ ਅਤੇ ਉਦਯੋਗਾਂ ਵਿੱਚ ਹੁੰਦੀ ਹੈ, ਰਾਹੀਂ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ ਦਾਖ਼ਲ ਹੁੰਦੀ ਹੈ। ਅਸਲ ਵਿੱਚ, ਜਦੋਂ ਤੋਂ ਉਦਯੋਗਿਕ ਕ੍ਰਾਂਤੀ ਹੋਈ ਹੈ ਅਤੇ ਮਨੁੱਖ ਨੇ ਵੱਡੇ ਪੈਮਾਨੇ ਪਥਰਾਟ ਬਾਲਣਾਂ ਨੂੰ ਜਲਾਉਣਾ ਸ਼ੁਰੂ ਕੀਤਾ ਹੈ ਉਦੋਂ ਤੋਂ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਦੀ ਮਾਤਰਾ ਦੁੱਗਣੀ ਹੋ ਗਈ ਹੈ। ਪਾਣੀ ਦੀ ਤਰ੍ਹਾਂ ਕਾਰਬਨ ਦਾ ਵੀ ਵੱਖ-ਵੱਖ ਭੌਤਿਕ ਅਤੇ ਰਸਾਇਣਿਕ ਅਤੇ ਜੈਵਿਕ ਕਿਰਿਆਵਾਂ ਦੁਆਰਾ ਪੁਨਰਚੱਕਰ ਹੁੰਦਾ ਹੈ।

14.4.3 ਗਰੀਨ ਹਾਊਸ ਪ੍ਰਭਾਵ (Green-House Effect) (Tropical Plants)

ਕਿਰਿਆ 14.1 ਵਿੱਚ ਕੀਤੇ ਗਏ ਪ੍ਰੇਖਣਾਂ ਨੂੰ ਯਾਦ ਕਰੋ। ਕੱਚ (glass) ਨਾਲ ਤਾਪ ਨੂੰ ਰੋਕ ਲੈਣ ਦੇ ਕਾਰਨ ਕੱਚ ਦੇ ਅੰਦਰ ਦਾ ਤਾਪਮਾਨ ਬਾਹਰ ਦੇ ਤਾਪਮਾਨ ਤੋਂ ਵਧੇਰੇ ਹੈਦਾ ਹੈ। ਠੰਡੇ ਮੌਸਮਾਂ ਵਿੱਚ ਉਸ਼ਣ ਕਟੀਬੰਧੀ ਪੌਦਿਆਂ ਨੂੰ ਗਰਮ ਰੱਖਣ ਲਈ ਪਰਦਾ (Enclosure) ਬਣਾਉਣ ਦੀ ਪਕਿਰਿਆ ਵਿੱਚ ਇਸ ਧਾਰਣਾ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਪਰਦਿਆਂ ਨੂੰ ਗਰੀਨ ਹਾਉਸ ਕਹਿੰਦੇ ਹਨ। ਵਾਯਮੰਡਲੀ ਪ੍ਰਕਿਰਿਆਵਾਂ ਵਿੱਚ ਵੀ ਗਰੀਨ ਹਾਉਸ ਹੁੰਦਾ ਹੈ। ਕੁਝ ਗੈਸਾਂ ਧਰਤੀ ਤੋਂ ਤਾਪ ਨੂੰ ਧਰਤੀ ਦੇ ਵਾਯਮੰਡਲ ਦੇ ਬਾਹਰ ਜਾਣ ਤੋਂ ਰੋਕਦੀਆਂ ਹਨ। ਵਾਯੁਮੰਡਲ ਵਿੱਚ ਮੌਜੂਦ ਇਸ ਤਰਾਂ ਦੀਆਂ ਗੈਸਾਂ ਵਿੱਚ ਵਾਧਾ ਸੰਸਾਰ ਦੇ ਔਸਤ ਤਾਪਮਾਨ ਨੰ ਵਧਾ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਗਰੀਨ ਹਾਉਸ ਪ੍ਰਭਾਵ (Green-House Effect) ਕਹਿੰਦੇ ਹਨ। ਕਾਰਬਨ ਡਾਈਆਕਸਾਈਡ ਵੀ ਇੱਕ ਇਸੇ ਤਰਾਂ ਦੀ ਗੈਸ ਹੈ। ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਮੌਜੂਦ ਕਾਰਬਨ ਡਾਈਆੱਕਸਾਈਡ ਵਿੱਚ ਵਾਧੇ ਨਾਲ ਵਾਯੂਮੰਡਲ ਦੇ ਤਾਪਮਾਨ ਵਿੱਚ ਵਾਧਾ ਹੋਵੇਗਾ। ਇਸ ਤਰਾਂ ਦੇ ਕਾਰਨਾਂ ਰਾਹੀਂ ਵਿਸ਼ਵਵਿਆਪੀ ਗਰਮੀ (global warming) ਦੀ ਸਥਿਤੀ ਬਣ ਰਹੀ ਹੈ।

ਕਿਰਿਆ


14.12

- ਵਿਸ਼ਵਵਿਆਪੀ ਗਰਮੀ ਦੇ ਕੀ ਨਤੀਜੇ ਹੋ ਸਕਦੇ ਹਨ ?
- ਕੁਝ ਹੋਰ ਗ਼ਗੀਨ ਹਾਊਸ ਗੈਸਾਂ ਦੇ ਨਾਵਾਂ ਦਾ ਵੀ ਪਤਾ ਲਗਾਓ।

14.4.4 ਆਕਸੀਜਨ ਚੱਕਰ (Oxygen-Cycle)

ਆਕਸੀਜਨ ਧਰਤੀ ਤੇ ਵਧੇਰੇ ਮਾਤਰਾ ਵਿੱਚ ਮਿਲਣ ਵਾਲਾ ਤੱਤ ਹੈ। ਇਸਦੀ ਮਾਤਰਾ ਮੂਲ ਰੂਪ ਵਿੱਚ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਲਗਭਗ 21 ਪ੍ਰਤੀਸ਼ਤ ਹੈ। ਇਹ ਵੱਡੇ ਪੈਮਾਨੇ ਤੇ ਧਰਤੀ ਦੀ ਪੇਪੜੀ ਵਿੱਚ ਯੌਗਿਕ ਦੇ ਰੂਪ ਅਤੇ ਹਵਾ ਵਿੱਚ ਕਾਰਬਨ-ਡਾਈਆਕਸਾਈਡ ਦੇ ਰੂਪ ਵਿੱਚ ਵੀ ਮਿਲਦੀ ਹੈ। ਧਰਤੀ ਦੀ ਪੇਪੜੀ ਵਿੱਚ ਇਹ ਧਾਤਾਂ ਅਤੇ ਸਿਲੀਕਾੱਨ ਦੇ ਆਕਸਾਈਡਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦੀ ਹੈ। ਇਹ ਕਾਰਬੋਨੇਟ, ਸਲਫੇਟ, ਨਾਈਟ੍ਰੇਟ ਅਤੇ ਹੋਰ ਖਣਿਜਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਮਿਲਦੀ ਹੈ। ਇਹ ਜੈਵਿਕ ਅਣੂਆਂ, ਜਿਵੇਂ-ਕਾਰਬੋਹਾਈਡੇ੍ਟਸ, ਪ੍ਰੋਟੀਨ, ਨਿਊਕਲੀਅਕ ਐਸਿਡ ਅਤੇ ਚਰਬੀ (ਜਾਂ ਲਿਪਿਡ) ਦਾ ਵੀ ਇੱਕ ਜ਼ਰੂਰੀ ਘਟਕ ਹੈ।

ਪਰ ਜਦੋਂ ਅਸੀਂ ਆਕਸੀਜਨ-ਚੱਕਰ ਦੇ ਬਾਰੇ ਗੱਲ ਕਰਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਉਸ ਚੱਕਰ ਨੂੰ ਨਿਰਦੇਸ਼ਿਤ ਕਰਦੇ ਹਾਂ ਜੋ ਆਕਸੀਜਨ ਦੀ ਮਾਤਰਾ ਨੂੰ ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਸੰਤੁਲਨ ਬਣਾ ਕੇ ਰੱਖਦਾ ਹੈ।ਵਾਯੂਮੰਡਲ ਵਿੱਚੋਂ ਆਕਸੀਜਨ ਦੀ ਵਰਤੋਂ ਤਿੰਨ ਤਰੀਕਿਆਂ ਨਾਲ਼ ਹੁੰਦੀ ਹੈ, ਜਿਨ੍ਹਾਂ ਦੇ ਨਾਂ ਹਨ-

ਚਿੱਤਰ 14.8 : ਕੁਦਰਤ ਵਿੱਚ ਆਕਸੀਜਨ-ਚੱਕਰ

225

ਕੁਦਰਤੀ ਸੰਸਾਧਨ

ਸਾਹ ਕਿਰਿਆ, ਜਲਣ ਕਿਰਿਆ ਅਤੇ ਨਾਈਟੋਜਨ ਦੇ ਆਕਸਾਈਡਾਂ ਨੂੰ ਬਣਾਉਣ ਵਿੱਚ। ਵਾਯੂਮੰਡਲ ਵਿੱਚ ਆਕਸੀਜਨ ਕੇਵਲ ਇੱਕ ਹੀ ਮੱਖ ਪਕਿਰਿਆ ਜਿਸ ਨੂੰ ਪਕਾਸ਼ ਸੰਸ਼ਲੇਸ਼ਣ ਕਹਿੰਦੇ ਹਨ, ਦੇ ਰਾਹੀਂ ਵਾਪਸ ਆਉਂਦੀ ਹੈ। ਇਸ ਤਰਾਂ ਨਾਲ ਕਦਰਤ ਵਿੱਚ ਆਕਸੀਜਨ-ਚੱਕਰ ਦੀ ਰੂਪ ਰੇਖਾ ਬਣਦੀ ਹੈ (ਚਿੱਤਰ 14.8)।

ਭਾਵੇਂ ਜੀਵਨ ਵਿੱਚ ਸਾਹ ਕਿਰਿਆ ਵਿੱਚ ਆਕਸੀਜਨ ਨੇ ਮਹੱਤਵਪਰਨ ਮੰਨਦੇ ਹਾਂ ਪਰ ਕੁਝ ਜੀਵ ਮੁੱਖ ਰੂਪ ਵਿੱਚ ਤਟੀਰੀਆ, ਹੱਤੀ ਆਕਸੀਜਨ ਨਾਲ ਜ਼ਹਿਰੀਲੇ ਹੋ ਜਾਂਦੇ ਹਨ। ਅਸਲ ਵਿੱਚ, ਪੈਕਟੀਰੀਆ ਦੇ ਰਾਹੀਂ ਨਾਈਟੋਜਨ ਸਥਿਰੀਕਰਣ ਦੀ ਪਕਿਰਿਆ ਆੱਕਸੀਜਨ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦੀ।

14.5 ਓਜ਼ੋਨ ਪਰਤ (Ozone-Layer)

ਤੱਤੀ ਅਸ਼ਜਨ ਮੁਲ ਰੂਪ ਵਿੱਚ ਦੋ ਪਰਮਾਣੂ-ਅਣੂ ਦੇ ਰਪ ਵਿੱਚ ਮਿਲਦੀ ਹੈ। ਭਾਵਾਂ, ਵਾਯੂਮੰਡਲ ਦੇ ਉਤਲੇ ਭਾਗ ਵਿੱਚ ਆਕਸੀਜਨ ਦੇ ਤਿੰਨ ਪਰਮਾਣੂਆਂ ਵਾਲੇ ਅਣੂ ਵੀ ਮਿਲਦੇ ਹਨ। ਇਸ ਦਾ ਸੂਤਰ (O₄) ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਓਜ਼ੋਂ <u>ਦਾ ਅਦਾ ਕਹਿੰਦੇ</u> ਹਨ। ਆਮ ਮਿਲਦੇ ਦੋ ਪਰਮਾਣ ਅਣ - ਗੁਰੀਜਨ ਤੋਂ ਉਲਟ ਓਜ਼ੋਨ ਜ਼ਹਿਰੀਲਾ ਹੁੰਦਾ ਹੈ। ਾਲੇ ਹਾਂ ਕਿ ਓਜ਼ੋਨ ਧਰਤੀ ਦੀ ਸਤ੍ਹਾ ਦੇ ਨੇੜੇ ਸਥਿਹ 🗄 👘 ਜਕਦੀ। ਇਹ ਸੂਰਜ ਤੋਂ ਆਉਣ ਵਾਲੀਆਂ <u>ਿ</u>ਕਾਰਕ ਪਰਾਵੇਂਗਣੀ ਵਿਕਿਰਣਾਂ ਨੂੰ ਧਰਤੀ ਦੀ ਸਤਾ ਤ ਪਹੁੰਚਣ ਤੋਂ ਰੋਕਦੀਆਂ ਹਨ । ਜਿਹੜੀਆਂ ਕਈ ਜੀਵ ਰਪਾਂ ਨੂੰ ਹਾਨੀ ਪਹੁੰਚਾ ਸਕਦੀਆਂ ਹਨ।

ਹਾਲ ਵਿੱਚ ਹੀ ਇਹ ਪਤਾ ਲੱਗਿਆ ਹੈ ਕਿ ਓਜ਼ੋਨ ਪਰਤ ਨਸ਼ਟ (depletion) ਹੁੰਦੀ ਜਾ ਰਹੀ ਹੈ।ਮਨੁੱਖ ਦੁਆਰਾ ਾਸਟੇ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੇ ਯੋਗਿਕ ਜਿਵੇਂ ਕਲੋਰੋਫ਼ਲੋਰੋ ਕਾਰਬਨ (CFC) ਵਾਯਮੰਡਲ ਵਿੱਚ ਸਥਿਰ ਅਵਸਥਾ ਵਿੱਚ ਦਾਖਲ ਹੋ ਜਾਂਦੇ ਹਨ। CFC ਕਲੋਗੈਨ ਅਤੇ ਫਲੋਗੈਨ ਯਕਤ ਕਾਰਬਨ ਯੰਗਿਕ ਹਨ। ਇਹ ਬਹੁਤ ਸਥਾਈ ਹੁੰਦੇ ਹਨ ਅਤੇ ਕਿਸੇ ਜੈਵ-ਪਕਿਰਿਆ ਰਾਹੀਂ ਵੀ ਵਿਘਟਤ ਨਹੀਂ ਹੁੰਦੇ। ਇੱਕ ਵਾਰ ਜਦੋਂ ਇਹ ਓਜ਼ੋਨ ਪਰਤ ਦੇ ਨੇੜੇ ਪਹੁੰਚਦੇ ਹਨ, ਇਹ ਓਜ਼ੋਨ ਅਣਆਂ ਨਾਲ ਪਤੀਕਿਰਿਆ ਕਰਦੇ ਹਨ। ਇਸ ਦੇ ਨਤੀਜ਼ੇ ਵਜੋਂ ਓਜ਼ੋਨ ਪਰਤ ਵਿੱਚ ਕਮੀ ਆਈ ਹੈ ਅਤੇ ਹਾਲ ਵਿੱਚ ਹੀ ਅੰਟਾਰਕਟਿਕਾ ਦੇ ਉੱਤੇ ਓਜ਼ੋਨ ਪਰਤ ਵਿੱਚ

226

ਛੇਕ (Ozone Hole) ਵੇਖਿਆ ਗਿਆ ਹੈ। ਓਜ਼ੋਨ ਪਰਤ ਦੇ ਹੋਰ ਵੀ ਵਧੇਰੇ ਨਸ਼ਟ ਹੋਣ ਕਾਰਨ ਧਰਤੀ ਤੇ ਜੀਵਨ ਉਤੇ ਪੈਣ ਵਾਲੇ ਪੁਭਾਵਾਂ ਦੇ ਵਿਸ਼ੇ ਵਿੱਚ ਕਲਪਨਾ ਕਰਨਾ ਵੀ ਮਸ਼ਕਿਲ ਹੈ। ਇਸ ਲਈ ਬਹੁਤ ਲੋਕਾਂ ਦੇ ਵਿਚਾਰ ਵਿੱਚ ਓਜ਼ਨ ਦੀ ਪਰਤ ਦੇ ਨਸ਼ਟ ਹੋਣ ਦੀ ਪਕਿਰਿਆ ਨੂੰ ਰੋਕਣ ਦੇ ਯਤਨ ਜ਼ਰੂਰੀ ਹਨ।

ਚਿੱਤਰ 14.9 : ਅੰਟਾਰਟਿਕਾ ਦੇ ਉੱਤੇ ਓਜ਼ਨ ਪਰਤ ਵਿੱਚ ਛੇਕ

ਅਕਤੂਬਰ 1985

ਕਿਰਿਆ 14.13

- ਪਤਾ ਲਗਾਓ ਕਿ ਹੋਰ ਕਿਹੜੇ ਅਣੂ ਹਨ ਜਿਹੜੇ ਓਜ਼ੋਨ ਪਰਤ ਨੂੰ ਨੁਕਸਾਨ ਪਹੁੰਚਾਉਂਦੇ ਹਨ।
- ਅਖ਼ਬਾਰਾਂ ਵਿੱਚ ਅਕਸਰ ਓਜ਼ੋਨ ਪਰਤ ਵਿੱਚ ਹੋਣ ਵਾਲੇ ਛੇਕ ਦੀ ਚਰਚਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।
- ਇਹ ਪਤਾ ਲਗਾਓ ਕਿ ਛੋਕ ਵਿੱਚ ਕੋਈ ਪਰਿਵਰਤਨ ਹੋ ਰਿਹਾ ਹੈ। ਵਿਗਿਆਨਕ ਕੀ ਸੋਚਦੇ ਹਨ ਕਿ ਉਹ ਕਿਸ ਤਰ੍ਹਾਂ ਧਰਤੀ ਉੱਤੇ ਜੀਵਨ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰੇਗਾ?

日本

ਅਕਤੂਬਰ 1980

ที่ใช่**ห**าก

- ਧਰਤੀ ਉੱਤੇ ਜੀਵਨ ਮਿੱਟੀ, ਹਵਾ, ਪਾਣੀ ਅਤੇ ਸੂਰਜ ਤੋਂ ਮਿਲਣ ਵਾਲੀ ਊਰਜਾ ਵਰਗੇ ਸਾਧਨਾਂ ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।
- ਸਥਲ ਅਤੇ ਜਲ-ਭੰਡਾਰਾਂ ਦੇ ਉੱਤੇ ਅਸਮਾਨ ਰੂਪ ਵਿੱਚ ਹਵਾ ਦੇ ਗਰਮ ਹੋਣ ਦੇ ਕਾਰਨ ਪੌਣਾਂ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ।
- ਜਲ-ਭੰਡਾਰਾਂ ਤੋਂ ਹੋਣ ਵਾਲੇ ਪਾਣੀ ਦਾ ਵਾਸ਼ਪੀਕਰਣ ਅਤੇ ਸੰਘਣਨ ਸਾਨੂੰ ਵਰਖਾ ਦਿੰਦਾ ਹੈ।
- ਕਿਸੇ ਖੇਤਰ ਵਿੱਚ ਪਹਿਲਾਂ ਤੋਂ ਹੀ ਮੌਜੂਦ ਹਵਾ ਦੇ ਰੂਪ ਤੇ ਹੋਣ ਵਾਲੀ ਵਰਖਾ ਦਾ ਪੈਟਰਨ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।
- ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੇ ਪੋਸ਼ਕ ਤੱਤ ਚੱਕਰੀ ਰੂਪਾਂ ਤੋਂ ਦੁਬਾਰਾ ਵਰਤੇ ਜਾਂਦੇ ਹਨ ਜਿਸ ਕਾਰਨ ਜੈਵ ਮੰਡਲ ਦੇ ਵੱਖ-ਵੱਖ ਘਟਕਾਂ ਵਿੱਚ ਇੱਕ ਨਿਸ਼ਚਿਤ ਸੰਤੁਲਨ ਸਥਾਪਿਤ ਹੁੰਦਾ ਹੈ।
- ਹਵਾ, ਪਾਣੀ ਅਤੇ ਮਿੱਟੀ ਦਾ ਪ੍ਰਦੂਸ਼ਣ ਜੀਵਨ ਦੇ ਰੰਗ-ਢੰਗ ਅਤੇ ਜੈਵ ਵਿਲੱਖਣ ਨੂੰ ਹਾਨੀ ਪਹੁੰਚਾਉਂਦਾ ਹੈ।
- ਸਾਨੂੰ ਆਪਣੇ ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਨੂੰ ਸੰਭਾਲਣ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਲੰਮੇ ਸਮੇਂ ਤੱਕ ਵਰਤਣ ਲਈ ਸੁਚੱਜੇ ਢੰਗ ਦੀ ਜ਼ਰੂਰਤ ਹੈ।

ਅਭਿਆਸ

- ਜੀਵਨ ਲਈ ਵਾਯੂਮੰਡਲ ਦੀ ਕਿਉਂ ਜ਼ਰੂਰਤ ਹੈ ?
- ਜੀਵਨ ਲਈ ਪਾਣੀ ਕਿਉਂ ਜ਼ਰੂਰੀ ਹੈ ?
- ਜੀਵਿਤ ਪ੍ਰਾਣੀ ਮਿੱਟੀ ਤੋਂ ਕਿਵੇਂ ਨਿਰਭਰ ਹਨ ? ਕੀ ਪਾਣੀ ਵਿੱਚ ਰਹਿਣ ਵਾਲੇ ਜੀਵ ਸਾਧਨ ਦੇ ਰੂਪ ਵਿੱਚ ਮਿੱਟੀ ਤੋਂ ਪੂਰੀ ਤਰ੍ਹਾਂ ਸੁਤੰਤਰ ਹਨ ?
- ਤੁਸੀਂ ਟੈਲੀਵਿਜ਼ਨ ਅਤੇ ਅਖ਼ਬਾਰ ਵਿੱਚ ਮੌਸਮ ਸੰਬੰਧੀ ਰਿਪੋਰਟ ਵੇਖੀ ਹੋਵੇਗੀ। ਤੁਸੀਂ ਕੀ ਸੋਚਦੇ ਹੋ ਕਿ ਅਸੀਂ ਮੌਸਮ ਦੇ ਪੂਰਨ ਅਨੁਮਾਨ ਵਿੱਚ ਸਮਰੱਥ ਹਾਂ ?
- 5. ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਵਧੇਰੇ ਮਨੁੱਖੀ ਗਤੀਵਿਧੀਆਂ ਹਵਾ, ਪਾਣੀ ਅਤੇ ਮਿੱਟੀ ਦੇ ਪ੍ਰਦੂਸ਼ਣ ਸਤਰ ਨੂੰ ਵਧਾ ਰਹੇ ਹਨ। ਕੀ ਤੁਸੀਂ ਸੋਚਦੇ ਹੋ ਕਿ ਇਨ੍ਹਾਂ ਗਤੀਵਿਧੀਆਂ ਨੂੰ ਕੁਝ ਖਾਸ ਖੇਤਰਾਂ ਵਿੱਚ ਸੀਮਿਤ ਕਰ ਦੇਣ ਨਾਲ ਪ੍ਰਦੂਸ਼ਣ ਦੇ ਸਤਰ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਮਦਦ ਮਿਲੇਗੀ ?
- 6. ਜੰਗਲ ਕਿਵੇਂ ਹਵਾ, ਮਿੱਟੀ, ਪਾਣੀ ਦੇ ਸਰੋਤ ਦੀ ਗੁਣਵੱਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ?

227

ਕੁਦਰਤੀ ਸ਼ੋਸਾਧਨ

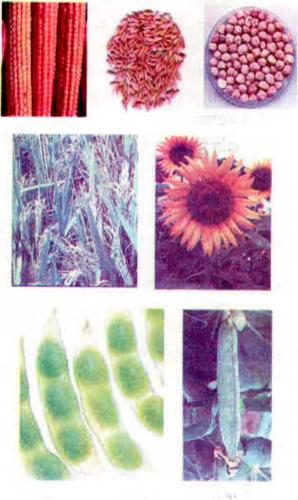
ਅਧਿਆਇ 15 ਖਾਧ-ਪਦਾਰਥਾਂ ਦੇ ਸੰਸਾਧਨਾਂ ਵਿੱਚ ਸੁਧਾਰ (Improvements in Food Resources)

ਅਸੀਂ ਸਾਰੇ ਜਾਣਦੇ ਹਾਂ ਕਿ ਸਾਰੇ ਸਜੀਵਾਂ ਨੂੰ ਭੋਜਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਭੋਜਨ ਤੋਂ ਸਾਨੂੰ ਪ੍ਰੋਟੀਨ, ਕਾਰਬੋਹਾਈਡਰੇਟਸ, ਚਰਬੀ, ਵਿਟਾਮਿਨ ਅਤੇ ਖਣਿਜ ਪਦਾਰਥ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਇਹਨਾਂ ਸਾਰੇ ਤੱਤਾਂ ਦੀ ਜ਼ਰੂਰਤ ਸਾਡੇ ਵਿਕਾਸ, ਵਾਧੇ ਅਤੇ ਸਿਹਤ ਲਈ ਹੁੰਦੀ ਹੈ। ਪੌਦੇ ਅਤੇ ਜੰਤੂ ਦੋਵੇਂ ਹੀ ਸਾਡੇ ਭੋਜਨ ਦੇ ਮੁੱਖ ਸਰੋਤ ਹਨ। ਅਸੀਂ ਜ਼ਿਆਦਾਤਰ ਇਹ ਭੋਜਨ ਖੇਤੀਬਾੜੀ ਅਤੇ ਪਸ਼ੂ-ਪਾਲਣ ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ।

ਅਸੀਂ ਹਰ ਰੋਜ਼ ਅਖ਼ਬਾਰਾਂ ਵਿੱਚ ਪੜ੍ਹਦੇ ਹਾਂ ਕਿ ਖੇਤੀ ਉਤਪਾਦਨ ਅਤੇ ਪਸ਼ੂ ਪਾਲਣ ਨੂੰ ਵਧਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਹੋ ਰਹੀ ਹੈ। ਇਹ ਜ਼ਰੂਰੀ ਕਿਉਂ ਹੈ ? ਅਸੀਂ ਵਰਤਮਾਨ ਉਤਪਾਦਨ ਪੱਧਰ ਤੇ ਹੀ ਕਿਉਂ ਨਹੀਂ ਗੁਜ਼ਾਰਾ ਕਰ ਸਕਦੇ।

ਭਾਰਤ ਦੀ ਜਨਸੰਖਿਆ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹੈ। ਸਾਡੇ ਦੇਸ਼ ਦੀ ਜਨਸੰਖਿਆ ਇਕ ਬਿਲੀਅਨ (ਸਵਾ ਸੌ ਕਰੋੜ) ਤੋਂ ਵੱਧ ਹੈ ਅਤੇ ਇਸ ਵਿੱਚ ਲਗਾਤਾਰ ਵਾਧਾ ਹੋ ਰਿਹਾ ਹੈ। ਇਸ ਵੱਧਦੀ ਹੋਈ ਜਨਸੰਖਿਆ ਦੇ ਲਈ ਜ਼ਿਆਦਾ ਅੰਨ ਉਤਪਾਦਨ ਦੀ ਜ਼ਰੂਰਤ ਪਵੇਗੀ। ਇਹ ਵਾਧਾ ਧਰਤੀ ਤੇ ਜ਼ਿਆਦਾ ਖੇਤੀ ਕਰਨ ਨਾਲ ਸੰਭਵ ਹੋ ਸਕਦਾ ਹੈ। ਪਰੰਤੂ ਭਾਰਤ ਵਿੱਚ ਪਹਿਲਾਂ ਤੋਂ ਹੀ ਬਹੁਤ ਜ਼ਿਆਦਾ ਜਗ੍ਹਾ ਤੇ ਖੇਤੀ ਹੋ ਰਹੀ ਹੈ। ਸਿੱਟੇ ਵਜੋਂ ਖੇਤੀ ਦੇ ਲਈ ਹੋਰ ਜ਼ਿਆਦਾ ਧਰਤੀ ਦੀ ਹੋਂਦ ਸੰਭਵ ਨਹੀਂ ਹੈ। ਇਸ ਲਈ ਫ਼ਸਲ ਅਤੇ ਪਸ਼ੂਧਨ ਦੇ ਉਤਪਾਦਨ ਦੀ ਸਮਰੱਥਾ ਨੂੰ ਵਧਾਉਣਾ ਜ਼ਰਗੇ ਹੈ।

ਅਜੇ ਤੱਕ ਫ਼ਸਲ ਉਤਪਾਦਨ ਨੂੰ ਵਧਾਉਣ ਲਈ ਸਾਡੀ ਕੋਸ਼ਿਸ਼ ਕੁਝ ਹੱਦ ਤੱਕ ਸਫ਼ਲ ਰਹੀ ਹੈ। ਅਸੀਂ ਹਰੀ ਕ੍ਰਾਂਤੀ (green revolution) ਦੁਆਰਾ ਫ਼ਸਲ ਉਤਪਾਦਨ ਵਿੱਚ ਵਾਧਾ ਕੀਤਾ ਹੈ ਅਤੇ ਸਫ਼ੇਦ ਕ੍ਰਾਂਤੀ (white revolution) ਦੁਆਰਾ ਦੁੱਧ ਦਾ ਉਤਪਾਦਨ ਵਧਾਇਆ ਹੈ ਅਤੇ ਉਸ ਦਾ ਚੰਗਾ ਪ੍ਬੰਧ ਵੀ ਕੀਤਾ ਹੈ। ਇਹਨਾਂ ਕ੍ਰਾਂਤੀਆਂ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਸਾਡੇ ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਦਾ ਬਹੁਤ ਜ਼ਿਆਦਾ ਉਪਯੋਗ ਹੋਇਆ ਹੈ। ਇਸਦੇ ਸਿੱਟੇ ਵਜੋਂ ਸਾਡੇ ਕੁਦਰਤੀ ਸਾਧਨਾਂ ਨੂੰ ਨੁਕਸਾਨ ਹੋਣ ਦੇ ਮੌਕੇ ਵੱਧ ਗਏ ਹਨ ਜਿਸ ਨਾਲ ਕੁਦਰਤ ਵਿਚ ਸੰਤੁਲਨ ਵਿਗੜਨ ਦਾ ਖਤਰਾ ਵੱਧ ਗਿਆ ਹੈ।


ਇਸ ਲਈ ਇਹ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਫ਼ਸਲ ਉਤਪਾਦਨ ਵਧਾਉਣ ਦੇ ਸਾਡੇ ਯਤਨ, ਵਾਤਾਵਰਣ ਅਤੇ ਵਾਤਾਵਰਣ ਨੂੰ ਸੰਤੁਲਨ ਬਣਾਉਣ ਵਾਲੇ ਕਾਰਕਾਂ ਨੂੰ ਹਾਨੀ ਨਾ ਪਹੁੰਚਾਉਣ। ਇਸ ਲਈ ਖੇਤੀ ਅਤੇ ਪਸ਼ੂ ਪਾਲਣ ਦੇ ਲਈ ਸਹਿਣਯੋਗ ਪ੍ਣਾਲੀਆਂ ਨੂੰ ਅਪਣਾਉਣ ਦੀ ਜ਼ਰੂਰਤ ਹੈ।

ਕੇਵਲ ਫ਼ਸਲ ਉਤਪਾਦਨ ਵਧਾਉਣਾ ਅਤੇ ਉਹਨਾਂ ਫ਼ਸਲਾਂ ਨੂੰ ਗੌਦਾਮਾਂ ਵਿੱਚ ਸੰਭਾਲਣ ਨਾਲ ਕੁਪੋਸ਼ਣ ਅਤੇ ਭੁੱਖਮਰੀ ਦੀ ਸਮੱਸਿਆ ਦਾ ਹੱਲ ਨਹੀਂ ਹੋ ਸਕਦਾ। ਲੋਕਾਂ ਨੂੰ ਅਨਾਜ ਖਰੀਦਣ ਦੇ ਲਈ ਧਨ ਦੀ ਜ਼ਰੂਰਤ ਵੀ ਹੁੰਦੀ ਹੈ। ਖਾਧ ਪਦਾਰਥਾਂ ਦੀ ਸਰੱਖਿਆ ਉਸਦੇ ਉਤਪਾਦਨ ਅਤੇ ਉਪਲੱਬਧੀ ਦੋਨਾਂ ਉੱਤੇ ਨਿਰਭਰ ਹੈ। ਸਾਡੇ ਦੇਸ਼ ਦੀ ਬਹੁਤ ਸਾਰੀ ਜਨਸੰਖਿਆ ਆਪਣੇ ਜੀਵਨ ਨਿਰਵਾਹ ਦੇ ਲਈ ਖੇਤੀ ਉੱਪਰ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਇਸ ਲਈ ਖੇਤੀ ਦੇ ਖੇਤਰ ਵਿੱਚ ਲੋਕਾਂ ਦੀ ਆਮਦਨ ਵੀ ਵਧਣੀ ਚਾਹੀਦੀ ਹੈ ਜਿਸ ਨਾਲ ਭੁੱਖ ਦੀ ਸਮੱਸਿਆ ਦਾ ਹੱਲ ਹੋ ਸਕੇ। ਖੇਤੀ ਤੋਂ ਜ਼ਿਆਦਾ ਪੈਦਾਵਾਰ ਪਾਪਤ ਕਰਨ ਲਈ ਸਾਨੂੰ ਵਿਗਿਆਨਕ ਪਬੰਧ ਪਣਾਲੀਆਂ ਨੂੰ ਅਪਣਾਉਣਾ ਚਾਹੀਦਾ ਹੈ। ਸਹਿਣਯੋਗ ਜੀਵਨ ਨਿਰਵਾਹ ਦੇ ਲਈ ਮਿਸ਼ਰਤ ਖੇਤੀ, ਅੰਤਰ-ਫ਼ਸਲੀ ਅਤੇ ਸੰਗਠਤ ਖੇਤੀ ਪਣਾਲੀਆਂ ਅਪਣਾਉਣੀਆਂ ਚਾਹੀਦੀਆਂ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਪਸ਼ਧਨ, ਮੂਰਗੀ ਪਾਲਣ, ਮੱਛੀ ਪਾਲਣ, ਮਧੁਮੱਖੀ ਪਾਲਣ ਦੇ ਨਾਲ ਖੇਤੀ ਆਦਿ।

ਹੁਣ ਪ੍ਰਸ਼ਨ ਇਹ ਹੈ ਕਿ ਅਸੀਂ ਫ਼ਸਲ ਅਤੇ ਪਸ਼ੂਧਨ ਦੇ ਉਤਪਾਦਨ ਨੂੰ ਕਿਵੇਂ ਵਧਾਈਏ।

15.1 ਫ਼ਸਲ ਉਤਪਾਦਨ ਵਿੱਚ ਉੱਨਤੀ (Improvement in Crop Yield)

ਊਰਜਾ ਦੀ ਜ਼ਰੂਰਤ ਨੂੰ ਪੂਰੀ ਕਰਨ ਲਈ ਅਨਾਜ; ਜਿਵੇ-ਕਣਕ, ਚੌਲ, ਮੱਕੀ, ਬਾਜਰਾ ਅਤੇ ਜਵਾਰ ਤੋਂ ਕਾਰਬੋਹਾਈਡਰੇਟਸ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਦਾਲਾਂ ਜਿਵੇਂ ਛੱਲੇ, ਮਟਰ, ਮਾਂਹ, ਮੂੰਗੀ, ਅਰਹਰ, ਮਸਰ ਤੋਂ ਪ੍ਰੋਟੀਨ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ ਅਤੇ ਤੇਲ ਵਾਲੇ ਬੀਜ ਜਿਵੇਂ ਸੋਇਆਬੀਨ ਮੂੰਗਫ਼ਲੀ, ਤਿਲ, ਆਰਿੰਡ, ਸਰੋਂ, ਅਲਸੀ ਅਤੇ ਸੂਰਜਮੁਖੀ ਤੋਂ ਸਾਨੂੰ ਜ਼ਰੂਰੀ ਚਰਬੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ (ਚਿੱਤਰ 15.1) ਸਬਜ਼ੀਆਂ, ਮਸਾਲੇ ਅਤੇ ਫ਼ਲਾਂ ਤੋਂ ਸਾਨੂੰ ਵਿਟਾਮਿਨ ਅਤੇ ਖਣਿਜ ਪਦਾਰਥ, ਕੁਝ ਮਾਤਰਾ ਵਿੱਚ ਪ੍ਰੋਟੀਨ, ਚਰਬੀ ਅਤੇ ਕਾਰਬੋਹਾਈਡਰੇਟਸ ਵੀ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਚਾਰਾ ਫ਼ਸਲਾਂ ਜਿਵੇਂ ਬਰਸੀਮ, ਜਵੀ, ਅਤੇ ਸੁਡਾਨ ਘਾਹ ਦਾ ਉਤਪਾਦਨ ਪਸ਼ੂਧਨ ਦੇ ਚਾਰੇ ਦੇ ਰੂਪ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਚਿੱਤਰ 15.1 : ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੀਆਂ ਫ਼ਸਲਾਂ

ਖਾਧ-ਪਦਾਰਥਾਂ ਦੇ ਸੰਸਾਧਨਾਂ ਵਿੱਚ ਸੁਧਾਰ

ਵੱਖ-ਵੱਖ ਫ਼ਸਲਾਂ ਲਈ ਵੱਖ-ਵੱਖ ਜਲਵਾਯੂ, ਤਾਪਮਾਨ ਅਤੇ ਰੋਸ਼ਨੀ ਕਾਲ (Photo periods) ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨਾਲ ਫ਼ਸਲਾਂ ਦਾ ਵਾਧਾ ਹੋ ਸਕੇ ਅਤੇ ਉਹ ਆਪਣਾ ਜੀਵਨ ਚੱਕਰ ਵੀ ਪੁਰਾ ਕਰ ਸਕਣ। ਰੇਸ਼ਨੀ ਕਾਲ ਸਰਜੀ ਪ੍ਰਕਾਸ਼ ਦੇ ਕਾਲ ਨਾਲ ਸੰਬੰਧਿਤ ਹੁੰਦਾ ਹੈ। ਪੌਦਿਆਂ ਵਿੱਚ ਵਾਧਾ ਅਤੇ ਫੁੱਲ ਲੱਗਣੇ ਸਰਜ ਦੀ ਰੋਸ਼ਨੀ ਉੱਪਰ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਸਾਰੇ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪੌਦੇ ਸੁਰਜ ਦੀ ਰੋਸ਼ਨੀ ਦੀ ਮੌਜੂਦਗੀ ਵਿੱਚ ਆਪਣਾ ਭੋਜਨ ਆਪ ਬਣਾਉਂਦੇ ਹਨ। ਕੁਝ ਅਜਿਹੀਆਂ ਫ਼ਸਲਾਂ ਜਿਹਨਾਂ ਨੂੰ ਅਸੀਂ ਬਰਸਾਤ ਰੱਤ ਵਿੱਚ ਉਗਾਉਂਦੇ ਹਾਂ ਖਰੀਫ਼ (Kharif) ਫ਼ਸਲਾਂ ਕਹਾਉਂਦੀਆਂ ਹਨ ਜੋ ਕਿ ਜਨ ਤੋਂ ਆਰੰਭ ਹੋ ਕੇ ਅਕਤਬਰ ਮਹੀਨੇ ਤੱਕ ਹੁੰਦੀਆਂ ਹਨ। ਕੁਝ ਫ਼ਸਲਾਂ ਸਰਦੀ ਰੁੱਤ ਵਿੱਚ ਉਗਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਜੋ ਨਵੰਬਰ ਤੋਂ ਅਪੈਲ ਮਹੀਨੇ ਤੱਕ ਹੁੰਦੀਆਂ ਹਨ। ਇਹਨਾਂ ਫ਼ਸਲਾਂ ਨੂੰ ਰੱਬੀ (Rabi) ਦੀਆਂ ਫ਼ਸਲਾਂ ਕਹਿੰਦੇ ਹਨ। ਧਾਨ, ਸੋਇਆਬੀਨ, ਅਰਹਰ, ਮੱਕੀ, ਮੁੰਗੀ ਅਤੇ ਮਾਂਹ ਖਰੀਫ਼ ਦੀਆਂ ਫ਼ਸਲਾਂ ਹਨ। ਕਣਕ, ਛੋਲੇ, ਮਟਰ, ਸਰੋਂ ਅਤੇ ਅਲਸੀ ਰੱਬੀ (ਹਾੜੀ) ਦੀਆਂ ਫ਼ਸਲਾਂ ਹਨ।

ਭਾਰਤ ਵਿੱਚ ਸੰਨ 1960 ਤੋਂ ਸੰਨ 2004 ਤੱਕ ਖੇਤੀ ਧਰਤੀ ਵਿੱਚ 25% ਦਾ ਵਾਧਾ ਹੋਇਆ ਹੈ ਜਦੋਂ ਕਿ ਅੰਨ ਦੀ ਪੈਦਾਵਾਰ ਵਿੱਚ ਚਾਰ ਗੁਣਾ ਵਾਧਾ ਹੋਇਆ ਹੈ। ਪੈਦਾਵਾਰ ਵਿਚ ਇਹ ਉੱਨਤੀ ਕਿਵੇਂ ਹੋਈ ? ਜੇਕਰ ਅਸੀਂ ਖੇਤੀ ਵਿੱਚ ਸ਼ਾਮਿਲ ਪ੍ਰਣਾਲੀਆਂ ਦੇ ਵਿਸ਼ੇ ਬਾਰੇ ਸੋਚੀਏ ਤਾਂ ਅਸੀਂ ਉਹਨਾਂ ਨੂੰ ਤਿੰਨ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡ ਸਕਦੇ ਹਾਂ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਹੈ ਬੀਜ ਦੀ ਚੋਣ, ਦੂਸਰਾ ਫ਼ਸਲ ਦੀ ਉਚਿਤ ਦੇਖਭਾਲ, ਅਤੇ ਤੀਸਰਾ ਖੇਤਾਂ ਵਿੱਚ ਉੱਗੀ ਫ਼ਸਲ ਦੀ ਸੁਰੱਖਿਆ ਤੇ ਕੱਟੀ ਹੋਈ ਫ਼ਸਲ ਨੂੰ ਨੁਕਸਾਨ ਤੋਂ ਬਚਾਉਣਾ। ਇਸ ਤਰ੍ਹਾਂ ਫ਼ਸਲ ਉਤਪਾਦਨ ਵਿੱਚ ਸੁਧਾਰ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਪ੍ਰਮੁੱਖ ਗਤੀਵਿਧੀਆਂ ਨੂੰ ਨਿਮਨਲਿਖਤ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ:

- ਫ਼ਸਲ ਦੀਆਂ ਕਿਸਮਾਂ ਵਿੱਚ ਸੁਧਾਰ
- ਫ਼ਸਲ ਉਤਪਾਦਨ ਪ੍ਰਬੰਧਨ
- ਫ਼ਸਲ ਸੁਰੱਖਿਆ ਪ੍ਰਬੰਧਨ

229

15.1.1 ਫ਼ਸਲ ਦੀਆਂ ਕਿਸਮਾਂ ਵਿੱਚ ਸੁਧਾਰ (Improvement in Crop Variety)

ਫ਼ਸਲਾਂ ਦਾ ਉਤਪਾਦਨ ਚੰਗਾ ਹੋਵੇ, ਇਹ ਯਤਨ ਫ਼ਸਲਾਂ ਦੀਆਂ ਕਿਸਮਾਂ ਦੀ ਚੋਣ ਉਪਰ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਫ਼ਸਲਾਂ ਦੀਆਂ ਕਿਸਮਾਂ ਲਈ ਚੰਗੇ ਉਪਯੋਗੀ ਗੁਣਾਂ (ਜਿਵੇਂ ਰੋਗਾਂ ਪਤੀ ਲੜਨ ਦੀ ਸਮਰੱਥਾ, ਖਾਦਾਂ ਪਤੀ ਵਿਵਹਾਰ, ਉਤਪਾਦਨਾਂ ਦੀ ਗੁਣਵੱਤਾ, ਅਤੇ ਵੱਧ ਪੈਦਾਵਾਰ) ਦਾ ਚਣਨਾ ਪਜਣਨ ਦੁਆਰਾ ਕਰ ਸਕਦੇ ਹਾਂ। ਫ਼ਸਲਾਂ ਦੀਆਂ ਕਿਸਮਾਂ ਵਿੱਚ ਇੱਛਤ ਗਣਾਂ ਨੂੰ ਸੰਕਰਣ ਦੁਆਰਾ ਪਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਸ਼ੈਕਰਣ ਵਿਧੀ ਵਿੱਚ ਵੱਖਰੇ ਅਣਵੈਸ਼ਿਕ ਗਣਾਂ ਵਾਲੇ ਪੌਦਿਆਂ ਵਿੱਚ ਸ਼ੈਕਰਣ (Hybridisation) ਕਰਵਾਉਂਦੇ ਹਨ। ਇਹ ਸੰਕਰਣ ਔਤਰ ਕਿਸਮ (ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਵਿੱਚ) ਅੰਤਰ ਸਪੀਸ਼ੀਜ਼ (ਇਕ ਹੀ ਜੀਨਸ ਦੇ ਪੌਦੇ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਸਪੀਸ਼ੀਜ਼ ਵਿਚ) ਅਤੇ ਅੰਤਰ ਜੈਨਰਿਕ (ਦੋ ਅਲੱਗ ਜੀਨਸ ਵਾਲੇ ਪੌਦਿਆਂ ਵਿੱਚ ਹੋ ਸਕਦਾ ਹੈ। ਫ਼ਸਲ ਸੁਧਾਰ ਦਾ ਦੂਜਾ ਤਰੀਕਾ ਹੈ ਇੱਛੁਕ ਗੁਣਾਂ ਵਾਲੇ ਜੀਨਾਂ ਦਾ ਪਾਉਣਾ। ਇਸ ਦੇ ਨਤੀਜੇ ਵੱਜੋਂ ਅਨੁਵੰਸ਼ਿਕ ਤੌਰ ਤੇ ਰੁਪਾਂਤਰਿਤ ਫ਼ਸਲ ਪਾਪਤ ਹੁੰਦੀ ਹੈ। ਫ਼ਸਲਾਂ ਦੀਆਂ ਨਵੀਂਆਂ ਕਿਸਮਾਂ ਅਪਨਾਉਣ ਲਈ ਇਹ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਵੱਖ-ਵੱਖ ਕਿਸਮ ਦੀਆਂ ਪਸਥਿਤੀਆਂ ਜੋ ਕਿ ਵੱਖ-ਵੱਖ ਖੇਤਰਾਂ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਹੁੰਦੀਆਂ ਹਨ, ਵਿੱਚ ਫ਼ਸਲ ਚੰਗਾ ਝਾੜ ਦੇਵੇ। ਕਿਸਾਨਾਂ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਕਿਸਮ ਦੀ ਫ਼ਸਲ ਦੇ ਚੰਗੀ ਕਿਸਮ ਦੇ ਬੀਜ ਉਪਲੱਬਧ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਇਹ ਬੀਜ ਇੱਕ ਹੀ ਕਿਸਮ ਦੇ ਹੋਣ ਅਤੇ ਇੱਕੋ ਜਿਹੇ ਹਾਲਾਤਾਂ ਹੇਠ ਪੰਗਰ ਸਕਣ।

ਖੇਤੀ ਪੱਧਤੀਆਂ ਅਤੇ ਫ਼ਸਲ ਦਾ ਉਤਪਾਦਨ ਮੌਸਮ, ਮਿੱਟੀ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਪਾਣੀ ਦੀ ਉਪਲੱਬਧਤਾ ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਕਿਉਂਕਿ ਮੌਸਮ ਦੇ ਹਾਲਾਤਾਂ ਜਿਵੇਂ ਸੋਕਾ ਅਤੇ ਹੜ੍ਹ ਆਦਿ ਦਾ ਪਹਿਲਾਂ ਅਨੁਮਾਨ ਲਗਾਉਣਾ ਮੁਸ਼ਕਲ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਅਜਿਹੀਆਂ ਕਿਸਮਾਂ ਜ਼ਿਆਦਾ ਲਾਭਦਾਇਕ ਹਨ ਜਿਹੜੀਆਂ ਵੱਖ-ਵੱਖ ਜਲਵਾਯੂ ਪਰਸਥਿਤੀਆਂ ਵਿੱਚ ਉੱਗ ਸਕਣ। ਇਸੇ ਤਰਾਂ ਅਜਿਹੀਆਂ ਕਿਸਮਾਂ ਬਣਾਈਆਂ ਗਈਆਂ ਹਨ ਜੋ ਜ਼ਿਆਦਾ ਲੂਣੀ ਮਿੱਟੀ ਵਿੱਚ ਵੀ ਉੱਗ ਸਕਣ। ਕਿਸਮਾਂ ਦੇ ਸੁਧਾਰ ਲਈ ਕੁੱਝ ਜ਼ਰੂਰੀ ਕਾਰਕ ਹਨ।

- ਉੱਚ ਉਤਪਾਦਨ : ਪ੍ਰਤੀ ਏਕੜ ਫ਼ਸਲ ਦੀ ਝਾੜ ਵਧਾਉਣਾ।
- ਉੱਨਤ ਕਿਸਮਾਂ : ਫ਼ਸਲ ਉਤਪਾਦ ਦੀ ਗੁਣਵੱਤਾ ਹਰੇਕ ਫ਼ਸਲ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਹੁੰਦੀ ਹੈ। ਦਾਲਾਂ ਵਿੱਚ ਪ੍ਰੋਟੀਨ ਦੀ ਗੁਣਵੱਤਾ, ਤੇਲ-ਬੀਜ ਫ਼ਸਲਾਂ

230

ਵਿੱਚ ਤੇਲ ਦੀ ਗੁਣਵੱਤਾ, ਕਣਕ ਵਿੱਚ ਪਕਾਉਣ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਫ਼ਲਾਂ-ਸਬਜ਼ੀਆਂ ਵਿੱਚ ਸੁਰੱਖਿਅਤਾ ਦਾ ਗੁਣ ਮਹੱਤਵਪੂਰਨ ਹਨ।

- ਜੈਵਿਕ ਅਤੇ ਅਜੈਵਿਕ ਪ੍ਰਤੀਰੋਧਕਤਾ : ਜੈਵਿਕ (ਰੋਗ, ਕੀਟ ਅਤੇ ਗੋਲ ਕਿਰਮ) ਅਤੇ ਅਜੈਵਿਕ (ਸੋਕਾ, ਖਾਰਾਪਣ, ਸੋਮ, ਗਰਮੀ, ਠੈਡ ਅਤੇ ਕੋਹਰਾ) ਪਰਸਥਿਤੀਆਂ ਦੇ ਕਾਰਨ ਫ਼ਸਲ ਉਤਪਾਦਨ ਘੱਟ ਹੋ ਸਕਦਾ ਹੈ। ਇਨ੍ਹਾਂ ਪਰਸਥਿਤੀਆਂ ਨੂੰ ਸਹਿ ਸਕਣ ਵਾਲੀਆਂ ਕਿਸਮਾਂ ਫ਼ਸਲ ਉਤਪਾਦਨ ਵਿੱਚ ਸੁਧਾਰ ਲਿਆ ਸਕਦੀਆਂ ਹਨ।
- ਪੱਕਣ ਦੇ ਸਮਾਂ ਵਿੱਚ ਪਰਿਵਰਤਨ : ਜਿੰਨਾ ਕਿਸੇ ਫ਼ਸਲ ਬੀਜਣ ਤੋਂ ਲੈ ਕੇ ਕੱਟਣ ਤੱਕ ਦਾ ਸਮਾਂ ਘੱਟ ਹੋਵੇਗਾ, ਉਨਾ ਹੀ ਫ਼ਸਲ ਜ਼ਿਆਦਾ ਲਾਹੇਵੰਦ ਹੋਵੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ ਕਿਸਾਨ ਇੱਕ ਸਾਲ ਵਿੱਚ ਕਈ ਫ਼ਸਲਾਂ ਉਗਾ ਸਕਦਾ ਹੈ। ਘੱਟ ਸਮੇਂ ਵਿੱਚ ਫਸਲ ਪੱਕਣ ਕਰਕੇ ਖਰਚਾ ਵੀ ਘੱਟ ਹੁੰਦਾ ਹੈ। ਇੱਕ ਸਮਾਨ ਫਸਲ ਪੱਕਣ ਕਰਕੇ ਕਟਾਈ ਸੌਖੀ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਕਟਾਈ ਦੌਰਾਨ ਹੋਣ ਵਾਲੇ ਨੁਕਸਾਨ ਵੀ ਘੱਟ ਹੁੰਦੇ ਹਨ।
- ਵਿਆਪਕ ਅਨੁਕੂਲਤਾ : ਵਿਆਪਕ ਅਨੁਕੂਲਤਾ ਵਾਲੀਆਂ ਫ਼ਸਲਾਂ ਦਾ ਵਿਕਾਸ ਕਰਨਾ ਵੱਖ-ਵੱਖ ਵਾਤਾਵਰਣੀ ਹਲਾਤਾਂ ਵਿੱਚ ਫ਼ਸਲ ਉਤਪਾਦਨ ਨੂੰ ਸਥਾਈ ਬਣਾਉਣ ਵਿੱਚ ਸਹਾਇਕ ਹੋਵੇਗਾ। ਇਸ ਤਰ੍ਹਾਂ ਨਾਲ ਫ਼ਸਲ ਦੀ ਇੱਕ ਹੀ ਕਿਸਮ ਨੂੰ ਵੱਖ-ਵੱਖ ਖੇਤਰਾਂ ਵਿੱਚ ਜਲਵਾਯੂ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਹਾਲਤਾਂ ਵਿੱਚ ਉਗਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।
- ਇੱਛੁਕ ਖੇਤੀ ਫ਼ਸਲਾਂ ਦੇ ਗੁਣ : ਚਾਰੇ ਵਾਲੀਆਂ ਫ਼ਸਲਾਂ ਲਈ ਲੈਬੀਆਂ ਅਤੇ ਜ਼ਿਆਦਾ ਸ਼ਾਖਾ ਹੋਣਾ ਇੱਛੁਕ ਗੁਣ ਹੈ। ਅਨਾਜ ਵਾਲੀਆਂ ਫ਼ਸਲਾਂ ਲਈ ਬੰਨਾਪਣ (Dwarfyness) ਚੰਗਾ ਗੁਣ ਹੈ ਤਾਂ ਕਿ ਇਹ ਘੱਟ ਪੋਸ਼ਕ ਤੱਤ ਚੂਸਣ। ਇਸ ਲਈ ਇਛੁਕ ਗੁਣਾਂ ਵਾਲੀਆਂ ਖੇਤੀ ਫ਼ਸਲਾਂ ਪੈਦਾ ਕਰਨਾ ਉਤਪਾਦਨ ਵਧਾਉਣ ਵਿੱਚ ਸਹਾਈ ਹੁੰਦਾ ਹੈ।

ਜੈਵਿਕ ਅਤੇ ਅਜੈਵਿਕ ਕਾਰਕ ਕਿਸ ਤਰ੍ਹਾਂ ਫ਼ਸਲ ਉਤਪਾਦਨ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ?

Ro

 ਫਸਲ ਸੁਧਾਰ ਲਈ ਇੱਛਤ ਖੇਤੀ ਫ਼ਸਲਾਂ ਦੇ ਗੁਣ ਕਿਹੜੇ ਹਨ?

ਵਿਗਿਆਨ

15.1.2 ਫ਼ਸਲ ਉਤਪਾਦਨ ਪ੍ਰਬੰਧਨ (Crop Production Management)

ਦੂਜੇ ਖੇਤੀ ਪ੍ਰਧਾਨ ਦੇਸ਼ਾਂ ਵਾਂਗ ਭਾਰਤ ਵਿੱਚ ਵੀ ਖੇਤੀ ਛੋਟੇ-ਛੋਟੇ ਖੇਤਾਂ ਤੋਂ ਲੈ ਕੇ ਵੱਡੇ ਖੇਤੀ ਫਾਰਮਾਂ ਤੱਕ ਫੈਲੀ ਹੋਈ ਹੈ। ਇਸ ਲਈ ਵੱਖ-ਵੱਖ ਕਿਸਾਨਾਂ ਕੋਲ ਜ਼ਮੀਨ, ਧਨ, ਸੂਚਨਾ ਅਤੇ ਟੈਕਨਾਲੋਜੀ ਦੀ ਜਾਣਕਾਰੀ ਘੱਟ ਜਾਂ ਵੱਧ ਹੋ ਸਕਦੀ ਹੈ। ਸੰਖੇਪ ਵਿੱਚ ਧਨ ਅਤੇ ਆਰਥਿਕ ਹਾਲਤਾਂ ਕਿਸਾਨ ਨੂੰ ਵਿਭਿੰਨ ਖੇਤੀ ਪ੍ਣਾਲੀਆਂ ਅਤੇ ਖੇਤੀ ਤਕਨੀਕਾਂ ਨੂੰ ਅਪਣਾਉਣ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਭੂਮਿਕਾ ਨਿਭਾਉਂਦੇ ਹਨ। ਜ਼ਿਆਦਾ ਨਿਵੇਸ਼ ਅਤੇ ਉਤਪਾਦਨ ਦਾ ਆਪਸ ਵਿੱਚ ਸੰਬੰਧ ਹੈ।ਇਸ ਲਈ ਕਿਸਾਨ ਦੀ ਨਿਵੇਸ਼ ਕਰਨ ਲਈ ਖਰੀਦ ਸਮਰੱਥਾ ਇਹ ਨਿਰਧਾਰਿਤ ਕਰਦੀ ਹੈ ਕਿ ਉਸ ਦੁਆਰਾ ਅਪਣਾਈ ਗਈ ਫ਼ਸਲ ਪ੍ਰਣਾਲੀ ਅਤੇ ਉਤਪਾਦਨ ਕਿਹੋ ਜਿਹਾ ਹੋਵੇਗਾ। ਇਸ ਲਈ ਉਤਪਾਦਨ ਪੱਧਰ ਅਲੱਗ-ਅਲੱਗ ਹੋ ਸਕਦੇ ਹਨ। ਇਹ ਬਿਨਾਂ ਲਾਗਤ ਉਤਪਾਦਨ, ਅਲਪ-ਲਾਗਤ ਉਤਪਾਦਨ ਅਤੇ ਉੱਚ-ਲਾਗਤ ਉਤਪਾਦਨ ਹੋ ਸਕਦੇ ਹਨ।

15.1.2 (i) ध्रेप्तव पृष्ठेपठ (Nutrient Management)

ਜਿਵੇਂ ਸਾਨੂੰ ਵਾਧੇ, ਵਿਕਾਸ ਅਤੇ ਸਿਹਤਮੰਦ ਰਹਿਣ ਲਈ ਭੋਜਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਉਸੇ ਤਰਾਂ ਪੌਦਿਆਂ ਨੂੰ ਵੀ ਵਾਧੇ ਲਈ ਪੋਸ਼ਕ ਪਦਾਰਥਾਂ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਪੌਦਿਆਂ ਨੂੰ ਪੋਸ਼ਕ ਤੱਤ ਹਵਾ, ਪਾਣੀ ਅਤੇ ਮਿੱਟੀ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਪੌਦਿਆਂ ਲਈ 16 ਪੋਸ਼ਕ ਤੱਤ ਜ਼ਰੂਰੀ ਹਨ। ਹਵਾ ਤੋਂ ਕਾਰਬਨ ਅਤੇ ਆਕਸੀਜਨ, ਪਾਣੀ ਤੋਂ ਹਾਈਡਰੋਜਨ ਅਤੇ ਆਕਸੀਜਨ ਅਤੇ ਬਾਕੀ ਦੇ 13 ਪੋਸ਼ਕ ਤੱਤ ਮਿੱਟੀ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ 13 ਪੋਸ਼ਕਾਂ ਵਿਚੋਂ 6 ਜ਼ਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਚਾਹੀਦੇ ਹਨ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਨੂੰ ਬਹੁ-ਮਾਤਰੀ ਪੋਸ਼ਕ ਤੱਤ (Macro Nutrients) ਕਹਿੰਦੇ ਹਨ। ਬਾਕੀ 7 ਪੋਸ਼ਕਾਂ ਦੀ ਜ਼ਰੂਰਤ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਇਨ੍ਹਾਂ ਨੂੰ ਘੱਟ-ਮਾਤਰੀ ਪੋਸ਼ਕ ਤੱਤ (Micro Nutrients) ਕਹਿੰਦੇ ਹਨ। (ਸਾਰਣੀ 15.1)

ਇਨ੍ਹਾਂ ਪੋਸ਼ਕ ਤੱਤਾਂ ਦੀ ਕਮੀ ਪੌਦਿਆਂ ਵਿੱਚ ਸਰੀਰਕ ਕਿਰਿਆਵਾਂ ਜਿਵੇਂ ਕਿ ਜਨਣ ਕਿਰਿਆ, ਵਾਧਾ ਅਤੇ ਰੋਗ ਪ੍ਰਤੀਰੋਧਕਤਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੇ ਹਨ। ਉਤਪਾਦਨ ਵਧਾਉਣ ਲਈ ਮਿੱਟੀ ਵਿੱਚ ਇਨ੍ਹਾਂ ਪੋਸ਼ਕਾਂ ਨੂੰ ਦੇਸੀ ਜਾਂ ਰਸਾਇਣਕ ਖਾਦਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪਾ ਕੇ ਉਸ ਦੀ ਉਪਜਾਊ ਸ਼ਕਤੀ ਵਧਾਈ ਜਾ ਸਕਦੀ ਹੈ।

ਵਾਲੇ ਪੇਸ਼ਕ ਤੱਤ						
ਸ਼੍ਰੇਤ	ਪੋਸ਼ਕ ਤੱਤ					
ਹਵਾ	ਕਾਰਬਨ, ਆਕਸੀਜਨ					
ਪਾਣੀ	ਹਾਈਡ੍ਰੋਜਨ, ਆਕਸੀਜਨ, ਨਾਈਟ੍ਰੋਜਨ					
ਮਿੱਟੀ	 (i) ਬਹੁ-ਮਾਤਰੀ ਪੋਸ਼ਕ ਨਾਈਟ੍ਰੋਜਨ, ਫਾਸਫੋਰਸ, ਪੋਟਾਸ਼ੀਅਮ, ਕੈਲਸ਼ੀਅਮ, ਮੈਗਨੀਸ਼ੀਅਮ, ਸਲਫਰ (ii) ਅਲਪ-ਮਾਤਰੀ ਪੋਸ਼ਕ ਆਇਰਨ, ਮੈਂਗਨੀਜ਼, ਬੋਰਾਨ ਜਿੰਕ, ਕਾਪਰ, ਮੋਲਿਬਡੀਨਮ, ਕਲੋਰੀਨ 					

 ਬਹੁ-ਮਾਤਰੀ ਪੋਸ਼ਕ ਤੱਤ ਕੀ ਹਨ ? ਇਨ੍ਹਾਂ ਨੂੰ ਬਹੁ-ਮਾਤਰੀ ਕਿਉਂ ਕਹਿੰਦੇ ਹਨ ?
 ਪੌਦੇ ਆਪਣੇ ਪੌਸ਼ਕ ਤੱਤ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ?

ਖਾਦ (Manure)

ਖਾਦ ਵਿੱਚ ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਦੀ ਮਾਤਰਾ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਹ ਮਿੱਟੀ ਨੂੰ ਘੱਟ ਮਾਤਰਾ ਵਿੱਚ ਪੋਸ਼ਕ ਤੱਤ ਦਿੰਦੇ ਹਨ। ਖਾਦਾਂ ਨੂੰ ਜੀਵ ਜੰਤੂਆਂ ਦੇ ਮਲ-ਮੂਤਰ ਅਤੇ ਪੌਦਿਆਂ ਦੀ ਰਹਿੰਦ-ਖ਼ੂੰਹਦ ਦੇ ਅਪਘਟਨ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਖਾਦ ਮਿੱਟੀ ਨੂੰ ਪੋਸ਼ਕਾਂ ਅਤੇ ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਨਾਲ ਭਰਪੂਰ ਕਰਦੀ ਹੈ ਅਤੇ ਮਿੱਟੀ ਦੀ ਉਪਜਾਊ ਸ਼ਕਤੀ ਵਧਾਉਂਦੀ ਹੈ।ਖਾਦਾਂ ਵਿੱਚ ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਦੀ ਜ਼ਿਆਦਾ ਮਾਤਰਾ ਮਿੱਟੀ ਦੀ ਸੰਰਚਨਾ ਵਿੱਚ ਸੁਧਾਰ ਕਰਦੀ ਹੈ। ਇਸ ਨਾਲ ਰੇਤਲੀ ਮਿੱਟੀ ਦੀ ਪਾਣੀ ਸੱਖਣ ਦੀ ਸਮਰੱਥਾ ਵੱਧ ਜਾਂਦੀ ਹੈ। ਚੀਕਣੀ ਮਿੱਟੀ ਵਿੱਚ ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਦੀ ਜ਼ਿਆਦਾ ਮਾਤਰਾ ਪਾਣੀ ਕੱਢਣ (Percolation) ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੀ ਹੈ ਅਤੇ ਸੇਮ (Water logging) ਆਉਣ ਤੋਂ ਬਚਾਅ ਕਰਦੀ ਹੈ।

ਖਾਦਾਂ ਬਣਾਉਣ ਲਈ ਅਸੀਂ ਜੈਵਿਕ ਰਹਿੰਦ-ਖੂੰਹਦ ਵਰਤ ਲੈਂਦੇ ਹਾਂ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਆਪਣੇ ਵਾਤਾਵਰਨ ਨੂੰ ਰਸਾਇਣਕ ਖਾਦਾਂ ਦੀ ਜ਼ਿਆਦਾ ਵਰਤੋਂ ਤੋਂ ਬਚਾਅ ਕੇ

ਖਾਧ-ਪਦਾਰਬਾਂ ਦੇ ਸੰਸਾਧਨਾਂ ਵਿੱਚ ਸੁਧਾਰ

ਲਾਭ ਪਹੁੰਚਾਉਂਦੇ ਹਾਂ। ਜੈਵਿਕ ਰਹਿੰਦ-ਖ਼ੂੰਹਦ ਨੂੰ ਵਰਤਣਾ ਖੇਤੀਬਾੜੀ ਦੀ ਰਹਿੰਦ-ਖ਼ੂੰਹਦ ਦੇ ਪੁਨਰ ਚੱਕਰ ਦਾ ਵੀ ਵਧੀਆ ਤਰੀਕਾ ਹੈ। ਜੈਵਿਕ ਪਦਾਰਥਾਂ ਦੀ ਵਰਤੋਂ ਦੇ ਅਧਾਰ ਤੇ ਖਾਦਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਵਰਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਕੰਪੋਸਟ ਅਤੇ ਵਰਮੀਕੰਪੋਸਟ (Compost & Vemicompost): ਕੰਪੋਸਟ ਬਣਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਖੇਤੀਬਾੜੀ ਦੀ ਰਹਿੰਦ-ਖੂੰਹਦ ਜਿਵੇਂ ਪਸ਼ੂਆਂ ਦਾ ਮਲ-ਮੂਤਰ (ਗੋਬਰ ਆਦਿ), ਸਬਜ਼ੀਆਂ ਦੇ ਛਿਲਕੇ ਅਤੇ ਕਚਰਾ, ਜਾਨਵਰਾਂ ਦਾ ਬਚਿਆ ਖੁਚਿਆ ਚਾਰਾ, ਘਰੇਲੂ ਕੂੜਾ ਕਰਕਟ, ਸੀਵੇਜ਼ ਕਚਰਾ, ਤੂੜੀ, ਨਦੀਨ ਆਦਿ ਨੂੰ ਟੋਏ ਵਿੱਚ ਗਲਣ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਕੰਪੋਸਟ ਵਿੱਚ ਕਾਰਬਨਿਕ ਪਦਾਰਥ ਅਤੇ ਪੋਸ਼ਕ ਤੱਤ ਬਹੁਤ ਜ਼ਿਆਦਾ ਮਾਤਰਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਕੰਪੋਸਟ ਬਣਾਉਣ ਵਿੱਚ ਗੰਡੋਇਆਂ ਨੂੰ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਪੌਦਿਆਂ ਅਤੇ ਜੀਵ-ਜੰਤੂਆਂ ਦੀ ਰਹਿੰਦ-ਖੂੰਹਦ ਦੀ ਅਪਘਟਣ ਕਿਰਿਆ ਵਿੱਚ ਤੇਜ਼ੀ ਲਿਆਉਂਦੇ ਹਨ। ਇਸਨੂੰ ਵਰਮੀ-ਕੰਪੋਸਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਹਰੀ ਖਾਦ (Green Manure) : ਫ਼ਸਲ ਉਗਾਉਣ ਤੋਂ ਪਹਿਲਾਂ ਕੁੱਝ ਹੋਰ ਪੌਦੇ ਜਿਵੇਂ ਗੁਆਰਾ ਅਤੇ ਮੂੰਗ ਵਰਗੇ ਪੌਦਿਆਂ ਨੂੰ ਉਗਾ ਕੇ ਦੁਬਾਰਾ ਹਲ ਚਲਾ ਕੇ ਅਤੇ ਵਾਹ ਕੇ ਮਿੱਟੀ ਵਿੱਚ ਮਿਲਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਹਰੇ ਪੌਦੇ ਮਿੱਟੀ ਵਿੱਚ ਮਿਲ ਕੇ ਹਰੀ ਖਾਦ ਬਣਾਉਂਦੇ ਹਨ। ਇਹ ਹਰੀ ਖਾਦ ਮਿੱਟੀ ਨੂੰ ਨਾਈਟ੍ਰੋਜਨ ਅਤੇ ਫਾਸਫੋਰਸ ਨਾਲ ਭਰਪੂਰ ਬਣਾਉਂਦੇ ਹਨ।

ਰਸਾਇਣਕ ਖਾਦਾਂ (Chemical Fetilisers)

ਇਹ ਵਪਾਰਕ ਤੌਰ 'ਤੇ ਬਣਾਏ ਗਏ ਪੌਦਾ-ਪੋਸ਼ਕ ਹਨ। ਇਹ ਪੌਦੇ ਨੂੰ ਨਾਈਟ੍ਰੋਜਨ, ਫਾਸਫੋਰਸ ਅਤੇ ਪੋਟਾਸ਼ੀਅਮ ਦਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਨਾਲ ਪੌਦਿਆਂ ਵਿੱਚ ਕਾਇਆ ਵਿ੍ਧੀ (ਪੱਤਿਆਂ, ਟਾਹਣੀਆਂ ਅਤੇ ਫੁੱਲਾਂ) ਵਧੀਆ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨਾਲ ਪੌਦੇ ਸਿਹਤਮੰਦ ਰਹਿੰਦੇ ਹਨ। ਰਸਾਇਣਕ ਖਾਦਾਂ ਉੱਚ ਲਾਗਤ ਖੇਤੀਬਾੜੀ ਵਿੱਚ ਵਧੀਆ ਉਤਪਾਦਨ ਦੇਣ ਲਈ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਪਰੰਤੂ ਆਰਥਿਕ ਦ੍ਰਿਸ਼ਟੀ ਤੋਂ ਮਹਿੰਗੀਆਂ ਪੈਂਦੀਆਂ ਹਨ।

ਰਸਾਇਣਕ ਖਾਦਾਂ ਦੀ ਵਰਤੋਂ ਬਹੁਤ ਧਿਆਨ-ਪੂਰਵਕ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ। ਇਨ੍ਹਾਂ ਦੀ ਉਚਿਤ ਵਰਤੋਂ ਲਈ ਇਸ ਦੀ ਖ਼ੁਰਾਕ ਦੀ ਸਹੀ ਮਾਤਰਾ, ਸਹੀ ਸਮੇਂ ਤੇ ਦੇਣਾ ਅਤੇ ਖਾਦ ਪਾਉਣ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਬਾਅਦ ਦੀਆਂ ਸਾਵਧਾਨੀਆਂ ਵਰਤਣਾ ਜ਼ਰੂਰੀ.ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਕਈ ਵਾਰੀ ਰਸਾਇਣਕ ਖਾਦਾਂ ਜ਼ਿਆਦਾ ਸਿੰਚਾਈ ਕਰਨ ਨਾਲ ਪਾਣੀ ਵਿੱਚ ਹੀ ਵਹਿ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਪੌਦੇ ਉਨ੍ਹਾਂ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਨਹੀਂ ਸੋਖ ਪਾਉਂਦੇ। ਇਹ ਰਸਾਇਣਕ ਖਾਦਾਂ ਇਉਂ ਪਾਣੀ ਦੇ ਪ੍ਰਦੂਸ਼ਣ ਦਾ ਕਾਰਨ ਬਣਦੀਆਂ ਹਨ।

ਜਿਵੇਂ ਅਸੀਂ ਪਿਛਲੇ ਪਾਠ ਵਿੱਚ ਪੜ੍ਹਿਆ ਹੈ, ਰਸਾਇਣਕ ਖਾਦਾਂ ਦੀ ਲਗਾਤਾਰ ਵਰਤੋਂ ਨਾਲ ਮਿੱਟੀ ਦੀ ਗੁਣਵੱਤਾ ਵਿੱਚ ਕਮੀ ਆਉਂਦੀ ਹੈ ਕਿਉਂਕਿ ਕਾਰਬਨਿਕ ਪਦਾਰਥਾਂ ਦੀ ਪ੍ਰਤੀ-ਪੂਰਤੀ ਨਾ ਹੋਣ ਕਰਕੇ ਮਿੱਟੀ ਵਿਚ ਰਹਿਣ ਵਾਲੇ ਸੂਖਮਜੀਵ ਮਰ ਜਾਂਦੇ ਹਨ। ਰਸਾਇਣਕ ਖਾਦਾਂ ਦੀ ਵਰਤੋਂ ਨਾਲ ਫ਼ਸਲਾਂ ਦਾ ਜ਼ਿਆਦਾ ਉਤਪਾਦਨ ਤਾਂ ਘੱਟ ਸਮੇਂ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੋ ਜਾਂਦਾ ਹੈ ਪਰੰਤੂ ਇਹ ਮਿੱਟੀ ਦੀ ਉਪਜਾਊ ਸ਼ਕਤੀ ਨਸ਼ਟ ਕਰਦੇ ਹਨ। ਇਸਦੇ ਮੁਕਾਬਲੇ ਦੇਸੀ ਖਾਦਾਂ ਨਾਲ ਹੋਣ ਵਾਲੇ ਲਾਭ ਲੰਬੇ ਸਮੇਂ ਤੱਕ ਹੁੰਦੇ ਹਨ ਅਤੇ ਮਿੱਟੀ ਦੀ ਉਪਜਾਊ ਸ਼ਕਤੀ ਵੀ ਬਣੀ ਰਹਿੰਦੀ ਹੈ।

ਸ਼ਿਨ ।. ਮਿੱਟੀ ਦੀ ਉਪਜਾਊ ਸ਼ਕਤੀ ਬਣਾਈ ਰੱਖਣ ਲਈ ਖਾਦਾਂ ਅਤੇ ਰਸਾਇਣਕ ਖਾਦਾਂ ਦੀ ਵਰਤੋਂ ਦੀ ਤੁਲਨਾ ਕਰੋ।

ਜੈਵਿਕ ਖੇਤੀ (Organic farming), ਇੱਕ ਅਜਿਹੀ ਖੇਤੀ ਪਕਿਰਿਆ ਹੈ ਜਿਸ ਵਿੱਚ ਰਸਾਇਣਕ ਖਾਦਾਂ, ਨਦੀਨਨਾਸ਼ਕ ਅਤੇ ਪੀੜਕ ਨਾਸ਼ਕਾਂ (Pesticides) ਦੀ ਵਰਤੋਂ ਨਾ-ਮਾਤਰ ਹੁੰਦੀ ਹੈ ਜਾਂ ਬਿਲਕਲ ਹੀ ਨਹੀਂ ਹੁੰਦੀ। ਇਸ ਤਰਾਂ ਦੀ ਖੇਤੀ ਵਿੱਚ ਜੈਵਿਕ ਜਾਂ ਕਾਰਬਨਿਕ ਖਾਦਾਂ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਵਰਤੋਂ, ਖੇਤੀ ਬਾੜੀ ਦੀ ਰਹਿੰਦ ਖੇਹਦ (ਤੁੜੀ ਅਤੇ ਪਸਆਂ ਦਾ ਮਲ ਮਤਰ) ਦਾ ਪਨਰ ਚੱਕਰਣ, ਜੈਵਿਕ ਖਾਦਾਂ ਬਣਾਉਣ ਲਈ ਜੈਵਿਕ ਕਾਰਕਾਂ ਜਿਵੇਂ ਹਰੀ-ਨੀਲੀ ਕਾਈ ਦੀ ਵਰਤੋਂ. ਦਾਣਿਆਂ ਦੀ ਸਾਂਭ-ਸੰਭਾਲ ਲਈ ਨਿੰਮ ਦੇ ਪੱਤਿਆਂ ਜਾਂ ਹਲਦੀ ਦੀ ਜੈਵਿਕ ਪੀੜਕ ਨਾਸਕਾਂ ਵਜੋਂ ਵਰਤੋਂ ਅਤੇ ਖੇਤੀਬਾੜੀ ਦੀਆਂ ਵਧੀਆ ਫ਼ਸਲੀ-ਪ੍ਰਣਾਲੀਆਂ (ਜਿਵੇਂ ਮਿਸ਼ਰਤ ਫ਼ਸਲੀ, ਅੰਤਰ-ਫ਼ਸਲੀ ਅਤੇ ਫ਼ਸਲੀ ਚੱਕਰ) ਦਾ ਵਰਨਣ ਹੇਠਾਂ 15.1.2 (iii) ਵਿੱਚ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਹ ਫ਼ਸਲੀ ਪਣਾਲੀਆਂ ਪੋਸ਼ਕ ਤੱਤ ਦੇਣ ਤੋਂ ਇਲਾਵਾ ਕੀੜੇ, ਦੂਜੇ ਪੀੜਕਾਂ ਅਤੇ ਨਦੀਨਾਂ ਦਾ ਕੰਟਰੋਲ ਕਰਨ ਵਿੱਚ ਵੀ ਸਹਾਈ ਹੁੰਦੀਆਂ ਹਨ।

15.1.2 (ii) ਸਿੰਚਾਈ (Irrigation)

ਭਾਰਤ ਵਿੱਚ ਜ਼ਿਆਦਾਤਰ ਖੇਤੀ ਵਰਖਾ ਤੇ ਨਿਰਭਰ ਹੈ ਭਾਵ ਜ਼ਿਆਦਾਤਰ ਫ਼ਸਲਾਂ ਦੀ ਸਫਲਤਾ ਸਮੇਂ ਤੇ ਵਰਖਾ ਆਉਣ ਅਤੇ ਫ਼ਲ ਦੇ ਵਾਧੇ ਦੇ ਸਮੇਂ ਵਿੱਚ ਚੌਖੀ ਵਰਖਾ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਇਸ ਲਈ ਘੱਟ ਵਰਖਾ ਹੋਣ ਨਾਲ ਫ਼ਸਲ ਫੇਲ੍ਹ ਉਈ ਭਾਵ ਉਤਪਾਦਨ ਘਟ ਜਾਂਦਾ ਹੈ।

ਵਿਗਿਆਨ

232

ਇਹ ਗੱਲ ਯਕੀਨੀ ਬਨਾਉਣ ਨਾਲ ਕਿ ਫ਼ਸਲ ਨੂੰ ਵਾਧੇ ਦੇ ਸਮੇਂ ਸਹੀ ਪਾਣੀ ਦੀ ਮਾਤਰਾ ਮਿਲ ਜਾਵੇ ਤਾਂ ਫ਼ਸਲ ਦਾ ਉਤਪਾਦਨ ਵੱਧ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਵੱਧ ਤੋਂ ਵੱਧ ਖੇਤੀ-ਭੂਮੀ ਨੂੰ ਸਿੰਚਾਈ ਹੇਠ ਲਿਆਉਣ ਦੇ ਉਪਰਾਲੇ ਕੀਤੇ ਜਾਂਦੇ ਹਨ।

> ਪਾਣੀ ਦੀ ਕਮੀ ਅਤੇ ਵਰਖਾ ਦੀ ਅਨਿਯਮਤਾ ਨਾਲੇ ਹੀ ਸੋਕਾ ਆਉਂਦਾ ਹੈ। ਮੀਂਹ ਤੇ ਅਧਾਰਿਤ ਖੇਤੀ ਨੂੰ ਸੋਕੇ ਤੋਂ ਬਹੁਤ ਨੁਕਸਾਨ ਹੁੰਦਾ ਹੈ ਵਿਸ਼ੇਸ਼ ਤੌਰ 'ਤੇ ਉਨ੍ਹਾਂ ਖੇਤਰਾਂ ਵਿੱਚ ਜਿੱਥੇ ਕਿਸਾਨ ਫ਼ਸਲ ਉਤਪਾਦਨ ਲਈ ਸਿੰਚਾਈ ਦਾ ਕੋਈ ਤਰੀਕਾ ਨਹੀਂ ਵਰਤਦੇ ਸਗੋਂ ਮੀਂਹ ਤੇ ਹੀ ਨਿਰਭਰ ਰਹਿੰਦੇ ਹਨ। ਮਾੜੀ ਮਿੱਟੀ ਵਿੱਚ ਪਾਣੀ ਸੋਖਣ ਦੀ ਸਮਰੱਥਾ ਘੱਟ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ ਜਿਨ੍ਹਾਂ ਖੇਤਰਾਂ ਵਿੱਚ ਮਿੱਟੀ ਮਾੜੀ ਹੈ ਉੱਥੇ ਫ਼ਸਲਾਂ ਨੂੰ ਸੋਕੇ ਨਾਲ ਬਹੁਤ ਨੁਕਸਾਨ ਹੁੰਦਾ ਹੈ ਵਿਗਿਆਨੀਆਂ ਨੇ ਕੁਝ ਫ਼ਸਲਾਂ ਦੀਆਂ ਅਜਿਹੀਆਂ ਕਿਸਮਾਂ ਤਿਆਰ ਕੀਤੀਆਂ ਹਨ ਜੋ ਸੋਕੇ ਦੀ ਸਥਿਤੀ ਨੂੰ ਸਹਿਣ ਕਰ ਸ਼ਕਦੀਆਂ ਹਨ।

ਇਸ ਨੂੰ ਵੀ ਜਾਣੇ

ਭਾਰਤ ਵਿੱਚ ਪਾਣੀ ਦੇ ਅਨੇਕ ਸ਼੍ਰੋਤ ਹਨ ਅਤੇ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦਾ ਜਲਵਾਯੂ ਹੈ। ਇਨ੍ਹਾਂ ਪਰਸਥਿਤੀਆਂ ਵਿੱਚ ਪਾਣੀ ਦੇ ਸ਼੍ਰੋਤਾਂ ਦੀ ਉਪਲੱਬਧਤਾ ਦੇ ਅਧਾਰ ਤੇ ਵਿਭਿੰਨ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਿੰਚਾਈ ਵਿਧੀਆਂ ਅਪਣਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਸ਼੍ਰੋਤਾਂ ਦੇ ਕੁਝ ਉਦਾਹਰਣ ਖੂਹ, ਨਦੀਆਂ ਅਤੇ ਤਲਾਬ ਹਨ।

- ਖੂਹ : ਖੂਹ ਦੋ ਤਰ੍ਹਾਂ ਦੇ ਹੁੰਦੇ ਹਨ-ਬੋਦੇ ਹੋਏ ਖੂਹ ਅਤੇ ਟਿਊਬਵੈਲ। ਖੋਦੇ ਹੋਏ ਖੂਹਾਂ ਵਿੱਚ ਭੂਮੀ ਦੀਆਂ ਤਹਿਆਂ ਵਿਚਲੇ ਭੂਮੀਗਤ ਪਾਣੀ ਨੂੰ ਇਕੱਠਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਟਿਊਬਵੈਲ ਰਾਹੀਂ ਪਾਣੀ ਨੂੰ ਡੂੰਘਾਈਆਂ ਤੱਕ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਖੂਹਾਂ 'ਚੋਂ ਸਿੰਚਾਈ ਲਈ ਪਾਣੀ ਪੰਪ ਦੁਆਰਾ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ।
- ਨਹਿਰਾਂ : ਇਹ ਸਿੰਚਾਈ ਦੀ ਇੱਕ ਬਹੁਤ ਹੀ ਵਿਸਤ੍ਰਿਤ ਅਤੇ ਵਿਆਪਕ ਪ੍ਣਾਲੀ ਹੈ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਪਾਣੀ ਇੱਕ ਜਾਂ ਜ਼ਿਆਦਾ ਸੋਮਿਆਂ ਜਾਂ ਨਦੀਆਂ ਤੋਂ ਆਉਂਦਾ ਹੈ। ਮੁੱਖ ਨਹਿਰ ਤੋਂ ਕਈ ਛੋਟੀਆਂ ਨਹਿਰਾਂ ਨਿਕਲਦੀਆਂ ਹਨ ਜਿਹੜੀਆਂ ਅੱਗੋਂ ਛੋਟੇ ਭਾਗਾਂ ਵਿੱਚ ਵਿਭਾਜਿਤ ਹੋ ਕੇ ਖੇਤਾਂ ਵਿੱਚ ਸਿੰਚਾਈ ਕਰਦੀਆਂ ਹਨ।

- ਨਦੀ ਜਲ-ਉਠਾਅ ਪ੍ਰਣਾਲੀ (River left system) : ਜਿਨ੍ਹਾਂ ਖੇਤਰਾਂ ਵਿੱਚ ਜਲ ਸ਼੍ਰੋਤਾਂ ਤੋਂ ਘੱਟ ਪਾਣੀ ਮਿਲਣ ਦਾ ਕਾਰਨ ਨਹਿਰਾਂ ਦਾ ਵਹਾਅ ਅਨਿਯਮਤ ਜਾਂ ਘੱਟ ਹੁੰਦਾ ਹੈ, ਉੱਥੇ ਜਲ ਉਠਾਅ ਪ੍ਰਣਾਲੀ ਜ਼ਿਆਦਾ ਲਾਹੇਵੰਦ ਹੁੰਦੀ ਹੈ। ਨਦੀਆਂ ਦੇ ਕਿਨਾਰੇ ਸਥਿਤ ਖੇਤਾਂ ਵਿੱਚ ਪਾਣੀ ਦੇਣ ਲਈ ਨਦੀਆਂ 'ਚੋਂ ਸਿੱਧਾ ਹੀ ਪਾਣੀ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ।
- ਤਲਾਬ : ਛੋਟੇ ਜਲ ਸ਼੍ਰੋਤ ਜੋ ਛੋਟੇ ਖੇਤਰਾਂ ਵਿੱਚ ਵਹਿੰਦੇ ਹੋਏ ਪਾਣੀ ਨੂੰ ਇਕੱਠਾ ਕਰਦੇ ਹਨ, ਤਲਾਬ ਦਾ ਰੂਪ ਧਾਰਨ ਕਰ ਲੈਂਦੇ ਹਨ।

ਖੇਤੀਬਾੜੀ ਵਿੱਚ ਪਾਣੀ ਦੀ ਉਪਲੱਬਧਤਾ ਵਧਾਉਣ ਲਈ, ਆਧੁਨਿਕ ਤਰੀਕੇ ਜਿਵੇਂ ਵਰਖਾ ਦੇ ਪਾਣੀ ਨੂੰ ਇਕੱਠਾ ਕਰਨਾ ਅਤੇ ਜਲਵੰਡ ਦਾ ਉਚਿਤ ਪ੍ਰਬੰਧਨ ਕਰਨਾ ਆਦਿ ਸ਼ਾਮਲ ਹੈ। ਇਸ ਲਈ ਛੋਟੇ ਬੰਨ੍ਹ ਬਣਾਏ ਜਾਂਦੇ ਹਨ ਜਿਹੜੇ ਧਰਤੀ ਹੇਠਲੇ ਪਾਣੀ ਦਾ ਪੱਧਰ ਵਧਾਉਂਦੇ ਹਨ। ਇਹ ਛੋਟੇ ਬੰਨ੍ਹ ਮੀਂਹ ਦੇ ਪਾਣੀ ਨੂੰ ਵਹਿਣ ਤੋਂ ਰੋਕਦੇ ਹਨ ਅਤੇ ਭੋਂ-ਖੋਰਨ ਵੀ ਘੱਟ ਕਰਦੇ ਹਨ।

15.1.2 (iii) ਫ਼ਸਲ ਚੱਕਰ (Crop Pattern)

ਜ਼ਿਆਦਾ ਲਾਭ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਫ਼ਸਲਾਂ ਉਗਾਉਣ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਵਿਧੀਆਂ ਅਸੀਂ ਵਰਤ ਸਕਦੇ ਹਾਂ।

ਮਿਸ਼ਰਤ ਫ਼ਸਲਾਂ (Mixed Cropping), ਇੱਕੋ ਸਮੇਂ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਫ਼ਸਲਾਂ ਇੱਕੋ ਖੇਤ ਵਿੱਚ ਇਕੱਠੀਆਂ ਉਗਾਉਣਾ ਹੈ। ਉਦਾਹਰਨ ਵਜੋਂ ਕਣਕ ਅਤੇ ਛੋਲੇ, ਕਣਕ ਅਤੇ ਸਰ੍ਹੇਂ ਜਾਂ ਮੂੰਗਫਲੀ ਅਤੇ ਸੂਰਜਮੁਖੀ। ਇਸ ਤਰ੍ਹਾਂ ਨਾਲ ਨੁਕਸਾਨ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਘੱਟ ਜਾਂਦੀ ਹੈ ਕਿਉਂਕਿ ਇੱਕ ਫ਼ਸਲ ਦੇ ਨਸ਼ਟ ਹੋ ਜਾਣ ਤੇ ਵੀ ਦੂਜੀ ਫ਼ਸਲ ਦੇ ਉਤਪਾਦਨ ਦੀ ਆਸ ਬਣੀ ਰਹਿੰਦੀ ਹੈ।

ਅੰਤਰ ਫ਼ਸਲਾਂ (Inter Cropping) ਪ੍ਰਣਾਲੀ ਵਿੱਚ ਦੋ ਜਾਂ ਵੱਧ ਫ਼ਸਲਾਂ ਨੂੰ ਇੱਕ ਹੀ ਖੇਤ ਵਿੱਚ ਇਕੱਠੀਆਂ ਨੂੰ ਇੱਕ ਖ਼ਾਸ ਪੈਟਰਨ ਵਿੱਚ ਉਗਾਇਆ ਜਾਂਦਾ ਹੈ (ਚਿੱਤਰ 15.2) ਕੁਝ ਲਾਈਨਾਂ ਵਿੱਚ ਇੱਕ ਕਿਸਮ ਦੀ ਫ਼ਸਲ ਅਤੇ ਉਸਦੇ ਬਰਾਬਰ ਨਾਲ ਦੀ ਲਾਈਨ ਵਿੱਚ ਦੂਜੀ ਫ਼ਸਲ ਉਗਾਈ ਜਾਂਦੀ ਹੈ। ਉਦਾਹਰਣ ਵਜੋਂ ਸੋਇਆਬੀਨ + ਮੱਕੀ, ਬਾਜਰਾ ਲੋਬੀਆ ਵਗੈਰਾ। ਫ਼ਸਲਾਂ ਦੀ ਚੋਣ ਇਸ ਢੰਗ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਕਿ ਉਨ੍ਹਾਂ ਦੀ ਪੋਸ਼ਕ ਤੱਤਾਂ ਦੀ ਲੋੜ ਵੱਖ-ਵੱਖ ਹੋਵੇ। ਇਸ ਨਾਲ ਮਿੱਟੀ ਦੇ ਅੰਦਰੋਂ ਅਤੇ ਬਾਹਰੋਂ ਪਏ ਸਾਰੇ ਪੋਸ਼ਕ ਤੱਤ

233

ਖਾਧ-ਪਦਾਰਥਾਂ ਦੇ ਸੰਸਾਧਨਾਂ ਵਿੱਚ ਸੁਧਾਰੇ

ਵਰਤੇ ਜਾਂਦੇ ਹਨ ਅਤੇ ਫ਼ਸਲ ਦਾ ਉਸਨੂੰ ਲੱਗਣ ਵਾਲੇ ਪੀੜਕਾਂ (Pest) ਅਤੇ ਬਿਮਾਰੀਆਂ ਤੋਂ ਬਚਾਅ ਰਹੇਗਾ ਅਤੇ ਇੱਕ ਫ਼ਸਲ ਦੇ ਸਾਰੇ ਪੌਦਿਆਂ ਨੂੰ ਨੁਕਸਾਨ ਨਹੀਂ ਹੋਵੇਗਾ। ਇਸ ਤਰ੍ਹਾਂ ਦੋਨੋਂ ਫ਼ਸਲਾਂ ਸਾਨੂੰ ਚੰਗਾ ਫਾਇਦਾ ਦੇ ਸਕਦੀਆਂ ਹਨ।

ਚਿੱਤਰ 15.2 : ਅੰਤਰ ਫ਼ਸਲਾਂ

ਫ਼ਸਲੀ ਚੱਕਰ (Crop Pattern) : ਵੱਖ-ਵੱਖ ਫ਼ਸਲਾਂ ਨੂੰ ਇੱਕੋ ਖੇਤ ਵਿੱਚ ਵਾਰੀ-ਵਾਰੀ ਪੂਰਵ-ਨਿਯੋਜਤ ਢੰਗ ਨਾਲ ਉਗਾਉਣ ਨੂੰ ਫ਼ਸਲੀ ਚੱਕਰ ਕਹਿੰਦੇ ਹਨ। ਠਹਿਰ ਦੇ ਅਧਾਰ ਤੇ ਵੱਖ-ਵੱਖ ਫ਼ਸਲਾਂ ਦੀ ਚੋਣ ਕਰਕੇ ਉਨ੍ਹਾਂ ਦਾ ਫ਼ਸਲੀ ਚੱਕਰ ਅਪਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਨਮੀ ਦੀ ਮਾਤਰਾ, ਸਿੰਚਾਈ ਦੇ ਸਾਧਨ ਆਦਿ ਦੀ ਉਪਲੱਬਧਤਾ ਦੇ ਅਨੁਸਾਰ ਫ਼ਸਲ ਦੀ ਚੋਣ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਕਿ ਪਹਿਲੀ ਫ਼ਸਲ ਕੱਟਣ, ਤੋਂ ਬਾਅਦ ਦੂਜੀ ਕਿਹੜੀ ਬੀਜੀ ਜਾਵੇਗੀ। ਜੇ ਫ਼ਸਲੀ ਚੱਕਰ ਚੰਗੇ ਢੰਗ ਨਾਲ ਅਪਣਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇੱਕ ਹੀ ਸਾਲ ਵਿੱਚ ਦੋ ਜਾਂ ਤਿੰਨ ਫ਼ਸਲਾਂ ਦਾ ਵੀ ਚੰਗਾ ਉਤਪਾਦਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

15.1.3 ਫ਼ਸਲ ਸੁਰੱਖਿਆ ਪ੍ਰਬੰਧਨ (Crop Protection Management)

ਖੇਤਾਂ ਵਿੱਚ ਫ਼ਸਲਾਂ ਨਾਲ ਬਹੁਤ ਸਾਰੇ ਨਦੀਨ ਉੱਗ ਜਾਂਦੇ ਹਨ, ਪੀੜਕ ਅਤੇ ਬਿਮਾਰੀਆਂ ਹਮਲੇ ਕਰਦੇ ਹਨ। ਜੇ ਨਦੀਨਾਂ ਅਤੇ ਪੀੜਕਾਂ ਨੂੰ ਸਹੀ ਸਮੇਂ ਤੇ ਕੰਟਰੋਲ ਨਾ ਕੀਤਾ ਜਾਵੇ ਤਾਂ ਉਹ ਫ਼ਸਲ ਨੂੰ ਇੰਨਾ ਨੁਕਸਾਨ ਪਹੁੰਚਾ ਸਕਦੇ ਹਨ ਕਿ ਪੂਰੀ ਫ਼ਸਲ ਤਬਾਹ ਹੋ ਸਕਦੀ ਹੈ।

ਨਦੀਨ, ਖੇਤੀਯੋਗ ਜ਼ਮੀਨ ਵਿੱਚ ਬੇਲੋੜੇ ਪੌਦੇ ਹੁੰਦੇ ਹਨ ਜਿਹੜੇ ਫ਼ਸਲ ਨਾਲ ਉੱਗ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ ਵਜੋਂ ਗੋਖਰੂ (xanthium), ਗਾਜਰ ਘਾਹ (Parthenium), ਮੌਥਾ (Cyprinum Rotedum)। ਇਹ ਭੋਜਨ, ਉੱਗਣ ਲਈ ਥਾਂ ਅਤੇ ਪ੍ਰਕਾਸ਼ ਲਈ ਫ਼ਸਲ ਨਾਲ ਮੁਕਾਬਲਾ ਕਰਦੇ ਹਨ। ਇਹ ਪੋਸ਼ਕ ਤੱਤ ਵੀ ਚੂਸ ਲੈਂਦੇ ਹਨ ਅਤੇ ਫ਼ਸਲ ਦੇ ਵਾਧੇ ਵਿੱਚ ਰੁਕਾਵਟ ਬਣਦੇ ਹਨ। ਇਸ ਲਈ ਚੰਗੇ ਫ਼ਸਲ ਉਤਪਾਦਨ ਵਾਸਤੇ ਫ਼ਸਲ ਦੇ ਵਾਧੇ ਦੇ ਸ਼ੁਰੂਆਤੀ ਸਮੇਂ ਵਿੱਚ ਹੀ ਇਨ੍ਹਾਂ ਨਦੀਨਾਂ ਨੂੰ ਖੇਤ ਵਿੱਚੋਂ ਪੁੱਟ ਦੇਣਾ ਚਾਹੀਦਾ ਹੈ।

ਆਮ ਤੌਰ 'ਤੇ ਕੀਟ-ਪੀੜਕ ਪੌਦਿਆਂ ਉੱਤੇ ਤਿੰਨ ਤਰੀਕਿਆਂ ਨਾਲ ਹਮਲਾ ਕਰਦੇ ਹਨ-(i) ਇਹ ਜੜ, ਤਣੇ ਜਾਂ ਪੱਤੇ ਨੂੰ ਕੱਟ ਦਿੰਦੇ ਹਨ। (ii) ਇਹ ਪੌਦੇ ਦੇ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ ਵਿੱਚੋਂ ਸੈੱਲਾਂ ਦਾ ਰਸ ਚੂਸ ਲੈਂਦੇ ਹਨ। (iii) ਇਹ ਤਣੇ ਅਤੇ ਫਲਾਂ ਵਿੱਚ ਛੇਕ ਕਰ ਦਿੰਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਫ਼ਸਲ ਨੂੰ ਖ਼ਰਾਬ ਕਰ ਦਿੰਦੇ ਹਨ ਅਤੇ ਉਸਦਾ ਉਤਪਾਦਨ ਘਟਾ ਦਿੰਦੇ ਹਨ।

ਪੌਦਿਆਂ ਵਿੱਚ ਬਿਮਾਰੀਆਂ ਕੁਝ ਰੋਗਾਣੂ ਜਿਵੇਂ ਬੈਕਟੀਰੀਆ, ਵਾਇਰਸ ਜਾਂ ਉੱਲੀਆਂ ਨਾਲ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਰੋਗਾਣੂ ਮਿੱਟੀ, ਹਵਾ ਜਾਂ ਪਾਣੀ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਰਾਹੀਂ ਫ਼ਸਲਾਂ ਵਿੱਚ ਆ ਜਾਂਦੇ ਹਨ।

ਨਦੀਨ, ਕੀਟ-ਪੀੜਕ ਅਤੇ ਬਿਮਾਰੀਆਂ ਕਈ ਤਰੀਕਿਆਂ ਨਾਲ ਕੰਟਰੋਲ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਵਰਤਿਆ ਜਾਣ ਵਾਲਾ ਤਰੀਕਾ ਪੀੜਕਨਾਸ਼ੀ ਦਵਾਈ ਵਰਤਣਾ ਹੈ ਜਿਹੜੀ ਕਿ ਨਦੀਨਨਾਸ਼ਕ ਕੀਟ-ਨਾਸ਼ਕ ਅਤੇ ਉੱਲੀ ਨਾਸ਼ਕ ਹੋ ਸਕਦੀ ਹੈ। ਇਹ ਰਸਾਇਣ ਫ਼ਸਲੀ ਪੌਦਿਆਂ ਉਪਰ ਛਿੜਕੇ ਜਾਂਦੇ ਹਨ ਜਾਂ ਬੀਜਾਂ ਅਤੇ ਮਿੱਟੀ ਨੂੰ ਸੋਧਣ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਹਨ। ਪਰੰਤੂ ਇਨ੍ਹਾਂ ਰਸਾਇਣਾਂ ਦੀ ਜ਼ਿਆਦਾ ਵਰਤੋਂ ਨਾਲ ਕਈ ਸਮੱਸਿਆਵਾਂ ਪੈਦਾ ਹੋ ਜਾਂਦੀਆਂ ਹਨ। ਜਿਵੇਂ ਕਿ ਇਹ ਕਈ ਪੌਦਿਆਂ ਤੇ ਜਾਨਵਰਾਂ ਲਈ ਜ਼ਹਿਰੀਲੇ ਹੋ ਸਕਦੇ ਹਨ ਅਤੇ ਵਾਤਾਵਰਨੀ ਪ੍ਰਦੂਸ਼ਣ ਪੈਦਾ ਕਰਦੇ ਹਨ।

ਨਦੀਨਾਂ ਦਾ ਕੰਟਰੋਲ ਯੰਤਰਿਕ ਵਿਧੀਆਂ ਨਾਲ ਵੀ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਨਦੀਨਾਂ ਦੇ ਖਾਤਮੇ ਲਈ ਕੁੱਝ ਸੁਰੱਖਿਆ ਤਰੀਕੇ ਜਿਵੇਂ ਕਿ ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਸੀਡ-ਬੈਡ ਦੀ ਤਿਆਰੀ, ਸਮੇਂ ਸਿਰ ਫ਼ਸਲਾਂ ਨੂੰ ਬੀਜਣਾ, ਅੰਤਰਫ਼ਸਲੀ ਪ੍ਰਣਾਲੀ ਅਤੇ ਫ਼ਸਲੀ ਚੱਕਰ ਅਪਣਾਉਣਾ ਵੀ ਸ਼ਾਮਲ ਹੈ। ਪੀੜਕਾਂ ਨੂੰ ਹਟਾਉਣ ਲਈ ਕੁਝ ਸੁਰੱਖਿਆ ਤਰੀਕੇ ਹਨ-ਫ਼ਸਲਾਂ ਦੀਆਂ ਰੋਗ-ਪ੍ਰਤੀਰੋਧੀ ਕਿਸਮਾਂ ਦੀ ਵਰਤੋਂ ਅਤੇ ਗਰਮੀ ਦੇ ਮੌਸਮ 'ਚ ਹਲ ਚਲਾਉਣਾ। ਗਰਮੀਆਂ ਵਿੱਚ ਖੇਤਾਂ ਵਿੱਚ ਡੂੰਘਾ ਹਲ ਚਲਾ ਕੇ ਖੇਤ ਵਾਹਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਕਿ ਨਦੀਨ ਅਤੇ ਪੀੜਕ ਨਸ਼ਟ ਹੋ ਜਾਣ।

ਵਿਗਿਆਨ

234

ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਹਲਾਤਾਂ ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਲਾਭ ਹੋਵੇਗਾ ?

- (a) ਕਿਸਾਨ ਉੱਤਮ-ਕਿਸਮ ਦੇ ਬੀਜ ਬੀਜਦੇ ਹਨ। ਸਿੰਚਾਈ ਨਹੀਂ ਕਰਦੇ ਅਤੇ ਨਾ ਹੀ ਰਸਾਇਣਕ ਖਾਦਾਂ ਵਰਤਦੇ ਹਨ।
- (b) ਕਿਸਾਨ ਆਮ ਬੀਜਾਂ ਨੂੰ ਬੀਜਦੇ ਹਨ। ਸਿੰਚਾਈ ਵੀ ਕਰਦੇ ਹਨ ਅਤੇ ਰਸਾਇਣਕ ਖਾਦਾਂ ਵੀ ਵਰਤਦੇ ਹਨ।
- (c) ਕਿਸਾਨ ਚੰਗੀ ਕਿਸਮਾਂ ਦੇ ਬੀਜ ਬੀਜਦੇ ਹਨ। ਸਿੰਚਾਈ ਕਰਦੇ ਹਨ। ਰਸਾਇਣਕ ਖਾਦਾਂ ਅਤੇ ਫ਼ਸਲ ਸੁਰੱਖਿਆ ਵਿਧੀਆਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ।

ਕਿਰਿਆ

15.1

ਸਾਰਣੀ 15.2 : ਜਾਨਵਰ-ਉਤਪਾਦਾਂ ਦੇ ਪੇਸ਼ਕ ਮਾਨ

ਜੁਲਾਈ ਜਾਂ ਅਗਸਤ ਦੇ ਮਹੀਨੇ ਵਿੱਚ ਨਦੀਨਾਂ ਨਾਲ ਗ੍ਰਸਤ ਖੇਤ ਦਾ ਦੌਰਾ ਕਰਕੇ ਅਵਲੋਕਨ ਕਰੋ ਅਤੇ ਖੇਤ ਵਿੱਚ ਮੌਜੂਦ ਨਦੀਨਾਂ ਅਤੇ ਪੀੜਕਾਂ ਦੀ ਸੂਚੀ ਬਣਾਉ।

ਦਾਣਿਆਂ ਦਾ ਭੰਡਾਰਣ (Storage of Grains)

ਖੇਤੀ ਉਤਪਾਦਾਂ ਦੇ ਭੰਡਾਰਣ ਸਮੇਂ ਬਹੁਤ ਹਾਨੀ ਹੋ ਸਕਦੀ ਹੈ। ਇਸ ਹਾਨੀ ਵਿੱਚ ਜੈਵਿਕ ਕਾਰਕ-ਕੀਟ, ਚੂਹੇ, ਉੱਲੀ ਚਿੱਚੜ ਅਤੇ ਬੈਕਟੀਰੀਆ ਅਤੇ ਅਜੈਵਿਕ ਕਾਰਕ ਭੰਡਾਰਣ ਵਾਲੀ ਥਾਂ 'ਤੇ ਸਹੀ ਮਾਤਰਾ 'ਚ ਨਮੀ ਜਾਂ ਤਾਪ ਦਾ ਨਾ ਹੋਣਾ ਹੈ। ਇਹ ਕਾਰਕ ਉਤਪਾਦ ਦੀ ਗੁਣਵੱਤਾ ਵਿੱਚ ਕਮੀ ਲਿਆਉਂਦੇ ਹਨ, ਦਾਣਿਆਂ ਦਾ ਭਾਰ ਘਟਾਉਂਦੇ ਹਨ, ਪੁੰਗਰਣ ਦੀ ਸਮਰੱਥਾ ਘੱਟ ਕਰਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਬਦਰੰਗ ਕਰ ਦਿੰਦੇ ਹਨ। ਇਹ ਸਭ ਲੱਛਣ ਮੰਡੀ ਵਿੱਚ ਉਤਪਾਦ ਦੀ ਕੀਮਤ ਘਟਾ ਦਿੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਸਭ ਕਾਰਕਾਂ ਉੱਤੇ ਕਾਬੁ ਰੱਖਣ ਲਈ ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਉਪਚਾਰ ਅਤੇ ਗੁਦਾਮਾਂ ਦੀ ਉਚਿਤ ਦੇਖਭਾਲ ਅਤੇ ਪ੍ਰਬੰਧਨ ਜ਼ਰੂਰੀ ਹੈ।

ਨਿਰੋਧਕ ਅਤੇ ਨਿਯੰਤਰਣ ਵਿਧੀਆਂ ਦੀ ਵਰਤੋਂ ਦਾਣਿਆਂ ਨੂੰ ਭੰਡਾਰ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਵਿੱਚ ਦਾਣਿਆਂ ਨੂੰ ਭੰਡਾਰ-ਘਰ ਵਿੱਚ ਰੱਖਣ ਤੋਂ ਪਹਿਲਾਂ ਉਨ੍ਹਾਂ ਦੀ ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਸਫ਼ਾਈ, ਉਨ੍ਹਾਂ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਪਹਿਲਾਂ ਧੁੱਪ ਫਿਰ ਛਾਂ ਵਿੱਚ ਸੁਕਾਉਣਾ, ਪੀੜਕਾਂ ਨੂੰ ਮਾਰਨ ਵਾਲੇ ਰਸਾਇਣਾਂ ਨਾਲ ਧੁਣੀ ਦੇਣਾ ਸ਼ਾਮਲ ਹੈ।

> ਮੈਨ 1. ਫ਼ਸਲ ਦੇ ਸੁਰੱਖਿਆ ਤਰੀਕੇ ਅਤੇ ਜੈਵਿਕ ਵਿਧੀਆਂ ਨਾਲ ਕੈਟਰੋਲ ਕਰਨ ਦੇ ਢੰਗ ਫ਼ਸਲਾਂ ਨੂੰ ਬਚਾਉਣ ਲਈ ਕਿਉਂ ਲਾਹੇਵੇਦ ਹਨ?

 ਦਾਣਿਆਂ ਦੇ ਭੰਡਾਰਨ ਸਮੇਂ ਹੋਣ ਵਾਲੀ ਹਾਨੀ ਲਈ ਕਿਹੜੇ ਕਾਰਕ ਜ਼ਿੰਮੇਵਾਰ ਹਨ ?

15.2

235

ਕਿਰਿਆ

ਅਨਾਜ, ਦਾਲਾਂ ਅਤੇ ਤੇਲ-ਬੀਜ ਫ਼ਸਲਾਂ ਦੇ ਨਮੂਨੇ ਇਕੱਠੇ ਕਰਕੇ ਇੱਕ ਹਰਬੇਰੀਅਮ ਬਣਾਉ ਅਤੇ ਇਨ੍ਹਾਂ ਫ਼ਸਲਾਂ ਦੇ ਬੀਜਣ ਅਤੇ ਕੱਟਣ ਦਾ ਸਮਾਂ ਜਾਣੇ।

15.2. ਪਸ਼ੂ ਪਾਲਣ (Animal Husbandry)

ਪਸ਼ੂਧਨ ਦੇ ਪ੍ਰਬੰਧਨ ਨੂੰ ਪਸ਼ੂ-ਪਾਲਣ ਕਹਿੰਦੇ ਹਨ। ਇਸ ਦੇ ਅੰਤਰਗਤ ਬਹੁਤ ਸਾਰੇ ਕਾਰਜ ਜਿਵੇਂ ਭੋਜਨ ਦੇਣਾ, ਪ੍ਰਜਨਣ ਅਤੇ ਰੋਗਾਂ ਤੇ ਕਾਬੂ ਪਾਉਣਾ ਆਉਂਦੇ ਹਨ। ਜਾਨਵਰ ਅਧਾਰਿਤ ਖੇਤੀ ਵਿੱਚ ਮੱਝਾਂ, ਗਾਵਾਂ, ਭੇਡਾਂ, ਬੱਕਰੀਆਂ ਪਾਲਣਾ, ਮੁਰਗੀਪਾਲਣ ਤੇ ਮੱਛੀ ਪਾਲਣ ਆਉਂਦਾ ਹੈ। ਜਨਸੰਖਿਆ ਦੇ ਵਾਧੇ, ਰਹਿਣ-ਸਹਿਣ ਦੇ ਢੰਗਾਂ ਵਿੱਚ

ਜਾਨਵਰ ਉਤਪਾਦਨ		TRACT				
	ਚਰਬੀ	ਪ੍ਰੋਟੀਨ	ਖੰਡ	ਖਣਿਜ	ਪਾਣੀ	ਵਿਟਾਮਿਨ
ਦੁੱਧ	3.60	4.00	4.50	0.70	87.20	B ₁ , B ₂ , B ₁₂ , D, E
ਅੰਡੇ	12.00	13.00		1.00	74.00	В,
ਮੀਟ	3.60	21.10	10.000	1.10	74.20	B ₂ B ₁₂
ਮੱਛੀ	2.50	19.00	148 D	1.30	77.20	ਨਾਇਸਿਨ, D, A
	- Contraction	12100		1.50	11.20	0.1cm0, D, /

*ਬਹੁਤ ਥੋੜ੍ਹੀ ਮਾਤਰਾ ਵਿੱਚ ਹੈ।

ਖਾਧ-ਪਦਾਰਬਾਂ ਦੇ ਸੰਸਾਧਨਾਂ ਵਿੱਚ ਸੁਧਾਰ

ਬਦਲਾਅ ਕਰਕੇ ਔਡੇ, ਮਾਸ ਅਤੇ ਦੱਧ ਦੀ ਖਪਤ ਵੀ ਵਧ ਗਈ ਹੈ। ਪਸ਼ੂ ਧਨ ਲਈ ਮਨੁੱਖੀ ਵਤੀਫ਼ੇ ਵਿੱਚ ਜਾਗਰਕਤਾ ਆਉਣ ਕਾਰਨ ਪਸ਼ਧਨ ਖੇਤੀ ਵਿੱਚ ਕੁਝ ਨਵੀਆਂ ਪਰੇਸ਼ਾਨੀਆਂ ਵੀ ਆ ਗਈਆਂ ਹਨ। ਇਸ ਲਈ ਪਸ਼ੁਧਨ ਉਤਪਾਦਨ ਵਧਾਉਣ ਅਤੇ ਉਸ ਵਿੱਚ ਸੁਧਾਰ ਲਿਆਉਣ ਦੀ ਜ਼ਰੂਰਤ ਹੈ।

15.2.1. ਪਸ਼ ਪਾਲਣ (Animal Husbandry)

ਪਸ਼–ਪਾਲਣ ਦੇ ਦੋ ਉਦੇਸ਼ ਹਨ : ਦੱਧ ਦੇਣ ਵਾਲੇ ਅਤੇ ਖੇਤੀ ਕਾਰਜ (ਹਲ ਚਲਾਉਣਾ, ਸਿੰਚਾਈ ਅਤੇ ਭਾਰ ਢੱਣ) ਕਰਨ ਵਾਲੇ ਪਸ਼ੂਆਂ ਨੂੰ ਪਾਲਣਾ। ਭਾਰਤੀ ਪਾਲਤੂ ਪਸ਼ੂਆਂ ਦੀਆਂ ਦੋ ਮੁੱਖ ਸਪੀਸ਼ੀਜ ਹਨ । ਬਾਸ ਬੁਬੇਲਿਸ ਅਤੇ ਬਾਸ ਇੰਡੀਕਸ ਦਿੰਟੀਕੇਸ (Bos Bubalis/Bos indicus) (ਮੈਂਡ ਦੁੱਧ ਦੇਣ ਵਾਲੀਆਂ ਮਾਦਾ ਪਸ਼ੂਆਂ ਨੂੰ/ਦੁਧਾਰੂ ਪਸ਼ੂ (Dairy Animals)

Di

butter (Lactation Period) ਤੇ ਇਸਕਾਰ, ਦੱਧ ਦੇਣ ਦੇ ਸਮੇਂ ਭਾਵ ਹੈ ਬੱਚੇ ਦੇ ਜਨਮ ਤੋਂ ਬਾਅਦ ਦੱਧ ਉਤਪਾਦਨ ਦਾ ਸਮਾਂ ਕਾਲ । ਇਸ ਤਰ੍ਹਾਂ ਦੁੱਧ ਉਤਪਾਦਨ ਦੁੱਧੂ ਦੇਣ ਦਾ ਸਮਾਂ <u>ਕਾਲ</u> ਵੱਧਾ ਕੇ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ (ਲੈਬੇ)ਦੁੱਧ ਦੇਣ ਦੇ 🤄 ਸਮੇਂ ਲਈ ਵਿਦੇਸ਼ੀ ਨਸਲਾਂ ਜਿਵੇਂ ਜਰਸੀ, ਬ੍ਰਾਉਨ ਸਵਿੱਸ ਚਣੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਦੇਸੀ ਨਸਲਾਂ ਜਿਵੇਂ ਲਾਲ ਸਿੰਧੀ. ਸ਼/ਹੀਵਾਲ (ਚਿੱਤਰ 15.3) ਵਿੱਚ ਰੋਗ-ਪ੍ਰਤੀਰੋਧੀ ਸਮਰੱਥਾ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ ਜੇਕਰ ਇਨਾਂ ਦੋਨਾਂ ਨਸਲਾਂ ਵਿੱਚ ਸ਼ੈਕਰਣ ਕਰਾਇਆ ਜਾਵੇ ਤਾਂ ਇੱਕ ਅਜਿਹੀ ਸੰਤਾਨ ਪੈਦਾ ਹੋਵੇਗੀ ਜਿਸ ਵਿੱਚ ਦੋਵੇਂ ਇੱਛਕ ਗੁਣ (ਰੋਗ ਪ੍ਰਤੀਰੋਧੀ ਸਮਰੱਥਾ ਅਤੇ ਲਿੰਬਾ) ਦੱਧ ਦੇਣ ਦਾ ਸਮਾਂ ਕਾਲ) ਹੋਣਗੇ।

(a) ਰੈੱਡਸਿੰਧੀ

(b) ਸਾਹੀਵਾਲ ਚਿੱਤਰ 15.3 : ਭਾਰਤੀ ਨਸਲ ਦੀਆਂ ਗਾਵਾਂ

236

ਪਸ਼ੂਆਂ ਦੀ ਨਸਲ ਸੁਧਾਰ ਲਈ ਕਿਹੜੀ ਵਿਧੀ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਕਿਉਂ ?

ਕਿਰਿਆ

Eic

15.3

- ਪਸ਼ਆਂ ਦੇ ਵਾੜੇ ਵਿੱਚ ਜਾਓ ਅਤੇ ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ ਵੱਲ ਧਿਆਨ ਦਿਉ।
 - ਪਸ਼ੁਆਂ ਦੀ ਗਿਣਤੀ ਅਤੇ ਭਿੰਨ-ਭਿੰਨ ਤਰ੍ਹਾਂ ਦੀਆਂ ਨਸਲਾਂ ਦੀ ਗਿਣਤੀ।

ਭਿਨ-ਭਿੰਨ ਨਸਲਾਂ ਤੋਂ ਪਤੀਦਿਨ ਪਾਪਤ ਦੱਧ ।

ਪਸ਼ਆਂ ਦੀ ਸਿਹਤ ਅਤੇ ਸਾਫ ਸੱਥਰੇ ਦੱਧ ਉਤਪਾਦਨ ਲਈ ਗਾਵਾਂ ਅਤੇ ਮੱਝਾਂ ਲਈ ਵਧੀਆ ਸ਼ੈੱਡ ਦੀ ਸਹੂਲਤ ਉਸਦੀ ਸਫਾਈ ਅਤੇ ਉਚਿਤ ਮਨੁੱਖੀ ਵਤੀਰੇ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। ਜਾਨਵਰਾਂ ਦੇ ਸਰੀਰ ਤੇ ਹਰ ਰੋਜ਼ ਖਰਖਰਾ (Brushing) ਮਾਰ ਕੇ ਮਿੱਟੀ ਤੇ ਟੁੱਟੇ ਹੋਏ ਵਾਲ ਉਤਾਰਨੇ ਚਾਹੀਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਨੂੰ ਖੁੱਲੇ ਹਵਾਦਾਰ ਅਤੇ ਛੱਤ ਵਾਲੇ ਸ਼ੈੱਡ ਵਿੱਚ ਬੈਨ੍ਹਣਾ ਚਾਹੀਦਾ ਹੈ ਤਾਂ ਕਿ ਉਹ ਵਰਖਾ, ਗਰਮੀ ਅਤੇ ਸਰਦੀ ਤੋਂ ਬਚੇ ਰਹਿਣ। ਸ਼ੈੱਡ ਦੀ ਫਰਸ਼ ਥੋੜੀ ਢਾਲ ਵਾਲੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ਤਾਂ ਕਿ ਉਹ ਸੱਕੀ ਰਹੇ ਅਤੇ ਸਫ਼ਾਈ ਅਸਾਨੀ ਨਾਲ ਹੋ ਜਾਵੇ।

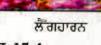
ਡੋਅਰੀ ਵਾਲੇ ਜਾਨਵਰਾਂ ਦੀਆਂ ਭੋਜਨ ਦੀਆਂ ਲੋੜਾਂ ਦੇ ਤਰ੍ਹਾਂ ਦੀਆਂ ਹਨ। (a) ਇੱਕ ਤਰ੍ਹਾਂ ਦਾ ਆਹਾਰ ਜੋ ਉਨਾਂ ਦੀ ਸਿਹਤ ਨੂੰ ਵਧੀਆ ਬਣਾਈ ਰੱਖੇ। (b) ਦੂਜਾ ਆਹਾਰ ਜਿਹੜਾ ਦੁੱਧ ਦੀ ਮਾਤਰਾ ਨੂੰ ਵਧਾਏ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਭੋਜਨ ਦੀ ਲੋੜ ਦੁੱਧ ਦੇਣ ਦੇ ਸਮਾਂ ਕਾਲ ਦੌਰਾਨ ਹੁੰਦੀ ਹੈ। ਪਸ਼ੂਆਂ ਦੇ ਭੋਜਨ ਵਿੱਚ ਆਉਂਦਾ ਹੈ : (a) ਮੋਟਾ ਚਾਰਾ (Roughage) ਜਿਹੜੇ ਮੱਖ ਤੌਰ ਤੇ ਰੇਸ਼ੇ ਹੁੰਦੇ ਹਨ ਅਤੇ (b) ਖਲ (Concentrates) ਜਿਸ ਵਿੱਚ ਰੇਸ਼ੇ ਘੱਟ ਹੁੰਦੇ ਹਨ ਪਰੰਤ ਪ੍ਰੋਟੀਨ ਅਤੇ ਹੋਰ ਪੋਸ਼ਕ ਤੱਤ ਵੱਧ ਹੁੰਦੇ ਹਨ। ਪਸ਼ੂਆਂ ਨੂੰ ਇੱਕ ਸੰਤਲਿਤ ਆਹਾਰ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ੳਚਿਤ ਮਾਤਰਾਂ ਵਿੱਚ ਸਾਰੇ ਪੋਸ਼ਕ ਤੱਤ ਹੋਣ। ਅਜਿਹੇ ਪੋਸ਼ਕ ਤੱਤਾਂ ਤੋਂ ਬਿਨਾਂ ਕੁਝ ਸ਼ਖਮ ਪੋਸ਼ਕ ਤੱਤ ਵੀ ਭੋਜਨ ਵਿੱਚ ਮਿਲਾਏ ਜਾਂਦੇ ਹਨ। ਜਿਹੜੇ ਦੁਧਾਰੂ ਪਸ਼ੂਆਂ ਨੂੰ ਸਿਹਤਮੰਦ ਰੱਖਦੇ ਹਨ ਅਤੇ ਦੱਧ ਉਤਪਾਦਨ ਵੀ ਵਧਾਉਂਦੇ ਹਨ।

ਦੁਧਾਰੂ ਪਸ਼ੂਆਂ ਨੂੰ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਬਿਮਾਰੀਆਂ ਵੀ ਲੱਗ ਜਾਂਦੀਆਂ ਹਨ। ਜਿਨ੍ਹਾਂ ਨਾਲ ਉਨ੍ਹਾਂ ਦੀ ਦੁੱਧ ਉਤਪਾਦਨ

न्दनि मोडां हिंद केन मुख्य प्रार्थ दरने कोरे ownloaded from https:// www.studiestoday.com

ਵਿਗਿਆਨ

ਸਮਰੱਥਾ ਘਟ ਜਾਂਦੀ ਹੈ ਜਾਂ ਉਨ੍ਹਾਂ ਦੀ ਮੌਤ ਵੀ ਹੋ ਸਕਦੀ ਹੈ। ਇੱਕ ਸਿਹਤਮੰਦ ਪਸ਼ੂ ਠੀਕ ਢੰਗ ਨਾਲ ਭੋਜਨ ਖਾਂਦਾ ਹੈ ਅਤੇ ਠੀਕ ਢੰਗ ਨਾਲ ਬੈਠਦਾ ਜਾਂ ਉਠਦਾ ਹੈ। ਪਸ਼ੂਆਂ ਵਿੱਚ ਬਾਹਰੀ ਜਾਂ ਅੰਦਰੂਨੀ ਪਰਜੀਵੀ ਵੀ ਹੋ ਸਕਦੇ ਹਨ। ਬਾਹਰੀ ਪਰਜੀਵੀ (External Parasites) ਚਮੜੀ ਦੇ ਉੱਪਰ ਰਹਿੰਦੇ ਹਨ ਅਤੇ ਆਮ ਤੌਰ ਤੇ ਚਮੜੀ ਦੀਆਂ ਬਿਮਾਰੀਆਂ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਅੰਦਰੂਨੀਂ ਪਰਜੀਵੀ (Internal Parasites) ਜਿਵੇਂ ਕਿਰਮ (worms) ਮਿਹਦੇ ਜਾਂ ਅੰਤੜੀਆਂ ਨੂੰ ਖਰਾਬ ਕਰਦੇ ਹਨ ਜਦੋਂ ਕਿ ਚਪਟੇ ਕਿਰਮ (fluke) ਜਿਗਰ ਤੇ ਮਾੜਾ ਪ੍ਰਭਾਵ ਪਾਉਂਦੇ ਹਨ। ਪਸ਼ੂਆਂ ਵਿੱਚ ਛੂਤ ਦੇ ਰੋਗ ਬੈਕਟੀਰੀਆ ਜਾਂ ਵਾਇਰਸ ਦੇ ਕਾਰਨ ਹੁੰਦੇ ਹਨ। ਬਹੁਤ ਸਾਰੀਆਂ ਜੀਵਾਣੂਆਂ ਦੀਆਂ ਜਾਂ ਵਾਇਰਲ ਬੀਮਾਰੀਆਂ ਲਈ ਪਸ਼ੂਆਂ ਦਾ ਟੀਕਾਕਰਨ (vaccination) ਕੀਤਾ ਜਾਂਦਾ ਹੈ।


15.2.2 ਮੁਰਗੀ ਪਾਲਣ (Poultry Farming)

ਮੁਰਗੀ ਪਾਲਣ ਦਾ ਧੰਦਾ ਆਂਡੇ ਅਤੇ ਮੀਟ ਲਈ ਮੁਰਗੀਆਂ ਪਾਲਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ ਸੁਧਰੀ ਨਸਲ ਦੀਆਂ ਮੁਰਗੀਆਂ ਪੈਦਾ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਆਂਡਿਆਂ ਲਈ ਆਂਡੇ ਦੇਣ ਵਾਲੀ (ਲੇਅਰਜ਼) ਅਤੇ ਮਾਸ ਲਈ (ਬ੍ਰਾਇਲਰ) ਨੂੰ ਪਾਲਿਆ ਜਾਂਦਾ ਹੈ।

ਹੇਠ ਲਿਖੇ ਗੁਣਾਂ ਲਈ ਸ਼ੈਕਰਣ ਵਿਧੀਆਂ ਨਾਲ ਭਾਰਤੀ ਨਸਲਾਂ ਜਿਵੇਂ ਅਸੀਲ ਅਤੇ ਵਿਦੇਸ਼ੀ ਨਸਲਾਂ ਜਿਵੇਂ

ਚਿੱਤਰ 15.4

ਲੈੱਗਹਾਰਨ ਮੁਰਗੀਆਂ ਦਾ ਸੰਕਰਣ ਕਰਵਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸੁਧਰੀਆਂ ਨਸਲਾਂ ਤਿਆਰ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

- ਚੂਚਿਆਂ ਦੀ ਗੁਣਵੱਤਾ ਅਤੇ ਸੰਖਿਆ।
- ਬੈਨੇ ਕਿਸਮ ਦੇ ਬ੍ਰਾਇਲਰ ਮਾਤਾ-ਪਿਤਾ ਦੁਆਰਾ ਚੂਚਿਆਂ ਦਾ ਵਿਆਪਕ ਵਪਾਰ ਲਈ ਉਤਪਾਦਨ।
- ਗਰਮੀ ਅਨੁਕੂਲਣ ਸਮਰੱਥਾ/ਤਾਪ ਨੂੰ ਸਹਿਣ ਦੀ ਸਮਰੱਥਾ।

- 4. ਦੇਖਭਾਲ ਲਈ ਘੱਟ ਖਰਚੇ ਦੀ ਲੋੜ।
- ਅੰਡੇ ਦੇਣ ਵਾਲੀ ਮੁਰਗੀ ਦਾ ਅਕਾਰ ਛੋਟਾ ਕਰਨਾ ਅਤੇ ਉਸ ਵਿੱਚ ਸਸਤਾ ਅਤੇ ਖੇਤੀਬਾੜੀ ਰਹਿੰਦ ਖੂੰਹਦ ਤੋਂ ਬਣਿਆ ਭੋਜਨ ਪਚਾਉਣ ਦੀ ਸਮਰੱਥਾ ਪੈਦਾ ਕਰਨਾ।

ਹੇਠ ਲਿਖੇ ਕਥਨ ਦੀ ਵਿਆਖਿਆ ਕਰੋ। ਇਹ ਗੱਲ ਧਿਆਨ ਖਿੱਚਦੀ ਹੈ ਕਿ ਭਾਰਤ ਵਿੱਚ ਮੁਰਗੀ ਪਾਲਣ ਪੈਂਦੇ ਨਾਲ ਅਸੀਂ ਮਨੁੱਖੀ ਵਰਤੋਂ ਵਿੱਚ ਨਾ ਆਉਣ ਵਾਲੇ ਘੱਟ ਫਾਈਬਰ ਵਾਲੇ ਭੋਜਨ ਪਦਾਰਥਾਂ ਨੂੰ ਬਹੁਤ ਹੀ ਪੋਸ਼ਕ ਜੈਤੂ ਪ੍ਰੋਟੀਨ ਭੋਜਨ ਵਿੱਚ ਬਦਲ ਸਕਦੇ ਹਾਂ।

ਆਂਡੇ ਅਤੇ ਬ੍ਰਾਇਲਰਾਂ ਦੀ ਪੈਦਾਵਾਰ (Production of Eggs and Broilers)

ਬ੍ਰਾਇਲਰ ਚੂਚਿਆਂ ਨੂੰ ਚੰਗੇ ਵਾਧੇ ਦੀ ਦਰ ਅਤੇ ਚੰਗੀ ਭੋਜਨ ਸਮਰੱਥਾ ਲਈ ਵਿਟਾਮਿਨ ਭਰਪੂਰ ਭੋਜਨ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ। ਉਨ੍ਹਾਂ ਦੀ ਮੌਤ ਦਰ ਘੱਟ ਰੱਖਣ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਖੰਭ ਅਤੇ ਮਾਸ ਦੀ ਗੁਣਵੱਤਾ ਬਣਾਈ ਰੱਖਣ ਲਈ ਸਾਵਧਾਨੀ ਵਰਤੀ ਜਾਂਦੀ ਹੈ। ਉਨ੍ਹਾਂ ਨੂੰ ਬ੍ਰਾਇਲਰ ਦੇ ਰੂਪ ਵਿੱਚ ਪੈਦਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਮਾਸ-ਵਿਕਰੀ ਲਈ ਮੰਡੀ ਵਿੱਚ ਭੇਜਿਆ ਜਾਂਦਾ ਹੈ।

ਮੁਰਗੀ ਪਾਲਣ ਧੰਦੇ ਵਿੱਚ ਵਧੀਆ ਉਤਪਾਦਨ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਵਧੀਆ ਪ੍ਰਬੰਧ ਪ੍ਰਣਾਲੀ ਬਹੁਤ ਜ਼ਰੂਰੀ ਹੈ। ਇਸ ਅਧੀਨ ਇਨ੍ਹਾਂ ਦੇ ਆਵਾਸ ਤੇ ਉਚਿਤ ਤਾਪ, ਸਵੱਛਤਾ ਉਨ੍ਹਾਂ ਦੇ ਖਾਣ ਲਈ ਚੰਗਾ ਭੋਜਨ ਅਤੇ ਬਿਮਾਰੀਆਂ ਅਤੇ ਪੀੜਤਾਂ ਤੋਂ ਬਚਾਅ ਕਰਨਾ ਸ਼ਾਮਲ ਹੈ।

ਆਂਡੇ ਦੇਣ ਵਾਲੀਆਂ ਮੁਰਗੀਆਂ (ਲੇਅਰਜ) ਦੇ ਮੁਕਾਬਲੇ ਮਾਸ ਵਾਲੇ ਮੁਰਗਿਆਂ (ਬ੍ਰਾਇਲਰਜ) ਲਈ ਰਹਿਣ-ਸ਼ਹਿਣ ਦਾ ਆਵਾਸ, ਭੋਜਨ ਲੋੜਾਂ ਅਤੇ ਵਾਤਾਵਰਣੀ ਲੋੜਾਂ ਭਿੰਨ ਹੁੰਦੀਆਂ ਹਨ। ਬ੍ਰਾਇਲਰਾਂ ਦੇ ਆਹਾਰ ਵਿੱਚ ਪ੍ਰੋਟੀਨ ਅਤੇ ਚਰਬੀ ਜ਼ਿਆਦਾ ਹੁੰਦੇ ਹਨ। ਵਿਟਾਮਿਨ A ਅਤੇ K ਦੀ ਮਾਤਰਾ ਵੀ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ।

ਮੁਰਗੀਆਂ ਵਿੱਚ ਵਿਸ਼ਾਣੂ, ਜੀਵਾਣੂ, ਉੱਲੀ ਅਤੇ ਪਰਜੀਵੀਆਂ ਨਾਲ ਹੋਣ ਵਾਲੇ ਰੋਗ ਵੀ ਬਹੁਤ ਹੁੰਦੇ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਕੁਝ ਆਹਾਰ ਸੰਬੰਧੀ ਤਰੁੱਟੀ ਰੋਗ ਵੀ ਹੁੰਦੇ

ਖਾਧ-ਪਦਾਰਥਾਂ ਦੇ ਸੰਸਾਧਨਾਂ ਵਿੱਚ ਸੁਧਾਰ

237

ਹਨ। ਇਸ ਲਈ ਸਫਾਈ ਅਤੇ ਸਵੱਛਤਾ ਦਾ ਬਹੁਤ ਧਿਆਨ ਰੋਖਣਾ ਪੈਂਦਾ ਹੈ ਅਤੇ ਰੋਗਾਣੂਨਾਸ਼ੀ ਪਦਾਰਥਾਂ ਦਾ ਵਾਰੀ-ਵਾਰੀ ਛਿੜਕਾਅ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਲੋੜ ਅਨੁਸਾਰ ਟੀਕਾਕਰਨ ਰਾਹੀਂ ਛੂਤ ਦੇ ਰੋਗਾਂ ਤੋਂ ਬਚਾਅ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਮਹਾਂਮਾਰੀ ਫੈਲਣ ਵੇਲੇ ਉਨ੍ਹਾਂ ਦੇ ਮਰਨ ਕਰਕੇ ਹੋਣ ਵਾਲੇ ਨੁੱਕਸਾਨ ਤੋਂ ਬਚਿਆ ਜਾ ਸਕਦਾ ਹੈ।

86

 ਪਸ਼ੂ ਪਾਲਣ ਅਤੇ ਮੁਰਗੀ ਪਾਲਣ ਪ੍ਰਬੰਧਨ ਪ੍ਰਣਾਲੀ ਵਿੱਚ ਕੀ ਸਾਂਝ ਹੈ ?

 ਬ੍ਰਾਇਲਰ ਅਤੇ ਲੇਅਰਜ ਦੇ ਪ੍ਰਬੰਧਨ ਵਿੱਚ ਅੰਤਰ ਸਪਸ਼ਟ ਕਰੋ।

ਕਿਰਿਆ_____15.4

ਕਿਸੇ ਮੁਰਗੀ ਫਾਰਮ ਵਿੱਚ ਜਾ ਕੇ ਭਿੰਨ-ਭਿੰਨ ਨਸਲਾਂ ਦਾ ਅਵਲੋਕਨ ਕਰੋ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਦਿੱਤੇ ਜਾਣ ਵਾਲ ਭੋਜਨ, ਆਵਾਸ ਅਤੇ ਰੌਸ਼ਨੀ ਦੇ ਪ੍ਰਬੰਧ ਦਾ ਜਾਇਜਾ ਲਉ। ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਗ੍ਰੋਅਰਜ, ਲੇਅਰਜ ਅਤੇ ਬ੍ਰਾਇਲਰਜ ਨੂੰ ਪਹਿਚਾਣ।

5.2.3 ਮੱਛੀ-ਪਾਲਣ (Pisciculture)

ਸਾਡੇ ਰੋਜਨ ਵਿੱਚ ਮੱਛੀ ਜੰਤੂ-ਪ੍ਰੋਟੀਨ ਦਾ ਇੱਕ ਸਸਤਾ ਸ਼੍ਰੋਤ ਹੈ। ਸੈੱਛੀ ਉਤਪਾਦਨ ਵਿੱਚ ਪੰਖਯੁਕਤ ਅਸਲੀ ਮੱਛੀਆਂ ਅਤੇ ਕਵਚ ਵਾਲੀਆਂ ਮੱਛੀਆਂ ਜਿਵੇਂ ਝੀਂਗੇ (ਪ੍ਰਾਨ) ਅਤੇ ਮੋਲਸਕਾਂ ਦਾ ਉਤਪਾਦਨ ਆਉਂਦਾ ਹੈ। ਮੱਛੀ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਦੋ ਤਰੀਕੇ ਹਨ। ਇੱਕ ਕੁਦਰਤੀ ਸ਼੍ਰੋਤ ਜਿਸ ਨੂੰ ਮੱਛੀ ਵੜਨਾ ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਦੂਜਾ ਸ਼੍ਰੋਤ ਮੱਛੀ ਪਾਲਣ ਜਿਸ ਨੂੰ ਪਿਸੀਕਲਚਰ ਕਹਿੰਦੇ ਹਨ।

ਮੱਛੀਆਂ ਦੇ ਜਲ ਸ਼੍ਰੇਤ ਸਮੁੰਦਰੀ ਪਾਣੀ ਜਾਂ ਤਾਜ਼ੇ ਪਾਣੀ ਦੇ ਸ਼੍ਰੋਤ ਜਿਵੇਂ ਨਹਿਰਾਂ ਜਾਂ ਤਲਾਬ ਹੋ ਸਕਦੇ ਹਨ। ਇਸ ਨਈ ਮੱਛੀ ਪ੍ਰਾਪਤ ਕਰਨਾ ਦੋਵਾਂ ਤਰੀਕਿਆਂ ਨਾਲ ਸੰਭਵ ਹੈ- ਮੱਛੀ ਫੜਨਾ ਅਤੇ ਸਮੁੰਦਰੀ ਜਾਂ ਤਾਜ਼ੇ ਪਾਣੀ ਦੀਆਂ ਪ੍ਰਸਥਿਤਕ ਪ੍ਰਣਾਲੀਆਂ 'ਚ ਮੱਛੀ ਪਾਲਣਾ।

15.2.3 (i) ਸਮੁੰਦਰੀ ਮੱਛੀ-ਸ਼੍ਰੋਤ (Sea Fish Resources)

ਭਾਰਤ ਦਾ ਸਮੁੰਦਰੀ ਮੱਛੀ-ਸ਼੍ਰੋਤ ਖੇਤਰ 7500 ਕਿਲੋਮੀਟਰ

238

ਸਮੁੰਦਰੀ ਤੱਟ ਅਤੇ ਇਸ ਤੋਂ ਇਲਾਵਾ ਸਮੁੰਦਰ ਦੀ ਗਹਿਰਾਈ ਤੱਕ ਹੈ। ਆਮ ਪ੍ਰਚਲਿਤ ਸਮੁੰਦਰੀ ਮੱਛੀਆਂ ਦੀਆਂ ਕਿਸਮਾਂ ਵਿੱਚ ਪਾਮਫੇ੍ਟ, ਮੈਕਰਲ, ਟਿਊਨਾ, ਸਾਰਡਾਈਨ ਅਤੇ ਬਾਂਬੇ-ਡੱਕ ਸ਼ਾਮਲ ਹਨ। ਸਮੁੰਦਰੀ ਮੱਛੀਆਂ ਨੂੰ ਫੜਨ ਲਈ ਕਈ ਤਰ੍ਹਾਂ ਦੇ ਜਾਲ ਮੱਛੀ ਫੜਨ ਵਾਲੀਆਂ ਕਿਸ਼ਤੀਆਂ ਤੋਂ ਸ਼ੁੱਟੇ ਜਾਂਦੇ ਹਨ। ਉਪਗ੍ਹਹਿ ਅਤੇ ਪ੍ਰਤੀਧੁਨੀ ਯੰਤਰ (Ecosounder) ਰਾਹੀਂ ਖੁੱਲ੍ਹੇ ਸਮੁੰਦਰ ਵਿੱਚ ਵੱਡੇ ਮੱਛੀ ਸਮੂਹਾਂ ਦਾ ਪਤਾ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਨ੍ਹਾਂ ਸੂਚਨਾਵਾਂ ਦੇ ਅਧਾਰ ਤੇ ਮੱਛੀ ਦਾ ਉਤਪਾਦਨ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

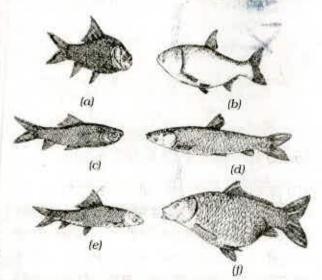
ਕੁਝ ਆਰਥਿਕ ਮਹੱਤਵ ਵਾਲੀਆਂ ਸਮੁੰਦਰੀ ਮੱਛੀਆਂ ਸਮੁੰਦਰ ਵਿੱਚ ਹੀ ਪਾਲੀਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਵਿੱਚ ਪ੍ਰਮੁੱਖ ਹਨ ਮੁਲੇਟ, ਭੇਟਕੀ ਅਤੇ ਪਰਲ-ਸਪਾਟ (ਖੰਭ ਵਾਲੀਆਂ ਮੱਛੀਆਂ), ਕਵਚ ਵਾਲੀਆਂ ਮੱਛੀਆਂ ਜਿਵੇਂ ਝੀਂਗੇ (ਚਿੱਤਰ 15.5) ਮੁਸਲ ਅਤੇ ਆਇਸਟਰ ਅਤੇ ਕੁਝ ਸਮੁੰਦਰੀ ਨਦੀਨ।ਆਇਸਟਰ ਦਾ ਪਾਲਣ-ਪੋਸ਼ਣ ਮੋਤੀ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਵੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਭਵਿੱਖ ਵਿੱਚ ਸਮੁੰਦਰੀ ਮੱਛੀਆਂ ਦਾ ਭੰਡਾਰ ਘੱਟ ਹੋਣ ਦੀ ਸੂਰਤ ਵਿੱਚ ਇਨ੍ਹਾਂ ਮੱਛੀਆਂ ਦੀ ਪੂਰਤੀ ਸਮੁੰਦਰ `ਚ ਮੱਛੀ ਪਾਲਣ (Culture Fisheries) ਦੁਆਰਾ ਹੀ ਪੂਰੀ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇਸ ਨੂੰ ਮੈਰੀਨ ਕਲਚਰ (Marine Culture) ਕਹਿੰਦੇ ਹਨ।

ਮੈਕਰੋਬਰੈਕੀਅਮ ਰੋਜੇਨਬਰਜਾਈ (ਤਾਜੇ ਪਾਣੀ 'ਚ) ਪੀਨਸ ਮੋਨੋਡੋਨ (ਸਮੁੰਦਰੀ ਪਾਣੀ 'ਚ)

ਚਿੱਤਰ 15.5 : ਤਾਜ਼ੇ ਪਾਣੀ ਦੇ ਅਤੇ ਸਮੁੰਦਰੀ ਝੀਂਗੇ

15.2.3 (ii) ਤਾਜ਼ੇ ਪਾਣੀ ਦੇ ਮੱਛੀ ਸ਼੍ਰੋਤ


ਤਾਜ਼ੇ ਪਾਣੀ ਦੇ ਸ਼੍ਰੋਤ ਨਾਲੇ, ਤਲਾਬ, ਨਹਿਰਾਂ ਅਤੇ ਹੋਰ ਜਲ-ਸ਼੍ਰੋਤ ਹਨ।ਖਾਰੇ ਜਲ-ਸ਼੍ਰੋਤ ਜਿੱਥੇ ਸਮੁੰਦਰੀ ਪਾਣੀ ਅਤੇ ਤਾਜ਼ਾ ਪਾਣੀ ਮਿਲ ਜਾਂਦੇ ਹਨ ਜਿਵੇਂ ਕਿ ਨਦੀ ਦਾ ਮੋਹਾਣਾਂ ਐਸਚੁਰੀ (Estuaries) ਅਤੇ ਲੈਗੂਨ (Lagoons) ਵੀ ਮਹੱਤਵਪੂਰਣ ਮੱਛੀ-ਸ਼੍ਰੋਤ ਹਨ। ਭਾਵੇਂ ਮੱਛੀਆਂ ਫੜਨ ਦਾ ਕੰਮ ਅਜਿਹੇ ਸ਼੍ਰੋਤਾਂ ਤੋਂ ਵੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਪਰੰਤੂ ਇਨ੍ਹਾਂ ਥਾਵਾਂ ਤੇ ਮੱਛੀ ਉਤਪਾਦਨ ਬਹੁਤ ਘੱਟ ਹੁੰਦਾ ਹੈ।

ਵਿਗਿਆਨ

ਇਨ੍ਹਾਂ ਸ਼੍ਰੋਤਾਂ ਤੋਂ ਜ਼ਿਆਦਾ ਮੱਛੀ ਉਤਪਾਦਨ ਜਲ-ਕਲਚਰ (aquaculture) ਰਾਹੀਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਮੱਛੀ ਕਲਚਰ ਦਾ ਕੰਮ ਕਈ ਵਾਰੀ ਧਾਨ ਦੀ ਫ਼ਸਲ ਦੇ ਨਾਲ ਵੀ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਤਾਂ ਕਿ ਮੱਛੀਆਂ ਖੇਤ ਦੇ ਪਾਣੀ ਵਿੱਚ ਹੀ ਪਾਲੀਆਂ ਜਾ ਸਕਣ। ਜ਼ਿਆਦਾ ਵੱਡੇ ਪੱਧਰ ਤੇ ਮੱਛੀ ਪਾਲਣ ਮਿਸ਼ਰਤ ਮੱਛੀ ਕਲਚਰ ਪ੍ਣਾਲੀ (Composite Fish Culture system) ਰਾਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਅਜਿਹੀ ਪ੍ਣਾਲੀ ਵਿੱਚ ਦੇਸੀ ਅਤੇ ਵਿਦੇਸ਼ੀ ਦੋਨੋਂ ਕਿਸਮ ਦੀਆਂ ਮੱਛੀਆਂ ਪਾਲੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

ਅਜਿਹੀ ਪ੍ਣਾਲੀ ਵਿੱਚ ਇਕ ਇਕਹਿਰੇ ਮੱਛੀ ਤਲਾਬ ਵਿੱਚ ਪੰਜ ਜਾਂ ਛੇ ਮੱਛੀਆਂ ਦੀਆਂ ਕਿਸਮਾਂ ਇਕੱਠੀਆਂ ਪਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ। ਇਨ੍ਹਾਂ ਕਿਸਮਾਂ ਦੀ ਚੋਣ ਅਜਿਹੇ ਢੰਗ ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਤਾਂ ਕਿ ਇਹ ਆਪਸ ਵਿੱਚ ਭੋਜਨ ਲਈ ਮੁਕਾਬਲਾ ਨਾ ਕਰਨ ਕਿਉਂਕਿ ਉਨ੍ਹਾਂ ਦੀਆਂ ਭੋਜਨ, ਪ੍ਰਤੀ ਆਦਤਾਂ ਵੱਖ-ਵੱਖ ਹੁੰਦੀਆਂ ਹਨ। ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਤਲਾਬ ਵਿੱਚ ਹਰ ਤਰ੍ਹਾਂ ਦਾ ਭੋਜਨ ਮੱਛੀਆਂ ਦੁਆਰਾ ਵਰਤ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਕਟਲਾ ਮੱਛੀਆਂ ਪਾਣੀ ਦੀ ਸਤਹ ਦੇ ਉਪਰੋਂ ਭੋਜਨ ਲੈਂਦੀਆਂ ਹਨ। ਰੋਹੂ ਮੱਛੀਆਂ ਵਿਚਕਾਰਲੇ ਹਿੱਸੇ ਤੋਂ ਭੋਜਨ ਲੈਂਦੀਆਂ ਹਨ। ਰੋਹੂ ਮੱਛੀਆਂ ਰਹਿੰਦੀਆਂ ਹੋਈਆਂ ਵੀ ਬਿਨਾਂ ਇਕ ਦੂਜੀ ਨਾਲ ਮੁਕਾਬਲੇ ਕਰੇ ਤਲਾਬ ਵਿਚਲਾ ਸਾਰਾ ਭੋਜਨ ਖਾ ਜਾਂਦੀਆਂ ਹਨ। ਇਸ

ਚਿੱਤਰ 15.6 : (a) ਕਟਲਾ (b) ਸਿਲਵਰ ਕਾਰਪ (c) ਰੋਹੂ (d) ਗ੍ਰਾਸ ਕਾਰਪ (e) ਮ੍ਰਿਗਲ (f) ਕਾਮਨ ਕਾਰਪ

ਖਾਧ-ਪਦਾਰਬਾਂ ਦੇ ਸੰਸਾਧਨਾਂ ਵਿੱਚ ਸੁਧਾਰ

ਤਰ੍ਹਾਂ ਕਰਨ ਨਾਲ ਤਲਾਬ ਵਿੱਚ ਮੱਛੀ ਉਤਪਾਦਨ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਮਿਸ਼ਰਤ ਮੱਛੀ ਕਲਚਰ ਪ੍ਣਾਲੀ ਵਿੱਚ ਇੱਕ ਸਮੱਸਿਆ ਇਹ ਹੈ ਕਿ ਇਨ੍ਹਾਂ ਵਿੱਚੋਂ ਕਈ ਮੱਛੀਆਂ ਸਿਰਫ ਮਾਨਸੂਨ ਦੇ ਸਮੇਂ ਹੀ ਜਨਣ ਕ੍ਰਿਆ ਕਰਦੀਆਂ ਹਨ। ਇੱਥੋਂ ਤੱਕ ਕਿ ਕੇ ਮੱਛੀ ਭਰੂਣ (fish feed) ਦੇਸੀ ਨਸਲ ਦੇ ਲਏ ਜਾਣ ਕਰੋ ਹੋਰ ਨਸਲਾਂ ਦੇ ਭਰੂਣਾਂ ਨਾਲ ਮਿਲਾਏ ਜਾਣ ਤਾਂ ਠੀਕ ਰਹਿੰਦਾ ਹੈ। ਇਸ ਲਈ ਮੱਛੀ ਪਾਲਣ ਕਿਰਿਆ ਵਿੱਚ ਇੱਕ ਵੱਡੀ ਸਮੱਸਿਆ ਚੰਗੀ ਕਿਸਮ ਦੇ ਮੱਛੀ-ਭਰੂਣਾਂ ਦਾ ਨਾ ਮਿਲਣ ਹੈ। ਇਸ ਸਮੱਸਿਆ ਦੇ ਹੱਲ ਲਈ ਕਈ ਤਰੀਕੇ ਲੱਭੇ ਗਏ ਹਨ ਅਤੇ ਇਨ੍ਹਾਂ ਮੱਛੀਆਂ ਨੂੰ ਤਲਾਬਾਂ ਵਿੱਚ ਹਾਰਮੋਨਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਪਾਲਿਆ ਜਾ ਰਿਹਾ ਹੈ। ਇਸ ਨਾਲ ਇੱਛ ਮੱਛੀ ਦੇ ਚੰਗੇ ਭਰੂਣ ਲੋੜੀਂਦੀ ਮਾਤਰਾ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਡੇ ਜਾ ਸਕਦੇ ਹਨ।

ਸ਼ਨ

ਮੱਛੀਆਂ ਕਿਵੇਂ ਪ੍ਰਾਪਤ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।
 ਮਿਸ਼ਰਤ ਮੱਛੀ ਕਲਚਰ ਪ੍ਰਣਾਲੀ ਦੇ ਕੀ ਲਾਭ ਹਨ?

ਕਿਰਿਆ

15.5

239

- ਮੱਛੀਆਂ ਦੇ ਜਨਣ-ਕਾਲ ਮੌਕੇ ਮੱਛੀ-ਫਾਰਮ ਵਿੱਚ ਜਾਓ ਅਤੇ ਹੇਠ ਲਿਖੀਆਂ ਗੱਲਾਂ ਨੋਟ ਕਰੋ।
 - ਤਲਾਬ ਵਿੱਚ ਮੌਜੂਦ ਮੱਛੀਆਂ ਦੀਆਂ ਕਿਸਮਾਂ।
- ਤਲਾਬਾਂ ਦੀਆਂ ਕਿਸਮਾਂ।
- ਮੱਛੀ ਫਾਰਮ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਮੱਛੀਆਂ ਦੇ ਭੋਜਨ ਪ**ਦਾਰਬਾ**।
- ਪਤਾ ਕਰੋ ਕਿ ਮੱਛੀ ਫਾਰਮ ਦੀ ਕੁੱਲ ਉਤਪਾਦਨ ਸਮਰੱਥਾ ਕਿੰਨੀ ਹੈ।

15.2.4 ਮਧੂ-ਮੱਖੀ ਪਾਲਣ (Apiculture/Bre Keeping)

ਸ਼ਹਿਦ ਦੀ ਵਰਤੋਂ ਵੱਡੇ ਪੱਧਰ 'ਤੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਲਈ ਮੱਖੀ ਪਾਲਣ ਦਾ ਧੰਦਾ ਸ਼ਹਿਦ ਪ੍ਰਾਪਤੀ ਲਈ ਖੇਡੀ ਉਦਯੋਗ ਬਣ ਗਿਆ ਹੈ। ਕਿਉਂਕਿ ਮੱਖੀ-ਪਾਲਣ ਧੰਦੇ ਵਿੱਚ ਪੂੰਜੀ ਨਿਵੇਸ਼ ਘੱਟ ਹੁੰਦਾ ਹੈ ਇਸ ਲਈ ਕਿਸਾਨ ਇਸ ਨੂੰ ਇੱਕ ਖੇਤੀ ਸਹਾਇਕ ਧੰਦੇ ਵਜੋਂ ਵੱਧ ਪੈਸੇ ਕਮਾਉਣ ਲਈ

(a) (b) ਚਿੱਤਰ 15.7 :(a) ਮਧੂਮੱਖੀਆਂ ਦੇ ਛੱਤੇ ਦੀ ਮੱਖੀ-ਪਾਲਣ ਖੇਤਰ ਵਿੱਚ ਵਿਵਸਥਾ (b) ਸ਼ਹਿਦ ਚੋਣ ਦੀ ਮਸ਼ੀਨ

ਅਪਣਾਉਂਦੇ ਹਨ। ਸ਼ਹਿਦ ਤੋਂ ਬਿਨਾਂ ਮੱਖੀਆਂ ਦੇ ਛੱਤਿਆਂ ਤੋਂ ਮੋਮ ਵੀ ਬਣਾਈ ਜਾਂਦੀ ਹੈ ਜਿਹੜੀ ਕਿ ਕਈ ਦਵਾਈਆਂ ਬਣਾਉਣ ਵੇਲੇ ਵੀ ਵਰਤੀ ਜਾਂਦੀ ਹੈ।

ਵਪਾਰਕ ਤੌਰ 'ਤੇ ਸ਼ਹਿਦ ਪੈਦਾ ਕਰਨ ਲਈ ਮੱਖੀਆਂ ਦੀਆਂ ਜਿਹੜੀਆਂ ਦੇਸੀ ਨਸਲਾਂ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਉਹ ਹਨ ਐਪਿਸ ਸੇਰਨਾ ਇੰਡੀਕਾ (ਜਿਸਨੂੰ ਭਾਰਤੀ ਮੱਖੀ ਕਹਿੰਦੇ ਹਨ), ਐਪਿਸ ਡੋਰਸੈਟਾ (ਚਟਾਨੀ ਮੱਖੀ) ਅਤੇ ਐਪਿਸ ਫਲੋਰੀ (ਛੋਟੀ ਮੱਖੀ)। ਇੱਕ ਇਟਲੀ ਦੀ ਮਧੂਮੱਖੀ, ਐਪਿਸ ਮੈਲੀਫੇਰਾ, ਸ਼ਹਿਦ ਉਤਪਾਦਨ ਵਧਾਉਣ ਲਈ ਵਰਤੀ ਜਾਂਦੀ ਹੈ। ਵਪਾਰਕ ਪੱਧਰ ਤੇ ਸ਼ਹਿਦ ਉਤਪਾਦਨ ਲਈ ਇਸੇ ਮੱਖੀ ਦੀ ਨਸਲ ਵਰਤੀ ਜਾਂਦੀ ਹੈ। ਇਟਲੀ ਦੀ ਮਧੂਮੱਖੀ ਵਿੱਚ ਸ਼ਹਿਦ ਇਕੱਠਾ ਕਰਨ ਦੀ ਬਹੁਤ ਸਮਰੱਥਾ ਹੁੰਦੀ ਹੈ। ਇਹ ਡੰਗ ਵੀ ਘੱਟ ਮਾਰਦੀ ਹੈ। ਇਹ ਨਿਰਧਾਰਿਤ ਛੱਤੇ ਵਿਚ ਕਾਫ਼ੀ ਸਮੇਂ ਤੱਕ ਰਹਿੰਦੀ ਹੈ ਅਤੇ ਪ੍ਰਜਨਣ ਵੀ ਤੇਜ਼ੀ ਨਾਲ ਕਰਦੀ ਹੈ। ਵਪਾਰਕ ਪੱਧਰ ਤੇ ਸ਼ਹਿਦ ਉਤਪਾਦਨ ਲਈ **ਮੱਖੀ ਪਾਲਣ ਖੇਤਰ** (apiaries) ਸਥਾਪਿਤ ਕੀਤੇ ਗਏ ਹਨ।

ਸ਼ਹਿਦ ਦੀ ਕੀਮਤ ਅਤੇ ਗੁਣਵੱਤਾ ਇਸ ਗੱਲ 'ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ ਕਿ ਉਹ ਕਿਹੋ ਜਿਹੀ ਥਾਂ ਤੇ ਰਹਿੰਦੀਆਂ (ਚਾਰਗਾਹ) ਭਾਵ ਉੱਥੇ ਮਿਲਣ ਵਾਲੇ ਕਿਹੜੇ ਫ਼ਲਾਂ ਤੋਂ ਰਸ ਅਤੇ ਪਰਾਗਕਲ ਇਕੱਠੇ ਕਰਦੀਆਂ ਹਨ। ਮੱਖੀਆਂ ਦੇ ਛੱਤੇ ਦੀ ਥਾਂ ਤੋਂ ਇਲਾਵਾ, ਜਿਹੜੇ ਫੁੱਲਾਂ ਤੋਂ ਰਸ ਇਕੱਠਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਉਸ ਮੁਤਾਬਿਕ ਹੀ ਸ਼ਹਿਦ ਦਾ ਸੁਆਦ ਹੋਵੇਗਾ।

ਸਨ 1. ਸ਼ਹਿਦ ਉਤ

- ਸ਼ਹਿਦ ਉਤਪਾਦਨ ਲਈ ਵਰਤੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਮਧੂਮੱਖੀਆਂ ਵਿੱਚ ਕਿਹੜੇ ਇੱਛੁਕ ਗੁਣ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ?
- ਚਾਰਗਾਹ ਕੀ ਹੈ ਅਤੇ ਇਹ ਸ਼ਹਿਦ ਉਤਪਾਦਨ ਨਾਲ਼ ਕਿਵੇਂ ਸਬੰਧ ਰੱਖਦੀ ਹੈ ?

ਵਿਗਿਆਨ

240

ਕੀ ਸਿੱਖਿਆ

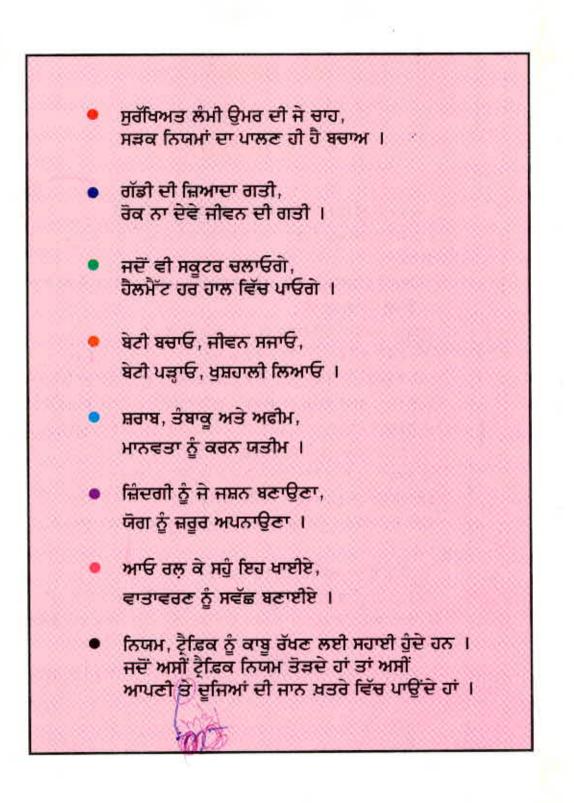
ਤਸੀ

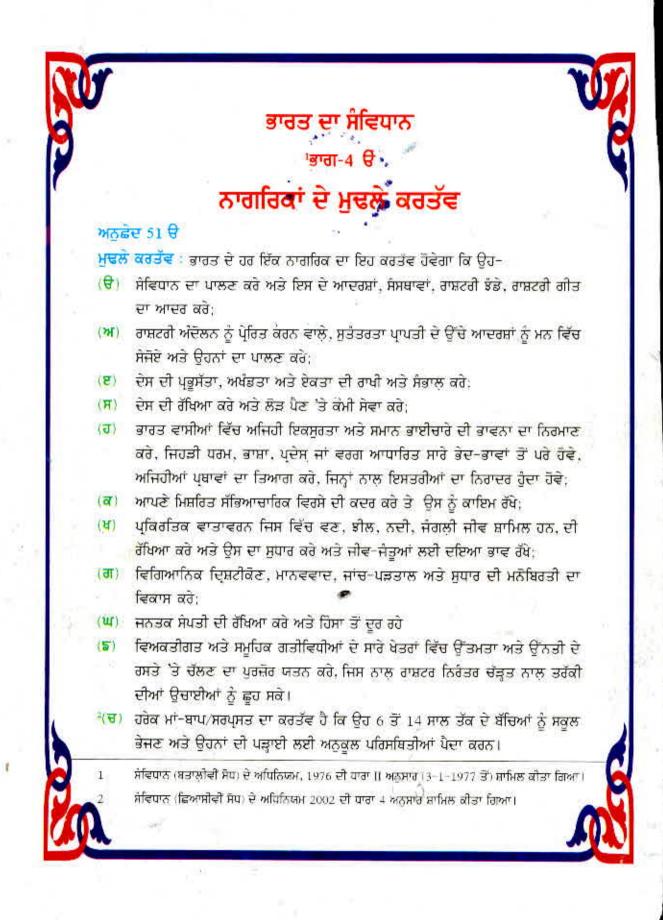
- ਇੱਕ ਖੇਤ ਵਿੱਚ ਵਾਰੀ-ਵਾਰੀ ਅਲੱਗ-ਅਲੱਗ ਫ਼ਸਲਾਂ ਨੂੰ ਪੂਰਣ ਨਿਯੋਜਤ ਢੰਗ ਨਾਲ ਉਗਾਉਣ ਨੂੰ ਫ਼ਸਲੀ ਚੱਕਰ ਕਹਿੰਦੇ ਹਨ।
- ਫ਼ਸਲ ਦੀਆਂ ਕਿਸਮਾਂ ਦੇ ਸੁਧਾਰ ਦੀ ਲੋੜ ਜ਼ਿਆਦਾ ਉਤਪਾਦਨ ਲਈ, ਚੰਗੀ ਗੁਣਵੱਤਾ ਲਈ, ਜੈਵਿਕ ਅਤੇ ਅਜੈਵਿਕ ਪ੍ਰਤੀਰੋਧਕਤਾ ਲਈ, ਘੱਟ ਸਮੇਂ 'ਚ ਫ਼ਸਲ ਪੱਕਣ ਲਈ, ਵਿਆਪਕ ਅਨੁਕੁਲਣਤਾ ਲਈ ਅਤੇ ਲੋੜੀਂਦੇ ਫ਼ਸਲੀ ਗੁਣ ਪੈਦਾ ਕਰਨ ਲਈ ਹੈ।
- ਖੇਤੀ ਪਸ਼ੂਆਂ ਦੀ ਸਹੀ ਦੇਖਭਾਲ ਅਤੇ ਪ੍ਰਬੰਧਨ ਦੀ ਲੋੜ ਹੈ ਜਿਵੇਂ ਕਿ ਆਵਾਸ, ਭੋਜਨ, ਪ੍ਰਜਨਣ ਅਤੇ ਰੋਗਾਂ ਤੇ ਕਾਬੂ ਪਾਉਣਾ। ਇਸ ਨੂੰ ਪਸ਼ੂ-ਪਾਲਣ ਕਹਿੰਦੇ ਹਨ।
- ਮੁਰਗੀ-ਪਾਲਣ ਘਰੇਲੂ ਮੁਰਗੀਆਂ ਦੀ ਸੰਖਿਆ ਵਧਾਉਣ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਦੇ ਅੰਤਰਗਤ ਅੰਡਿਆਂ ਦਾ ਉਤਪਾਦਨ ਅਤੇ ਮੁਰਗਿਆਂ ਦੇ ਮਾਸ ਲਈ ਬ੍ਰਾਇਲਰ ਉਤਪਾਦਨ ਹੈ।
- ਮੁਰਗੀਆਂ ਦੇ ਉਤਪਾਦਨ ਨੂੰ ਵਧਾਉਣ ਲਈ ਅਤੇ ਨਸਲਾਂ ਸੁਧਾਰਨ ਲਈ ਦੇਸੀ (ਭਾਰਤੀ)
 ਅਤੇ ਵਿਦੇਸ਼ੀ ਨਸਲਾਂ ਦਾ ਸੰਕਰਣ ਕਰਵਾਇਆ ਜਾਂਦਾ ਹੈ।

- ਮੱਛੀਆਂ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਸਮੁੰਦਰੀ ਅਤੇ ਤਾਜ਼ੇ ਪਾਣੀ ਦੇ ਸ਼੍ਰੋਤ ਹਨ।
- ਮੱਛੀ ਉਤਪਾਦਨ ਵਧਾਉਣ ਲਈ ਉਨ੍ਹਾਂ ਦਾ ਕਲਚਰ ਸਮੁੰਦਰ ਜਾਂ ਤਾਜ਼ੇ ਪਾਣੀ ਦੇ ਪਰਸਥਿਤਕ ਪ੍ਰਬੰਧਾਂ ਵਿੱਚ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- ਸਮੁੰਦਰੀ ਮੱਛੀਆਂ ਨੂੰ ਫੜਣ ਦਾ ਕੰਮ, ਉਪਗ੍ਰਹਿ ਅਤੇ ਪ੍ਰਤੀ ਧੁਨੀ ਯੰਤਰਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ, ਸਮੁੰਦਰੀ ਕਿਸ਼ਤੀਆਂ ਤੋਂ ਜਾਲ ਸੁੱਟ ਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
- ਮੱਛੀ ਪਾਲਣ ਵੇਲੇ ਆਮ ਤੌਰ 'ਤੇ ਮਿਸ਼ਰਤ ਮੱਛੀ ਕਲਚਰ ਪ੍ਣਾਲੀ ਵਰਤੀ ਜਾਂਦੀ ਹੈ।
- ਮਧੂ-ਮੱਖੀ ਪਾਲਣ, ਸ਼ਹਿਦ ਅਤੇ ਮੋਮ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਅਭਿਆਸ

- ਫ਼ਸਲ ਉਤਪਾਦਨ ਦੀ ਕਿਸੇ ਇੱਕ ਵਿਧੀ ਦਾ ਵਰਨਣ ਕਰੋ ਜਿਸ ਨਾਲ ਜ਼ਿਆਦਾ ਪੈਦਾਵਾਰ ਪ੍ਰਾਪਤ ਹੋ ਸਕੇ।
- 2. ਖੇਤਾਂ ਵਿੱਚ ਖਾਦਾਂ ਅਤੇ ਰਸਾਇਣਾਂ ਦਾ ਪ੍ਰਯੋਗ ਕਿਉਂ ਕਰਦੇ ਹਾਂ ?
- 3. ਅੰਤਰਫ਼ਸਲੀ ਅਤੇ ਫ਼ਸਲੀ ਚੱਕਰ ਅਪਣਾਉਣ ਦੇ ਕੀ ਲਾਭ ਹਨ?
- 4. ਅਣੂਵੰਸ਼ਿਕ ਫੇਰਬਦਲ ਕੀ ਹੈ ? ਖੇਤੀ ਪ੍ਰਕਿਰਿਆਵਾਂ ਵਿੱਚ ਇਸ ਦੀ ਕੀ ਮਹੱਤਤਾ ਹੈ ?
- ਭੰਡਾਰ-ਘਰਾਂ (ਗੋਦਾਮਾਂ) ਵਿੱਚ ਅਨਾਜ ਦੀ ਹਾਨੀ ਕਿਵੇਂ ਹੁੰਦੀ ਹੈ ?
- 6. ਕਿਸਾਨਾਂ ਲਈ ਚੰਗੀਆਂ ਪਸ਼ੂ-ਪਾਲਣ ਕਿਰਿਆਵਾਂ ਕਿਵੇਂ ਲਾਭਦਾਇਕ ਹਨ ?
- 7. ਪਸ਼ੂ ਪਾਲਣ ਦੇ ਕੀ ਲਾਭ ਹਨ ?
- ਉਤਪਾਦਨ ਵਧਾਉਣ ਲਈ ਮੁਰਗੀ ਪਾਲਣ, ਮੱਛੀ ਪਾਲਣ ਅਤੇ ਮਧੂ-ਮੱਖੀ ਪਾਲਣ ਵਿੱਚ ਕੀ ਸਮਾਨਤਾਵਾਂ ਹਨ ?
- 9. ਮੱਛੀ ਫੜਨਾ (fishing), ਮੈਰੀਨਕਲਚਰ (Marine culture) ਅਤੇ ਜਲ ਕਲਚਰ (aquaculture) ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ ?


ਖਾਧ–ਪਦਾਰਬਾਂ ਦੇ ਸੰਸਾਧਨਾਂ ਵਿੱਚ ਸੁਧਾਰ


241

Ą.

Downloaded from https:// www.studiestoday.com

1.3

