

© ਪੰਜਾਬ ਸਰਕਾਰ

ਪਹਿਲਾ ਐਡੀਸ਼ਨ 2015 3,56,000 ਕਾਪੀਆਂ

[This book has been adopted with the kind permission of the National Council of Educational Research and Training, New Delhi]

> All rights, including those of translation, reproduction and annotation etc., are reserved by the Punjab Government.

> > ਅਨੁਵਾਦਕ : ਸ.ਹਰਪ੍ਰੀਤ ਸਿੰਘ ਸਰਕਾਰੀ ਮਿਡਲ ਸਕੂਲ, ਧਨਾਲ ਕਲਾਂ, ਜਲੰਧਰ ਸੰਯੋਜਕ : ਪ੍ਰਿਤਪਾਲ ਸਿੰਘ (ਵਿਸ਼ਾ ਮਾਹਿਰ) ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ


ਚਿੱਤਰਕਾਰ : ਮਨਜੀਤ ਸਿੰਘ ਢਿੱਲੋਂ

5

ਚਿਤਾਵਨੀ

 ਕੋਈ ਵੀ ਏਜੰਸੀ-ਹੋਲਡਰ ਵਾਧੂ ਪੈਸੇ ਵਸੂਲਣ ਦੇ ਮੰਤਵ ਨਾਲ ਪਾਠ-ਪੁਸਤਕਾਂ 'ਤੇ ਜਿਲਦ-ਸਾਜ਼ੀ ਨਹੀਂ ਕਰ ਸਕਦਾ। (ਏਜੰਸੀ-ਹੋਲਡਰਾਂ ਨਾਲ ਹੋਏ ਸਮਝੌਤੇ ਦੀ ਧਾਰਾ ਨੂੰ, 7 ਅਨੁਸਾਰ)

 ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਦੁਆਰਾ ਛਪਵਾਈਆਂ ਅਤੇ ਪ੍ਰਕਾਸ਼ਿਤ ਪਾਠ-ਪੁਸਤਕਾਂ ਦੇ ਜਾਲ੍ਹੀ/ ਨਕਲੀ ਪ੍ਰਕਾਸ਼ਨਾਂ (ਪਾਠ-ਪੁਸਤਕਾਂ) ਦੀ ਛਪਾਈ, ਪ੍ਰਕਾਸ਼ਨ, ਸਟਾਕ ਕਰਨਾ, ਜਮ੍ਹਾਂਬਰੀ ਜਾਂ ਵਿਕਰੀ ਆਦਿ ਕਰਨਾ ਭਾਰਤੀ ਦੰਡ ਪ੍ਰਣਾਲੀ ਦੇ ਅੰਤਰਗਤ ਫ਼ੌਜਦਾਗੇ ਜੁਰਮ ਹੈ।
 (ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ ਦੀਆਂ ਪਾਠ-ਪੁਸਤਕਾਂ ਬੋਰਡ ਦੇ 'ਵਾਟਰ ਮਾਰਕ' ਵਾਲ਼ੇ ਕਾਗਜ਼ ਉੱਪਰ ਹੀ ਛਪਵਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ।

ਸਿੱਖਿਆ ਅਤੇ ਭਲਾਈ ਵਿਭਾਗ, ਪੰਜਾਬ ਦਾ ਸਾਂਝਾ ਉਪਰਾਲਾ

ਸਕੱਤਰ, ਪੰਜਾਬ ਸਕੂਲ ਸਿੱਖਿਆ ਬੋਰਡ, ਵਿੱਦਿਆ ਭਵਨ, ਫੇਜ਼-8, ਸਾਹਿਬਜ਼ਾਦਾ ਅਜੀਤ ਸਿੰਘ ਨਗਰ-160062 ਰਾਹੀਂ ਪ੍ਰਕਾਸ਼ਿਤ ਅਤੇ ਮੈਸ. ਨੋਵਾ ਪਬਲੀਕੇਸ਼ਨਜ਼, ਸੀ-51, ਫੋਕਲ ਪੁਆਇੰਟ ਐਕਸਟੈਨਸ਼ਨ, ਜਲੰਧਰ ਦੁਆਰਾ ਛਾਪੀ ਗਈ।

NCERT ਦੀ ਪਾਠ ਪੁਸਤਕ ਤਿਆਰ ਕਰਨ ਵਾਲੀ ਕਮੇਟੀ

ਚੇਅਰਪਰਸਨ, ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਸਲਾਹਕਾਰ ਸਮਿਤੀ (IUCCA)

ਜੈਅੰਤ ਵਿਸ਼ਨੂੰ ਨਾਰਲੀਕਰ, ਇਮਰਿਟਸ ਪ੍ਰੋਫ਼ੈਂਸਰ, ਚੇਅਰਪਰਸਨ, (IUCCA) ਗਨੇਸ਼ਖਿੰਡ, ਪੂਨਾ ਯੂਨੀਵਰਸਿਟੀ, ਪੂਨਾ (ਮਹਾਂਰਾਸ਼ਟਰ)

ਮੁੱਖ ਸਲਾਹਕਾਰ

ਐਚ.ਕੇ.ਦੀਵਾਨ. ਵਿੱਦਿਆ ਭਵਨ ਸੋਸਾਇਟੀ, ਉਦੈਪੁਰ (ਰਾਜਸਥਾਨ)

ਮੁੱਖ ਕੋਆਰਡੀਨੇਟਰ

ਹੁਕਮ ਸਿੰਘ, ਪ੍ਰੋਫ਼ੈਸਰ ਅਤੇ ਹੈੱਡ, DESM, NCERT, ਨਵੀਂ ਦਿੱਲੀ

ਮੈਂਬਰ

ਅਵੰਤਿਕਾ ਦਾਸ, ਟੀ.ਜੀ.ਈ., ਸੀ.ਆਈ.ਈ., ਐਕਸਪੇਰੀਮੈਂਟਲ ਸਕੂਲ, ਸਿੱਖਿਆ ਵਿਭਾਗ, ਦਿੱਲੀ ਅੰਜਲੀ ਗੁਪਤਾ, ਅਧਿਆਪਿਕਾ, ਵਿੱਦਿਆ ਭਵਨ ਪਬਲਿਕ ਸਕੂਲ, ਉਦੈਪੁਰ (ਰਾਜਸਥਾਨ) ਆਰ. ਆਤਮਾਰਮਨ, ਗਣਿਤ ਸਿੱਖਿਆ ਸਲਾਹਕਾਰ, ਟੀ.ਆਈ. ਮੈਟ੍ਰਿਕ ਹਾਇਰ ਸੈਕੰਡਰੀ ਸਕੂਲ ਅਤੇ ਏ.ਐਮ.ਟੀ.ਆਈ. ਚੈਨੱਈ (ਤਾਮਿਲਨਾਡੁ)

ਆਸ਼ਤੋਸ਼ ਕੇ ਵਝਲਵਾਰ, ਪ੍ਰੋਫ਼ੈਸਰ, DESM, NCERT, ਨਵੀਂ ਦਿੱਲੀ

ਐੱਚ ਸੀ ਪ੍ਰਧਾਨ ਪ੍ਰੋਫ਼ੈਸਰ, ਹੋਮੀ ਭਾਭਾ ਵਿਗਿਆਨ ਸਿੱਖਿਆ ਕੇਂਦਰ, ਟੀ ਆਈ ਐੱਫ ਆਰ. ਮੁੰਬਈ (ਮਹਾਂਰਾਸ਼ਟਰ) ਕੇ.ਏ.ਐੱਸ.ਐੱਸ. ਵੀ ਕਾਮੇਸ਼ਵਰ ਰਾਓ, ਲੈਕਚਰਾਰ, ਰੀਜ਼ਨਲ ਇੰਸਟੀਚਿਊਟ ਆਫ ਐਜੂਕੇਸ਼ਨ, ਸਿਆਮਲਾ ਹਿਲਸ, ਭੋਪਾਲ (M.P.)

ਮਹਿੰਦਰ ਸ਼ੰਕਰ, ਲੈਕਚਰਾਰ (S.G.) NCERT, ਨਵੀਂ ਦਿੱਲੀ

ਮੀਨਾ ਸ਼੍ਰੀਮਾਲੀ, ਅਧਿਆਪਿਕਾ, ਵਿੱਦਿਆ ਭਵਨ ਸੀਨੀ. ਸੈਕੰ. ਸਕੂਲ, ਉਦੈਪੁਰ (ਰਾਜਸਥਾਨ)

ਵੀ ਪੀ ਸਿੰਘ ਪ੍ਰੋਫ਼ੈਸਰ, ਡੀ.ਈ.ਐੱਸ.ਐਮ. NCERT. ਨਵੀਂ ਦਿੱਲੀ

ਸ਼ੈਲੇਜਾ ਸ਼ਿਰਾਲੀ, ਰਿਸ਼ੀ ਵੈਲੀ ਸਕੂਲ, ਰਿਸ਼ੀ ਵੈਲੀ, ਮਦਨ ਪੱਲੀ (A.P.)

ਸੁਰੇਸ਼ ਕੁਮਾਰ ਗੋਤਮ, ਪ੍ਰੋਫ਼ੈਸਰ DESM, NCERT, ਨਵੀਂ ਦਿੱਲੀ

ਸ਼ੀਜਾਤਾ ਦਾਸ ਸੀਨੀਅਰ ਲੋਕਚਰਾਰ, NCERT, ਨਵੀਂ ਦਿੱਲੀ

ਸ਼ਰਦਾ ਅਗਰਵਾਲ, ਪ੍ਰਿੰਸੀਪਲ, ਫਲੋਰਿਟਸ ਇੰਟਰਨੈਸ਼ਨਲ ਸਕੂਲ, ਪਨਕੀ, ਕਾਨਪੁਰ (U.P.)

ਮੈਂਬਰ ਕੋਆਰਡੀਨੇਟਰ

ਆਸ਼ਤੋਸ਼ ਕੇ ਵਝਲਵਾਰ, ਪ੍ਰੋਫ਼ੈਸਰ, DESM, NCERT, ਨਵੀਂ ਦਿੱਲੀ

Downloaded from https:// www.studiestoday.com

246.525

ਵਿਸ਼ਾ ਸੂਚੀ

AN ALANA AN

Contraction of

PORTO COMPANY

ਅਧਿਆਇ 1	ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ	1
ਅਧਿਆਇ 2	ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨਾ	25
স্যায়স্যায় 3	ਚਤੁਰਭੁਜਾਵਾਂ ਨੂੰ ਸਮਝਣਾ	41
ਅਧਿਆਇ 4	ਪ੍ਰਯੋਗਿਕ ਜਿਆਮਿਤੀ	63
ਅਧਿਆਇ 5	ਅੰਕੜਿਆਂ ਦਾ ਪ੍ਰਬੰਧਨ	73
ਅਧਿਆਇ 6	ਵਰਗ ਅਤੇ ਵਰਗਮੂਲ	95
ਅਧਿਆਇ 7	ਘਣ ਅਤੇ ਘਣਮੂਲ	117
স্বাব্বস্পৃষ্টি ৪	ਰਾਸ਼ੀਆਂ ਦੀ ਤੁਲਨਾ	125
ਅਧਿਆਇ 9	ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਅਤੇ ਤਤਸਮਕ	145
ਅਧਿਆ ਇ 10	ਠੱਸ ਅਕਾਰਾਂ ਦਾ ਚਿਤਰਨ	163
ਅਧਿਆਇ 11	ਖੇਤਰਮਿਤੀ	177
ਅਧਿਆਇ 12	ਘਾਤ ਅੰਕ ਅਤੇ ਘਾਤ	201
ਅਧਿਆਇ 13	ਸਿੱਧਾ ਅਤੇ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ	209
ਅਧਿਆਇ 14	ਗੁਣਨਖੰਡੀਕਰਨ	225
ਅਧਿਆਇ 15	ਗਰਾਫ਼ਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ	241
ਅਧਿਆਇ 16	ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਖੇਡਣਾ	259
	ਉੱਤਰਮਾਲਾ	273
÷	ਦਿਮਾਗੀ ਕਸਰਤ	287

ਅਧਿਆਇ

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ

1.1 ghar

ਗਣਿਤ ਵਿੱਚ ਸਾਨੂੰ ਸਾਧਾਰਨ ਸਮੀਕਰਨਾਂ ਦਿਖਾਈ ਦਿੰਦੀਆਂ ਹਨ।ਉਦਾਹਰਣ ਦੇ ਤੌਰ 'ਤੇ ਸਮੀਕਰਨ x + 2 = 13 (1)

ਨੂੰ x = 11 ਲਈ ਹੱਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿਉਂਕਿ x ਦਾ ਇਹ ਮੁੱਲ ਇਸ ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ। ਹੱਲ 11, ਇੱਕ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਹੈ। ਦੂਸਰੇ ਪਾਸੇ ਸਮੀਕਰਨ

x + 5 = 5

ਇਸ ਦਾ ਹੱਲ 0 ਹੈ ਜੋ ਇੱਕ ਪੂਰਨ ਸੰਖਿਆ ਹੈ। ਜੇਕਰ ਅਸੀਂ ਸਿਰਫ਼ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਤੱਕ ਹੀ ਸੀਮਿਤ ਰਹੀਏ ਤਾਂ ਸਮੀਕਰਨ (2) ਨੂੰ ਹੱਲ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ। ਸਮੀਕਰਨ (2) ਵਰਗੀਆਂ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਅਸੀਂ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਦੇ ਸਮੂਹ ਵਿੱਚ ਸਿਫ਼ਰ ਨੂੰ ਸ਼ਾਮਿਲ ਕੀਤਾ ਅਤੇ ਇਸ ਨਵੇਂ ਸਮੂਹ ਨੂੰ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦਾ ਨਾਮ ਦਿੱਤਾ। ਫਿਰ ਵੀ

x + 18 = 5

ਵਰਗੀਆਂ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਵੀ ਕਾਫ਼ੀ ਨਹੀਂ ਹਨ। ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ 'ਕਿਉਂ'? ਸਾਨੂੰ ਸੰਖਿਆ –13 ਦੀ ਜ਼ਰੂਰਤ ਹੈ ਜੋ ਕਿ ਪੂਰਨ ਸੰਖਿਆ ਨਹੀਂ ਹੈ। ਇਸ ਨੇ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ (ਧਨਾਤਮਕ ਅਤੇ ਰਿਣਾਤਮਕ) ਦੇ ਬਾਰੇ ਸੋਚਣ ਲਈ ਪ੍ਰੇਰਿਤ ਕੀਤਾ ਹੈ। ਧਿਆਨ ਦਿਉ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ, ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਹੀ ਹਨ। ਤੁਸੀਂ ਸੋਚ ਸਕਦੇ ਹੋ ਕਿ ਸਾਰੀਆਂ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਦੇ ਲਈ ਸਾਡੇ ਕੋਲ ਉਪਲੱਬਧ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਕਾਫ਼ੀ ਸੰਖਿਆਵਾਂ ਹਨ। ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਸਮੀਕਰਨਾਂ ਦੇ ਬਾਰੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ: 2x = 3

5x + 7 = 0

ਇਸ ਦਾ ਹੱਲ ਅਸੀਂ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਨਹੀਂ ਪਤਾ ਕਰ ਸਕਦੇ (ਇਸਦੀ ਪੜਤਾਲ ਕਰੋ)।

ਸਮੀਕਰਨ (4) ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਸੋਖਿਆ $rac{3}{2}$ ਅਤੇ ਸਮੀਕਰਨ (5) ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ

ਸੰਖਿਆ ^{--/} ਦੀ ਜ਼ਰੂਰਤ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਸਮੂਹ ਨਾਲ ਜਾਣੂੰ ਹੁੰਦੇ ਹਾਂ। ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ 'ਤੇ ਮੂਲ ਕਿਰਿਆਵਾਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ। ਹੁਣ ਤੱਕ ਅਸੀਂ ਜਿੰਨੀਆਂ ਵੀ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹਾਂ। ਉਹਨਾਂ ਸੰਖਿਆਵਾਂ ਦੇ ਕੁਝ ਗੁਣ ਲੱਭਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ।

(2)

(3)

(5)

2 🖩 ਗਣਿਤ

- 1.2 ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਗੁਣ
- 1.2.1 घंस (Closure)
 - (i) ਪੂਰਨ ਸੱਖਿਆਵਾਂ

ਆਉ, ਇੱਕ ਵਾਰ ਫਿਰ ਸੰਖੋਪ ਵਿੱਚ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ 'ਤੇ ਬੰਦ ਗੁਣ ਦੀ ਚਰਚਾ ਕਰਦੇ ਹਾਂ।

ਕਿਰਿਆ	ਸੰਖਿਆਵਾਂ	ਟਿੱਪਣੀ
ਜੋੜ	0 + 5 = 5, ਇੱਕ ਪੂਰਨ ਸੰਖਿਆ ਹੈ। 4 + 7 =ਕੀ ਇਹ ਇੱਕ ਪੂਰਨ ਸੱਖਿਆ ਹੈ? ਆਮ ਤੌਰ ਤੇ ਕੋਈ ਦੇ ਪੂਰਨ ਸੱਖਿਆਵਾਂ a ਅਤੇ b ਦੇ ਲਈ a + b ਇੱਕ ਪੂਰਨ ਸੰਖਿਆ ਹੈ।	ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਜੋੜ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹਨ।
ਘਟਾਉ	5 – 7 = –2 ਜੋ ਕਿ ਇੱਕ ਪੂਰਨ ਸੰਖਿਆ ਨਹੀਂ ਹੈ।	ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਘਟਾਉ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਨਹੀਂ ਹਨ।
ਗੁਣਾ	0 × 3 = 0, ਇੱਕ ਪੂਰਨ ਸੰਖਿਆ ਹੈ। 3 × 7 = ਕੀ ਇਹ ਇੱਕ ਪੂਰਨ ਸੰਖਿਆ ਹੈ? ਆਮ ਤੌਰ ਤੇ ਕੋਈ ਵੀ ਦੋ ਪੂਰਨ ਸੰਖਿਆਵਾਂ a ਅਤੇ b ਲਈ ਉਸਦਾ ਗੁਣਨਫਲ ab ਇੱਕ ਪੂਰਨ ਸੰਖਿਆ ਹੈ।	ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਗੁਣਨ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹਨ।
ਭਾਗ	5 ÷ 8 = $\frac{5}{8}$, ਇਹ ਇੱਕ ਪੂਰਨ ਸੰਖਿਆ ਨਹੀਂ ਹੈ।	ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਭਾਗ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਨਹੀਂ ਹਨ।

ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੱਖਿਆਵਾਂ ਦੇ ਲਈ ਚਾਰੋਂ ਕਿਰਿਆਵਾਂ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਗੁਣ ਦੀ ਪੜਤਾਲ ਕਰੋ।

(ii) ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ

ਆਊ, ਹੁਣ ਅਸੀਂ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ 'ਤੇ ਕਿਰਿਆਵਾਂ ਦੇ ਬੰਦ ਗੁਣ ਦਾ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ :

ਕਿਰਿਆ	ਸੰਖਿਆਵਾਂ	ਟਿੱਪਣੀ
ਜੋੜ	– 6 + 5 = – 1, ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ। ਕੀ – 7 + (–5) ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ? ਕੀ 8 + 5 ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ? ਆਮ ਤੌਰ ਤੇ ਕੋਈ ਦੋ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ a ਅਤੇ b ਦੇ ਲਈ a + b ਵੀ ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ।	ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਜੋੜ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹਨ।

ਪਰਿਮੋਯ ਸੰਖਿਆਵਾਂ 🔳 3

ਘਟਾਉ	7 – 5 = 2, ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ। ਕੀ 5 – 7 ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ ? –6 – 8 = –14, ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ। –6 – (–8) = 2, ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ। ਕੀ 8 – (–6) ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ? ਆਮ ਤੌਰ ਤੇ ਕੋਈ ਦੋ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ a ਅਤੇ b ਦੇ ਲਈ a – b ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ। ਪੜਤਾਲ ਕਰੋ ਕਿ b – a ਵੀ ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ।	ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਘਟਾਉ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹਨ।	
ਗੁਣਾ	5 × 8 = 40, ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ। ਕੀ -5 × 8 ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ ? -5 × (-8) = 40, ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਕੋਈ ਦੋ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ a ਅਤੇ b ਦੇ ਲਈ a × b ਵੀ ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ।	ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਗੁਣਨ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹਨ।	
ਭਾਗ	5 + 8 = $rac{5}{8}$, ਇਹ ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਨਹੀਂ ਹੈ।	ਸੰਪੂਰਨ ਸੱਖਿਆਵਾਂ ਭਾਗ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਨਹੀਂ ਹਨ।	

ਤੁਸੀਂ ਦੇਖਿਆ ਹੈ ਕਿ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਜੋੜ ਅਤੇ ਗੁਣਾ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹਨ ਪਰ ਭਾਗ ਅਤੇ ਘਟਾਉ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਨਹੀਂ ਹਨ। ਦੂਜੇ ਪਾਸੇ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਜੋੜ, ਘਟਾਉ ਅਤੇ ਗੁਣਾ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹਨ। ਪਰ ਭਾਗ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਨਹੀਂ ਹਨ।

(iii) ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ

ਪਰਿਮੋਯ ਸੰਖਿਆ ਉਹ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ ਜਿਸ ਨੂੰ $\frac{p}{q}$ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕੇ। ਜਦ ਕਿ pਅਤੇ q ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਹਨ ਅਤੇ $q \neq 0$ ਹੈ। ਜਿਵੇਂ ਕਿ $-\frac{2}{3}$, $\frac{6}{7}$ ਪਰਿਮੋਯ ਸੰਖਿਆਵਾਂ ਹਨ। ਕਿਉਂਕਿ ਸੰਖਿਆਵਾਂ 0, -2, 4, $\frac{p}{q}$, ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਇਹ ਵੀ ਪਰਿਮੋਯ ਸੰਖਿਆਵਾਂ ਹਨ। (ਇਸਦੀ ਪੜਤਾਲ ਕਰੋ।)

 (a) ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਪਰਿਮੇਯ ਸੰਖਿਆ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ। ਆਉ ਕੁਝ ਜੋੜਿਆਂ ਦਾ ਜੋੜਫਲ ਪਤਾ ਕਰਦੇ ਹਾਂ।

> $\frac{3}{8} + \frac{(-5)}{7} = \frac{21 + (-40)}{56} = \frac{-19}{56}$ (ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ) $\frac{-3}{8} + \frac{(-4)}{5} = \frac{-15 + (-32)}{40} = \dots$ (ਕੀ ਇਹ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ?) $\frac{4}{7} + \frac{6}{11} = \dots$ (ਕੀ ਇਹ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ?)

4 🔳 ਗਣਿਤ

ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਦੋ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ ਵੀ ਇੱਕ ਪਰਿਮੇਯ ਸੈਖਿਆ ਹੈ। ਕੁਝ ਹੋਰ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਜੋੜਿਆਂ ਦੇ ਲਈ ਇਸਦੀ ਪੜਤਾਲ ਕਰੋ। ਇਸ ਪ੍ਰਕਾਰ ਅਸੀਂ ਲਿਖਦੇ ਹਾਂ ਕਿ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਜੋੜ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹਨ। ਜਾਂ ਕੋਈ ਦੋ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ a ਅਤੇ b ਦੇ ਲਈ a + b ਵੀ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

(b) ਕੀ ਦੋ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦਾ ਅੰਤਰ ਵੀ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੋਵੇਗਾ ?

ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ, $\frac{-5}{7} - \frac{2}{3} = \frac{-5 \times 3 - 2 \times 7}{21} = \frac{-29}{21}$ (ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ ?) $\frac{5}{8} - \frac{4}{5} = \frac{25 - 32}{40} = \dots$ (ਕੀ ਇਹ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ ?) $\frac{3}{7} - \left(\frac{-8}{5}\right) = \dots$ (ਕੀ ਇਹ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ ?)

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਕੁਝ ਹੋਰ ਜੋੜਿਆਂ ਦੇ ਲਈ ਇਸਦੀ ਪੜਤਾਲ ਕਰੋ। ਇਸ ਪ੍ਰਕਾਰ ਸਾਨੂੰ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ *ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਘਟਾਉ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਕੋਈ* ਦੋ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ a ਅਤੇ b ਦੇ ਲਈ a – b ਵੀ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

(c) ਆਉ, ਹੁਣ ਅਸੀਂ ਦੋ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਗੁਣਨਫਲ ਦੀ ਚਰਚਾ ਕਰਦੇ ਹਾਂ।

 $\frac{-2}{3} \times \frac{4}{5} = \frac{-8}{15}; \frac{3}{7} \times \frac{2}{5} = \frac{6}{35}$ (ਦੋਨੋਂ ਗੁਣਨਫਲ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹਨ।)

 $-\frac{4}{5} \times \frac{-6}{11} = ...$ (ਕੀ ਇਹ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ ?)

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਕੁਝ ਹੋਰ ਜੋੜੇ ਲਓ ਅਤੇ ਪੜਤਾਲ ਕਰੋ ਕਿ ਉਹਨਾਂ ਦਾ ਗੁਣਨਫਲ ਵੀ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ। ਅਸੀਂ ਇਹ ਦੱਸ ਸਕਦੇ ਹਾਂ ਕਿ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਗੁਣਨ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹਨ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਕੋਈ ਦੇ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ a ਅਤੇ b ਦੇ ਲਈ a × b ਵੀ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

- (d) ਅਸੀਂ ਨੇਂਟ ਕਰਦੇ ਹਾਂ ਕਿ $\frac{-5}{3} + \frac{2}{5} = \frac{-25}{6}$ (ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।)
 - $\frac{2}{7} + \frac{5}{3} = ...$ (ਕੀ ਇਹ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ?)
 - $\frac{-3}{8} + \frac{-2}{9} = ...$ (ਕੀ ਇਹ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ ?)

ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਭਾਗ ਦੇ ਅੰਤਰਗਤ ਬੈਂਦ ਹਨ? ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਕਿਸੇ ਵੀ ਪਰਿਮੇਯ ਸੰਖਿਆ a ਦੇ ਲਈ a ÷ 0 ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਭਾਗ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਨਹੀਂ ਹਨ। ਪਰ ਜੇਕਰ ਅਸੀਂ ਸਿਫ਼ਰ ਨੂੰ ਸ਼ਾਮਿਲ ਨਹੀਂ ਕਰਦੇ, ਤਾਂ ਦੂਸਰੀ ਸਾਰੀਆਂ ਪਰਿਮੋਯ ਸੰਖਿਆਵਾਂ ਦਾ ਸਮੂਹ, ਭਾਗ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹਨ।

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ 🖩 5

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਵਿੱਚ ਖ਼ਾਲੀ ਥਾਵਾਂ ਭਰੋ :

ਸੰਖਿਆਵਾਂ		ਅੰਤਰਗਤ ਬੰਦ ਹ	স্য	
	ਜੋੜ ਦੇ	ਘਟਾਊ ਦੇ	ਗੁਣਾ ਦੇ	ਭਾਗ ਦੇ
ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ	ਹਾਂ	ਹਾਂ		ਨਹੀਂ
ਪੂਰਨ ਸੰਖਿਆਵਾਂ		ਹਾਂ		ਨਹੀਂ
ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ			ਹਾਂ	
ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ		ਨਹੀਂ		

1.2.2 ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗਰਾ

(i) ਪੂਰਨ ਸੰਖਿਆਵਾਂ

ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਵਿੱਚ ਖ਼ਾਲੀ ਸਥਾਨਾਂ ਨੂੰ ਭਰਦੇ ਹੋਏ ਵੱਖ-ਵੱਖ ਕਿਰਿਆਵਾਂ ਦੇ ਅੰਤਰਗਤ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੀ ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗਤਾ ਨੂੰ ਯਾਦ ਕਰੋ :

ਕਿਰਿਆ	ਸੰਖਿਆਵਾਂ	ਟਿੱਪਣੀ	
ਜੋੜ	0 + 7 = 7 + 0 = 7 2 + 3 = + = ਕੋਈ ਦੋ ਪੂਰਨ ਸੰਖਿਆਵਾਂ a ਅਤੇ b ਦੇ ਲਈ a + b = b + a	ਜੋੜ ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗ ਹੈ।	
ਘਟਾਉ		ਘਟਾਉ ਕਮ ਵਟਾਂਦਰਾ ਯੋਗ ਨਹੀਂ ਹੈ।	
ਗੁਣਾ		ਗੁਣਾ ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗ ਹੈ।	
ਭਾਗ		ਭਾਗ ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗ ਨਹੀਂ ਹੈ।	

ਪੜਤਾਲ ਕਰੋ ਕਿ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਵੀ ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗ ਹੈ।

(ii) ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ

ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਵਿੱਚ ਖ਼ਾਲੀ ਸਥਾਨਾਂ ਨੂੰ (ਭਰੋ ਅਤੇ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਵੱਖ-ਵੱਖ ਕਿਰਿਆਵਾਂ ਦੀ ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗਤਾ ਦੀ ਪੜਤਾਲ ਕਰੋ।)

ਕਿਰਿਆ	ਸੰਖਿਆਵਾਂ	ਟਿੱਪਣੀ
ਜੋੜ		ਜੋੜ ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗ ਹੈ।
ਘਟਾਉ	वी 5 - (-3) = - 3 - 5?	ਘਟਾਉ ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗ ਨਹੀਂ ਹੈ।
ਗੁਣਾ		ਗੁਣਾ ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗ ਹੈ।
ਭਾਗ		ਭਾਗ ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗ ਨਹੀਂ ਹੈ।

6 🔳 ਗਣਿਤ

(iii) ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ

(a) ਜੋੜ

ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਪਹਿਮੇਯ ਸੰਖਿਆਵਾਂ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ। ਆਉ, ਅਸੀਂ ਇੱਥੇ ਕੁਝ ਜੋੜਿਆਂ ਨੂੰ ਜੋੜਦੇ ਹਾਂ।

 $\frac{-2}{3} + \frac{5}{7} = \frac{1}{21}$ with $\frac{5}{7} + \left(\frac{-2}{3}\right) = \frac{1}{21}$

ਇਸ ਲਈ.

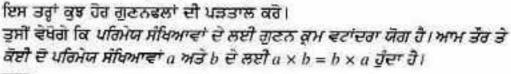
$$\frac{2}{3} + \frac{5}{7} = \frac{5}{7} + \left(\frac{-2}{3}\right)$$

ਇਸਦੇ ਇਲਾਵਾ $\frac{-6}{5} + \left(\frac{-8}{3}\right) = ... ਅਤੇ <math>\frac{-8}{3} + \left(\frac{-6}{5}\right) = ...$

ਕੀ

$$\frac{-6}{5} + \left(\frac{-8}{3}\right) = \left(\frac{-8}{3}\right) + \left(\frac{-6}{5}\right)?$$
$$\frac{-3}{8} + \frac{1}{7} = \frac{1}{7} + \left(\frac{-3}{8}\right)?$$

ਕੀ


ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਦੋ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਨੂੰ ਕਿਸੀ ਵੀ ਕ੍ਰਮ ਵਿੱਚ ਜੋੜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਜੋੜ ਕੁਮ ਵਟਾਂਦਰਾ ਯੋਗ ਹੈ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ a ਅਤੇ b ਦੇ ਲਈ a + b = b + a

(b) ਘਟਾਊ

वी	2	5	5	2		
al	3	4	4	3	ð ?	
	1	3	3	1	ਹੈ?	
ਕੀ	2	5	5	2	d r	

ਤੁਸੀਂ ਪ੍ਰਾਪਤ ਕਰੋਗੇ ਕਿ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਘਟਾਉ ਕਮ ਵਟਾਂਦਰਾ ਯੋਗ ਨਹੀਂ ਹੈ। (c) ਗੁਣਾ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ,
$$\frac{-7}{3} \times \frac{6}{5} = \frac{-42}{15} = \frac{6}{5} \times \left(\frac{-7}{3}\right)$$

ਕੀ $\frac{-8}{9} \times \left(\frac{-4}{7}\right) = \frac{-4}{7} \times \left(\frac{-8}{9}\right)$ ਹੈ?

(d) ਭਾਗ

वी

 $\frac{-5}{4} + \frac{3}{7} = \frac{3}{7} + \left(\frac{-5}{4}\right) = \frac{3}{7}?$

ਆਪ ਵੇਖੋਗੋ ਕਿ ਦੋਵੇਂ ਪਾਸਿਆਂ ਦੇ ਵਿਅੰਜਕ ਬਰਾਬਰ ਨਹੀਂ ਹਨ। ਇਸ ਲਈ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਭਾਗ ਕਮ ਵਟਾਂਦਰਾ ਯੋਗ ਨਹੀਂ ਹੈ।

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ 🔳 7

ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਵਿੱਚ	ਕੋਸ਼ਿਸ਼ ਠ ਰ ਖ਼ਾਲੀ ਥਾਵਾਂ ਭ	22000		
ਸੰਖਿਆਵਾਂ		ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗ	n	
	ਜੋੜ ਦੇ ਲਈ	ਘਟਾਊ ਦੇ ਲਈ	ਗੁਣਾ ਦੇ ਲਈ	ਭਾਗ ਦੇ ਲਈ
ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ	ਹਾਂ	+**	141	
ਪੂਰਨ ਸੰਖਿਆਵਾਂ		ਨਹੀਂ		
ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ			ਹਾਂ	
ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ	-++			ਨਹੀਂ

- 1.2.3 ਸ਼ਹਿਚਾਰਿਤਾ
- (i) ਪੂਰਨ ਸੰਖਿਆਵਾਂ

ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਦੇ ਮਾਧਿਅਮ ਰਾਹੀਂ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਚਾਰ ਕਿਰਿਆਵਾਂ ਦੀ ਸਹਿਚਾਰਿਤਾ ਨੂੰ ਯਾਦ ਕਰੋ।

ਕਿਰਿਆ	ਸੰਖਿਆਵਾਂ	ਟਿੱਪਣੀ	
ਜੋੜ		ਜੋੜ ਸਹਿਚਰ ਹੈ।	
ਘਟਾਉ		ਘਟਾਉ ਸਹਿਚਰ ਨਹੀਂ ਹੈ।	
ਗੁਣਾ	ਕੀ 7 × (2 × 5) = (7 × 2) × 5? ਕੀ 4 × (6 × 0) = (4 × 6) × 0? ਕੋਈ ਤਿੰਨ ਪੂਰਨ ਸੰਖਿਆਵਾਂ a, b ਅਤੇ c ਦੇ ਲਈ a × (b × c) = (a × b) × c	ਸਹਿਚਰ ਹੈ।	
ਭਾਗ		ਭਾਗ ਸਹਿਚਰ ਨਹੀਂ ਹੈ।	

ਇਸ ਸਾਰਣੀ ਨੂੰ ਭਰੋ ਅਤੇ ਅੰਤ ਵਿੱਚ ਦਿੱਤੀਆਂ ਗਈਆਂ ਟਿੱਪਣੀਆਂ ਦੀ ਪੜਤਾਲ ਕਰੋ।

ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਦੇ ਲਈ ਵੱਖ-ਵੱਖ ਕਿਰਿਆਵਾਂ ਦੀ ਆਪ ਪੜਤਾਲ ਕਰੇ।

(ii) ਸੰਪੂਰਨ ਸੱਖਿਆਵਾਂ

ਸੰਪੂਰਨ ਸੱਖਿਆਵਾਂ ਲਈ ਚਾਰ ਕਿਰਿਆਵਾਂ ਦੀ ਸਹਿਚਾਰਿਤਾ ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਵਿੱਚ ਦੇਖੀ ਜਾ ਸਕਦੀ ਹੈ :

বিবিস্গ	ਸੰਖਿਆਵਾਂ	ਟਿੱਪਣੀ	
ਜੋੜ	ਕੀ (-2) + [3 + (-4)] = [(-2) + 3)] + (-4) ਹੈ?	ਜੋੜ ਸਹਿਚਰ ਹੈ।	

8 🖩 ਗਣਿਤ

	ਕੀ (-6) + [(-4) + (-5)] = [(-6) +(-4)] + (-5) ਹੈ ੇ ਕੋਈ ਤਿੰਨ ਪੂਰਨ ਸੰਖਿਆਵਾਂ a, b ਅਤੇ c ਦੇ ਲਈ a + (b + c) = (a + b) + c	
ਘਟਾਉ	बी 5 - (7 - 3) = (5 - 7) - 3 ਹै?	ਘਟਾਊ ਸ਼ਹਿਚਰ ਨਹੀਂ ਹੈ।
ਗੁਣਾ	ਕੀ 5 × [(-7) × (-8)] = [5 × (-7)] × (-8) ਹੈ ? ਕੀ (-4) × [(-8) × (-5)] = [(-4) × (-8)] × (-5) ਹੈ ? ਕੋਈ ਤਿੰਨ ਪੂਰਨ ਸੰਖਿਆਵਾਂ a, b ਅਤੇ c ਦੇ ਲਈ a × (b × c) = (a × b) × c	ਗੁਣਾ ਸਹਿਚਰ ਹੈ।
ਭਾਗ	बी [(-10) ÷ 2] ÷ (-5) = (-10) + [2 ÷ (-5)] ਹੈ?	ਭਾਗ ਸਹਿਚਰ ਨਹੀਂ ਹੈ।

(iii) ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ

(a) ਜੋੜ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ :

 $\frac{-2}{3} + \left[\frac{3}{5} + \left(\frac{-5}{6}\right)\right] = \frac{-2}{3} + \left(\frac{-7}{30}\right) = \frac{-27}{30} = \frac{-9}{10}$ $\left[\frac{-2}{3} + \frac{3}{5}\right] + \left(\frac{-5}{6}\right) = \frac{-1}{15} + \left(\frac{-5}{6}\right) = \frac{-27}{30} = \frac{-9}{10}$ fer ਲਈ, $\frac{-2}{3} + \left[\frac{3}{5} + \left(\frac{-5}{6}\right)\right] = \left[\frac{-2}{3} + \frac{3}{5}\right] + \left(\frac{-5}{6}\right)$ ਪਤਾ ਕਰੋ $\frac{-1}{2} + \left[\frac{3}{7} + \left(\frac{-4}{3}\right)\right]$ ਅਤੇ $\left[\frac{-1}{2} + \frac{3}{7}\right] + \left(\frac{-4}{3}\right)$

ਕੀ ਦੋਨੋਂ ਜੋੜਫਲ ਬਰਾਬਰ ਹਨ ?

ਕੁਝ ਹੋਰ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਲਵੇ, ਉੱਪਰ ਦਿੱਤੀਆਂ ਉਦਾਹਰਣਾਂ ਦੀ ਤਰ੍ਹਾਂ ਉਹਨਾਂ ਨੂੰ ਜੋੜੇ ਅਤੇ ਦੇਖੋ ਕਿ ਦੋਨੇ ਜੋੜ ਸਮਾਨ ਹਨ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਜੋੜਫਲ ਸ਼ਹਿਚਰ ਹੈ, ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਤਿੰਨ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ a, b ਅਤੇ c ਦੇ ਲਈ a + (b + c) = (a + b) + c

(b) ਘਟਾਉ

ਕੀ $\frac{-2}{3} - \left[\frac{-4}{5} - \frac{1}{2}\right] = \left[\frac{2}{3} - \left(\frac{-4}{5}\right)\right] - \frac{1}{2}$ ਹੈ? ਆਪਣੇ ਆਪ ਪੜਤਾਲ ਕਰੋ।

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਘਟਾਊ ਸਹਿਚਰ ਨਹੀਂ ਹੈ।

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ 🔳 9

(c) ਗੁਣਾ

ਆਉ, ਅਸੀਂ ਗੁਣਨ ਦੇ ਲਈ ਸ਼ਹਿਚਾਰਿਤਾ ਦੀ ਪੜਤਾਲ ਕਰਦੇ ਹਾਂ।

$$\frac{-7}{3} \times \left(\frac{5}{4} \times \frac{2}{9}\right) = \frac{-7}{3} \times \frac{10}{36} = \frac{-70}{108} = \frac{-3}{54}$$
$$\left(\frac{-7}{3} \times \frac{5}{4}\right) \times \frac{2}{9} = \dots$$

ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ਕਿ $\frac{-7}{3} \times \left(\frac{5}{4} \times \frac{2}{9}\right) = \left(\frac{-7}{3} \times \frac{5}{4}\right) \times \frac{2}{9}$

 $\frac{2}{3} \times \left(\frac{-6}{7} \times \frac{4}{5}\right) = \left(\frac{2}{3} \times \frac{-6}{7}\right) \times \frac{4}{5}$

ਕੀ

ਕੁਝ ਹੋਰ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਲਵੋਂ ਅਤੇ ਆਪ ਪੜਤਾਲ ਕਰੋ।ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਗੁਣਨ ਸਹਿਚਰ ਹੈ। *ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਕੋਈ ਤਿੰਨ ਪੂਰਨ ਸੰਖਿਆਵਾਂ* a, b ਅਤੇ c ਦੇ ਲਈ a × (b × c) = (a × b) × c

(d) ਭਾਗ

ਆਉ, ਦੇਖਦੇ ਹਾਂ ਕਿ

$$\begin{split} \frac{1}{2} + \left[\frac{-1}{3} + \frac{2}{5}\right] &= \left[\frac{1}{2} + \left(\frac{-1}{3}\right)\right] + \frac{2}{5} \ \bar{\vartheta} ? \text{ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ,} \\ \tilde{\mathsf{4}} \\ \tilde{\mathsf{4}} \\ \tilde{\mathsf{4}} \\ \tilde{\mathsf{4}} \\ \tilde{\mathsf{1}} \\ \tilde{\mathsf{4}} \\ \tilde{\mathsf{1}} \\ \tilde$$

ਕੀ L.H.S. = R.H.S. ਹੈ ? ਆਪਣੇ ਆਪ ਜਾਂਚ ਕਰੋ। ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਭਾਗ ਸਹਿਚਰ ਨਹੀਂ ਹੈ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

10 🔳 ਗਣਿਤ

ਸੰਖਿਆਵਾਂ	ਸਹਿਚਰ						
en et Alter	ਜੋੜ ਦੇ ਲਈ	ਘਟਾਉ ਦੇ ਲਈ	ਗੁਣਾ ਦੇ ਲਈ	ਭਾਗ ਦੇ ਲਈ			
ਪਰਿਮੋਯ ਸੰਖਿਆਵਾਂ	*			ਨਹੀਂ			
ਪੂਰਨ ਸੰਖਿਆਵਾਂ			ਰਾਂ	100			
ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ	ਹਾਂ	***					
ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ		ਨਹੀਂ					

ਉਦਾਹਰਣ 1 : ਹੱਲ ਕਰੋ :
$$\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \left(\frac{5}{22}\right)$$

ਹੱਲ : $\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \left(\frac{5}{22}\right)$
= $\frac{198}{462} + \left(\frac{-252}{462}\right) + \left(\frac{-176}{462}\right) + \left(\frac{105}{462}\right)$

(ਨੋਟ ਕਰੋ ਕਿ 7, 11, 21 ਅਤੇ 22 ਦਾ ਲ.ਸ.ਵ. 462 ਹੈ।)

$$=\frac{\frac{198-252-176+105}{462}}{\frac{-125}{462}}=\frac{-125}{462}$$

ਅਸੀਂ ਹੇਠਾਂ ਲਿਖੇ ਢੰਗ ਨਾਲ ਵੀ ਹੱਲ ਕਰ ਸਕਦੇ ਹਾਂ।

$$\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \frac{5}{22}$$
$$= \left[\frac{3}{7} + \left(\frac{-8}{21}\right)\right] + \left[\frac{-6}{11} + \frac{5}{22}\right]$$
$$= \left[\frac{9 + (-8)}{21}\right] + \left[\frac{-12 + 5}{22}\right]$$

ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗਤਾ ਤੇ ਸਹਿਚਾਰਿਤਾ ਦੇ ਗੁਣਾ ਦੀ ਵਰਤੋਂ ਨਾਲ)

(7 ਅਤੇ 21 ਦਾਲ ਸ.ਵ. 21 ਹੈ। 11 ਅਤੇ 22 ਦਾਲ ਸ.ਵ. 22 ਹੈ।)

$$=\frac{1}{21}+\left(\frac{-7}{22}\right)=\frac{22-147}{462}=\frac{-125}{462}$$

ਕੀ ਤੁਸੀਂ ਸੋਚਦੇ ਹੋ ਕਿ ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗਤਾ ਅਤੇ ਸਹਿਚਾਰਿਤਾ ਦੇ ਗੁਣਾ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਹੱਲ ਕਰਨਾ ਸੌਖਾ ਹੋ ਗਿਆ ਹੈ ?

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ 🔳 11

ਉਦਾਹਰਣ 2 :
$$\frac{-4}{5} \times \frac{3}{7} \times \frac{15}{16} \times \left(\frac{-14}{9}\right)$$
 ਨੂੰ ਹੱਲ ਕਰੋ।

ਹੱਲ : ਸਾਡੇ ਕੋਲ ਹੈ,

$$\frac{-4}{5} \times \frac{3}{7} \times \frac{15}{16} \times \left(\frac{-14}{9}\right)$$
$$= \left(-\frac{4 \times 3}{5 \times 7}\right) \times \left(\frac{15 \times (-14)}{16 \times 9}\right)$$
$$= \frac{-12}{35} \times \left(\frac{-35}{24}\right) = \frac{-12 \times (-35)}{35 \times 24} = \frac{1}{2}$$

ਅਸੀਂ ਹੇਠ ਲਿਖੇ ਤਰੀਕੇ ਨਾਲ ਵੀ ਹੱਲ ਕਰ ਸਕਦੇ ਹਾਂ।

$$\frac{-4}{5} \times \frac{3}{7} \times \frac{15}{16} \times \left(\frac{-14}{9}\right)$$
$$= \left(\frac{-4}{5} \times \frac{15}{16}\right) \times \left[\frac{3}{7} \times \left(\frac{-14}{9}\right)\right]$$

(ਵਟਾਂਦਰਾ ਯੋਗਤਾ ਅਤੇ ਸਹਿਚਾਰਿਤਾ ਦੇ ਗੁਣਾਂ ਦੀ ਵਰਤੋਂ ਨਾਲ)

$$=\frac{-3}{4}\times\left(\frac{-2}{3}\right)=\frac{1}{2}$$

1.2.4 ਸਿਫ਼ਰ (0) ਦੀ ਭੂਮਿਕਾ

ਹੇਠ ਲਿਖੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ :

2 + 0 = 0 + 2 = 2- 5 + 0 = ... + ... = - 5 (ਸਿਫ਼ਰ ਨੂੰ ਪੂਰਨ ਸੰਖਿਆ ਵਿੱਚ ਜੋੜਨਾ) (ਸਿਫ਼ਰ ਨੂੰ ਸੰਪੂਰਨ ਸੰਖਿਆ ਵਿੱਚ ਜੋੜਨਾ)

 $\frac{-2}{7} + \dots = 0 + \left(\frac{-2}{7}\right) = \frac{-2}{7}$

(ਸਿਫ਼ਰ ਨੂੰ ਪਰਿਮੇਯ ਸੰਖਿਆ ਵਿੱਚ ਜੋੜਨਾ)

ਤੁਸੀਂ ਪਹਿਲਾਂ ਵੀ ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਜੋੜਵਲ ਪਤਾ ਕਰ ਚੁੱਕੇ ਹੋ।

ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਕੁਝ ਹੋਰ ਜੋੜ ਪਤਾ ਕਰੋ। ਤੁਸੀਂ ਕੀ ਦੇਖਦੇ ਹੋ? ਤੁਸੀਂ ਪ੍ਰਾਪਤ ਕਰੋਗੇ ਕਿ ਜਦੋਂ ਕੋਈ ਪੂਰਨ ਸੰਖਿਆ ਵਿੱਚ ਸਿਫ਼ਰ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜੋੜਫਲ ਫਿਰ ਤੋਂ ਉਹੀ ਪੂਰਨ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ। ਇਹ ਤੱਥ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਅਤੇ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਵੀ ਸੱਚ ਹੈ।

ਵਿਆਪਕ ਰੂਪ ਵਿੱਚ a + 0 = 0 + a = a, (ਇੱਥੇ a ਇੱਕ ਪੂਰਨ ਸੰਖਿਆ ਹੈ) b + 0 = 0 + b = b, (ਇੱਥੇ b ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੈ) c + 0 = 0 + c = c, (ਇੱਥੇ c ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ)

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਜੋੜ ਦੇ ਲਈ ਸਿਫ਼ਰ ਇੱਕ ਤਤਸਮਕ ਹੈ। ਇਹ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਅਤੇ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਵੀ ਜੋੜਾਤਮਕ ਤਤਸਮਕ ਹੈ।

12 🔳 ਗਣਿਤ

1.2.5 1 ਦੀ ਭੂਮਿਕਾ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ਕਿ

 $5 \times 1 = 5 = 1 \times 5$ (ਪੂਰਨ ਸੰਖਿਆ ਦੀ 1 ਨਾਲ ਗੁਣਾ) $\frac{-2}{7} \times 1 = \dots \times \dots = \frac{-2}{7}$ $\frac{3}{9} \times \dots = 1 \times \frac{3}{9} = \frac{3}{9}$

ਸਾਨੂੰ ਕੀ ਮਿਲਿਆ ?

ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਜਦੋਂ ਤੁਸੀਂ ਕਿਸੇ ਵੀ ਪਰਿਮੇਯ ਸੰਖਿਆ ਨੂੰ 1 ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹਾਂ ਤਾਂ ਤੁਸੀਂ ਉਹੀ ਪਰਿਮੇਯ ਸੰਖਿਆ ਨੂੰ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਪਾਉਂਦੇ ਹੋ। ਕੁਝ ਹੋਰ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਇਸਦੀ ਪੜਤਾਲ ਕਰੋ। ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਕੋਈ ਵੀ ਪਰਿਮੇਯ ਸੰਖਿਆ a ਦੇ ਲਈ, a × 1 = 1 × a = a ਹੈ। ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ 1 ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਗੁਣਾਤਮਕ ਤਤਸਮਕ ਹੈ। ਕੀ 1 ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਅਤੇ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਵੀ ਗੁਣਾਤਮਕ ਤਤਸਮਕ ਹੈ।

🛋 ਸੋਚੇ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੇ

ਜਦ ਕੋਈ ਗੁਣ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਸੱਚ ਹੈ ਤਾਂ ਕੀ ਉਹ ਗੁਣ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ, ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਵੀ ਸੱਚ ਹੋਵੇਗਾ ? ਕਿਹੜੇ ਗੁਣ ਇਹਨਾਂ ਲਈ ਸੱਚ ਹੋਣਗੇ ਅਤੇ ਕਿਹੜੇ ਨਹੀਂ ਹੋਣਗੇ ?

1.2.6 ਇੱਕ ਸੰਖਿਆ ਦਾ ਰਿਣਾਤਮਕ

ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦਾ ਅਧਿਐਨ ਕਰਦੇ ਸਮੇਂ ਤੁਹਾਨੂੰ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੇ ਰਿਣਾਤਮਕ ਵੀ ਮਿਲੇ ਹਨ। । ਦਾ ਰਿਣਾਤਮਕ ਕੀ ਹੈ ? ਇਹ – । ਹੈ, ਕਿਉਂਕਿ 1 + (– I) = (–I) + I = 0 ਹੈ।

ਇਸ ਲਈ (–1) ਦਾ ਰਿਣਾਤਮਕ ਕੀ ਹੋਵੇਗਾ ? ਇਹ 1 ਹੋਵੇਗਾ।

ਇਸਦੇ ਇਲਾਵਾ, 2 + (-2) = (-2) + 2 = 0 ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ -2 ਦਾ ਰਿਣਾਤਮਕ ਅਤੇ ਜੋੜਾਤਮਕ ਉਲਟਕ੍ਰਮ 2 ਹੈ ਜੋ ਉਲਟ ਪਾਸੇ ਪੜਨ ਤੋਂ ਵੀ ਸੱਚ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਕੋਈ ਵੀ ਸੰਪੂਰਨ ਸੰਖਿਆ a ਦੇ ਲਈ a + (-a) = (-a) + a = 0; ਇਸ ਪ੍ਰਕਾਰ - a ਦਾ ਰਿਣਾਤਮਕ a ਹੈ ਅਤੇ a ਦਾ ਰਿਣਾਤਮਕ - a ਹੈ।

ਕੋਈ ਵੀ ਪਰਿਮੇਯ ਸੰਖਿਆ $rac{2}{3}$ ਦੇ ਲਈ, ਅਸੀਂ ਲਿਖਦੇ ਹਾਂ,

ਇਸਦੇ ਇਲਾਵਾ

CHE ICO.E

ਇਸੇ ਤਰ੍ਹਾਂ

 $\frac{2}{3} + \left(-\frac{2}{3}\right) = \frac{2 + (-2)}{3} = 0$ $\left(-\frac{2}{3}\right) + \frac{2}{3} = 0 \quad (\text{far sqt ?})$ $\frac{-8}{9} + \dots = \dots + \left(\frac{-8}{9}\right) = 0$ $\dots + \left(\frac{-11}{7}\right) = \left(\frac{-11}{7}\right) + \dots = 0$

ਪਹਿਮੇਯ ਸੰਖਿਆਵਾਂ 🖩 13

ਆਮ ਤੌਰ ਤੇ ਕੋਈ ਵੀ ਪਰਿਮੋਯ ਸੰਖਿਆ $\frac{a}{b}$ ਦੇ ਲਈ $\frac{a}{b} + \left(-\frac{a}{b}\right) = \left(-\frac{a}{b}\right) + \frac{a}{b} = 0$ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਅਸੀਂ ਦੱਸ ਸਕਦੇ ਹਾਂ ਕਿ $rac{a}{b}$ ਦਾ ਜੋੜਾਤਮਕ ਉਲਟ $-rac{a}{b}$ ਹੈ ਅਤੇ $\left(-rac{a}{b}
ight)$ ਦਾ ਜੋੜਾਤਮਕ ਉਲਟ $rac{a}{b}$ ਹੈ। 1.2.7 gereau ਤੁਸੀਂ ਨੂੰ ਕਿਸ ਪਰਿਮੇਯ ਸੰਖਿਆ ਨਾਲ ਗੁਣਾ ਕਰੋਗੇ ਤਾਂ ਕਿ ਗੁਣਨਫਲ । ਹੋ ਜਾਵੇਗਾ ? ਸਪੱਸ਼ਟ ਰੂਪ ਵਿੱਚ $\frac{21}{8}$ ਨਾਲ, ਕਿਉਂਕਿ $\frac{8}{21} \times \frac{21}{8} = 1$ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ, $\frac{-5}{7}$ ਨੂੰ $\frac{7}{-5}$ ਨਾਲ ਗੁਣਾ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ ਤਾਂ ਕਿ ਗੁਣਨਫਲ । ਪ੍ਰਾਪਤ ਹੋ ਸਕੇ। ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ $\frac{8}{21}$ ਦਾ ਉਲਟਕ੍ਰਮ $\frac{21}{2}$ ਹੈ ਅਤੇ $\frac{-5}{7}$ ਦਾ ਉਲਟਕ੍ਰਮ $\frac{7}{-5}$ ਹੈ। ਕੀ ਅਸੀਂ ਦੱਸ ਸਕਦੇ ਹਾਂ ਕਿ ਸਿਫ਼ਰ ਦਾ ਉਲਟਕ੍ਰਮ ਕੀ ਹੈ ? ਕੋਈ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ ਜਿਸ ਨੂੰ ਸਿਫ਼ਰ ਨਾਲ ਗੁਣਾ ਕਰਨ ਤੇ । ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇ। ਇਸ ਤਰ੍ਹਾਂ ਸਿਫ਼ਰ ਦਾ ਕੋਈ ਉਲਟਕ੍ਰਮ ਨਹੀਂ ਹੈ। ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ $\frac{c}{d}$ ਦੂਸਰੀ ਸੰਖਿਆ $\frac{a}{b}$ ਦਾ ਉਲਟਕ੍ਰਮ ਜਾਂ ਗੁਣਾਤਮਕ ਉਲਟ ਕਹਾਉਂਦੀ ਹੈ ਜਦੋਂਕਿ $\frac{a}{h} \times \frac{c}{d} = 1$ ਹੈ। 1.2.8 ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਗੁਣਨ ਦੀ ਜੋੜ 'ਤੇ ਵੰਡਣਸ਼ੀਲਤਾ ਇਸ ਤੱਥ ਨੂੰ ਸਮਝਣ ਲਈ ਪਰਿਮੋਯ ਸੰਖਿਆਵਾਂ $\frac{-3}{4}, \frac{2}{3}$ ਅਤੇ $\frac{-5}{6}$ ਨੂੰ ਲਵੇ : $\frac{-3}{4} \times \left\{ \frac{2}{3} + \left(\frac{-5}{6} \right) \right\} = \frac{-3}{4} \times \left\{ \frac{(4) + (-5)}{6} \right\}$ $=\frac{-3}{4}\times\left(\frac{-1}{6}\right)=\frac{3}{24}=\frac{1}{8}$ $\frac{-3}{4} \times \frac{2}{3} = \frac{-3 \times 2}{4 \times 3} = \frac{-6}{12} = \frac{-1}{2}$ ਜੋੜ ਅਤੇ ਘਟਾਓ 'ਤੇ ਗੁਣਾ ਦੀ ਇਸਦੇ ਇਲਾਵਾ ਵੰਡਟਸ਼ੀਲਤਾ ਸਾਰੀਆਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ $\frac{-3}{4} \times \frac{-5}{6} = \frac{5}{6}$ ਅਤੇ a, b ਅਤੇ c ਦੇ ਲਈ a(b+c) = ab + ac $\left(\frac{-3}{4} \times \frac{2}{3}\right) + \left(\frac{-3}{4} \times \frac{-5}{6}\right) = \frac{-1}{2} + \frac{5}{8} = \frac{1}{8}$ ਇਸ ਲਈ, a(b-c) = ab - ac

14 🔳 ਗਣਿਤ

ਇਸ ਤਰ੍ਹਾਂ

$$\frac{-3}{4} \times \left\{ \frac{2}{3} + \frac{-5}{6} \right\} = \left(\frac{-3}{4} \times \frac{2}{3} \right) + \left(\frac{-3}{4} \times \frac{-5}{6} \right)$$

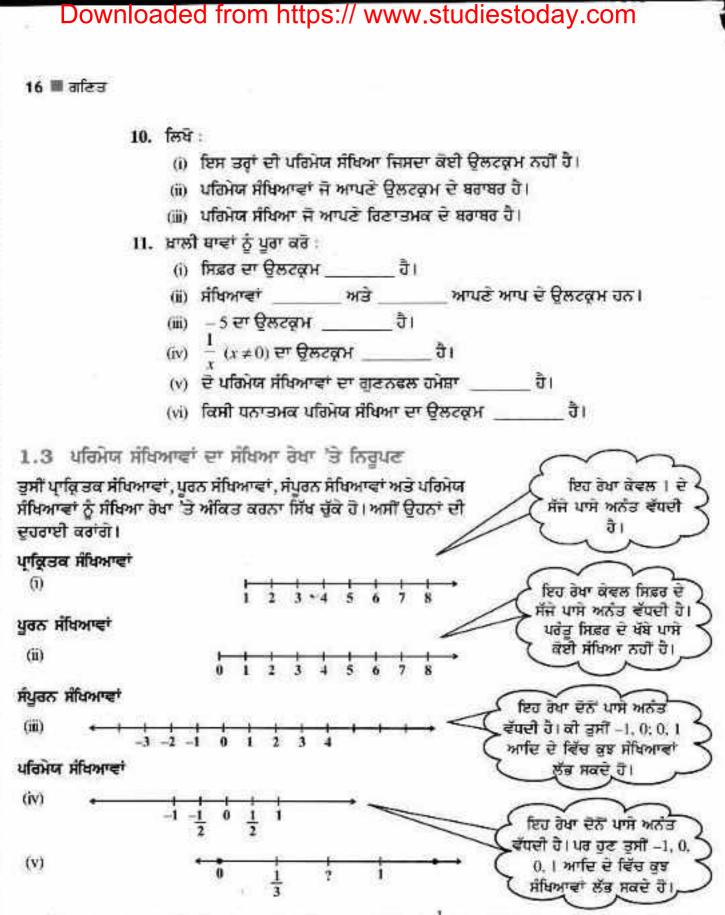
 बॉग्र बर्ज ठाफ बेठ लिफिओ एग प्रेल पज खे:

 (i)
 $\left\{ \frac{7}{5} \times \left(\frac{-3}{12} \right) \right\} + \left\{ \frac{7}{5} \times \frac{5}{12} \right\}$
 (ii)
 $\left\{ \frac{9}{16} \times \frac{4}{12} \right\} + \left\{ \frac{9}{16} \times \frac{-3}{9} \right\}$

 ਉਦਾਹ are 3 : ਹੇ to लिफिओ एग से मंग्र ज भव ਉਲਟ लिख

 (i)
 $\left\{ \frac{7}{5} \times \left(\frac{-3}{12} \right) \right\} + \left\{ \frac{7}{5} \times \frac{5}{12} \right\}$
 (ii)
 $\left\{ \frac{9}{16} \times \frac{4}{12} \right\} + \left\{ \frac{9}{16} \times \frac{-3}{9} \right\}$

 ਉਦਾਹ are 3 : ਹੇ to लिफिओ एगे से मंग्र ज भव ਉਲਟ लिख


 (ii)
 $\left\{ \frac{7}{19} \right\}$
 (ii)
 $\left\{ \frac{21}{112} \right\}$
 (iii)
 $\left\{ \frac{21}{112} \right\}$
 (iii)

 (i)
 $\frac{7}{19}$
 (iii)
 $\left\{ \frac{21}{112} \right\}$
 (i)
 $\left\{ \frac{2}{112} \right\}$
 (ii)
 $\left\{ \frac{2}{112} \right\}$
 (iii)

 (ii)
 $\frac{21}{112}$
 er मैं मंग ज भव ਉਲਟ
 $\left\{ -\frac{21}{12} \right\}$
 (i)
 (iii)
 $\left\{ \frac{2}{112} \right\}$
 (iiii)
 $\left\{ \frac{2}{112} \right\}$
 (iiii)
 $\left\{ \frac{2}{112} \right\}$
 (iiii)
 $\left\{ \frac{2}{112} \right\}$
 $\left\{ \frac{2}{112} \right\}$
 (iii)
 $\left\{ \frac{2}{112} \right\}$
 (iiiii)
 $\left\{ \frac{2}{112} \right\}$
 $\left\{ \frac{2}{11$

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ 🖩 15

ਉਦਾਰਕਣ 5: ਸਰਲ ਕਰੋ
$$\frac{2}{5} \times \frac{-3}{7} - \frac{1}{14} - \frac{3}{7} \times \frac{3}{5}$$

ਹੱਲ : $\frac{2}{5} \times \frac{-3}{7} - \frac{1}{14} - \frac{3}{7} \times \frac{3}{5} = \frac{2}{5} \times \frac{-3}{7} - \frac{3}{7} \times \frac{3}{5} - \frac{1}{14}$ (дн естевт йллэг кто)
 $= \frac{2}{5} \times \frac{-3}{7} + \left(-\frac{3}{7}\right) \times \frac{3}{5} - \frac{1}{14} = \frac{-3}{7} \left(\frac{2}{5} + \frac{3}{5}\right) - \frac{1}{14}$ (दंडटघोलउт кто)
 $= \frac{-3}{7} \times 1 - \frac{1}{14} = \frac{-6 - 1}{14} = \frac{-1}{2}$

МЛЕНИТ 1.1
1. ਉੱਚਿਤ ਗੁਣਾਂ ਦੀ ਵਰਤੋਂ ਨਾਲ ਹੋਠਾਂ ਲਿਖਿਆਂ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ :
(i) $-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$ (ii) $\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$
2. ਹੇਠਾਂ ਲਿਖਿਆਂ ਵਿੱਚ ਹਰੇਕ ਦਾ ਜੋਸ਼ਾਤਮਕ ਉਲਟ ਲਿਖੋ :
(i) $\frac{2}{8}$ (ii) $\frac{-5}{9}$ (iii) $\frac{-6}{-5}$ (iv) $\frac{2}{-9}$ (v) $\frac{19}{-6}$
3. (i) $x = \frac{11}{15}$ (ii) $x = -\frac{13}{17}$ ਦੇ ਲਈ ਪਤਾਲ ਕਰੋ ਕਿ $-(-x) = x$
4. ਹੇਠਾਂ ਲਿਖਿਆਂ ਵਿੱਚ ਗੁਣਰ ਦੀ ਅੰਗਰਗਤ ਵਰਤੇ ਗਏ ਗੁਣ ਦਾ ਨਾਮ ਲਿਖੋ 1
(i) -13 (ii) $\frac{-13}{19}$ (iii) $\frac{1}{5}$ (iv) $\frac{-5}{8} \times \frac{-3}{7}$
(v) $-1 \times \frac{-2}{5}$ (vi) -1
5. ਹੇਠਾਂ ਲਿਖਿਆਂ ਵਿੱਚ ਗੁਣਨ ਦੇ ਅੰਗਰਗਤ ਵਰਤੇ ਗਏ ਗੁਣ ਦਾ ਨਾਮ ਲਿਖੋ 1
(i) $\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$ (ii) $-\frac{13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$
(iii) $\frac{-19}{29} \times \frac{29}{-19} = 1$
6. $\frac{6}{13}$ ਨੂं $\frac{7}{16}$ ਦੇ ਉਲਟਰਮ ਨਾਲ ਗੁਣਾ ਕਰੋ 1
7. ਦੱਸ ਕਿਹੜੇ ਗੁਣ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਰੁਸੀ $\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) \frac{1}{5} \left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖ
ਸਕਦੋ ਹੋ 1
8. ਕੀ $-1\frac{1}{8}$ ਦਾ ਗੁਣਾਤਮਕ ਉਲਟ $\frac{8}{9}$ ਹੈ ? ਕਿਉਂ ਅਤੇ ਕਿਉਂ ਨਹੀ ?
9. ਕੀ $3\frac{1}{3}$ ਦਾ ਗੁਣਾਤਮਕ ਉਲਟ 0.3 ਹੈ ? ਕਿਉਂ ਅਤੇ ਕਿਉਂ ਨਹੀ ?

ਸੰਖਿਆ ਰੇਖਾ (iv) 'ਤੇ ਉਹ ਬਿੰਦੂ ਜੋ 0 ਅਤੇ 1 ਦੇ ਵਿਚਕਾਰ ਹੈ ਉਸ ਨੂੰ $\frac{1}{2}$ ਦੇ ਰੂਪ ਵਿੱਚ ਅੰਕਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਸੱਖਿਆ ਰੇਖਾ (v) ਪਰ 0 ਅਤੇ 1 ਦੇ ਵਿੱਚ ਦੀ ਦੂਰੀ ਨੂੰ ਤਿੰਨ ਬਰਾਬਰ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡਣ ਵਾਲੇ ਸਮਦੂਰਵਰਤੀ ਬਿੰਦੂਆਂ ਵਿੱਚ ਪਹਿਲੇ ਬਿੰਦੂ ਨੂੰ $\frac{1}{3}$ ਦੇ ਰੂਪ ਵਿੱਚ ਅੰਕਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਸੱਖਿਆ ਰੇਖਾ (v) 'ਤੇ ਭਾਜਕ ਬਿੰਦੂਆਂ ਵਿੱਚੋਂ ਦੂਜੇ ਬਿੰਦੂ ਨੂੰ ਤੁਸੀਂ ਕਿਸ ਤਰ੍ਹਾਂ ਅੰਕਿਤ ਕਰੋਗੇ ?

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ 🔳 17

ਅੰਕਿਤ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਇਹ ਬਿੰਦੂ ਸਿਫ਼ਰ ਦੇ ਸੱਜੇ ਪਾਸੇ $\frac{1}{3}$ ਦੇ ਰੂਪ ਵਿੱਚ ਅੰਕਿਤ ਬਿੰਦੂ ਤੋਂ ਦੁੱਗਣੀ ਦੂਰੀ 'ਤੇ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ $\frac{1}{3}$ ਨਾਲੋਂ ਦੁਗਣਾ ਹੈ, ਜਿਵੇਂ ਕਿ $\frac{2}{3}$ ਹੈ। ਤੁਸੀਂ ਇਸ ਪ੍ਰਕਾਰ ਸੰਖਿਆ ਰੇਖਾ 'ਤੋ ਸਮਾਨ ਦੂਰੀ 'ਤੇ ਬਿੰਦੂਆਂ ਨੂੰ ਅੰਕਿਤ ਕਰ ਸਕਦੇ ਹੋ। ਅਗਲਾ ਚਿੰਨ੍ਹ 1 ਹੈ। ਤੁਸੀਂ ਦੇਖ ਸਕਦੇ ਹੋ ਕਿ 1 ਅਤੇ $\frac{3}{3}$ ਇੱਕ ਸਮਾਨ ਹਨ।

ਜਿਵੇਂ ਕਿ ਸੰਖਿਆ ਰੇਖਾ (vi) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ਇਸਦੇ ਬਾਅਦ $\frac{4}{3}, \frac{5}{3}, \frac{6}{3}$ (ਜਾਂ 2), $\frac{7}{3}$ ਆਉਂਦੇ ਹਨ।

ਇਸੇ ਪ੍ਰਕਾਰ, <mark>1</mark> ਨੂੰ ਅੰਕਿਤ ਕਰਨ ਦੇ ਲਈ ਸੰਖਿਆ ਰੇਖਾਖੰਡ ਨੂੰ ਅੱਠ ਬਰਾਬਰ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜਿਵੇਂ ਕਿ ਹੇਠਾਂ ਅਕ੍ਰਿਤੀ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ :

ਇਸ ਵੰਡ ਦੇ ਪਹਿਲੇ ਬਿੰਦੂ ਨੂੰ ਨਾਮ ਦੇਣ ਦੇ ਲਈ ਅਸੀਂ ਸੰਖਿਆ $rac{1}{8}$ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ। ਵੰਡ

ਦਾ ਦੂਸਰਾ ਬਿੰਦੂ $rac{2}{8}$ ਦੇ ਰੂਪ ਵਿੱਚ ਅੰਕਿਤ ਕੀਤਾ ਜਾਵੇ, ਤੀਸਰਾ ਬਿੰਦੂ $rac{3}{8}$ ਦੇ ਰੂਪ ਵਿੱਚ ਅਤੇ ਇਸ ਪ੍ਰਕਾਰ ਅੱਗੇ ਵੀ, ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਸੰਖਿਆ ਰੇਖਾ (vii) ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ।

ਇਸੇ ਪ੍ਰਕਾਰ ਸੰਖਿਆ ਰੇਖਾ ਵਿੱਚ ਕਿਸੀ ਵੀ ਪਰਿਮੇਯ ਸੰਖਿਆ ਨੂੰ ਅੰਕਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਵਿੱਚ ਰੇਖਾ ਦੇ ਹੇਠਾਂ ਦਾ ਸੰਖਿਆ ਅੰਕ (ਜਾਂ ਹਰ) ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਪਹਿਲੀ ਇਕਾਈ ਨੂੰ ਕਿੰਨੇ ਬਰਾਬਰ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ। ਰੇਖਾ ਦੇ ਉੱਪਰ ਦੀ ਸੰਖਿਆ (ਜਾਂ ਅੰਸ਼) ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਇਹ ਸਮਾਨ ਭਾਗਾਂ ਵਿੱਚ ਕਿੰਨੇ ਭਾਗਾਂ ਨੂੰ ਸ਼ਾਮਿਲ ਕੀਤਾ ਗਿਆ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਪਰਿਮੇਯ ਸੰਖਿਆ $\frac{4}{9}$ ਦਾ ਮਤਲਬ ਹੈ ਕਿ ਸਿਫ਼ਰ ਦੇ ਸੱਜੇ ਪਾਸੇ ਨੇ ਸਮਾਨ ਭਾਗਾਂ ਵਿੱਚੋਂ ਚਾਰ ਨੂੰ ਲਿਆ ਗਿਆ ਹੈ। (ਸੰਖਿਆ ਰੇਖਾ viii) ਅਤੇ $\frac{-7}{4}$, ਦੇ ਲਈ ਅਸੀਂ ਸਿਫ਼ਰ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ ਖੱਬੇ ਪਾਸੇ 7 ਚਿੰਨ੍ਹ ਲਗਾਉਂਦੇ ਹਾਂ ਜਿਸ ਵਿੱਚ ਹਰੇਕ ਦੀ ਦੂਰੀ $\frac{1}{4}$ ਹੈ। ਸੱਤਵਾਂ ਚਿੰਨ੍ਹ $\frac{-7}{4}$ ਹੈ।[ਸੰਖਿਆ ਰੇਖਾ (ix)]।

18 🏢 ਗਣਿਤ

ਕੋਸ਼ਿਸ਼ ਕਰੋ

) +		٨	-		B	ç		2	D	E	-		
	05	?	215	3/5	?	2	615	75	?	?	<u>10</u> 5	11 5	12 5
		J			1	H		G			F		

1.4 ਦੋ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ

ਕੀ ਤੁਸੀਂ 1 ਅਤੇ 5 ਦੇ ਵਿੱਚ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਦੱਸ ਸਕਦੇ ਹੋ ? ਉਹ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ 2, 3 ਅਤੇ 4 ਹਨ। 7 ਅਤੇ 9 ਦੇ ਵਿੱਚ ਕਿੰਨੀਆਂ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਹਨ ? ਕੇਵਲ ਇੱਕ ਉਹ ਹੈ 8 10 ਅਤੇ 11 ਦੇ ਵਿੱਚ ਕਿੰਨੀਆਂ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਹਨ ? ਸਪੱਸ਼ਟ ਰੂਪ ਵਿੱਚ ਇੱਕ ਵੀ ਨਹੀਂ। -5 ਅਤੇ 4 ਦੇ ਵਿੱਚ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ। ਇਹ ਹੈ, -4, -3, -2, -1, 0, 1, 2, 3. -1 ਅਤੇ 1 ਦੇ ਵਿੱਚ ਕਿੰਨੀਆਂ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਹਨ ?

-9 ਅਤੇ -10 ਦੇ ਵਿੱਚ ਕਿੰਨੀਆਂ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਹਨ ?

ਤੁਸੀਂ ਦੋ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ (ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ) ਦੇ ਵਿੱਚ ਨਿਸ਼ਚਿਤ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ (ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ) ਪ੍ਰਾਪਤ ਕਰੋਗੇ।

 $\frac{3}{10}$ ਅਤੇ $\frac{7}{10}$ ਦੇ ਵਿੱਚ ਕਿੰਨੀਆਂ ਪਰਿਮੇਯ ਸੱਖਿਆਵਾਂ ਹਨ? ਸ਼ਾਇਦ ਤੁਸੀਂ ਸੋਚ ਸਕਦੇ ਹੋ ਕਿ ਇਹ ਸੰਖਿਆਵਾਂ $\frac{4}{10}, \frac{5}{10}$ ਅਤੇ $\frac{6}{10}$ ਹੈ। ਪਰੰਤੂ ਤੁਸੀਂ $\frac{3}{10}$ ਨੂੰ $\frac{30}{100}$ ਅਤੇ $\frac{7}{10}$ ਨੂੰ $\frac{70}{100}$ ਲਿਖ ਸਕਦੇ ਹੋ। ਹੁਣ ਸੰਖਿਆਵਾਂ, $\frac{31}{100}, \frac{32}{100}, \frac{33}{100}, \dots, \frac{68}{100}, \frac{69}{100}$, ਸਾਰੀਆਂ $\frac{3}{10}$ ਅਤੇ $\frac{7}{10}$ ਦੇ ਵਿੱਚ ਹਨ। ਇਹਨਾਂ ਪਹਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੀ ਸੰਖਿਆ 39 ਹੈ।

ਇਸਦੇ ਇਲਾਵਾ $\frac{3}{10}$ ਨੂੰ $\frac{3000}{10000}$ ਅਤੇ $\frac{7}{10}$ ਨੂੰ $\frac{7000}{10000}$ ਦੇ ਰੂਪ ਵਿੱਚ ਵੀ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਹੁਣ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ $\frac{3001}{10000}, \frac{3002}{10000}, ..., \frac{6998}{10000}, \frac{6999}{10000}$ ਸਾਰੀਆਂ $\frac{3}{10}$ ਅਤੇ $\frac{7}{10}$ ਦੇ ਵਿੱਚ ਹਨ। ਇਹ ਕੁੱਲ 3999 ਸੰਖਿਆਵਾਂ ਹਨ।

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ 🔳 19

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ $rac{3}{10}$ ਅਤੇ $rac{7}{10}$ ਦੇ ਵਿੱਚ ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ ਸੰਖਿਆਵਾਂ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਸ ਲਈ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਅਤੇ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੀ ਤਰ੍ਹਾਂ ਦੋ ਪਰਿਮੋਯ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਪਾਈਆਂ ਜਾਣ ਵਾਲੀਆਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਨਿਸ਼ਚਿਤ ਨਹੀਂ ਹਨ। ਇੱਕ ਹੋਰ ਉਦਾਹਰਣ ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ। $\frac{-1}{10}$ ਅਤੇ $\frac{3}{10}$ ਦੇ ਵਿੱਚ ਕਿੰਨੀਆਂ ਪਰਿਮੇਯ ਸੱਖਿਆਵਾਂ ਹਨ ? ਸਪੱਸ਼ਟ ਰੂਪ ਵਿੱਚ ਦਿੱਤੀਆਂ ਗਈਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ $\frac{0}{10}, \frac{1}{10}, \frac{2}{10}$ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹਨ। ਜੋਕਰ ਅਸੀਂ $\frac{-1}{10}$ ਨੂੰ $\frac{-10000}{100000}$ ਅਤੇ $\frac{3}{10}$ ਨੂੰ $\frac{30000}{100000}$ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ $\frac{-1}{10}$ ਅਤੇ <u>3</u> ਦੇ ਵਿੱਚ <u>-9999</u>, <u>-9998</u>, ..., <u>-29998</u>, <u>29999</u>, ਪਰਿਮੋਯ ਸੰਖਿਆਵਾਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ। ਤਸੀ ਕੋਈ ਵੀ ਦੋ ਪਹਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਅਨੰਤ ਪਹਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪਾਪਤ ਕਰ ਸਕਦੇ ਹੋ। ਉਦਾਹਰਣ 6 : -2 ਅਤੇ 0 ਦੇ ਵਿੱਚ 3 ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ। ਹੱਲ : -2 ਨੂੰ $\frac{-20}{10}$ ਅਤੇ 0 ਨੂੰ $\frac{0}{10}$ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ -2 ਅਤੇ 10 ਦੇ ਵਿੱਚ $\frac{-19}{10}, \frac{-18}{10}, \frac{-17}{10}, \frac{-16}{10}, \frac{-15}{10}, ..., \frac{-1}{10}$ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ। ਤੁਸੀਂ ਇਸ ਵਿੱਚ ਕੋਈ ਵੀ ਤਿੰਨ ਸੰਖਿਆਵਾਂ ਲੈ ਸਕਦੇ ਹੋ। ਉਦਾਹਰਣ 7 : $\frac{-5}{6}$ ਅਤੇ $\frac{5}{8}$ ਦੇ ਵਿੱਚ ਦਸ ਪਹਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੇ। ਹੱਲ : ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਅਸੀਂ $rac{-5}{6}$ ਅਤੇ $rac{5}{8}$ ਨੂੰ ਸਮਾਨ ਹਰ ਵਾਲੀ ਪਰਿਮੇਯ ਸੱਖਿਆਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਬਦਲਾਂਗੇ। $\frac{-5 \times 4}{6 \times 4} = \frac{-20}{24}$ with $\frac{5 \times 3}{8 \times 3} = \frac{15}{24}$ ਇਸ ਪ੍ਰਕਾਰ ਅਸੀਂ $\frac{-20}{24}$ ਅਤੇ $\frac{15}{24}$ ਦੇ ਵਿਚਕਾਰ ਹੇਠਾਂ ਲਿਖੀਆਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ। ਤੁਸੀਂ ਇਸ ਵਿੱਚ ਕੋਈ ਵੀ ਦਸ ਸੰਖਿਆਵਾਂ ਲੈ ਸਕਦੇ ਹੋ $\frac{-19}{24}, \frac{-18}{24}, \frac{-17}{24}, \frac{14}{24}$ रूसी दियी ਆਉ 1 ਅਤੇ 2 ਦੇ ਵਿੱਚ ਪਹਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰਦੇ ਹਾਂ। ਉਸ ਵਿੱਚ ਇੱਕ ਸੰਖਿਆ 1.5 ਜਾਂ 1 🔒 ਜਾਂ 🖞 ਹੈ। ਇਹ 1 ਅਤੇ 2 ਦਾ ਮੱਧ ਹੈ। ਤੁਸੀਂ ਜਮਾਤ VII ਵਿੱਚ ਮੱਧ ਦੇ ਬਾਰੇ ਪੜ੍ਹਿਆ ਹੈ।

20 🔳 ਗਣਿਤ

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਦਿੱਤੀਆਂ ਗਈਆਂ ਦੇ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਸੰਪੂਰਨ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਹੋਣਾ ਜ਼ਰੂਰੀ ਨਹੀਂ ਹੈ ਪਰੰਤੂ ਦਿੱਤੀ ਗਈ ਸੰਖਿਆ ਦੇ ਵਿੱਚ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹਮੇਸ਼ਾ ਸਥਿਤ ਹੁੰਦੀ ਹੈ। ਅਸੀਂ ਦਿੱਤੀਆਂ ਹੋਈਆਂ ਦੋ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦਾ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਮੱਧ ਦੇ ਸੰਕਲਪ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹਾਂ।

ਉਦਾਹਰਣ 8 : $\frac{1}{4}$ ਅਤੇ $\frac{1}{2}$ ਦੇ ਮੱਧ ਵਿੱਚ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਪਤਾ ਕਰੋ। ਹੱਲ : ਅਸੀਂ ਦਿੱਤੀਆਂ ਗਈਆਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦਾ ਮੱਧ ਪਤਾ ਕਰਦੇ ਹਾਂ

 $\begin{pmatrix} \frac{1}{4} + \frac{1}{2} \end{pmatrix} + 2 = \begin{pmatrix} \frac{1+2}{4} \end{pmatrix} + 2 = \frac{3}{4} \times \frac{1}{2} = \frac{3}{8}$ $\begin{pmatrix} \frac{1}{4} + \frac{1}{2} \end{pmatrix} + 2 = \frac{3}{8}$ $\begin{pmatrix} \frac{1}{4} + \frac{1}{2} \end{pmatrix} + 2 = \frac{3}{8}$ $\begin{pmatrix} \frac{1}{4} + \frac{1}{2} \end{pmatrix} + 2 = \frac{3}{8}$ $\begin{pmatrix} \frac{1}{4} + \frac{1}{2} \end{pmatrix} + 2 = \frac{3}{8}$ $\begin{pmatrix} \frac{1}{4} + \frac{1}{2} \end{pmatrix} + 2 = \frac{3}{8}$ $\begin{pmatrix} \frac{1}{4} + \frac{1}{2} \end{pmatrix} + 2 = \frac{3}{8}$ $\begin{pmatrix} \frac{1}{4} + \frac{1}{2} \end{pmatrix} + 2 = \frac{3}{8}$ $\end{pmatrix}$ $\end{pmatrix}$) $\end{pmatrix}$ $\end{pmatrix}$ $\end{pmatrix}$ $\end{pmatrix}$ $\end{pmatrix}$ $\end{pmatrix}$ $\end{pmatrix}$))) $\end{pmatrix}$ $\end{pmatrix}$ $\end{pmatrix}$)))) $\end{pmatrix}$)

ਦੇਖਦੇ ਹਾਂ ਕਿ $\frac{1}{4} < \frac{3}{8} < \frac{1}{2}$ ਹੈ।

ਜੇਕਰ a ਅਤੇ b ਕੋਈ ਦੇ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹਨ ਤਾਂ a ਅਤੇ b ਦੇ ਮੱਧ ਵਿੱਚ $\frac{a+b}{2}$ ਇੱਕ ਪਰਿਮੇਯ

ਸੰਖਿਆ ਇਸ ਪ੍ਰਕਾਰ ਹੈ ਕਿ $a < \frac{a+b}{2} < b$

ਇਸ ਤੋਂ ਇਹ ਸਪੱਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ਦਿੱਤੀਆਂ ਹੋਈਆਂ ਦੋ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਅਨੰਤ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹੁੰਦੀਆਂ ਹਨ।

ਉਦਾਹਰਣ 9 : $\frac{1}{4}$ ਅਤੇ $\frac{1}{2}$ ਦੇ ਵਿੱਚਕਾਰ ਤਿੰਨ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ। ਹੱਲ : ਅਸੀਂ ਦਿੱਤੀਆਂ ਗਈਆਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦਾ ਮੱਧ ਪਤਾ **i**

ਹਨ : ਅਸੀਂ ਦਿਤੀਆਂ ਗੋਈਆਂ ਪਰਿਮਯ ਸੰਖਿਆਵਾਂ ਦਾ ਮੱਧ ਪੱਤਾ <u>1</u><u>3</u><u>1</u> ਕਰਦੇ ਹਾਂ ਜਿਸ ਤਰ੍ਹਾਂ ਉੱਪਰ ਦਿੱਤੀ ਉਦਾਹਰਣ ਵਿੱਚ ਦਿੱਤਾ ਹੋਇਆ 4<u>8</u><u>2</u>

ਹੈ ਇਹਨਾਂ ਸੰਖਿਆਵਾਂ ਦਾ ਮੱਧ $\frac{3}{8}$ ਹੈ ਅਤੇ $\frac{1}{4} < \frac{3}{8} < \frac{1}{2}$ ਹੈ।

ਹੁਣ $\frac{1}{4}$ ਅਤੇ $\frac{3}{8}$ ਦੇ ਵਿੱਚ ਇੱਕ ਹੋਰ ਪਰਿਮੋਯ ਸੰਖਿਆ ਪਤਾ ਕਰਦੇ ਹਾਂ। ਇਸਦੇ ਲਈ ਅਸੀਂ ਦੁਬਾਰਾ $\frac{1}{4}$ ਅਤੇ $\frac{3}{8}$ ਦਾ ਮੱਧ ਪਤਾ ਕਰਦੇ ਹਾਂ। ਜਿਵੇਂ ਕਿ $\left(\frac{1}{4} + \frac{3}{8}\right) + 2 = \frac{5}{8} \times \frac{1}{2} = \frac{5}{16}$ ਹੈ। $\frac{1}{4} < \frac{5}{16} < \frac{3}{8} < \frac{1}{2}$ $\overleftarrow{\frac{1}{4}} + \frac{5}{16} + \frac{3}{8} + \frac{1}{2}$

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ 🔳 21

ਹੁਣ
$$\frac{3}{8}$$
 ਅਤੇ $\frac{1}{2}$ ਦਾ ਮੱਧ ਪਤਾ ਕਰੋ। ਅਸੀਂ ਹੁਣ $\left(\frac{3}{8} + \frac{1}{2}\right) + 2 = \frac{7}{8} \times \frac{1}{2} = \frac{7}{16}$ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ
ਇਸ ਤਰ੍ਹਾਂ ਸਾਨੂੰ $\frac{1}{4} < \frac{5}{16} < \frac{3}{8} < \frac{7}{16} < \frac{1}{2}$ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।
ਇਸ ਤਰ੍ਹਾਂ $\frac{1}{4}$ ਅਤੇ $\frac{1}{2}$ ਦੇ ਵਿਚਕਾਰ ਤਿੰਨ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ $\frac{5}{16}$, $\frac{3}{8}$, $\frac{7}{16}$ ਹਨ।
ਇਸ ਤਰ੍ਹਾਂ $\frac{1}{4}$ ਅਤੇ $\frac{1}{2}$ ਦੇ ਵਿਚਕਾਰ ਤਿੰਨ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ $\frac{5}{16}$, $\frac{3}{8}$, $\frac{7}{16}$ ਹਨ।

$$\begin{pmatrix} \frac{1}{4} + \frac{3}{8} \end{pmatrix} + 2 = \frac{5}{16} \qquad \qquad \frac{7}{16} = \left(\frac{3}{8} + \frac{1}{2}\right) + 2 \\ \hline 0 \quad \frac{1}{4} \qquad \frac{3}{8} \qquad \frac{1}{2} \quad \frac{3}{4} \qquad 1 \\ \hline \end{cases}$$

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਦਿੱਤੀਆਂ ਹੋਈਆਂ ਦੋ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਆਪਣੀ ਇੱਛਾ ਅਨੁਸਾਰ ਕਿੰਨੀਆਂ ਵੀ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ। ਤੁਸੀਂ ਵੇਖ ਚੁੱਕੇ ਹੋ ਕਿ ਦਿੱਤੀਆਂ ਹੋਈਆਂ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਅਨੰਤ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹੁੰਦੀਆਂ ਹਨ।

ਅਭਿਆਸ 1.2

- 1. ਹੇਠ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਸੰਖਿਆ ਰੇਖਾ 'ਤੇ ਅੰਕਿਤ ਕਰੋ : (i) $\frac{7}{4}$ (ii) $\frac{-5}{6}$
- 2. ⁻²/₁₁, ⁻⁵/₁₁, ⁻⁹/₁₁ ਨੂੰ ਸੰਖਿਆ ਰੇਖਾ 'ਤੇ ਅੰਕਿਤ ਕਰੋ।
- ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਪੰਜ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਲਿਖੇ ਜੋ 2 ਨਾਲੋਂ ਛੋਟੀਆਂ ਹੋਣ।
- 4. ⁻²/₅ ਅਤੇ ¹/₂ ਦੇ ਵਿਚਕਾਰ ਦਸ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।
- 5. (i) $\frac{2}{3}$ ਅਤੇ $\frac{4}{5}$ (ii) $\frac{-3}{2}$ ਅਤੇ $\frac{5}{3}$
 - (iii) $\frac{1}{4}$ ਅਤੇ $\frac{1}{2}$ ਦੇ ਵਿਚਕਾਰ ਪੰਜ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।
- -2 ਨਾਲੋਂ ਵੱਡੀਆਂ ਪੰਜ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।
- 3/5 ਅਤੇ 3/4 ਦੇ ਵਿੱਚ ਦਸ ਪਰਿਮੇਯ ਸੱਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।

22 🔳 ਗਣਿਤ

ਅਸੀਂ ਕੀ ਚਰਚਾ ਕੀਤੀ

- ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਜੋੜ, ਘਟਾਉ ਅਤੇ ਗੁਣਾ ਦੀ ਕਿਰਿਆਵਾਂ ਦੇ ਅੰਤਰਗਤ ਬੰਦ ਹੈ।
- 2. ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਜੋੜ ਅਤੇ ਗੁਣਾ ਦੀਆਂ ਕ੍ਰਿਰਿਆਵਾਂ
 - (i) ਕ੍ਰਮ ਵਟਾਂਦਰਾ ਯੋਗ ਹਨ।
 - (ii) সਹਿਚਰ ਹਨ।
- ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਲਈ ਪਰਿਮੇਯ ਸੰਖਿਆ ਸਿਫ਼ਰ ਜੋੜਾਤਮਕ ਤਤਸਮਕ ਹੈ।
- ਪਰਿਮੇਯ ਸੱਖਿਆ ਦੇ ਲਈ ਪਰਿਮੇਯ ਸੱਖਿਆ 1 ਗੁਣਾਤਮਕ ਤਤਸਮਕ ਹੈ।
- 5. ਪਹਿਮੇਯ ਸੰਖਿਆਵਾਂ $\frac{a}{b}$ ਦਾ ਜੋੜਾਤਮਕ ਉਲਟ $-\frac{a}{b}$ ਹੈ ਅਤੇ ਇਸ ਦਾ ਉਲਟ ਵੀ ਸੱਚ ਹੈ।
- 6. ਜੇਕਰ $\frac{a}{b} \times \frac{c}{d} = 1$ ਤਾਂ ਪਰਿਮੇਯ ਸੰਖਿਆ $\frac{a}{b}$ ਦਾ ਉਲਟਕ੍ਰਮ ਜਾਂ ਗੁਣਾਤਮਕ ਉਲਟ $\frac{c}{d}$ ਹੈ।
- 7. ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੀ ਵੰਡਣਸ਼ੀਲਤਾ, ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ a, b ਅਤੇ c ਦੇ ਲਈ a(b + c) = ab + ac ਅਤੇ a(b − c) = ab − ac ਹੈ।
- 8. ਪਹਿਮੇਯ ਸੰਖਿਆਵਾਂ ਨੂੰ ਸੰਖਿਆ ਰੇਖਾ 'ਤੇ ਅੰਕਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- ਦਿੱਤੀਆਂ ਗਈਆਂ ਦੇ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਅਨੰਤ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਦੇ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿਚਕਾਰ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰਨ ਲਈ ਮੱਧ ਦਾ ਸੰਕਲਪ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ।

ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ 🔳 23

58

The Year's second secon

100 C 100 C

の主人vi. 二人?

TRISKI'S

A Gui

the stand of the second second

	ন্টৰ 🖉	
	. (61)	
×	н	

ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ

ਅਧਿਆਇ

2.1 ਭੂਮਿਕਾ

ਪਿਛਲੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਤੁਸੀਂ ਕਈ **ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ** ਅਤੇ ਸਮੀਕਰਨਾਂ ਦੇ ਬਾਰੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕੀਤੀ ਹੈ। ਇਹ ਵਿਅੰਜਕ ਜੋ ਅਸੀਂ ਵੇਖੇ, ਉਹਨਾਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਹਨ—

$$5x, 2x - 3, 3x + y, 2xy + 5, xyz + x + y + z, x^2 + 1, y + y^2$$

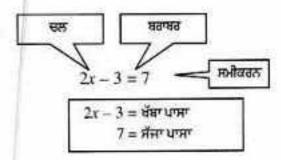
ਸਮੀਕਰਨਾਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਹਨ : $5x = 25, 2x - 3 = 9, 2y + \frac{5}{2} = \frac{37}{2}, 6z + 10 = -2$

ਤੁਹਾਨੂੰ ਯਾਦ ਹੋਵੇਗਾ ਕਿ ਸਮੀਕਰਨਾਂ ਵਿੱਚ *ਬਰਾਬਰ* '=' ਚਿੰਨ੍ਹ ਦਾ ਪ੍ਰਯੋਗ ਹੁੰਦਾ ਹੈ। ਜੋ ਕਿ ਵਿਅੰਜਕਾਂ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦਾ।

ਇਹਨਾਂ ਵਿਅੰਜਕਾਂ ਵਿੱਚ, ਕੁਝ ਵਿੱਚ ਇੱਕ ਨਾਲੋਂ ਵੱਧ ਚਲ ਹਨ। ਉਦਾਹਰਣਾਂ ਦੇ ਲਈ, 2xy + 5 ਵਿੱਚ ਦੋ ਚਲ ਹਨ। ਪਰ ਇੱਥੇ ਅਸੀਂ ਸਮੀਕਰਨ ਬਣਾਉਣ ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਚਲ ਵਾਲੇ ਵਿਅੰਜਕ ਦੀ ਹੀ ਵਰਤੋਂ ਕਰਾਂਗੇ ਅਤੇ ਜੋ ਵਿਅੰਜਕ ਸਮੀਕਰਨ ਬਣਾਉਣ ਵਿੱਚ ਲਿਖੇ ਜਾਂਦੇ ਹਨ ਉਹ ਰੇਖੀ ਹੀ ਹੋਣਗੇ। ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਵਿਅੰਜਕਾਂ ਵਿੱਚ ਪ੍ਰਯੋਗ ਹੋਣ ਵਾਲੇ ਚਲ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਘਾਤ ਇੱਕ ਹੋਵੇਗੀ। ਕਝ ਰੇਖੀ ਵਿਅੰਜਕ ਹਨ—

$$2x, 2x + 1, 3y - 7, 12 - 5z, \frac{5}{4}(x - 4) + 10$$

ਇਹ ਰੇਖੀ ਵਿਅੰਜਕ ਨਹੀਂ ਹਨ : $x^2 + 1$, $y + y^2$, $1 + z + z^2 + z^3$


(ਧਿਆਨ ਰੱਖੋ ਚਲ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਘਾਤ 1 ਨਾਲੋਂ ਜ਼ਿਆਦਾ ਹੈ।)

ਹੁਣ ਅਸੀਂ ਸਮੀਕਰਨਾਂ ਵਿੱਚ, ਕੇਵਲ ਇੱਕ ਚਲ ਵਾਲੇ ਵਿਅੰਜਕਾਂ ਦਾ ਹੀ ਪ੍ਰਯੋਗ ਕਰਾਂਗੇ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਸਮੀਕਰਨ ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ ਕਹਾਉਂਦੇ ਹਨ।

ਪਿਛਲੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਜਿਹੜੀਆਂ ਸਮੀਕਰਨਾਂ ਨੂੰ ਤੁਸੀਂ ਹੱਲ ਕਰਨਾ ਸਿੱਖਿਆ ਉਹ ਸਾਰੀਆਂ ਇਸੇ ਕਿਸਮ ਦੀਆਂ ਸਨ।

ਆਉ, ਅਸੀਂ ਉਹਨਾਂ ਨੂੰ ਸੰਖੇਪ ਵਿੱਚ ਦੁਹਰਾਉਂਦੇ ਹਾਂ, ਜੋ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ :

(a) ਇੱਕ ਬੀਜਗਣਿਤਿਕ ਸਮੀਕਰਨ ਵਿੱਚ ਚਲਾਂ ਦੇ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ ਇੱਕ ਬਰਾਬਰਤਾ ਹੁੰਦੀ ਹੈ। ਇਸ ਵਿੱਚ ਇੱਕ ਬਰਾਬਰੀ ਦਾ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਇਸ ਬਰਾਬਰੀ ਦੇ ਚਿੰਨ੍ਹ ਦੇ ਖੱਬੇ ਪਾਸੇ ਵਾਲਾ ਵਿਅੰਜਕ ਖੱਬਾ ਪਾਸਾ (LHS) ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਵਾਲਾ ਵਿਅੰਜਕ ਸੱਜਾ ਪਾਸਾ (RHS) ਕਹਾਉਂਦਾ ਹੈ।

26 🔳 ਗਣਿਤ

- (b) ਇੱਕ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਵਿੱਚ ਵਿਅੰਜਕ ਦਾ ਮੁੱਲ, ਸੱਜੇ ਪਾਸੇ ਵਿੱਚ ਵਿਅੰਜਕ ਦੇ ਮੁੱਲ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।ਇਹ ਚਲ ਦੇ ਕੁਝ ਮੁੱਲਾਂ ਦੇ ਲਈ ਹੀ ਸੱਚ ਹੁੰਦਾ ਹੈ ਅਤੇ ਚਲ ਦੇ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਮੁੱਲਾਂ ਨੂੰ ਹੀ ਸਮੀਕਰਨ ਦਾ ਹੱਲ ਕਹਿੰਦੇ ਹਾਂ।
- 2x 3 = 7 ਇਸ ਸਮੀਕਰਨ ਦਾ ਹੱਲ ਹੈx = 5 ਕਿਉਂਕਿ x = 5 ਹੋਣ 'ਤੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਮੁੱਲ ਹੋਵੇਗਾ 2 × 5 - 3 = 7, ਜੋ ਸੱਜੇ ਪਾਸੇ ਦਾ ਮੁੱਲ ਹੈ ਪਰੰਤੂ x = 10 ਇਸਦਾ ਹੱਲ ਹੈ। ਕਿਉਂਕਿ x = 10 ਹੋਣ ਤੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਮੁੱਲ ਹੋਵੇਗਾ 2 × 10 - $\frac{1}{12}$ ਜੋ ਕਿ ਸੱਜੇ ਪਾਸੇ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੈ।
- (c) ਕਿਸੇ ਸਮੀਕਰਨ ਦਾ ਹੱਲ ਕਿਸ ਤਰ੍ਹਾਂ ਪਤਾ ਕਰੀਏ ?

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਸਮੀਕਰਨ ਦੇ ਦੋਨੋਂ ਪਾਸੇ, ਸੰਤੁਲਿਤ (ਬਰਾਬਰ) ਹਨ। ਅਸੀਂ ਸਮੀਕਰਨ ਦੇ ਦੋਨੋਂ ਪਾਸੇ ਇੱਕ ਤਰ੍ਹਾਂ ਦੀਆਂ ਗਣਿਤਕ ਕਿਰਿਆਵਾਂ ਕਰਦੇ ਹਾਂ। ਜਿਸ ਵਿੱਚ ਸਮੀਕਰਨ ਸਰਲ, ਜਿਆਦਾ ਸਰਲ ਹੁੰਦਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਕੁਝ ਪਗਾਂ ਦੇ ਬਾਅਦ ਸਮੀਕਰਨ ਦਾ ਹੱਲ ਪ੍ਰਾਪਤ ਹੋ ਜਾਂਦਾ ਹੈ।

2.2 ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰਨਾ, ਜਿਸਦੇ ਇੱਕ ਪਾਸੇ ਵਿੱਚ ਰੇਖੀ ਵਿਅੰਜਕ ਅਤੇ ਦੂਸਰੇ ਪਾਸੇ ਕੇਵਲ ਸੰਖਿਆ ਹੋਵੇ।

ਕੁਝ ਉਂਦਾਹਰਣਾਂ ਲੈ ਕੇ, ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਦੀ ਵਿਧੀ ਫਿਰ ਧਿਆਨ ਵਿੱਚ ਲਿਆਉ। ਹੱਲਾਂ 'ਤੇ ਧਿਆਨ ਦਿਉ। ਹੱਲ ਦੇ ਰੂਪ ਵਿੱਚ ਕੋਈ ਵੀ ਪਰਿਮੇਯ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਹੋ ਸਕਦੀ ਹੈ।

ਉਦਾਹਰਣ 1 : 2x – 3 = 7 ਦਾ ਹੱਲ ਪਤਾ ਕਰੋ।

ਹੱਲ :

ਪਗ 1. ਦੋਨੋਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਜੋੜਨ 'ਤੇ

ਜਾਂ

2x - 3 + 3 = 7 + 32x = 10 (ਸੰਤੁਲਨ ਨਹੀਂ ਵਿਗੜਿਆ)

ਪਗ 2. ਦੋਨੋਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਭਾਗ ਕਰਨ 'ਤੇ

 $\frac{2x}{2} = \frac{10}{2}$

x = 5

नां

ਜਾਂ

(ਲੋਡੀਂਦਾ ਹੱਲ)

(ਹੱਲ)

ਉਦਾਹਰਣ 2 : 2y + 9 = 4 ਨੂੰ ਹੱਲ ਕਰੇ।

ਹੱਲ : 9 ਦਾ, ਸੱਜੇ ਪਾਸੇ ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ 'ਤੇ

2y = 4 - 92y = -5

ਦੋਨੋਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਭਾਗ ਕਰਨ 'ਤੇ, $y = \frac{-5}{2}$

ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ 🔳 27

ਹੱਲ ਦੀ ਪੜਤਾਲ : ਖੱਬਾ ਪਾਸਾ = 2 $\left(\frac{-5}{2}\right)$ + 9 = - 5 + 9 = 4 = ਸੱਜਾ ਪਾਸਾ (ਜਿਸ ਤਰਾਂ ਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਸੀ) ਕੀ ਤੁਸੀਂ ਧਿਆਨ ਦਿੱਤਾ ਹੈ ਕਿ ਸੰਖਿਆ — 5 ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ ? ਸੱਤਵੀਂ ਜਮਾਤ ਵਿੱਚ ਜੋ ਸਮੀਕਰਨ ਹੱਲ ਕੀਤੇ ਗਏ ਹਨ ਉਹਨਾਂ ਦੇ ਹੱਲ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਨਹੀਂ ਸਨ। ਉਦਾਹਰਣ 3 : $\frac{x}{3} + \frac{5}{2} = -\frac{3}{2}$ ਨੂੰ ਹੱਲ ਕਰੋ। ਹੱਲ : $\frac{5}{2}$ ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ 'ਤੇ $\frac{x}{3} = \frac{-3}{2} - \frac{5}{2} = -\frac{8}{2}$ ਜਾਂ $\frac{x}{3} = -4$ ਦੋਨਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਨਾਲ ਗੁਣਾ ਕਰਨ 'ਤੇ $x = -4 \times 3$ ਜਾਂ x = -12(ਹੱਲ) ਬੱਬਾ ਪਾਸਾ = $-\frac{12}{3} + \frac{5}{2} = -4 + \frac{5}{2} = \frac{-8+5}{2} = \frac{-3}{2} = ਸੱਜਾ ਪਾਸਾ$ ਪੜਤਾਲ : (ਜਿਸ ਤਰਾਂ ਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਸੀ) ਧਿਆਨ ਦਿਓ ਕਿ ਸਮੀਕਰਨ ਵਿੱਚ ਚਲ ਦਾ ਗੁਣਾਂਕ ਜ਼ਰੂਰੀ ਨਹੀਂ ਕਿ ਇੱਕ ਸੰਪੂਰਨ ਸੰਖਿਆ ਹੀ ਹੋਵੇ। ਉਦਾਹਰਣ 4 : $\frac{15}{4} - 7x = 9 ਦਾ ਹੱਲ ਪਤਾ ਕਰੋ।$ $\frac{15}{4} - 7x = 9$ ਹੱਲ : ਪਤਾ ਹੈ - 7x = 9 - $\frac{15}{4}$ ($\frac{15}{4}$ ਸੱਜੇ ਪਾਸੇ ਵਿੱਚ ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ 'ਤੇ) ਜਾਂ $-7x = \frac{21}{4}$ ਜਾਂ $x = \frac{\frac{21}{4 \times (-7)}}{x = -\frac{3 \times 7}{4 \times 7}}$ $x = -\frac{3}{4}$ (ਦੋਨੋਂ ਪਾਸਿਆਂ ਨੂੰ -7 ਨਾਲ ਭਾਗ ਕਰਨ `ਤੇ) ਜਾਂ ਜਾਂ (ਲੋੜੀਂਦਾ ਹੱਲ) सर्ग *ਪੜਤਾਲ :* ਖੱਬਾ ਪਾਸਾ = $\frac{15}{4} - 7\left(\frac{-3}{4}\right) = \frac{15}{4} + \frac{21}{4} = \frac{36}{4} = 9 = ਸੱਜਾ ਪਾਸਾ (ਜਿਸ ਤਰ੍ਹਾਂ ਦਾ$ ਹੋਣਾ ਚਾਹੀਦਾ ਸੀ) 🔜 ਅਭਿਆਸ 2.1 ਹੋਠਾਂ ਲਿਖੀਆਂ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ : 3. 6 = z + 21. x - 2 = 72. y + 3 = 106. $\frac{t}{5} = 10$ 4. $\frac{3}{7} + x = \frac{17}{7}$ 5. 6x = 12

28 🖩 ਗਣਿਤ

 7. $\frac{2x}{3} = 18$ 8. $1.6 = \frac{y}{1.5}$ 9. 7x - 9 = 16

 10. 14y - 8 = 13 11. 17 + 6p = 9 12. $\frac{x}{3} + 1 = \frac{7}{15}$

2.3 ਰੇਖੀ ਸਮੀਕਰਨ ਦੀ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਵਰਤੋਂ

ਅਸੀਂ ਇੱਕ ਅਸਮਾਨ ਉਦਾਹਰਣ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹਾਂ।

ਦੇ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ 74 ਹੈ। ਉਸ ਵਿੱਚ ਇੱਕ ਸੰਖਿਆ ਦੂਸਰੀ ਨਾਲੋਂ 10 ਵੱਧ ਹੈ। ਉਹ ਸੰਖਿਆਵਾਂ ਕਿਹੜੀਆਂ ਹਨ? ਇਹ ਇੱਕ ਬੁਝਾਰਤ ਦੀ ਤਰ੍ਹਾਂ ਹਨ। ਸਾਨੂੰ ਦੋਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਵੀ ਸੰਖਿਆ ਪਤਾ ਨਹੀਂ ਅਤੇ ਅਸੀਂ ਉਹ ਪਤਾ ਕਰਨੀਆਂ ਹਨ। ਸਾਨੂੰ ਦੇ ਸ਼ਰਤਾਂ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ :

(i) ਇੱਕ ਸੰਖਿਆ ਦੁਸਰੀ ਨਾਲੋਂ 10 ਵੱਧ ਹੈ।

(ii) ਉਨ੍ਹਾਂ ਦਾ ਜੋੜ 74 ਹੈ।

ਅਸੀਂ ਜਮਾਤ VII ਵਿੱਚ ਸਿੱਖ ਚੁੱਕੇ ਹਾਂ ਕਿ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਮੱਸਿਆ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਹੱਲ ਕਰਨਾ ਹੈ।ਮੰਨ ਲਓ ਕਿ ਛੋਟੀ ਸੰਖਿਆ x ਹੈ। ਵੱਡੀ ਸੰਖਿਆ x ਨਾਲੋਂ 10 ਵੱਧ ਹੈ ਜਿਵੇਂ ਕਿ x + 10 । ਦੂਜੀ ਸ਼ਰਤ ਅਨੁਸਾਰ ਇਨ੍ਹਾਂ ਦੋਵਾਂ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ 74 ਹੈ।

ਇਸਦਾ ਭਾਵ ਹੈ ਕਿ x + (x + 10) = 74ਜਾਂ 2x + 10 = 7410 ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਵਿੱਚ ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ 'ਤੇ 2x = 74 - 10 ਜਾਂ 2x = 64ਦੋਨੋਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਭਾਗ ਕਰਨ 'ਤੇ x = 32ਜਿਵੇਂ ਕਿ ਛੋਟੀ ਸੰਖਿਆ ਹੈ 32 ਅਤੇ ਦੁਸਰੀ ਵੱਡੀ ਸੰਖਿਆ ਹੈ x + 10 = 32 + 10 = 42ਭਾਵ ਲੋੜੀਂਦੀਆਂ ਸੰਖਿਆਵਾਂ 32 ਅਤੇ 42 ਹਨ, ਜੋ ਦੋਨੋਂ ਸ਼ਰਤਾਂ ਵੀ ਪੂਰੀ ਕਰਦੀਆਂ ਹਨ। ਇਸ ਵਿਧੀ ਦੇ ਲਾਭ ਦਿਖਾਉਣ ਦੇ ਲਈ ਅਸੀਂ ਹੋਰ ਉਦਾਹਰਣਾਂ 'ਤੇ ਵੀ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ। ਉਦਾਹਰਣ 5 : ਪਰਿਮੇਯ ਸੰਖਿਆ $\frac{-7}{3}$ ਦੇ ਦੁਗਣੇ ਵਿੱਚ ਕੀ ਜੋੜਿਆ ਜਾਵੇ ਜਿਸ ਨਾਲ $\frac{3}{7}$ ਪ੍ਰਾਪਤ ਹੋਵੇ ? ਹੱਲ : ਪਰਿਮੋਯ ਸੰਖਿਆ $\frac{-7}{3}$ ਦਾ ਦੁਗਣਾ ਹੈ $2 \times \left(\frac{-7}{3}\right) = \frac{-14}{2}$ ਮੰਨ ਲਓ ਕਿ ਇਸ ਵਿੱਚ x ਜੋੜਨ ਨਾਲ $\frac{3}{7}$ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ $x + \left(\frac{-14}{3}\right) = \frac{3}{7}$ $x - \frac{14}{3} = \frac{3}{7}$ ਜਾਂ $x = \frac{3}{7} + \frac{14}{3} \left(\frac{-14}{3} \frac{1}{5} + \frac{1}{5}$ ਜਾਂ $=\frac{(3\times3)+(14\times7)}{21}=\frac{9+98}{21}=\frac{107}{21}$ ਇਸ ਤਰ੍ਹਾਂ $\frac{3}{7}$ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ $2 \times \left(\frac{-7}{3}\right)$ ਵਿੱਚ $\frac{107}{21}$ ਜੋੜਨਾ ਚਾਹੀਦਾ ਹੈ।

Downloaded from https:// www.studiestoday.com ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ 🏼 29 ਉਦਾਹਰਟ 6 : ਇੱਕ ਆਇਤ ਦਾ ਪਰਿਮਾਪ 13 cm ਹੈ ਅਤੇ ਉਸਦੀ ਚੌੜਾਈ 2 $rac{3}{4}$ cm ਹੈ। ਇਸਦੀ ਲੰਬਾਈ ਪਤਾ ਕਰੇ। ਹੱਲ : ਮੰਨ ਲਵੇ ਕਿ ਆਇਤ ਦੀ ਲੰਬਾਈ x cm ਹੈ। ਆਇਤ ਦਾ ਪਰਿਮਾਪ = 2 × (ਲੰਬਾਈ + ਚੌੜਾਈ) $= 2 \times \left(x + 2\frac{3}{4} \right) = 2 \times \left(x + \frac{11}{4} \right)$ ਪਰਿਮਾਪ 13 cm ਦਿੱਤਾ ਗਿਆ ਹੈ $2\left(x+\frac{11}{4}\right)=13$ ਇਸ ਲਈ $x + \frac{11}{4} = \frac{13}{2}$ ਜਾਂ (ਦੋਨਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਭਾਗ ਕਰਨ 'ਤੇ) $x = \frac{13}{2} - \frac{11}{4}$ $(\frac{11}{4} \div \breve{R})$ ਪੱਸੇ ਵਿੱਚ ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ 'ਤੇ) सरे $=\frac{26}{4}-\frac{11}{4}=\frac{15}{4}=3\frac{3}{4}$ ਆਇਤ ਦੀ ਲੰਬਾਈ 3 🖁 cm ਹੈ। ਉਦਾਹਰਣ 7 : ਸਾਹਿਲ ਦੀ ਮਾਂ ਦੀ ਵਰਤਮਾਨ ਉਮਰ ਸਾਹਿਲ ਦੀ ਵਰਤਮਾਨ ਉਮਰ ਤੋਂ ਤਿੰਨ ਗੁਣਾ ਹੈ। 5 ਸਾਲਾਂ ਬਾਅਦ ਉਹਨਾਂ ਦੋਨਾਂ ਦੀ ਉਮਰ ਦਾ ਜੋੜਫਲ 66 ਸਾਲ ਹੋ ਜਾਵੇਗਾ।ਉਨ੍ਹਾਂ ਦੀ ਵਰਤਮਾਨ ਉਮਰ ਪਤਾ ਕਰੋ। ਹੱਲ : ਮੰਨ ਲਵੇ ਸਾਹਿਲ ਦੀ ਵਰਤਮਾਨ ਉਮਰ = x ਸਾਲ ਮਾਂ ਅਸੀਂ ਸਾਹਿਲ ਦੀ 5 ਸਾਲ ਬਾਅਦ ਵਾਲੀ ਸਾਹਿਲ ਜੋੜਫਲ ਉਮਰ x ਸਾਲ ਮੰਨ ਕੇ ਚਲ ਸਕਦੇ ਹਾਂ। ਵਿਰਤਮਾਨ ਉਮਰ 3xx ਤਸੀਂ ਇਸ ਤਰਾਂ ਚਲ ਕੇ ਕੋਸ਼ਿਸ਼ ਕਰੋ। 5 ਸਾਲਾਂ ਬਾਅਦ ਉਮਰ x + 53x + 54x + 10ਉਨਾਂ ਦੀ ਉਮਰ ਦਾ ਜੋੜ 66 ਸਾਲ ਦਿੱਤਾ ਗਿਆ ਹੈ। 4x + 10 = 66ਇਸ ਲਈ ਇਸ ਸਮੀਕਰਨ ਵਿੱਚ x ਸਾਹਿਲ ਦੀ ਵਰਤਮਾਨ ਉਮਰ ਹੈ। ਸਮੀਕਰਨ ਹੱਲ ਕਰਨ ਦੇ ਲਈ 10 ਸੱਜੇ ਪਾਸੇ ਵਿੱਚ ਪੱਖ ਅੰਤਰਿਤ ਕਰਦੇ ਹਾਂ। 4x = 66 - 104x = 56ਜਾਂ $x = \frac{56}{4} = 14$ (ਹੱਲ)

Downloaded from https:// www.studiestoday.com 30 ≣ ਗਣਿਤ ਇਸ ਤਰਾਂ ਸਾਹਿਲ ਦੀ ਵਰਤਮਾਨ ਉਮਰ 14 ਸਾਲ ਹੈ ਅਤੇ ਉਸਦੀ ਮਾਂ ਦੀ ਉਮਰ 42 ਸਾਲ ਹੈ।ਤੁਸੀਂ ਪੜਤਾਲ ਕਰ ਸਕਦੇ ਹੋ ਕਿ 5 ਸਾਲ ਬਾਅਦ ਉਹਨਾਂ ਦੋਨਾਂ ਦੀਆਂ ਉਮਰਾਂ ਦਾ ਜੋੜ 66 ਸਾਲ ਹੋ ਜਾਵੇਗਾ। ਉਦਾਹਰਣ 8 : ਬੰਸੀ ਦੇ ਕੋਲ ਕਝ ਸਿੱਕੇ ₹ 2 ਵਾਲੇ ਅਤੇ ਕਝ ₹ 5 ਵਾਲੇ ਹਨ। ਜੇਕਰ ₹ 2 ਵਾਲੇ ਸਿੱਕੇ ਦੀ ਸੰਖਿਆ 🖲 ਤ ਵਾਲੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ ਦੀ ਤਿੰਨ ਗਣਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਦੇ ਮੁੱਲਾਂ ਦਾ ਕੁੱਲ ਜੋੜ 🖲 77 ਹੈ ਤਾਂ ਦੋਨਾਂ ਤਰਾਂ ਦੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ। ਹੱਲ : ਮੰਨ ਲਵੇ ਕਿ ਬੰਸੀ ਦੇ ਕੋਲ ₹ 5 ਵਾਲੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ x ਹੈ। ਤਾਂ ₹ 2 ਵਾਲੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ = 3x ਇਸ ਲਈ (i) ₹ 5 ਵਾਲੇ x ਸਿੱਕਿਆਂ ਦਾ ਮੱਲ = 5 × x = ₹ 5x (ii) ₹ 2 ਵਾਲੇ 3x ਸਿੱਕਿਆਂ ਦਾ ਮੱਲ = 2 × 3x = ₹ 6x ਅਤੇ ਇਸ ਲਈ ਕੱਲ ਮੁੱਲ = 5x + 6x = ₹ 11x ਕੱਲ ਮੱਲ ਦਿੱਤਾ ਗਿਆ ਹੈ ₹ 77 ਇਸ ਲਈ 11x = 77 ₹ 2. 0.5 x = $\frac{77}{11}$ = 7 (ਦੋਨਾਂ ਪਾਸਿਆਂ ਨੂੰ 11 ਨਾਲ चरे. ਭਾਗ ਕਰਨ ਤੇ)

ਇਸ ਤਰ੍ਹਾਂ ₹ 5 ਵਾਲੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ = x = 7 ਅਤੇ ₹ 2 ਵਾਲੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ = 3x = 21 (ਹੱਲ) ਤੁਸੀਂ ਪੜਤਾਲ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਇਹਨਾਂ ਦੋਨਾਂ ਦਾ ਮੁੱਲ ₹ 77 ਹੀ ਬਣਦਾ ਹੈ। ਉਦਾਹਰਣ 9 : ਜੇਕਰ 11 ਦੇ ਤਿੰਨ ਲਗਾਤਾਰ ਗੁਣਜਾਂ ਦਾ ਜੋੜਵਲ 363 ਹੈ ਤਾਂ ਉਹਨਾਂ ਨੂੰ ਪਤਾ ਕਰੋ। ਹੱਲ : ਜੋ 11 ਦਾ ਇੱਕ ਗੁਣਜ x ਹੈ ਅਤੇ ਅਗਲਾ ਗੁਣਜ ਹੋਵੇਗਾ x + 11 ਅਤੇ ਉਸ ਤੋਂ ਅਗਲਾ ਗੁਣਜ ਹੋਵੇਗਾ x + 11 + 11 ਜਾਂ x + 22

ਇਹ ਦਿੱਤਾ ਗਿਆ ਹੈ ਕਿ 11 ਦੇ ਤਿੰਨ ਲਗਾਤਾਰ ਗੁਣਜਾਂ ਦਾ ਜੋੜ 363 ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਸਮੀਕਰਨ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। *ਬਦਲਵਾ ਹੱਲ* : ਜੋ ਅਸੀਂ ਦਜੀ ਤਰਾਂ ਸੋਚੀਏ ਤਾਂ ਅਸੀਂ

x	+(x+11)+(x+22)=363	।। ਦਾ ਗੁਣਜ x ਤੋਂ ਇਕਦਮ ਪਹਿਲਾਂ ਵੀ ਸੋਚ ਸਕਦੋ
् ਜਾਂ ਜਾਂ ਜਾਂ ਜਾਂ	$x + x + 11 + x + 22 = 363$ $3x + 33 = 363$ $3x = 363 - 33$ $3x = 330$ $x = \frac{330}{3} = 110$	ਹਾਂ ਜਿਸ ਤਰ੍ਹਾਂ $(x - 11)$ । ਇਸ ਲਈ ਅਸੀਂ 11 ਦੇ ਤਿੰਨ ਲਗਾਤਾਰ ਗੁਣਜ ਲਈ $x-11, x, x+11$ ਲੈ ਸਕਦੇ ਹਾਂ ਇਸ ਤਰ੍ਹਾਂ ਕਰਨ ਨਾਲ ਅਸੀਂ ਇਸ ਸਮੀਕਰਨ 'ਤੋਂ ਪਹੁੰਚਦੇ ਹਾਂ x-11, x, x + 11 (x - 11) + x + (x + 11) = 363 ਜਾਂ $3x = 363$ ਦੋਨਾਂ ਪੱਖਾਂ ਨੂੰ 3 ਨਾਲ ਭਾਗ ਕਰਨ 'ਤੇ $x = \frac{363}{3} = 121$ ਇਸ ਤਰ੍ਹਾਂ $x = 121, x - 11 = 110, x + 11 = 132$ ਇਸ ਤਰ੍ਹਾਂ 11 ਦੇ ਤਿੰਨ ਲਗਾਤਾਰ ਗੁਣਜ ਹਨ 110, 121 ਅਤੇ 132
		TO DATE AND TO TAKE AND TAKE

ਜਿਵੇਂ ਕਿ ਇਹ ਤਿੰਨ ਲਗਾਤਾਰ ਗੁਣਜ ਹਨ 110, 121 ਅਤੇ 132-1 ਅਸੀਂ ਇੱਥੇ ਦੇਖਦੇ ਹਾਂ ਕਿ ਸਮੱਸਿਆ ਨੂੰ ਵੱਖ-ਵੱਖ ਢੰਗਾਂ ਨਾਲ ਕਿਸ ਤਰ੍ਹਾਂ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ 🔳 31

ਉਦਾਹਰਣ 10 : ਦੋ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦਾ ਅੰਤਰ 66 ਹੈ।ਜਦ ਉਸ ਵਿੱਚ 2:5 ਦਾ ਅਨੁਪਾਤ ਹੈ ਤਾਂ ਉਹ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਕਿਉਂਕਿ ਦੋਨੋਂ ਸੰਖਿਆਵਾਂ 2 : 5 ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹੈ, ਇਸ ਲਈ ਅਸੀਂ ਇੱਕ ਸੰਖਿਆ 2x ਅਤੇ ਦੂਸਰੀ 5x ਮੰਨ ਸਕਦੇ ਹਾਂ।(ਧਿਆਨ ਦਿਓ 2x : 5x ਵਿੱਚ 2 : 5 ਦਾ ਅਨੁਪਾਤ ਹੈ।)

ਇਸ ਵਿੱਚ ਅੰਤਰ ਹੈ, 5x – 2x ਜੋ ਕਿ 66 ਦੇ ਬਰਾਬਰ ਦਿੱਤਾ ਗਿਆ ਹੈ।

ਾਇਸ ਲਈ	5x-2x=66
ਜਾਂ _	3x = 66
ਜਾਂ	<i>x</i> = 22

ਕਿਉਂਕਿ ਸੰਖਿਆਵਾਂ 2x ਅਤੇ 5x ਹਨ। ਇਸ ਲਈ ਸੰਖਿਆਵਾਂ ਹਨ 2 × 22 ਜਾਂ 44 ਅਤੇ 5 × 22 ਜਾਂ 110 ਅਤੇ ਉਹਨਾਂ ਦਾ ਐਂਤਰ 110 – 44 = 66 ਹੀ ਹੈ ਜੋ ਕਿ ਲੋੜੀਂਦਾ ਹੈ।

ਉਦਾਹਰਣ 11 : ਦੇਵੇਸ਼ੀ ਦੇ ਕੌਲ ₹ 50, ₹ 20 ਅਤੇ ₹ 10 ਵਾਲੇ ਕੁੱਲ ਮਿਲਾ ਕੇ 25 ਨੋਟ ਹਨ ਜਿਸਦਾ ਮੁੱਲ ₹ 590 ਬਣਦਾ ਹੈ। ਜਦ ਕਿ ₹ 50 ਅਤੇ ₹ 20 ਵਾਲੇ ਨੋਟਾਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਅਨੁਪਾਤ 3:5 ਹੈ ਤਾਂ ਹਰੇਕ ਤਰ੍ਹਾਂ ਦੇ ਨੋਟਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਮੰਨ ਲਵੋ ਕਿ ₹ 50 ਅਤੇ ₹ 20 ਵਾਲੇ ਨੋਟਾਂ ਦੀ ਸੰਖਿਆ ਕ੍ਰਮਵਾਰ 3x ਅਤੇ 5x ਹੈ।

ਜਦਕਿ ਕੁੱਲ ਨੋਟਾਂ ਦੀ ਸੰਖਿਆ 25 ਹੈ।

ਇਸ ਲਈ ਵ 10 ਵਾਲੇ ਨੋਟਾਂ ਦੀ ਸੰਖਿਆ = 25 - (3x + 5x) = 25 - 8x

ਇਹਨਾਂ ਨੋਟਾਂ ਵਿੱਚ ਉਸਦੇ ਕੋਲ ਧਨ ਹੋਇਆ -

₹ 50 ਵਾਲੇ ਨੋਟਾਂ ਨਾਲ : 3x × 50 = ₹ 150x ₹ 20 ਵਾਲੇ ਨੋਟਾਂ ਨਾਲ : 5x × 20 = ₹ 100x

₹ 10 ਵਾਲੇ ਨੋਟਾਂ ਨਾਲ (25 – 8x) × 10 = ₹ (250 – 80x)

ਅਤੇ ਕੁੱਲ ਧਨ ਹੋਇਆ = 150x + 100x + (250 – 80x)

=₹ (170x + 250)

ਇਹ ਧਨ ₹ 590 ਦੇ ਬਰਾਬਰ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਇਸ ਲਈ 170x + 250 = 590

170x = 590 - 250 = 340

ਜਾਂ

ਜਾਂ

$$x = \frac{340}{170} = 2$$

ਜਿਵੇਂ ਕਿ ਦੇਵੇਸ਼ੀ ਦੇ ਕੋਲ ₹ 50 ਵਾਲੇ ਨੋਟ = 3x

= 3 × 2 = 6 ਨੋਟ ₹ 20 ਵਾਲੇ ਨੋਟ = 5x = 5 × 2 = 10 ਨੋਟ ਅਤੇ ₹ 10 ਵਾਲੇ ਨੋਟ = 25 - 8x = 25 - (8 × 2) = 25 - 16 = 9 ਨੋਟ

32 🎟 ਗਣਿਤ

🛤 ਅਭਿਆਸ 2.2

- ਜੇ ਤੁਹਾਨੂੰ ਕਿਸੇ ਸੰਖਿਆ ਵਿੱਚੋਂ ¹/₂ ਘਟਾਉਣ ਅਤੇ ਨਤੀਜੇ ਨੂੰ ¹/₂ ਨਾਲ ਗੁਣਾ ਕਰਨ 'ਤੇ ¹/₈ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ਤਾਂ ਉਹ ਸੰਖਿਆ ਕੀ ਹੈ ?
- ਇੱਕ ਆਇਤਾਕਾਰ ਸਵੀਮਿੰਗ ਪੂਲ (swimming pool) ਦੀ ਲੰਬਾਈ ਉਸਦੀ ਚੌੜਾਈ ਦੇ ਦੁਗਣੇ ਤੋਂ 2 ਮੀਟਰ ਜ਼ਿਆਦਾ ਹੈ। ਜੇਕਰ ਇਸਦਾ ਪਰਿਮਾਪ 154 ਮੀਟਰ ਹੈ ਤਾਂ ਇਸਦੀ ਲੰਬਾਈ ਅਤੇ ਚੌੜਾਈ ਪਤਾ ਕਰੋ।
- ਇੱਕ ਸਮਦੋਭੂਜੀ ਤਿਕੋਣ ਦਾ ਅਧਾਰ ⁴/₃ cm ਅਤੇ ਉਸਦਾ ਪਰਿਮਾਪ 4²/₁₅ cm ਹੈ। ਇਸ ਦੀਆਂ ਦੋ ਬਰਾਬਰ ਭੁਜਾਵਾਂ ਦਾ ਮਾਪ ਪਤਾ ਕਰੋ।
- ਦੋ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜਫਲ 95 ਹੈ। ਜੋਕਰ ਇੱਕ ਸੰਖਿਆ ਦੂਸਰੀ ਨਾਲੋਂ 15 ਜ਼ਿਆਦਾ ਹੈ ਤਾਂ ਦੋਨੋਂ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੇ।
- 5. ਦੋ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਅਨੁਪਾਤ 5 : 3 ਹੈ। ਜੇਕਰ ਉਹਨਾਂ ਵਿੱਚ ਅੰਤਰ 18 ਹੈ ਤਾਂ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।
- ਤਿੰਨ ਲਗਾਤਾਰ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜਫਲ 51 ਹੈ। ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।
- 8 ਦੇ ਤਿੰਨ ਲਗਾਤਾਰ ਗੁਣਜਾਂ ਦਾ ਜੋੜਫਲ 888 ਹੈ। ਗੁਣਜਾਂ ਨੂੰ ਪਤਾ ਕਰੋ।
- ਤਿੰਨ ਲਗਾਤਾਰ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਵੱਧਦੇ ਕਮ ਵਿੱਚ ਲੈ ਕੇ ਉਹਨਾਂ ਨੂੰ ਕਮਵਾਰ 2, 3 ਅਤੇ 4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਤੇ ਜੋੜਫਲ 74 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਤਿੰਨਾਂ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।
- ਰਾਹੁਲ ਅਤੇ ਹਾਰੁਨ ਦੀ ਵਰਤਮਾਨ ਉਮਰ ਵਿੱਚ ਅਨੁਪਾਤ 5 : 7 ਹੈ। 4 ਸਾਲ ਬਾਅਦ ਉਹਨਾਂ ਦੀ ਉਮਰ ਦਾ ਜੋੜ 56 ਸਾਲ ਹੋ ਜਾਵੇਗਾ। ਉਹਨਾਂ ਦੀ ਉਮਰ ਕੀ ਹੈ?
- 10. ਕਿਸੇ ਜਮਾਤ ਵਿੱਚ ਮੁੰਡੇ ਅਤੇ ਕੁੜੀਆਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਅਨੁਪਾਤ 7:5 ਹੈ। ਜੇਕਰ ਮੁੰਡਿਆਂ ਦੀ ਸੰਖਿਆ ਕੁੜੀਆਂ ਦੀ ਸੰਖਿਆ ਨਾਲੋਂ 8 ਜ਼ਿਆਦਾ ਹੈ ਤਾਂ ਜਮਾਤ ਵਿੱਚ ਕੁੱਲ ਕਿੰਨੇ ਵਿਦਿਆਰਥੀ ਹਨ ?
- ਭਾਈਚੁੰਗ ਦੇ ਪਿਤਾ ਜੀ, ਉਸਦੇ ਦਾਦਾ ਜੀ ਨਾਲੋਂ 26 ਸਾਲ ਛੋਟੇ ਹਨ ਅਤੇ ਉਸ ਤੋਂ 29 ਸਾਲ ਵੱਡੇ ਹਨ। ਜਦਕਿ ਉਹਨਾਂ ਤਿੰਨਾਂ ਦੀ ਉਮਰਾਂ ਦਾ ਜੋੜ 135 ਸਾਲ ਹੈ ਤਾਂ ਉਹਨਾਂ ਦੀ ਉਮਰ ਅਲੱਗ-ਅਲੱਗ ਪਤਾ ਕਰੋ।
- 12. 15 ਸਾਲ ਬਾਅਦ ਰਵੀ ਦੀ ਉਮਰ, ਉਸਦੀ ਵਰਤਮਾਨ ਉਮਰ ਤੋਂ ਚਾਰ ਗੁਣਾ ਹੋ ਜਾਵੇਗੀ। ਰਵੀ ਦੀ ਵਰਤਮਾਨ ਉਮਰ ਕੀ ਹੈ ?
- 13. ਇੱਕ ਪਰਿਮੋਯ ਸੰਖਿਆ ਨੂੰ ⁵/₂ ਨਾਲ ਗੁਣਾ ਕਰਕੇ ²/₃ ਜੋੜਨ ਤੇ ⁷/₁₂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਉਹ ਸੰਖਿਆ ਕੀ ਹੈ?
- 14. ਲਕਸ਼ਮੀ ਇੱਕ ਬੈਂਕ ਵਿੱਚ ਖਜਾਨਚੀ ਹੈ। ਉਸ ਕੋਲ ਨਗਦੀ ਦੇ ਰੂਪ ਵਿੱਚ ₹ 100, ₹ 50 ਅਤੇ ₹ 10 ਵਾਲੇ ਨੋਟ ਹਨ। ਉਹਨਾਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਕ੍ਰਮਵਾਰ 2:3:5 ਦਾ ਅਨੁਪਾਤ ਹੈ ਅਤੇ ਉਹਨਾਂ ਦਾ ਕੁੱਲ ਮੁੱਲ ₹ 4,00,000 ਰੁਪਏ ਹੈ। ਉਸਦੇ ਕੋਲ ਹਰੇਕ ਤਰ੍ਹਾਂ ਦੇ ਕਿੰਨੇ-ਕਿੰਨੇ ਨੋਟ ਹਨ ?
 - 15. ਮੇਰੇ ਕੋਲ ₹ 300 ਮੁੱਲ ਦੇ, ₹ 1, ₹ 2 ਅਤੇ ₹ 5 ਵਾਲੇ ਸਿੱਕੇ ਹਨ। ₹ 2 ਵਾਲੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ ₹ 5 ਵਾਲੇ ਸਿੱਕਿਆਂ ਦੀ ਸੰਖਿਆ ਦਾ ਤਿੰਨ ਗੁਣਾ ਹੈ ਅਤੇ ਸਿੱਕਿਆਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ 160 ਹੈ। ਮੇਰੇ ਕੋਲ ਹਰੇਕ ਤਰ੍ਹਾਂ ਦੇ ਕਿੰਨੇ-ਕਿੰਨੇ ਸਿੱਕੇ ਹਨ ?
 - 16. ਇੱਕ ਲੇਖ ਮੁਕਾਬਲੇ ਵਿੱਚ ਪ੍ਰਬੰਧਕਾਂ ਨੇ ਇਹ ਤੈਅ ਕੀਤਾ ਕਿ ਹਰੇਕ ਜਿੱਤਣ ਵਾਲੇ ਨੂੰ ₹ 100 ਅਤੇ ਜਿੱਤਣ ਵਾਲੇ ਨੂੰ ਛੱਡ ਕੇ ਹਰੇਕ ਹਿੱਸਾ ਲੈਣ ਵਾਲੇ ਨੂੰ ₹ 25 ਇਨਾਮ ਦੇ ਰੂਪ ਵਿੱਚ ਦਿੱਤੇ ਜਾਣਗੇ। ਜੇਕਰ ਇਨਾਮਾਂ ਵਿੱਚ ਵੰਡੀ ਰਾਸ਼ੀ ₹ 3,000 ਹੈ ਤਾਂ ਕੁੱਲ 63 ਹਿੱਸਾ ਲੈਣ ਵਾਲਿਆਂ ਵਿੱਚੋਂ ਜਿੱਤਣ ਵਾਲਿਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।

ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ 🔳 33

(ਹੱਲ)

2.4 ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨਾ ਜਦੋਂ ਦੋਨੋਂ ਹੀ ਪਾਸੇ ਚਲ ਹੋਵੇ

ਇੱਕ ਸਮੀਕਰਨ, ਦੋ ਬੀਜ ਵਿਅੰਜਕਾਂ ਦੇ ਮੁੱਲਾਂ ਦੀ ਬਰਾਬਰਤਾ ਹੁੰਦੀ ਹੈ। ਸਮੀਕਰਨ 2x – 3 = 7 ਵਿੱਚ ਇੱਕ ਵਿਅੰਜਕ ਹੈ 2x – 3 ਅਤੇ ਦੁਸਰਾ ਹੈ 7 । ਹੁਣ ਤੱਕ ਲਈਆਂ ਗਈਆਂ ਲਗਭਗ ਸਾਰੀਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚ ਸੱਜੇ ਪਾਸੇ ਵਿੱਚ ਇੱਕ ਹੀ ਸੌਖਿਆ ਸੀ। ਜਦਕਿ ਇਸ ਤਰ੍ਹਾਂ ਹੋਣਾ ਜ਼ਰੂਰੀ ਨਹੀਂ ਹੈ। ਚਲ ਰਾਸ਼ੀ ਦੋਨਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਵੀ ਹੋ ਸਕਦੀ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ ਸਮੀਕਰਨ 2x - 3 = x + 2 ਵਿੱਚ, ਦੋਨਾਂ ਹੀ ਪਾਸਿਆਂ ਵਿੱਚ ਚਲ ਵਾਲੇ ਵਿਅੰਜਕ ਹਨ। ਖੱਬੋ ਪਾਸੇ ਵਿੱਚ ਵਿਅੰਜਕ ਹੈ (2x – 3) ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਹੈ (x + 2)।

 ਹੁਣ ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਦੀ ਚਰਚਾ ਕਰਾਂਗੇ। ਜਿਹਨਾਂ ਦੇ ਦੋਨੋਂ ਪਾਸੇ ਚਲ ਵਾਲੇ ਵਿਅੰਜਕ ਹੋਣ।

ਉਦਾਹਰਣ 12 : ਹੱਲ ਕਰੋ : 2x - 3 = x + 2 ਹੱਲ : ਦਿੱਤਾ ਹੈ : 2x = x + 2 + 3ਜਾਂ 2x = x + 5नगे 2x - x = x + 5 - x (ਦੋਨਾਂ ਪਾਸਿਆਂ ਵਿੱਚੋਂ x ਘਟਾਉਣ 'ਤੇ) ਜਾਂ (ਹੱਲ) x = 5

ਇੱਥੇ, ਅਸੀਂ ਸਮੀਕਰਨਾਂ ਦੇ ਦੋਨਾਂ ਪਾਸਿਆਂ ਵਿੱਚ, ਇੱਕ ਸੰਖਿਆ ਜਾਂ ਅਚਲ ਹੀ ਨਹੀਂ, ਬਲਕਿ ਚਲ ਵਾਲਾ ਪਦ ਘਟਾ ਦਿੱਤਾ। ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਕਰ ਸਕਦੇ ਹਾਂ ਕਿਉਂਕਿ ਚਲ ਦਾ ਮੁੱਲ ਵੀ ਕੋਈ ਸੰਖਿਆ ਹੀ ਹੈ। ਧਿਆਨ ਦਿਉ ਕਿ x ਦੋਨਾਂ ਪਾਸਿਆਂ ਤੋਂ ਘਟਾਉਣ ਤੋਂ ਅਰਥ ਹੈ x ਨੇ ਖੱਬੇ ਪਾਸੇ ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨਾ।

ਊਦਹਾਰਣ 13 : ਹੱਲ ਕਰੋ : $5x + \frac{7}{2} = \frac{3}{2}x - 14$ ਹੱਲ : ਦੋਨਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਤੇ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ $2 \times \left(5x + \frac{7}{2}\right) = 2 \times \left(\frac{3}{2}x - 14\right)$ $(2 \times 5x) + (2 \times \frac{7}{2}) = (2 \times \frac{3}{2}x) - (2 \times 14)$ नां 10x + 7 = 3x - 28ਜਾਂ (3x ਨੂੰ ਖੱਬੇ ਪਾਸੇ ਵਿੱਚ ਸਥਾਨ ਪਰਿਵਰਤਨ ਕਰਨ 'ਤੇ) 10x - 3x + 7 = -28नां 7x + 7 = -28च र 7x = -28 - 7सरं 7x = -35ਜਾਂ $x = \frac{-35}{7}$ ਜਾਂ x = -5सरं ਅਭਿਆਸ 2.3 ਹੇਠ ਲਿਖੀਆਂ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ ਅਤੇ ਆਪਣੇ ਉੱਤਰ ਦੀ ਪੜਤਾਲ ਕਰੋ। 2. 5t-3=3t-53. 5x + 9 = 5 + 3x1. 3x = 2x + 18

34 🔳 ਗਣਿਤ

4.
$$4z + 3 = 6 + 2z$$

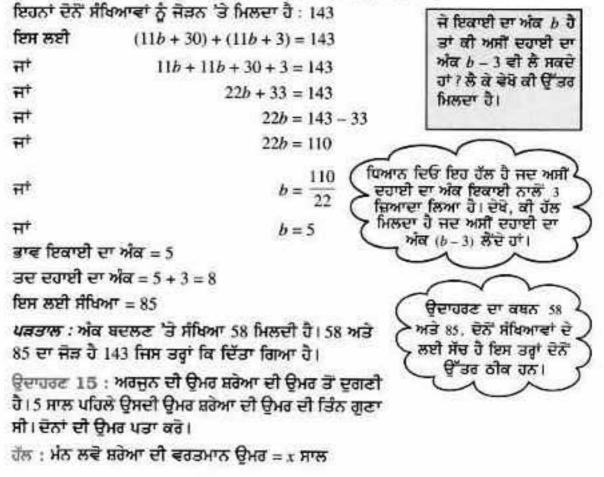
5. $2x - 1 = 14 - x$
6. $8x + 4 = 3(x - 1) + 7$
7. $x = \frac{4}{5}(x + 10)$
8. $\frac{2x}{3} + 1 = \frac{7x}{15} + 3$
9. $2y + \frac{5}{3} = \frac{26}{3} - y$
10. $3m = 5m - \frac{8}{5}$

2.5 ਕੁਝ ਹੋਰ ਉਦਾਹਰਣਾਂ

ਉਦਾਹਰਣ 14 : ਦੋ ਅੰਕਾਂ ਵਾਲੀ ਇੱਕ ਸੰਖਿਆ ਦੇ ਦੋਨੋਂ ਅੰਕਾਂ ਵਿੱਚ 3 ਦਾ ਅੰਤਰ ਹੈ। ਇਸ ਸੰਖਿਆ ਵਿੱਚ, ਇਸਦੇ ਅੰਕਾਂ ਨੂੰ ਬਦਲ ਕੇ ਪ੍ਰਾਪਤ ਸੰਖਿਆ ਨੂੰ ਜੋੜ ਕੇ 143 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਸੰਖਿਆ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਉਦਾਹਰਣ ਲਈ ਦੋ ਅੰਕਾਂ ਵਾਲੀ ਕੋਈ ਇੱਕ ਸੰਖਿਆ, ਜਿਵੇਂ 56 ਲਵੇ।

ਇਸ ਤਰ੍ਹਾਂ ਵੀ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ, 56 = (10 × 5) + 6


ਇਸ ਸੰਖਿਆ ਦੇ ਅੰਕ ਬਦਲਣ 'ਤੇ ਸੰਖਿਆ ਮਿਲਦੀ ਹੈ 65 ਜਿਸ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ, 65 = (10 × 6) + 5

ਅਸੀਂ ਦੋ ਔਕਾਂ ਵਾਲੀ ਸੰਖਿਆ ਵਿੱਚ ਇਕਾਈ ਦਾ ਔਕ b ਮੰਨਦੇ ਹਾਂ। ਕਿਉਂਕਿ ਦੋਨੋਂ ਔਕਾਂ ਦਾ ਐਤਰ 3 ਹੈ।

ਇਸ ਲਈ ਦਹਾਈ ਦਾ ਐਕ = b + 3

ਭਾਵ, ਦੋ ਅੰਕਾਂ ਵਾਲੀ ਸੰਖਿਆ = 10 (b + 3) + b = 10b + 30 + b = 11b + 30

ਅੰਕਾਂ ਨੂੰ ਬਦਲਣ 'ਤੇ ਸੰਖਿਆ ਹੋਵੇਗੀ = 10b + (b + 3) = 11b + 3

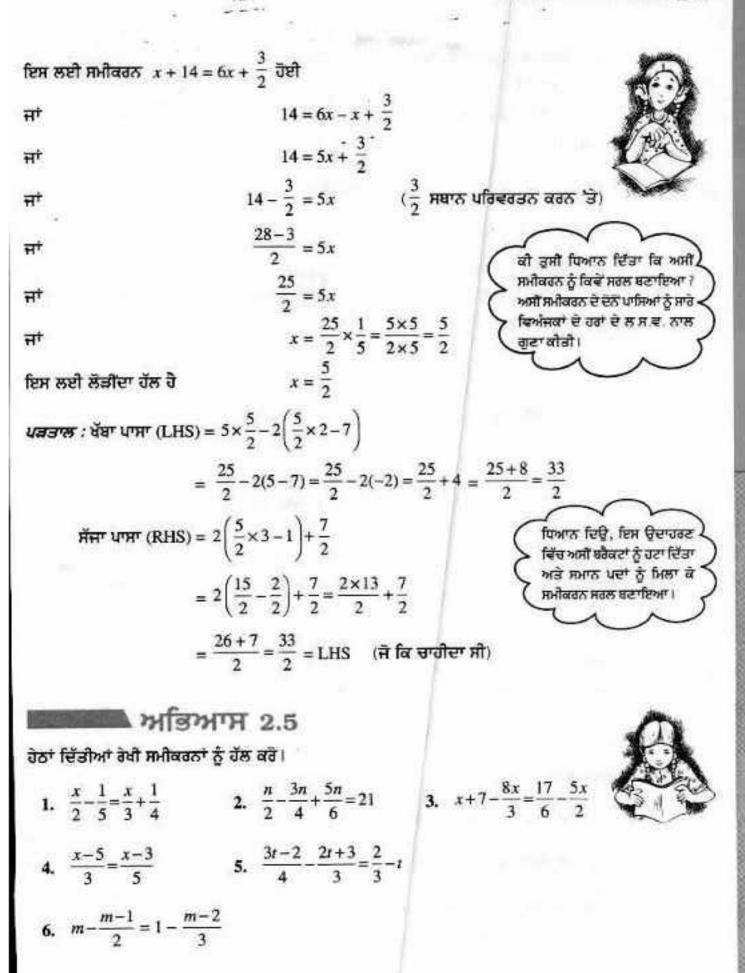
ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ 🔳 35

ਉਸ ਸਮੇਂ ਅਰਜੁਨ ਦੀ ਉਮਰ = 2x ਸਾਲ ਸ਼ਰੇਆ ਦੀ 5 ਸਾਲ ਪਹਿਲਾਂ ਉਮਰ ਸੀ (x - 5) ਸਾਲ ਅਤੇ ਅਰਜੁਨ ਦੀ 5 ਸਾਲ ਪਹਿਲਾਂ ਉਮਰ ਸੀ (2x - 5) ਸਾਲ ਦਿੱਤਾ ਗਿਆ ਹੈ ਕਿ 5 ਸਾਲ ਪਹਿਲੇ ਅਰਜੁਨ ਦੀ ਉਮਰ ਸ਼ਰੇਆ ਦੀ ਉਮਰ ਦੀ ਤਿੰਨ ਗੁਣਾ ਸੀ। ਇਸ ਲਈ 2x - 5 = 3(x - 5)ਜਾਂ 2x - 5 = 3x - 15ਜਾਂ 15 - 5 = 3x - 2xਜਾਂ 10 = xਇਸ ਲਈ ਸ਼ਰੇਆ ਦੀ ਵਰਤਮਾਨ ਉਮਰ = x = 10 ਸਾਲ

ਅਤੇ ਅਰਜੁਨ ਦੀ ਵਰਤਮਾਨ ਉਮਰ = 2x = 2 × 10 = 20 ਸਾਲ

ਅਭਿਆਸ 2.4

- ਅਮੀਨਾ ਇੱਕ ਸੰਖਿਆ ਸੋਚਦੀ ਹੈ। ਉਹ ਇਸ ਵਿੱਚੋਂ ²/₂ ਘਟਾ ਕੇ ਨਤੀਜੇ ਨੂੰ 8 ਨਾਲ ਗੁਣਾ ਕਰਦੀ ਹੈ। ਹੁਣ ਜੋ ਨਤੀਜਾ ਮਿਲਦਾ ਹੈ ਉਹ ਸੋਚੀ ਗਈ ਸੰਖਿਆ ਦੀ ਤਿੰਨ ਗੁਣਾ ਹੈ। ਉਹ ਸੋਚੀ ਗਈ ਸੰਖਿਆ ਪਤਾ ਕਰੇ।
- ਦੋ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਪਹਿਲੀ ਸੰਖਿਆ ਦੂਸਰੀ ਤੋਂ ਪੰਜ ਗੁਣਾ ਹੈ। ਹਰੇਕ ਸੰਖਿਆ ਵਿੱਚ 21 ਜੋੜਨ 'ਤੇ ਪਹਿਲੀ ਸੰਖਿਆ ਦੂਸਰੀ ਤੋਂ ਦੁਗਣੀ ਹੋ ਜਾਂਦੀ ਹੈ। ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ।
- ਦੋ ਅੰਕਾਂ ਵਾਲੀ ਦਿੱਤੀ ਗਈ ਇੱਕ ਸੰਖਿਆ ਦੇ ਅੰਕਾਂ ਦਾ ਜੋੜ 9 ਹੈ। ਇਸ ਸੰਖਿਆ ਦੇ ਅੰਕਾਂ ਦੇ ਸਥਾਨ ਬਦਲ ਕੇ ਪ੍ਰਾਪਤ ਕੀਤੀ ਸੰਖਿਆ, ਦਿੱਤੀ ਗਈ ਸੰਖਿਆ ਨਾਲੋਂ 27 ਜ਼ਿਆਦਾ ਹੈ। ਦਿੱਤੀ ਗਈ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।
- ਦੋ ਔਕਾਂ ਵਾਲੀ ਦਿੱਤੀ ਗਈ ਇੱਕ ਸੰਖਿਆ ਵਿੱਚ ਇੱਕ ਔਕ ਦੂਸਰੇ ਦਾ ਤਿੰਨ ਗੁਣਾ ਹੈ। ਇਸਦੇ ਔਕਾਂ ਦੇ ਸਥਾਨ ਬਦਲ ਕੇ ਪ੍ਰਾਪਤ ਸੰਖਿਆ ਨੂੰ, ਦਿੱਤੀ ਗਈ ਸੰਖਿਆ ਵਿੱਚ ਜੋੜਨ 'ਤੋਂ 88 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਦਿੱਤੀ ਗਈ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।
- ਸ਼ੋਬੌ ਦੀ ਮਾਂ ਦੀ ਉਮਰ, ਸ਼ੋਬੋ ਦੀ ਉਮਰ ਦਾ 6 ਗੁਣਾ ਹੈ। 5 ਸਾਲ ਬਾਅਦ ਸ਼ੋਬੋ ਦੀ ਉਮਰ, ਉਸਦੀ ਮਾਂ ਦੀ ਵਰਤਮਾਨ ਉਮਰ ਦੀ ਇੱਕ ਤਿਹਾਈ ਹੋ ਜਾਵੇਗੀ। ਉਸਦੀ ਉਮਰ ਪਤਾ ਕਰੋ।
- 6. ਮਹੂਲੀ ਪਿੰਡ ਵਿੱਚ, ਇੱਕ ਤੰਗ ਆਇਤਾਕਾਰ ਪਲਾਟ ਸਕੂਲ ਬਣਾਉਣ ਦੇ ਲਈ ਰੱਖਿਆ ਹੈ। ਇਸ ਪਲਾਟ ਦੀ ਲੰਬਾਈ ਅਤੇ ਚੌੜਾਈ ਵਿੱਚ 11:4 ਦਾ ਅਨੁਪਾਤ ਹੈ। ਪਿੰਡ ਦੀ ਪੰਚਾਇਤ ਨੂੰ ਇਸ ਪਲਾਟ ਦੀ ਚਾਰ ਦੀਵਾਰੀ ਕਰਨ ਲਈ, ₹ 100 ਪ੍ਰਤੀ ਮੀਟਰ ਦੀ ਦਰ ਨਾਲ ₹ 75000 ਦੇਣੇ ਪੈਣਗੇ। ਪਲਾਟ ਦਾ ਮਾਪ (dimensions) ਪਤਾ ਕਰੋ।
- 7. ਹਸਨ, ਸਕੂਲ ਵਰਦੀ ਬਣਾਉਣ ਲਈ ਦੇ ਤਰ੍ਹਾਂ ਦਾ ਕੱਪੜਾ ਖਰੀਦਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਕਮੀਜ਼ ਦੇ ਕੱਪੜੇ ਦਾ ਮੁੱਲ ₹ 50 ਪ੍ਰਤੀ ਮੀਟਰ ਅਤੇ ਪੈਂਟ ਦੇ ਕੱਪੜੇ ਦਾ ਮੁੱਲ ₹ 90 ਪ੍ਰਤੀ ਮੀਟਰ ਹੈ। ਉਹ ਪੈਂਟ ਦੇ ਹਰੇਕ 2 ਮੀਟਰ ਕੱਪੜੇ ਦੇ ਲਈ ਕਮੀਜ਼ ਦਾ 3 ਮੀਟਰ ਕੱਪੜਾ ਖਰੀਦਦਾ ਹੈ। ਉਹ ਇਸ ਕੱਪੜੇ ਨੂੰ ਕ੍ਰਮਵਾਰ 12% ਅਤੇ 10% ਲਾਭ 'ਤੇ ਵੇਚ ਕੇ ₹ 36,660 ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ। ਉਸਨੇ ਪੈਂਟਾਂ ਦੇ ਲਈ ਕਿੰਨਾ ਕੱਪੜਾ ਖਰੀਦਿਆ ?


36 🔳 ਗਣਿਤ

- ਹਿਰਨਾਂ ਦੇ ਇੱਕ ਝੁੰਡ ਦਾ ਅੱਧਾ ਭਾਗ ਮੈਦਾਨ ਵਿੱਚ ਚਰ ਰਿਹਾ ਹੈ ਅਤੇ ਬਾਕੀ ਦਾ ਤਿੰਨ ਚੌਬਾਈ ਨੇੜੇ ਖੇਡ ਰਿਹਾ ਹੈ। ਬਾਕੀ ਬਚੇ 9 ਹਿਰਨ ਇੱਕ ਤਲਾਬ ਵਿੱਚ ਪਾਣੀ ਪੀ ਰਹੇ ਸਨ। ਝੁੰਡ ਵਿੱਚ ਹਿਰਨਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।
- ਦਾਦਾ ਜੀ ਦੀ ਉਮਰ ਆਪਣੀ ਪੋਤਰੀ ਦੀ ਉਮਰ ਦਾ ਦਸ ਗੁਣਾ ਹੈ। ਜਦਕਿ ਉਸਦੀ ਉਮਰ ਪੋਤਰੀ ਦੀ ਉਮਰ ਨਾਲੋਂ 54 ਸਾਲ ਜ਼ਿਆਦਾ ਹੈ ਤਾਂ ਉਹਨਾਂ ਦੋਨਾਂ ਦੀ ਉਮਰ ਪਤਾ ਕਰੋ।
- ਅਮਨ ਦੀ ਉਮਰ ਉਸਦੇ ਪੁੱਤਰ ਦੀ ਉਮਰ ਨਾਲੋਂ ਤਿੰਨ ਗੁਣਾ ਹੈ। 10 ਸਾਲ ਪਹਿਲਾਂ ਉਸਦੀ ਉਮਰ ਪੁੱਤਰ ਦੀ ਉਮਰ ਦਾ ਪੰਜ ਗੁਣਾ ਸੀ। ਦੋਨਾਂ ਦੀ ਵਰਤਮਾਨ ਉਮਰ ਪਤਾ ਕਰੋ।

	: ਹੱਲ ਕਰੋ : $\frac{6x+1}{3} + 1 = \frac{x-3}{6}$	6 ਨਾਲ ਹੀ ਕਿਉਂ ? ਧਿਆਨ ਦਿਉ
ਹਲ : ਦਨ ਪਾਸ	ਜਆਂ ਨੂੰ 6 ਨਾਲ ਭਾਗ ਕਰਨ `ਤੇ	ਹਰਾਂ ਦਾ ਲ.ਸ.ਵ. (L.C.M.) 6
	$\frac{6(6x+1)}{3} + 6 \times 1 = \frac{6(x-3)}{6}$	σı
ਜਾਂ	3 = 6 2 (6x + 1) + 6 = x - 3	
ਜਾਂ	12x + 2 + 6 = x - 3	(ਬਰੈਕਟਾਂ ਹਟਾਉਣ 'ਤੇ
स †	12x + 8 = x - 3	
ਜਾਂ	12x - x + 8 = -3	
ਜਾਂ	11x + 8 = -3	
ਜਾਂ	11x = -3 - 8	
सरे	11x = -11	
ਜਾਂ	x = -1	(ਲੋੜੀਂਦਾ ਹੱਲ)
<i>ਪੜਤਾਲ :</i> ਖੱਬਾ	ਪਾਸਾ (LHS) = $\frac{6(-1)+1}{3} + 1 = \frac{-6+1}{3} + 1 =$	$\frac{-5}{3} + \frac{3}{3} = \frac{-5+3}{3} = \frac{-2}{3}$
	ਸੱਜਾ ਪਾਸਾ (RHS) = $\frac{(-1)-3}{6} = -$	$\frac{-4}{6} = \frac{-2}{3}$
	ਖੱਬਾ ਪਾਸਾ (LHS) = ਸੱਜਾ ਪਾਸਾ (R	HS) (ਜੋ ਕਿ ਚਾਹੀਦਾ ਸੀ)
ਉਦਾਹਰਣ 17 :	ਹੱਲ ਕਰੇ : 5x − 2 (2x − 7) = 2 (3x − 1) +	$\frac{7}{2}$ -
ਹੱਲ : ਬਰੈਕਟਾਂ ਹ	।ਟਾਉਣ 'ਤੇ	
	HAT ITT (I HS) - Se de 114	6

ਖੱਬਾ ਪਾਸਾ (LHS) = 5x - 4x + 14 = x + 14ਸੱਜਾ ਪਾਸਾ (RHS) = $6x - 2 + \frac{7}{2} = 6x - \frac{4}{2} + \frac{7}{2} = 6x + \frac{3}{2}$

ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ 🔳 37

38 🔳 ਗਣਿਤ

ਹੇਠਾਂ ਲਿਖੀਆਂ ਨੂੰ ਸਰਲ ਰੂਪ ਵਿੱਚ ਬਦਲਦੇ ਹੋਏ ਹੱਲ ਕਰੋ :

7. 3(t-3) = 5(2t+1)8. 15(y-4) - 2(y-9) + 5(y+6) = 0

9. 3(5z-7) - 2(9z-11) = 4(8z-13) - 17

10. 0.25(4f - 3) = 0.05(10f - 9)

2.7 ਰੇਖੀ ਰੂਪ ਵਿੱਚ ਬਦਲ ਜਾਣ ਵਾਲੇ ਸਮੀਕਰਨ

ਉਦਾਹਰਣ 18 : ਹੱਲ ਕਰੋ : $\frac{x+1}{2x+3} = \frac{3}{8}$

ਹੱਲ : ਧਿਆਨ ਦਿਓ ਇਹ ਸਮੀਕਰਨ ਰੇਖੀ ਨਹੀਂ ਹੈ ਕਿਉਂਕਿ ਇਸਦੇ ਖੱਬੇ ਪੱਖ ਵਿੱਚ ਵਿਅੰਜਕ ਰੇਖੀ ਨਹੀਂ ਹੈ। ਪਰ ਇਸ ਨੂੰ ਅਸੀਂ ਇੱਕ ਰੇਖੀ ਸਮੀਕਰਨ ਦੇ ਰੂਪ ਵਿੱਚ ਬਦਲ ਸਕਦੇ ਹਾਂ। ਅਸੀਂ ਸਮੀਕਰਨ ਦੇ ਦੋਨੋਂ ਪਾਸਿਆਂ ਨੂੰ (2x + 3) ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹਾਂ।

$$\left(\frac{x+1}{2x+3}\right) \times (2x+3) = \frac{3}{8} \times (2x+3)$$

21+3=0 (ag

(2x + 3) ਖੱਬੇ ਪਾਸੇ ਵਿੱਚ ਕੱਟਿਆ (cancel) ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ :

$$x + 1 = \frac{3(2x + 3)}{8}$$

ਹੁਣ ਸਾਨੂੰ ਇੱਕ ਰੇਖੀ ਸਮੀਕਰਨ ਮਿਲਿਆ। ਜਿਸ ਨੂੰ ਅਸੀਂ ਹੱਲ ਕਰਨਾ ਜਾਣਦੇ ਹਾਂ। ਦੋਨਾਂ ਪਾਸਿਆਂ ਨੂੰ 8 ਨਾਲ ਗੁਣਾ ਕਰਨ 'ਤੇ

8(x+1) = 3(2x+3)ਇਹ ਪਗ ਤਿਰਫ਼ੀ-ਗਣਾ नां 8x + 8 = 6x + 9ਦੀ ਪ੍ਰਕਿਰਿਆ ਨਾਲ ਵੀ ਜਾਂ ਪ੍ਰਾਪਤ ਹੋ ਸਕਦਾ ਹੈ : 8x = 6x + 9 - 8 $\frac{x+1}{2x+3}$ $\times \frac{3}{8}$ ਜਾਂ 8x = 6x + 1ਜਾਂ 8x - 6x = 1ਜਾਂ 2x = 1 $x = \frac{1}{2}$ ਜਾਂ $x = \frac{1}{2} \hat{\overline{\partial}}$ ਇਸ ਲਈ, ਹੱਲ ਪੜਤਾਲ : ਖੱਬੇ ਪਾਸੇ ਵਿੱਚ ਔਸ਼ = $\frac{1}{2}$ + 1 = $\frac{1+2}{2}$ = $\frac{3}{2}$ ਹੈ। ਖੱਬੇ ਪਾਸੇ ਵਿੱਚ ਹਰ = 2x + 3 = 2 × $\frac{1}{2}$ + 3 = 1 + 3 = 4 ਹੈ। ਇਸ ਲਈ ਖੱਬਾ ਪਾਸਾ = ਐਸ਼ + ਹਰ = $\frac{3}{2} + 4 = \frac{3}{2} \times \frac{1}{4} = \frac{3}{2}$ ਇਸ ਤਰਾਂ ਖੱਬਾ ਪਾਸਾ (LHS) = ਸੱਜਾ ਪਾਸਾ (RHS)

ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ 🔳 39

ਉਦਾਹਰਣ 19 : ਅਨੂ ਅਤੇ ਰਾਜ ਦੀ ਵਰਤਮਾਨ ਉਮਰ ਦਾ ਅਨੁਪਾਤ 4 : 5 ਹੈ। 8 ਸਾਲ ਬਾਅਦ ਉਨ੍ਹਾਂ ਦੀ ਉਮਰ ਦਾ ਅਨੁਪਾਤ 5 : 6 ਹੋਵੇਗਾ। ਉਸਦੀ ਵਰਤਮਾਨ ਉਮਰ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਮੰਨ ਲਵੇ ਕਿ ਅਨੂ ਅਤੇ ਰਾਜ ਦੀ ਵਰਤਮਾਨ ਉਮਰ ਕ੍ਰਮਵਾਰ 4x ਅਤੇ 5x ਹੈ।

8 ਸਾਲ ਬਾਅਦ ਅਨੂ ਦੀ ਉਮਰ = (4x + 8) ਸਾਲ

8 ਸਾਲ ਬਾਅਦ ਰਾਜ ਦੀ ਉਮਰ = (5x + 8) ਸਾਲ

ਉਸਦੀ ਉਮਰ ਦਾ ਅਨੁਪਾਤ = $\frac{4x+8}{5x+8}$, ਜੋ ਦਿੱਤਾ ਹੈ 5 : 6

ਇਸ ਲਈ $\frac{4x+8}{5x+8} = \frac{5}{6}$ ਤਿਰਫ਼ੀ-ਗੁਣਾ ਕਰਨ 'ਤੇ 6(4x+8) = 5(5x+8)ਜਾਂ 24x+48 = 25x+40ਜਾਂ 24x+48-40 = 25xਜਾਂ 24x+8 = 25xਜਾਂ 8 = 25x-24xਜਾਂ 8 = xਇਸ ਤਰ੍ਹਾਂ ਅਨੂ ਦੀ ਵਰਤਮਾਨ ਉਮਰ $4x = 4 \times 8 = 32$ ਸਾਲ ਅਤੇ ਰਾਜ ਦੀ ਵਰਤਮਾਨ ਉਮਰ $5x = 5 \times 8 = 40$ ਸਾਲ

🖪 ਅਭਿਆਸ 2.6

ਹੇਠਾਂ ਲਿਖੀਆਂ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ :

- 1. $\frac{8x-3}{3x} = 2$ 3. $\frac{9x}{7-6x} = 15$ 3. $\frac{z}{z+15} = \frac{4}{9}$ 3. $\frac{z}{z+15} = \frac{4}{9}$
- 4. $\frac{3y+4}{2-6y} = \frac{-2}{5}$ 5. $\frac{7y+4}{y+2} = \frac{-4}{3}$
- ਹਰੀ ਅਤੇ ਹੈਰੀ ਦੀ ਵਰਤਮਾਨ ਉਮਰ ਦਾ ਅਨੁਪਾਤ 5 : 7 ਹੈ। 4 ਸਾਲ ਬਾਅਦ ਉਹਨਾਂ ਦੀ ਉਮਰ ਦਾ ਅਨੁਪਾਤ 3 : 4 ਹੋ ਜਾਵੇਗਾ। ਇਸਦੀ ਵਰਤਮਾਨ ਉਮਰ ਪਤਾ ਕਰੋ।
- ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਦਾ ਹਰ ਉਸਦੇ ਅੰਸ਼ ਨਾਲੋਂ 8 ਜ਼ਿਆਦਾ ਹੈ। ਜੇਕਰ ਅੰਸ਼ ਵਿੱਚ 17 ਜੋੜ

ਦਿੱਤਾ ਜਾਵੇ ਅਤੇ ਹਰ ਵਿੱਚੋਂ । ਘਟਾ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਸਾਨੂੰ ³/2 ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ। ਉਹ ਪਰਿਮੇਯ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।

Downloaded from https:// www.studiestoday.com 40 🔳 ਗਣਿਤ ਅਸੀਂ ਕੀ ਚਰਚਾ ਕੀਤੀ ? ਇੱਕ ਬੀਜ ਸਮੀਕਰਨ, ਚਲਾਂ ਵਿੱਚ ਇੱਕ ਬਰਾਬਰਤਾ ਹੁੰਦੀ ਹੈ। ਇਹ ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ ਬਰਾਬਰਤਾ ਦੇ ਚਿੰਨ੍ਹ ਦੇ ਇੱਕ ਪਾਸੇ ਵਾਲੇ ਵਿਅੰਜਕ ਦਾ ਮੁੱਲ ਉਸਦੇ ਦੂਸਰੇ ਪਾਸੇ ਵਾਲੇ ਵਿਅੰਜਕ ਦੇ ਮੁੱਲ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। 2. ਜਮਾਤ VI, VII ਅਤੇ VIII ਵਿੱਚ ਸਿੱਖੇ ਜਾਣ ਵਾਲੇ ਸਮੀਕਰਨ, ਇੱਕ ਚਲ ਵਾਲੇ ਰੇਖੀ ਸਮੀਕਰਨ ਹਨ। ਇਹਨਾਂ ਸਮੀਕਰਨਾਂ ਵਿੱਚ ਸਮੀਕਰਨ ਬਣਾਉਣ ਵਾਲੇ ਵਿਅੰਜਕਾਂ ਵਿੱਚ ਇੱਕ ਹੀ ਚਲ ਦਾ ਪ੍ਰਯੋਗ ਹੁੰਦਾ ਹੈ। ਇਸਦੇ ਇਲਾਵਾ ਇਹ ਸਮੀਕਰਨ ਰੇਖੀ ਹੁੰਦੇ ਹਨ। ਜਿਵੇਂ ਕਿ ਪ੍ਰਯੋਗ ਕੀਤੇ ਗਏ ਚਲਾਂ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਘਾਤ 1 ਹੈ। ਇੱਕ ਰੇਖੀ ਸਮੀਕਰਨ ਦਾ ਹੱਲ ਕੋਈ ਵੀ ਪਰਿਮੇਯ ਸੱਖਿਆ ਹੋ ਸਕਦੀ ਹੈ। 4. ਸਮੀਕਰਨ ਦੇ ਦੋਨੋਂ ਪਾਸਿਆਂ ਵਿੱਚ ਕੋਈ ਰੇਖੀ ਵਿਅੰਜਕ ਹੋ ਸਕਦੇ ਹਨ। ਜੋ ਸਮੀਕਰਨ ਅਸੀਂ ਜਮਾਤ VI ਅਤੇ VII ਵਿੱਚ ਸਿੱਖੇ, ਉਹਨਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱਕ ਪਾਸੇ ਵਿੱਚ ਕੇਵਲ ਸੰਖਿਆ ਹੀ ਹੁੰਦੀ ਹੈ। ਸੰਖਿਆਵਾਂ ਦੀ ਤਰ੍ਹਾਂ ਹੀ ਚਲਾਂ ਨੂੰ ਵੀ ਇੱਕ ਪਾਸੇ ਤੋਂ ਦੂਸਰੇ ਪਾਸੇ ਵਿੱਚ ਸਥਾਨ ਪਰਿਵਰਤਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਆਮ ਤੌਰ ਤੇ ਸਮੀਕਰਨ ਬਣਾਉਣ ਵਾਲੇ ਵਿਅੰਜਕ ਨੂੰ, ਉਸ ਨੂੰ ਹੱਲ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ, ਸਰਲ ਬਣਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਸ਼ੁਰੂ ਵਿੱਚ ਕੁੱਝ ਸਮੀਕਰਨ ਰੇਖੀ ਨਹੀਂ ਹੁੰਦੇ। ਪਰ ਦੋਨਾਂ ਪਾਸਿਆਂ ਨੂੰ ਉੱਚਿਤ ਵਿਅੰਜਕਾਂ ਨਾਲ ਗੁਣਾ ਕਰਕੇ ਰੇਖੀ ਸਮੀਕਰਨ ਦੇ ਰੂਪ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਰੇਖੀ ਸਮੀਕਰਨਾਂ ਦੀ ਉਪਯੋਗਿਤਾ, ਉਹਨਾਂ ਦੀ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਹੱਲ ਕਰਨ ਦੀ ਵਰਤੋਂ ਵਿੱਚ ਹਨ। ਸੰਖਿਆਵਾਂ, ਉਮਰਾਂ, ਘੇਰੇ ਅਤੇ ਕਰੰਸੀ ਵਿੱਚ ਪ੍ਰਯੋਗ ਹੋਣ ਵਾਲੇ ਸਿੱਕੇ ਅਤੇ ਨੋਟਾਂ `ਤੇ ਅਧਾਰਿਤ ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਰੇਖੀ ਸਮੀਕਰਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਅਧਿਆਇ

ਚਤੁਰਭੁਜਾਵਾਂ ਨੂੰ ਸਮਝਣਾ

3.1 ਭੂਮਿਕਾ

ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਕਾਗਜ਼, ਸਮਤਲ ਦਾ ਇੱਕ ਨਮੂਨਾ ਰੂਪ ਹੈ।ਜਦ ਤੁਸੀਂ ਕਾਗਜ਼ ਤੋਂ ਪੈਨਸਿਲ ਨੂੰ ਚੁੱਕੇ ਬਿਨਾਂ ਬਿੰਦੂਆਂ ਨੂੰ ਆਪਸ ਵਿੱਚ ਜੋੜਦੇ ਹੋ (ਇਕੱਲੇ ਬਿੰਦੂਆਂ ਨੂੰ ਛੱਡ ਕੇ ਅਕ੍ਰਿਤੀ ਦੇ ਕਿਸੇ ਵੀ ਭਾਗ ਨੂੰ ਦੁਬਾਰਾ ਵਾਹੇ ਬਿਨਾਂ) ਤਾਂ ਤੁਹਾਨੂੰ ਇੱਕ ਸਮਤਲ ਵਕਰ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।

ਪਿਛਲੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਦੀਆਂ ਵੇਖੀਆਂ ਗਈਆਂ ਵਕਰਾਂ ਨੂੰ ਯਾਦ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ। ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਚਿੱਤਰਾਂ ਦਾ ਮੇਲ ਕਰੋ : (ਧਿਆਨ ਰੱਖੋ। ਇੱਕ ਚਿੱਤਰ ਦਾ ਇੱਕ ਤੋਂ ਜ਼ਿਆਦਾ ਚਿੱਤਰਾਂ ਨਾਲ ਮੇਲ ਹੋ ਸਕਦਾ ਹੈ।)

ਚਿੱਤਰ	ম্যুম্	
	(a) ਸਧਾਰਨ ਬੰਦ ਵਕਰ ਹੈ।	
(2)	(b) ਬੰਦ ਵਕਰ ਜੋ ਕਿ ਸਧਾਰਨ ਨਹੀਂ ਹੈ।	
(3)	(c) ਸਧਾਰਨ ਵਕਰ ਜੋ ਕਿ ਬੰਦ ਨਹੀਂ ਹੈ।	
(4)	(d) ਸਧਾਰਨ ਵਕਰ ਨਹੀਂ ਹੈ।	

ਆਪਣੇ ਦੋਸਤਾਂ ਨਾਲ ਇਸ ਮਿਲਾਣ ਦੀ ਤੁਲਨਾ ਕਰੋ, ਕੀ ਉਹ ਸਹਿਮਤ ਹਨ?

3.2 **ਬਹੁ**ਭੁਜ

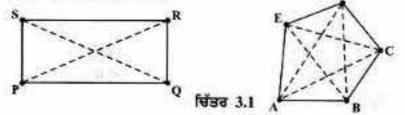
ਸਿਰਫ਼ ਰੇਖਾਖੰਡਾਂ ਨਾਲ ਬਣੀ ਸਧਾਰਨ ਬੰਦ ਵਕਰ ਨੂੰ ਬਹੁਭੂਜ ਕਹਿੰਦੇ ਹਨ।

बबवां में ध्युइस ਹਨ

ਵਕਰਾਂ ਜੋ ਬਹੁਭੁਜ ਨਹੀਂ ਹਨ

42 🖩 ਗਣਿਤ

4.85


ਕੁਝ ਹੋਰ ਬਹੁਭੁਜਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਦੇਣ ਦਾ ਯਤਨ ਕਰੋ ਅਤੇ ਕੁਝ ਹੋਰ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਦਿਉ। ਜੋ ਬਹੁਭੁਜ ਨਾ ਹੋਣ। ਇੱਕ ਬਹੁਭੁਜ ਦਾ ਕੱਚਾ (Rough) ਚਿੱਤਰ ਖਿੱਚੋਂ ਅਤੇ ਉਸਦੀਆਂ ਭੁਜਾਵਾਂ ਅਤੇ ਸਿਖਰਾਂ ਦੀ ਪਹਿਚਾਣ ਕਰੋ।

3.2.1 ਬਹੁਭੂਜਾਂ ਦਾ ਵਰਗੀਕਰਨ

ਅਸੀਂ ਬਹੁਭੂਜਾਂ ਦਾ ਵਰਗੀਕਰਨ ਉਹਨਾਂ ਦੀਆਂ ਭੁਜਾਵਾਂ (ਜਾਂ ਸਿਖਰਾਂ) ਦੇ ਅਨੁਸਾਰ ਕਰਦੇ ਹਾਂ।

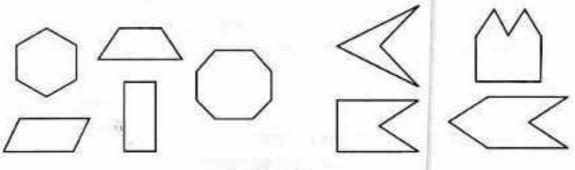
ਭੁਜਾਵਾਂ ਜਾਂ ਸਿਖਰਾਂ ਦੀ ਗਿਣਤੀ	ੂ ਵਰਗੀਕਰਨ	ਚਿੱਤਰ ਨਮੂਨਾ
3	ड्रिइन	
4	ਚਤੁਰਭੁਜ	D
5	ਪੰਜਭੁਜ	\bigcirc
6	ढेड्रम	\bigcirc
7	ਸੱਤਵੁਜ	\bigcirc
8	ਅੱਠਭੂਜ	\bigcirc
9	ਨੋਂ ਭੂਜ	\bigcirc
10	ਦਸ ਭੂਜ	\bigcirc
:		:
n	n-छन	

3.2.2 feast

ਚਤੁਰਕੁਜਾਵਾਂ ਨੂੰ ਸਮਝਣਾ 🔳 43

ਕੀ ਤੁਸੀਂ ਉੱਪਰ ਦਿੱਤੇ ਗਏ ਚਿੱਤਰਾਂ ਵਿੱਚ ਹਰੇਕ ਵਿਕਰਨ ਦਾ ਨਾਂ ਦੇ ਸਕਦੇ ਹੋ ? (ਚਿੱਤਰ 3.1) ਕੀ PQ ਇੱਕ ਵਿਕਰਨ ਹੈ ? LN ਦੇ ਬਾਰੇ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ ?

ਇੱਕ ਬੰਦ ਵਕਰ ਵਿੱਚ ਅੰਦਰਲੇ ਅਤੇ ਬਾਹਰੀ ਭਾਗ ਦਾ ਕੀ ਅਰਥ ਹੁੰਦਾ ਹੈ ਇਹ ਤੁਸੀਂ ਭਲੀ-ਭਾਂਤੀ ਜਾਣਦੇ ਹੋ (ਚਿੱਤਰ 3.2)।


ਚਿੱਤਰ 3.2

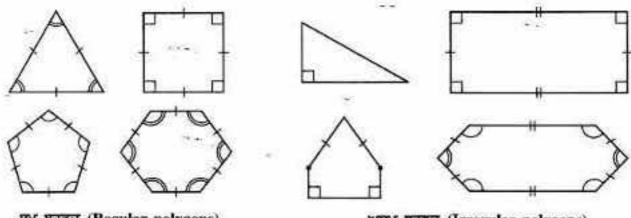
ਬਾਹਰ। ਭਾਰ

ਅੰਦਰਲੇ ਭਾਗ ਦਾ ਇੱਕ ਘੇਰਾ ਹੁੰਦਾ ਹੈ। ਕੀ ਬਾਹਰੀ ਭਾਗ ਦਾ ਘੇਰਾ ਹੁੰਦਾ ਹੈ। ਆਪਣੇ ਦੋਸਤਾਂ ਦੇ ਨਾਲ ਚਰਚਾ ਕਰੋ।

3.2.3 ਉੱਤਲ ਅਤੇ ਅਵਤਲ ਬਹੁਭੁਜ

ਇੱਥੇ ਕੁਝ ਉੱਤਲ (convex) ਬਹੁਭੂਜ ਅਤੇ ਕੁਝ ਅਵਤਲ (concave) ਬਹੁਭੂਜ ਦਿੱਤੇ ਗਏ ਹਨ : (ਚਿੱਤਰ 3.3)

ਿੱਤਰ 3.3 ਵਿੱਤਰ 3.3 ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਬਹੁਭੁਜ ਇੱਕ ਦੂਸਰੇ ਤੋਂ ਅਲੱਗ ਕਿਉਂ ਹਨ ? ਜੋ ਬਹੁਭੁਜ ਸ਼ਲ ਹੁੰਦੇ ਹਨ ਉਹਨਾਂ ਦੇ ਵਿਕਰਨਾਂ ਦਾ ਕੋਈ ਵੀ ਭਾਗ ਬਾਹਰੀ ਹਿੱਸੇ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਕੀ ਇਹ


ਉੱਤਲ ਹੁੰਦੇ ਹਨ ਉਹਨਾਂ ਦੇ ਵਿਕਰਨਾਂ ਦਾ ਕੋਈ ਵੀ ਭਾਗ ਬਾਹਰੀ ਹਿੱਸੇ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਕੀ ਇਹ ਅਵਤਲ ਬਹੁਭੂਜਾਂ ਦੇ ਲਈ ਵੀ ਸੱਚ ਹੁੰਦਾ ਹੈ। ਦਿੱਤੇ ਗਏ ਚਿੱਤਰਾਂ ਦਾ ਅਧਿਐਨ ਕਰੋ। ਇਸ ਤੋਂ ਬਾਅਦ ਆਪਣੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਉੱਤਲ ਬਹੁਭੂਜ ਅਤੇ ਅਵਤਲ ਬਹੁਭੂਜ ਸਮਝਣ ਦਾ ਯਤਨ ਕਰੋ। ਹਰੇਕ ਤਰ੍ਹਾਂ ਦੇ ਦੋ ਚਿੱਤਰ ਬਣਾਉ।

ਇਸ ਜਮਾਤ ਵਿੱਚ ਅਸੀਂ ਕੇਵਲ ਉੱਤਲ ਬਹੁਭੂਜਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਧਿਐਨ ਕਰਾਂਗੇ।

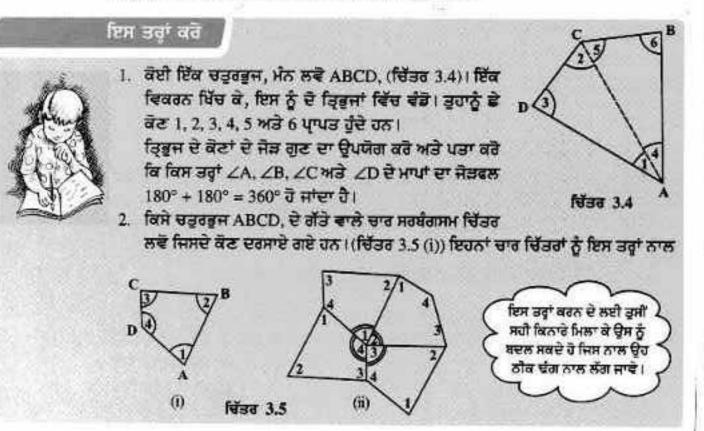
3.2.4 ਸਮ ਅਤੇ ਅਸਮ ਬਹੁਤੁਜ (Regular and Irregular Polygons)

ਇੱਕ ਸਮ ਬਹੁਭੁਜ, ਸਮਭੁਜੀ ਅਤੇ ਸਮਾਨ ਕੋਣੀ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ 'ਤੇ ਇੱਕ ਵਰਗ ਵਿੱਚ ਭੁਜਾਵਾਂ ਅਤੇ ਕੋਣ ਬਰਾਬਰ ਮਾਪ ਦੇ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਇਹ ਇੱਕ ਸਮ ਬਹੁਭੁਜ ਹੈ। ਇੱਕ ਆਇਤ ਸਮਾਨ ਕੋਣੀ ਹੁੰਦਾ ਹੈ ਪਰੰਤੂ ਸਮਭੁਜ ਨਹੀਂ ਹੁੰਦਾ। ਕੀ ਇੱਕ ਆਇਤ ਇੱਕ ਸਮ ਬਹੁਭੁਜ ਹੈ? ਕੀ ਇੱਕ ਸਮਭੁਜੀ ਤ੍ਰਿਭੁਜ ਇੱਕ ਸਮ ਬਹੁਭੁਜ ਹੈ?

44 🗏 ਗਣਿਤ

মন ষত্ৰহুন (Regular polygons)

সমস ষরহুন (Irregular polygons)

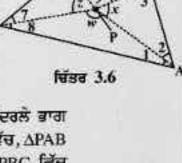

[ਸੰਕੇਤ : 🔨 ਜਾਂ 🔨 ਦਾ ਉਪਯੋਗ ਬਰਾਬਰ ਲੰਬਾਈ ਵਾਲੇ ਰੇਖਾਖੰਡਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।]

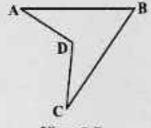
ਪਿਛਲੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ, ਕੀ ਤੁਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਚਤੁਰਭੁਜ ਦੇ ਬਾਰੇ ਪੜ੍ਹਿਆ ਹੈ ਜੋ ਸਮਭੁਜ ਤਾਂ ਹੋਵੇ ਪਰੰਤੂ ਸਮਾਨ ਕੋਣੀ ਨਾ ਹੋਵੇ। ਪਿਛਲੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਵੇਖੇ ਗਏ ਚਤੁਰਭੁਜਾਂ ਦੇ ਚਿੱਤਰਾਂ ਨੂੰ ਯਾਦ ਕਰੋ ਜਿਵੇਂ ਕਿ ਆਇਤ, ਵਰਗ, ਸਮ ਚਤੁਰਭੁਜ ਆਦਿ।

ਕੀ ਕੋਈ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਤ੍ਰਿਭੁਜ ਹੈ ਜੋ ਕਿ ਸਮਭੁਜ ਤਾਂ ਹੋਵੇ ਪਰੰਤੂ ਸਮਾਨ ਕੋਣੀ ਨਾ ਹੋਵੇ ?

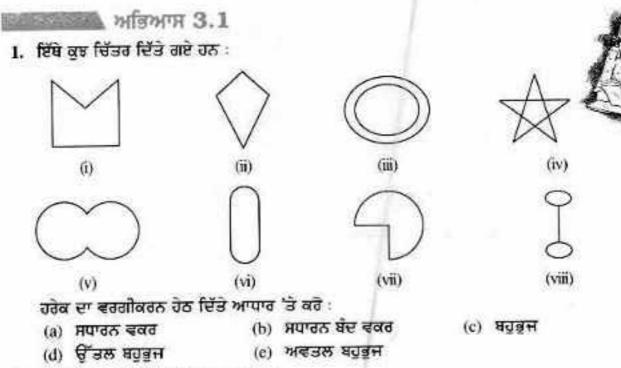
3.2.5 ਕੋਟਾਂ ਦਾ ਜੋੜ ਗੁਣ

ਕੀ ਤੁਹਾਨੂੰ ਇੱਕ ਤ੍ਰਿਭੁਜ ਦੇ ਕੋਣਾਂ ਦਾ ਜੋੜ ਗੁਣ ਯਾਦ ਹੈ ? ਇੱਕ ਤ੍ਰਿਭੁਜ ਦੇ ਤਿੰਨਾਂ ਕੋਣਾਂ ਦੇ ਮਾਪਾਂ ਦਾ ਜੋੜ 180° ਹੁੰਦਾ ਹੈ। ਅਸੀਂ ਇਸ ਤੱਥ ਨੂੰ ਸਮਝਣ ਦੇ ਲਈ ਜਿਸ ਵਿਧੀ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਹੈ ਉਸਨੂੰ ਯਾਦ ਕਰੋ। ਹੁਣ ਇਸ ਸੰਕਲਪ ਦਾ ਇੱਕ ਚਤੁਰਭੁਜ ਦੇ ਲਈ ਪ੍ਰਯੋਗ ਕਰੋ।

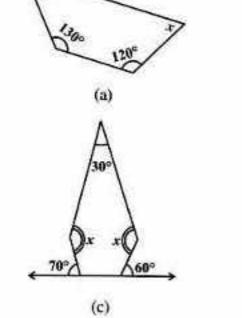



ਚਤੁਰਭੁਜਾਵਾਂ ਨੂੰ ਸਮਝਣਾ 🔳 45

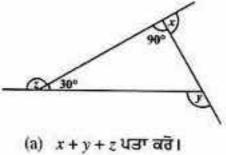
ਤਰਤੀਬ ਦਿਉ ਜਿਸ ਨਾਲ ∠1, ∠2, ∠3, ∠4 ਇਹ ਇੱਕ ਹੀ ਬਿੰਦੂ 'ਤੇ ਮਿਲਣ।ਜਿਸ ਤਰ੍ਹਾਂ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।(ਚਿੱਤਰ 3.1(ii))। ਤੁਸੀਂ ∠1, ∠2, ∠3 ਅਤੇ ∠4 ਦੇ ਜੋੜਫਲ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ? [ਟਿੱਪਣੀ : ਅਸੀਂ ਕੋਣਾਂ ਨੂੰ ∠1, ∠2, ∠3 ਆਦਿ ਨਾਲ ਅਤੇ ਉਸਦੇ ਮਾਪਾਂ ਨੂੰ m∠1, m∠2, m∠3 ਆਦਿ ਨਾਲ ਦਰਸਾਉਂਦੇ ਹਾਂ] ਇੱਕ ਚਤੁਰਭੁਜ ਦੇ ਚਾਰਾਂ ਕੋਣਾਂ ਦੇ ਮਾਪਾਂ ਦਾ ਜੋੜਫਲ _____ ਹੁੰਦਾ ਹੈ। ਤੁਸੀਂ ਇਸ ਨਤੀਜੇ 'ਤੇ ਹੋਰ ਵੀ ਕਈ ਤਰੀਕਿਆਂ ਨਾਲ ਪਹੁੰਚ ਸਕਦੇ ਹੋ।

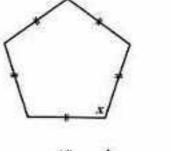

3. ਚਤੁਰਭੁਜ ABCD 'ਤੇ ਦੁਬਾਰਾ ਵਿਚਾਰ ਕਰੋ (ਚਿੱਤਰ 3.6)। ਮੰਨ ਲਵੇ ਇਸਦੇ ਅੰਦਰਲੈ ਭਾਗ ਵਿੱਚ ਕੋਈ ਬਿੰਦੂ P ਸਥਿਤ ਹੈ। P ਨੂੰ ਸਿਖਰਾਂ A. B. C ਅਤੇ D ਨਾਲ ਜੋੜੇ। ਚਿੱਤਰ ਵਿੱਚ, ΔPAB 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ x = 180° - m∠2 - m∠3; ਇਸੇ ਤਰ੍ਹਾਂ, ΔPBC, ਵਿੱਚ y = 180° - m∠4 - m∠5, ΔPCD ਵਿੱਚ z = 180° - m∠6 - m∠7 ਅਤੇ A ΔPDA. w = 180° - m∠8 - m∠1 ਇਸਦਾ ਉਪਯੋਗ ਕਰਕੇ ਕੁੱਲ ਮਾਪ m∠1 + m∠2 + ... + m∠8, ਪਤਾ ਕਰੋ। ਕੀ ਇਹ ਤੁਹਾਨੂੰ ਨਤੀਜੇ ਤਕ ਪਹੁੰਚਾਉਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ। ਯਾਦ ਰੱਖੋ, ∠x + ∠y + ∠z + ∠w = 360° ਹੈ।

4. ਇਹ ਸਾਰੇ ਚਤੁਰਭੁਜ ਉੱਤਲ (convex) ਚਤੁਰਭੁਜ ਹਨ। ਜੇ ਚਤੁਰਭੁਜ ਉੱਤਲ ਨਹੀਂ ਹੁੰਦੇ ਹਨ ਤਾਂ ਕੀ ਹੁੰਦਾ ? ਚਤੁਰਭੁਜ ABCD 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਇਸ ਨੂੰ ਦੋ ਤਿਭੁਜਾਂ ਵਿੱਚ ਵੰਡੋ ਅਤੇ ਫਿਰ ਕੋਣਾਂ ਦਾ ਜੋੜਫਲ ਪਤਾ ਕਰੋ ? (ਚਿੱਤਰ 3.7)

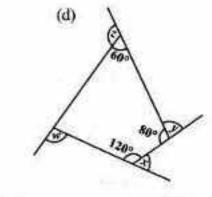

2. ਹੇਠਾਂ ਲਿਖਿਆਂ ਵਿੱਚ ਕਿੰਨੇ ਵਿਕਰਨ ਹਨ?

(a) ਇੱਕ ਉੱਤਲ ਚਤੁਰਭੁਜ (b) ਇੱਕ ਸਮਛੇਭੁਜ (c) ਇੱਕ ਤ੍ਰਿਭੁਜ


3. ਉੱਤਲ ਚਤੁਰਭੂਜਾਂ ਦੇ ਕੋਣਾਂ ਦੇ ਮਾਪਾਂ ਦਾ ਜੋੜਫਲ ਕੀ ਹੈ ? ਜੇ ਚਤੁਰਭੁਜ, ਉੱਤਲ ਨਾ ਹੋਵੇ 'ਤੇ ਕੀ ਇਹ ਗੁਣ ਲਾਗੂ ਹੋਵੇਗਾ ? (ਇੱਕ ਚਤੁਰਭੁਜ ਬਣਾਉ ਜੋ ਉੱਤਲ ਨਾ ਹੋਵੇ ਅਤੇ ਕੋਸ਼ਿਸ਼ ਕਰੋ।)


46 🔳 ਗਣਿਤ

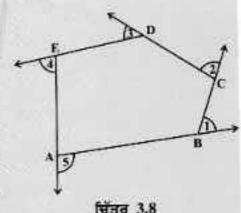
ਚਿੱਤਰ	$ \Delta $		\bigcirc	
ब्रुसा	3	4	5	6
ਕੋਣਾਂ ਦਾ ਜੋਤਵਲ	180°	$2 \times 180^{\circ}$ = (4 - 2) × 180°	$3 \times 180^{\circ}$ = $(5 - 2) \times 180^{\circ}$	$4 \times 180^{\circ}$ = (6 - 2) × 180
ห์ใชพา (a) 7	ਹੋਠਾਂ ਲਿਖੀਆਂ ਹਟ	(b) 8	(c) 10	
ਸੰਖਿਆ (a) 7 5. ਸਮ ਬਹੁ	ਹੇਠਾਂ ਲਿਖੀਆਂ ਹਨ ਭੁਜ ਕੀ ਹੈ ? ਇੱਕ	5?	(c) 10 ਸੋ ਜਿਸ ਵਿੱਚ	ਸ਼ਸਦੀਆਂ ਭੁਜਾਵਾਂ ਦ (d) n


7.

(b)

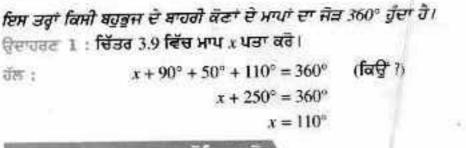
60°

(b) x + y + z + w ਪਤਾ ਕਰੋ।


ਚਤਰਭਜਾਵਾਂ ਨੂੰ ਸਮਝਣਾ 🔳 47

3.3 ਇੱਕ ਬਹੁਤੁਜ ਦੇ ਬਾਹਰੀ ਕੋਣਾਂ ਦੇ ਸਾਂਬਾਂ ਦਾ ਜੋੜ

ਕਈ ਮੌਕਿਆਂ 'ਤੇ ਬਾਹਰੀ ਕੋਣਾਂ ਦੀ ਜਾਣਕਾਰੀ ਅੰਦਰਲੇ ਕੋਣਾਂ ਅਤੇ ਭੁਜਾਵਾਂ ਦੀ ਪ੍ਰਾਕ੍ਰਿਤੀ 'ਤੇ ਚਾਨਣਾ ਪਾਉਂਦੀ ਹੈ।

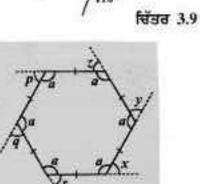

ਇਸ ਤਰ੍ਹਾਂ ਕਰੋ

ਇੱਕ ਚਾਕ ਦੇ ਟੁੱਕੜੇ ਨਾਲ ਫਰਸ਼ ਤੇ ਇੱਕ ਬਹੁਭੂਜ ਬਣਾਉ। (ਚਿੱਤਰ ਵਿੱਚ, ਇੱਕ ਪੰਜਭਜ ABCDE ਦਰਸਾਇਆ ਗਿਆ ਹੈ) (ਚਿੱਤਰ 3.8)। ਅਸੀਂ ਸਾਰੇ ਕੋਣਾਂ ਦੇ ਮਾਪਾਂ ਦਾ ਜੋੜ ਜਾਣਨਾ ਚਾਹੁੰਦੇ ਹਾਂ, ਜਿਵੇਂ ਕਿ m∠1 + m∠2 + m∠3 + m∠4 + m∠5 ਹੈ। A ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ ਅਤੇ AB ਦੀ ਦਿਸ਼ਾ ਅਨੁਸਾਰ ਚੱਲੋ। B 'ਤੇ ਪਹੁੰਚਣ ਤੋਂ ਬਾਅਦ ਤੁਹਾਨੂੰ ਕੋਣ m∠1 'ਤੇ ਘੁੰਮਣ ਦੀ ਲੋੜ ਹੈ। ਜਿਸ ਨਾਲ ਤੁਸੀਂ BC ਦੀ ਦਿਸ਼ਾ ਅਨੁਸਾਰ ਚੱਲ ਸਕੋ C 'ਤੇ ਪਹੁੰਚਣ 'ਤੇ, CD ਦੀ ਦਿਸ਼ਾ ਅਨੁਸਾਰ ਚੱਲਣ ਲਈ ਤੁਹਾਨੂੰ m∠2 'ਤੇ ਘੁੰਮਣ ਦੀ ਲੋੜ ਹੈ। ਤੁਸੀਂ ਇਸ ਤਰੀਕੇ ਨਾਲ ਚੱਲਣਾ ਜਾਹੀ ਰੱਖੋ ਜਦੋਂ ਰੱਕ ਤੁਸੀਂ A 'ਤੇ ਨਹੀਂ ਪਹੁੰਚ ਜਾਂਦੇ। ਅਸਲ ਵਿੱਚ, ਇਸ ਤਰ੍ਹਾਂ ਨਾਲ ਤੁਸੀਂ ਇੱਕ ਪੂਰਾ ਚੱਕਰ ਘੁੰਮ ਲਿਆ ਹੈ।

ਇਸ ਲਈ, m∠1 + m∠2 + m∠3 + m∠4 + m∠5 = 360° ਹੈ।

ਇੱਕ ਬਹੁਭੂਜ ਦੀਆਂ ਚਾਹੇ ਕਿੰਨੀਆਂ ਵੀ ਬਹੁਭੂਜਾਵਾਂ ਹੋਣ ਉਹਨਾਂ ਸਾਰਿਆਂ ਲਈ ਇਹ ਸਹੀ ਹੈ।

ਇੱਕ ਸਮ ਛੇਭਜ ਲਵੋਂ (ਚਿੱਤਰ 3.10)।


(i) ਬਾਹਰੀ ਕੋਣ x, y, z, p, q ਅਤੇ r ਦੇ ਮਾਪਾਂ ਦਾ ਜੋੜ ਕੀ ਹੈ?

(ii) all $x = y = z = p = q = r \partial ?$ all $q = r \partial ?$

(iii) ਹਰ ਇੱਕ ਦਾ ਮਾਪ ਕੀ ਹੈ?

(ii) ਅੰਦਰਲਾ ਕੋਣ (i) ਬਾਹਰੀ ਕੋਣ (iv) ਇਸ ਕਿਰਿਆ ਨੂੰ ਹੇਠਾਂ ਲਿਖਿਆਂ ਦੇ ਲਈ ਦੁਹਰਾਉ :

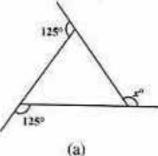
(ii) ਇੱਕ ਸਮ 20 ਭਜ (i) ਇੱਕ ਸਮ ਅੱਠਭਜ

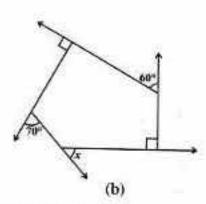
50

ਚਿੱਤਰ 3.10

ਉਦਾਹਰਟ 2 : ਇੱਕ ਸਮ ਬਹੁਭੂਜ ਦੀਆਂ ਭੂਜਾਵਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜਿਸਦੇ ਹਰੇਕ ਬਾਹਰੀ ਕੋਣ ਦਾ ਮਾਪ 45° ਹੈ।

ਹੱਲ : ਸਾਰੇ ਬਾਹਰੀ ਕੋਣਾਂ ਦੀ ਕੱਲ ਮਾਪ = 360° ਹਰੇਕ ਬਾਹਰੀ ਕੋਣ ਦਾ ਮਾਪ = 45°


48 🎟 ਗਣਿਤ


ਇਸ ਲਈ, ਬਾਹਰੀ ਕੋਣਾਂ ਦੀ ਸੰਖਿਆ = $\frac{360}{45}$ = 8 ਇਸ ਤਰ੍ਹਾਂ ਬਹੁਭੁਜ ਦੀਆਂ 8 ਭੁਜਾਵਾਂ ਹਨ।

শ্বিস্পাস 3.2

ਹੇਠਾਂ ਦਿੱਤੇ ਚਿੱਤਰਾਂ ਵਿੱਚ x ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।

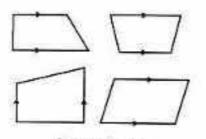
ਇੱਕ ਸਮ ਬਹੁਭੁਜ ਦੇ ਹਰੇਕ ਬਾਹਰੀ ਕੋਣ ਦਾ ਮਾਪ ਪਤਾ ਕਰੋ ਜਿਸਦੀਆਂ
 (i) 9 ਭੁਜਾਵਾਂ
 (ii) 15 ਭੁਜਾਵਾਂ ਹਨ।

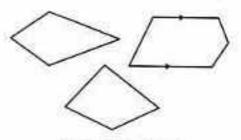
ਇੱਕ ਸਮ ਬਹੁਭੁਜ ਦੀਆਂ ਕਿੰਨੀਆਂ ਭੁਜਾਵਾਂ ਹਨ ਜੇਕਰ ਇੱਕ ਬਾਹਰੀ ਕੋਣ ਦਾ ਮਾਪ 24° ਹੈ ?

4. ਇੱਕ ਸਮ ਬਹੁਭੁਜ ਦੀਆਂ ਭੁਜਾਵਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜੇਕਰ ਇਸਦਾ ਹਰੇਕ ਅੰਦਰਲਾ ਕੋਣ 165° ਦਾ ਹੈ?

5. (a) ਕੀ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਸਮ ਬਹੁਭੁਜ ਸੰਭਵ ਹੈ ਜਿਸਦੇ ਹਰੇਕ ਬਾਹਰੀ ਕੋਣ ਦਾ ਮਾਪ 22° ਹੈ ?
 (b) ਕੀ ਇਹ ਕਿਸੇ ਸਮ ਬਹੁਭੁਜ ਦਾ ਅੰਦਰਲਾ ਕੋਣ ਹੋ ਸਕਦਾ ਹੈ ? ਕਿਉਂ ?

6. (a) ਕਿਸੇ ਸਮ ਬਹੁਭੁਜ ਵਿੱਚ ਘੱਟ ਤੋਂ ਘੱਟ ਕਿੰਨੇ ਮੁੱਲ ਦਾ ਔਦਰਲਾ ਕੋਣ ਸੰਭਵ ਹੈ ? ਕਿਉਂ ?


(b) ਕਿਸੇ ਸਮ ਬਹੁਭੂਜ ਵਿੱਚ ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ ਕਿੰਨੇ ਮੁੱਲ ਦਾ ਬਾਹਰੀ ਕੋਣ ਸੰਭਵ ਹੈ ?


3.4 ਚਤੁਰਭੁਜਾਂ ਦੀਆਂ ਕਿਸਮਾਂ

ਇੱਕ ਚਤੁਰਭੁਜ ਦੀਆਂ ਭੁਜਾਵਾਂ ਅਤੇ ਕੋਣਾਂ ਦੀ ਪ੍ਰਕਿਰਤੀ ਦੇ ਆਧਾਰ 'ਤੇ ਇਹਨਾਂ ਨੂੰ ਖਾਸ ਨਾਂ ਦਿੱਤੇ ਗਏ ਹਨ।

3.4.1 ਸਮਲੰਬ

ਸਮਲੰਬ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਚਤੁਰਭੁਜ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਭੁਜਾਵਾਂ ਦਾ ਇੱਕ ਜੋੜਾ ਸਮਾਂਤਰ ਹੁੰਦਾ ਹੈ।

ਇਹ ਸਮਲੰਬ ਹਨ

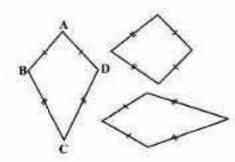
ਇਹ ਸਮਲੰਬ ਨਹੀਂ ਹਨ

ਉਪਰੋਕਤ ਚਿੱਤਰਾਂ ਦਾ ਅਧਿਐਨ ਕਰੋ ਅਤੇ ਆਪਣੇ ਮਿੱਤਰਾਂ ਦੇ ਨਾਲ ਚਰਚਾ ਕਰੋ ਕਿ ਕਿਉਂ ਇਹਨਾਂ ਵਿੱਚ ਕੁਝ ਸਮਲੰਬ ਹਨ ਅਤੇ ਕੁਝ ਸਮਲੰਬ ਨਹੀਂ ਹਨ।(ਸੰਕੇਤ : *ਤੀਰ ਦਾ ਨਿਸ਼ਾਨ ਸਮਾਂਤਰ ਰੇਖਾਵਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ*।)

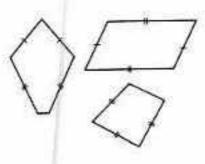
ਚਤੁਰਭੁਜਾਵਾਂ ਨੂੰ ਸਮਝਣਾ 🔳 49

 ਸਮਾਨ ਸਰਬੰਗਸਮ ਤ੍ਰਿਭੁਜਾਂ ਦੇ ਕੱਟੇ ਹੋਏ ਭਾਗ ਲਵੇ ਜਿਨ੍ਹਾਂ ਦੀਆਂ ਭੁਜਾਵਾਂ 3 cm, 4 cm, 5 cm ਹਨ। ਇਹਨਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਸੈੱਟ ਕਰੋ ਜਿਵੇਂ ਕਿ ਇਹ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ (ਚਿੱਤਰ 3.11)।

ਤੁਹਾਨੂੰ ਇੱਕ ਸਮਲੰਬ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।(ਨਿਗੇਖਣ ਕਰੋ)


ਇੱਥੇ ਕਿਹੜੀਆਂ ਭੁਜਾਵਾਂ ਸਮਾਂਤਰ ਹਨ ? ਕੀ ਅਸਮਾਂਤਰ ਭੁਜਾਵਾਂ ਬਹਾਬਰ ਮਾਪ ਦੀਆਂ ਹੋਣੀਆਂ ਚਾਹੀਦੀਆਂ ਹਨ ?

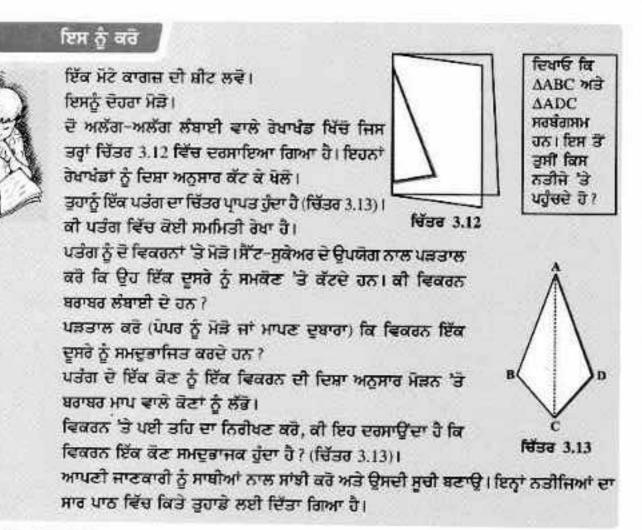
ਇਹਨਾਂ ਸਮਾਨ ਤ੍ਰਿਭੂਜਾਂ ਦੇ ਸਮੂਹ ਦਾ ਉਪਯੋਗ ਕਰੇ ਤੁਸੀਂ ਦੇ ਹੋਰ ਸਮਲੰਬ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹੋ। ਇਹਨਾਂ ਨੂੰ ਲੱਭੋ ਅਤੇ ਉਹਨਾਂ ਚਿੱਤਰਾਂ ਦੀ ਚਰਚਾ ਕਰੇ।


2. ਆਪਣੇ ਅਤੇ ਆਪਣੇ ਮਿੱਤਰਾਂ ਦੇ ਜੁਮੈਟਰੀ ਬਾਕਸ ਵਿੱਚੋਂ ਚਾਰ ਸੈੱਟ-ਸੁਕੇਅਰ ਲਵੇ। ਇਹਨਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਗਿਣਤੀ ਵਿੱਚ ਵਰਤ ਕੇ ਨਾਲ-ਨਾਲ ਰੱਖੋਂ ਅਤੇ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੇ ਸਮਲੰਬ ਪ੍ਰਾਪਤ ਕਰੋ। ਜੇ ਸਮਲੰਬ ਦੀ ਅਸਮਾਂਤਰ ਭੁਜਾਵਾਂ ਬਰਾਬਰ ਲੰਬਾਈ ਦੀਆਂ ਹੋਣ ਤਾਂ ਅਸੀਂ ਇਸ ਨੂੰ ਸਮਦੋਭੁਜੀ ਸਮਲੰਬ ਕਹਿੰਦੇ ਹਾਂ। ਕੀ ਤੁਸੀਂ ਉੱਪਰ ਦਿੱਤੇ ਗਏ ਆਪਣੇ ਨਿਰੀਖਣ ਵਿੱਚ ਕੋਈ ਸਮਦੋਭੁਜੀ ਸਮਲੰਬ ਪ੍ਰਾਪਤ ਕੀਤਾ ਹੈ।

3.4.2 **ਪਤੰਗ**

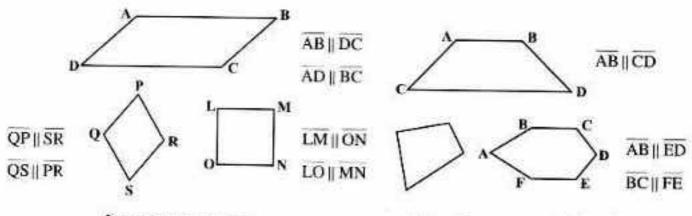
ਪਤੰਗ ਇੱਕ ਖਾਸ ਤਰ੍ਹਾਂ ਦਾ ਚਤੁਰਭੁਜ ਹੈ। ਹਰੇਕ ਚਿੱਤਰ ਵਿੱਚ ਇੱਕੋ ਜਿਹੇ ਚਿੰਨ੍ਹ ਬਰਾਬਰ ਭੁਜਾਵਾਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ।ਉਦਾਹਰਣ AB = AD ਅਤੇ BC = CD

ਇਹ ਪਤੰਗ ਹਨ



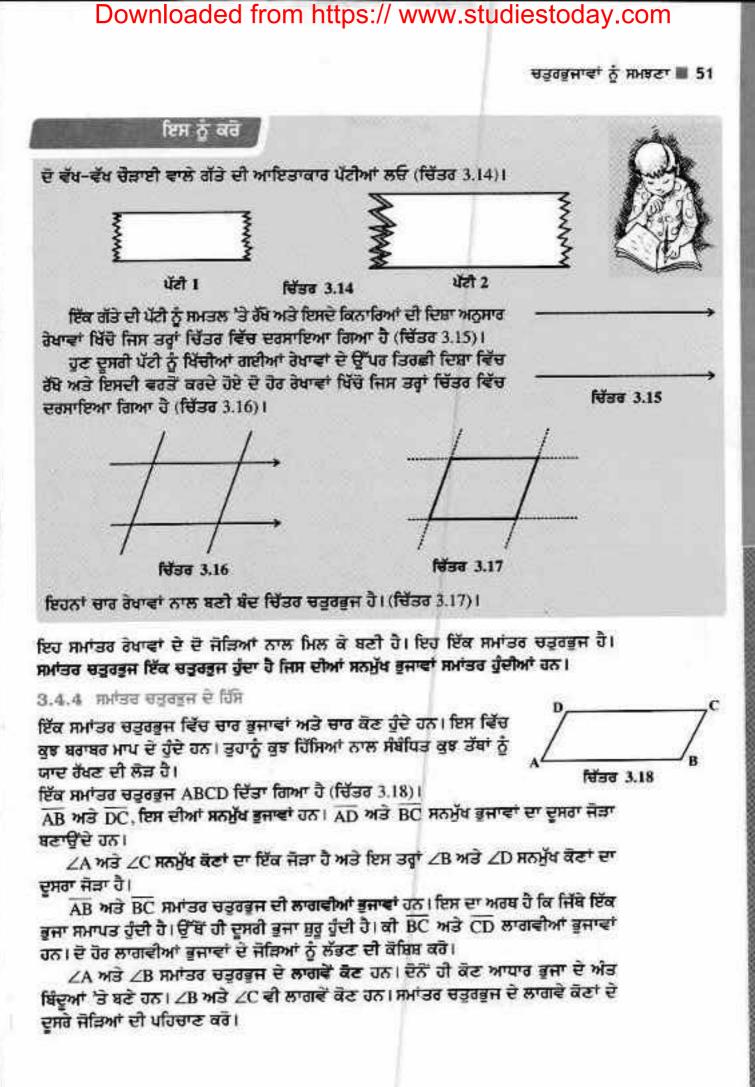
ਇਹ ਪਤੰਗ ਨਹੀਂ ਹਨ

ਇਹਨਾਂ ਚਿੱਤਰਾਂ ਦਾ ਅਧਿਐਨ ਕਰੋ ਅਤੇ ਇਹ ਦੱਸਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ ਕਿ ਪਤੰਗ ਕੀ ਹੈ। ਨਿਰੀਖਣ ਕਰੋ ਕਿ :

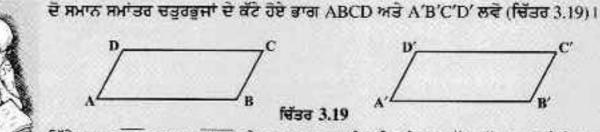

- (i) ਇੱਕ ਪਤੰਗ ਵਿੱਚ 4 ਭੁਜਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਹ ਇੱਕ ਚਤੁਰਭੁਜ ਹੈ।
- (ii) ਇਸ ਵਿੱਚ ਅਲੱਗ-ਅਲੱਗ ਲਾਗਵੀਆਂ ਭੁਜਾਵਾਂ ਦੇ ਦੋ ਜੋੜੇ ਹੁੰਦੇ ਹਨ ਜਿਨ੍ਹਾਂ ਦੀ ਲੰਬਾਈ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।

50 🔳 ਗਣਿਤ

3.4.3 ਸਮਾਂਤਰ ਚਤੁਰਭਜ


ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਇੱਕ ਚਤੁਰਭੁਜ ਹੀ ਹੈ। ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਨਾਂ ਤੋਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਇਸਦਾ ਸੰਬੰਧ ਸਮਾਂਤਰ ਰੇਖਾਵਾਂ ਨਾਲ ਹੈ।

ਇਹ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਹਨ


ਇਹ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਨਹੀਂ ਹਨ

ਇਹਨਾਂ ਚਿੱਤਰਾਂ ਦਾ ਅਧਿਐਨ ਕਰੋ ਅਤੇ ਆਪਣੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਦੱਸਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ ਕਿ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਕੀ ਹੈ। ਆਪਣੇ ਨਤੀਜੇ ਨੂੰ ਆਪਣੇ ਮਿੱਤਰਾਂ ਨਾਲ ਸਾਂਝਾ ਕਰੋ।

52 🖩 ਗਣਿਤ

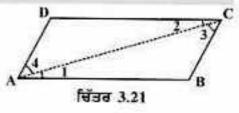
ਇਸ ਨੂੰ ਕਰੋ

ਇੱਥੇ ਭੂਜਾ AB , ਭੂਜਾ A'B' ਦੇ ਸਮਾਨ ਹਨ ਪਰੰਤੂ ਇਸਦੇ ਨਾਂ ਵੱਖ-ਵੱਖ ਹਨ। ਇਸੇ ਤਰ੍ਹਾਂ ਦੂਸਰੀਆਂ ਸੰਗਤ ਭੁਜਾਵਾਂ ਵੀ ਸਮਾਨ ਹਨ।

A'B' ਨੂੰ DC ਦੇ ਉੱਪਰ ਰੱਖੋ। ਕੀ ਉਹ ਇੱਕ ਦੂਸਰੇ ਨੂੰ ਪੂਰੀ ਤਰ੍ਹਾਂ ਢੱਕਦੀਆਂ ਹਨ। ਹੁਣ ਤੁਸੀਂ AB ਅਤੇ DC ਦੀ ਲੰਬਾਈ ਦੇ ਬਾਰੇ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ?

ਇਸ ਤਰ੍ਹਾਂ AD ਅਤੇ BC ਦੀ ਲੰਬਾਈ ਦੀ ਪੜਤਾਲ ਕਰੋ। ਤੁਹਾਨੂੰ ਕੀ ਪਤਾ ਲੱਗਦਾ ਹੈ?

ਤੁਸੀਂ AB ਅਤੇ DC ਨੂੰ ਮਾਪ ਕੇ ਇਸ ਨਤੀਜੇ 'ਤੇ ਪਹੁੰਚ ਸਕਦੇ ਹੋ।


ਗੁਣ : ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਦੀਆਂ ਸਨਮੁੱਖ ਭੁਜਾਵਾਂ ਬਰਾਬਰ ਮਾਪ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।

वेसिस वर्वे

30° – 60° – 90° ਕੋਣਾਂ ਵਾਲੇ ਦੋ ਇਕੋ ਜਿਹੇ ਸੈੱਟ-ਸੁਕੇਅਰ ਲਵੋ। ਇਹਨਾਂ ਨੂੰ ਆਪਸ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਮਿਲਾ ਕੇ ਰੱਖੋ ਜਿਸ ਨਾਲ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਬਣ ਜਾਵੇ (ਚਿੱਤਰ 3.20) ਕੀ ਇਹ ਉੱਪਰ ਦੱਸੇ ਗਏ ਗੁਣ ਨੂੰ ਸਾਬਤ ਕਰਨ ਵਿੱਚ ਤੁਹਾਡੀ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ?

ਤੁਸੀਂ ਤਰਕ ਅਤੇ ਵਿਚਾਰ ਨਾਲ ਇਸ ਸੰਕਲਪ ਨੂੰ ਹੋਰ ਪ੍ਰਭਾਵ ਵਾਲਾ ਬਣਾ ਸਕਦੇ ਹੋ। ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ABCD 'ਤੇ ਵਿਚਾਰ ਕਰੋ। (ਚਿੱਤਰ 3.21)।

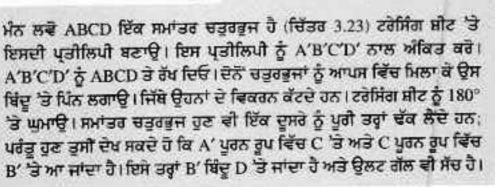


ਇੱਕ ਵਿਕਰਨ, AC ਖਿੱਚੋ

ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ∠1 = ∠2 ਅਤੇ ∠3 = ∠4 (ਕਿਉਂ ?)

ਕਿਉਂਕਿ ਤ੍ਰਿਭੁਜ ABC ਅਤੇ ADC ਵਿੱਚ ∠I = ∠2, ∠3 = ∠4 ਅਤੇ AC ਅਧਾਰ ਹੈ ਇਸ ਲਈ ASA ਸਰਬੰਗਸਮਤਾ ਗੁਣ ਨਾਲ

∆ ABC ≅ ∆ CDA (ਇੱਥੇ ASA ਗੁਣ ਕਿਸ ਤਰ੍ਹਾਂ ਵਰਤਿਆ ਗਿਆ ?) ਇਸ ਤਰ੍ਹਾਂ AB = DC ਅਤੇ BC = AD. ਉਦਾਹਰਣ 3 : ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ PQRS ਦਾ ਪਰਿਮਾਪ ਪਤਾ ਕਰੋ (ਚਿੱਤਰ 3.22)। ਹੱਲ : ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਵਿੱਚ, ਸਨਮੁੱਖ ਭੁਜਾਵਾਂ ਬਰਾਬਰ ਲੰਬਾਈ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਲਈ, PQ = SR = 12 cm ਅਤੇ QR = PS = 7 cm


ਚਤੁਰਭੁਜਾਵਾਂ ਨੂੰ ਸਮਝਣਾ 🖩 53

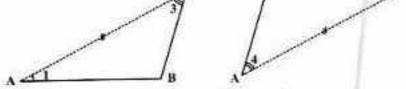
ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਮਾਪ = PQ + QR + RS + SP = 12 cm + 7 cm + 12 cm + 7 cm = 38 cm

ਇਸ ਨੂੰ ਕਰੋ

3.4.5 ਸਮਾਂਤਰ ਚਤੁਰਤੁਜ ਦੇ ਕੋਟ

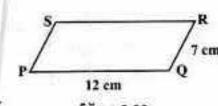
ਅਸੀਂ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਦੀਆਂ ਸਨਮੁੱਖ ਭੁਜਾਵਾਂ ਨਾਲ ਸੰਬੰਧਿਤ ਇੱਕ ਗੁਣ ਦਾ ਅਧਿਐਨ ਕੀਤਾ। ਅਸੀਂ ਕੋਣਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੀ ਕਹਿ ਸਕਦੇ ਹਾਂ ?

ਕੀ ਇਹ ਕੋਣ A ਅਤੇ ਕੋਣ C ਦੇ ਮਾਪਾਂ ਬਾਰੇ ਤੁਹਾਨੂੰ ਕੁਝ ਦੱਸਦਾ ਹੈ ? ਕੋਣ B ਅਤੇ D ਦੇ ਮਾਪਾਂ ਦੇ ਲਈ ਪੜਤਾਲ ਕਰੋ। ਆਪਣੇ ਸਿੱਟੇ ਦੀ ਚਰਚਾ ਕਰੋ। ਗੁਣ : ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਦੇ ਸਨਮੁੱਖ ਕੋਣ ਬਰਾਬਰ ਮਾਪ ਦੇ ਹੁੰਦੇ ਹਨ।

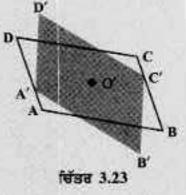

ਕੋਸ਼ਿਸ਼ ਕਰੋ

30° – 60° – 90° ਕੋਣਾਂ ਵਾਲੇ ਦੋ ਸਮਾਨ ਸੈੱਟ-ਸ਼ੁਕੇਅਰ ਲੈ ਕੇ ਪਹਿਲੇ ਦੀ ਤਰ੍ਹਾਂ ਹੀ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਬਣਾਉ। ਕੀ ਪ੍ਰਾਪਤ ਚਿੱਤਰ ਉੱਤੇ ਦੱਸੇ ਗਏ ਗੁਣ ਨੂੰ ਸਾਬਤ ਕਰਨ ਵਿੱਚ ਤੁਹਾਡੀ ਸਹਾਇਤਾ ਕਰਦੀ ਹੈ ?

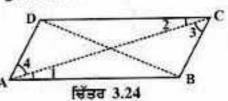
ਤੁਸੀਂ ਇਸ ਸੈਕਲਪ ਨੂੰ ਤਰਕ-ਵਿਤਰਕ ਨਾਲ ਵੀ ਸਾਬਤ ਕਰ ਸਕਦੇ ਹੋ।

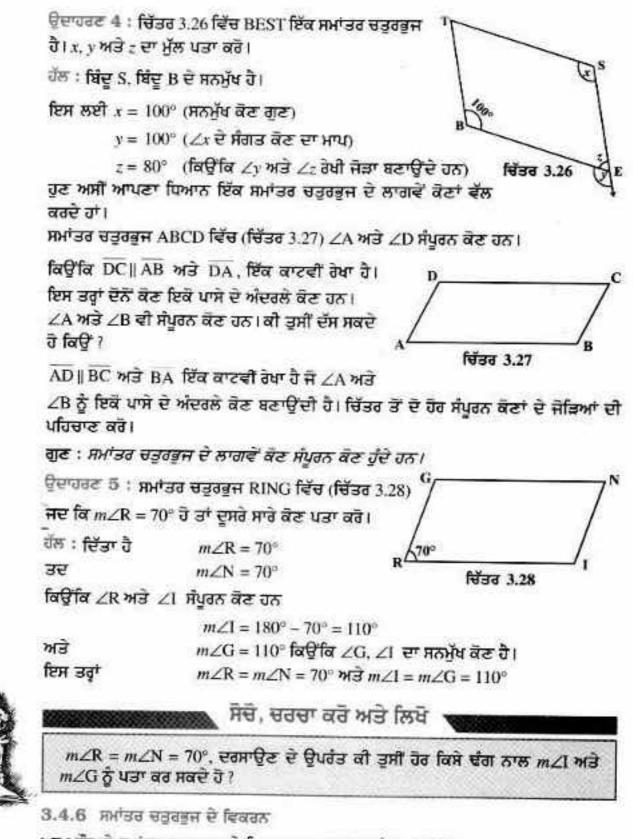

ਜੇ AC ਅਤੇ BD ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਦੇ ਵਿਕਰਨ ਹੋਣ (ਚਿੱਤਰ 3.24) ਤਾਂ ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ

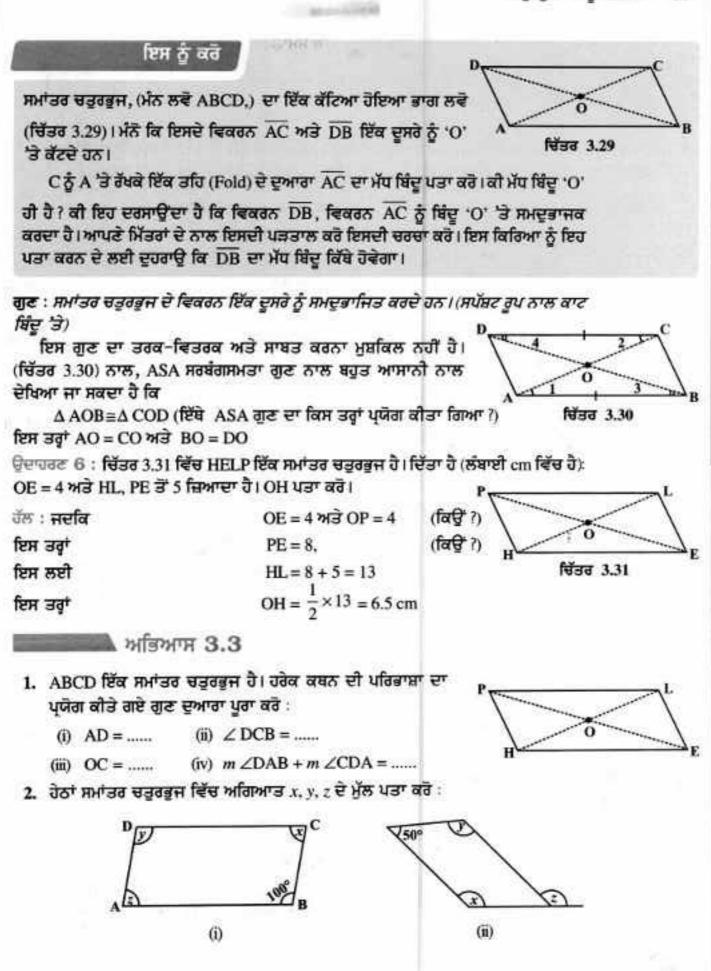
 $\angle 1 = \angle 2$ ਅਤੇ $\angle 3 = \angle 4$ (ਕਿਉਂ?) Δ ABC ਅਤੇ Δ ADC ਦਾ ਵੱਖ-ਵੱਖ ਅਧਿਐਨ ਕਰਨ 'ਤੇ ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ (ਚਿੱਤਰ 3.25) ASA ਸਰਬੰਗਸਮਤਾ ਗੁਣ ਦੁਆਰਾ Δ ABC = Δ CDA (ਕਿਸ ਤਰ੍ਹਾਂ) ag

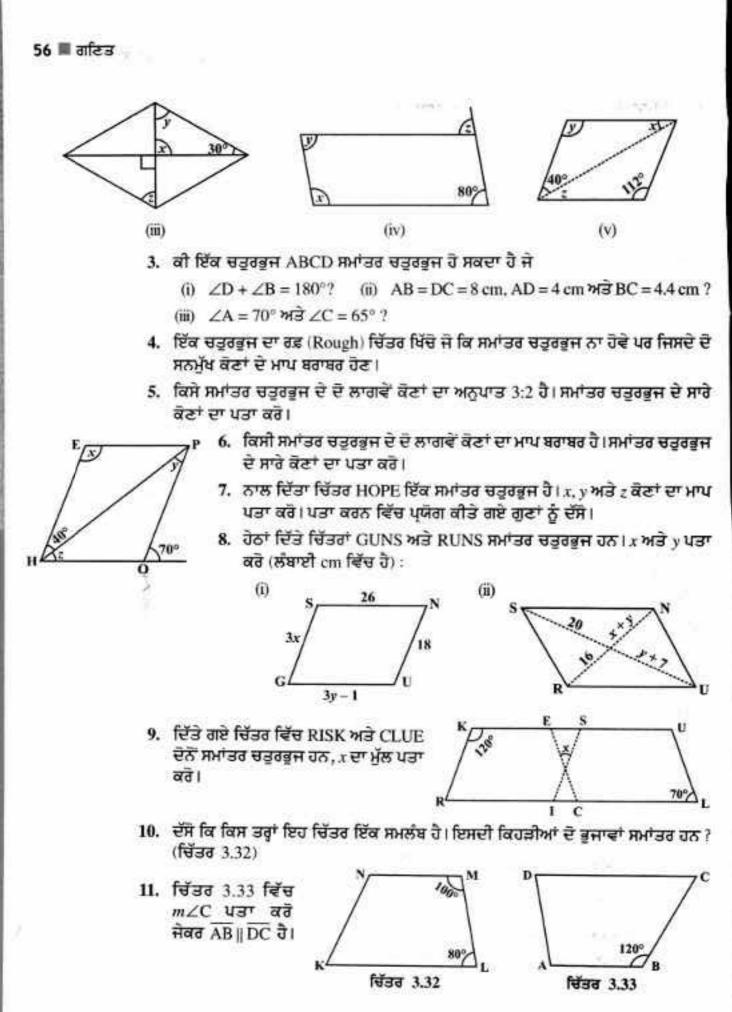


ਚਿੱਤਰ 3.25


ਇਸ ਤੋਂ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ ∠B ਅਤੇ ∠D ਸਮਾਨ ਮਾਪ ਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਤੁਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹੋ m∠A = m∠C

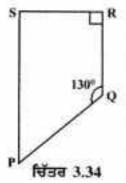



54 🔳 ਗਣਿਤ

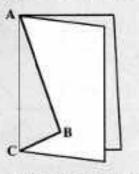


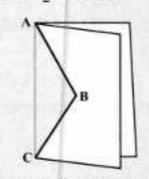
ਆਮ ਤੌਰ ਤੇ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਦੇ ਵਿਕਰਨ ਬਰਾਬਰ ਮਾਪ ਦੇ ਨਹੀਂ ਹੁੰਦੇ। (ਕੀ ਤੁਸੀਂ ਆਪਣੀਆਂ ਪੂਰਵ ਕਿਰਿਆਵਾਂ ਵਿੱਚ ਇਸ ਦੀ ਪੜਤਾਲ ਕੀਤੀ?) ਫਿਰ ਵੀ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਦੇ ਵਿਕਰਨਾਂ ਵਿੱਚ ਇੱਕ ਰੋਚਕ ਗੁਣ ਹੁੰਦਾ ਹੈ।

ਚਤੁਰਭੁਜਾਵਾਂ ਨੂੰ ਸਮਝਣਾ 🔳 55



ਚਤੁਰਭੁਜਾਵਾਂ ਨੂੰ ਸਮਝਣਾ 🔳 57

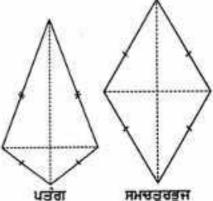

- 12. ਚਿੱਤਰ 3.34 ਵਿੱਚ ∠P ਅਤੇ ∠S ਦਾ ਮਾਪ ਪਤਾ ਕਰੋ ਜੇ SP || RO ਹੈ। (ਜੇਕਰ ਤੁਸੀਂ m∠R, ਪਤਾ ਕਰਦੇ ਹੈ, ਤਾਂ ਕੀ m∠P ਨੂੰ ਪਤਾ ਕਰਨ ਦੇ ਇੱਕ ਨਾਲੋਂ ਜ਼ਿਆਦਾ ਢੰਗ ਹਨ ?)
- 3.5 ਕੁਝ ਖਾਸ ਸਮਾਂਤਰ ਚਤਰਭਜ
- 3.5.1 ਸਮਚਤਰਤਜ


ਪਤੰਗ (ਜੋ ਕਿ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭਜ ਨਹੀਂ ਹੈ) ਦੀ ਇੱਕ ਖਾਸ ਸਥਿਤੀ ਦੇ ਵਿੱਚ ਸਾਨੂੰ ਇੱਕ ਸਮਚਤਰਭਜ (Rhombus) ਜੋ ਕਿ ਇੱਕ ਸਮਾਂਤਰ ਚਤਰਭਜ ਵੀ ਹੈ, ਪਾਪਤ ਹੁੰਦਾ ਹੈ।

ਇਸ ਨੂੰ ਕਰੇ

ਤਹਾਡੇ ਦੁਆਰਾ ਕਾਗਜ਼ ਨਾਲ ਕੱਟਕੇ ਪਹਿਲਾਂ ਬਣਾਈ ਗਈ ਪਤੰਗ ਨੂੰ ਯਾਦ ਕਰੋ।

धर्त्रेग बॅट (Kite-cut)


ਸਮਚਤਰਭਜ ਕੱਟ (Rhombus-cut)

ਜੇਕਰ ਤੁਸੀਂ ABC ਨੂੰ ਦਿਸ਼ਾ ਅਨੁਸਾਰ ਕੱਟਕੇ ਖੋਲਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਇੱਕ ਪਤੰਗ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹੋ। ਇੱਥੇ ਲੰਬਾਈ AB ਅਤੇ BC ਵੱਖ-ਵੱਖ ਸੀ।ਜੇਕਰ ਤੁਸੀਂ AB = BC ਖਿੱਚਦੇ ਹੋ ਤਾਂ ਪ੍ਰਾਪਤ ਕੀਤੀ ਗਈ ਪਤੰਗ ਇੱਕ ਸਮਚਤਰਭਜ ਕਹਾਉਂਦਾ ਹੈ।

ਧਿਆਨ ਦਿਓ ਕਿ ਸਮਚਤੁਰਭੁਜ ਦੀਆਂ ਸਾਹੀਆਂ ਭੁਜਾਵਾਂ ਦੀ ਬਰਾਬਰ ਲੰਬਾਈ ਹੁੰਦੀ ਹੈ ਪਰੰਤੂ ਪਤੰਗ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਨਹੀਂ ਹੈ। ਸਮਚਤੁਰਭੁਜ ਇੱਕ ਚਤੁਰਭੁਜ ਹੈ ਜਿਸ ਦੀਆਂ ਸਾਰੀਆਂ ਭੁਜਾਵਾਂ ਬਰਾਬਰ ਲੰਬਾਈ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।

ਕਿਉਂਕਿ ਸਮਚਤੂਰਭੁਜ ਦੀ ਸਨਮੁੱਖ ਭੁਜਾਵਾਂ ਬਰਾਬਰ ਲੰਬਾਈ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਇਹ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਵੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ *ਇੱਕ ਸਮਚਤੁਰਭੁਜ* ਵਿੱਚ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਅਤੇ ਇੱਕ ਪਤੰਗ ਦੇ ਸਾਰੇ ਗੁਣ ਮੌਜ਼ੂਦ ਹਨ। ਉਹਨਾਂ ਦੀ ਸੂਚੀ ਤਿਆਰ ਕਰਨ ਦਾ ਯਤਨ ਕਰੋ। ਤਦ ਤੁਸੀਂ ਆਪਣੀ ਸੂਚੀ ਪੁਸਤਕ ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਪੜਤਾਲ ਸੂਚੀ ਦੇ ਨਾਲ ਮਿਲਾ ਕੇ ਪੁਸ਼ਟੀ ਕਰ ਸਕਦੇ ਹੋ। ਇੱਕ ਸਮਚਤੂਰਭੂਜ ਦਾ ਜ਼ਿਆਦਾ ਉਪਯੋਗੀ ਗੁਣ ਉਸਦੇ ਵਿਕਰਨਾਂ ਦਾ ਹੈ।

ਗੁਣ : ਇੱਕ ਸਮਚਤੁਰਭੁਜ ਦੇ ਵਿਕਰਨ ਇੱਕ ਦੂਜੇ ਦੇ ਲੰਬ ਸਮਦੁਭਾਜਕ ਹੁੰਦੇ ਹਨ।

ਸਮਚਤਰਭਜ

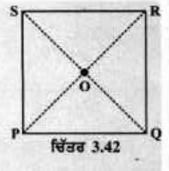
ਸਮਚਤੁਰਭੁਜ ਦੀ ਇੱਕ ਨਕਲ ਲਵੇ। ਪੇਪਰ ਨੂੰ ਮੋੜ ਕੇ ਪੜਤਾਲ ਕਰੋ ਕਿ ਕੀ ਕਾਟ ਬਿੰਦੂ ਹਰੇਕ ਵਿਕਰਨ ਦਾ ਮੱਧ ਬਿੰਦੂ ਹੈ। ਤੁਸੀਂ ਇੱਕ ਸੈੱਟ-ਸੁਕੇਅਰ ਦੇ ਕਿਨਾਰਿਆਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪੜਤਾਲ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਉਹ ਇੱਕ ਦੂਸਰੇ ਨੂੰ ਸਮਕੋਣ 'ਤੇ ਕੱਟਦੇ ਹਨ।

58 🔳 ਗਣਿਤ

ਤਰਕ-ਪੂਰਨ ਤੱਥਾਂ ਦਾ ਉਪਯੋਗ ਕਰ ਕੇ ਇੱਥੇ ਇੱਕ ਖਾਕਾ ਦਿੱਤਾ ਗਿਆ ਹੈ ਜੋ ਕਿ ਇਸ ਗਣ ਦੀ ਪੁਸ਼ਟੀ ਕਰਦਾ ਹੈ। ABCD ਇੱਕ ਸਮਚਤੁਰਭੁਜ ਹੈ (ਚਿੱਤਰ 3.35)। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਵੀ ਹੈ। ਕਿਉਂਕਿ ਵਿਕਰਨ ਇੱਕ ਦੂਸਰੇ ਨੂੰ ਸਮਦੁਭਾਜਿਤ ਕਰਦੇ ਹਨ, ਚਿੱਤਰ 3.35 ਇਸ ਲਈ OA = OC ਅਤੇ OB = OD विष्टेंबिAO =CO (विष्टें ?) ਅਸੀਂ ਇਹ ਦਰਸਾਉਣਾ ਹੈ ਕਿ m∠AOD = m∠COD = 90° ਹੈ। AD=CD (ag ?) SAS ਸਰਬੰਗਸਮਤਾ ਗੁਣ ਨਾਲ ਇਹ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ. OD = OD $\Delta AOD \equiv \Delta COD$ ਇਸ ਤਰਾਂ $m \angle AOD = m \angle COD$ ਕਿਉਂਕਿ ∠AOD ਅਤੇ ∠COD ਰੇਖੀ ਜੋੜਾ ਬਣਾਉਂਦੇ ਹਨ, $m \angle AOD = m \angle COD = 90^{\circ}$ ਉਦਾਹਰਣ 7 : RICE ਇੱਕ ਸਮਚਤੁਰਭੁਜ ਹੈ (ਚਿੱਤਰ 3.3\$)। x, y, ਅਤੇ z ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ਅਤੇ ਆਪਣੇ ਉੱਤਰ ਦੀ ਪਸ਼ਟੀ ਕਰੋ। ਹੱਲ : ਚਿੱਤਰ 3.36 x = OEਟ=ਸਮਚਤੁਰਭੁਜ ਦੀ ਭੁਜਾ v = OR= OI (ਵਿਕਰਨ =OC (ਵਿਕਰਨ = 13 (ਸਮਚਤਰਭਜ ਦੀ ਸਾਰੀਆਂ ਸਮਦੁਭਾਜਿਤ ਕਰਦੇ ਹਨ) ਸਮਦੁਭਾਜਿਤ ਕਰਦੇ ਹਨ) ਭਜਾਵਾਂ ਬਰਾਬਰ ਮਾਪ ਦੀਆਂ = 5 = 12ਹੰਦੀਆਂ ਹਨ। 3.5.2 ਇੱਕ ਆਇਤ ਆਇਤ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਹੈ ਜਿਸਦੇ ਸਾਰੇ ਕੋਣ ਸਮਾਨ xo x ਮਾਪ ਦੇ ਹੁੰਦੇ ਹਨ।(ਚਿੱਤਰ 3.37)। ਇਸ ਪਰਿਭਾਸ਼ਾ ਦਾ ਪੂਰਨ ਅਰਥ ਕੀ ਹੈ ? ਇਸਦੀ ਚਰਚਾ ਆਪਣੇ ਮਿੱਤਰਾਂ ਨਾਲ ਕਰੋ। ਜੇ ਆਇਤ ਸਮਾਨ ਕੋਣੀ ਹੋਵੇ ਤਾਂ ਹਰੇਕ ਕੋਣ ਦਾ ਮਾਪ ਕੀ ਹੈ ? ਮੰਨ ਲਉ ਹਰੇਕ ਕੋਣ ਦਾ ਮਾਪ x° ਹੈ। ਚਿੱਤਰ 3.37 ਤਾਂ $4x^{\circ} = 360^{\circ}$ (fag ?) ਇਸ ਲਈ $x^{0} = 90^{\circ}$ ਇਸ ਤਰ੍ਹਾਂ ਆਇਤ ਦਾ ਹਰੇਕ ਕੋਣ ਸਮਕੋਣ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇੱਕ ਆਇਤ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਹੁੰਦਾ ਹੈ ਜਿਸਦਾ ਹਰੇਕ ਕੋਣ ਸਮਕੋਣ ਹੁੰਦਾ ਹੈ। ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਹੋਣ ਦੇ ਕਾਰਨ ਆਇਤ ਦੀਆਂ ਸਨਮੁੱਖ ਭੁਜਾਵਾਂ ਬਰਾਬਰ ਲੰਬਾਈ ਦੀਆਂ

ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਵਿਕਰਨ ਇੱਕ ਦੂਸਰੇ ਨੂੰ ਸਮਦੁਭਾਜਿਤ ਕਰਦੇ ਹਨ। ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਵਿੱਚ ਵਿਕਰਨ ਵੱਖ-ਵੱਖ ਲੰਬਾਈ ਦੇ ਹੋ ਸਕਦੇ ਹਨ (ਪੜਤਾਲ ਕਰੋ) : ਪਰੰਤੂ ਆਇਤ ਦੇ (ਖਾਸ ਹਾਲਤ ਵਿੱਚ) ਵਿਕਰਨ ਬਰਾਬਰ ਮਾਪ (ਲੰਬਾਈ) ਦੇ ਹੁੰਦੇ ਹਨ।

ਗੁਣ : ਆਇਤ ਦੇ ਵਿਕਰਨ ਬਰਾਬਰ ਲੰਬਾਈ ਦੇ ਹੁੰਦੇ ਹਨ।



60 🔳 ਗਣਿਤ

ਇੱਕ ਵਰਗਾਕਾਰ ਸ਼ੀਟ, ਮੰਨ ਲਓ PQRS (ਚਿੱਤਰ 3.42)। ਦੋਨੋਂ ਵਿਕਰਨਾਂ ਦੀ ਦਿਸ਼ਾ ਅਨੁਸਾਰ ਤਹਿ (fold) ਲਗਾਉ। ਕੀ ਉਹਨਾਂ ਦੇ ਮੱਧ ਬਿੰਦੂ ਇਕੋ ਹੀ ਹਨ। (ਚਿੱਤਰ 3.42) ਸੈੱਟ-ਸੁਕੇਅਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪੜਤਾਲ ਕਰੋ, ਕੀ 'O' 'ਤੇ ਬਣਿਆ ਕੋਣ 90° ਦਾ ਹੈ। ਇਹ ਉੱਪਰ ਦੱਸੇ ਗਏ ਗਣ ਨੂੰ ਸਿੱਧ ਕਰਦਾ ਹੈ।

ਚਿੱਤਰ 3.43

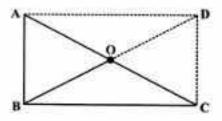
ਤਰਕ-ਵਿਤਰਕ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਅਸੀਂ ਇਸਦੀ ਪੁਸ਼ਟੀ ਕਰ ਸਕਦੇ ਹਾਂ। ABCD ਇੱਕ ਵਰਗ ਹੈ ਜਿਸਦੇ ਵਿਕਰਨ ਇੱਕ ਦੂਸਰੇ ਨੂੰ 'O' 'ਤੇ ਕੱਟਦੇ ਹਨ (ਚਿੱਤਰ 3.43)।

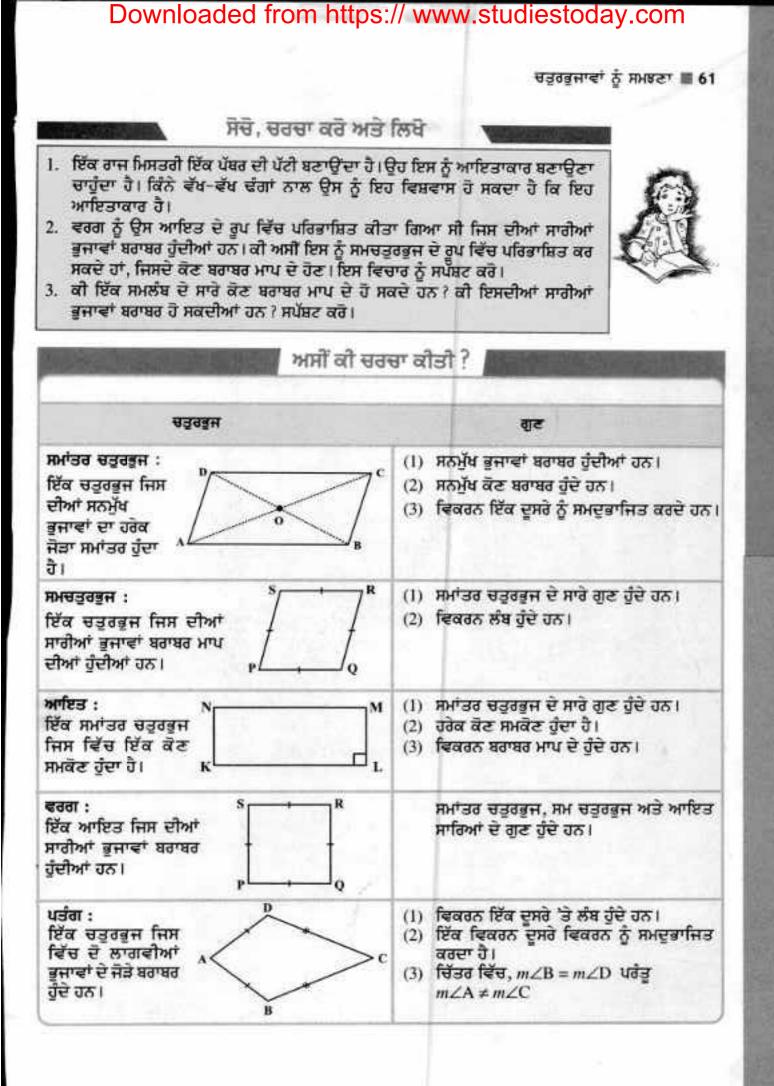
OA = OC (ਕਿਉਂਕਿ ਵਰਗ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਹੈ)

SSS ਸਰਬੰਗਸਮਤਾ ਗੁਣ ਦੇ ਅਨੁਸਾਰ

 $\Delta \text{ AOD} \cong \Delta \text{ COD}$ (ਕਿਸ ਤਰ੍ਹਾਂ ?)

ਇਸ ਤਰ੍ਹਾਂ m∠AOD = m∠COD


ਇਹ ਕੋਣ ਰੇਖੀ ਜੋੜਾ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਹਰੇਕ ਕੋਣ ਸਮਕੋਣ ਹੈ।


🔜 ਅਭਿਆਸ 3.4

- ਦੱਸੋ, ਕਥਨ ਸੱਚ ਹੈ ਜਾਂ ਨਹੀਂ :
 - (a) ਸਾਰੇ ਆਇਤ ਵਰਗ ਹੁੰਦੇ ਹਨ।
 - (b) ਸਾਰੇ ਸਮਚਤੁਰਭੁਜ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਹੁੰਦੇ ਹਨ
 - (c) ਸਾਰੇ ਵਰਗ ਸਮਚਤੁਰਭੁਜ ਅਤੇ ਆਇਤ ਵੀ ਹੁੰਦੇ ਹਨ
 - (d) ਸਾਰੇ ਵਰਗ ਸਮਾਂਤਰ ਚਤੁਰਭੂਜ ਨਹੀਂ ਹੁੰਦੇ।
 - (e) ਸਾਰੀਆਂ ਪਤੰਗਾਂ ਸਮਚਤੁਰਭੁਜ ਹੁੰਦੀਆਂ ਹਨ
 - (f) ਸਾਰੇ ਸਮਚਤੁਰਭੁਜ ਪਤੰਗ ਹੁੰਦੇ ਹਨ
 - (g) ਸਾਰੇ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਸਮਲੰਬ ਹੁੰਦੇ ਹਨ
 - (h) ਸਾਰੇ ਵਰਗ ਸਮਲੰਬ ਹੁੰਦੇ ਹਨ।
- 2. ਉਹ ਸਾਰੇ ਚਤੁਰਭੁਜਾਂ ਦੀ ਪਹਿਚਾਣ ਕਰੋ ਜਿਸ ਵਿੱਚ
 - (a) ਚਾਰ ਭੁਜਾਵਾਂ ਬਰਾਬਰ ਲੰਬਾਈ ਦੀਆਂ ਹੋਣ। (b
- 3. ਦੱਸੋ ਕਿਸ ਤਰ੍ਹਾਂ ਇੱਕ ਵਰਗ
 - (i) ਇੱਕ ਚਤੁਰਭੁਜ
 - (iii) ਇੱਕ ਸਮਚਤੁਰਭੁਜ
- 4. ਇੱਕ ਚਤੁਰਭੁਜ ਦਾ ਨਾਮ ਦੱਸੋ ਜਿਸਦੇ ਵਿਕਰਨ
 - (i) ਇੱਕ ਦੂਸਰੇ ਨੂੰ ਸਮਦੁਭਾਜਿਤ ਕਰਦੇ ਹਨ।
 (ii) ਬਰਾਬਰ ਹਣ।
- ਦੱਸੋ ਇੱਕ ਆਇਤ ਉੱਤਲ ਚਤੁਰਭੁਜ ਕਿਸ ਤਰ੍ਹਾਂ ਹਨ ?
- 6. ABC ਇੱਕ ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ ਹੈ ਅਤੇ 'O' ਸਮਕੋਣ ਦੀ ਸਨਮੁੱਖ ਭੁਜਾ ਦਾ ਮੱਧ ਬਿੰਦੂ ਹੈ। ਦੱਸੋ ਕਿਸ ਤਰ੍ਹਾਂ 'O' ਬਿੰਦੂ A, B ਅਤੇ C ਤੋਂ ਸਮਾਨ ਦੂਰੀ 'ਤੇ ਸਥਿਤ ਹੈ। (ਬਿੰਦੂਆਂ ਨਾਲ ਬਣਾਈਆਂ ਭੁਜਾਵਾਂ ਤੁਹਾਡੀ ਸਹਾਇਤਾ ਦੇ ਲਈ ਖਿੱਚੀਆਂ ਗਈਆਂ ਹਨ)।

- (b) ਚਾਰ ਸਮਕੋਣ ਹੋਣ।
- (ii) ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ
- (iv) ਇੱਕ ਆਇਤ ਹੈ।

(ii) ਇੱਕ ਦੂਸਰੇ 'ਤੇ ਲੰਬ ਸਮਦੁਭਾਜਕ ਹੋਣ।

ਨੋਟ

62 🔳 ਗਣਿਤ

ाल्डीहुन्छ आ

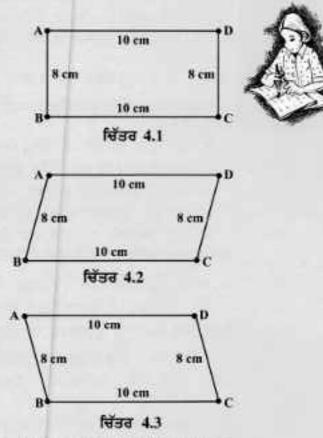
antar Masi

ਅਧਿਆਇ

ਪ੍ਰਯੋਗਿਕ ਜਿਆਮਿਤੀ

4.1 ਭੂਮਿਕਾ

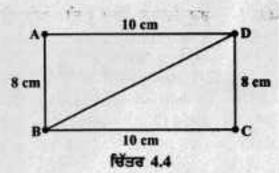
ਤੁਸੀਂ ਜਮਾਤ VII ਵਿੱਚ ਤ੍ਰਿਭੁਜਾਂ ਦੀ ਰਚਨਾ ਕਰਨਾ ਸਿੱਖ ਚੁੱਕੇ ਹੋ।ਸਾਨੂੰ ਇੱਕ ਵੱਖਰੇ ਤ੍ਰਿਭੁਜ ਦੀ ਰਚਨਾ ਦੇ ਲਈ ਤਿੰਨ ਮਾਪਾਂ (ਭੁਜਾਵਾਂ ਅਤੇ ਕੋਣਾਂ) ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।


ਕਿਉਂਕਿ ਇੱਕ ਤ੍ਰਿਭੁਜ ਦੀ ਰਚਨਾ ਕਰਨ ਦੇ ਲਈ ਤਿੰਨ ਮਾਪਾਂ ਦਾ ਹੋਣਾ ਕਾਫ਼ੀ ਹੈ, ਇੱਕ ਸੁਭਾਵਿਕ ਪ੍ਰਸ਼ਨ ਉੱਠਦਾ ਹੈ, ਕੀ ਇੱਕ ਵਿਲੱਖਣ ਚਾਰ ਭੁਜਾਵਾਂ ਵਾਲਾ ਬੰਦ ਚਿੱਤਰ ਜਿਸਨੂੰ ਚਤੁਰਭੁਜ ਕਹਿੰਦੇ ਹਨ, ਦੀ ਰਚਨਾ ਦੇ ਲਈ ਚਾਰ ਮਾਪਾਂ ਕਾਫ਼ੀ ਹੋਣਗੀਆਂ ?

ਇਸ ਨੂੰ ਕਰੋ

ਸਮਾਨ ਲੰਬਾਈ (ਮੰਨ ਲਵੇ 10 cm) ਵਾਲੀ ਤੀਲੀਆਂ (sticks) ਦਾ ਇੱਕ ਜੋੜਾ ਲਓ।ਹੁਣ ਇੱਕ ਦੂਸਰੇ ਸਮਾਨ ਲੰਬਾਈ, (ਮੰਨ ਲਵੇ 8 cm) ਵਾਲੀ ਤੀਲੀਆਂ ਦਾ ਜੋੜਾ ਲਵੇ।ਇਹਨਾਂ ਨੂੰ ਆਪਸ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਜੋੜੋ (Hinge) ਜਿਸ ਨਾਲ 10 cm ਲੰਬਾਈ ਅਤੇ 8 cm ਚੌੜਾਈ ਵਾਲਾ ਇੱਕ ਆਇਤ ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇ।ਇਸ ਆਇਤ ਦੀ ਰਚਨਾ ਚਾਰ ਮਾਪਾਂ ਦੀ ਵਰਤੋਂ ਨਾਲ ਕੀਤੀ ਗਈ ਹੈ। (ਚਿੱਤਰ 4.1)

ਹੁਣ ਆਇਤ ਦੀ ਚੌੜਾਈ ਦੀ ਦਿਸ਼ਾ ਅਨੁਸਾਰ ਦਬਾਅ ਪਾਉ। ਕੀ ਨਵੀਂ ਪ੍ਰਾਪਤ ਚਿੱਤਰ ਹੁਣ ਵੀ ਇੱਕ ਆਇਤ ਹੈ (ਚਿੱਤਰ 4.2)? ਧਿਆਨ ਦਿਓ ਕਿ ਹੁਣ ਆਇਤ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਬਣ ਗਿਆ ਹੈ। ਕੀ ਤੁਸੀਂ ਤੀਲੀਆਂ ਦੀ ਲੰਬਾਈ ਨੂੰ ਬਦਲਿਆ ਹੈ? ਨਹੀਂ, ਭੁਜਾਵਾਂ ਦਾ ਮਾਪ ਉਹ ਹੀ ਰਹਿੰਦਾ ਹੈ।


ਨਵੀਂ ਪ੍ਰਾਪਤ ਚਿੱਤਰ ਨੂੰ ਦੂਸਰੀ ਦਿਸ਼ਾ ਵਿੱਚ ਦਬਾਅ ਪਾਉ। ਤੁਹਾਨੂੰ ਕੀ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ? ਤੁਹਾਨੂੰ ਫਿਰ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ਜੋ ਕਿ ਬਿੱਲਕੁਲ ਵੱਖਰਾ ਹੈ। (ਚਿਤਰ 4.3) ਹੁਣ ਵੀ ਚਾਰ ਮਾਪ ਉਹ ਹੀ ਰਹਿੰਦੇ ਹਨ।

ਇਸ ਤੋਂ ਇਹ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ ਇੱਕ ਚਤੁਰਭੁਜ ਦੇ ਚਾਰ ਮਾਪਾਂ ਨਾਲ ਇੱਕ ਵਿਲੱਖਣ ਚਤੁਰਭੁਜ ਪਾਪਤ ਨਹੀਂ ਹੋ ਸਕਦਾ ਹੈ। ਕੀ ਪੰਜ ਮਾਪਾਂ ਨਾਲ ਇੱਕ ਵਿਲੱਖਣ ਚਤਰਭਜ ਪਾਪਤ ਹੋ ਸਕਦਾ ਹੈ?

64 🔳 ਗਣਿਤ

ਆਉ, ਇਸ ਕਿਰਿਆ 'ਤੇ ਦੁਬਾਰਾ ਵਿਚਾਰ ਕਰੀਏ। ਤੁਸੀਂ, ਹਰੇਕ 10 cm ਲੰਬਾਈ ਦੀਆਂ ਦੋ ਤੀਲੀਆਂ ਅਤੇ ਹਰੇਕ 8 cm ਲੰਬਾਈ ਦੀਆਂ ਦੋ ਤੀਲੀਆਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਇੱਕ ਆਇਤ ਦੀ ਰਚਨਾ ਕਰ ਚੁੱਕੇ ਹੋ। ਹੁਣ BD ਦੇ ਬਰਾਬਰ ਲੰਬਾਈ ਵਾਲੀ ਇੱਕ ਦੂਸਰੀ ਤੀਲੀ ਨੂੰ BD ਦੀ ਦਿਸ਼ਾ ਅਨੁਸਾਰ ਬੰਨ੍ਹੋ (ਚਿੱਤਰ 4.4)। ਜੇ ਤੁਸੀਂ ਹੁਣ ਚੱੜਾਈ ਦੇ ਵੱਲ

ਦਬਾਓ ਪਾਉਂਦੇ ਹੋ ਤਾਂ ਕੀ ਚਿੱਤਰ ਵਿੱਚ ਬਦਲਾਓ ਹੁੰਦਾ ਹੈ। ਨਹੀਂ, ਚਿੱਤਰ ਨੂੰ ਖੋਲੇ ਬਿਨਾਂ ਬਦਲਾਓ ਸੰਭਵ ਨਹੀਂ ਹੋ ਸਕਦਾ ਹੈ। ਪੰਜਵੀਂ ਤੀਲੀ ਦੇ ਆਉਣ ਨਾਲ ਆਇਤ ਵਿਲੱਖਣ ਬਣ ਗਿਆ ਹੈ। ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਕੋਈ ਦੂਸਰਾ ਚਤੁਰਭੁਜ (ਦਿੱਤੀਆਂ ਗਈਆਂ ਭੁਜਾਵਾਂ ਦੀ ਲੰਬਾਈ ਦੇ ਬਰਾਬਰ) ਹੁਣ ਸੰਭਵ ਨਹੀਂ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਦੇਖਿਆ ਕਿ ਪੰਜ ਮਾਪਾਂ ਨਾਲ ਸਾਨੂੰ ਇਕ ਵਿਲੱਖਣ ਚਤੁਰਭੁਜ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

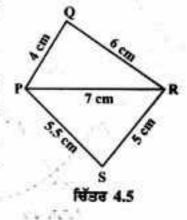
ਪਰ ਕੀ ਇਕ ਵਿਲੱਖਣ ਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ ਕਰਨ ਲਈ ਵੀ ਪੰਜ ਮਾਪ (ਭੁਜਾਵਾਂ ਅਤੇ ਕੋਣਾਂ ਦੇ) ਕਾਫ਼ੀ ਹਨ ?

ਸੋਚੋ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ

ਅਰਸ਼ਦ ਕੋਲ ਇੱਕ ਚਤੁਰਭੁਜ ABCD ਦੇ ਪੰਜ ਮਾਪ ਹਨ। ਇਹ AB = 5 cm, ∠A = 50°, AC = 4 cm, BD = 5 cm ਅਤੇ AD = 6 cm ਹੈ। ਕੀ ਉਹ ਮਾਪਾਂ ਨਾਲ ਇੱਕ ਅਦੁੱਤੀ ਚਤੁਰਭੁਜ ਬਣਾ ਸਕਦਾ ਹੈ ? ਆਪਣੇ ਉੱਤਰ ਦੇ ਕਾਰਨ ਦੱਸੋ।

4.2 ਇੱਕ ਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ

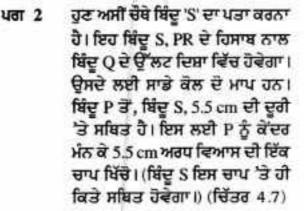
ਹੁਣ ਅਸੀਂ ਸਿੱਖਾਂਗੇ ਕਿ ਹੇਠਾਂ ਲਿਖੇ ਮਾਪਾਂ ਨਾਲ ਇੱਕ ਵਿਲੱਖਣ ਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ ਕਿਸ ਤਰ੍ਹਾਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

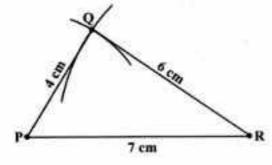

- ਜਦੋਂ ਚਾਰ ਭੁਜਾਵਾਂ ਅਤੇ ਇੱਕ ਵਿਕਰਨ ਦਿੱਤਾ ਗਿਆ ਹੋਵੇ।
- ਜਦੋਂ ਦੋ ਵਿਕਰਨ ਅਤੇ ਤਿੰਨ ਭੂਜਾਵਾਂ ਦਿੱਤੀਆਂ ਹੋਣ।
- ਜਦੋਂ ਦੋ ਲਾਗਵੀਆਂ ਭੁਜਾਵਾਂ ਅਤੇ ਉਸਦੇ ਤਿੰਨ ਕੋਣ ਦਿੱਤੇ ਹੋਏ ਹੋਣ।
- ਜਦੋਂ ਤਿੰਨ ਭੂਜਾਵਾਂ ਅਤੇ ਉਸਦੇ ਵਿੱਚ ਦੇ ਦੋ ਕੋਣ ਦਿੱਤੇ ਹੋਏ ਹੋਣ।
- ਜਦੋਂ ਹੋਰ ਕੋਈ ਖਾਸ ਗੁਣ ਪਤਾ ਹੋਵੇ।

ਆਉ, ਇੱਕ-ਇੱਕ ਕਰਕੇ ਇਹ ਰਚਨਾਵਾਂ ਕਰੀਏ :

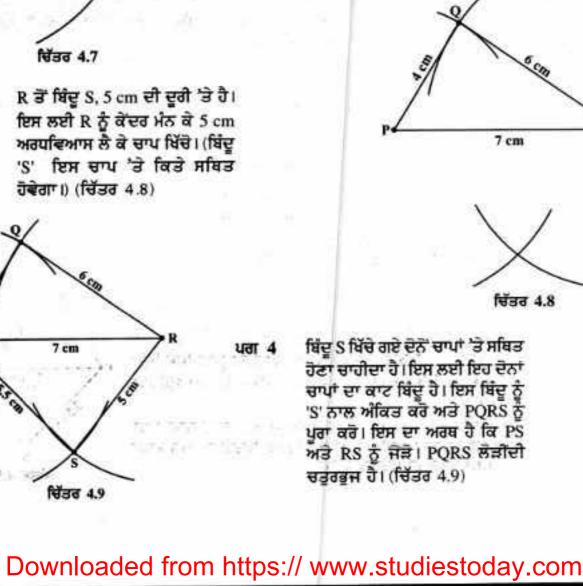
4.2.1 ਇੱਕ ਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ ਜਦੋਂ ਚਾਰ ਭੁਜਾਵਾਂ ਅਤੇ ਇੱਕ ਵਿਕਰਨ ਦੀ ਲੰਬਾਈ ਦਿੱਤੀ ਹੋਵੇ।

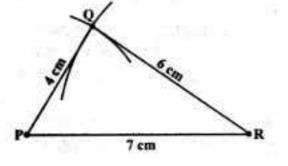
ਅਸੀਂ ਇਸ ਰਚਨਾ ਨੂੰ ਉਦਾਹਰਣ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਸਮਝਾਵਾਂਗੇ। ਉਦਾਹਰਣ 1 : ਇੱਕ ਚਤੁਰਭੁਜ PQRS ਦੀ ਰਚਨਾ ਕਰੋ ਜਿਸ ਵਿੱਚ PQ = 4 cm, QR = 6 cm, RS = 5 cm, PS = 5.5 cm ਅਤੇ PR = 7 cm ਹੈ।


ਹੱਲ : ਇੱਕ ਰਫ਼ (rough) ਚਿੱਤਰ ਚਤੁਰਭੁਜ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਸਾਡੀ ਸਹਾਇਤਾ ਕਰੇਗੀ।ਅਸੀਂ ਪਹਿਲਾਂ ਰਫ਼ ਚਿੱਤਰ ਖਿੱਚਦੇ ਹਾਂ ਅਤੇ ਮਾਪਾਂ ਨੂੰ ਅੰਕਿਤ ਕਰਦੇ ਹਾਂ (ਚਿੱਤਰ 4.5)।



ਪਯੋਗਿਕ ਜਿਆਮਿਤੀ 🔳 65


ਰਫ਼ ਚਿੱਤਰ ਵਿੱਚ ਬੜੀ ਅਸਾਨੀ ਪਰਾ 1 ਨਾਲ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ SSS ਰਚਨਾ ਸਰਬੰਗਸਮਤਾ ਨਾਲ ∆ POR ਦੀ ਰਚਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ∆ PQR ਦੀ ਰਚਨਾ ਕਰੋ। (ਚਿੱਤਰ 4.6)1

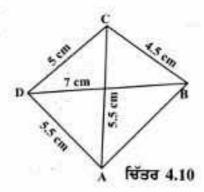

7 cm ਚਿੱਤਰ 4.6

HOT 3

66 🔳 ਗਣਿਤ

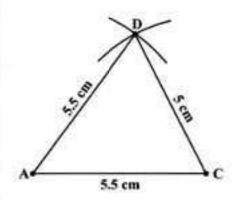
- 📐 ਸੋਚੇ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ
- (i) ਅਸੀਂ ਦੇਖਿਆ ਹੈ ਕਿ ਇੱਕ ਚਤੁਰਭੁਜ ਦੇ ਪੰਜ ਮਾਪਾਂ ਨਾਲ ਇੱਕ ਵਿਲੱਖਣ ਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਕੀ ਤੁਸੀਂ ਆਪ ਸੋਚ ਸਕਦੇ ਹੋ ਕਿ ਚਤੁਰਭੁਜ ਦੀ ਕੋਈ ਵੀ ਪੰਜ ਮਾਪਾਂ ਨਾਲ ਇਸ ਤਰ੍ਹਾਂ ਰਚਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ?
- (ii) ਕੀ ਤੁਸੀਂ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ BATS ਦੀ ਰਚਨਾ ਕਰ ਸਕਦੇ ਹੋ ਜਿਸ ਵਿੱਚ BA = 5 cm.
 AT = 6 cm, ਅਤੇ AS = 6.5 cm ਹੈ ? ਕਿਉਂ ?
- (iii) ਕੀ ਤੁਸੀਂ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ (Rhombus) ZEAL ਦੀ ਰਚਨਾ ਕਰ ਸਕਦੇ ਹੋ ਜਿਸ ਵਿੱਚ ZE = 3.5 cm, ਵਿਕਰਨ EL = 5 cm ਹੈ ? ਕਿਉਂ ?
- (iv) ਇੱਕ ਵਿਦਿਆਰਥੀ ਇੱਕ ਚਤੁਰਭੁਜ PLAY ਦੀ ਰਚਨਾ ਕਰਨ ਦਾ ਯਤਨ ਕਰਦਾ ਹੈ। ਜਿਸ ਵਿੱਚ PL = 3 cm, LA = 4 cm, AY = 4.5 cm, PY = 2 cm ਅਤੇ LY = 6 cm ਹੈ। ਪਰੰਤੂ ਉਹ ਇਸਦੀ ਰਚਨਾ ਨਹੀਂ ਕਰ ਸਕਦਾ। ਕਾਰਨ ਦੱਸੋ ? [ਸੰਕੇਤ : ਇੱਕ ਰਫ਼ ਚਿੱਤਰ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਚਰਚਾ ਕਰੋ।]

▲ ਅਭਿਆਸ 4.1


- ਹੇਠਾਂ ਲਿਖੇ ਚਤੁਰਭੁਜਾਂ ਦੀ ਰਚਨਾ ਕਰੋ : (i) ਚਤੁਰਭੁਜ ABCD ਜਿਸ ਵਿਚ
 - AB = 4.5 cmBC = 5.5 cm
 - CD = 4 cm
 - AD = 6 cm
 - $AC = 7 \text{ cm} \hat{J}$
 - (iii) ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ MORE ਜਿਸ ਵਿੱਚ
 - OR = 6 cm EO = 7.5 cm EO = 7.5 cm ਹੈ।

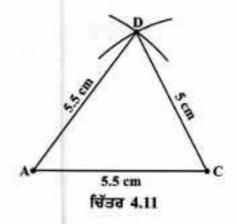
- (ii) ਚਤੁਰਭੁਜ JUMP ਜਿਸ ਵਿੱਚ JU = 3.5 cm UM = 4 cm MP = 5 cm PJ = 4.5 cm PU = 6.5 cm ਹੈ।
 (iv) ਸਮਚਤੁਰਭੁਜ BEST ਜਿਸ ਵਿਚ BE = 4.5 cm ਅਤੇ ET = 6 cm ਹੈ।
- 4.2.2 ਇੱਕ ਚੜਰਭਜ ਦੀ ਰਚਨਾ ਕਰਨਾ ਜਦੋਂ ਦੋ ਵਿਕਰਨ ਅਤੇ ਤਿੰਨ ਭੂਜਾਵਾਂ ਦੀਆਂ ਲੰਬਾਈਆਂ ਦਿੱਤੀਆਂ ਹੋਣ।

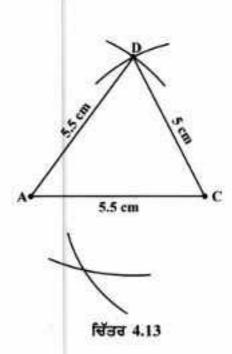
ਜਦੋਂ ਚਤੁਰਭੁਜ ਦੀਆਂ ਚਾਰ ਭੁਜਾਵਾਂ ਅਤੇ ਇੱਕ ਵਿਕਰਨ ਦਿੱਤਾ ਹੋਇਆ ਸੀ ਤਾਂ ਅਸੀਂ ਪਹਿਲਾਂ ਦਿੱਤੇ ਹੋਏ ਮਾਪਾਂ ਤੋਂ ਇੱਕ ਤ੍ਰਿਭੁਜ ਦੀ ਰਚਨਾ ਕੀਤੀ ਅਤੇ ਇਸ ਤੋਂ ਬਾਅਦ ਚੌਥੇ ਬਿੰਦੂ ਦਾ ਪਤਾ ਲਗਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕੀਤੀ ਸੀ। ਇਸੇ ਢੰਗ ਦੀ ਵਰਤੋਂ ਅਸੀਂ ਇੱਥੇ ਕਰ ਸਕਦੇ ਹਾਂ।

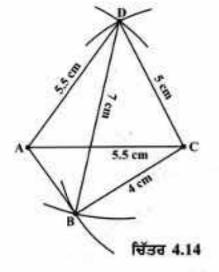

ਉਦਾਹਰਣ 2 : ਇੱਕ ਚਤੁਰਭੁਜ ABCD ਦੀ ਰਚਨਾ ਕਰੋ, ਜਿਸ ਵਿੱਚ BC = 4.5 cm, AD = 5.5 cm, CD = 5 cm, ਵਿਕਰਣ AC = 5.5 cm ਅਤੇ ਵਿਕਰਨ BD = 7 cm ਹੈ।

ਹੱਲ : ਇੱਥੇ ਚਤੁਰਭੁਜ ABCD ਦਾ ਰਫ਼ ਚਿੱਤਰ ਦਿੱਤਾ ਗਿਆ ਹੈ (ਚਿੱਤਰ 4.10)। ਇਸ ਰਫ਼ ਚਿੱਤਰ ਦਾ ਅਧਿਐਨ ਕਰ ਕੇ ਅਸੀਂ ਅਸਾਨੀ ਨਾਲ ਦੇਖ ਸਕਦੇ ਹਾਂ ਕਿ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ∆ ACD ਦੀ ਰਚਨਾ ਕਰਨਾ ਸੰਭਵ ਹੈ।(ਕਿਉਂ ?)

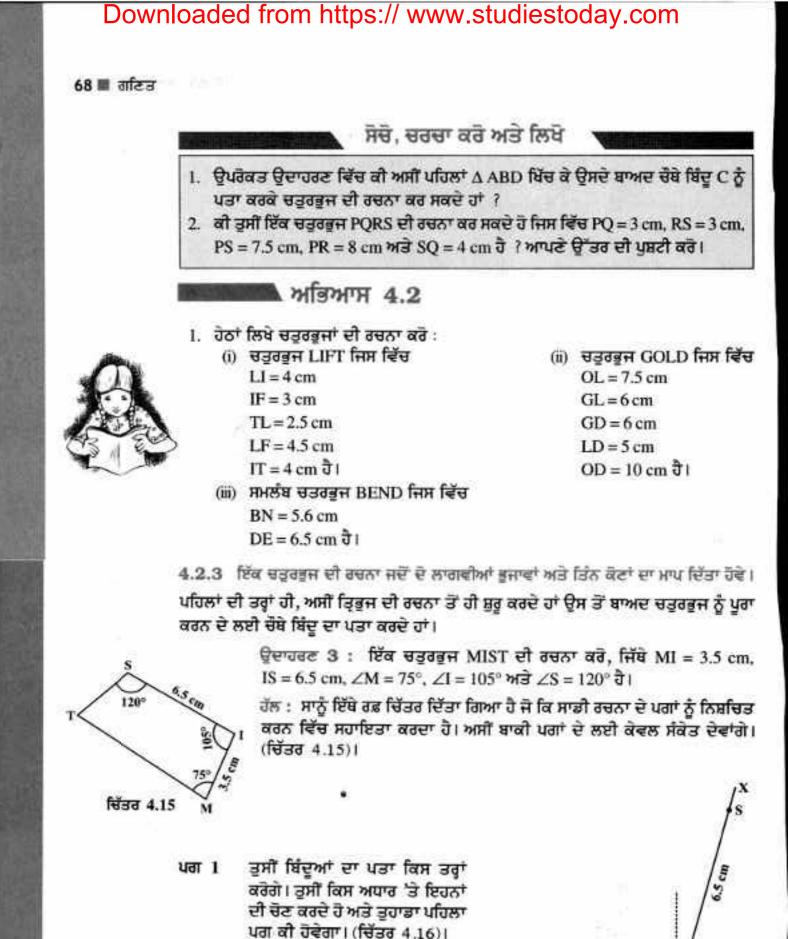
ਪ੍ਰਯੋਗਿਕ ਜਿਆਮਿਤੀ 🔳 67


ਪਗ 1 SSS ਸਰਬੰਗਸਮਤਾ ਦੀ ਵਰਤੋਂ ਕਰਕੇ Δ ACD ਦੀ ਰਚਨਾ ਕਰੋ। (ਚਿੱਤਰ 4.11) (ਹੁਣ ਸਾਨੂੰ ਬਿੰਦੂ B ਦਾ ਪਤਾ ਲਗਾਉਣ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ਜੋ ਕਿ ਬਿੰਦੂ C ਤੋਂ 4.5 cm ਅਤੇ ਬਿੰਦੂ D ਤੋਂ 7 cm ਦੂਰੀ 'ਤੇ ਸਥਿਤ ਹੈ।)

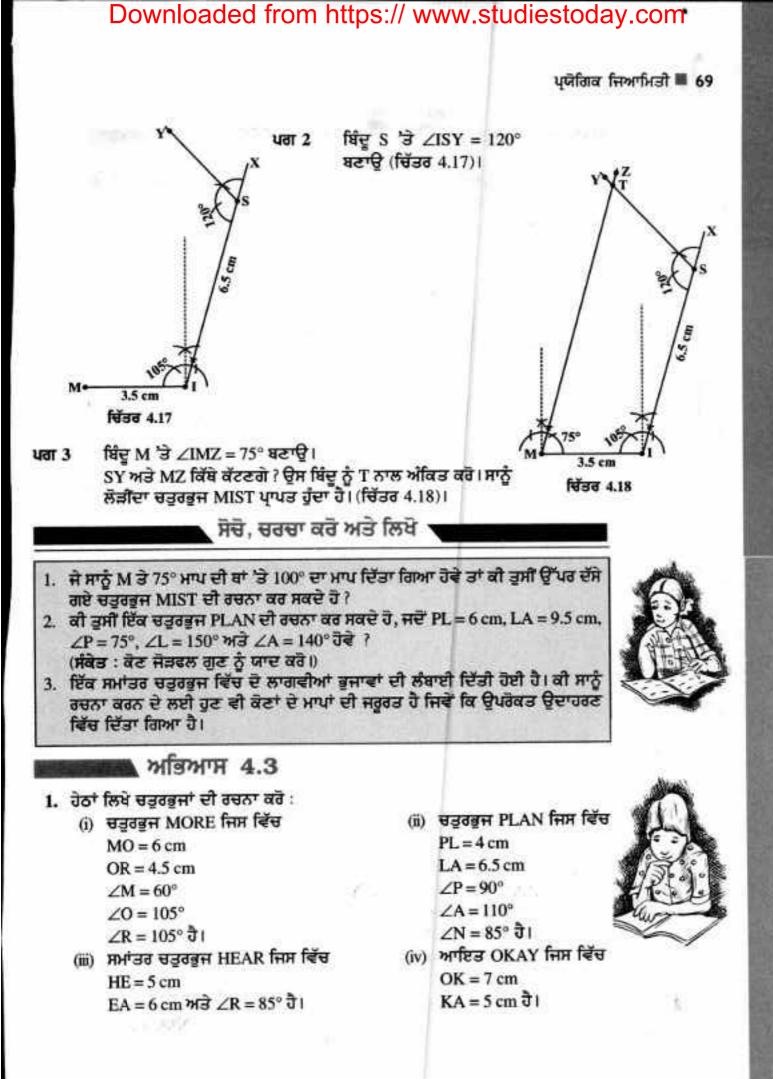

ਚਿੱਤਰ 4.12

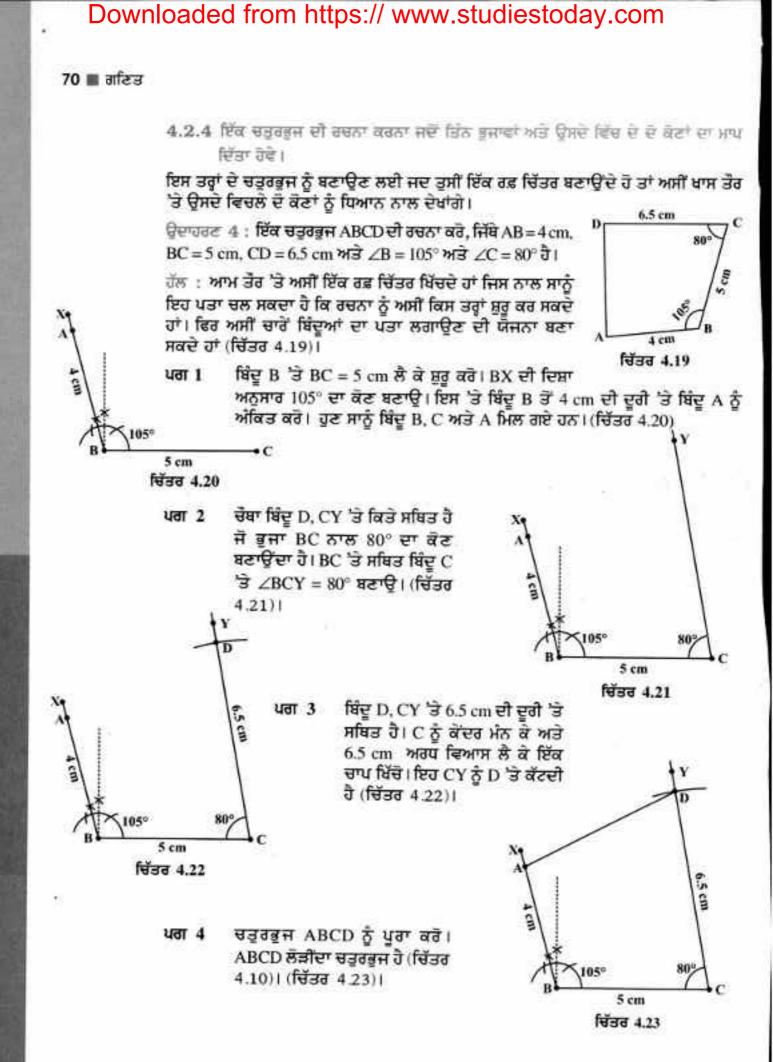

ਪਗ 2

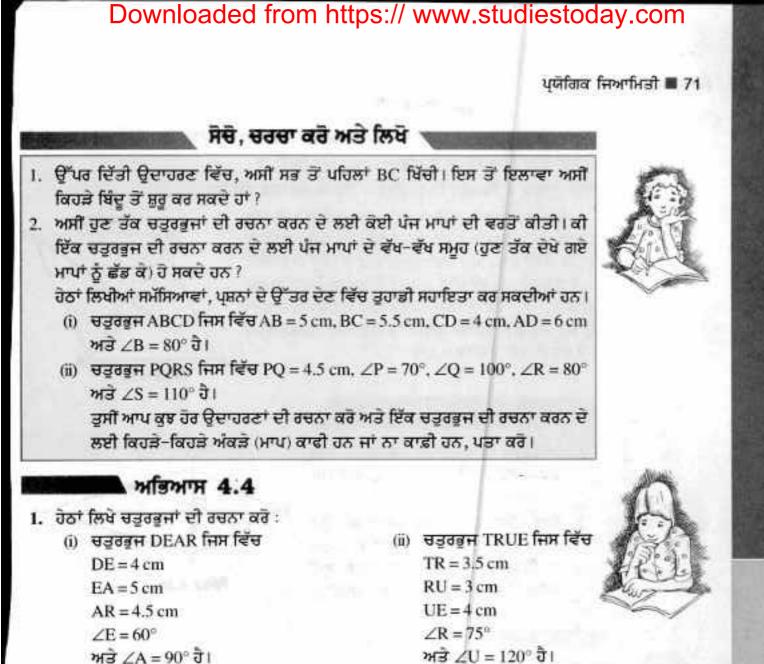
ਪਗ 3 C ਨੂੰ ਕੋਂਦਰ ਮੌਨ ਲਵੋ, 4.5 cm ਅਰਧ ਵਿਆਸ ਵਾਲੀ ਇੱਕ ਚਾਪ ਖਿੱਚੋ।(ਬਿੰਦੂ B ਇਸ ਚਾਪ 'ਤੇ ਕਿਤੇ ਸਥਿਤ ਹੋਵੇਗਾ।) (ਚਿੱਤਰ 4.13)



D ਨੂੰ ਕੇਂਦਰ ਮੰਨ ਲਵੋ, 7 cm ਅਰਧ ਵਿਆਸ ਵਾਲੀ ਇੱਕ ਚਾਪ ਖਿੱਚੋ।(ਬਿੰਦੂ B ਇਹ ਚਾਪ 'ਤੇ ਕਿਤੇ ਸਥਿਤ ਹੋਵੇਗਾ।) (ਚਿੱਤਰ 4.12)।

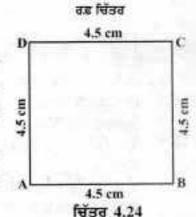





- ਪਗ 4
- ਕਿਉਂਕਿ ਬਿੰਦੂ B ਇਨ੍ਹਾਂ ਦੋਨੋਂ ਚਾਪਾਂ 'ਤੇ ਸਥਿਤ ਹੈ। ਇਸ ਲਈ ਬਿੰਦੂ B ਇਨ੍ਹਾਂ ਦੋਨੋਂ ਚਾਪਾਂ ਦਾ ਕਾਟ ਬਿੰਦੂ ਹੈ। ਬਿੰਦੂ B ਨੂੰ ਅੰਕਿਤ ਕਰੋ ਅਤੇ ABCD ਨੂੰ ਪੂਰਾ ਕਰੋ। ABCD ਇੱਕ ਲੋੜੀਂਦਾ ਚਤੁਰਭੁਜ ਹੈ (ਚਿੱਤਰ 4.14)।

3.5 cm ਚਿੱਤਰ 4.16

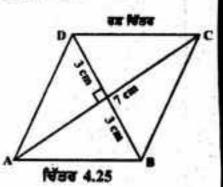
4.3 ਕੁਝ ਖਾਸ ਸਥਿਤੀਆਂ


ਇੱਕ ਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ ਪੰਜ ਮਾਪਾਂ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ। ਕੀ ਕਿਸੇ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਜਿਸਦੇ ਮਾਪਾਂ ਦੀ ਗਿਣਤੀ ਇਸ ਤੋਂ ਘੱਟ ਹੋਵੇ। ਹੇਠਾਂ ਲਿਖੀਆਂ ਉਦਾਹਰਣਾਂ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਖਾਸ ਸਥਿਤੀਆਂ ਨੂੰ ਦਰਸਾਉਂਦੀਆਂ ਹਨ।

ਉਦਾਹਰਣ 5: 4.5 cm ਭੂਜਾ ਵਾਲੇ ਵਰਗ ਦੀ ਰਚਨਾ ਕਰੋ।

ਹੱਲ : ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਦੇਖਣ 'ਤੇ ਇਸ ਤਰ੍ਹਾਂ ਲਗਦਾ ਹੈ ਕਿ ਕੇਵਲ ਇੱਕ ਹੀ ਮਾਪ ਦਿੱਤਾ ਹੋਇਆ ਹੈ।ਅਸਲ ਵਿੱਚ ਸਾਡੇ ਕੋਲ ਹੋਰ ਬਹੁਤ ਸਾਰੀਆਂ ਜਾਣਕਾਰੀਆਂ ਹਨ ਕਿਉਂਕਿ ਇਹ ਚਿੱਤਰ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਚਤੁਰਭੁਜ ਹੈ ਜਿਸਦਾ ਨਾਂ ਵਰਗ ਹੈ। ਹੁਣ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਇਸਦਾ ਹਰੇਕ ਕੋਣ ਇੱਕ ਸਮਕੋਣ ਹੈ।(ਰਫ਼ ਚਿੱਤਰ ਵਿੱਚ ਦੇਖੋ)(ਚਿੱਤਰ 4.24)।

ਇਹ SAS ਸਰਬੰਗਸਮਤਾ ਦੀ ਵਰਤੋਂ ਨਾਲ ∆ ABC ਖਿੱਚਣ ਵਿੱਚ ਸਾਡੀ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ।ਉਹ ਤੋਂ ਬਾਅਦ ਬਿੰਦੂ D ਦਾ ਬੜੀ ਆਸਾਨੀ ਨਾਲ ਪਤਾ ਲਗਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।ਦਿੱਤੇ ਹੋਏ ਮਾਪਾਂ ਨਾਲ ਹੁਣ ਤੁਸੀਂ ਇੱਕ ਵਰਗ ਦੀ ਰਚਨਾ ਕਰੋ।


ਉਦਾਹਰਣ 6 : ਕੀ ਇੱਕ ਸਮਚਤੁਰਭੁਜ ABCD ਦੀ ਰਚਨਾ ਕਰਨਾ ਸੰਭਵ ਹੈ ਜਿੱਥੇ AC = 6 cm ਅਤੇ BD = 7 cm ਹੋਵੇ ? ਆਪਣੇ ਉੱਤਰ ਦੀ ਪੁਸ਼ਟੀ ਕਰੋ।

72 🖩 ਗਣਿਤ

ਹੱਲ : ਸਮਚਤੁਰਭੁਜ ਦੇ ਕੇਵਲ ਦੋ ਮਾਪ (ਵਿਕਰਨ) ਦਿੱਤੇ ਹਨ। ਕਿਉਂਕਿ ਇਹ ਇੱਕ ਸਮਚਤੂਰਭੁਜ ਹੈ, ਇਸਦੇ ਗੁਣਾਂ ਤੋਂ ਅਸੀਂ ਹੋਰ ਸਹਾਇਤਾ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਸਮਚਤੁਰਭੁਜ ਦੇ ਵਿਕਰਨ ਇੱਕ-ਦਸਰੇ ਦੇ ਲੰਬ ਸਮਦਭਾਜਕ ਹੁੰਦੇ ਹਨ।

ਇਸ ਲਈ ਸਭ ਤੋਂ ਪਹਿਲਾਂ AC = 7 cm ਖਿੱਚੋਂ ਅਤੇ ਫਿਰ ਇਸਦੇ ਲੰਬ ਸਮਦੁਭਾਜਕ ਦੀ ਰਚਨਾ ਕਰੋ। ਦੋਨੋਂ ਇੱਕ-ਦੂਸਰੇ ਨੂੰ O 'ਤੇ ਕੱਟਦੇ ਹਨ। ਖਿੱਚੇ ਗਏ ਸਮਦੁਭਾਜਕ ਨੂੰ ਬਿੰਦੂ O ਤੋਂ ਦੋਨੋਂ ਪਾਸੇ ਲੰਬਾਈ BD ਦੀ ਅੱਧੀ ਲੰਬਾਈ ਦੇ ਬਰਾਬਰ ਅਰਧਵਿਆਸ ਲੈ ਕੇ ਕੱਟੋ। ਹੁਣ ਤੁਹਾਨੂੰ ਬਿੰਦੂ B ਅਤੇ ਬਿੰਦੂ D ਮਿਲ ਜਾਂਦੇ ਹਨ। ਉੱਪਰ ਦੱਸੇ ਗਏ ਢੰਗ ਦੇ ਅਧਾਰ 'ਤੇ ਹੁਣ ਇੱਕ ਸਮਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ ਕਰੋ। (ਚਿੱਤਰ 4.25)

ਕੋਸ਼ਿਸ਼ ਕਰੋ

- ਤੁਸੀਂ ਇੱਕ ਆਇਤ PQRS ਦੀ ਰਚਨਾ ਕਿਸ ਤਰ੍ਹਾਂ ਕਰੋਗੇ ਜੇ ਤੁਹਾਨੂੰ ਸਿਰਫ PQ ਅਤੇ QR ਦੀ ਲੰਬਾਈ ਪਤਾ ਹੋਵੇ ?
- ਇੱਕ ਪਤੰਗ EASY ਦੀ ਰਚਨਾ ਕਰੋ ਜਦੋਂ AY = 8 cm, EY = 4 cm ਅਤੇ SY = 6 cm ਹੈ (ਚਿੱਤਰ 4.26)। ਰਚਨਾ ਦੇ ਦੌਰਾਨ ਤੁਸੀਂ ਪਤੰਗ ਦੇ ਕਿਹੜੇ ਗੁਣਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ?

NIST A.26

🛦 ਅਭਿਆਸ 4.5

ਹੇਠਾਂ ਲਿਖਿਆਂ ਦੀ ਰਚਨਾ ਕਰੋ :

- 1. ਇੱਕ ਵਰਗ READ ਜਿਸ ਵਿੱਚ RE = 5.1 cm ਹੈ।
- 2. ਇੱਕ ਸਮਚਤੁਰਭੁਜ ਜਿਸਦੇ ਵਿਕਰਨਾਂ ਦੀ ਲੰਬਾਈ 5.2 cm ਅਤੇ 6.4 cm ਹੈ।
- 3. ਇੱਕ ਆਇਤ ਜਿਸਦੀ ਲਾਗਵੀਆਂ ਭੁਜਾਵਾਂ ਦੀ ਲੰਬਾਈ 5 cm ਅਤੇ 4 cm ਹੈ।
- 4. ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ OKAY ਜਿੱਥੇ OK = 5.5 cm ਅਤੇ KA = 4.2 cm ਹੈ। ਕੀ ਇਹ ਵਿਲੱਖਣ ਹੈ?

ਅਸੀਂ ਕੀ ਚਰਚਾ ਕੀਤੀ ?

- ਪੰਜ ਮਾਪਾਂ ਨਾਲ ਇੱਕ ਵਿਲੱਖਣ ਚਤੁਰਭੁਜ ਪ੍ਰਾਪਤ ਹੋ ਸਕਦਾ ਹੈ।
- ਇੱਕ ਵਿਲੱਖਣ ਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਜਦੋਂ ਉਸਦੀਆਂ ਚਾਰ ਭੁਜਾਵਾਂ ਦੀ ਲੰਬਾਈ ਅਤੇ ਇੱਕ ਵਿਕਰਨ ਦਿੱਤਾ ਹੋਇਆ ਹੋਵੇ।
- ਇੱਕ ਵਿਲੱਖਣ ਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਜਦੋਂ ਉਸਦੇ ਦੋ ਵਿਕਰਨ ਅਤੇ ਤਿੰਨ ਭੂਜਾਵਾਂ ਦਿੱਤੀਆਂ ਹੋਣ।
- 4. ਇੱਕ ਵਿਲੱਖਣ ਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਜਦੋਂ ਉਸਦੀਆਂ ਦੇ ਲਾਗਵੀਆਂ ਭੂਜਾਵਾਂ ਅਤੇ ਤਿੰਨ ਕੋਣਾਂ ਦਾ ਮਾਪ ਪਤਾ ਹੋਵੇ।
- 5. ਇੱਕ ਵਿਲੱਖਣ ਚਤੁਰਭੁਜ ਦੀ ਰਚਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਜਦੋਂ ਉਸ ਦੀਆਂ ਤਿੰਨ ਭੁਜਾਵਾਂ ਅਤੇ ਦੋ ਵਿਚਲੇ ਕੋਣ ਦਿੱਤੇ ਹੋਣ।

ਅੰਕੜਿਆਂ ਦਾ ਪ੍ਰਬੰਧਨ

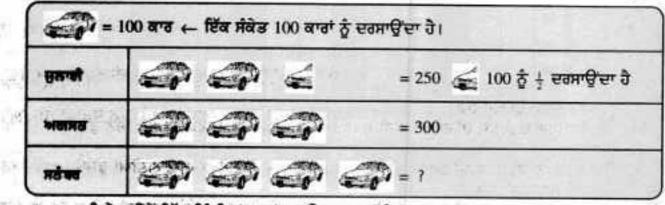
ed from https:// www.studiestoday.com

5.1 ਸੁਚਨਾਵਾਂ ਦੀ ਖੋਜ ਵਿੱਚ

म हरी की को के कि कि के

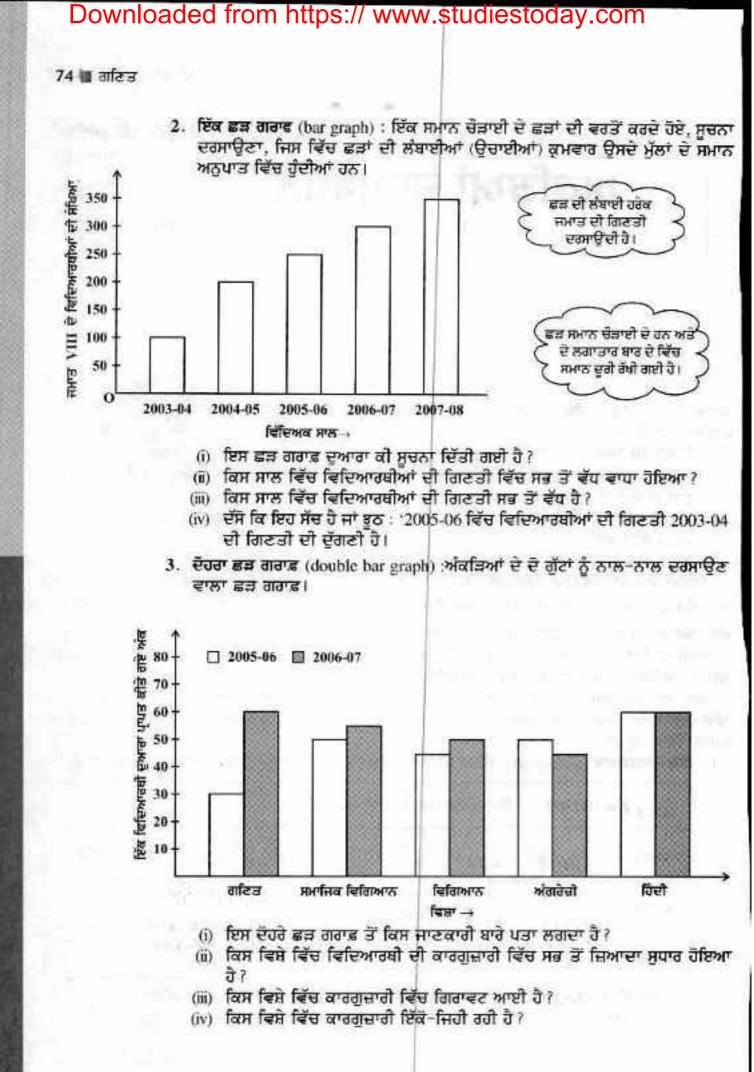
ਰੁਹਾਡੇ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਤੁਹਾਡੇ ਸਾਹਮਣੇ ਹੇਠ ਲਿਖੀਆਂ ਵਰਗੀਆਂ ਸੂਚਨਾਵਾਂ ਆਈਆਂ ਹੋਣਗੀਆਂ :

- (a) ਪਿਛਲੇ 10 ਟੈਸਟ ਮੈਚਾਂ ਵਿੱਚ ਇੱਕ ਬੱਲੇਬਾਜ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਕੁੱਲ ਰਨ।
- (b) ਪਿਛਲੇ 10 ਇੱਕ ਦਿਨਾਂ ਐਤਰ ਰਾਸ਼ਟਰੀ ਮੈਚਾਂ (ODI) ਵਿੱਚ ਇੱਕ ਗੇਂਦਬਾਜ ਦੁਆਰਾ ਲਈਆਂ ਗਈਆਂ ਕੁੱਲ ਵਿਕਟਾਂ।
- (c) ਤੁਹਾਡੀ ਜਮਾਤ ਦੇ ਵਿਦਿਆਰਬੀਆਂ ਦੁਆਰਾ ਗਣਿਤ ਦੇ ਯੂਨਿਟ ਟੈਸਟ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤੇ ਗਏ ਅੰਕ।


ਅਧਿਆਇ

(d) ਤੁਹਾਡੇ ਦੋਸਤਾਂ ਵਿੱਚੋਂ ਹਰੇਕ ਦੁਆਰਾ ਪੜ੍ਹੀਆਂ ਗਈਆਂ ਕਹਾਣੀਆਂ ਦੀਆਂ ਪੁਸਤਕਾਂ ਦੀ ਸੰਖਿਆ, ਆਦਿ। ਇਹਨਾਂ ਸਾਰੀਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਇਕੱਠੀਆਂ ਕੀਤੀਆਂ ਗਈਆਂ ਸੂਚਨਾਵਾਂ (data) ਅੰਕੜੇ ਕਹਾਉਂਦੀਆਂ ਹਨ। ਅੰਕੜੇ

ਆਮ ਤੌਰ ਤੇ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਇੱਕਠੇ ਕੀਤੇ ਜਾਂਦੇ ਹਨ, ਜਿਸਦਾ ਅਸੀਂ ਅਧਿਐਨ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਾਂ। ਉਦਾਹਰਣ ਦੇ ਤੌਰ ਤੇ, ਇੱਕ ਅਧਿਆਪਕਾ ਦੀ ਆਪਣੀ ਜਮਾਤ ਦੇ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਔਸਤ ਉਚਾਈ ਜਾਨਣ ਵਿੱਚ ਰੂਚੀ ਹੋ ਸਕਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਉਹ ਆਪਣੀ ਜਮਾਤ ਦੇ ਸਾਰੇ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਉਚਾਈਆਂ ਲਿਖੇਗੀ। ਇਹਨਾਂ ਐਕੜਿਆਂ ਨੂੰ ਇੱਕ ਕ੍ਰਮਵਾਰ ਰੂਪ ਵਿੱਚ ਇਕੱਠਾ ਕਰੇਗੀ ਅਤੇ ਫਿਰ ਉਹਨਾਂ ਦੀ ਵਿਆਖਿਆ ਕਰੇਗੀ।


ਕਦੇ-ਕਦੇ ਅੰਕੜਿਆਂ ਨੂੰ, ਇਹ ਸਪੱਸ਼ਟ ਕਰਨ ਦੇ ਲਈ ਕਿ ਉਹ ਕੀ ਦਰਸਾਉਂਦੇ ਹਨ, ਗਰਾਫ਼ (graphically) ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਕੀ ਤੁਹਾਨੂੰ ਉਹਨਾਂ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੇ ਗਰਾਫ਼ ਬਾਰੇ ਕੁਝ ਯਾਦ ਹੈ ਜੋ ਅਸੀਂ ਪਿਛਲੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਪੜੇ ਸੀ ?

1. ਇੱਕ ਵਿੱਤਰਗਰਾਸ਼ (pictograph) : ਸੰਕੇਤਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ, ਅੰਕੜਿਆਂ ਨੂੰ ਚਿੱਤਰ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਦਰਸਾਉਣਾ।

(i) ਜੁਲਾਈ ਦੇ ਮਹੀਨੇ ਵਿੱਚ ਕਿੰਨੀਆਂ ਕਾਰਾਂ ਦਾ ਉਤਪਾਦਨ ਹੋਇਆ ?

(ii) ਕਿਸ ਮਹੀਨੇ ਵਿੱਚ ਕਾਰਾਂ ਦਾ ਸਭ ਤੋਂ ਵੱਧ ਉਤਪਾਦਨ ਹੋਇਆ ?

ਅੰਕੜਿਆਂ ਦਾ ਪ੍ਰਬੰਧਨ 📕 75

35

ਸਿੱਚੋਂ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋਂ 🔪 🗰 👘

ਜੇ ਇੱਕ ਛੜ ਗਰਾਫ਼ ਦੇ ਛੜਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱਕ ਦੀ ਸਥਿਤੀ ਬਦਲ ਦਿੱਤੀ ਜਾਵੇ, ਤਾਂ ਕੀ ਦਰਸਾਈ ਗਈ ਜਾਣਕਾਰੀ ਵਿੱਚ ਕੋਈ ਬਦਲਾਓ ਜਾਂ ਪਰਿਵਰਤਨ ਹੋਵੇਗਾ ? ਕਿਉਂ ?

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਸਾਈਕਲ ਚਲਾਉਣਾ

ਦਿੱਤੀ ਹੋਈ ਸੂਚਨਾ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਇੱਕ ਢੁੱਕਵਾਂ (suitable) ਗਰਾਫ਼ ਖਿੱਚੋ

1.	ਮਹੀਨਾ	ਜੁਲਾਈ	ਅਗਸਤ	ਸਤੰਬਰ	ਅਕਤੂਬਰ	ਨਵੰਬਰ	ਦਸੰਬਰ
	ਵੇਚੀਆਂ ਗਈਆਂ ਘੜੀਆਂ ਦੀ ਗਿਣਤੀ	1000	1500	1500	2000	2500	1500
	ਬੱਚਿਆਂ ਦੀ ਗਿਣਤੀ	ਜਿਨ੍ਹਾਂ ਨੂੰ ਪਸੰ	ਦ ਹੈ ਸ	ন্থস A	ਸਕੂਲ	в	ਸਕੂਲ C
11	ਪੈਦਲ ਚਲਨਾ			40	55		15

25

45

3. ਸਭ ਤੋਂ ਵਧੀਆ ਕ੍ਰਿਕੇਟ ਟੀਮਾਂ ਦੁਆਰਾ ODI ਵਿੱਚ ਜਿੱਤਣ ਦਾ ਪਤੀਸ਼ਤ

રીમ	ਚੈਂਪੀਅਨ ਟਰਾਫੀ ਤੋਂ ਵਰਲਡ ਕਪ 2006 ਤੱਕ	2007 ਵਿੱਚ ਪਿਛਲੇ 10 ODI	
ਦੱਖਣੀ ਅਫਰੀਕਾ	75%	78%	
ਆਸਟਰੇਲੀਆ	61%	40%	
ਸ਼ੀਲੰਕਾ	54%	38%	
ਨਿਊਜ਼ੀਲੈਂਡ	47%	50%	
ਇੰਗਲੈਂਡ	46%	50%	
ਪਾਕਿਸਤਾਨ	45%	44%	
ਵੈਸਟ ਇੰਡੀਜ਼	44%	30%	
ਭਾਰਤ	43%	56%	

5.2 ਅੰਗੜਿਆਂ ਦਾ ਸੰਗਠਨ (Organising Data)

ਆਮ ਤੌਰ ਤੇ ਸਾਨੂੰ ਉਪਲੱਬਧ ਅੰਕੜੇ ਅਸੰਗਠਿਤ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਇਹਨਾਂ ਨੂੰ ਮੂਲ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਅੰਕੜੇ (raw data) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਸਾਰਥਕ ਨਤੀਜੇ ਕੱਢਣ ਲਈ, ਸਾਨੂੰ ਅੰਕੜਿਆਂ ਨੂੰ ਇੱਕ ਲੜੀਵਾਰ ਸੰਗਠਿਤ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਉਦਾਹਰਣ ਲਈ ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਇੱਕ ਗੁੱਟ ਨੂੰ ਉਹਨਾਂ ਦੇ ਮਨਪਸੰਦ ਵਿਸ਼ਿਆਂ ਦੇ ਬਾਰੇ ਪੁੱਛਿਆ ਗਿਆ। ਇਸਦੇ ਨਤੀਜੇ ਦੀ ਸੂਚੀ ਹੇਠਾਂ ਦਿੱਤੀ ਗਈ ਹੈ।

ਕਲਾ, ਗਣਿਤ, ਵਿਗਿਆਨ, ਅੰਗਰੇਜ਼ੀ, ਗਣਿਤ, ਕਲਾ, ਅੰਗਰੇਜ਼ੀ, ਗਣਿਤ ਅੰਗਰੇਜ਼ੀ, ਕਲਾ ਵਿਗਿਆਨ, ਕਲਾ, ਵਿਗਿਆਨ, ਗਣਿਤ, ਕਲਾ, ਅੰਗਰੇਜ਼ੀ, ਕਲਾ, ਵਿਗਿਆਨ, ਗਣਿਤ, ਵਿਗਿਆਨ, ਕਲਾ।

ਕਿਹੜਾ ਵਿਸ਼ਾ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਪਸੰਦ ਕੀਤਾ ਗਿਆ ਅਤੇ ਕਿਹੜਾ ਵਿਸ਼ਾ ਸਭ ਤੋਂ ਘੱਟ ਪਸੰਦ ਕੀਤਾ ਗਿਆ ?

76 🔳 ਗਣਿਤ

ਸਧਾਰਨ ਰੂਪ ਵਿੱਚ ਲਿਖੀਆਂ ਗਈਆਂ ਰੂਚੀਆਂ ਜਾਂ ਪਸੰਦ ਵੇਖ ਕੇ ਇਸ ਪ੍ਰਸ਼ਨ ਦਾ ਉੱਤਰ ਦੇਣਾ ਸੌਖਾ ਨਹੀਂ ਹੈ।ਅਸੀਂ ਮਿਲਾਣ ਚਿੰਨ੍ਹਾਂ (tally marks) ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ, ਇਹਨਾਂ ਔਕੜਿਆਂ ਨੂੰ ਸਾਰਣੀ 5.1 ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖ ਸਕਦੇ ਹਾਂ :

ਸਾਰਣੀ 5.1				
বিয়া	ਮਿਲਾਣ ਚਿੰਨੂ	ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਗਿਣਤੀ		
ਕਲਾ	NU II	7		
ਗਣਿਤ	HU	5		
ਵਿਗਿਆਨ	NUI	6		
ਅੰਗਰੇਜ਼ੀ	1111	4		

ਹਰੇਕ ਵਿਸ਼ੇ ਦੇ ਸਾਹਮਣੇ ਲਿਖੇ ਮਿਲਾਣ ਚਿੰਨ੍ਹਾਂ ਦੀ ਗਿਣਤੀ ਤੋਂ ਅਸੀਂ ਕਿਸੇ ਖਾਸ ਵਿਸ਼ੇ ਨੂੰ ਪਸੰਦ ਕਰਨ ਵਾਲੇ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਗਿਣਤੀ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ।

ਇਸ ਗਿਣਤੀ ਨੂੰ ਉਸ ਵਿਸ਼ੇ ਦੀ ਬਾਰੰਬਾਰਤਾ (frequency) ਆਖਦੇ ਹਾਂ।

ਕਿਸੇ ਇੰਦਰਾਜ਼ ਦੀ ਬਾਰੈਬਾਰਤਾ ਉਹ ਗਿਣਤੀ ਹੈ ਜਿੰਨੀ ਵਾਰ ਉਹ ਇੰਦਰਾਜ਼ ਅੰਕੜਿਆਂ ਵਿੱਚ ਆਉਂਦਾ ਹੈ।

ਸਾਰਣੀ 5.1 ਵਿੱਚ, ਅੰਗਰੇਜ਼ੀ ਨੂੰ ਪਸੰਦ ਕਰਨ ਵਾਲੇ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਬਾਰੰਬਾਰਤਾ 4 ਹੈ। ਗਣਿਤ ਨੂੰ ਪਸੰਦ ਕਰਨ ਵਾਲੇ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਬਾਰੰਬਾਰਤਾ 5 ਹੈ।

ਉਪਰੋਕਤ ਰੂਪ ਵਿੱਚ ਬਣਾਈ ਗਈ ਸਾਰਣੀ ਨੂੰ ਇੱਕ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਸਾਰਣੀ (frequency distribution table) ਆਖਦੇ ਹਨ, ਕਿਉਂਕਿ ਇਸ ਤੋਂ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਇੱਕ ਇੱਕ ਇੰਦਰਾਜ਼ ਕਿੰਨੀ ਵਾਰ ਆਇਆ ਹੈ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

 ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਇੱਕ ਗੁੱਟ ਵਿੱਚ ਇਹ ਦੱਸਣ ਨੂੰ ਕਿਹਾ ਗਿਆ ਹੈ ਕਿ ਉਹ ਕਿਸ ਪਸ਼ੂ ਨੂੰ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਘਰ ਵਿੱਚ ਪਾਲਣਾ ਪਸੰਦ ਕਰਨਗੇ। ਇਸਦੇ ਨਤੀਜੇ ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਹਨ :

ਕੁੱਤਾ, ਬਿੱਲੀ, ਬਿੱਲੀ, ਮੱਛੀ, ਬਿੱਲੀ, ਖਰਗੋਸ਼, ਕੁੱਤਾ, ਖਰਗੋਸ਼, ਕੁੱਤਾ, ਬਿੱਲੀ, ਕੁੱਤਾ, ਕੁੱਤਾ, ਕੁੱਤਾ, ਬਿੱਲੀ, ਗਾਂ, ਮੱਛੀ, ਖਰਗੋਸ਼, ਕੁੱਤਾ, ਬਿੱਲੀ, ਕੁੱਤਾ, ਬਿੱਲੀ, ਬਿੱਲੀ, ਕੁੱਤਾ, ਖਰਗੋਸ਼, ਬਿੱਲੀ, ਮੱਛੀ, ਕੁੱਤਾ। ਉਪਰੋਕਤ ਦੇ ਲਈ ਇੱਕ ਬਾਰੰਬਾਰਤਾ ਸਾਰਣੀ ਬਣਾਉ।

5.3 ਅੰਕੜਿਆਂ ਦਾ ਵਰਗੀਕਰਨ

ਵਿਸ਼ਿਆਂ ਦੀ ਪਸੰਦ ਨਾਲ ਜੁੜੇ ਅੰਕੜੇ ਹਰੇਕ ਇੰਦਰਾਜ਼ ਦੇ ਅਨੇਕ ਵਾਰ ਆਉਣ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। ਉਦਾਹਰਣ ਲਈ, ਕਲਾ ਨੂੰ 7 ਵਿਦਿਆਰਥੀ ਪਸੰਦ ਕਰਦੇ ਹਨ, ਗਣਿਤ ਨੂੰ 5 ਵਿਦਿਆਰਥੀ ਪਸੰਦ ਕਰਦੇ ਹਨ ਆਦਿ (ਸਾਰਣੀ 5.1) ਇਸ ਸੂਚਨਾ ਨੂੰ ਗਰਾਫ਼ ਰੂਪ ਵਿੱਚ ਇੱਕ ਚਿੱਤਰ ਗਰਾਫ਼ ਜਾਂ ਬਾਰ ਗਰਾਫ਼ ਨਾਲ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਪਰੰਤੂ ਕਿਤੇ-ਕਿਤੇ ਸਾਨੂੰ ਵੱਡੇ ਅੰਕੜਿਆਂ ਨਾਲ ਕੰਮ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ, ਜਮਾਤ VIII ਦੇ 60 ਵਿਦਿਆਰਥੀਆਂ ਦੁਆਰਾ ਗਣਿਤ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤੇ ਗਏ (50 ਵਿੱਚੋਂ) ਹੇਠਾਂ ਲਿਖਿਆਂ ਅੰਕੜਿਆਂ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।

21, 10, 30, 22, 33, 5, 37, 12, 25, 42, 15, 39, 26, 32, 18, 27, 28, 19, 29, 35, 31, 24, 36, 18, 20, 38, 22, 44, 16, 24, 10, 27, 39, 28, 49, 29, 32, 23, 31, 21, 34, 22, 23, 36, 24, 36, 33, 47, 48, 50, 39, 20, 7, 16, 36, 45, 47, 30, 22, 17.

ਅੰਕੜਿਆਂ ਦਾ ਪ੍ਰਬੰਧਨ 🔳 77

ਜੇ ਅਸੀਂ ਹਰੇਕ ਅੰਕ ਦੇ ਲਈ ਇੱਕ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਸਾਰਣੀ ਬਣਾਈਏ ਤਾਂ ਇਹ ਬਹੁਤ ਲੰਬੀ ਹੋਵੇਗੀ। ਇਸ ਲਈ ਅਸੀਂ ਸੌਖਾ ਕਰਨ ਲਈ ਇੰਦਰਾਜ਼ਾਂ ਦੇ ਕੁਝ ਗੁੱਟ ਜਾਂ ਵਰਗ ਬਣਾਉਂਦੇ ਹਾਂ, ਜਿਵੇਂ ਕਿ 0–10, 10–20 ਆਦਿ ਅਤੇ ਹਰੇਕ ਗੁੱਟ ਜਾਂ ਵਰਗ ਵਿੱਚ ਆਉਣ ਵਾਲੇ ਇੰਦਰਾਜ਼ਾਂ ਦੀ ਗਿਣਤੀ ਦੇ ਅਧਾਰ 'ਤੇ ਇੱਕ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਸਾਰਣੀ (frequency distribution) ਬਣ ਜਾਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਉਪਰੋਕਤ ਅੰਕੜਿਆਂ ਦੇ ਲਈ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਸਾਰਣੀ ਹੇਠ ਲਿਖੀ ਹੋ ਸਕਦੀ ਹੈ।

ਗੁੱਟ	ਮਿਲਾਣ ਚਿੰਨ੍	ਬਾਰੰਬਾਰਤਾ	
0-10	11	2	
10-20	HU HU	10	
20-30	HI HI HI HI	21	
30-40		19	
40-50	NUII	7	
50-60	1	1	
	संझ	60	

	the local sector
11 2 2 1	52
।ਾਰਣਾ	3.4

ਉਪਰੋਕਤ ਢੰਗ ਨਾਲ ਦਰਸਾਏ ਅੰਕੜਿਆਂ ਨੂੰ ਵਰਗੀਕ੍ਰਿਤ ਅੰਕੜੇ (grouped data) ਆਖਦੇ ਹਨ ਅਤੇ ਪ੍ਰਾਪਤ ਵੰਡ ਨੂੰ ਵਰਗੀਕ੍ਰਿਤ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਆਖਦੇ ਹਾਂ। ਇਸ ਤੋਂ ਸਾਰਥਕ ਸਿੱਟੇ ਕੱਢਣ ਵਿੱਚ ਸਹਾਇਤਾ ਮਿਲਦੀ ਹੈ। ਜਿਸ ਤਰ੍ਹਾਂ :

- (1) ਜ਼ਿਆਦਾ ਵਿਦਿਆਰਥੀਆਂ ਨੇ 20 ਤੋਂ 40 ਦੇ ਵਿੱਚ ਅੰਕ ਪ੍ਰਾਪਤ ਕੀਤੇ ਹਨ।
- (2) 8 ਵਿਦਿਆਰਥੀਆਂ ਨੇ 50 ਵਿਚੋਂ 40 ਤੋਂ ਜ਼ਿਆਦਾ ਅੰਕ ਪ੍ਰਾਪਤ ਕੀਤੇ ਹਨ।

ਗੁੱਟਾਂ 0–10, 10–20, 20–30 ਆਦਿ ਵਿੱਚ ਹਰੇਕ ਨੂੰ ਇਕ ਵਰਗ ਅੰਤਰਾਲ (class interval) [ਜਾਂ ਸੰਖੇਪ ਵਿੱਚ ਇੱਕ ਵਰਗ (class)] ਆਖਦੇ ਹਨ।

ਧਿਆਨ ਦਿਓ ਕਿ ਸੰਖਿਆ 10 ਦੋਨੋਂ ਵਰਗਾਂ 0–10 ਅਤੇ 10–20 ਵਿੱਚ ਮੌਜੂਦ ਹੈ। ਇਸੇ ਤਰ੍ਹਾਂ, 20 ਦੋਨੋਂ ਵਰਗਾਂ 10–20 ਅਤੇ 20–30 ਵਿੱਚ ਮੌਜੂਦ ਹੈ। ਪਰ ਇੱਕ ਅੰਕੜਾ (10 ਜਾਂ 20) ਦੋ ਵਰਗਾਂ ਵਿੱਚ ਇੱਕ ਸਮੇਂ ਮੌਜੂਦ ਨਹੀਂ ਹੋ ਸਕਦਾ। ਇਸ ਤੋਂ ਬਚਣ ਲਈ, ਅਸੀਂ ਇਕ ਧਾਰਨਾ ਬਣਾ ਲੈਂਦੇ ਹਾਂ ਕਿ ਸਾਂਝੇ ਅੰਕੜੇ ਦੀ ਉਪਰਲੇ ਵਰਗ ਵਿੱਚ ਗਿਣਤੀ ਕੀਤੀ ਜਾਵੇਗੀ। ਜਿਵੇਂ ਕਿ 10 ਵਰਗ ਅੰਤਰਾਲ 10–20 ਵਿੱਚ ਗਿਣਿਆ ਜਾਵੇਗਾ (0–10 ਵਿੱਚ ਨਹੀਂ) ਇਸੇ ਤਰ੍ਹਾਂ, 20 ਵਰਗ ਅੰਤਰਾਲ 20–30 ਵਿੱਚ ਗਿਣਿਆ ਜਾਵੇਗਾ (10-20 ਵਿੱਚ ਨਹੀਂ)। ਵਰਗ ਅੰਤਰਾਲ 10-20 ਵਿੱਚ, 10 ਨੂੰ ਹੇਠਲੀ ਵਰਗ ਸੀਮਾ (lower class limit) ਆਖਦੇ ਹਨ ਅਤੇ 20 ਉਪਰਲੀ ਜਾਂ ਉੱਚ ਵਰਗ ਸੀਮਾ (Upper class limit) ਹੈ ਅਤੇ ਇਸੇ ਤਰ੍ਹਾਂ ਵਰਗ ਅੰਤਰਾਲ 20–30 ਵਿੱਚ 20 ਹੇਠਲੀ ਵਰਗ ਸੀਮਾ ਹੈ ਅਤੇ 30 ਉੱਪਰਲੀ ਵਰਗ ਸੀਮਾ ਹੈ। ਧਿਆਨ ਦਿਓ ਕਿ ਵਰਗ ਅੰਤਰਾਲਾਂ 0–10, 10–20, 20–30 ਆਦਿ ਵਿੱਚ ਹਰੇਕ ਦੀ ਉੱਚ ਵਰਗ ਸੀਮਾ ਅਤੇ ਹੇਠਲੀ ਵਰਗ ਸੀਮਾ ਦਾ ਅੰਤਰ ਬਰਾਬਰ ਹੈ (ਇਸ ਸਥਿਤੀ ਵਿੱਚ 10)। ਉਪਰਲੀ (ਜਾਂ ਉੱਚ) ਵਰਗ ਸੀਮਾ ਅਤੇ ਹੇਠਲੀ ਵਰਗ ਸੀਮਾ ਵਿੱਚ ਇਸ ਅੰਤਰ ਨੂੰ ਵਰਗ ਅੰਤਰਾਲ ਦੀ ਚੌੜਾਈ (width) ਜਾਂ ਮਾਪ (size) ਆਖਦੇ ਹਨ।

78 🔳 ਗਣਿਤ

ਕੋਸ਼ਿਸ਼ ਕਰੋ

1.	ਹੇਠਾਂ ਲਿਖੀ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਸਾਰਣੀ ਦਾ ਅਧਿਐਨ ਕਰੋਂ ਅਤੇ ਉਸਦੇ ਹੇਠਾਂ ਦਿੱਤੇ ਹੋਏ ਪ੍ਰਸ਼ਨਾਂ	
	ਦੇ ਉੱਤਰ ਦਿਓ :	

ਸਾਰਣੀ 5.3

ਵਰਗ ਅੰਤਰਾਲ (ਰੁਪਏ ਵਿੱਚ ਰੋਜ਼ਾਨਾ ਆਮਦਨ)	ਬਾਰੰਬਾਰਤਾ (ਮਜ਼ਦੂਰਾਂ ਦੀ ਗਿਣਤੀ)			
100-125	45			
125-150	25			
150-175	55			
175-200	125			
200-225	140			
225-250	55			
250-275	35			
275-300	50			
300-325	20			
ਜੋੜ	550			

(i) ਵਰਗ ਅੰਤਰਾਲਾਂ ਦਾ ਮਾਪ ਕੀ ਹੈ?

(ii) ਕਿਸ ਵਰਗ ਦੀ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਬਾਰੰਬਾਰਤਾ ਹੈ?

(iii) ਕਿਸ ਵਰਗ ਦੀ ਸਭ ਤੋਂ ਘੱਟ ਬਾਰੰਬਾਰਤਾ ਹੈ?

(iv) ਵਰਗ ਅੰਤਰਾਲ 250-275 ਦੀ ਉੱਚ ਸੀਮਾ ਕੀ ਹੈ?

- (iv) ਕਿਹੜੇ ਦੋ ਵਰਗਾਂ ਦੀ ਬਾਰੰਬਾਰਤਾ ਇੱਕ ਹੀ ਹੈ?
- ਅੰਤਰਾਲਾਂ 30-35, 35-40 ਆਦਿ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ, ਇੱਕ ਜਮਾਤ ਵਿੱਚ 20 ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਭਾਰ (Kg ਵਿੱਚ) ਦੇ ਹੇਠਾਂ ਲਿਖੇ ਅੰਕੜਿਆਂ ਲਈ ਇੱਕ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਸਾਰਣੀ ਬਣਾਉ।

40, 38, 33, 48, 60, 53, 31, 46, 34, 36, 49, 41, 55, 49, 65, 42, 44, 47, 38, 39

5.3.1. ਬਾਰ ਇੱਕ ਵੱਖਰੇ ਢੰਗ ਦੇ ਨਾਲ

ਆਉ, 60 ਵਿਦਿਆਰਥੀਆਂ ਦੁਆਰਾ ਗਣਿਤ ਟੈਸਟ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤੇ ਗਏ ਅੰਕਾਂ ਦੇ ਵਰਗੀਕਰਨ ਕੀਤੇ ਬਾਰੰਬਾਰਤਾ ਵੰਡ 'ਤੇ ਦੁਬਾਰਾ ਵਿਚਾਰ ਕਰੀਏ (ਸਾਰਣੀ 5.4)।

ਵਰਗ ਅੰਤਰਾਲ	ਬਾਰੰਬਾਰਤਾ
0-10	2
10-20	10
20-30	21
30-40	19
40-50	7
50-60	216.4
ਜੋੜ	60

ਸ਼ਾਰਣੀ 5.4

ਅੰਕੜਿਆਂ ਦਾ ਪਬੰਧਨ 🔳 79

ਉਪਰੋਕਤ ਨੂੰ ਨਾਲ ਦਿੱਤੇ ਗਰਾਫ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। (ਚਿੱਤਰ 5.1)।

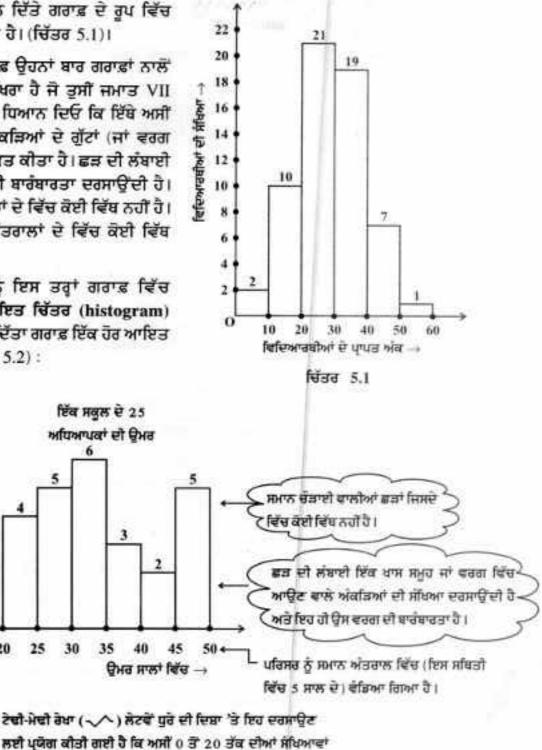
ਕੀ ਇਹ ਗਰਾਫ਼ ਉਹਨਾਂ ਬਾਰ ਗਰਾਫ਼ਾਂ ਨਾਲੋਂ ਕਿਸੇ ਰੂਪ ਵਿੱਚ ਵੱਖਰਾ ਹੈ ਜੋ ਤੁਸੀਂ ਜਮਾਤ VII ਵਿੱਚ ਖਿੱਚੇ ਸਨ ? ਧਿਆਨ ਦਿਓ ਕਿ ਇੱਥੇ ਅਸੀਂ ਲੇਟਵੇਂ ਧਰੇ 'ਤੇ ਅੰਕੜਿਆਂ ਦੇ ਗੱਟਾਂ (ਜਾਂ ਵਰਗ ਅੰਤਰਾਲਾਂ) ਨੂੰ ਅੰਕਿਤ ਕੀਤਾ ਹੈ। ਛੜ ਦੀ ਲੰਬਾਈ ਵਰਗ ਅੰਤਰਾਲ ਦੀ ਬਾਰੰਬਾਰਤਾ ਦਰਸਾਉਂਦੀ ਹੈ। ਨਾਲ ਹੀ, ਇੱਥੇ ਛੜਾਂ ਦੇ ਵਿੱਚ ਕੋਈ ਵਿੱਥ ਨਹੀਂ ਹੈ। ਕਿਉਂਕਿ ਵਰਗ ਅੰਤਰਾਲਾਂ ਦੇ ਵਿੱਚ ਕੋਈ ਵਿੱਥ ਨਹੀਂ ਹੈ।

ਅੰਕੜਿਆਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਗਰਾਫ਼ ਵਿੱਚ ਦਰਸਾਉਣ ਨੂੰ ਆਇਤ ਚਿੱਤਰ (histogram) ਕਹਿੰਦੇ ਹਨ। ਹੇਠਾਂ ਦਿੱਤਾ ਗਰਾਫ਼ ਇੱਕ ਹੋਰ ਆਇਤ ਚਿੱਤਰ ਹੈ। (ਚਿੱਤਰ 5.2) :

ਅਧਿਆਪਕਾਂ ਦੀ ਸ਼ੱਖਿਆ →

5

3

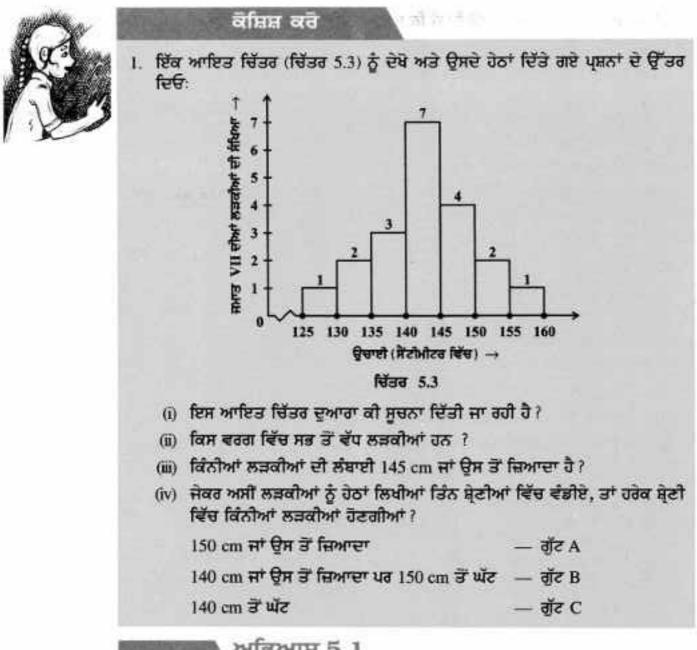

2

20

25

ਦਰਸ਼ਾ ਨਹੀਂ ਰਹੇ ਹਾਂ।

30


ਚਿੱਤਰ 5.2

ਇਸ ਆਇਤ ਚਿੱਤਰ ਦੇ ਛੜਾਂ ਤੋਂ ਅਸੀਂ ਹੇਠਾਂ ਲਿਖੇ ਪਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦੇ ਸਕਦੇ ਹਾਂ :

ਕਿੰਨੇ ਅਧਿਆਪਕਾਂ ਦੀ ਉਮਰ 45 ਸਾਲ ਹੈ ਜਾਂ ਉਸ ਤੋਂ ਜ਼ਿਆਂਦਾ ਹੈ ਪਰ 50 ਸਾਲ ਤੋਂ ਘੱਟ ਹੈ ? (i)

35 ਸਾਲ ਤੋਂ ਘੱਟ ਉਮਰ ਵਾਲੇ ਅਧਿਆਪਕਾਂ ਦੀ ਗਿਣਤੀ ਕਿੰਨੀ ਹੈ? (ii)

80 🔳 ਗਣਿਤ

- ਅਭਿਆਸ 5.1
- 1. ਹੇਠਾਂ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜੇ ਅੰਕੜਿਆਂ ਨੂੰ ਦਰਸਾਉਣ ਦੇ ਲਈ ਤੁਸੀਂ ਇੱਕ ਆਇਤਾਕਾਰ ਚਿੱਤਰ ਦੀ ਵਰਤੋਂ ਕਰੋਗੇ ?
 - (a) ਇੱਕ ਡਾਕੀਏ ਦੇ ਬੈਲੇ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਖੇਤਰਾਂ ਦੀਆਂ ਚਿੱਠੀਆਂ ਦੀ ਗਿਣਤੀ।
 - (b) ਕਿਸੇ ਖੇਡ ਮੁਕਾਬਲੇ ਵਿੱਚ ਹਿੱਸਾ ਲੈਣ ਵਾਲੇ ਖਿਡਾਰੀਆਂ ਦੀਆਂ ਉਚਾਈਆਂ।
 - (c) 5 ਕੰਪਨੀਆਂ ਦੁਆਰਾ ਬਣਾਈਆਂ ਕੈਸਟਾਂ ਦੀ ਗਿਣਤੀ।
 - (d) ਕਿਸੇ ਸਟੇਸ਼ਨ 'ਤੇ ਸਵੇਰੇ 7 ਵਜੇ ਤੋਂ ਸ਼ਾਮ 7 ਵਜੇ ਤੱਕ ਰੇਲਗੱਡੀਆਂ ਵਿੱਚ ਜਾਣ ਵਾਲੇ ਯਾਤਰੀਆਂ ਦੀ ਗਿਣਤੀ।

ਹਰੇਕ ਦੇ ਲਈ, ਕਾਰਨ ਵੀ ਦੱਸੋ।

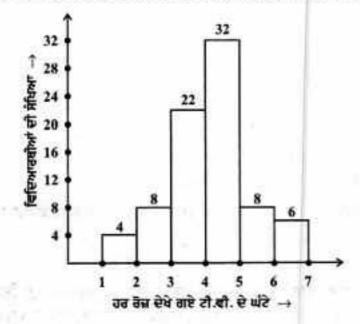
2. ਕਿਸੇ ਡਿਪਾਰਟਮੈਂਟਲ ਸਟੋਰ 'ਤੇ ਖਰੀਦਦਾਰੀ ਕਰਨ ਆਏ ਵਿਅਕਤੀਆਂ ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਅੰਕਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ : ਪੁਰਸ਼ (M) ਔਰਤ (W), ਲੜਕਾ (B) ਜਾਂ ਲੜਕੀਆਂ (G)। ਹੇਠਾਂ ਲਿਖੀ ਸਚੀ

ਅੰਕੜਿਆਂ ਦਾ ਪ੍ਰਬੰਧਨ 🔳 81

ਉਹਨਾਂ ਖਰੀਦਦਾਰਾਂ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਜੋ ਕਿ ਸਵੇਰ ਦੇ ਪਹਿਲੇ ਘੰਟੇ ਵਿੱਚ ਆਏ ਹਨ :

W W W G B W W M G G M M W W W W G B M W B G G M W W M M W W W M W B W G M W W W W W G W M M W W M W G W M G W M M B G G W ਮਿਲਾਨ ਚਿੰਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਇੱਕ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਸਾਰਣੀ ਬਣਾਉ। ਇਸ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਇੱਕ ਛੜ ਗਰਾਫ਼ ਖਿੱਚੋ।

ਕਿਸੇ ਫੈਕਟਰੀ ਦੇ 30 ਮਜ਼ਦੂਰਾਂ ਦੀ ਹਫ਼ਤੇ ਦੀ ਆਮਦਨ (ਰੁਪਏ ਵਿੱਚ) ਹੇਠਾਂ ਲਿਖੀ ਹੈ :

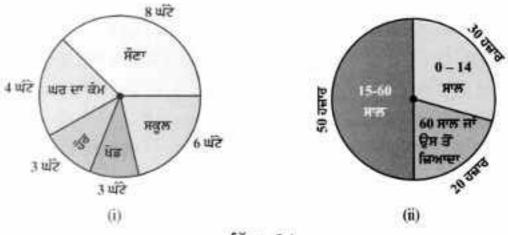

830, 835, 890, 810, 835, 836, 869, 845, 898, 890, 820, 860, 832, 833, 855, 845, 804, 808, 812, 840, 885, 835, 835, 836, 878, 840, 868, 890, 806, 840

ਮਿਲਾਣ ਚਿੰਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ, ਅੰਤਰਾਲਾਂ 800-810, 810-820 ਆਦਿ ਵਾਲੀ ਇੱਕ ਬਾਰੰਬਾਰਤਾ ਸਾਰਣੀ ਬਣਾਉ :

- ਪ੍ਰਸ਼ਨ 3 ਵਿੱਚ ਦਿੱਤੇ ਅੰਕੜਿਆਂ ਤੋਂ ਪ੍ਰਾਪਤ ਸਾਰਣੀ ਦੇ ਲਈ ਇੱਕ ਆਇਤ ਚਿੱਤਰ ਬਣਾਉ ਅਤੇ ਹੇਠਾਂ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ।
 - (i) ਕਿਸ ਗੁੱਟ ਵਿੱਚ ਮਜ਼ਦੂਰਾਂ ਦੀ ਗਿਣਤੀ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਹੈ ?
 - (ii) ਕਿੰਨੇ ਮਜ਼ਦੂਰ ₹ 850 ਜਾਂ ਉਸ ਤੋਂ ਵੱਧ ਕਮਾਉਂਦੇ ਹਨ ?
 - (iii) ਕਿੰਨੇ ਮਜ਼ਦੂਰ ₹ 850 ਤੋਂ ਘੱਟ ਕਮਾਉਂਦੇ ਹਨ ?
- ਛੁੱਟੀਆਂ ਦੇ ਦਿਨਾਂ ਵਿੱਚ ਇੱਕ ਖਾਸ ਜਮਾਤ ਦੇ ਵਿਦਿਆਰਥੀਆਂ ਦੁਆਰਾ ਪ੍ਰਤੀ ਦਿਨ ਟੈਲੀਵਿਜ਼ਨ (ਟੀ.ਵੀ.) ਦੇਖਣ ਦੇ ਸਮੇਂ (ਘੰਟਿਆਂ ਵਿੱਚ), ਦਿੱਤੇ ਗਏ ਗਰਾਫ਼ ਰਾਹੀਂ ਦਰਸਾਇਆ ਗਿਆ ਹੈ :

ਹੇਠਾਂ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ :

- (i) ਸਭ ਤੋਂ ਵੱਧ ਵਿਦਿਆਰਥੀਆਂ ਨੇ ਕਿੰਨੇ ਘੰਟੇ ਤੱਕ ਟੀ.ਵੀ. ਦੇਖਿਆ ?
- (ii) 4 ਘੰਟਿਆਂ ਤੋਂ ਘੱਟ ਸਮੇਂ ਤੱਕ ਕਿੰਨੇ ਵਿਦਿਆਰਥੀਆਂ ਨੇ ਟੀ.ਵੀ. ਦੇਖਿਆ ?
- (iii) ਕਿੰਨੇ ਵਿਦਿਆਰਥੀਆਂ ਨੇ ਟੀ.ਵੀ. ਦੇਖਣ ਵਿੱਚ 5 ਘੰਟੇ ਤੋਂ ਜ਼ਿਆਦਾ ਸਮਾਂ ਬਿਤਾਇਆ?



82 🖩 ਗਣਿਤ

5.4 ਚੱਕਰ ਗਰਾਫ਼ ਜਾਂ ਪਾਈ ਚਾਰਟ

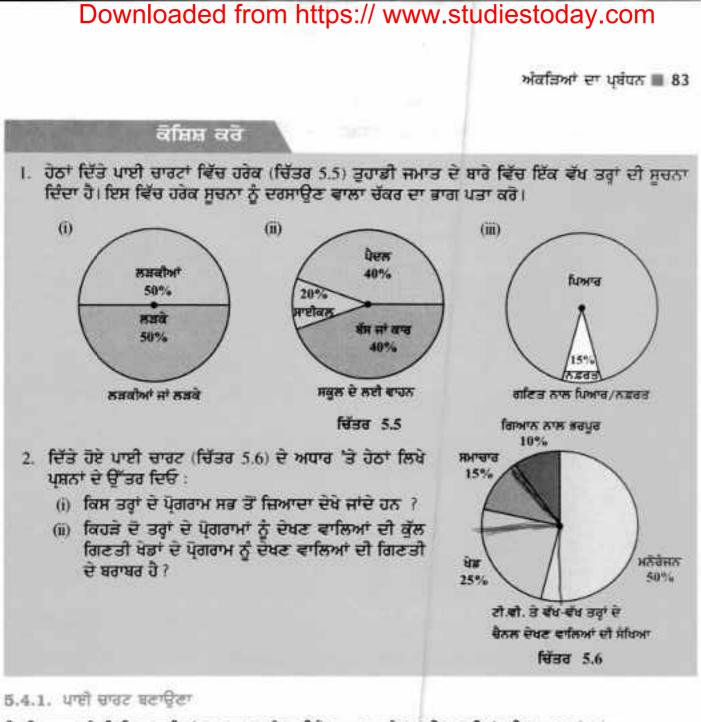
ਕੀ ਤੁਹਾਡੇ ਸਾਹਮਣੇ ਕਦੇ ਚੱਕਰ ਰੂਪ ਵਿੱਚ ਅੰਕੜੇ ਦਰਸਾਏ ਗਏ ਹਨ, ਜਿਵੇਂ ਕਿ ਚਿੱਤਰ 5.4 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ?

ਇੱਕ ਦਿਨ ਵਿੱਚ ਇੱਕ ਬੱਚੇ ਦੁਆਰਾ ਬਿਤਾਇਆ ਗਿਆ ਇੱਕ ਕਸਬੇ ਵਿੱਚ ਵਿਅਕਤੀਆਂ ਦੇ ਉਮਰ ਗੁੱਟ ਸਮਾਂ

ਚਿੱਤਰ 5.4

ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਉਣ ਨੂੰ ਚੱਕਰ ਗਰਾਫ਼ (circle graphs) ਆਖਦੇ ਹਨ। ਇੱਕ ਚੱਕਰ ਗਰਾਫ਼ ਇੱਕ ਪੂਰਨ (whole) ਅਤੇ ਉਸਦੇ ਭਾਗਾਂ ਵਿੱਚ ਸੰਬੰਧ ਦਰਸਾਉਂਦਾ ਹੈ। ਇੱਥੇ ਪੂਰਨ ਚੱਕਰ ਨੂੰ ਚੱਕਰਖੰਡਾਂ (sectors) ਵਿੱਚ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ। ਹਰੇਕ ਚੱਕਰਖੰਡ ਦਾ ਮਾਪ ਉਸਦੇ ਦੁਆਰਾ ਦਰਸਾਈ ਗਈ ਸੂਚਨਾ ਦੇ ਸਮਾਨ ਅਨਪਾਤੀ ਹੁੰਦਾ ਹੈ।

ਉਦਾਹਰਣ ਲਈ, ਉਪਰੋਕਤ ਗਰਾਫ਼ ਵਿੱਚ, ਸੌਣ ਵਿੱਚ ਬਿਤਾਏ ਗਏ ਘੰਟਿਆਂ ਵਿੱਚ ਚੱਕਰਖੰਡ ਦਾ ਅਨੁਪਾਤਕ ਹਿੱਸਾ


ੂ ਸੌਣ ਦੇ ਘੰਟਿਆਂ ਦੀ ਗਿਣਤੀ
ਪੂਰਾ ਦਿਨ =
$$\frac{8 ~ ਘੰਟੇ}{24 ~ ਘੰਟੇ} = \frac{1}{3}$$

ਇਸ ਲਈ, ਇਸ ਚੱਕਰਖੰਡ ਨੂੰ ਪੂਰੇ ਚੱਕਰ ਦੇ ¹/₃ ਭਾਗ ਦੇ ਰੂਪ ਵਿੱਚ ਖਿੱਚਿਆ ਗਿਆ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਸਕੂਲ ਵਿੱਚ ਬਿਤਾਏ ਘੰਟਿਆਂ ਦੇ ਚੱਕਰਖੰਡ ਦਾ ਅਨੁਪਾਤ ਹਿੱਸਾ

> ਸ਼ੁਕੂਲ ਦੇ ਘੰਟਿਆਂ ਦੀ ਗਿਣਤੀ ਪੂਰਾ ਦਿਨ = $\frac{6}{24}$ ਘੰਟੇ = $\frac{1}{4}$

ਇਸ ਲਈ, ਇਸ ਚੱਕਰਖੰਡ ਨੂੰ ਪੂਰੇ ਚੱਕਰ ਦੇ $\frac{1}{4}$ ਭਾਗ ਦੇ ਰੂਪ ਵਿੱਚ ਖਿੱਚਿਆ ਗਿਆ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਹੋਰ ਚੱਕਰਖੰਡਾਂ ਦੇ ਮਾਪ ਪਤਾ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ।

ਸਾਰੀਆਂ ਕਿਰਿਆਵਾਂ ਦੀਆਂ ਭਿੰਨਾਂ ਨੂੰ ਜੋੜੋ। ਕੀ ਤੁਹਾਨੂੰ ਜੋੜ ਇੱਕ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ? ਚੱਕਰ ਗਰਾਫ਼ ਨੂੰ ਪਾਈ ਚਾਰਟ (pie chart) ਵੀ ਆਖਦੇ ਹਨ।

ਕਿਸੀ ਸਕੂਲ ਦੇ ਵਿਦਿਆਰਥੀਆਂ ਦੁਆਰਾ ਪਸੰਦ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਆਈਸ ਕਰੀਮਾਂ ਦੀ ਖ਼ੁਸ਼ਬੂ ਜਾਂ ਸਵਾਦ (ਪ੍ਰਤੀਸ਼ਤ ਵਿੱਚ) ਹੇਠਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ :

ਖੁਸ਼ਬੂ	ਖ਼ੁਸ਼ਬੂ ਨੂੰ ਪਸੰਦ ਕਰਨ ਵਾਲੇ ਵਿਦਿਆਰਥੀਆਂ ਦਾ ਪ੍ਰਤੀਸ਼ਤ		
ਚਾਕਲੋਟ	50%		
ਵਨੀਲਾ	25%		
ਹੋਰ ਪ੍ਰਕਾਰ	25%		

ਆਉ, ਇਹਨਾਂ ਅੰਕੜਿਆਂ ਨੂੰ ਇੱਕ ਪਾਈ ਚਾਰਟ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਈਏ। ਚੱਕਰ ਦੇ ਕੇਂਦਰ 'ਤੇ ਪੁਰਾ ਕੋਣ 360° ਹੈ। ਚੱਕਰਖੰਡਾਂ ਦੇ ਕੇਂਦਰੀ ਕੋਣ (central angles) 360° ਦੇ ਭਾਗ

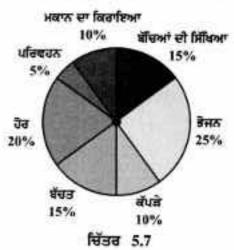
84 🔳 ਗਣਿਤ

ਜਾਂ ਕੋਈ ਭਿੰਨ ਹੋਣਗੇ। ਅਸੀਂ ਚੱਕਰਖੰਡਾਂ ਦੇ ਕੇਂਦਰੀ ਕੋਣਾਂ ਨੂੰ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਇੱਕ ਸਾਰਣੀ ਬਣਾਵਾਂਗੇ।

ਸਾਰਣੀ 5.5

ਖ਼ਸ਼ਬੂ	ਖ਼ਸ਼ਬੂ ਨੂੰ ਪਸੰਦ ਕਰਨ ਵਾਲੇ ਵਿਦਿਆਰਥੀਆਂ ਦਾ ਪ੍ਰਤੀਸ਼ਤ	ਪੂਰਨ ਭਾਗ	360° ਭਾਗ
ਚਾਕਲੇਟ	50%	$\frac{50}{100} = \frac{1}{2}$	360° ਦਾ $\frac{1}{2} = 180^{\circ}$
ਵਨੀਲਾ	25%	$\frac{25}{100} = \frac{1}{4}$	਼360° ਦਾ $\frac{1}{4} = 90°$
ਹੋਰ ਪ੍ਰਕਾਰ	25%	$\frac{25}{100} = \frac{1}{4}$	360° ਦਾ $\frac{1}{4} = 90^{\circ}$

 ਕਿਸੇ ਢੁੱਕਵੇਂ ਅਰਧ ਵਿਆਸ ਦਾ ਇੱਕ ਚੱਕਰ ਖਿੱਚੇ। ਇਸਦਾ ਕੇਂਦਰ (O) ਅਤੇ ਇੱਕ ਅਰਧ ਵਿਆਸ (OA) ਐਕਿਤ ਕਰੋ।


- ਚਾਕਲੇਟ ਦੇ ਚੱਕਰਖੰਡ ਦਾ ਕੋਣ 180° ਹੈ। ਕੋਣਮਾਪਕ (ਡੀ) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ∠ AOB=180° ਖਿੱਚੋ।
- ਬਚੇ ਹੋਏ ਚੱਕਰਖੰਡਾਂ ਨੂੰ ਵੀ ਇਸੇ ਤਰ੍ਹਾਂ ਅੰਕਿਤ ਕਰਦੇ ਰਹੋ।

ਉਦਾਹਰਣ 1 : ਨਾਲ ਦਿੱਤਾ ਪਾਈ ਚਾਰਟ (ਚਿੱਤਰ 5.7) ਇੱਕ ਮਹੀਨੇ ਵਿੱਚ ਇੱਕ ਪਰਿਵਾਰ ਦੇ ਵੱਖ-ਵੱਖ ਮੱਦਾਂ ਵਿੱਚ ਖਰਚੇ ਅਤੇ ਉਸਦੀ ਬੱਚਤ (ਪ੍ਰਤੀਸ਼ਤਾਂ ਵਿੱਚ) ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।

- (i) ਕਿਸ ਮੱਦ ਵਿੱਚ ਖਰਚ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਸੀ ?
- (ii) ਕਿਸ ਮੱਦ 'ਤੇ ਹੋਇਆ ਖਰਚ ਪਰਿਵਾਰ ਦੀ ਕੁੱਲ ਬੱਚਤ ਦੇ ਬਰਾਬਰ ਹੈ।
- (iii) ਜੇ ਪਰਿਵਾਰ ਦੀ ਮਹੀਨਾਵਾਰ ਬੱਚਤ ₹ 3000 ਹੈ, ਤਾਂ ਕੱਪੜਿਆਂ 'ਤੇ ਹੋਇਆ ਮਹੀਨੇ ਦਾ ਖਰਚ ਕੀ ਹੈ?

ਹੱਲ :

- (i) ਭੋਜਨ 'ਤੇ ਖਰਚ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਹੈ।
- (ii) ਬੱਚਿਆਂ ਦੀ ਸਿੱਖਿਆ 'ਤੇ ਹੋਇਆ ਖਰਚ (15%) ਪਰਿਵਾਰ ਦੀ ਕੁੱਲ ਬੱਚਤ ਦੇ ਬਰਾਬਰ ਹੈ।
- (iii) 15% ਦਰਸਾਉਂਦਾ ਹੈ, ₹ 3000

0

180

ø

ਚਾਕਲੋਟ

ਅੰਕੜਿਆਂ ਦਾ ਪ੍ਰਬੰਧਨ 🔳 85

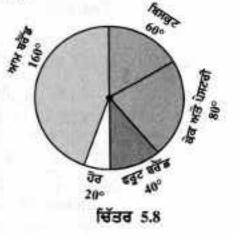
ਇਸ ਲਈ10% ਦਰਸਾਉਂਦਾ ਹੈ, ₹ $\frac{3000}{15} \times 10 = ₹ 2000$

ਉਦਾਹਰਣ 2 : ਇੱਕ ਖਾਸ ਦਿਨ ਕਿਸੇ ਬੇਕਰੀ ਦੀ ਦੁਕਾਨ ਵਿੱਚ ਹੋਈ ਵੱਖ-ਵੱਖ ਵਸਤੂਆਂ ਦੀ ਵਿਕਰੀ (ਰੁਪਇਆਂ ਵਿੱਚ) ਹੇਠਾਂ ਦਿੱਤੀ ਗਈ ਹੈ :

ਆਮ ਬਰੈੱਡ	4	320
ਵਰੂਟ ਬਰੈੱਡ		80
ਕੋਕ ਅਤੇ ਪੇਸਟਰੀ	à	160
ਬਿਸਕੁਟ	-	120
ਹੋਰ	4	40
ਕੁੱਲ	:	720

ਇਹਨਾਂ ਅੰਕੜਿਆਂ ਲਈ ਇੱਕ ਪਾਈ ਚਾਰਟ ਬਣਾਉ।

ਹੱਲ : ਅਸੀਂ ਹਰੇਕ ਚੱਕਰਖੰਡ ਦਾ ਕੇਂਦਰੀ ਕੋਣ ਪਤਾ ਕਰਦੇ ਹਾਂ। ਇੱਥੇ ਕੁੱਲ ਵਿਕਰੀ ₹ 720 ਹੈ।ਇਸ ਤੋਂ ਸਾਨੂੰ ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ :


ਵਸਤੂ	ਵਿਕਰੀ (ਵ ਵਿੱਚ)	ਪੂਰਨ ਦਾ ਭਾਗ	ਕੇਂਦਰੀ ਕੋਣ
ਆਮ ਬਰੈੱਡ	320	$\frac{320}{720} = \frac{4}{9}$	$\frac{4}{9} \times 360^\circ = 160^\circ$
ਬਿਸਕੁਟ	120	$\frac{120}{720} = \frac{1}{6}$	$\frac{1}{6} \times 360^\circ = 60^\circ$
ਕੇਕ ਅਤੇ ਪੇਸਟੀ	160	$\frac{160}{720} = \frac{2}{9}$	$\frac{2}{9} \times 360^\circ = 80^\circ$
ਵਰੂਟ ਬਰੈੱਡ	80	$\frac{80}{720} = \frac{1}{9}$	$\frac{1}{9} \times 360^\circ = 40^\circ$
ਹੋਰ	40	$\frac{40}{720} = \frac{1}{18}$	$\frac{1}{18} \times 360^\circ = 20^\circ$

ਉਪਰੋਕਤ ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਹੁਣ ਅਸੀਂ ਪਾਈ ਚਾਰਟ ਬਣਾਉਂਦੇ ਹਾਂ।(ਚਿੱਤਰ 5.8)।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

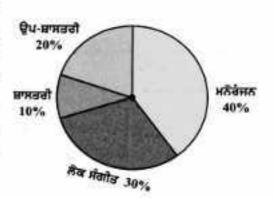
ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਦੇ ਲਈ ਪਾਈ ਚਾਰਟ ਬਣਾਉ : ਇੱਕ ਬੱਚੇ ਦੁਆਰਾ ਇੱਕ ਦਿਨ ਵਿੱਚ ਬਤੀਤ ਕੀਤਾ ਗਿਆ ਸਮਾਂ ਇਸ ਪ੍ਰਕਾਰ ਹੈ :

8 ਘੰਟੇ
6 ਘੰਟੇ
4 ਘੰਟੇ
4 ਘੰਟੇ
2 ਘੰਟੇ

86 🖩 ਗਣਿਤ

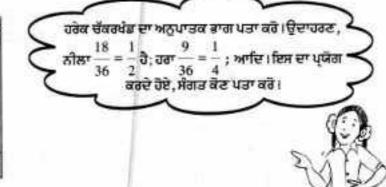
		ਸਦ	, ਚਰਚਾ	ਕਰੋ ਅਤੇ	ਲਿਖੋ		
ਹੇਠ 1.	ਾਂ ਲਿਖੇ ਅੰਕੜਿਆਂ ਨੂੰ ਕਿਸੇ ਰਾਜ ਵਿੱਚ ਅ	ੇ ਦਰਸਾਉਣ ਨਾਜ ਦਾ ਉ	ਾ ਦੇ ਲਈ, l ਤਪਾਦਨ	ਕਿਸ ਤਰ੍ਹਾਂ ਦ	ਾ ਗਰਾਫ਼ ਉੱ	ਚਿਤ ਰਹੇਗਾ	?
	ਸਾਲ	2001	2002	2003	2004	2005	2006
	ਉਤਪਾਦਨ (ਲੱਖ ਟਨਾਂ ਵਿੱਚ)	60	50	70	55	80	85
2.	ਵਿਅਕਤੀਆਂ ਦੇ ਇੱ	ਕ ਗੁੱਟ ਦੇ !	ਭੈਜਨ ਦੀ ਪਾ	र्गेसः			
	C	ਮਨਪਸੰਦ	इसर	ਵਿਅਕਤੀ	ਆਂ ਦੀ ਗਿਣ	डौ)	
		ਉੱਤਰ ਭ	ਾਰਤੀ		30		
		ਦੱਖਣੀ ਭ	ਾਰਤੀ		40		
			204				

ਚਾਈਨੀਜ਼	25
ਹੋਰ	25
ਜੈਂਡ	120


ਕਿਸੇ ਫੈਟਕਰੀ ਦੇ ਮਜ਼ਦੂਰਾਂ ਦੇ ਇੱਕ ਗੁੱਟ ਦੀ ਰੋਜ਼ਾਨਾ ਆਮਦਨ

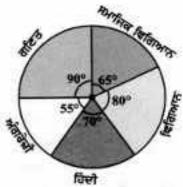
ਰੋਜ਼ਾਨਾ ਆਮਦਨ (ਵੈਂ ਵਿੱਚ)	ਮਜ਼ਦੂਰਾਂ ਦੀ ਗਿਣਤੀ (ਇੱਕ ਫੈਕਟਰੀ ਵਿੱਚ)
75-100	45
100-125	35
125-150	55
150-175	30
175-200	50
200-225	125
225-250	140
ਜੋੜ	480

🛋 ਅਭਿਆਸ 5.2


- ਕਿਸੇ ਸ਼ਹਿਰ ਦੇ ਜਵਾਨ ਵਿਅਕਤੀਆਂ ਦੇ ਇੱਕ ਗੁੱਟ ਦਾ ਇਹ ਜਾਣਨ ਲਈ ਸਰਵੇ ਕੀਤਾ ਗਿਆ ਕਿ ਉਹ ਕਿਸ ਪ੍ਰਕਾਰ ਦਾ ਸੰਗੀਤ ਪਸੰਦ ਕਰਦੇ ਹਨ। ਇਸ ਤੋਂ ਪ੍ਰਾਪਤ ਅੰਕੜਿਆਂ ਨੂੰ ਨਾਲ ਦਿੱਤੇ ਪਾਈ ਚਾਰਟ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਪਾਈ ਚਾਰਟ ਵਿੱਚ ਹੇਠਾਂ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ: (i) ਜੇ 20 ਵਿਅਕਤੀ ਸ਼ਾਸਤਰੀ ਸੰਗੀਤ ਪਸੰਦ
 - ਕਰਦੇ ਹਨ, ਤਾਂ ਕੁੱਲ ਕਿੰਨੇ ਜਵਾਨ ਵਿਅਕਤੀਆਂ ਦਾ ਸਰਵੇ ਕੀਤਾ ਗਿਆ ਹੈ ?

ਅੰਕੜਿਆਂ ਦਾ ਪ੍ਰਬੰਧਨ 🔳 87

- (ii) ਕਿਸ ਤਰ੍ਹਾਂ ਦਾ ਸੰਗੀਤ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਵਿਅਕਤੀਆਂ ਦੁਆਰਾ ਪਸੰਦ ਕੀਤਾ ਜਾਂਦਾ ਹੈ?
- (iii) ਜੇ ਕੋਈ ਕੈਸਟ ਕੰਪਨੀ 1000 ਸੀ.ਡੀ. (C.D.) ਬਣਾਵੇ, ਤਾਂ ਉਹ ਹਰੇਕ ਤਰ੍ਹਾਂ ਦੀਆਂ ਕਿੰਨੀਆਂ ਸੀ.ਡੀ. ਬਣਾਵੇਗੀ ?
- 2. 360 ਵਿਅਕਤੀਆਂ ਦੇ ਇੱਕ ਗੁੱਟ ਵਿੱਚ ਤਿੰਨ ਰੁੱਤਾਂ—ਵਰਖਾ, ਸਰਦੀ ਅਤੇ ਗਰਮੀ ਵਿੱਚ ਆਪਣੀ ਮਨਪਸੰਦ ਰੁੱਤ ਦੇ ਲਈ ਵੋਟਾਂ ਕਰਨ ਨੂੰ ਕਿਹਾ ਗਿਆ। ਇਸ ਨਾਲ ਪ੍ਰਾਪਤ ਅੰਕੜਿਆਂ ਨੂੰ ਨਾਲ ਦਿੱਤੇ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ :
 - (i) ਕਿਸ ਰੁੱਤ ਨੂੰ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਵੋਟ ਮਿਲੇ ?
 - (ii) ਹਰੇਕ ਚੱਕਰਖੰਡ ਦਾ ਕੇਂਦਰੀ ਕੋਣ ਪਤਾ ਕਰੋ।
 - (iii) ਇਸ ਸੂਚਨਾ ਨੂੰ ਦਰਸਾਉਣ ਦੇ ਲਈ, ਇੱਕ ਪਾਈ ਚਾਰਟ ਬਣਾਉ।
- ਰੱਤ ਵੋਟਾਂ ਦੀ ਸੱਖਿਆ ਗਰਮੀ <u>90</u> ਵਰਖਾ <u>120</u> ਸਰਦੀ <u>150</u>
- ਹੇਠਾਂ ਲਿਖੀ ਸੂਚਨਾ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲਾ ਇੱਕ ਪਾਈ ਚਾਰਟ ਬਣਾਉ। ਇਹ ਸਾਰਣੀ ਵਿਅਕਤੀਆਂ ਲਈ ਇੱਕ ਗੁੱਟ ਦੁਆਰਾ ਪਸੰਦ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਰੰਗਾਂ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ।


ਚੰਗ	ਵਿਅਕਤੀਆਂ ਦੀ ਗਿਣਤੀ
ਨੀਲਾ	18
ਹਰਾ	9
ਲਾਲ	6
ਪੀਲਾ	3
ਜੋੜ	36

- 4. ਨਾਲ ਦਿੱਤਾ ਪਾਈ ਚਾਰਟ ਇੱਕ ਵਿਦਿਆਰਥੀ ਦੁਆਰਾ ਕਿਸੇ ਪ੍ਰੀਖਿਆ ਵਿੱਚ ਹਿੰਦੀ, ਅੰਗਰੇਜ਼ੀ, ਗਣਿਤ, ਸਮਾਜਿਕ ਵਿਗਿਆਨ ਅਤੇ ਵਿਗਿਆਨ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤੇ ਗਏ ਅੰਕਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਜੇ ਉਸ ਵਿਦਿਆਰਥੀ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤੇ ਗਏ ਕੁੱਲ ਅੰਕ 540 ਹਨ, ਤਾਂ ਹੇਠਾਂ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ :
 - (i) ਕਿਸ ਵਿਸ਼ੇ ਵਿੱਚ ਉਸ ਵਿਦਿਆਰਥੀ ਨੇ 105 ਔਕ ਪ੍ਰਾਪਤ ਕੀਤੇ ?

(ਸੰਕੋਤ : 540 ਅੰਕਾਂ ਦੇ ਲਈ ਕੇਂਦਰੀ ਕੋਣ 360° ਹੈ। ਇਸ ਲਈ 105 ਅੰਕਾਂ ਦੇ ਲਈ ਕੇਂਦਰੀ ਕੋਣ ਕੀ ਹੋਵੇਗਾ ?)

- (ii) ਉਸ ਵਿਦਿਆਰਥੀ ਨੇ ਗਣਿਤ ਵਿੱਚ ਹਿੰਦੀ ਨਾਲੋਂ ਕਿੰਨੇ ਅੰਕ ਵੱਧ ਪ੍ਰਾਪਤ ਕੀਤੇ ?
- (iii) ਪੜਤਾਲ ਕਰੋ ਕਿ ਸਮਾਜਿਕ ਵਿਗਿਆਨ ਅਤੇ ਗਣਿਤ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤੇ ਗਏ ਅੰਕਾਂ ਦਾ ਜੋੜ ਵਿਗਿਆਨ ਅਤੇ ਹਿੰਦੀ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤੇ ਗਏ ਅੰਕਾਂ ਦੇ ਜੋੜ ਤੋਂ ਜ਼ਿਆਦਾ ਹੈ ? (ਸੰਕੇਤ : ਸਿਰਫ਼ ਕੇਂਦਰੀ ਕੋਣਾਂ 'ਤੇ ਧਿਆਨ ਦਿਓ।)

 ਕਿਸੇ ਹੋਸਟਲ ਵਿੱਚ, ਵੱਖ-ਵੱਖ ਭਾਸ਼ਾਵਾਂ ਬੋਲਣ ਵਾਲੇ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਗਿਣਤੀ ਹੇਠਾਂ ਦਿੱਤੀ ਗਈ ਹੈ। ਇਹਨਾਂ ਅੰਕੜਿਆਂ ਨੂੰ ਇੱਕ ਪਾਈ ਚਾਰਟ ਦੁਆਰਾ ਦਰਸਾਓ।

ਭਾਸ਼ਾ	ਹਿੰਦੀ	ਅੰਗਰੇਜ਼ੀ	ਮਰਾਠੀ	ਤਾਮਿਲ	ਬੰਗਾਲੀ	ਜੈਡ
ਵਿਦਿਆਰਬੀਆਂ ਦੀ ਗਿਣਤੀ	40	12	9	7	4	72

88 🔳 ਗਣਿਤ

5.5 ਸੰਯੋਗ ਅਤੇ ਸੰਭਾਵਨਾ

ਕਦੇ-ਕਦੇ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦਾ ਹੈ ਕਿ ਵਰਖਾ ਰੁੱਤ ਵਿੱਚ, ਅਸੀਂ ਹਰੇਕ ਦਿਨ ਬਰਸਾਤੀ ਲੈ ਕੇ ਬਾਹਰ ਨਿਕਲਦੇ ਹਾਂ ਅਤੇ ਕਈ ਦਿਨਾਂ ਤੱਕ ਕੋਈ ਵਰਖਾ ਨਹੀਂ ਹੁੰਦੀ ਹੈ। ਪਰੰਤੂ ਸੰਯੋਗ ਨਾਲ ਇੱਕ ਦਿਨ ਤੁਸੀਂ ਬਰਸਾਤੀ ਲੈ

ਕੇ ਜਾਣਾ ਭੁੱਲ ਜਾਂਦੇ ਹੋ ਅਤੇ ਉਸ ਦਿਨ ਭਾਰੀ ਵਰਖਾ ਹੋ ਜਾਂਦੀ ਹੈ।

ਕਦੇ-ਕਦੇ ਇਸ ਤਰ੍ਹਾਂ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਇੱਕ ਵਿਦਿਆਰਥੀ ਇੱਕ ਟੈਸਟ ਦੇ ਲਈ 5 ਵਿੱਚੋਂ 4 ਅਧਿਆਇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਨਾਲ ਤਿਆਰ ਕਰ ਲੈਂਦਾ ਹੈ। ਪਰ ਇੱਕ ਵੱਡਾ ਪ੍ਰਸ਼ਨ ਉਸ ਅਧਿਆਇ ਵਿੱਚ ਪੁੱਛ ਲਿਆ ਜਾਂਦਾ ਹੈ ਜਿਸਨੂੰ ਉਸਨੇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਤਿਆਰ ਨਹੀਂ ਕੀਤਾ ਹੁੰਦਾ ਹੈ।

ਹਰੇਕ ਵਿਅਕਤੀ ਜਾਣਦਾ ਹੈ ਕਿ ਵਿਸ਼ੇਸ਼ ਰੇਲਗੱਡੀ ਸਹੀ ਸਮੇਂ 'ਤੇ ਚਲਦੀ ਹੈ, ਪਰ ਜਿਸ ਦਿਨ ਤੁਸੀਂ ਸਹੀ ਸਮੇਂ 'ਤੇ ਪਹੁੰਚਦੇ ਹੋ, ਉਸ ਦਿਨ ਉਹ ਲੇਟ ਆਉਂਦੀ ਹੈ।

ਤੁਹਾਨੂੰ ਉਪਰੋਕਤ ਪ੍ਰਕਾਰ ਦੀਆਂ ਅਨੇਕ ਸਥਿਤੀਆਂ ਦਾ ਸਾਹਮਣਾ ਕਰਨਾ ਪੈਂਦਾ ਹੈ ਜਿੱਥੇ ਤੁਸੀਂ ਸੰਯੋਗ (chance) ਦਾ ਸਹਾਰਾ ਲੈ ਕੇ ਕੰਮ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ। ਪਰ ਉਹ ਇਸ ਤਰ੍ਹਾਂ ਨਾਲ ਨਹੀਂ ਹੁੰਦਾ ਜਿਸ ਤਰ੍ਹਾਂ ਤੁਸੀਂ ਚਾਹੁੰਦੇ ਹੋ। ਕੀ ਤੁਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਕੁਝ ਉਦਾਹਰਣਾਂ ਦੇ ਸਕਦੇ ਹੋ? ਇਹ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ ਜਿੱਥੇ ਕਿਸੇ ਗੱਲ ਦੇ ਹੋਣ ਜਾਂ ਨਾ ਹੋਣ ਦੇ ਸੰਯੋਗ ਬਰਾਬਰ (ਸਮਾਨ) ਨਹੀਂ ਹਨ।

ਇੱਕ ਰੇਲਗੱਡੀ ਦੇ ਸਮੇਂ ਤੇ ਆਉਣ 'ਤੇ ਜਾਂ ਨਾ ਆਉਣ ਦੇ ਸੰਯੋਗ ਬਰਾਬਰ ਨਹੀਂ ਹਨ। ਜਦੋਂ ਤੁਸੀਂ ਕੋਈ ਟਿਕਟ ਖਰੀਦਦੇ ਹੋ ਅਤੇ ਜੇ ਇਹ ਵੇਟਿੰਗ ਸੂਚੀ ਵਿੱਚ ਹੈ ਤਾਂ ਤੁਸੀਂ ਨਿਸ਼ਚਿਤ ਹੀ ਸੰਯੋਗ ਦਾ ਸਹਾਰਾ ਲੈਂਦੇ ਹੋ। ਤੁਸੀਂ ਇਹ ਆਸ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਜਦੋਂ ਤੁਸੀਂ ਯਾਤਰਾ ਕਰੋਗੇ ਤਾਂ ਸੰਭਵ ਹੈ ਕਿ ਇਸ ਟਿਕਟ ਤੇ ਤੁਹਾਡੀ ਸੀਟ ਰਾਖਵੀਂ ਹੋ ਜਾਵੇਗੀ। ਪਰ ਇੱਥੇ ਅਸੀਂ ਕੁਝ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਪ੍ਰਯੋਗਾਂ (experiments) 'ਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ ਜਿਸ ਵਿੱਚ ਨਤੀਜਿਆਂ ਦੇ ਵਾਪਰਨ ਦੇ ਸੰਯੋਗ ਬਰਾਬਰ ਹਨ।

5.5.1 ਕੋਈ ਨਤੀਜਾ ਪ੍ਰਾਪਤ ਕਰਨਾ

ਤੁੰਸੀਂ ਸੰਭਵ ਤੌਰ ਤੇ ਇਹ ਦੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਇੱਕ ਕ੍ਰਿਕੇਟ ਮੈਚ ਦੇ ਸ਼ੁਰੂ ਹੋਣ ਤੋਂ ਪਹਿਲਾਂ, ਦੋਨੋਂ ਟੀਮਾਂ ਦੇ ਕਪਤਾਨ ਬਾਹਰ ਜਾ ਕੇ ਇਹ ਨਿਰਣਾ ਕਰਨ ਦੇ ਲਈ ਸਿੱਕਾ (coin) ਸੁੱਟਦੇ (toss) ਹਨ ਕਿ ਕਿਹੜੀ ਟੀਮ ਪਹਿਲਾਂ ਬੱਲੇਬਾਜੀ ਕਰੇਗੀ।

ਜਦ ਇੱਕ ਸਿੱਕੇ ਨੂੰ ਉਛਾਲਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਤੁਹਾਨੂੰ ਕੀ ਸੰਭਵ ਨਤੀਜੇ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ? ਚਿੱਤ (Head) ਜਾਂ ਪਟ (Tail)।

ਕਲਪਨਾ ਕਰੋ ਕਿ ਤੁਸੀਂ ਇੱਕ ਟੀਮ ਦੇ ਕਪਤਾਨ ਹੋ ਅਤੇ ਤੁਹਾਡਾ ਮਿੱਤਰ ਦੂਸਰੀ ਟੀਮ ਦਾ ਕਪਤਾਨ ਹੈ। ਤੁਸੀਂ ਇੱਕ ਸਿੱਕਾ ਸ਼ੁੱਟਦੇ ਹੋ ਅਤੇ ਆਪਣੇ ਮਿੱਤਰ ਨੂੰ ਚਿਤ ਜਾਂ ਪਟ ਬੋਲਣ ਨੂੰ ਕਹਿੰਦੇ ਹੋ। ਕੀ ਤੁਸੀਂ ਇਸ ਉਛਾਲ ਦੇ ਨਤੀਜੇ 'ਤੇ ਕੋਈ ਕੰਟਰੋਲ ਕਰ ਸਕਦੇ ਹੋ ? ਕੀ ਤੁਹਾਨੂੰ ਚਿਤ ਪ੍ਰਾਪਤ ਹੋ ਸਕਦਾ ਹੈ, ਜੇ ਤੁਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਚਾਹੁੰਦੇ ਹੋ ? ਜਾਂ ਕੀ ਤੁਹਾਨੂੰ ਪਟ ਪ੍ਰਾਪਤ ਹੋ ਸਕਦਾ ਹੈ, ਜੇ ਤੁਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਚਾਹੁੰਦੇ ਹੋ ? ਨਹੀਂ ਇਸ ਤਰ੍ਹਾਂ ਸੰਭਵ ਨਹੀਂ।ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਪ੍ਯੋਗ ਇੱਕ ਬੇਤਰਤੀਬ ਜਾਂ ਬੇਤਰਤੀਬ ਪ੍ਰਯੋਗ (random experiment) ਅਖਵਾਉਂਦਾ ਹੈ। ਚਿਤ ਅਤੇ ਪਟ ਇਸ ਪ੍ਰਯੋਗ ਦੇ ਦੋ ਨਤੀਜੇ (outcomes) ਹਨ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਜੇ ਤੁਸੀਂ ਇੱਕ ਸਕੂਟਰ ਚਲਾਉਣਾ ਸ਼ੁਰੂ ਕਰੋ, ਤਾਂ ਸੰਭਵ ਨਤੀਜੇ ਕੀ ਹਨ ?
 ਜਦੋਂ ਇੱਕ ਪਾਸੇ (die) ਨੂੰ ਸ਼ੁੱਟਿਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਸੰਭਵ ਛੇ ਨਤੀਜੇ ਕੀ ਹਨ ?

(R)

 $G(\mathbf{v})$

ਚਿੱਤਰ 5.10

W)

(B

ਅੰਕੜਿਆਂ ਦਾ ਪ੍ਰਬੰਧਨ 🔳 89

B

C

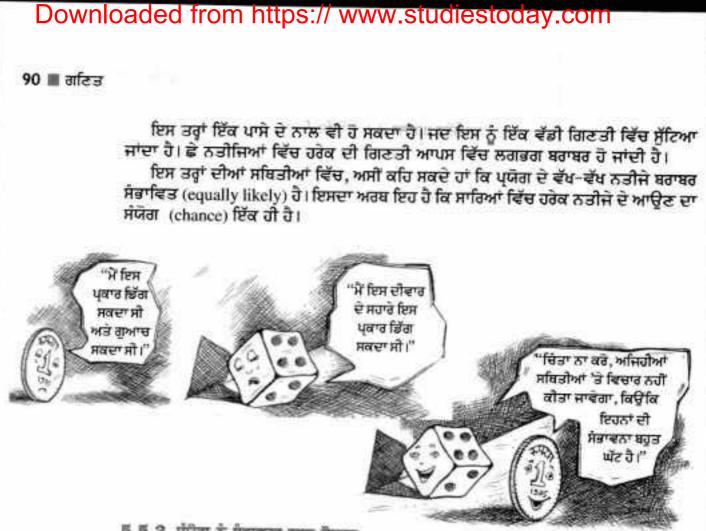
ਚਿੱਤਰ 5.9

- ਜਦੋਂ ਤੁਸੀਂ ਪਹੀਏ ਨੂੰ ਘੁਮਾਉਗ ਤਾਂ ਸੰਭਵ ਨਤੀਜੇ ਕੀ ਹੋਣਗੇ (ਚਿੱਤਰ 5.9)? ਇਸਦੀ ਸੂਚੀ ਬਣਾਉ।(ਚਿੱਤਰ 5.9) (ਇੱਥੇ ਨਤੀਜੇ ਦਾ ਅਰਥ ਹੈ ਕਿ ਉਹ ਚੱਕਰਖੰਡ ਜਿਸ 'ਤੇ ਸੂਚਕ (pointer) ਘੁਮਾਉਣ 'ਤੇ ਰੁਕੇਗਾ।
- ਤੁਹਾਡੇ ਕੋਲ ਇੱਕ ਬੈਲਾ ਹੈ ਅਤੇ ਉਸ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਰੰਗਾਂ ਦੀਆਂ ਪੰਜ ਇੱਕੋ-ਜਿਹੀਆਂ ਗੇਂਦਾ ਹਨ (ਚਿੱਤਰ 5.10)। ਤੁਸੀਂ ਬਿਨ੍ਹਾਂ ਦੇਖੇ ਇਸ ਵਿੱਚੋਂ ਇੱਕ ਗੇਂਦ ਕੱਢ ਲੈਂਦੇ ਹੋ। ਪ੍ਰਾਪਤ ਹੋਣ ਵਾਲੇ ਨਤੀਜਿਆਂ ਨੂੰ ਲਿਖੋ।

ਸੋਚੋ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ

ਇੱਕ ਪਾਸੇ ਨੂੰ ਸ਼ੁੱਟਣ 'ਤੇ :

- ਕੀ ਪਹਿਲੇ ਖਿਡਾਰੀ ਦੇ 6 ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਸੰਯੋਗ ਜ਼ਿਆਦਾ ਹੈ ?
- ਕੀ ਉਸ ਤੋਂ ਬਾਅਦ ਖੇਡਣ ਵਾਲੇ ਖਿਡਾਰੀ ਦੇ 6 ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਸੰਯੋਗ ਘੱਟ ਹੈ ?
- ਕੀ ਉਸ ਤੋਂ ਬਾਅਦ ਖੇਡਣ ਵਾਲੇ ਖਿਡਾਰੀ ਦੇ 6 ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਸੰਯੋਗ ਘੱਟ ਹੈ। ਕੀ ਇਸਦਾ ਅਰਬ ਇਹ ਹੈ ਕਿ ਤੀਸਰੇ ਖਿਡਾਰੀ ਦੁਆਰਾ 6 ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਕੋਈ ਸੰਯੋਗ ਨਹੀਂ ਹੈ ?



5.5.2 ਸਮ ਸੰਭਾਵਿਤ ਨਤੀਜਾ

ਇੱਕ ਸਿੱਕੇ ਨੂੰ ਅਨੇਕ ਵਾਰ ਸ਼ੁੱਟਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਜਿੰਨੀ ਵਾਰ ਚਿਤ ਜਾਂ ਪਟ ਆਉਂਦੇ ਹਨ ਉਹਨਾਂ ਨੂੰ ਲਿਖ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਆਉ ਆਪਣੀ ਨਤੀਜਾ ਸ਼ੀਟ (ਤਾਲਿਕਾ) ਨੂੰ ਦੇਖੋ, ਇੱਥੇ ਅਸੀਂ ਸ਼ੁੱਟਣ ਦੀ ਗਿਣਤੀ ਵਿੱਚ ਵਾਧਾ ਕਰਦੇ ਜਾ ਰਹੇ ਹਾਂ :

ਸੁੱਟਣ ਦੀ ਗਿਣਤੀ	ਮਿਲਾਣ ਚਿੰਨ੍ (H)	ਚਿਤ ਦੀ ਗਿਣਤੀ	ਮਿਲਾਣ ਚਿੰਨੂ (T)	ਪਟ ਦੀ ਗਿਣਤੀ
50	MI MI III	27		23
60		28	M M M M II	32
70		33		37
80		38		42
90		44		46
100		48		52

ਧਿਆਨ ਰੱਖੋ ਕਿ ਜਦ ਸ਼ੁੱਟਣ ਦੀ ਗਿਣਤੀ ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ ਵਧਾਈ ਜਾਵੇ ਤਾਂ, ਤਦ ਚਿਤ ਦੀ ਗਿਣਤੀ ਅਤੇ ਪਟ ਦੀ ਗਿਣਤੀ ਆਪਸ ਵਿੱਚ ਵੱਧ ਤੋਂ ਵੱਧ ਨੇੜੇ ਆ ਜਾਂਦੇ ਹਨ।

5.5.3 ਸੰਯੋਗ ਨੂੰ ਸੰਭਾਵਨਾ ਨਾਲ ਜੋੜਨਾ

ਇੱਕ ਸਿੱਕੇ ਨੂੰ ਇੱਕ ਵਾਰ ਉਛਾਲਣ ਦੇ ਪ੍ਰਯੋਗ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਤੀਜਾ ਕੀ ਹੈ? ਇੱਥੇ ਕੇਵਲ ਦੇ ਨਤੀਜੇ ਹਨ—ਇੱਕ ਚਿਤ ਜਾਂ ਪਟ। ਦੋਨੋਂ ਹੀ ਨਤੀਜੇ ਬਰਾਬਰ ਸੰਭਾਵਿਤ (equally likely) ਹਨ। ਇੱਕ ਚਿਤ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ 2 ਨਤੀਜਿਆਂ ਵਿੱਚ 1. ਜਿਵੇਂ 🖞 ਹੈ। ਦੂਸਰੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇੱਕ ਚਿਤ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ (probability) = 🖞 ਹੈ। ਇੱਕ ਪਟ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੈ?

ਹੁਣ ਇੱਕ ਪਾਸੇ ਨੂੰ ਸੁੱਟਣ ਦੀ ਉਦਾਹਰਣ `ਤੇ ਵਿਚਾਰ ਕਰੋ, ਜਿਸਦੇ ਤਲਾਂ (faces) `ਤੇ 1, 2, 3, 4, 5, 6 (ਇੱਕ ਤਲ ਤੇ ਇੱਕ ਗਿਣਤੀ) ਅੰਕਿਤ ਹੈ। ਜੇਕਰ ਤੁਸੀਂ ਇਸ ਨੂੰ ਇੱਕ ਵਾਰ ਸ਼ੁੱਟੋ, ਤਾਂ ਕੀ ਨਤੀਜਾ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ ?

ਨਤੀਜਾ ਹੈ ਕਿ : 1, 2, 3, 4, 5, 6 । ਇਸ ਪ੍ਰਕਾਰ, ਇੱਥੇ ਛੇ ਬਰਾਬਰ ਸੰਭਾਵਿਤ ਨਤੀਜੇ ਹਨ।

ਨਤੀਜਾ 2 ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੈ ?

ਇਥੇ ਸੰਭਾਵਨਾ ਹੈ : $rac{1}{6} \leftarrow 2$ ਦੇਣ ਵਾਲੇ ਨਤੀਜਿਆਂ ਦੀ ਗਿਣਤੀ ਯ ਦੀ ਗਣਤੀ ਦੇ ਦਿੱਤੀ ਦਾ ਬਰਾਬਰ ਸੰਭਾਵਿਤ ਨਤੀਜਿਆਂ ਦੀ ਗਿਣਤੀ

ਗਿਣਤੀ 5 ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੈ? ਗਿਣਤੀ 7 ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੈ? 1 ਤੋਂ 6 ਤੱਕ ਦੀ ਗਿਣਤੀ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੈ?

5.5.4 ਘਟਨਾਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਨਤੀਜਾ

ਇੱਕ ਪ੍ਰਯੋਗ ਦੇ ਹਰੇਕ ਨਤੀਜੇ ਜਾਂ ਨਤੀਜਿਆਂ ਦੇ ਸਮੂਹ ਨਾਲ ਇੱਕ ਘਟਨਾ (event) ਬਣਦੀ ਹੈ। ਉਦਾਹਰਣ ਲਈ, ਇੱਕ ਸਿੱਕੇ ਨੂੰ ਸੁੱਟਣ ਦੇ ਪ੍ਰਯੋਗ ਵਿੱਚ, ਇੱਕ ਚਿਤ ਪ੍ਰਾਪਤ ਕਰਨਾ ਇੱਕ ਘਟਨਾ ਹੈ ਅਤੇ ਇੱਕ ਪਟ ਪ੍ਰਾਪਤ ਕਰਨਾ ਵੀ ਇੱਕ ਘਟਨਾ ਹੈ।

ਇੱਕ ਪਾਸੇ ਨੂੰ ਸ਼ੁੱਟਣ ਦੀ ਸਥਿਤੀ ਵਿੱਚ, ਨਤੀਜਿਆਂ 1, 2, 3, 4, 5 ਅਤੇ 6 ਵਿੱਚ ਹਰੇਕ ਨਤੀਜਾ ਪ੍ਰਾਪਤ ਕਰਨਾ ਇੱਕ ਘਟਨਾ ਹੈ।

ਅੰਕੜਿਆਂ ਦਾ ਪ੍ਰਬੰਧਨ 🔳 91

ਕੀ ਇੱਕ ਜਿਸਤ ਗਿਣਤੀ ਪ੍ਰਾਪਤ ਕਰਨਾ ਇੱਕ ਘਟਨਾ ਹੈ ? ਕਿਉਂਕਿ ਇੱਕ ਜਿਸਤ ਗਿਣਤੀ 2,4 ਜਾਂ 6 ਹੋ ਸਕਦੀ ਹੈ, ਇਸ ਲਈ ਇੱਕ ਜਿਸਤ ਗਿਣਤੀ ਪ੍ਰਾਪਤ ਕਰਨਾ ਵੀ ਇੱਕ ਘਟਨਾ ਹੈ। ਇੱਕ ਜਿਸਤ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੋਵੇਗੀ ?

ਇਹ ਹੈ: $\frac{3}{6}$ ← ਉਹ ਨਤੀਜਿਆਂ ਦੀ ਗਿਣਤੀ ਜੋ ਘਟਨਾ ਬਣਾਉਂਦੇ ਹਨ 6 ← ਪ੍ਯੋਗ ਦੇ ਨਤੀਜਿਆਂ ਦੀ ਕੁੱਲ ਗਿਣਤੀ

ਉਦਾਹਰਣ 3 : ਇੱਕ ਬੈਲੇ ਵਿੱਚ 4 ਲਾਲ ਗੇਂਦਾਂ ਅਤੇ 2 ਪੀਲੀਆਂ ਗੇਂਦਾਂ ਹਨ। (ਇਹ ਗੇਂਦਾਂ ਰੰਗ ਦੇ ਇਲਾਵਾ ਹਰ ਪਾਸੇ ਤੋਂ ਇੱਕ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਮਰੂਪ (identical) ਹਨ।) ਬੈਲੇ ਦੇ ਅੰਦਰ ਦੇਖੇ ਬਿਨ੍ਹਾਂ ਇੱਕ ਗੇਂਦ ਕੱਢੋ। ਇੱਕ ਨਾਲ ਗੇਂਦ ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਕੀ ਸੰਭਾਵਨਾ ਹੈ? ਕੀ ਇਹ ਇੱਕ ਪੀਲੀ ਗੇਂਦ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਤੋਂ ਜ਼ਿਆਦਾ ਹੈ ਜਾਂ ਘੱਟ?

ਹੱਲ : ਇੱਥੇ ਘਟਨਾ ਦੇ ਕੁੱਲ (4 + 2 =) 6 ਨਤੀਜੇ ਹਨ। ਲਾਲ ਗੇਂਦ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ 4 ਨਤੀਜੇ ਹਨ। (ਕਿਉਂ ?)

ਇਸ ਲਈ, ਲਾਲ ਗੇਂਦ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ $rac{4}{6}=rac{2}{3}$ ਹੈ।

ਇਸ ਪ੍ਰਕਾਰ, ਪੀਲੀ ਗੇਂਦ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ $\frac{2}{6} = \frac{1}{3}$ ਹੈ। (ਕਿਉਂ ?)

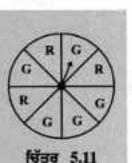
ਇਸ ਲਈ ਲਾਲ ਗੇਂਦ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਪੀਲੀ ਗੇਂਦ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਨਾਲੋਂ ਜ਼ਿਆਦਾ ਹੈ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਮੰਨ ਲਵੇ ਕਿ ਤੁਸੀਂ ਪਹੀਏ ਨੂੰ ਘੁਮਾਉਂਦੇ ਹੋ (ਚਿੱਤਰ 5.11)।

- (i) ਇਸ ਪਹੀਏ ਤੇ ਇੱਕ ਹਰਾ ਚੱਕਰਖੰਡ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਨਤੀਜਿਆਂ ਦੀ ਗਿਣਤੀ ਅਤੇ ਹਰਾ ਚੱਕਰਖੰਡ ਪ੍ਰਾਪਤ ਨਾ ਹੋਣ 'ਤੇ ਨਤੀਜਿਆਂ ਦੀ ਗਿਣਤੀ ਲਿਖੋ।
- (ii) ਇੱਕ ਹਰਾ ਚੱਕਰਖੰਡ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਪਤਾ ਕਰੇ।
- (iii) ਇੱਕ ਹਰਾ ਚੱਕਰਖੰਡ ਪ੍ਰਾਪਤ ਨਾ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਪਤਾ ਕਰੋ।

5.5.5 ਅਸਲ ਜੀਵਨ ਨਾਲ ਸੰਬੰਧਿਤ ਸੰਯੋਗ ਅਤੇ ਸੰਭਾਵਨਾ


ਅਸੀਂ ਉਸ ਸੰਯੋਗ ਦੀ ਗੱਲ ਕੀਤੀ ਸੀ ਜਿਸ ਵਿੱਚ ਕੇਵਲ ਉਸ ਦਿਨ ਵਰਖਾ ਹੋਈ ਜਿਸ ਦਿਨ ਅਸੀਂ ਬਰਸਾਤੀ ਲੈ ਕੇ ਨਹੀਂ ਗਏ ਸੀ। ਤੁਸੀਂ ਸੰਭਾਵਨਾ ਦੇ ਪਦਾਂ ਵਿੱਚ ਸੰਯੋਗ ਦੇ ਬਾਰੇ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ? ਕੀ ਇਹ ਵਰਖਾ ਰੁੱਤ ਵਿੱਚ 10 ਦਿਨ ਵਿੱਚੋਂ 1 ਦਿਨ ਹੋ ਸਕਦਾ ਸੀ।

ਤਾਂ ਵਰਖਾ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ<mark>1</mark> (ਇਹ ਕਲਪਨਾ ਕਰਦੇ ਹੋਏ ਕਿ ਕਿਸੇ ਦਿਨ ਵਰਖਾ ਹੋਣਾ ਜਾਂ ਨਾ ਹੋਣਾ ਬਰਾਬਰ ਸੰਭਾਵਿਤ ਹੈ।)

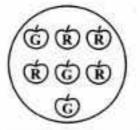
ਅਸਲ ਜੀਵਨ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਸਥਿਤੀਆਂ ਵਿੱਚ ਸੰਭਾਵਨਾ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

 ਇੱਕ ਵੱਡੇ ਗੁੱਟ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਨੂੰ ਉਸ ਗੁੱਟ ਦੇ ਵਿੱਚ ਇੱਕ ਛੋਟੇ ਭਾਗ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਪਤਾ ਕਰੋ। ਉਦਾਹਰਣ ਲਈ, ਚੋਣਾਂ ਵੇਲੇ 'ਐਗਜਿਟ ਪੋਲ' (exit poll) ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਸੰਪੂਰਨ ਖੇਤਰ ਵਿੱਚ ਵੰਡੇ ਕੇਂਦਰਾਂ ਵਿੱਚੋਂ (ਬਿਨ੍ਹਾਂ ਕਿਸੇ ਤਰਤੀਬ ਦੇ) ਕੁਝ

92 🖩 ਗਣਿਤ

ਕੇਂਦਰ ਚੁਣ ਕੇ ਵੋਟਾਂ ਪਾਉਣ ਵਾਲੇ ਵਿਅਕਡੀਆਂ ਤੋਂ ਇਹ ਪੁੱਛਿਆ ਜਾਂਦਾ ਹੈ ਕਿ ਉਹਨਾਂ ਨੇ ਕਿਸ ਨੂੰ ਵੋਟ ਦਿੱਤਾ ਹੈ। ਇਸ ਨਾਲ ਹਰੇਕ ਉਮੀਦਵਾਰ ਦੇ ਜਿੱਤਣ ਦੀ ਸੰਭਾਵਨਾ ਦਾ ਅਨੁਮਾਨ ਲੱਗ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਅਧਾਰ 'ਤੇ ਭਵਿੱਖਬਾਣੀਆਂ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।

 ਮੌਸਮ ਵਿਭਾਗ ਪਿਛਲੇ ਸਾਲਾਂ ਦੇ ਔਕੜਿਆਂ ਦੇ ਰੁਝਾਨ (ਰੁਖ) ਨੂੰ ਦੇਖ ਕੇ ਮੌਸਮ ਦੇ ਬਾਰੇ ਵਿੱਚ ਭਵਿੱਖਬਾਣੀ ਕਰਦਾ ਹੈ।


- ਇਹਨਾਂ ਪ੍ਰਯੋਗਾਂ ਵਿੱਚ ਤੁਸੀਂ ਜੋ ਨਤੀਜਾ ਦੇਖ ਸਕਦੇ ਹੋ, ਉਹ ਲਿਖੋ :
 - (a) ਪਹੀਏ ਨੂੰ ਘੁਮਾਉਣਾ
- (b) ਦੋ ਸਿੱਕਿਆਂ ਨੂੰ ਇੱਕੋ ਵੇਲੇ ਸ਼ੁੱਟਣਾ

- ਜਦੋਂ ਇੱਕ ਪਾਸੇ ਨੂੰ ਸ਼ੁੱਟਿਆ ਜਾਂਦਾ ਹੈ, ਤਦ ਹੇਠ ਲਿਖੀ ਹਰੇਕ ਘਟਨਾ ਨਾਲ ਪ੍ਰਾਪਤ ਹੋਣ ਵਾਲੇ ਨਤੀਜਿਆਂ ਨੂੰ ਲਿਖੋ :
 - (i) (a) ਇੱਕ ਅਭਾਜ ਸੰਖਿਆ
- (b) ਇੱਕ ਅਭਾਜ ਸੰਖਿਆ ਨਹੀਂ
- (ii) (a) 5 ਤੋਂ ਵੱਡੀ ਇੱਕ ਸੰਖਿਆ
- (b) 5 ਤੋਂ ਵੱਡੀ ਸੰਖਿਆ ਨਹੀਂ

- 3. ਪਤਾ ਕਰੋ :
 - (a) ਪ੍ਰਸ਼ਨ 1 (a) ਵਿੱਚ ਸੂਚਕ ਦੇ D 'ਤੇ ਰੁਕਣ ਦੀ ਸੰਭਾਵਨਾ।
 - (b) ਚੰਗੀ ਤਰ੍ਹਾਂ ਫੈਂਟ ਕੇ ਸ਼ੁੱਟੀ ਹੋਈ 52 ਪੱਤਿਆਂ ਦੀ ਇੱਕ ਤਾਸ਼ ਵਿੱਚੋਂ । ਇੱਕਾ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ।
 - (c) ਇੱਕ ਲਾਲ ਸੋਬ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ (ਦਿੱਤੇ ਹੋਏ ਚਿੱਤਰ ਵਿੱਚ ਦੇਖੋ)।

- 4. 10 ਵੱਖ-ਵੱਖ ਪਰਚੀਆਂ 'ਤੇ 1 ਤੋਂ 10 ਤੱਕ ਸੰਖਿਆਵਾਂ ਲਿਖੀਆਂ ਹੋਈਆਂ ਹਨ।(ਇੱਕ ਪਰਚੀ 'ਤੇ ਇੱਕ ਸੰਖਿਆ), ਉਸਨੂੰ ਇੱਕ ਬਕਸੇ ਵਿੱਚ ਰੱਖ ਕੇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਮਿਲਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਬਕਸੇ ਦੇ ਅੰਦਰ ਦੇਖੇ ਬਿਨ੍ਹਾਂ ਇੱਕ ਪਰਚੀ ਕੱਢੀ ਜਾਂਦੀ ਹੈ।ਹੇਠਾਂ ਲਿਖਿਆਂ ਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੈ ?
 - (i) ਸੰਖਿਆ 6 ਪ੍ਰਾਪਤ ਕਰਨਾ।
 - (ii) 6 ਤੋਂ ਛੋਟੀ ਇੱਕ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨਾ।
 - (iii) 6 ਤੋਂ ਵੱਡੀ ਇੱਕ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨਾ।
 - (iv) 1 ਅੰਕ ਦੀ ਇੱਕ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨਾ।

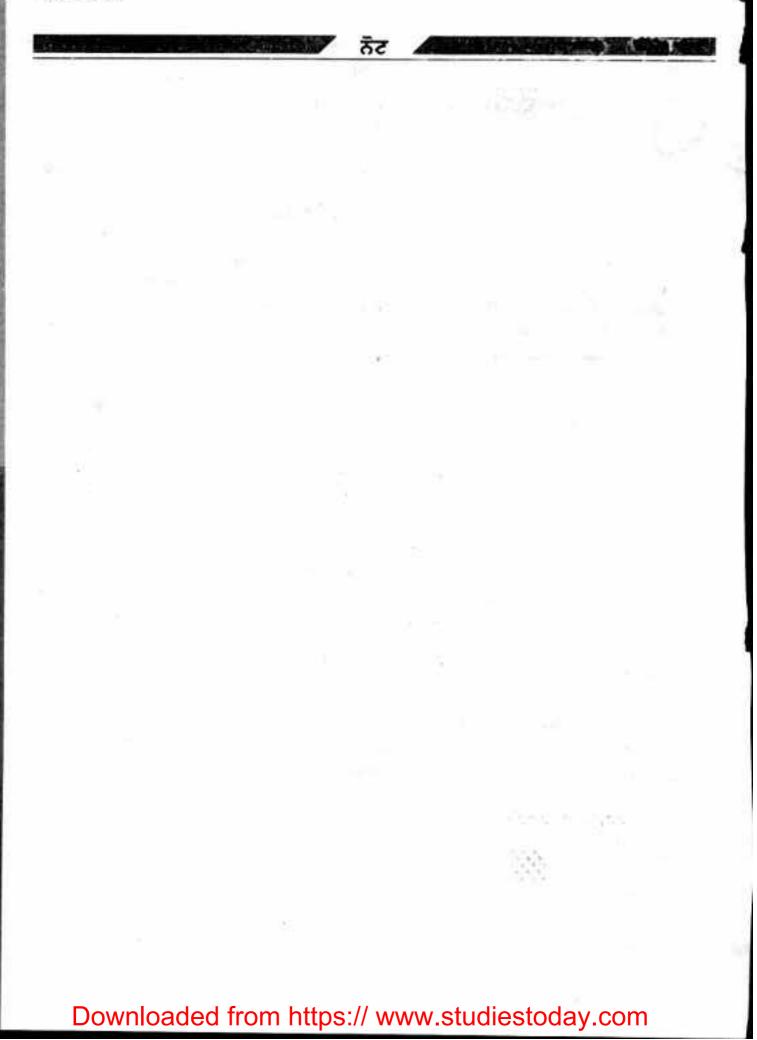
ਅੰਕੜਿਆਂ ਦਾ ਪ੍ਰਬੰਧਨ 🔳 93

- 5. ਜੇਕਰ ਤੁਹਾਡੇ ਕੋਲ 3 ਹਰੇ ਚੱਕਰਖੰਡ, 1 ਨੀਲਾ ਚੱਕਰਖੰਡ ਅਤੇ ਲਾਲ ਚੱਕਰਖੰਡ ਵਾਲਾ ਇੱਕ ਘੁੰਮਣ ਵਾਲਾ ਪਹੀਆ ਹੈ ਤਾਂ ਇੱਕ ਚੱਕਰਖੰਡ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੈ ? ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਚੱਕਰਖੰਡ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਸੰਭਾਵਨਾ ਕੀ ਹੈ, ਜੋ ਨੀਲਾ ਨਾ ਹੋਵੇ ?
- ਪ੍ਰਸ਼ਨ 2 ਵਿੱਚ ਦਿੱਤੀਆਂ ਗਈਆਂ ਘਟਵਾਨਾਂ ਦੀ ਸੰਭਾਵਨਾ ਪਤਾ ਕਰੋ।

ਅਸੀਂ ਕੀ ਚਰਚਾ ਕੀਤੀ ?

- ਸਾਡੇ ਕੋਲ ਜ਼ਿਆਦਾਤਰ ਔਕੜੇ ਜੋ ਅਸੰਗਠਿਤ ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਉਹਨਾਂ ਨੂੰ ਮੂਲ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਔਕੜੇ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
- ਕਿਸੇ ਔਕੜੇ ਦਾ ਸਾਰਥਕ ਸਿੱਟਾ ਕੱਢਣ ਦੇ ਲਈ ਸਾਨੂੰ ਉਹਨਾਂ ਨੂੰ ਕੁਮਵਾਰ ਰੂਪ ਵਿੱਚ ਸੰਗਠਿਤ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।
- ਬਾਰੰਬਾਰਤਾ ਉਹ ਸੰਖਿਆ ਦਰਸਾਉਂਦੀ ਹੈ ਜਿੰਨੀ ਵਾਰ ਕੋਈ ਇੱਕ ਖਾਸ ਅੰਕੜਾ ਪ੍ਰਾਪਤ ਜਾਣਕਾਰੀ ਵਿੱਚ ਆਉਂਦਾ ਹੈ।
- ਮੂਲ ਰੂਪ ਵਿੱਚ ਪ੍ਰਾਪਤ ਔਕੜਿਆਂ ਦੇ ਗੁੱਟ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ ਅਤੇ ਇਹਨਾਂ ਨੂੰ ਇੱਕ ਕ੍ਰਮਵਾਰ ਵਰਗੀਕਰਨ ਬਾਰੰਬਾਰਤਾ ਵੰਡ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।
- 5. ਵਰਗੀਕਰਨ ਕੀਤੇ ਅੰਕੜਿਆਂ ਨੂੰ ਆਇਤ ਚਿੱਤਰ ਦੀ ਵਰਤੋਂ ਕਰ ਕੇ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਆਇਤ ਚਿੱਤਰ ਇੱਕ ਪ੍ਰਕਾਰ ਦਾ ਛੜ ਗਰਾਫ਼ ਹੈ। ਜਿਸ ਵਿੱਚ ਲੇਟਵੇਂ ਤਲ 'ਤੇ ਵਰਗ ਅੰਤਰਾਲਾਂ ਨੂੰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਛੜਾਂ ਦੀਆਂ ਲੰਬਾਈਆਂ ਵਰਗ ਅੰਤਰਾਲਾਂ ਦੀਆਂ ਬਾਰੰਬਾਰਤਾਵਾਂ ਦਰਸਾਉਂਦੀ ਹੈ। ਨਾਲ ਹੀ, ਛੜਾਂ ਦੋ ਵਿੱਚ ਵਿੱਥ ਨਹੀਂ ਹੁੰਦੀ, ਕਿਉਂਕਿ ਵਰਗ ਅੰਤਰਾਲਾਂ ਦੇ ਵਿੱਚ ਕੋਈ ਵਿੱਥ ਨਹੀਂ ਹੈ।
- ਅੰਕੜਿਆਂ ਨੂੰ ਚੱਕਰ ਗਰਾਫ਼ ਜਾਂ ਪਾਈ ਚਾਰਟ ਦੀ ਵਰਤੋਂ ਕਰ ਕੇ ਵੀ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇੱਕ ਚੱਕਰ ਗਰਾਫ਼ ਇੱਕ ਸੰਪੂਰਨ ਚੱਕਰ ਅਤੇ ਉਸਦੇ ਭਾਗਾਂ ਵਿੱਚ ਸੰਬੰਧ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ।
- ਕੁਝ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਪ੍ਰਯੋਗ ਹੁੰਦੇ ਹਨ ਜਿਸ ਵਿੱਚ ਨਤੀਜਿਆਂ ਦੇ ਆਉਣ ਦਾ ਸੰਯੋਗ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।
- ਇੱਕ ਬੇਤਰਤੀਬ ਪ੍ਰਯੋਗ ਉਹ ਪ੍ਰਯੋਗ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਨਤੀਜਿਆਂ ਦੇ ਠੀਕ-ਠੀਕ ਭਵਿੱਖਬਾਣੀ ਪਹਿਲਾਂ ਤੋਂ ਨਹੀਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।
- ਕਿਸੇ ਪ੍ਰਯੋਗ ਦੇ ਨਤੀਜਿਆਂ ਨੂੰ ਬਰਾਬਰ ਸੰਭਾਵਿਤ ਆਖਦੇ ਹਨ ਜੇ ਉਸਦੇ ਆਉਣ ਦੇ ਸੰਯੋਗ ਬਰਾਬਰ ਹੋਣ।

ਘਟਨਾ ਨੂੰ ਬਣਾਉਣ ਵਾਲੇ ਨਤੀਜਿਆਂ ਦੀ ਸੰਖਿਆ


ਪਯੋਗ ਦੇ ਨਤੀਜਿਆਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ

ਜਦੋਂ ਨਤੀਜੇ ਬਰਾਬਰ ਸੰਭਾਵਿਤ ਹਨ।

10. ਇੱਕ ਘਟਨਾ ਦੀ ਸੰਭਾਵਨਾ =

- 11. ਕਿਸੇ ਪ੍ਰਯੋਗ ਦੇ ਇੱਕ ਜਾਂ ਜ਼ਿਆਦਾ ਨਤੀਜਿਆਂ ਨਾਲ ਘਟਨਾ ਬਣਦੀ ਹੈ।
- 12. ਸੰਯੋਗ ਅਤੇ ਸੰਭਾਵਨਾ ਅਸਲ ਜੀਵਨ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ।

94 🖩 ਗਣਿਤ

ਅਧਿਆਇ

ਵਰਗ ਅਤੇ ਵਰਗਮੂਲ

6.1 ਭੂਮਿਕਾ

ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਵਰਗ ਦਾ ਖੇਤਰਫਲ = ਭੁਜਾ × ਭੁਜਾ (ਇੱਥੇ ਭੁਜਾ ਦਾ ਅਰਥ ਇੱਕ ਭੁਜਾ ਦੀ ਲੰਬਾਈ) ਹੁੰਦੀ ਹੈ। ਹੇਠਾਂ ਸਾਰਣੀ ਦਾ ਅਧਿਐਨ ਕਰੋ :

ਵਰਗ ਦੀ ਭੁਜਾ (cm ਵਿੱਚ)	ਵਰਗ ਦਾ ਖੇਤਰਵਲ (cm² ਵਿੱਚ)
1	$1 \times 1 = 1 = 1^2$
2	$2 \times 2 = 4 = 2^2$
3	$3 \times 3 = 9 = 3^2$
5	$5 \times 5 = 25 = 5^2$
8	$8 \times 8 = 64 = 8^2$
a	$a \times a = a^2$

ਸੰਖਿਆਵਾਂ 4, 9, 25, 64 ਅਤੇ ਇਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਦੂਸਰੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਕੀ ਖਾਸ ਹੈ? ਕਿਉਂਕਿ 4 ਨੂੰ 2 × 2 = 2², 9 ਨੂੰ 3 × 3 = 3² ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾ ਸਕਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਇਕੋ-ਜਿਹੀਆਂ ਦੋ ਸੰਖਿਆਵਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਇਸ ਪ੍ਰਕਾਰ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਜਿਵੇਂ 1, 4, 9, 16, 25, ... ਨੂੰ ਵਰਗ ਸੰਖਿਆਵਾਂ ਕਹਿੰਦੇ ਹਨ।

ਆਮ ਤੌਰ ਤੇ, ਜੋ ਇੱਕ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ m ਨੂੰ n² ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੇ n ਇੱਕ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਹੈ ਤਾਂ m ਇੱਕ **ਵਰਗ ਸੰਖਿਆ** ਹੈ। ਕੀ 32 ਇੱਕ ਵਰਗ ਸੰਖਿਆ ਹੈ ?

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 5² = 25 ਅਤੇ 6² = 36 ਹੁੰਦਾ ਹੈ।ਜੇਕਰ 32 ਇੱਕ ਵਰਗ ਸੰਖਿਆ ਹੈ, ਤਾਂ ਇਹ ਇੱਕ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਦਾ ਵਰਗ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ਜੋ ਕਿ 5 ਅਤੇ 6 ਦੇ ਵਿੱਚ ਹੋਵੇ। ਪਰ ਇੱਥੇ 5 ਅਤੇ 6 ਦੇ ਵਿੱਚ ਕੋਈ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਨਹੀਂ ਹੈ। ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਅਤੇ ਵਰਗਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਵਿਚਾਰ ਕਰੋ :

ਸੰਖਿਆਵਾਂ	ਵਰਗ
1	$1 \times 1 = 1$
2	$2 \times 2 = 4$

96 🖩 ਗਣਿਤ

3 $3 \times 3 = 9$ $4 \times 4 = 16$ 4 5 $5 \times 5 = 25$ 9 10

ਉਪਰੋਕਤ ਸਾਰਣੀ ਤੋਂ ਕੀ ਤੁਸੀਂ 1 ਤੋਂ 100 ਦੇ ਵਿੱਚ ਮੌਜੂਦ ਵਰਗ ਸੱਖਿਆਵਾਂ ਲਿਖ ਸਕਦੇ ਹੋ? ਕੀ 100 ਤੱਕ ਕੋਈ ਪ੍ਰਾਕ੍ਰਿਤਕ ਵਰਗ ਸੰਖਿਆ ਛੱਡੀ ਗਈ ਹੈ? ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਬਾਕੀ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ, ਵਰਗ ਸੰਖਿਆਵਾਂ ਨਹੀਂ ਹਨ। ਸੰਖਿਆਵਾਂ 1, 4, 9, 16 ਵਰਗ ਸੰਖਿਆਵਾਂ ਹਨ। ਇਹਨਾਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆਵਾਂ ਵੀ ਆਖਦੇ ਹਨ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਦਿੱਤੀਆਂ ਗਈਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਮੌਜੂਦ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕਰੋ। (i) 30 ਅਤੇ 40 (ii) 50 ਅਤੇ 60

6.2 ਵਰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਗੁਣ

ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਵਿੱਚ । ਤੋਂ 20 ਤੱਕ ਦੀਆਂ ਵਰਗ ਸੰਖਿਆਵਾਂ ਨੂੰ ਦਿਖਾਇਆ ਗਿਆ ਹੈ।

ਸੰਖਿਆ	दवता	ਸੰਖਿਆ	ਵਰਗ
1	1	11	121
2	4	12	144
3	9	13	169
4	16	14	196
5	25	15	225
6	36	16	256
7	49	17	289
8	64	18	324
9	81	19	361
10	100	20	400

ਉਪਰੋਕਤ ਸਾਰਣੀ ਵਿੱਚ ਵਰਗ ਸੰਖਿਆਵਾਂ ਦਾ ਅਧਿਐਨ ਕਰੋ। ਵਰਗ ਸੰਖਿਆਵਾਂ ਦਾ ਆਖਰੀ ਅੰਕ (ਜਾਂ ਵਰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਇਕਾਈ ਸਥਾਨ ਦਾ ਅੰਕ) ਕੀ ਹੈ? ਇਹ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਇਕਾਈ ਸਥਾਨ 'ਤੇ 0, 1, 4, 5, 6 ਅਤੇ 9 'ਤੇ ਖਤਮ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਵਿੱਚ ਕਿਸੇ ਵੀ ਸੰਖਿਆ ਦੇ ਇਕਾਈ ਸਥਾਨ 'ਤੇ 2, 3, 7 ਜਾਂ 8 ਨਹੀਂ ਆਉਂਦਾ ਹੈ।

ਕੀ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਜੇਕਰ ਕੋਈ ਸੰਖਿਆ 0, 1, 4, 5, 6 ਜਾਂ 9 'ਤੇ ਸਮਾਪਤ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਉਹ ਇੱਕ ਵਰਗ ਸੰਖਿਆ ਹੋਵੇਗੀ ? ਇਸ ਬਾਰੇ ਸੋਚੋ।

ਵਰਗ ਅਤੇ ਵਰਗਮੂਲ 🔳 97

 ਕੀ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਹੇਠ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆਵਾਂ ਹਨ ? ਅਸੀਂ ਕਿਸ ਤਰ੍ਹਾਂ ਜਾਣਦੇ ਹਾਂ ?
 0.1057
 (i) 23453
 (ii) 7928
 (iv) 222222

ਕੋਸ਼ਿਸ਼ ਕਰੋ

(i) 1057 (ii) 23453 (iii) 7928 (iv) 22

(v) 1069 (vi) 2061

ਪੰਜ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਲਿਖੋ ਜਿਸ ਦੇ ਇਕਾਈ ਸਥਾਨ ਨੂੰ ਦੇਖ ਕੇ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਇਹ ਸੰਖਿਆਵਾਂ ਵਰਗ ਸੰਖਿਆਵਾਂ ਨਹੀਂ ਹਨ।

 ਪੰਜ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਲਿਖੇ ਜਿਸ ਦੇ ਇਕਾਈ ਸਥਾਨ ਨੂੰ ਦੇਖ ਕੇ ਤੁਸੀਂ ਨਹੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਇਹ ਵਰਗ ਸੰਖਿਆਵਾਂ ਹਨ ਜਾਂ ਨਹੀਂ ਹਨ।

 ਹੋਠਾਂ ਲਿਖੀ ਸਾਰਣੀ ਵਿੱਚ ਕੁੱਝ ਸੰਖਿਆਵਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਵਰਗਾਂ ਦਾ ਅਧਿਐਨ ਕਰੋ ਅਤੇ ਦੋਨਾਂ ਵਿੱਚ ਇਕਾਈ ਸਥਾਨ ਦਾ ਨਿਰੀਖਣ ਕਰੋ।

ਸੰਖਿਆ	ৰবনা	ਸੰਖਿਆ	ৰবৰা	ਸੱਖਿਆ	ਵਰਗ
1	1	11	121	21	441
2	4	12	144	22	484
3	9	13	169	23	529
4	16	14	196	24	576
5	25	15	225	25	625
6	36	16	256	30	900
7	49	17	289	35	1225
8	64	18	324	40	1600
9	81	19	361	45	2025
10	100	20	400	50	2500

ਸ਼ਾਰਣੀ 1

ਹੇਠਾਂ ਲਿਖੀਆਂ ਵਰਗ ਸੰਖਿਆਵਾਂ ਅੰਕ । 'ਤੇ ਖ਼ਤਮ ਹੁੰਦੀਆਂ ਹਨ :

	ਵਰਗ	সাঁল	ইদিয়ে বই	
F	1	1	123 ¹ , 77 ² , 82 ² , 161 ² , 109 ²	S
	81	9	ਵਿੱਚੋਂ ਕਿਹੜੀਆਂ ਸੰਖਿਆਵਾਂ ਅੰਕ	E.P.
1	121	11	1 'ਤੇ ਖ਼ਤਮ ਹੋਣਗੀਆਂ।	
	361	19		The second
- 10	441	21	The second second	001

ਇਸ ਦੇ ਇਲਾਵਾ ਅਗਲੀਆਂ ਦੋ ਵਰਗ ਸੰਖਿਆਵਾਂ ਲਿਖੇ ਜੋ 1 'ਤੇ ਖ਼ਤਮ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦੀਆਂ ਸੰਗਤ ਸੰਖਿਆਵਾਂ ਵੀ ਲਿਖੇ।

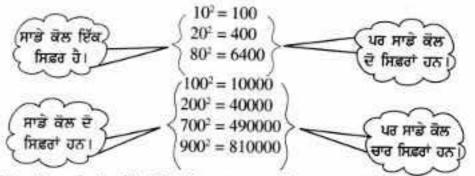
ਤੁਸੀਂ ਦੇਖਦੇ ਹੋ ਕਿ ਜੇਕਰ ਇੱਕ ਸੰਖਿਆ ਦੇ ਇਕਾਈ ਸਥਾਨ 'ਤੇ । ਜਾਂ 9 ਆਉਂਦਾ ਹੈ ਤਾਂ ਉਸਦੀ ਵਰਗ ਸੰਖਿਆ ਦੇ ਅੰਤ ਵਿੱਚ । ਆਉਂਦਾ ਹੈ।

98 🔳 ਗਣਿਤ

ਹੁਣ 6 'ਤੇ ਖ਼ਤਮ ਹੋਣ ਵਾਲੀਆਂ ਸੰਖਿਆਵਾਂ 'ਤੇ ਵਿਚਾਰ ਕਰੋ :

द्यंता	পর	ਕੋਸ਼ਿਸ਼ ਕਰੋ
16	4	ਹੇਠਾਂ ਲਿਖੀਆਂ ਵਿੱਚ ਕਿਹੜੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਇਕਾਈ
36	6	ਸਥਾਨ `ਤੇ 6 ਅੰਕ ਹੋਵੇਗਾ ?
196	14	(i) 19 ² (ii) 24 ² (iii) 26 ²
256	16	(iv) 36 ² (v) 34 ²

ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਜਦੋਂ ਕੋਈ ਵਰਗ ਸੰਖਿਆ 6 'ਤੇ ਖ਼ਤਮ ਹੁੰਦੀ ਹੈ ਤਾਂ ਉਹ ਜਿਸ ਸੰਖਿਆ ਦਾ ਵਰਗ ਹੈ, ਉਸਦਾ ਇਕਾਈ ਅੰਕ 4 ਜਾਂ 6 ਹੋਵੇਗਾ।


ਕੀ ਤੁਸੀਂ ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਕੁਝ ਹੋਰ ਨਿਯਮ, ਸਾਰਣੀ ਵਿੱਚ ਲਿਖੀਆਂ ਗਈਆਂ ਸੰਖਿਆਵਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਵਰਗਾਂ ਦੇ ਨਿਰੀਖਣ ਨਾਲ ਪਤਾ ਕਰ ਸਕਦੇ ਹੋ।(ਸਾਰਣੀ 1)?

		de.	4	
	*	1	1	
	Ż	5,		
1	t	1	Pre-	
Ą	-		5	
	-	1	100	

-	r		-		
	1.61		4.48		
B.C. 1	615	ΞĽ.	÷		
		1.12		<u></u>	- 1

ਹੇਠਾਂ ਇ	5ਖੀਆਂ ਸੰਖਿਅ	ਾਵਾਂ ਦੇ ਵਰ	ਗ ਕਰਨ 'ਤੇ	ਉਹਨਾਂ ਦੇ ਇ	ਟਕਾਈ ਸਥਾ	ਨ 'ਤੇ ਕੀ ਹੋਵੇ	वार ?
	1234	The second se	26387		52698		99880
(v)	21222	(vi)	9106				2010/07/07

ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਵਰਗਾਂ 'ਤੇ ਵਿਚਾਰ ਕਰੋ :

ਜੇ ਇੱਕ ਸੰਖਿਆ ਦੇ ਅੰਤ ਵਿੱਚ ਤਿੰਨ ਸਿਫ਼ਰ ਹੋਣ, ਤਾਂ ਉਸਦੇ ਵਰਗ ਵਿੱਚ ਕਿੰਨੇ ਸਿਫ਼ਰ ਹੋਣਗੇ ? ਕੀ ਤੁਸੀਂ ਸੰਖਿਆ ਦੇ ਅੰਤ ਵਿੱਚ ਸਿਫ਼ਰਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਉਸਦੇ ਵਰਗ ਦੇ ਅੰਤ ਵਿੱਚ ਸਿਫ਼ਰਾਂ ਦੀ ਸੰਖਿਆ 'ਤੇ ਧਿਆਨ ਦਿੱਤਾ ?

ਕੀ ਤੁਸੀਂ ਕਹਿ ਸਕਦੇ ਹੋ ਕਿ ਵਰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਅੰਤ ਵਿੱਚ ਸਿਫ਼ਰਾਂ ਦੀ ਸੰਖਿਆ ਕੇਵਲ ਜਿਸਤ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ ?

 ਸੰਖਿਆ ਅਤੇ ਉਹਨਾਂ ਦੇ ਵਰਗਾਂ ਦੇ ਲਈ ਸਾਰਣੀ । ਦੇਖੋ। ਜਿਸਤ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗਾਂ ਅਤੇ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ।

ইয়িয় কট

- ਹੇਠਾਂ ਲਿਖਿਆਂ ਵਿੱਚ ਕਿਹੜੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗ ਟਾਂਕ ਸੰਖਿਆਵਾਂ/ਜਿਸਤ ਸੰਖਿਆਵਾਂ ਹੋਣਗੇ। ਕਿਉਂ?
- (i)
 727
 (ii)
 158
 (iii)
 269
 (iv)
 1980

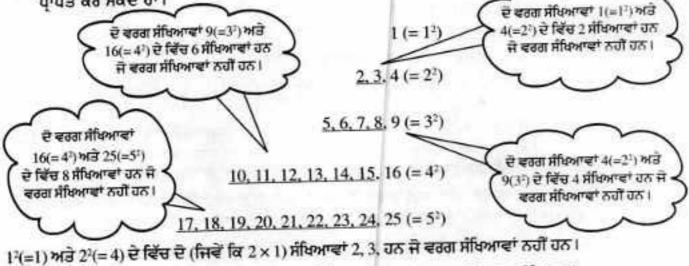
 2.
 ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗ ਵਿੱਚ ਸਿਫ਼ਰਾਂ ਦੀ ਸੰਖਿਆ ਕੀ ਹੋਵੇਗੀ ?
 - (i) 60 (ii) 400

ਵਰਗ ਅਤੇ ਵਰਗਮੁਲ 🔳 99

6.3 ਕੁਝ ਹੋਰ ਰੋਚਕ ਪੈਟਰਨ

ਤਿਕੋਣੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਜੋੜ

ਕੀ ਤੁਹਾਨੂੰ ਤਿਕੋਣੀਆਂ ਸੰਖਿਆਵਾਂ (ਸੰਖਿਆਵਾਂ ਜਿਨ੍ਹਾਂ ਦੇ ਬਿੰਦੂ ਪੈਟਰਨ ਨੂੰ ਤ੍ਰਿਭੁਜਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ) ਯਾਦ ਹਨ ?


			-	* *
		*	*	* **
	*	**	***	* ***
*	**	***	****	* ****
1	3	6	10	15

ਜਦੋਂ ਅਸੀਂ ਦੇ ਲਗਾਤਾਰ ਸੰਖਿਆਵਾਂ ਨੂੰ ਆਪਸ ਵਿੱਚ ਜੋੜਦੇ ਹਾਂ ਤਾਂ ਅਸੀਂ ਇੱਕ ਵਰਗ ਸੰਖਿਆ ਪਾਪਤ ਕਰਦੇ ਹਾਂ, ਜਿਵੇਂ ਕਿ

		* * * *
	* * *	* * * *
* *	* * *	* * * * * * *
* *	* * *	* * * *
1 + 3 = 4	3 + 6 = 9	6 + 10 = 16
$= 2^2$	$= 3^{2}$	= 4*

ਵਰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿਚਕਾਰਲੀਆਂ ਸੰਖਿਆਵਾਂ

ਹੁਣ ਅਸੀਂ ਦੇਖਾਂਗੇ ਕਿ ਕੀ ਅਸੀਂ ਦੋ ਲਗਾਤਾਰ ਵਰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਵਿੱਚ ਕੁੱਝ ਰੋਚਕ ਪੈਟਰਨ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ।

2²(= 4) ਅਤੇ 3²(= 9) ਦੇ ਵਿੱਚ ਚਾਰ (ਜਿਵੇਂ ਕਿ 2 × 2) ਸੰਖਿਆਵਾਂ 5, 6, 7, 8, ਹਨ ਜੋ ਵਰਗ ਸੰਖਿਆਵਾਂ ਨਹੀਂ ਹਨ।

ਹੁਣ 3² = 9, 4² = 16

ਇਸ ਤਰ੍ਹਾਂ $4^2 - 3^2 = 16 - 9 = 7$

ਇੱਥੇ 9(=3²) ਅਤੇ 16(= 4²) ਦੇ ਵਿੱਚ 6 ਸੰਖਿਆਵਾਂ 10, 11, 12, 13, 14, 15 ਹਨ ਜੋ ਵਰਗ ਸੰਖਿਆਵਾਂ ਨਹੀਂ ਹਨ, ਇਹਨਾਂ ਦੀ ਗਿਣਤੀ ਦੋ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਨਾਲੋਂ 1 ਘੱਟ ਹੈ।

100 🔳 ਗਣਿਤ

ਸਾਡੇ ਕੋਲ ਇਸ ਤਰਾਂ

ਂ 4² = 16 ਅਤੇ 5² = 25 ਹੈ। [†] 5² – 4² = 9

ਇੱਥੇ 16(= 4²) ਅਤੇ 25(= 5²) ਦੇ ਵਿੱਚ 17, 18, ... , 24 ਅੱਠ ਸੰਖਿਆਵਾਂ ਹਨ ਜੋ ਕਿ ਵਰਗ ਸੰਖਿਆਵਾਂ ਨਹੀਂ ਹਨ। ਇਹਨਾਂ ਦੀ ਗਿਣਤੀ ਦੋ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਨਾਲੋਂ 1 ਘੱਟ ਹੈ।

7² ਅਤੇ 6² ਨੂੰ ਦੇਖੋ। ਕੀ ਤੁਸੀਂ ਕਹਿ ਸਕਦੇ ਹੋ ਕਿ 6² ਅਤੇ 7² ਦੇ ਵਿੱਚ ਕਿੰਨੀਆਂ ਸੰਖਿਆਵਾਂ ਹਨ ? ਜੇਕਰ ਅਸੀਂ ਕੋਈ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ n ਅਤੇ (n + 1) ਲੈਂਦੇ ਹਾਂ ਤਦ

 $(n + 1)^2 - n^2 = (n^2 + 2n + 1) - n^2 = 2n + 1$

ਅਸੀਂ n³ ਅਤੇ (n + 1)² ਦੇ ਵਿੱਚ 2n ਸੰਖਿਆਵਾਂ ਪਾਉਂਦੇ ਹਾਂ ਜੋ ਦੇ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਨਾਲੋਂ 1 ਘੱਟ ਹੈ।

ਸਧਾਰਨ ਰੂਪ ਵਿੱਚ *ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਦੋ ਵਰਗ ਸੰਖਿਆਵਾਂ n ਅਤੇ (n + 1) ਦੇ ਵਿੱਚ 2n* ਸੰਖਿਆਵਾਂ ਹਨ ਜੋ ਵਰਗ ਸੰਖਿਆਵਾਂ ਨਹੀਂ ਹਨ।ਪੜਤਾਲ ਕਰਨ ਦੇ ਲਈ n = 5, n = 6 ਆਦਿ ਲੈ ਲਵੋ ਅਤੇ ਪੁਸ਼ਟੀ ਕਰੋ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

- 9² ਅਤੇ 10² ਦੇ ਵਿੱਚ ਕਿੰਨੀਆਂ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਹਨ ? 11² ਅਤੇ 12² ਦੇ ਵਿੱਚ ਵੀ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸੋ।
- ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਜੋੜਿਆਂ ਦੇ ਵਿਚਲੀਆਂ ਸੰਖਿਆਵਾਂ ਦੱਸੋ ਜੋ ਵਰਗ ਸੰਖਿਆਵਾਂ ਨਹੀਂ ਹਨ।
 - (i) 100² ਅਤੇ 101²
 (ii) 90² ਅਤੇ 91²
 (iii) 1000² ਅਤੇ 1001²
- ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ ਹੇਠਾਂ ਲਿਖੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।

1 [ਇੱਕ ਟਾਂਕ ਸੰਖਿਆ]	$= 1 = 1^2$
1 + 3 [ਪਹਿਲੀਆਂ ਦੋ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ]	$=4=2^{2}$
1+3+5 [ਪਹਿਲੀਆਂ ਤਿੰਨ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ]	$=9=3^{2}$
1+3+5+7 []	$= 16 = 4^2$
1+3+5+7+9 []	$=25 = 5^{2}$
1+3+5+7+9+11 []	$=36=6^{2}$
जां आगी सनि पासने का कि अनियती कांच थेंदि	

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਪਹਿਲੀ n ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ n² ਹੈ।

ਇਸ ਨੂੰ ਅਲੱਗ ਢੰਗ ਨਾਲ ਦੇਖਦੇ ਹੋਏ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਜੇ ਇੱਕ ਸੰਖਿਆ, ਵਰਗ ਸੰਖਿਆ ਹੈ ਤਾਂ ਇਹ । ਤੋਂ ਸ਼ੁਰੂ ਹੋਣ ਵਾਲੀਆਂ ਲਗਾਤਾਰ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ ਹੈ।

ਹੁਣ ਇਹਨਾਂ ਸੰਖਿਆਵਾਂ 'ਤੇ ਵਿਚਾਰ ਕਰੋ ਜੋ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆਵਾਂ ਨਹੀਂ ਹਨ ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ 2, 3, 5, 6, ...। ਕੀ ਹੁਣ ਇਹਨਾਂ ਸੰਖਿਆਵਾਂ ਨੂੰ 1 ਤੋਂ ਸ਼ੁਰੂ ਕਰਕੇ ਸਾਰੀਆਂ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦੇ ਜੋੜ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖ ਸਕਦੇ ਹਾਂ?

ਹੁਣ ਦੇਖਾਂਗੇ ਕਿ ਇਹਨਾਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਨਹੀਂ ਲਿਖ ਸਕਦੇ ਹਾਂ। ਸੰਖਿਆ 25 ਨੂੰ ਲਵੋ ਅਤੇ ਇਸ ਵਿੱਚੋਂ 1, 3, 5, 7, 9, ... ਨੂੰ ਘਟਾਉ :

(i) 25 - 1 = 24 (ii) 24 - 3 = 21 (iii) 21 - 5 = 16 (iv) 16 - 7 = 9(v) 9 - 9 = 0find for 25 = 1 + 3 + 5 + 7 + 0 for any 25 - 67 = 10 (iv) 16 - 7 = 9

ਜਿਵੇਂ ਕਿ 25 = 1 + 3 + 5 + 7 + 9 ਹੈ, ਇਸ ਤਰ੍ਹਾਂ 25 ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ।

ਵਰਗ ਅਤੇ ਵਰਗਮੁਲ 📕 101

ਹੁਣ ਇੱਕ ਦੂਸਰੀ ਸੰਖਿਆ 38 ਨੂੰ ਲਓ ਅਤੇ ਦੁਬਾਰਾ ਕਰੋ ਜਿਵੇਂ ਕਿ ਉੱਪਰ ਕੀਤਾ ਗਿਆ ਹੈ।

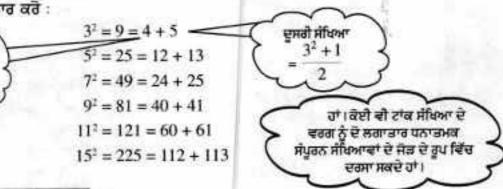
(i) 38 - 1 = 37 (ii) 37 - 3 = 34 (iii) 34 - 5 = 29 (iv) 29 - 7 = 22

(v) 22-9=13 (vi) 13-11=2 (vii) 2-13=-11

ਇਸ ਤੋਂ ਬਾਅਦ ਪਤਾ ਲੱਗਦਾ ਹੈ ਕਿ 38 ਨੂੰ 1 ਤੋਂ ਸ਼ੁਰੂ ਕਰਨ ਵਾਲੀਆਂ ਲਗਾਤਾਰ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਅਸੀਂ ਨਹੀਂ ਲਿਖ ਸਕਦੇ ਅਤੇ 38 ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਨਹੀਂ ਹੈ। ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਇਹ ਵੀ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਜਦ ਕੋਈ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ 1 ਤੋਂ ਸ਼ੁਰੂ ਹੋਣ ਵਾਲੀ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦੇ ਜੋੜ ਰੂਪ ਵਿੱਚ ਦਰਸਾਈ ਨਹੀਂ ਜਾ ਸਕਦੀ ਤਾਂ ਉਹ ਸੰਖਿਆ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਨਹੀਂ ਹੋ ਸਕਦੀ।

ਹੇਠਾਂ ਸੰਖਿ	ਲਿਖੀਆਂ ਆ ਹੈ ਜਾਂ	ਸੰਖਿਆਵਾਂ ਨਹੀਂ ?	ৰিঁਚ,	ਹਰੇਕ ਪੂਰ	াম ৰববা
6)	121	(ii)	55	(iii)	81
(iv)	49	(v)	69		


(iv) 19²

ਇੱਕ ਸੰਖਿਆ ਪੂਰਨ ਹੈ ਜਾਂ ਨਹੀਂ ਹੈ ਇਹ ਜਾਣਨ ਲਈ ਇਸ ਨਤੀਜੇ ਦਾ ਪ੍ਰਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ।

4. ਲਗਾਤਾਰ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ

ਹੇਠਾਂ ਲਿਖਿਆਂ 'ਤੇ ਵਿਚਾਰ ਕਰੋ :

ਪਹਿਲੀ ਸੰਖਿਆ

ਕੋਸ਼ਿਸ਼ ਕਰੋ

(ii) 13²

 ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੇ ਲਗਾਤਾਰ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦੇ ਜੋੜ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ :

(i) 21²

(iii) 11²

 ਕੀ ਤੁਸੀਂ ਸੋਚ ਸਕਦੇ ਹੋ ਕਿ ਇਸਦਾ ਉਲਟ ਸੱਚ ਹੈ ਅਤੇ ਕੀ ਦੋ ਲਗਾਤਾਰ ਧਨਾਤਮਕ ਸੰਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ ਇੱਕ ਪੂਰਨ ਵਰਗ ਹੁੰਦਾ ਹੈ ? ਆਪਣੇ ਉੱਤਰ ਦੇ ਪੱਖ ਵਿੱਚ ਇੱਕ ਉਦਾਹਰਣ ਦਿਓ।

5. ਦੋ ਲਗਾਤਾਰ ਜਿਸਤ ਜਾਂ ਟਾਂਕ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਦਾ ਗੁਣਨਫਲ

11 × 13 = 143 = $12^2 - 1$ feਸ ਪ੍ਰਕਾਰ 11 × 13 = $(12 - 1) \times (12 + 1)$ feਸ ਤਰ੍ਹ[†] 11 × 13 = $(12 - 1) \times (12 + 1) = 12^2 - 1$ feਸ ਤਰ੍ਹ[†] 13 × 15 = $(14 - 1) \times (14 + 1) = 14^2 - 1$ $29 \times 31 = (30 - 1) \times (30 + 1) = 30^2 - 1$ $44 \times 46 = (45 - 1) \times (45 + 1) = 45^2 - 1$

ਇਸ ਤਰ੍ਹਾਂ ਸਧਾਰਨ ਰੂਪ ਵਿੱਚ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ $(a + 1) \times (a - 1) = a^2 - 1$

102 🖩 ਗਣਿਤ

6. ਵਰਗ ਸੱਖਿਆਵਾਂ ਦੇ ਕੁਝ ਹੋਰ ਪੈਟਰਨ

ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗਾਂ ਦਾ ਨਿਰੀਖਣ ਕਰੋ 1, 11, 111 ... ਆਦਿ। ਇਹ ਇੱਕ ਸੁੰਦਰ ਪੈਟਰਨ ਦਿੰਦੇ ਹਨ।

1

2

3

6

1

2

5

1

4

3

2

1

1

2

4

7

4 3

5

8

1 2

2 3

1

3

4

7

$1^2 =$					
$11^2 =$					
$111^2 =$					1
$1111^2 =$				1	2
$11111^2 =$			1	2	3
111111112	= 1 2	3	4	5	6

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਉਪਰੋਕਤ ਪੈਟਰਨ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਵਰਗ ਸੰਖਿਆਵਾਂ ਲਿਖੋ

(i) 111111^2 (ii) 1111111^2

ৰুচ্চিদ্ৰ ৰব

ਉਪਰੋਕਤ ਪੈਟਰਨ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਕੀ ਤੁਸੀਂ ਹੇਠ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਦਾ ਵਰਗ ਪਤਾ ਕਰ ਸਕਦੇ ਹੋ ? (i) 6666667² (ii) 66666667² ਹੋਰ ਰੋਚਕ ਪੈਟਰਨ 7² = 49 67² = 4489

 $667^2 = 444889$

 $6667^2 = 44448889$

 $66667^2 = 4444488889$

666667² = 44444888889

ਇਸ ਤਰ੍ਹਾਂ ਕਿਉਂ ਹੁੰਦਾ ਹੈ, ਇਹ ਜਾਨਣਾ ਤੁਹਾਡੇ ਲਈ ਮਨੋਰੰਜਨ ਪੂਰਨ ਹੋ ਸਕਦਾ ਹੈ। ਤੁਹਾਡੇ ਲਈ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਬਾਰੇ ਜਾਣਨਾ ਅਤੇ ਸੋਚਣਾ ਜ਼ਰੂਰੀ ਹੋਵੇਗਾ।ਭਾਵੇਂ ਇਸ ਦੇ ਉੱਤਰ ਕੁੱਝ ਸਮੇਂ ਬਾਅਦ ਮਿਲਣ।

1.	ਹੇਠਾਂ	ਲਿਖੀਆਂ	ਸੰਖਿਆਵਾਂ ਦੇ	ਵਰਗਾਂ ਦੀ ਇ	ਕਾਈ ਦੇ ਅੰ	ਕ ਕੀ ਹੋਣਗੇ	2	
	(i)	81	(ii)	272	(iii)	799	(iv)	3853
	(v)	1234	(vi)	26387	(vii)	52698	(viii)	99880
	(ix)	12796	(x)	55555				
2.	ਹੇਠਾਂ	ਲਿਖੀਆਂ	ਸੰਖਿਆਵਾਂ ਸਪੱਸ਼	ਟ ਰੂਪ ਵਿੱਚ ਪੂਰ	ਸਨ ਵਰਗ ਸੀ	ਖਿਆਵਾਂ ਨਹੀਂ ਹ	ਹਨ, ਇਸਦਾ	ਕਾਰਣ ਦੱਸੇ।
		1057		23453		7928		222222
	(v)	64000	(vi)	89722	(vii)	222000	(viii)	505050
3.	ਹੇਠਾਂ	ਲਿਖੀਆਂ	ਸੰਖਿਆਵਾਂ ਵਿੱ					2009/06/2010
		431		2826		7779		82004
4.	ਹੇਠਾਂ	ਦਿੱਤੇ ਪੈਟ	ਰਨ ਦਾ ਨਿਰੀਖ	ਣ ਕਰੋ ਅਤੇ ਖ	ਾਲੀ ਬਾਵਾਂ	ਭਰੋ।		0000000000
				112 =	121			
				$101^2 =$	10201			
				$1001^2 =$	1002001			
				$100001^2 =$	1 2			
			14	00000112				

 $10000001^2 = \dots$

ਵਰਗ ਅਤੇ ਵਰਗਮੁਲ 🔳 103

ਹੇਠਾਂ ਦਿੱਤੇ ਪੈਟਰਨ ਦਾ ਨਿਗੀਖਣ ਕਰੋ ਅਤੇ ਖਾਲੀ ਥਾਵਾਂ ਭਰੋ।

 $11^{2} = 1 \ 2 \ 1$ $101^{2} = 1 \ 0 \ 2 \ 0 \ 1$ $10101^{2} = 102030201$ $1010101^{2} = \dots$

......2 = 10203040504030201

ਦਿੱਤੇ ਗਏ ਪੈਟਰਨ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਖਾਲੀ ਸੰਖਿਆਵਾਂ ਲੱਭੋ :

 $\begin{array}{rrrr} 1^2+2^2+2^2&=3^2\\ 2^2+3^2+6^2&=7^2 \end{array}$

 $3^2 + 4^2 + 12^2 = 13^2$

 $4^2 + 5^2 + _^2 = 21^2$

 $5^2 + _2^2 + 30^2 = 31^2$

 $6^{2} + 7^{2} + 2^{2} = 2^{2}$

7. ਜੋੜ ਕਿਰਿਆ ਕੀਤੇ ਬਿਨਾਂ ਜੋੜਫਲ ਪਤਾ ਕਰੋ :

(i) 1+3+5+7+9

(ii) 1+3+5+7+9+11+13+15+17+19

(iii) 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23

8. (i) 49 ਨੂੰ 7 ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦੇ ਜੋੜ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ।

(ii) 121 ਨੂੰ 11 ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦੇ ਜੋੜ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ।

9. ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗਾਂ ਵਿੱਚ ਕਿੰਨੀਆਂ ਸੰਖਿਆਵਾਂ ਹਨ ?

(i) 12 ਅਤੇ 13 (ii) 25 ਅਤੇ 26 (iii) 99 ਅਤੇ 100

6.4 ਸੰਖਿਆਵਾਂ ਦਾ ਵਰਗ ਪਤਾ ਕਰਨਾ

ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਜਿਵੇਂ 3, 4, 5, 6, 7, ... ਆਦਿ ਦਾ ਵਰਗ ਪਤਾ ਕਰਨਾ ਆਸਾਨ ਹੈ। ਪਰ ਕੀ ਅਸੀਂ 23 ਦਾ ਵਰਗ ਇੰਨੀ ਜਲਦੀ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ ?

ਇਸਦਾ ਉੱਤਰ ਇੰਨਾ ਆਸਾਨ ਨਹੀਂ ਹੈ ਅਤੇ ਸਾਨੂੰ 23 ਨੂੰ 23 ਨਾਲ ਗੁਣਾ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਹੈ। ਇਸ ਨੂੰ ਪਤਾ ਕਰਨ ਦਾ ਇੱਕ ਤਰੀਕਾ ਹੈ ਜਿਸ ਨਾਲ 23 × 23 ਨੂੰ ਬਿਨ੍ਹਾਂ ਗੁਣਾ ਕੀਤੇ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 23 = 20 + 3 ਇਸ ਲਈ 23² = (20 + 3)² = 20(20 + 3) + 3(20 + 3) = 20² + 20 × 3 + 3 × 20 + 3² = 400 + 60 + 60 + 9 = 529

ਉਦਾਹਰਣ 1 : ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਦਾ ਵਰਗ ਗੁਣਾ ਕੀਤੇ ਬਿਨ੍ਹਾਂ ਪਤਾ ਕਰੋ :

(i) 39 (ii) 42

 \vec{v} (i) $39^2 = (30+9)^2 = 30(30+9) + 9(30+9)$

 $= 30^2 + 30 \times 9 + 9 \times 30 + 9^2$

=900 + 270 + 270 + 81 = 1521

Downloaded from https:// www.studiestoday.com

ਪੈਟਰਨ ਪ੍ਰਾਪਤ ਕਰੋ :

ਤੀਸਰੀ ਸੰਖਿਆ ਪਹਿਲੀ ਅਤੇ ਦੂਸਰੀ ਸੰਖਿਆ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ। ਕਿਵੇਂ ? ਚੱਬੀ ਸੰਖਿਆ ਤੀਸਰੀ ਸੰਖਿਆ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ। ਕਿਵੇਂ ?

104 📷 ਗਣਿਤ

(ii)
$$42^2 = (40 + 2)^2 = 40(40 + 2) + 2(40 + 2)$$

= $40^2 + 40 \times 2 + 2 \times 40 + 2^2$
= $1600 + 80 + 80 + 4 = 1764$

6.4.1 ਵਰਗ ਦੇ ਹੋਰ ਪੈਟਰਨ ਹੇਠਾਂ ਦਿੱਤੇ ਪੈਟਰਨ ਨੂੰ ਦੇਖੋ 25² = 625 = (2 × 3) ਸੈਂਕੜੇ + 25 35² = 1225 = (3 × 4) ਸੈਂਕੜੇ + 25 75² = 5625 = (7 × 8) ਸੈਂਕੜੇ + 25 125² = 15625 = (12 × 13) ਸੈਂਕੜੇ + 25 ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸੰਖਿਆ ਲਵੇਂ ਜਿਸਦੀ ਇਕਾਈ ਸਥਾਨ 'ਤੇ ਔਕ 5 ਹੋਵੇ, ਜਿਵੇਂਕਿ a5। $(a5)^2 = (10a + 5)^1$ = 10a(10a + 5) + 5(10a + 5) $= 100a^2 + 50a + 50a + 25$ = 100a(a + 1) + 25= a(a + 1) ਸੈਂਕੜਾ + 25

ਹੁਣ ਕੀ ਤੁਸੀਂ 95 ਦਾ ਵਰਗ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹੋ?

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਹੇਠਾਂ ਲਿਖੀਆਂ	ਸੰਖਿਆਵਾਂ ਦਾ	ਵਰਗ ਪਤਾ ਕਰੋ	ਜਿਹਨਾਂ	ਦਾ ਇਕਾਈ ?	ਅੰਕ 5 ਹੈ।	
(i) 15	(ii)	95	(iii)	105	(iv) 205	

6.4.2 ਪਾਇਬਾਗੋਰੀਅਨ ਤ੍ਰਿਹੱਟ (ਤਿੱਕੜੀ)

ਹੇਠਾਂ ਲਿਖਿਆਂ ਨੂੰ ਲਓ

$$3^2 + 4^2 = 9 + 16 = 25 = 5^2$$

ਸੰਖਿਆ 3, 4, 5 ਦੇ ਗੁੱਟ ਨੂੰ **ਪਾਇਬਾਗੋਰੀਅਨ ਤ੍ਰਿਗੁੱਟ** ਆਖਦੇ ਹਨ। 6, 8, 10 ਵੀ ਇੱਕ ਪਾਇਬਾਗੋਰੀਅਨ ਤ੍ਰਿਗੁੱਟ ਹੈ ਕਿਉਂਕਿ

$$6^2 + 8^2 = 36 + 64 = 100 = 10^2$$

ਦੁਬਾਰਾ ਨਿਰੀਖਣ ਕਰਨ 'ਤੇ

5² + 12² = 25 + 144 = 169 = 13² । ਇਸ ਤਰ੍ਹਾਂ ਸੰਖਿਆਵਾਂ 5, 12, 13 ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਦੂਸਰੀ ਪਾਇਬਾਗੋਰੀਅਨ ਤ੍ਰਿਗੁੱਟ ਹੈ। ਕੀ ਤੁਸੀਂ ਇਸ ਪ੍ਰਕਾਰ ਦੇ ਕੁਝ ਹੋਰ ਤਿੱਕੜੀਆਂ ਪਤਾ ਕਰ ਸਕਦੇ ਹੋ ?

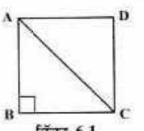
ਕਿਸੇ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ m > 1 ਦੇ ਲਈ, ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ (2m)² + (m² – 1)² = (m² + 1)² ਇਸ ਤਰ੍ਹਾਂ 2m, m² – 1 ਅਤੇ m² + 1 ਪਾਇਬਾਗੋਰੀਅਨ ਤ੍ਰਿਗੁੱਟ ਬਣਾਉਂਦੇ ਹਨ। ਇਸ ਰੂਪ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਹੋਰ ਪਾਇਬਾਗੋਰੀਅਨ ਤ੍ਰਿਗੁੱਟ ਪਤਾ ਕਰੋ।

ਉਦਾਹਰਣ 2 : ਇੱਕ ਪਾਇਬਾਗੋਰੀਅਨ ਤ੍ਰਿਗੁੱਟ ਲਿਖੋ ਜਿਸਦੀ ਸਭ ਤੋਂ ਛੋਟੀ ਸੰਖਿਆ 8 ਹੈ।

_{ਹੱਲ :} ਸਧਾਰਨ ਰੂਪ ਵਿੱਚ 2m. m² – 1. m² + 1 ਨਾਲ ਅਸੀਂ ਪਾਇਬਾਗੋਰੀਅਨ ਤ੍ਰਿਗੁੱਟ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ।

ਪਹਿਲਾਂ ਅਸੀਂ ਲੈਂਦੇ ਹਾਂ ਕਿ $m^2 - 1 = 8$ ਇਸ ਤਰ੍ਹਾਂ $m^2 = 8 + 1 = 9$ m = 3

ਵਰਗ ਅਤੇ ਵਰਗਮੂਲ 📕 105


ਇਸ ਲਈ	2 <i>m</i> =	6 ਅਤੇ m ² +1	= 10	Le Contra
ਇਸ ਤਰ੍ਹਾਂ 6, 8, 10 ਇੱਕ ਤ੍	ਗੁੱਟ ਹੈ ਪਰ ਇੱਥੇ 8 ਸ	ਭ ਤੋਂ ਛੋਟੀ ਸੰਖਿਆ	ਨਹੀਂ ਹੈ।	Saint
ਇਸ ਲਈ ਅਸੀਂ ਲੈਂਦੇ ਹਾਂ	2 <i>m</i> =	8		-102
ਤਾਂ	<i>m</i> =	4	3	10 10
	$m^2 - 1 =$	16 - 1 = 15		and the
ਅਤੇ	$m^2 + 1 =$	16 + 1 = 17		AN AN
ਇਸ ਤਰ੍ਹਾਂ 8, 15, 17 ਇੱਕ	ਅਜਿਹਾ ਤ੍ਰਿਗੁੱਟ ਹੈ ਜਿੱ	ਬੇ 8 ਸਭ ਤੋਂ ਛੋਟੀ ਸ	ਜੰਖਿਆ ਹੈ।	
ਉਦਾਹਰਣ 3 : ਇੱਕ ਪਾਇਬ	ਸਗੋਰੀਅਨ ਤ੍ਰਿਗੁੱਟ ਪ	ਤਾ ਕਰੋ ਜਿਸਦੀ ਇੱਕ	ਕ ਸੰਖਿਆ 12 ਹੈ।	
ਹੱਲ : ਜੇ ਅਸੀਂ ਲਈਏ	$m^2 - 1 =$	12	1	
ਤਾਂ,	$m^2 =$	12 + 1 = 13		
ਇੱਥੇ m ਦਾ ਮੁੱਲ ਸੰਪੂਰਨ ਸੰਪਿ	and a second state of the	- 19 20-19 - 10 20-10 20		
ਇਸ ਲਈ ਅਸੀਂ ਕੋਸ਼ਿਸ਼ ਕਰ ਸੰਖਿਆ ਨਹੀਂ ਦੇਵੇਗਾ।		1 = 12 । ਫਿਰ m ²	= 11 ਜੋ m ਦੇ ਲਈ ਹ	ਸੰਪੂਰਨ
ਇਸ ਲਈ ਸਾਨੂੰ ਲੈਣਾ ਚਾਹੀ	ਦਾਹੈ 2m =	12		
ਤਾਂ,	<i>m</i> =	6	1	
ਇਸ ਤਰ੍ਹਾਂ	$m^2 - 1 = 36 - 1 =$:35 ਅਤੇ <i>m</i> ²+	1 = 36 + 1 = 37	
ਇਸ ਤਰ੍ਹਾਂ ਲੋੜੀਂਦਾ ਤ੍ਰਿਗੁੱਟ ਕ	Ĵ 12, 35, 37		1	
ਨੋਟ : ਇਸ ਰੂਪ ਦਾ ਪ੍ਯੋਗ ਕ	ਰਦੇ ਹੋਏ ਅਸੀਂ ਸਾਰੀਅ	ਹਾਂ ਪਾਇਬਾਗੌਗੇਅਨ	ਤ੍ਰਿਗੁੱਟ ਨਹੀਂ ਪਤਾ ਕਰ	ਸਕਦੇ।
ਉਦਾਹਰਣ ਦੇ ਲਈ ਦੂਸਰਾ ਕਿ	ਤ੍ਰਗੁੱਟ 5, 12, 13 ਵਿੱ	ਚ ਵੀ 12 ਇੱਕ ਮੈਂਬ	ਰ ਹੈ।	
<u>ਅਭਿ</u> ਅ	भग्म 6.2			1
1. ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਅ	ਾਵਾਂ ਦਾ ਵਰਗ ਪਤਾ	ਕਰੇ।		A
(i) 32	(ii) 35	(iii) 86	(iv) 93	XX
(v) 71	(vi) 46			1 and
2. ਪਾਇਬਾਗੋਰੀਅਨ ਤ੍ਰਿ	ਗੁੱਟ ਲਿਖੇ ਜਿਸਦਾ ਇੱਕ	ਕ ਮੈਂਬਰ ਹੈ,		
(i) 6	(ii) 14	(iii) 16	(iv) 18	
6.5 ਵਰਗਮੂਲ				
ਹੇਠ ਲਿਖੀਆਂ ਸਥਿਤੀਆਂ ਦ	ਾ ਅਧਿਐਨ ਕਰੋ :			
(a) ਵਰਗ ਦਾ ਖੇਤਰਫਲ			17	
		~		

106 🖩 ਗਣਿਤ

ਜੇ ਅਸੀਂ ਭੂਜਾ ਦੀ ਲੰਬਾਈ ਦਾ ਮੁੱਲ 'a' ਲੈਂਦੇ ਹਾਂ ਤਾਂ 144 = a²

ਭੂਜਾ ਦੀ ਲੰਬਾਈ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਇਹ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜਿਸਦਾ ਵਰਗ 144 ਹੈ।

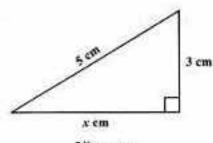
(b) ਇੱਕ ਵਰਗ ਜਿਸਦੀ ਭੁਜਾ 8 cm ਹੈ, ਉਸਦੇ ਵਿਕਰਨ ਦੀ ਲੰਬਾਈ ਕੀ ਹੋਵੇਗੀ (ਚਿੱਤਰ 6.1)? ਇਸ ਨੂੰ ਹੱਲ ਕਰਨ ਦੇ ਲਈ ਕੀ ਅਸੀਂ ਪਾਇਬਾਗੋਰਸ ਬਿਊਰਮ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹਾਂ ?

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ $AB^2 + BC^2 = AC^2$ $8^2 + 8^2 = AC^2$ ਜਿਵੇਂ $64 + 64 = AC^2$ ਜਾਂ $128 = AC^2$ सरे

ਚਿੱਤਰ 6.1

ਫਿਰ ਇੱਥੇ AC ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ ਇੱਕ ਸੰਖਿਆ ਸੋਚਣੀ ਹੈ ਜਿਸਦਾ ਵਰਗ 128 ਹੋਵੇ।

(c) ਇੱਕ ਸਮਕੇਣ ਤ੍ਰਿਭੂਜ ਵਿੱਚ ਕਰਣ ਅਤੇ ਇੱਕ ਭੂਜਾ ਕ੍ਰਮਵਾਰ 5 cm ਅਤੇ 3 cm ਹਨ (ਚਿੱਤਰ 6.2)। ਕੀ ਤਸੀਂ ਤੀਸਰੀ ਭਜਾ ਪਾਪਤ ਕਰ ਸਕਦੇ ਹੋ?


ਮੰਨ ਲਉ ਕਿ ਤੀਸਰੀ ਭੂਜਾ ਦੀ ਲੰਬਾਈ x cm ਹੈ।

ਪਾਇਥਾਗੋਰਸ ਥਿਊਰਮ ਦੁਆਰਾ

 $5^2 = x^2 + 3^2$ $25 - 9 = x^2$

 $16 = x^2$

ਫਿਰ ਇੱਥੇ x ਦਾ ਮੁੱਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਸਾਨੂੰ ਇੱਕ ਸੰਖਿਆ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ਜਿਸਦਾ ਵਰਗ 16 ਹੈ। ਉਪਰੋਕਤ ਸਾਰੀਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਸਾਨੂੰ ਇੱਕ ਸੰਖਿਆ ਦੀ ਜ਼ਰੂਰਤ ਹੈ, ਜਿਸਦਾ ਵਰਗ ਪਤਾ ਹੈ ਅਤੇ ਉਸ ਸੰਖਿਆ ਨੂੰ ਪਤਾ ਕਰਨਾ ਵਰਗਮੂਲ ਦੇ ਰੁਪ ਵਿੱਚ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ।

6.5.1 ਵਰਗਮੁਲ ਪਤਾ ਕਰਨਾ

ਜੋੜ ਦੀ ਕਿਰਿਆ ਦੇ ਉਲਟ ਘਟਾਉਣਾ ਹੈ ਅਤੇ ਗੁਣਾ ਦੀ ਉਲਟ ਕਿਰਿਆ ਭਾਗ ਹੈ ਇਸ ਤਰ੍ਹਾਂ ਵਰਗਮੁਲ ਪਾਪਤ ਕਰਨਾ ਵੀ ਵਰਗ ਦੀ ਉਲਟ ਕਿਰਿਆ ਹੈ।

ਸਾਨੂੰ ਪਤਾ ਹੈ 12 = 1. ਇਸ ਤਰ੍ਹਾਂ 1 ਦਾ ਵਰਗਮੁਲ 1 ਹੈ। 2¹ = 4, ਇਸ ਤਰਾਂ 4 ਦਾ ਵਰਗਮਲ 2 ਹੈ। 3² = 9, ਇਸ ਤਰ੍ਹਾਂ 9 ਦਾ ਵਰਗਮਲ 3 ਹੈ। ਇਸ ਪਕਾਰ 92 = 81. ਅਤੇ $(-9)^2 = 81$ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ 81 ਦਾ ਵਰਗਮਲ 9 ਅਤੇ – 9 ਹੈ

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਸੋਚੋ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ

(−1)² = 1, ਕੀ 1 ਦਾ ਵਰਗਮੁਲ ਹੈ −1? (-2)² = 4, ਕੀ 4 ਦਾ ਵਰਗਮੁਲ ਹੈ -2?

(-9)² = 81, ਕੀ 81 ਦਾ ਵਰਗਮੁਲ ਹੈ -9?

ਵਰਗ ਅਤੇ ਵਰਗਮੁਲ 🔳 107

ਉਪਰੋਕਤ ਦੇ ਅਨੁਸਾਰ ਤੁਸੀਂ ਕਹਿ ਸਕਦੇ ਹੋ ਕਿ ਕੋਈ ਪੂਰਨ ਵਰਗ ਸੱਖਿਆ ਦੇ ਦੋ ਇੰਟੇਗਰਲ (ਇਕੱਠੇ) ਵਰਗਮੂਲ ਹੁੰਦੋ ਹਨ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ, ਅਸੀਂ ਕਿਸੇ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਦੇ ਕੇਵਲ ਧਨਾਤਮਕ ਵਰਗਮੂਲ ਹੀ ਲਵਾਂਗੇ। ਧਨਾਤਮਕ ਵਰਗਮੂਲ ਸੰਖਿਆ ਨੂੰ $\sqrt{}$ ਸੰਕੇਤ ਨਾਲ ਦਰਸਾਉਂਦੇ ਹਨ। ਉਦਾਹਰਣ ਲਈ $\sqrt{4} = 2$ (-2 ਨਹੀਂ); $\sqrt{9} = 3$ (-3 ਨਹੀਂ) ਆਦਿ।

वषठ	ਸਿੱਟਾ	रषठ	ਸ਼ਿੱਟਾ
$1^2 = 1$	$\sqrt{1} = 1$	6 ² = 36	$\sqrt{36} = 6$
$2^2 = 4$	$\sqrt{4} = 2$	7 ² = 49	$\sqrt{49} = 7$
$3^2 = 9$	$\sqrt{9} = 3$	82 = 64	$\sqrt{64} = 8$
$4^2 = 16$	$\sqrt{16} = 4$	$9^2 = 81$	$\sqrt{81} = 9$
$5^2 = 25$	$\sqrt{25} = 5$	$10^2 = 100$	$\sqrt{100} = 10$

6.5.2 ਘਟਾਊ ਵਿਧੀ ਨਾਲ ਵਰਗਮੁਲ ਪਤਾ ਕਰਨਾ

ਕੀ ਤੁਹਾਨੂੰ ਯਾਦ ਹੈ ਕਿ ਪਹਿਲੀਆਂ n ਟਾਂਕ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜਫਲ n² ਹੈ ? ਇਸ ਤਰ੍ਹਾਂ ਹਰੇਕ ਵਰਗ ਸੰਖਿਆ ਨੂੰ 1 ਤੋਂ ਸ਼ੁਰੂ ਕਰਕੇ ਕ੍ਰਮਵਾਰ ਟਾਂਕ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। √81 ਨੂੰ ਲਵੋ

(i)	81 - 1 = 80	(ii)	80 - 3 = 77	(iii)	77 - 5 = 72	(iv)	72 - 7 = 65
(v)	65 - 9 = 56	(vi)	56 - 11 = 45	(vii)	45 - 13 = 32	(viii)	32 - 15 = 17
(ix)	17 - 17 = 0				No.		

ਅਸੀਂ ਵੇਖਿਆ ਕਿ 81 ਵਿੱਚੋਂ 1, 3, 5... ਘਟਾਉਂਦਿਆਂ 9ਵੀਂ ਵਾਰ `ਤੇ ਬਾਕੀ ਸਿਫ਼ਰ ਪ੍ਰਾਪਤ ਹੋਇਆ। ਇਸ ਲਈ √81 = 9 ਹੈ। ਇਸ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਕੀ ਤੁਸੀਂ 729 ਦਾ ਵਰਗਮੂਲ ਪਤਾ ਕਰ ਸਕਦੇ ਹੋ? ਹਾਂ ਪਰ ਇਸ ਵਿੱਚ ਸਮਾਂ ਜ਼ਿਆਦਾ ਲੱਗੇਗਾ। ਹੁਣ ਅਸੀਂ ਇੱਕ ਸੌਖੇ ਢੰਗ ਨਾਲ ਵਰਗਮੂਲ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ। ਕੋਸ਼ਿਸ਼ ਕਰੋ

। ਤੋਂ ਸ਼ੁਰੂ ਕਰਕੇ ਕ੍ਰਮਵਾਰ ਟਾਂਕ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਨੂੰ ਘਟਾਉਣ ਨਾਲ ਪਤਾ ਕਰੋ ਕਿ ਹੇਠ ਲਿਖੀਆਂ ਸੱਖਿਆਵਾਂ ਪੂਰਨ ਵਰਗ ਹਨ ਜਾਂ ਨਹੀਂ ? ਜੇਕਰ ਇਹ ਸੰਖਿਆ ਪੂਰਨ ਵਰਗ ਹੈ ਤਾਂ ਇਸਦਾ ਵਰਗਮੂਲ ਪਤਾ ਕਰੋ। (i) 121 (ii) 55 (iii) 36 (iv) 49 (v) 90

6.5.3 ਅਭਾਜ ਗੁਣਨਖੰਡੀਕਰਨ ਵਿਧੀ ਰਾਹੀਂ ਵਰਗਮੁਲ ਪਤਾ ਕਰਨਾ

ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਵਰਗਾਂ ਨੂੰ ਅਭਾਜ ਗੁਣਨਖੰਡਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ :

ਇੱਕ ਸੰਖਿਆ ਦਾ ਅਭਾਜ ਗੁਣਨਖੰਡੀਕਰਨ	ਇਸਦੇ ਵਰਗ ਦਾ ਅਭਾਜ ਗੁਣਨਖੰਡੀਕਰਨ
6 = 2 × 3	$36 = 2 \times 2 \times 3 \times 3$
8 = 2 × 2 × 2	$64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
$12 = 2 \times 2 \times 3$	$144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$
15 = 3 × 5	225 = 3 × 3 × 5 × 5

6 ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿੱਚ 2 ਕਿੰਨੀ ਵਾਰ ਆਉਂਦਾ ਹੈ? ਇੱਕ ਵਾਰ। 36 ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡੀਕਰਨ ਵਿੱਚ 2 ਕਿੰਨੀ ਵਾਰ ਆਉਂਦਾ ਹੈ? ਦੋ ਵਾਰ। ਇਸ ਤਰ੍ਹਾਂ 6 ਅਤੇ 36 ਵਿੱਚ 3 ਵਾਰ ਅਤੇ 8 ਅਤੇ 64 ਆਦਿ ਵਿੱਚ 2 ਕਿੰਨੀ ਵਾਰ ਆਉਂਦਾ ਹੈ?

108 🔳 ਗਣਿਤ

ਤੁਸੀਂ ਵੇਖੋਗੇ ਕਿ ਕਿਸੀ ਸੰਖਿਆ ਦੇ ਵਰਗ ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡਾਂ ਦੀ ਅਭਾਜ ਗੁਣਨਖੰਡਾਂ ਦੀ ਗਿਣਤੀ ਤੋਂ ਦੁਗਣੀ ਹੁੰਦੀ ਹੈ। ਆਉ, ਅਸੀਂ ਇੱਕ ਇ	ਗਿਣਤੀ ਉਸ ਦੱਤੀ ਗਈ ਵਰ	ਸੰਖਿਆ ਦੇ ਗ ਸੰਖਿਆ
324 ਦਾ ਵਰਗਮੁਲ ਪਤਾ ਕਰਦੇ ਹਾਂ।	2	324
ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 324 ਦਾ ਅਭਾਜ ਗੁਣਨਖੰਡੀਕਰਨ	2	162

 $324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3$

3

3

81

27

9

3

ਅਭਾਜ ਗੁਣਨਖੰਡ ਦੇ ਜੋੜੇ ਬਣਾਉਣ 'ਤੇ ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ

 $324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3 = 2^2 \times 3^2 \times 3^2 = (2 \times 3 \times 3)^2$ 3

ਇਸ ਤਰ੍ਹਾਂ $\sqrt{324} = 2 \times 3 \times 3 = 18$

ਇਸ ਤਰ੍ਹਾਂ ਕੀ ਤੁਸੀਂ 256 ਦਾ ਵਰਗਮੂਲ ਪਤਾ ਕਰ ਸਕਦੇ ਹੋ ? 256 ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡ ਹਨ,

$$256 = 2 \times 2$$

ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿੱਚ ਜੋੜੇ ਬਣਾਉਣ 'ਤੇ ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ?

 $256 = 2 \times 2 = (2 \times 2 \times 2 \times 2)^2$

ਇਸ ਤਰ੍ਹਾਂ $\sqrt{256} = 2 \times 2 \times 2 \times 2 = 16$

ਕੀ 48 ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ ?

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 48 = 2 × 2 × 2 × 2 × 3

ਇੱਥੇ ਸਾਰੇ ਗੁਣਨਖੰਡ ਜੋੜਿਆਂ ਵਿੱਚ ਨਹੀਂ ਹਨ, ਇਸ ਤਰ੍ਹਾਂ 48 ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਨਹੀਂ ਹੈ। ਕਲਪਨਾ ਕਰੋ ਕਿ ਅਸੀਂ 48 ਦੇ ਸਭ ਤੋਂ ਛੋਟੇ ਗਣਜ ਪਤਾ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਾਂ ਜੋ ਕਿ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੋਵੇ। ਇਹ ਕਿਸ ਤਰ੍ਹਾਂ ਕਰੋਗੇ ? 48 ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡਾਂ ਦੇ ਜੋੜੇ ਬਣਾਉਣ ਤੇ ਦੇਖਦੇ ਹਾਂ ਕਿ ਕੇਵਲ 3 ਇੱਕ ਸੰਖਿਆ ਹੈ ਜੋ ਕਿ ਜੋੜੇ ਵਿੱਚ ਨਹੀਂ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਸਾਨੂੰ ਜੋੜਾ ਪੁਰਾ ਕਰਨ ਦੇ ਲਈ 3 ਨਾਲ ਗਣਾ ਕਰਨ ਦੀ ਜ਼ਰਰਤ ਹੈ।

48 × 3 = 144 ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ

ਕੀ ਅਸੀਂ ਇਹ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ 48 ਨੂੰ ਕਿਸੇ ਸੰਖਿਆ ਨਾਲ ਵੰਡਣ ਤੇ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਹੋਵੇਗੀ ?

ਗੁਣਜ 3, ਜੋੜੇ ਵਿੱਚ ਨਹੀਂ ਹੈ ਇਸ ਲਈ 48 ਨੂੰ 3 ਨਾਲ ਵੰਡਣ ਤੇ ਸਾਨੂੰ 48 + 3 = 16 = 2 × 2 ×

		2×2 ਮਿਲਦਾ ਹ ਅਤੇ ਇਹ ਸੰਖਿਆ ਪੂਰਨ ਵਰਗ ਵੀ ਹੈ।		
-71	is security	ਉਦਾਹਰਣ 4 : 6400 ਦਾ ਵਰਗਮੂਲ ਪਤਾ ਕਰੋ ?		
2	6400 3200	ਹੱਲ : ਲਿਖੋ 6400 = <u>2 × 2</u> × <u>2 × 2</u> × <u>2 × 2</u> × <u>2 × 2</u> × <u>5 × 5</u>		
2	1600	ਇਸ ਤਰ੍ਹਾਂ $\sqrt{6400} = 2 \times 2 \times 2 \times 2 \times 5 = 80$		
2	800	ਉਦਾਹਰਣਾ 5 : ਕੀ 90 ਇੱਕ ਪੂਰਨ ਵਰਗ ਹੈ ?		
2	400	ਹੱਲ : ਅਸੀਂ 90 = 2 × 3 × 3 × 5 ਰੱਖਦੇ ਹਾਂ।	2	90
2	200	ਅਭਾਜ ਗੁਣਨਖੰਡਾਂ ਵਿੱਚ 2 ਅਤੇ 5 ਜੋੜਿਆਂ ਵਿੱਚ ਨਹੀਂ ਹਨ।	3	45
2	100	ਇਸ ਤਰ੍ਹਾਂ 90 ਇੱਕ ਪੁਰਨ ਵਰਗ ਸੰਖਿਆ ਨਹੀਂ ਹੈ। ਜਿਸਨੂੰ ਸਪੱਸ਼ਟ ਰੂਪ ਵਿੱਚ	3	15
2	50	ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਵੀ ਦੇਖ ਸਕਦੇ ਹਾਂ ਕਿਉਂਕਿ ਇਸ ਵਿੱਚ ਕੇਵਲ । ਸਿਫ਼ਰ ਹੈ।	1	5
5	25	ਉਦਾਹਰਣ 6 : ਕੀ 2352 ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ ? ਜੇਕਰ ਨਹੀਂ ਤਾਂ 235	्र चा	ਸਰ ਤੋਂ
Į,	5	ਗੁਣਜ ਪ੍ਰਾਪਤ ਕਰੋ ਜੋ ਕਿ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੋਵੇ ਅਤੇ ਨਵੀਂ ਸੰਖਿਆ ਦਾ ਵਰਕ		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2	256
2	128
2	64
2	32
2	16
2	8
2	4
- 1	2

ਵਰਗ ਅਤੇ ਵਰਗਮੁਲ 🔳 109

ਹੱਲ : ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 2352 = <u>2 × 2 × 2 × 2 × 3 × 7 × 7</u> ਅਭਾਜ ਗੁਣਨਖੰਡਾਂ ਦੇ ਅਨੁਸਾਰ 3 ਜੋੜੇ ਵਿੱਚ ਨਹੀਂ ਹੈ ਇਸ ਤਰ੍ਹਾਂ 2352 ਇੱਕ ਪੂਰਨ ਵਰਗ ਨਹੀਂ ਹੈ। ਜੋ 3 ਦਾ ਇੱਕ ਜੋੜਾ ਬਣਾਉਂਦੇ ਹਾਂ ਤਾਂ ਸੰਖਿਆ ਪੂਰਨ ਵਰਗ ਹੋ ਜਾਵੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ 2352 ਨੂੰ 3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਤੇ ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ।

$$2352 \times 3 = \underline{2 \times 2} \times \underline{2 \times 2} \times \underline{3 \times 3} \times \underline{7 \times 7}$$

ਹੁਣ ਹਰੇਕ ਅਭਾਜ ਗੁਣਖੰਡ ਜੋੜਿਆਂ ਵਿੱਚ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ 2352 × 3 = 7056 ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ ਅਤੇ 2352 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਗੁਣਜ 7056 ਹੈ ਜੋ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ।

$$\sqrt{7056} = 2 \times 2 \times 3 \times 7 = 84$$

ਉਦਾਹਰਣ 7 : 9408 ਨੂੰ ਕਿਹੜੀ ਛੋਟੀ ਤੋਂ ਛੋਟੀ ਸੰਖਿਆ ਨਾਲ ਵੰਡਿਆ ਜਾਵੇ ਤਾਂ ਜੋ ਭਾਗਫਲ ਇੱਕ ਪਰਨ ਵਰਗ ਸੰਖਿਆ ਪਾਪਤ ਹੋਵੇ। ਉਸ ਭਾਗਫਲ ਦਾ ਵਰਗਮੁਲ ਪਤਾ ਕਰੋ।

ਜੇ ਅਸੀਂ 9408 ਨੂੰ 3 ਨਾਲ ਵੰਡਦੇ ਹਾਂ ਤਾਂ

9408 ÷ 3 = 3136 = <u>2 × 2 × 2 × 2 × 2 × 2 × 7 × 7</u> ਜੋ ਕਿ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ।(ਕਿਉਂ) ਇਸ ਤਰ੍ਹਾਂ ਛੋਟੀ ਤੋਂ ਛੋਟੀ ਲੋੜੀਂਦੀ ਸੰਖਿਆ 3 ਹੈ

ਅਤੇ

ਅਤੇ

$$\sqrt{3136} = 2 \times 2 \times 2 \times 7 = 56$$

ਉਦਾਹਰਣ 8 : ਸਭ ਤੋਂ ਛੋਟੀ ਵਰਗ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜੋ ਹਰੇਕ ਸੰਖਿਆ 6,9 ਅਤੇ 15 ਨਾਲ ਵੱਡੀ ਜਾਵੇ।

ਹੱਲ : ਇਸ ਨੂੰ ਦੋ ਹਿੱਸਿਆਂ ਵਿੱਚ ਹੱਲ ਕਰ ਸਕਦੇ ਹਾਂ।ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਛੋਟੇ ਸਾਂਝੇ ਗੁਣਜ ਪਤਾ ਕਰੋ ਅਤੇ ਫਿਰ ਇਸਦੇ ਬਾਅਦ ਜ਼ਰੂਰੀ ਵਰਗ ਸੰਖਿਆ ਪਤਾ ਕਰੋ। ਸਭ ਤੋਂ ਛੋਟੀ ਸੰਖਿਆ ਜੋ ਹਰੇਕ ਸੰਖਿਆ 6.9 ਅਤੇ 15 ਵੰਡੀ ਜਾਵੇਗੀ, ਇਹਨਾਂ ਦਾ ਲ.ਸ.ਵ. ਹੋਵੇਗੀ।

6,9 ਅਤੇ 15 ਦਾ ਲ.ਸ.ਵ. ਹੈ = 2 × 3 × 3 × 5 = 90 ਹੈ।

90 ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡ : 90 = 2 × <u>3 × 3</u> × 5 ਹੈ।

ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਅਭਾਜ ਗੁਣਨਖੰਡ 2 ਅਤੇ 5 ਜੋੜਿਆਂ ਵਿੱਚ ਨਹੀਂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ 90 ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਨਹੀਂ ਹੈ।

ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ 90 ਦੇ ਹਰੇਕ ਗੁਣਨਖੰਡ ਜੋੜਿਆਂ ਵਿੱਚ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਸਾਨੂੰ 2 ਅਤੇ 5 ਦਾ ਜੋੜਾ ਬਣਾਉਣਾ ਜ਼ਰੂਰੀ ਹੈ। ਇਸ ਲਈ 90 ਨੂੰ 2 × 5, ਭਾਵ 10 ਨਾਲ ਗੁਣਾ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਉਹ ਵਰਗ ਸੰਖਿਆ 90 × 10 = 900 ਹੈ।

ਅਭਿਆਸ 6.3

ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗਮੁਲ ਵਿੱਚ ਇਕਾਈ ਅੰਕ ਕੀ ਆ ਸਕਦਾ ਹੈ?

(i) 9801
 (ii) 99856
 (iii) 998001
 (iv) 657666025
 2. ਬਿਨ੍ਹਾਂ ਗਣਨਾ ਕੀਤੇ ਉਹ ਸੰਖਿਆ ਦੱਸੋ ਜੋ ਕਿ ਪੂਰਨ ਵਰਗ ਨਹੀਂ ਹੋ ਸਕਦੀਆਂ।

(i) 153 (ii) 257 (iii) 408

3. ਘਟਾਉ ਵਿਧੀ ਨਾਲ 100 ਅਤੇ 169 ਦਾ ਵਰਗਮੂਲ ਪਤਾ ਕਰੇ।

4. ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿਧੀ ਨਾਲ ਹੇਠ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਦਾ ਵਰਗਮੂਲ ਪਤਾ ਕਰੋ :

(1)	729	(ii)	400	(iii)	1764	(iv)	4096
(v)	7744	(v)	9604	(vii)	5929	(viii)	9216

(ix) 529 (x) 8100

Downloaded from https:// www.studiestoday.com

		-	4	
		1		3
	1	5	n	
1	E		Ľ	È.
1	14	Z	7	an .

(iv) 441

2	6, 9, 15
3	3, 9, 15
3	1, 3, 5
5	1, 1, 5
	1, 1, 1

2	2352
2	1176
2	588
2	294
3	147
7	49
1	7

110 🔳 ਗਣਿਤ

- 5. ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਹਰੇਕ ਦੇ ਲਈ ਉਹ ਸਭ ਤੋਂ ਛੋਟੀ ਪੂਰਨ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜਿਸ ਨਾਲ ਇਹ ਸੰਖਿਆ ਨੂੰ ਗੁਣਾ ਕਰਨ ਤੇ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਬਣ ਜਾਵੇ। ਇਸ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਦਾ ਵਰਗਮੁਲ ਪਤਾ ਕਰੋ।
 - (i) 252 (ii) 180 (iii) 1008 (iv) 2028
 - (v) 1458 (vi) 768
- 6. ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਹਰੇਕ ਦੇ ਲਈ ਉਹ ਸਭ ਤੋਂ ਛੋਟੀ ਪੂਰਨ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜਿਸ ਨਾਲ ਇਸ ਸੰਖਿਆ ਨੂੰ ਵੰਡਣ ਤੇ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਬਣ ਜਾਵੇ। ਇਸ ਤਰ੍ਹਾਂ ਨਾਲ ਪਤਾ ਕੀਤੀ ਗਈ ਸੰਖਿਆ ਦਾ ਵਰਗਮੁਲ ਪਤਾ ਕਰੋ।
 - (i) 252 (ii) 2925 (iii) 396 (iv) 2645
 - (v) 2800 (vi) 1620
- 7. ਇੱਕ ਸਕੂਲ ਵਿੱਚ ਜਮਾਤ VIII ਦੇ ਸਾਰੇ ਵਿਦਿਆਰਥੀਆਂ ਨੇ ਪ੍ਰਧਾਨ ਮੰਤਰੀ ਰਾਸ਼ਟਰੀ ਰਾਹਤ ਫੰਡ ਵਿੱਚ ₹ 2401 ਦਾਨ ਕੀਤੇ। ਹਰੇਕ ਵਿਦਿਆਰਥੀ ਨੇ ਉਨ੍ਹੇ ਹੀ ₹ ਦਾਨ ਵਿੱਚ ਦਿੱਤੇ, ਜਿੰਨੇ ਜਮਾਤ ਵਿੱਚ ਵਿਦਿਆਰਥੀ ਸਨ। ਜਮਾਤ ਦੇ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।
- ਇੱਕ ਬਾਗ ਵਿੱਚ 2025 ਪੈਂਦੇ ਇਸ ਤਰ੍ਹਾਂ ਲਗਾਏ ਗਏ ਹਨ। ਹਰੇਕ ਲਾਈਨ ਵਿੱਚ ਉੱਨੇ ਹੀ ਪੈਂਦੇ ਹਨ, ਜਿੰਨੀਆਂ ਲਾਈਨਾਂ ਦੀ ਸੰਖਿਆ ਹੈ। ਲਾਈਨਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਹਰੇਕ ਲਾਈਨ ਵਿੱਚ ਪੈਂਦਿਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।
- 9. ਸਭ ਤੋਂ ਛੋਟੀ ਵਰਗ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜੋ ਕਿ 4,9 ਅਤੇ 10 ਹਰੇਕ ਨਾਲ ਵੰਡੀ ਜਾਵੇ?
- 10. ਸਭ ਤੋਂ ਛੋਟੀ ਵਰਗ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜੋ ਕਿ ਹਰੇਕ 8, 15 ਅਤੇ 20 ਨਾਲ ਵੰਡੀ ਜਾਵੇ।

6.5.4 ਵੰਡ ਵਿਧੀ ਨਾਲ ਵਰਗਮੁਲ ਪਤਾ ਕਰਨਾ

ਜਦੋਂ ਸੰਖਿਆਵਾਂ ਵੱਡੀਆਂ ਹੋਣ ਤਾਂ ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿਧੀ ਨਾਲ ਵਰਗਮੂਲ ਪਤਾ ਕਰਨਾ ਲੰਬਾ ਅਤੇ ਔਖਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਸਮੱਸਿਆ ਤੋਂ ਨਿਕਲਣ ਲਈ ਵੰਡ ਵਿਧੀ ਦਾ ਪ੍ਰਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ।

ਇਸ ਦੇ ਲਈ ਸਾਨੂੰ ਵਰਗਮੂਲ ਵਿੱਚ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰਨਾ ਜ਼ਰੂਰੀ ਹੈ।

ਹੇਠਾਂ ਲਿਖੀ ਸਾਰਣੀ ਵਿੱਚ ਦੇਖੋ :

ਸੰਬਿਆ	ৰভবা	
10	100	ਜੋ 3 ਅੰਕਾਂ ਦੀ ਸਭ ਤੋਂ ਛੋਟੀ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ।
31	961	ਜੋ 3 ਅੰਕਾਂ ਦੀ ਸਭ ਤੋਂ ਵੱਡੀ ਪੁਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ
32	1024	ਜੋ 4 ਅੰਕਾਂ ਦੀ ਸਭ ਤੋਂ ਛੋਟੀ ਪੁਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ।
99	9801	ਜੋ 4 ਅੰਕਾਂ ਦੀ ਸਭ ਤੋਂ ਵੱਡੀ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਵਰਗਮੂਲ ਵਿੱਚ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਾਰੇ ਅਸੀਂ ਕੀ ਕਹਿ ਸਕਦੇ ਹਾਂ ਜੇਕਰ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ 3 ਅੰਕਾਂ ਜਾਂ 4 ਅੰਕਾਂ ਦੀ ਹੋਵੇ ?

ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਜਦੋਂ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ 3 ਔਕਾਂ ਦੀ ਜਾਂ 4 ਔਕਾਂ ਦੀ ਹੈ ਤਦ ਇਸਦਾ ਵਰਗਮੂਲ 2 ਔਕਾਂ ਦਾ ਹੋਵੇਗਾ। ਕੀ ਤੁਸੀਂ ਸਾਨੂੰ 5 ਜਾਂ 6 ਔਕਾਂ ਵਾਲੀ ਸੰਖਿਆ ਦੇ ਵਰਗਮੂਲ ਵਿੱਚ ਔਕਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸ ਸਕਦੇ ਹੋ ?

ਸਭ ਤੋਂ ਛੋਟੀ 3 ਅੰਕਾਂ ਦੀ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ 100 ਹੈ ਜੋ ਕਿ 10 ਦਾ ਵਰਗ ਹੈ ਅਤੇ 3 ਅੰਕਾਂ ਦੀ ਸਭ ਤੋਂ ਵੱਡੀ ਪੂਰਨ ਸੰਖਿਆ 961 ਹੈ ਜੋ ਕਿ 31 ਦਾ ਵਰਗ ਹੈ।ਸਭ ਤੋਂ ਛੋਟੀ 4 ਅੰਕਾਂ ਦੀ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ 1024 ਹੈ ਜੋ 32 ਦਾ ਵਰਗ ਹੈ ਅਤੇ ਸਭ ਤੋਂ ਵੱਡੀ 4 ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ 9801 ਹੈ ਜੋ ਕਿ 99 ਦਾ ਵਰਗ ਹੈ।

ਵਰਗ ਅਤੇ ਵਰਗਮੁਲ 🔳 111

মন্ত,	ਚਰਚਾ	ਕਰੋ	ਅਤੇ	ਲਿਖੋ	×
CONTRACT					

ਕੀ ਤੁਸੀਂ ਕਹਿ ਸਕਦੇ ਹੋ ਕਿ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਵਿੱਚ ਜੇਕਰ n ਔਕ ਹੈ ਤਾਂ ਉਸਦਾ ਵਰਗਮੂਲ ਵਿੱਚ $\frac{n}{2}$ ਔਕ ਹੋਣਗੇ ਜੇਕਰ n ਜਿਸਤ ਹੈ ਜਾਂ $\frac{(n+1)}{2}$ ਹੋਣਗੇ ਜੇਕਰ n ਟਾਂਕ ਹੈ ?

529

529

129

529

129

4

2

4

23

4

129

-129

6

36

4

40.96

4

2

2

2

4

2

43

ਹੇਠਾਂ ਲਿਖੀ ਵਿਧੀ ਕਿਸੇ ਸੰਖਿਆ ਦੇ ਵਰਗਮੂਲ ਵਿੱਚ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰਨ ਵਿੱਚ ਉਪਯੋਗੀ ਹੋਵੇਗੀ।

529 ਦਾ ਵਰਗਮੂਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਹੇਠਾਂ ਲਿਖੇ ਪਗਾਂ ਤੇ ਵਿਚਾਰ ਕਰੋ।

ਕੀ ਤੁਸੀਂ ਇਸ ਸੰਖਿਆ ਦੇ ਵਰਗਮੁਲ ਵਿੱਚ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਅੰਦਾਜ਼ਾ ਲਗਾ ਸਕਦੇ ਹੋ?

un 1 ਇਕਾਈ ਸਥਾਨ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ ਹਰੇਕ ਜੋੜੇ ਤੇ ਬਾਰ ਲਗਾਉ। ਜੇ ਔਕਾਂ ਦੀ ਸੰਖਿਆ ਟਾਂਕ ਹੈ ਤਾਂ ਖੱਬੇ ਪਾਸੇ ਇੱਕ ਔਕ ਤੇ ਬਾਰ ਲਗਾਉ। 529 ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਦੇ ਹਨ।

ਪਗ 2 ਉਹ ਸਭ ਤੋਂ ਵੱਡੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜਿਸਦਾ ਵਰਗ ਸਭ ਤੋਂ ਖੱਬੇ ਪਾਸੇ ਦੇ ਬਾਰ ਦੇ ਹੇਠਾਂ ਲਿਖੀ ਸੰਖਿਆ ਤੋਂ ਘੱਟ ਜਾਂ ਬਰਾਬਰ ਹੋਵੇ (2² < 5 < 3²)। ਸਭ ਤੋਂ ਖੱਬੇ ਵਾਲੇ ਬਾਰ ਹੇਠਾਂ ਭਾਜ (ਇੱਥੇ 5) ਦੇ ਨਾਲ ਦੋਨੋਂ ਸਮਾਨ ਭਾਜਕ ਅਤੇ ਭਾਗਫਲ (ਇੱਥੇ 2 ਹੈ) ਦੇ ਰੂਪ ਵਿੱਚ ਇਸ ਸੰਖਿਆ ਨੂੰ ਲਵੇਂ। ਭਾਗ ਕਰੋ ਅਤੇ ਬਾਕੀ ਪਤਾ ਕਰੋ (ਇਸ ਸਥਿਤੀ ਵਿੱਚ 1 ਹੈ।)

ਪਗ 3 ਅਗਲੀ ਬਾਰ ਦੇ ਹੇਠਾਂ ਦੀ ਸੰਖਿਆ ਨੂੰ ਬਾਕੀ ਦੇ ਸੱਜੇ ਪਾਸੇ ਲਿਖੋ।(ਜਿਵੇਂ ਇਸ ਸਥਿਤੀ ਵਿੱਚ 29 ਹੈ।) ਇਸ ਤਰ੍ਹਾਂ ਅਗਲੀ ਭਾਗ 129 ਹੋਵੇਗੀ।

uਗ 4 ਭਾਗਫਲ ਨੂੰ ਦੁੱਗਣਾ ਕਰੋ ਅਤੇ ਇਸਦੇ ਸੱਜੇ ਪਾਸੇ ਖਾਲੀ ਥਾਂ ਰੱਖ ਕੇ ਲਿਖੇ।

ਪਗ 5 ਖਾਲੀ ਥਾਂ ਨੂੰ ਭਰਨ ਦੇ ਲਈ ਉਸ ਸਭ ਤੋਂ ਵੱਡੇ ਸੰਭਵ ਅੰਕ ਦਾ ਅੰਦਾਜ਼ਾ ਲਗਾਓ, ਜੋ ਕਿ ਭਾਗਫਲ ਵਿੱਚ ਵੀ ਨਵਾਂ ਅੰਕ ਹੋਵੇਗਾ ਤਾਂ ਕਿ ਨਵੇਂ ਭਾਜਕ ਨੂੰ ਨਵੇਂ ਭਾਗਫਲ ਨਾਲ ਗੁਣਾ ਕਰਨ ਤੇ ਗੁਣਨਫਲ ਭਾਜਕ ਵਿੱਚ ਘੱਟ ਜਾਂ ਬਰਾਬਰ ਸੰਖਿਆ ਹੋਵੇਗੀ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ 42 × 2 = 84 ਅਤੇ 43 × 3 = 129. ਇਸ ਤਰ੍ਹਾਂ ਨਵਾਂ ਅੰਕ 3 ਚੁਣੌ, ਜਿਸ ਨਾਲ ਬਾਕੀ 0 ਜਾਂ ਭਾਜਕ ਤੋਂ

ਛੋਟਾ ਆ ਜਾਵੇ।

ਪਗ 6 ਕਿਉਂਕਿ ਬਾਕੀ 0 ਹੈ ਅਤੇ ਦਿੱਤੀ ਗਈ ਸੰਖਿਆ ਵਿੱਚ ਕੋਈ ਅੰਕ ਬਾਕੀ ਨਹੀਂ ਹੈ, ਇਸ ਤਰ੍ਹਾਂ √529 = 23

ਹੁਣ √4096 ਨੂੰ ਹੱਲ ਕਰੋ :

ਪਗ 1 ਇਕਾਈ ਸਥਾਨ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ ਹਰੇਕ ਜੋੜੇ ਦੇ ਉੱਪਰ ਬਾਰ ਦਾ ਚਿੰਨ੍ਹ ਲਗਾਉ (40 96)।

ਪਗ 2 ਇੱਕ ਸਭ ਤੋਂ ਵੱਡੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜੋ ਸਭ ਤੋਂ ਖੱਬੇ ਪਾਸੇ ਦੇ ਬਾਰ ਦੇ ਹੇਠਾਂ ਲਿਖੀ ਸੰਖਿਆ ਹੋ ਤੋਂ ਘੱਟ ਜਾਂ ਬਰਾਬਰ ਹੋਵੇ। (6² < 40 < 7²)। ਇਸ ਸੰਖਿਆ ਨੂੰ ਦੋਨੋਂ ਭਾਜਕ, ਭਾਗਫਲ ਲੈ ਕੇ ਅਤੇ ਸਭ ਤੋਂ ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਬਾਰ ਦੇ ਹੇਠਾਂ ਲਿਖੀ ਸੰਖਿਆ ਨੂੰ ਭਾਜ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ। – ਭਾਗ ਕਰੋ ਅਤੇ ਬਾਕੀ (ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਜਿਵੇਂ 4) ਪਤਾ ਕਰੋ।

112 🔳 ਗਣਿਤ

6	6 4096 - 36	ਪਗ 3	ਅਗਲੀ ਬਾਰ ਦੇ ਹੇਠਾਂ ਲਿਖੀ ਸੰਖਿਆ (ਜਿਵੇਂ 96) ਨੂੰ ਬਾਕੀ ਦੇ ਸੱਜੇ ਪਾਸੇ ਲਿਖੋ। ਨਵਾਂ ਭਾਜ 496 ਹੋਵੇਗਾ।
T	496 6	ਪਗ 4	ਭਾਗਫਲ ਦਾ ਦੁਗਣਾ ਕਰੋ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਖਾਲੀ ਥਾਂ ਰੱਖ ਕੇ ਲਿਖੋ।
6	4096 - 36 496 64	ਪਗ 5	ਖਾਲੀ ਥਾਂ ਨੂੰ ਭਰਨ ਦੇ ਲਈ ਸਭ ਤੋਂ ਵੱਡੇ ਸੰਭਵ ਅੰਕ ਦਾ ਅੰਦਾਜ਼ਾ ਲਗਾਓ, ਜੋ ਕਿ ਭਾਗਫਲ ਵਿੱਚ ਵੀ ਨਵਾਂ ਅੰਕ ਹੋਵੇਗਾ ਤਾਂ ਕਿ ਨਵੇਂ ਭਾਜਕ ਨੂੰ ਨਵੇਂ ਭਾਗਫਲ ਨਾਲ ਗੁਣਾ ਕਰਨ ਤੇ ਗੁਣਨਫਲ ਭਾਜਕ ਵਿੱਚ ਘੱਟ ਜਾਂ ਬਰਾਬਰ ਸੰਖਿਆ ਹੋਵੇਗੀ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ 124 x 4 = 496 ਇਸ ਤਰ੍ਹਾਂ ਭਾਗਫਲ ਵਿੱਚ ਨਵਾਂ ਅੰਕ 4 ਹੈ। ਬਾਕੀ ਪਤਾ ਕਰੋ।
6	4096 - 36	ਪਗ 6	ਕਿਉਂਕਿ ਬਾਕੀ 0 ਹੈ ਅਤੇ ਕੋਈ ਬਾਰ ਬਾਕੀ ਨਹੀਂ ਹੈ ਇਸ ਤਰ੍ਹਾਂ $\sqrt{4096}=64$ ਹੈ।
124	496 - 496 0	- 19 State 1 - 19 State 1	'ਦੇ ਅੰਕਾਂ ਦੀ ਗਿਣਤੀ ਪਤਾ ਕਰਨਾ ਗ ਸੰਖਿਆ ਦੇ ਵਰਗਮੂਲ ਵਿੱਚ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ ਬਾਰ ਦੇ ਚਿੰਨ੍ਹਾਂ ਦੀ ਸਦੇ ਹਾਂ।
			And and a second s

ਇਹ ਦੋਨੇਂ ਸੱਖਿਆਵਾਂ 529 ਅਤੇ 4096 ਵਿੱਚ ਬਾਰ ਦੀ ਗਿਣਤੀ 2 ਹੈ, ਅਤੇ ਇਸਦੇ ਵਰਗਮੁਲ ਵਿੱਚ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ 2 ਹੈ।

ਕੀ ਤੁਸੀਂ 14400 ਦੇ ਵਰਗਮੂਲ ਵਿੱਚ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸ ਸਕਦੇ ਹੋ? ਬਾਰ ਲਗਾਉਣ ਤੇ ਸਾਨੂੰ 14400 ਮਿਲਦਾ ਹੈ ਜੇਕਰ ਇੱਥੇ ਬਾਰ ਦੀ ਗਿਣਤੀ 3 ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਵਰਗਮੁਲ 3 ਅੰਕ ਦਾ ਹੋਵੇਗਾ।

ਕੋਸ਼ਿਸ਼ ਕਰੇ

144

	ਉਦਾਰ	ਹਰਣ 1	9 : ਵਰਗ	ਜਲ ਪਤਾ ਕ	ð : (i) 729			(ii) 1296		
	ਹੱਲ : (i)	2 47	27 729 -4 329 329 0	-	- 27	(ii)	3 66	36 1296 -9 396 396	-93 -93	
74				ਇਸ ਲਈ	$\sqrt{729} = 27$			0	ਇਸ ਲਈ √1	296 = 36

ਹੁੰਦਾ ਹੈ। ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ 74², 5607 ਨਾਲੋਂ 131 ਘੱਟ ਹੈ।

ਵਰਗ ਅਤੇ ਵਰਗਮੂਲ 🖩 113

ਭਾਵ ਕਿ ਜੇਕਰ ਕਿਸੇ ਸੰਖਿਆ ਵਿੱਚੋਂ ਉਸਦਾ ਬਾਕੀ ਘਟਾ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਸਾਨੂੰ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਲੋੜੀਂਦੀ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ 5607 – 131 = 5476 ਅਤੇ

 $\sqrt{5476} = 74$

ਉਦਾਹਰਣ 11 : ਚਾਰ ਅੰਕਾਂ ਦੀ ਸਭ ਤੋਂ ਵੱਡੀ ਸੱਖਿਆ ਦੱਸੋ, ਜੋ ਪੂਰਨ ਵਰਗ ਹੋਵੇ।

ਹੱਲ : ਚਾਰ ਅੰਕਾਂ ਦੀ ਸਭ ਤੋਂ ਵੱਡੀ ਸੰਖਿਆ = 9999 ਹੈ।ਅਸੀਂ ਵੰਡ ਵਿਧੀ ਨਾਲ √9999 ਪਤਾ ਕਰਦੇ ਹਾਂ। ਜਿਸਦਾ ਬਾਕੀ 198 ਹੈ। ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ 99², 9999 ਨਾਲ 198 ਘੱਟ ਹੈ।

ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਜੇਕਰ ਅਸੀਂ ਕਿਸੇ ਸੰਖਿਆ ਵਿੱਚੋਂ ਬਾਕੀ ਘਟਾਉਂਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ ਇਸ ਤਰ੍ਹਾਂ ਲੋੜੀਂਦੀ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਹੈ 9999 – 198 = 9801

ਅਤੇ √9801 = 99

ਉਦਾਹਰਣ 12 : ਉਹ ਸਭ ਤੋਂ ਛੋਟੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜਿਸ ਨੂੰ 1300 ਵਿੱਚ ਜੋੜਨ ਤੇ ਉਹ ਇੱਕ ਪੁਰਨ ਵਰਗ ਸੰਖਿਆ ਬਣ ਜਾਵੇ। ਇਸ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਦਾ ਵਰਗਮੂਲ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਵੰਡ ਵਿਧੀ ਨਾਲ √1300 ਪਤਾ ਕਰਦੇ ਹਾਂ। ਇੱਥੇ ਬਾਕੀ 4 ਹੈ। ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ 36⁷ < 1300

ਅਗਲੀ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ 372 = 1369

ਇਸ ਤਰ੍ਹਾਂ ਲੋੜੀਂਦੀ ਸੰਖਿਆ = 37¹ - 1300 = 1369 - 1300 = 69

6.6 ਦਸ਼ਮਲਵ ਸੰਖਿਆਵਾਂ ਦਾ ਵਰਗਮੁਲ

ਸੰਖਿਆ √17.64 ਤੇ ਵਿਚਾਰ ਕਰੋ :

- ਪਗ 1 ਦਸ਼ਮਲਵ ਸੰਖਿਆ ਦਾ ਵਰਗਮੂਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ ਪੂਰਨ ਸੰਖਿਆ ਤੇ ਸਧਾਰਨ ਰੂਪ ਵਿੱਚ ਬਾਰ ਲਗਾਉਂਦੇ ਹਾਂ। (ਜਿਵੇਂ ਕਿ 17) ਦਸ਼ਮਲਵ ਵਾਲ ਹਿੱਸੇ ਤੇ ਪਹਿਲੇ ਦਸ਼ਮਲਵ ਸਥਾਨ ਤੋਂ ਸ਼ੁਰੂ ਕਰ ਕੇ ਬਾਰ ਲਗਾਉਂਦੇ ਹਾਂ ਅਤੇ ਸਧਾਰਨ ਰੂਪ ਵਿੱਚ ਅੱਗੇ ਵਧਦੇ ਜਾਂਦੇ ਹਾਂ। ਸਾਨੂੰ 17.64 ਮਿਲਦਾ ਹੈ।
- uਗ 2 ਹੁਣ ਇਸੇ ਤਰ੍ਹਾਂ ਨਾਲ ਅੱਗੇ ਵਧਦੇ ਹਾਂ। 17 ਤੇ ਬਾਰ ਸਭ ਤੋਂ ਖੱਬੇ ਪਾਸੇ ਵੱਲ ਹੈ ਅਤੇ 4² < 17 < 5², ਇਸ ਸੱਖਿਆ ਨੂੰ ਦੋਨੋਂ ਭਾਜਕ ਅਤੇ ਭਾਗਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਲਵੋ ਅਤੇ ਸਭ ਤੋਂ ਖੱਬੇ ਪਾਸੇ ਦੀ ਬਾਰ ਹੇਠਾਂ ਵਾਲੀ ਸੱਖਿਆ ਨੂੰ ਭਾਜ ਦੇ ਰੂਪ ਵਿੱਚ ਲਓ (ਜਿਵੇਂ 17)। ਭਾਗ ਕਰੋ ਅਤੇ ਬਾਕੀ ਪਤਾ ਕਰੋ।
- ਪਗ 3 ਬਾਕੀ 1 ਹੈ। ਅਗਲੀ ਬਾਰ ਦੇ ਹੇਠਾਂ ਦਿੱਤੀ ਸੰਖਿਆ ਜਿਵੇਂ 64 ਬਾਕੀ ਦੇ ਸੱਜੇ ਲਿਖੇ, ਇਸ ਤਰ੍ਹਾਂ 164 ਪ੍ਰਾਪਤ ਕਰੋ। 4.2
- ਪਗ 4 ਭਾਗਫਲ ਨੂੰ ਦੁਗਣਾ ਕਰੋ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਖਾਲੀ ਥਾਂ ਰੱਖ ਕੇ ਲਿਖੋ। ਕਿਉਂਕਿ 64 ਦਸ਼ਮਲਵ ਵਾਲੇ ਹਿੱਸੇ ਵਿੱਚ ਸੀ, ਇਸ ਲਈ ਭਾਗਫਲ ਵਿੱਚ ਦਸ਼ਮਲਵ ਲਿਖੋ।
- ਪਗ 5 ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 82 × 2 = 164, ਇਸ ਤਰ੍ਹਾਂ ਨਵੀਂ ਸੰਖਿਆ 2 ਹੈ। ਭਾਗ ਕਰੋ ਅਤੇ ਬਾਕੀ ਪਤਾ ਕਰੋ।

uਗ 6 ਇਸ ਤਰ੍ਹਾਂ ਬਾਕੀ 0 ਹੈ। ਹੁਣ ਕੋਈ ਬਾਰ ਬਾਕੀ ਨਹੀਂ ਹੈ, ਇਸ ਤਰ੍ਹਾਂ $\sqrt{17.64} = 4.2$

Downloaded from	https://	www.studiestoday.com

	99
9	9999
	- 81
189	1899
	- 1701
_	198

	36
3	1300 -9
66	400
	- 396
	4

17.64

1

4

16

4.

16

17.64

164

17.64

1 64

- 16

4

4

8

4

82

17.64

-16

164

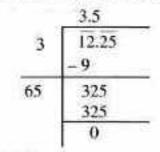
- 164

0

4

82

114 🖩 ਗਣਿਤ

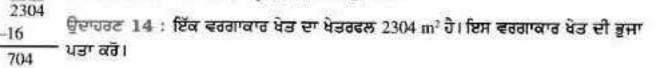

48

0

4

88

ਉਦਾਹਰਣ 13 : 12.25 ਦਾ ਵਰਗਮੂਲ ਪਤਾ ਕਰੋ।



ਇਸ ਤਰ੍ਹਾਂ $\sqrt{12.25} = 3.5$

ਕਿਸ ਪਾਸੇ ਵੱਧਣਾ ਹੈ

ਹੱਲ :

ਸੱਖਿਆ 176.341 ਤੇ ਧਿਆਨ ਦਿਓ। ਪੂਰਨ ਸੰਖਿਆ ਅਤੇ ਦਸ਼ਮਲਵ ਸੰਖਿਆ ਦੇ ਦੋਨੋਂ ਪਾਸਿਆਂ ਤੇ ਬਾਰ ਲਗਾਉ। ਦਸ਼ਮਲਵ ਵਾਲੇ ਹਿੱਸੇ ਵਿੱਚ ਬਾਰ ਲਗਾਉਣ ਦਾ ਢੰਗ, ਸੰਪੂਰਨ ਸੱਖਿਆ ਵਾਲੇ ਹਿੱਸੇ ਤੋਂ ਕਿਵੇਂ ਵੱਖਰਾ ਹੈ? 176 ਤੇ ਧਿਆਨ ਦਿਓ, ਅਸੀਂ ਦਸ਼ਮਲਵ ਦੇ ਕੋਲ ਇਕਾਈ ਸਥਾਨ ਤੋਂ ਸ਼ੁਰੂ ਕਰ ਕੇ ਖੱਬੇ ਪਾਸੇ ਜਾਂਦੇ ਹਾਂ। ਪਹਿਲੀ ਬਾਰ 76 ਦੇ ਉੱਪਰ ਅਤੇ ਦੂਸਰੀ ਬਾਰ 1 ਦੇ ਉੱਪਰ ਹੈ। .341 ਦੇ ਲਈ, ਅਸੀਂ ਦਸ਼ਮਲਵ ਤੋਂ ਸ਼ੁਰੂ ਕਰਕੇ ਸੱਜੇ ਪਾਸੇ ਜਾਂਦੇ ਹਾਂ। ਪਹਿਲੀ ਬਾਰ 34 ਦੇ ਉੱਪਰ ਅਤੇ ਦੂਸਰੀ ਬਾਰ ਲਗਾਉਣ ਦੇ ਲਈ 1 ਦੇ ਬਾਅਦ 0 ਰੱਖਦੇ ਹਾਂ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ .3410 ਬਣਾਉਂਦੇ ਹਾਂ।

ਇਸ ਲਈ, ਵਰਗਾਕਾਰ ਖੇਤ ਦੀ ਭੂਜਾ ਦਾ ਖੇਤਰਫਲ = $\sqrt{2304}$ m²

ਅਸੀਂ ਦੇਖਿਆ ਕਿ $\sqrt{2304} = 48$

ਇਸ ਪ੍ਰਕਾਰ ਵਰਗਾਕਾਰ ਖੇਤ ਦੀ ਭੂਜਾ 48 m ਹੈ।

ਉਦਾਹਰਣ 15 : ਇੱਕ ਸਕੂਲ ਵਿੱਚ 240। ਵਿਦਿਆਰਥੀ ਹਨ। ਪੀ.ਟੀ. ਅਧਿਆਪਕ ਉਹਨਾਂ ਨੂੰ ਲਾਈਨਾਂ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਖੜੇ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਨ ਕਿ ਕਤਾਰਾਂ ਦੀ ਸੰਖਿਆ, ਹਰੇਕ ਕਤਾਰ ਵਿੱਚ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੋਵੇ। ਕਤਾਰਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।

	49
4	24 01
	16
89	801
	801
	0
	4 89

6.7 ਵਰਗਮੁਲ ਦਾ ਅੰਦਾਜ਼ਾ ਲਗਾਉਣਾ

ਹੇਠ ਲਿਖੀਆਂ ਸਥਿਤੀਆਂ ਤੇ ਵਿਚਾਰ ਕਰੋ :

 ਦੇਵੇਸ਼ੀ ਦੇ ਕੋਲ ਕੱਪੜੇ ਦਾ ਇੱਕ ਵਰਗਾਕਾਰ ਟੁੱਕੜਾ ਹੈ। ਜਿਸਦਾ ਖੇਤਰਫਲ 125 cm² ਹੈ। ਉਹ ਜਾਨਣਾ ਚਾਹੁੰਦੀ ਹੈ ਕਿ ਉਹ 15 cm ਭੂਜਾ ਦਾ ਰੁਮਾਲ ਬਣਾ ਸਕਦੀ ਹੈ। ਜੇ ਇਹ ਸੰਭਵ ਹੈ ਤਾਂ ਉਹ ਜਾਨਣਾ ਚਾਹੁੰਦੀ ਹੈ ਕਿ ਇਸ ਟੁੱਕੜੇ ਤੋਂ ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ ਕਿੰਨੀ ਲੰਬਾਈ ਦਾ ਰੁਮਾਲ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਵਰਗ ਅਤੇ ਵਰਗਮੁਲ 🖩 115

2. ਮੀਨਾ ਅਤੇ ਸ਼ੋਭਾ ਨੇ ਇੱਕ ਖੇਡ ਖੇਡੀ। ਪਹਿਲੀ ਸੰਖਿਆ ਦਿੰਦੀ ਹੈ ਅਤੇ ਦੂਸਰੀ ਉਸਦਾ ਵਰਗਮੂਲ ਦਿੰਦੀ ਹੈ।ਮੀਨਾ ਨੇ ਪਹਿਲਾਂ ਸ਼ੁਰੂ ਕੀਤਾ। ਉਸਨੇ 25 ਬੋਲਿਆ ਅਤੇ ਸ਼ੋਭਾ ਨੇ ਜਲਦੀ ਨਾਲ 5 ਉੱਤਰ ਦਿੱਤਾ। ਤਦ ਸ਼ੋਭਾ ਨੇ ਕਿਹਾ 81 ਅਤੇ ਮੀਨਾ ਨੇ 9 ਉੱਤਰ ਦਿੱਤਾ। ਇਹ ਤਦ ਤੱਕ ਚਲਦਾ ਰਿਹਾ ਜਦੋਂ ਤੱਕ ਮੀਨਾ ਸੰਖਿਆ 250 ਤੱਕ ਨਾ ਪਹੁੰਚ ਗਈ। ਹੁਣ ਸ਼ੋਭਾ ਉੱਤਰ ਨਹੀਂ ਦੇ ਸਕੀ ਤਾਂ ਮੀਨਾ ਨੇ ਕਿਹਾ, ਸ਼ੋਭਾ ਤੂੰ ਘੱਟ ਤੋਂ ਘੱਟ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸੰਖਿਆ ਦੱਸ, ਜਿਸਦਾ ਵਰਗ 250 ਦੇ ਨੇੜੇ ਹੋਵੇ।

ਇਹਨਾਂ ਸਾਰੀਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਵਰਗਮੁਲ ਦੇ ਅੰਦਾਜ਼ਾ ਲਾਉਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 100 < 250 < 400 ਅਤੇ √100 = 10 ਅਤੇ √400 = 20 ਇਸ ਤਰ੍ਹਾਂ 10 < √250 < 20 ਪਰ ਫਿਰ ਵੀ ਅਸੀਂ ਵਰਗ ਸੰਖਿਆ ਦੇ ਨੇੜੇ ਨਹੀਂ ਹਾਂ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 15² = 225 ਅਤੇ 16² = 256 ਇਸ ਤਰ੍ਹਾਂ 15 < √250 < 16 ਅਤੇ 250, ਜੋ ਕਿ 225 ਦੇ ਮੁਕਾਬਲੇ 256 ਦੇ ਬਹੁਤ ਨੇੜੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ √250 ਲਗਭਗ 16 ਹੈ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਅਭਿਆਸ 6.4

ਹੇਠਾਂ ਲਿਖੀਾ	ਆਂ ਸੱਖਿਆਵਾਂ ਦੇ ਨੋੜੇ	ਤੋਂ ਨੇੜੇ ਪੂਰਨ	ਸੰਖਿਆਵਾਂ	ਦਾ ਐਦਾਜ਼	ਾ ਲਗਾਓ :	
(i) v	/80 (ii)	$\sqrt{1000}$	(iii)	√350	(iv)	√500

(iv) 529

	(v)	3249	(vi)	1369	(vii)	5776	(viii)	7921
	(ix)	576	(x)	1024	(xi)	3136	(xii)	900
2.	ਹੇਠਾਂ	ਲਿਖੀਆਂ ਸੰਖਿ	ਆਵਾਂ ਵਿੱਚ	ਤੋਂ ਹਰੇਕ ਦਾ	ਵਰਗਮੂਲ ਪ	ਤਾ ਕਰੋ : (ਬਿ	ਨ੍ਹਾਂ ਗਣਨਾ	ਕੀਤੇ)
	(i)	64	(ii)	144	(iii)	4489	(iv)	27225

(iii) 3481

(v) 390625

(i) 2304

ਹੇਠਾਂ ਲਿਖੀਆਂ ਦਸ਼ਮਲਵ ਸੰਖਿਆਵਾਂ ਦਾ ਵਰਗਮੁਲ ਪਤਾ ਕਰੋ :

1. ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਦਾ ਵਰਗਮੁਲ, ਵੰਡ ਵਿਧੀ ਦੁਆਰਾ ਪਤਾ ਕਰੋ :

(ii) 4489

(i) 2.56 (ii) 7.29 (iii) 51.84 (iv) 42.25 (v) 31.36

 ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚੋਂ ਕਿਹੜੀ ਛੋਟੀ ਤੋਂ ਛੋਟੀ ਕਿਹੜੀ ਸੰਖਿਆ ਘਟਾਈ ਜਾਵੇ ਕਿ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆਵਾਂ ਦਾ ਵਰਗਮੂਲ ਵੀ ਪਤਾ ਕਰੋ :

(i) 402 (ii) 1989 (iii) 3250 (iv) 825 (v) 4000

5. ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚੋਂ ਹਰੇਕ ਵਿੱਚ ਕਿਹੜੀ ਛੋਟੀ ਤੋਂ ਛੋਟੀ ਕਿਹੜੀ ਸੰਖਿਆ ਜੋੜੀ ਜਾਵੇ ਤਾਂ ਕਿ ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇ। ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆਵਾਂ ਦਾ ਵਰਗਮੂਲ ਵੀ ਪਤਾ ਕਰੋ :

(i) 525 (ii) 1750 (iii) 252 (iv) 1825 (v) 6412

116 🔳 ਗਣਿਤ

- ਕਿਸੇ ਵਰਗ ਦੀ ਭੂਜਾ ਦੀ ਲੱਬਾਈ ਪਤਾ ਕਰੋ ਜਿਸਦਾ ਖੇਤਰਫਲ m² ਹੈ।
- 7. ਕਿਸੇ ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ ABC ਵਿੱਚ, ∠B = 90°
 - (a) ਜੋ AB = 6 cm, BC = 8 cm, ਹੈ ਤਾਂ AC ਪਤਾ ਕਰੋ।
 - (b) ਜੇ AC = 13 cm, BC = 5 cm, ਹੈ ਤਾਂ AB ਪਤਾ ਕਰੋ।
- ਇੱਕ ਮਾਲੀ ਦੇ ਕੋਲ 1000 ਪੌਦੇ ਹਨ। ਉਹ ਇਹਨਾਂ ਪੋਦਿਆਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਗਾਉਣਾ ਚਾਹੁੰਦਾ ਹੈ ਕਿ ਕਤਾਰਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਹਰੇਕ ਕਤਾਰ ਵਿੱਚ ਪੌਦਿਆਂ ਦੀ ਸੰਖਿਆ ਬਰਾਬਰ ਹੋਵੇ। ਇਸ ਦੇ ਲਈ ਘੱਟ ਤੋਂ ਘੱਟ ਪੈਂਦਿਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜਿਸ ਦੀ ਉਸ ਨੂੰ ਜ਼ਰੂਰਤ ਹੈ।
- 9. ਇੱਕ ਸਕੂਲ ਵਿੱਚ 500 ਵਿਦਿਆਰਥੀ ਹਨ। ਪੀ.ਟੀ. ਦੇ ਅਭਿਆਸ ਦੇ ਲਈ ਇਹ ਇਸ ਤਰ੍ਹਾਂ ਖੜ੍ਹੇ ਕੀਤੇ ਗਏ ਹਨ ਕਿ ਕਤਾਰਾਂ ਦੀ ਸੰਖਿਆ, ਹਰੇਕ ਕਤਾਰ ਵਿੱਚ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਰਾਬਰ ਹੋਵੇ। ਇਸ ਤਰ੍ਹਾਂ ਕਰਨ ਲਈ ਕਿੰਨੇ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਬਾਹਰ ਜਾਣਾ ਹੋਵੇਗਾ ?

ਅਸੀਂ ਕੀ ਚਰਚਾ ਕੀਤੀ ? 📗

- ਜੇ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ m ਨੂੰ n² ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾ ਸਕਦੇ ਹਾਂ, ਇੱਥੇ n ਵੀ ਇੱਕ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਹੈ, ਤਦ m ਇੱਕ ਵਰਗ ਸੰਖਿਆ ਹੈ।
- ਸਾਰੀਆਂ ਵਰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਅੰਤ ਇਕਾਈ ਸਥਾਨ ਤੇ 0, 1, 4, 5, 6 ਜਾਂ 9 ਹੁੰਦਾ ਹੈ।
- ਵਰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਔਤ ਵਿੱਚ ਸਿਫ਼ਰਾਂ ਦੀ ਸੰਖਿਆ ਕੋਵਲ ਜਿਸਤ ਹੁੰਦੀ ਹੈ।
- ਵਰਗਮੁਲ, ਵਰਗ ਦੇ ਉਲਟ ਕਿਰਿਆ ਹੈ।
- ਇੱਕ ਪੂਰਨ ਵਰਗ ਸੰਖਿਆ ਦੇ ਦੋ ਪੂਰਨ ਵਰਗਮੁਲ ਹੁੰਦੇ ਹਨ।

ਧਨਾਤਮਕ ਵਰਗਮੂਲ ਨੂੰ ਸੈਕੇਤ √ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

ਉਦਾਹਰਣ ਲਈ 3² = 9, √9 = 3 ਹੁੰਦਾ ਹੈ।

ਅਧਿਆਇ

239

ਘਣ ਅਤੇ ਘਣਮੂਲ

7.1 ਭੂਮਿਕਾ

ਇਹ ਕਹਾਣੀ ਭਾਰਤ ਦੀ ਮਹਾਨ ਪ੍ਰਤਿਭਾਵਾਨ ਹਿਸਾਬਦਾਨਾਂ ਦੇ ਵਿੱਚੋਂ ਇੱਕ ਰਾਮਾਨੁਜਨ ਦੇ ਬਾਰੇ ਵਿੱਚ ਹੈ। ਇੱਕ ਵਾਰ ਇੱਕ ਮਸ਼ਹੂਰ ਹਿਸਾਬਦਾਨ ਪ੍ਰੋਫੈਸਰ ਜੀ. ਐਚ. ਹਾਰਡੀ ਉਹਨਾਂ ਨੂੰ ਮਿਲਣ ਟੈਕਸੀ ਵਿੱਚ ਆਏ ਜਿਸਦਾ ਨੰਬਰ 1729 ਸੀ। ਰਾਮਾਨੁਜਨ ਨਾਲ ਗੱਲ ਕਰਦੇ ਸਮੇਂ ਹਾਰਡੀ ਨੇ ਇਸ ਸੰਖਿਆ ਨੂੰ ਇੱਕ

ਨੀਰਸ (dull) ਸੰਖਿਆ ਦੱਸਿਆ। ਰਾਮਾਨੁਜਨ ਨੇ ਜਲਦੀ ਨਾਲ ਧਿਆਨ ਦਿਵਾਇਆ ਕਿ 1729 ਅਸਲ ਵਿੱਚ ਇੱਕ ਰੋਚਕ ਸੰਖਿਆ ਸੀ। ਉਹਨਾਂ ਨੇ ਕਿਹਾ ਕਿ ਇਸ ਨੂੰ ਦੋ ਘਣਾਂ ਦੇ ਜੋੜ ਦੇ ਰੂਪ ਵਿੱਚ ਦੋ ਵੱਖ-ਵੱਖ ਢੰਗਾਂ ਨਾਲ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ :

$$1729 = 1728 + 1 = 12^3 + 1^3$$

$$1729 = 1000 + 729 = 10^3 + 9^3$$

ਤਦ ਤੋਂ ਇਹ ਸੰਖਿਆ 1729 ਨੂੰ ਹਾਰਡੀ–ਰਾਮਾਨੁਜਨ ਸੰਖਿਆ (Hardy - Ramanujan Number) ਕ੍ਰਿਹਾ ਜਾਣ ਲੱਗਾ। ਜਦੋਂ ਕਿ 1729 ਦੀ ਇਹ ਵਿਸ਼ੇਸ਼ਤਾ ਰਾਮਾਨੁਜਨ ਤੋਂ ਲਗਭਗ 300 ਸਾਲ ਪਹਿਲਾਂ ਵੀ ਪਤਾ ਸੀ।

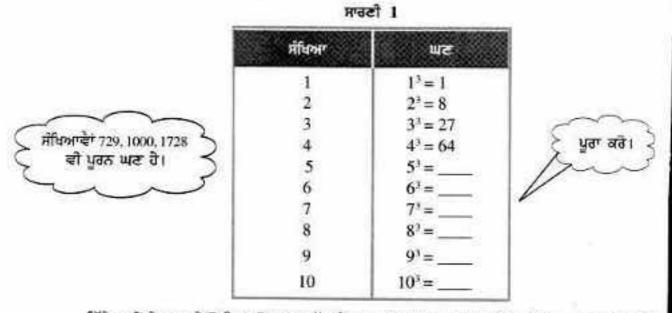
ਰਾਮਾਨੁਜਨ ਨੂੰ ਇਸਦੀ ਜਾਣਕਾਰੀ ਕਿਸ ਤਰ੍ਹਾਂ ਸੀ ? ਉਹ ਸੰਖਿਆਵਾਂ ਨਾਲ ਪਿਆਰ ਕਰਦੇ ਸਨ। ਆਪਣੇ ਸੰਪੂਰਨ ਜੀਵਨ ਵਿੱਚ, ਉਹ ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਪ੍ਰਯੋਗ ਕਰਦੇ ਰਹੇ। ਸੰਭਵ ਤੌਰ ਤੇ ਉਹਨਾਂ ਨੇ ਉਹ ਸੰਖਿਆਵਾਂ ਪਤਾ ਕੀਤੀਆਂ ਹੋਣਗੀਆਂ ਜਿਹੜੀਆਂ ਦੋ ਵਰਗਾਂ ਦੇ ਜੋੜ ਅਤੇ ਨਾਲ ਹੀ ਦੇ ਘਣਾਂ ਦੇ ਜੋੜ ਵਿੱਚ ਦਰਸਾਈਆਂ ਜਾ ਸਕਦੀਆਂ ਸਨ।

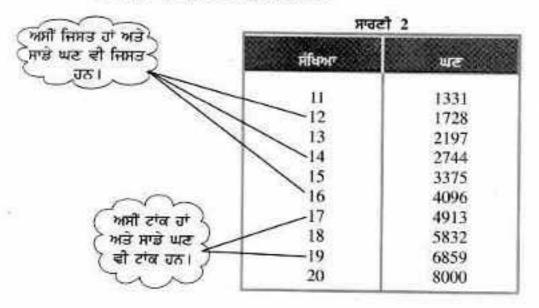
ਘਣਾਂ ਦੇ ਅਨੇਕ ਦੂਸਰੇ ਰੋਚਕ ਪੈਟਰਨ (patterns) ਹਨ। ਆਓ ਅਸੀਂ ਘਣਾਂ, ਘਣਮੂਲਾਂ (cube roots) ਅਤੇ ਇਸ ਨਾਲ ਸੰਬੰਧਿਤ ਅਨੇਕ ਰੋਚਕ ਤੱਥਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸਿੱਖੀਏ।

7.2 ਘਣਾ

ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਸ਼ਬਦ 'ਘਣ' ਦਾ ਪ੍ਰਯੋਗ ਰੇਖਾ ਗਣਿਤ ਵਿੱਚ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਘਣ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਠੋਸ ਚਿੱਤਰ ਹੈ, ਜਿਸਦੀ ਸਾਰੀਆਂ ਭੁਜਾਵਾਂ ਬਰਾਬਰ ਹੁੰਦੀਆਂ ਹਨ। 1 cm ਭੁਜਾ ਵਾਲੇ ਕਿੰਨੇ ਘਣਾਂ ਨਾਲ 2 cm ਭੁਜਾ ਵਾਲਾ ਇੱਕ ਘਣ ਬਣੇਗਾ ? 1 cm ਭੁਜਾ ਵਾਲੇ ਕਿੰਨੇ ਘਣਾਂ ਨਾਲ 3 cm ਭੁਜਾ ਵਾਲਾ ਇੱਕ ਘਣ ਬਣੇਗਾ ?

ਹਾਰਡੀ-ਰਾਮਾਨਜਨ ਸੰਖਿਆ


1729 ਸਭ ਤੋਂ ਛੋਟੀ ਹਾਰਡੀ-ਰਾਮਾਨੁਜਨ ਸੰਖਿਆ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਅਨੇਕ ਸੰਖਿਆਵਾਂ ਹਨ : ਉਹਨਾਂ ਵਿੱਚ ਕੁਝ ਹਨ 4104 (2, 16; 9, 15), 13832 (18, 20; 2, 024) | ਬਰੈਕਟਾਂ ਵਿੱਚ ਦਿੱਤੀਆਂ ਹੋਈਆਂ ਸੰਖਿਆਵਾਂ ਲੈ ਕੇ ਇਹਨਾਂ ਦੀ ਜਾਂਚ ਕਰੋ।


118 🖩 ਗਣਿਤ

ਸੰਖਿਆਵਾਂ 1, 8, 27, 'ਤੇ ਵਿਚਾਰ ਕਰੋ, ਇਹਨਾਂ ਨੂੰ ਪੂਰਨ ਘਣ (perfect cubes) ਜਾਂ ਘਣ ਸੰਖਿਆਵਾਂ (cube numbers) ਅਖਵਾਉਂਦੀਆਂ ਹਨ। ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਇਹਨਾਂ ਨੂੰ ਇਹ ਨਾਂ ਕਿਉਂ ਦਿੱਤੇ ਗਏ ਹਨ? ਇਸ ਵਿੱਚ ਹਰੇਕ ਸੰਖਿਆ ਤਦ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ ਜੇ ਇੱਕ ਸੰਖਿਆ ਨੂੰ ਉਸੇ ਨਾਲ ਤਿੰਨ ਵਾਰ ਗੁਣਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ 1 = 1×1×1 = 1³, 8 = 2×2×2 = 2¹, 27 = 3×3×3 = 3³ ਹੈ।

ਕਿਉਂਕਿ 5³ = 5×5×5 = 125 ਹੈ। ਇਸ ਲਈ 125 ਇੱਕ ਘਣ ਸੰਖਿਆ ਹੈ। ਕੀ 9 ਇੱਕ ਘਣ ਸੰਖਿਆ ਹੈ? ਨਹੀਂ, ਕਿਉਂਕਿ 9 = 3 × 3 ਹੈ ਅਤੇ ਇਸ ਲਈ ਇਸ ਤਰ੍ਹਾਂ ਕੋਈ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਨਹੀਂ ਹੈ ਜਿਸ ਨੂੰ ਉਸੇ ਨਾਲ ਤਿੰਨ ਵਾਰ ਗੁਣਾ ਕਰਨ 'ਤੇ 9 ਪ੍ਰਾਪਤ ਹੋਵੇ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 2×2×2 = 8 ਅਤੇ 3×3×3 = 27 ਹੈ। ਇਸ ਨਾਲ ਇਹ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ 9 ਇੱਕ ਪੂਰਨ ਘਣ ਨਹੀਂ ਹੈ। ਹੇਠਾਂ 1 ਤੋਂ 10 ਤੱਕ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਘਣ ਦਿੱਤੇ ਗਏ ਹਨ :

ਇੱਥੇ ਤੁਸੀਂ ਦੇਖ ਸਕਦੇ ਹੋ ਕਿ 1 ਤੋਂ 1000 ਤੱਕ ਸਿਰਫ ਦਸ ਪੂਰਨ ਘਣ ਹਨ।(ਇਸਦੀ ਪੜਤਾਲ ਕਰੋ) 1 ਤੋਂ 100 ਤੱਕ ਕਿੰਨੇ ਪੂਰਨ ਘਣ ਹਨ? ਜਿਸਤ ਸੰਖਿਆਵਾਂ ਦੇ ਘਣਾਂ ਨੂੰ ਦੇਖੋ। ਕੀ ਇਹ ਸਾਰੇ ਜਿਸਤ ਹਨ? ਤੁਸੀਂ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦੇ ਘਣਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ? ਹੁਣ 11 ਤੋਂ 20 ਤੱਕ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਘਣ ਹੇਠਾਂ ਦਿੱਤੇ ਗਏ ਹਨ:

ਘਣ ਅਤੇ ਘਣਮੁਲ 🔳 119

(viii) 53

ਇਸ ਤਰ੍ਹਾਂ ਕੁੱਝ ਸੰਖਿਆਵਾਂ 'ਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿਨ੍ਹਾਂ ਦਾ ਇਕਾਈ ਅੰਕ 1 ਹੈ। ਇਸ ਵਿੱਚ ਹਰੇਕ ਸੰਖਿਆ ਦਾ ਘਣ ਪਤਾ ਕਰੋ। ਉਹ ਸੰਖਿਆ ਦੇ ਘਣ ਦੇ ਇਕਾਈ ਦੇ ਅੰਕ ਦੇ ਬਾਰੇ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਕਹਿ ਸਕਦੇ ਹੈ। ਜਿਸਦਾ ਇਕਾਈ ਦਾ ਅੰਕ 1 ਹੈ? ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਇਸ ਪ੍ਰਕਾਰ, ਉਹ ਸੰਖਿਆਵਾਂ ਦੇ ਘਣਾਂ ਦੇ ਇਕਾਈ ਦੇ ਅੰਕਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਪਤਾ ਕਰੋ, ਜਿਨ੍ਹਾਂ ਦੇ ਇਕਾਈ ਦੇ ਅੰਕ 2, 3, 4 ਆਦਿ ਹਨ। ਹੇਠ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਹਰੇਕ ਦੇ ਘਣ ਦੇ ਇਕਾਈ ਦਾ ਐਕ ਪਤਾ ਕਰੋ : (i) 3331 (ii) 8888 (iii) 149 (iv) 1005

(vi) 77

(vii) 5022

7.2.1 ਕੁੱਝ ਰੋਚਕ ਪੈਟਰਨ

 ਕ੍ਰਮਵਾਰ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜਨਾ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦੇ ਜੋੜਿਆਂ ਦੇ ਹੇਠਾਂ ਲਿਖੇ ਪੈਟਰਨ ਦੇਖੋ :

									1	=	1	=	1.
							3	+	5	=	8	=	23
					7	+	9	+	11	-	27	=	33
			13	+							64		
	21	+									125		
1	-		3			100	-			- a .			

(v) 1024

ਕੀ ਇਹ ਰੋਚਕ ਨਹੀਂ ਹੈ ? ਜੋੜ 10³ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਕਿੰਨੀਆਂ ਕ੍ਰਮਵਾਰ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ ?

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਉਪਰੋਕਤ ਪੈਟਰਨ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ, ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਕੁਮਵਾਰ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦੇ ਜੋੜ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਓ : (a) 6³ (b) 8³ (c) 7³

ਹੇਠਾਂ ਲਿਖੇ ਪੈਟਰਨ ਨੂੰ ਦੇਖੋ :

 $2^{3} - 1^{3} = 1 + 2 \times 1 \times 3$ $3^{3} - 2^{3} = 1 + 3 \times 2 \times 3$ $4^{3} - 3^{3} = 1 + 4 \times 3 \times 3$

ਉਪਰੋਕਤ ਪੈਟਰਨ ਦਾ ਪਯੋਗ ਕਰਦੇ ਹੋਏ. ਹੇਠਾਂ ਲਿਖਿਆਂ ਦਾ ਮੱਲ ਪਤਾ ਕਰੋ :

(i) $7^3 - 6^3$ (ii) $12^3 - 11^3$ (iii) $20^3 - 19^3$ (iv) $51^3 - 50^3$

2. ਘਟ ਅਤੇ ਉਸਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡ

ਕੁੱਝ ਸੰਖਿਆਵਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਘਣਾਂ ਦੇ ਹੇਠਾਂ ਲਿਖੇ ਅਭਾਜ ਗੁਣਨਖੰਡਾਂ 'ਤੇ ਵਿਚਾਰ ਕਰੋ :

ਇੱਕ ਸੰਖਿਆ ਦਾ ਅਭਾਜ	ਉਸਦੇ ਘਣ ਦਾ ਅਭਾਜ	
ਗੁਣਨਖੰਡ	ਗੁਣਨਖੰਡ ਉਸੇ ਸੱਖਿਆ ਦੇ ਘ	E)
$4 = 2 \times 2$	4' = 64 = 2 × 2 × 2 × 2 × 2 × 2 = 2' × 2' fer uida war	
$6 = 2 \times 3$	$6^{3} = 216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^{3} \times 3^{3}$	"d)
$15 = 3 \times 5$	$15^{3} = 3375 = 3 \times 3 \times 3 \times 5 \times 5 \times 5 = 3^{3} \times 5^{3}$	J
$12 = 2 \times 2 \times 3$	$12^3 = 1728 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$	/
	$= 2^3 \times 2^3 \times 3^3$	

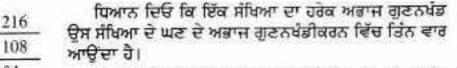
120 🔳 ਗਣਿਤ

54

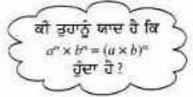
27

9

2


2

2


3

3

3

ਜੇ ਕਿਸੇ ਸੰਖਿਆ ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿੱਚ ਹਰੇਕ ਗੁਣਨਖੰਡ ਤਿੰਨ ਵਾਰ ਆਉਂਦਾ ਹੈ, ਤਾਂ ਕੀ ਉਹ ਸੰਖਿਆ ਇੱਕ ਪੂਰਨ ਘਣ ਹੁੰਦੀ ਹੈ ? ਇਸਦੇ ਬਾਰੇ ਵਿੱਚ ਸੋਚੋ। ਕੀ 216 ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ ?

ਗੁਣਨਖੰਡਾਂ ਦੇ ਤਿੰਨ-ਤਿੰਨ ਦੇ ਸਮੂਹ ਬਣਾਏ

ਜਾ ਸਕਦੇ ਹਨ।

ਇਸ ਗੁਣਨਖੰਡ ਵਿੱਚ

ਤਿੰਨ ਵਾਰ 5 ਹੈ, ਪਰ ਦੇ

ਸਿਰਫ 2 ਵਾਰ ਹੈ।

3 ਅਭਾਜ ਗਣਨਖੰਡ ਦੁਆਰਾ, 216 = 2 × 2 × 2 × 3 × 3 × 3

1 ਹਰੇਕ ਗੁਣਨਖੰਡ ਤਿੰਨ ਵਾਰ ਆਉਂਦਾ ਹੈ 216 = 2³ × 3³ = (2 × 3)³ = 6³ ਜੋ ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ। ਕੀ 729 ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ ? 729 = <u>3 × 3 × 3 × 3 × 3 × 3</u>

ਹਾਂ 729 ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ।

ਆਉ, ਹੁਣ 500 ਦੇ ਲਈ ਇਸ ਦੀ ਪੜਤਾਲ ਕਰੋ :

500 ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡ ਹਨ : 2 × 2 × <u>5 × 5 × 5</u>

ਇਸ ਲਈ 500 ਇੱਕ ਪੂਰਨ ਘਣ ਨਹੀਂ ਹੈ।

ਉਦਾਹਰਣ 1 : ਕੀ 243 ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ ?

ਹੱਲ : 243 = <u>3 × 3 × 3</u> × 3 × 3

ਇੱਥੇ 3 ਦਾ ਤ੍ਰਿਗੁੱਟ ਬਣਾਉਣ ਦੇ ਬਾਅਦ 3 × 3 ਬਾਕੀ ਰਹਿੰਦਾ

ਹੈ। ਇਸ ਲਈ 243 ਇੱਕ ਪੂਰਨ ਘਣ ਨਹੀਂ ਹੈ।

		100	ਕੋਸ਼ਿਸ਼ ਕਰੋ
ਹੇਠ	ਾਂ ਲਿਖੀ	গা বিঁৰ	ਤੋਂ ਕਿਹੜੀਆਂ
ਸੰਖਿ	ਆਵਾਂ ਪੁ	ਰਨ ਘਰ	F 077 ?
(i)	400	(ii)	3375
(iii)	8000	(iv)	15625
(v)	9000	(vi)	6859
(vii)	2025	(viii)	10648

7.2.2 ਸਭ ਤੋਂ ਛੋਟਾ ਗੁਣਜ ਜੋ ਪੂਰਨ ਘਣ ਹੈ

ਰਾਜ ਨੇ ਪਲਾਸਟਿਕ (plastic) ਦਾ ਇੱਕ ਘਣਾਵ (cuboid) ਬਣਾਇਆ। ਇਸ ਘਣਾਵ ਦੀ ਲੰਬਾਈ, ਚੌੜਾਈ ਅਤੇ ਉਚਾਈ ਕ੍ਰਮਵਾਰ: 15 cm, 30 cm ਅਤੇ 15 cm ਹੈ।

ਅਨੂ ਉਸ ਤੋਂ ਪੁੱਛਦੀ ਹੈ ਕਿ ਇੱਕ (ਪੂਰਨ) ਘਣ ਬਣਾਉਣ ਦੇ ਲਈ ਉਸਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਕਿੰਨੇ ਘਣਾਵਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ ? ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ? ਰਾਜ ਕਹਿੰਦਾ ਹੈ,

ਘਣਾਵ ਦਾ ਆਇਤਨ = 15 × 30 × 15

 $=3 \times 5 \times 2 \times 3 \times 5 \times 3 \times 5$

=2×3×3×3×5×5×5

ਕਿਉਂਕਿ ਉਪਰੋਕਤ ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿੱਚ 2 ਸਿਰਫ ਇੱਕ ਵਾਰ ਹੈ, ਇਸ ਲਈ ਸਾਨੂੰ ਇਸ ਨੂੰ ਪੂਰਨ ਘਣ ਬਣਾਉਣ ਦੇ ਲਈ 2 × 2 = 4 ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ ਸਾਨੂੰ ਇੱਕ ਘਣ ਬਣਾਉਣ ਦੇ ਲਈ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਚਾਰ ਘਣਾਵਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ।

ਉਦਾਹਰਣ 2 : ਕੀ 392 ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ? ਜੇ ਨਹੀਂ, ਤਾਂ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਭ ਤੋਂ ਛੋਟੀ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜਿਸ ਨਾਲ 392 ਨੂੰ ਗੁਣਾ ਕਰਨ 'ਤੇ ਗੁਣਨਵਲ ਇੱਕ ਪੂਰਨ ਘਣ ਬਣ ਜਾਵੇ।

ਹੱਲ : 392 = <u>2 × 2 × 2</u> × 7 × 7

ਅਭਾਜ ਗੁਣਨਖੰਡ 7 ਤਿੰਨ ਦੇ ਸਮੂਹ ਵਿੱਚ ਨਹੀਂ ਆ ਰਿਹਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ 392 ਇੱਕ ਪੂਰਨ ਘਣ ਨਹੀਂ ਹੈ। ਇਸ ਨੂੰ ਪੂਰਨ ਘਣ ਬਣਾਉਣ ਦੇ ਲਈ, ਇੱਕ ਹੋਰ 7 ਦੀ ਜ਼ਰੂਰਤ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ, 392 × 7 = 2 × 2 × 2 × 7 × 7 × 7 = 2744, ਜੋ ਕਿ ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ।

ਘਣ ਅਤੇ ਘਣਮੂਲ 🔳 121

ਇਸ ਤਰ੍ਹਾਂ ਉਹ ਸਭ ਤੋਂ ਛੋਟੀ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ 7 ਹੈ, ਜਿਸ ਨੂੰ 392 ਨਾਲ ਗੁਣਾ ਕਰਨ `ਤੇ ਇੱਕ ਪੂਰਨ ਘਣ ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇਗਾ।

ਉਦਾਹਰਣ 3 : ਕੀ 53240 ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ ? ਜੇ ਨਹੀਂ, ਤਾਂ 53240 ਨੂੰ ਕਿਹੜੀ ਸਭ ਤੋਂ ਛੋਟੀ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਨਾਲ ਵੰਡਿਆ ਜਾਵੇ ਤਾਂ ਕਿ ਭਾਗਫਲ ਇੱਕ ਪੂਰਨ ਘਣ ਪ੍ਰਾਪਤ ਹੋਵੇ ?

रॉल : 53240 = <u>2 × 2 × 2</u> × <u>11 × 11 × 11</u> × 5

ਇੱਥੇ ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿੱਚ 5 ਤਿੰਨ ਦੇ ਸਮੂਹ ਵਿੱਚ ਨਹੀਂ ਆ ਰਿਹਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ 53240 ਇੱਕ ਪੂਰਨ ਘਣ ਨਹੀਂ ਹੈ।

ਉਪਰੋਕਤ ਗੁਣਨਖੰਡ ਵਿੱਚ 5 ਸਿਰਫ਼ ਇੱਕ ਵਾਰ ਆਇਆ ਹੈ। ਜੇ ਅਸੀਂ ਦਿੱਤੀ ਗਈ ਸੰਖਿਆ ਨੂੰ 5 ਨਾਲ ਵੰਡੀਏ, ਤਾਂ ਭਾਗਫਲ ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿੱਚ 5 ਨਹੀਂ ਆਵੇਗਾ।

ਇਸ ਤਰ੍ਹਾਂ, 53240 ÷ 5 = <u>2 × 2 × 2</u> × <u>11 × 11 × 11</u>

ਇਸ ਤਰ੍ਹਾਂ ਉਹ ਸਭ ਤੋਂ ਛੋਟੀ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ 5 ਹੈ ਜਿਸ ਨਾਲ 53240 ਨੂੰ ਵੰਡਣ 'ਤੇ ਭਾਗਫਲ ਇੱਕ ਪੂਰਨ ਘਣ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ।

ਉਸ ਸਥਿਤੀ ਵਿੱਚ, ਪੂਰਨ ਘਣ 10648 ਹੋਵੇਗਾ।

ਉਦਾਹਰਣ 4 : ਕੀ 1188 ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ ? ਜੇ ਨਹੀਂ ਤਾਂ ਕਿਹੜੀ ਸਭ ਤੋਂ ਛੋਟੀ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਨਾਲ 1188 ਨੂੰ ਵੰਡਿਆ ਜਾਵੇ ਤਾਂ ਕਿ ਭਾਗਫਲ ਇੱਕ ਪੂਰਨ ਘਣ ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇ।

ਹੱਲ: 1188 = 2 × 2 × 3 × 3 × 3 × 11

ਅਭਾਜ ਗੁਣਨਖੰਡ 2 ਅਤੇ 11 ਤਿੰਨ-ਤਿੰਨ ਦੇ ਸਮੂਹਾਂ ਵਿੱਚ ਨਹੀਂ ਆ ਰਹੇ ਹਨ।ਇਸ ਤਰ੍ਹਾਂ 1188 ਇੱਕ ਪੂਰਨ ਘਣ ਨਹੀਂ ਹੈ। 1188 ਦੇ ਉਪਰੋਕਤ ਗੁਣਨਖੰਡ ਵਿੱਚ, ਅਭਾਜ 2 ਸਿਰਫ਼ ਦੋ ਵਾਰ ਹੀ ਆਉਂਦਾ ਹੈ ਅਤੇ ਅਭਾਜ 11 ਇੱਕ ਵਾਰ।ਇਸ ਤਰ੍ਹਾਂ ਜੇ ਅਸੀਂ 1188 ਨੂੰ 2 × 2 × 11 = 44 ਨਾਲ ਵੰਡੀਏ, ਤਾਂ ਭਾਗਫਲ ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡਨ ਵਿੱਚ 2 ਅਤੇ 11 ਨਹੀਂ ਆਉਣਗੇ।

ਇਸ ਤਰ੍ਹਾਂ ਉਹ ਸਭ ਤੋਂ ਛੋਟੀ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ 44 ਹੈ, ਜਿਸ ਨਾਲ 1188 ਨੂੰ ਵੰਡਣ 'ਤੇ ਭਾਗਵਲ ਇੱਕ ਪੂਰਨ ਘਣ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ। ਨਾਲ ਹੀ, ਲੋੜੀਂਦਾ ਪੂਰਨ ਘਣ = 1188 ÷ 44 = 27 (=3³)

ਉਦਾਹਰਣ 5 : ਕੀ 68600 ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ ? ਜੇ ਨਹੀਂ, ਤਾਂ ਉਹ ਸਭ ਤੋਂ ਛੋਟੀ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜਿਸ ਨਾਲ 68,600 ਨੂੰ ਗੁਣਾ ਕਰਨ 'ਤੇ ਇੱਕ ਪੂਰਨ ਘਣ ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇ ?

ਹੱਲ : ਸਾਨੇ ਮਿਲਦਾ ਹੈ : 68,600 = 2 × 2 × 2 × 5 × 5 × 7 × 7 × 7

ਇਸ ਗੁਣਨਖੰਡਨ ਵਿੱਚ, 5 ਦਾ ਕੋਈ ਤ੍ਰਿਗੁੱਟ (triplet) ਨਹੀਂ ਹੈ। ਇਸ ਲਈ 68,600 ਇੱਕ ਪੂਰਨ ਘਣ ਨਹੀਂ ਹੈ। ਇਸ ਨੂੰ ਪੂਰਨ ਘਣ ਬਣਾਉਣ ਦੇ ਲਈ, ਅਸੀਂ ਇਸ ਨੂੰ 5 ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹਾਂ।

ਇਸ ਤਰ੍ਹਾਂ, 68,600 × 5 = 2 × 2 × 2 × 5 × 5 × 5 × 7 × 7 × 7

= 3,43,000 ਜੋ ਕਿ ਇੱਕ ਪੁਰਨ ਘਣ ਹੈ।

ਧਿਆਨ ਦਿਓ ਕਿ 343 ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ। ਉਦਾਹਰਣ 5 ਤੋਂ, ਸਾਨੂੰ ਪਤਾ ਲਗਦਾ ਹੈ ਕਿ 3,43,000 ਵੀ ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ।

ਸ਼ੋਚ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ 💘

ਪੜਤਾਲ ਕਰੋ ਕਿ ਹੇਠਾਂ ਲਿਖੀਆਂ ਵਿੱਚ ਕਿਹੜੀਆਂ ਸੰਖਿਆਵਾਂ ਪੂਰਨ ਘਣ ਹਨ : (i) 2700 (ii) 16000 (iii) 64000 (iv) 900 (v) 125000 (vi) 36000 (vii) 21600 (viii) 10,000 (ix) 27000000 (x) 1000 ਇਹਨਾਂ ਪੂਰਨ ਘਣਾਂ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਪੈਟਰਨ ਦੇਖਦੇ ਹੋ ?

122 🔳 ਗਣਿਤ

🔊 ਅਭਿਆਸ 7.1

- ਹੇਠਾਂ ਲਿਖੀਆਂ ਵਿੱਚੋਂ ਕਿਹੜੀਆਂ ਸੰਖਿਆਵਾਂ ਪੂਰਨ ਘਣ ਨਹੀਂ ਹਨ ?
 - (i) 216 (ii) 128 (iii) 1000 (iv) 100 (v) 46656
- ਉਹ ਸਭ ਤੋਂ ਛੋਟੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜਿਸ ਨਾਲ ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ 'ਤੇ ਪੁਰਨ ਘਣ ਪਾਪਤ ਹੋ ਜਾਵੇ :
 - (i) 243 (ii) 256 (iii) 72 (iv) 675 (v) 100
- ਉਹ ਸਭ ਤੋਂ ਛੋਟੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ ਜਿਸ ਨਾਲ ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਵੰਡਣ 'ਤੇ ਭਾਗਫਲ ਇੱਕ ਪੂਰਨ ਘਣ ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇ :
 - (i) 81 (ii) 128 (iii) 135 (iv) 192 (v) 704
- ਪਰਿਕਸ਼ਤ ਪਲਾਸਟਿਕ ਦਾ ਇੱਕ ਘਣਾਵ ਬਣਾਉਂਦਾ ਹੈ, ਜਿਸ ਦੀਆਂ ਭੁਜਾਵਾਂ 5 cm, 2 cm ਅਤੇ 5 cm ਹਨ। ਇੱਕ ਘਣ ਬਣਾਉਣ ਦੇ ਲਈ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਕਿੰਨੇ ਘਣਾਵਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ ?

7.3 ਘਣਮੁਲ

ਜੇ ਕਿਸੇ ਘਣ ਦਾ ਆਇਤਨ 125 cm³ ਹੈ ਤਾਂ ਉਸਦੀ ਭੁਜਾ ਦੀ ਲੰਬਾਈ ਕੀ ਹੋਵੇਗੀ? ਇਸ ਘਣ ਦੀ ਭੁਜਾ ਦੀ ਲੰਬਾਈ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਸਾਨੂੰ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰਨੀ ਹੋਵੇਗੀ, ਜਿਸਦਾ ਘਣ 125 ਹੋਵੇ।

ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ 'ਵਰਗਮੂਲ' ਪਤਾ ਕਰਨਾ 'ਵਰਗ ਕਰਨ ਦੀ ਕਿਰਿਆ ਦੀ ਉਲਟ ਕਿਰਿਆ ਹੈ'। ਇਸੇ ਤਰ੍ਹਾਂ 'ਘਣਮੂਲ' (cuberoot) ਪਤਾ ਕਰਨ ਦੀ ਕਿਰਿਆ ਘਣ (ਪਤਾ) ਕਰਨ ਦੀ ਕਿਰਿਆ ਦੀ ਉਲਟ ਕਿਰਿਆ ਹੈ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 2' = 8 ਹੈ। ਇਸ ਲਈ ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ 8 ਦਾ ਘਣਮੂਲ (cuberoot) 2 ਹੈ। ਅਸੀਂ ਇਸ ਨੂੰ ∛§ = 2 ਲਿਖਦੇ ਹਾਂ। ਚਿੰਨ੍ਹ ' ∛ਂ ਘਣਮੂਲ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।

ਹੇਠਾਂ ਲਿਖੇ 'ਤੋਂ ਵਿਚਾਰ ਕਰੋ :

वषत	ਸਿੱਟਾ	বন্ধম	ਸਿੱਟਾ
13 = 1	∛ī = 1	6 ³ = 216	∛216 = 6
$2^{3} = 8$	$\sqrt[3]{8} = \sqrt[3]{2^3} = 2$	73 = 343	∛343 = 7
$3^3 = 27$	$\sqrt[3]{27} = \sqrt[3]{3^3} = 3$	83 = 512	$\sqrt[3]{512} = 8$
43 = 64	$\sqrt[3]{64} = 4$	9 ³ = 729	∛ 729 = 9
5 ³ = 125	₹√125 = 5	$10^3 = 1000$	∛1000 = 10

7.3.1 ਅਭਾਜ ਗੁਣਨਖੰਡੀਕਰਨ ਵਿਧੀ ਦੁਆਰਾ ਘਟਮੂਲ

ਸੰਖਿਆ 3375 'ਤੇ ਵਿਚਾਰ ਕਰੋ।ਅਸੀਂ ਇਸਦਾ ਘਣਮੂਲ ਅਭਾਜ ਗੁਣਨਖੰਡੀਕਰਨ ਨਾਲ ਪਤਾ ਕਰਾਂਗੇ। 3375 = <u>3 × 3 × 3</u> × <u>5 × 5 × 5</u> = 3³ × 5³ = (3 × 5)³

ਇਸ ਤਰ੍ਹਾਂ 3375 ਦਾ ਘਣਮੁਲ = $\sqrt[3]{3375} = 3 \times 5 = 15$

Downloaded from https:// www.studiestoday.com ਘਣ ਅਤੇ ਘਣਮੁਲ 📰 123 ∛74088 ਪਤਾ ਕਰਨ ਦੇ ਲਈ, ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ : ਇਸ ਪਕਾਰ, $74088 = \underline{2 \times 2 \times 2} \times \underline{3 \times 3 \times 3 \times 3} \times \underline{7 \times 7 \times 7} = 2^3 \times 3^3 \times 7^3 = (2 \times 3 \times 7)^3$ ਇਸ ਤਰ੍ਹਾਂ $\sqrt[3]{74088} = 2 \times 3 \times 7 = 42$ ਉਦਾਹਰਣ 6 : 8,000 ਦਾ ਘਣਮੁਲ ਪਤਾ ਕਰੋ। ਹੱਲ : 8.000 ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡ <u>2 × 2 × 2 × 2 × 2 × 2 × 5 × 5 × 5</u> ਹੈ। ਇਸ ਤਰਾਂ $\sqrt[3]{8000} = 2 \times 2 \times 5 = 20$ ਉਦਾਹਰਣ 7 : ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿਧੀ ਨਾਲ 13824 ਦਾ ਘਣਮੁਲ ਪਤਾ ਕਰੇ। ਇਸ ਤਰਾਂ $\sqrt[3]{13824} = 2 \times 2 \times 2 \times 3 = 24$ 🔉 ਸੋਚੋ. ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ ਦੱਸ ਕਿ ਸੱਚ ਹੈ ਜਾਂ ਝੁਠ : ਕਿਸੀ ਸੰਪੂਰਨ ਸੰਖਿਆ m ਦੇ ਲਈ, m² < m³ ਹੁੰਦਾ ਹੈ। ਕਿਉਂ ? 7.3.2 ਕਿਸੇ ਘਣ ਸੱਖਿਆ ਦਾ ਘਣਮੁਲ

ਜੇ ਤੁਹਾਨੂੰ ਇਹ ਪਤਾ ਹੈ ਕਿ ਦਿੱਤੀ ਗਈ ਸੰਖਿਆ ਇੱਕ ਘਣ ਸੰਖਿਆ ਹੈ, ਤਾਂ ਉਸਦਾ ਘਣਮੂਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਹੇਠਾਂ ਲਿਖੀ ਵਿਧੀ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ :

uਗ 1 ਕੋਈ ਘਣ ਸੰਖਿਆ, ਮੰਨ ਲਵੋ, 857375 ਲਵੋਂ ਅਤੇ ਉਸਦੇ ਸੱਜੇ ਪਾਸੇ ਦੇ ਅੰਕ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ ਤਿੰਨ-ਤਿੰਨ ਅੰਕਾਂ ਦੇ ਸਮੂਹ ਬਣਾਉ।

857	375
4	Ţ
ਦਸਰਾ ਸਮਹ	ਪਹਿਲਾ ਸਮਹ

ਅਸੀਂ ਕੋਈ ਦਿੱਤੀ ਹੋਈ ਘਣ ਸੰਖਿਆ ਦਾ ਘਣਮੂਲ ਕਦਮ ਦਰ ਕਦਮ ਕਿਰਿਆ ਨਾਲ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ। ਇੱਥੇ ਸਾਨੂੰ ਤਿੰਨ ਐਕਾਂ ਦੇ ਦੋ ਸਮੂਹ 375 ਅਤੇ 857 ਪ੍ਰਾਪਤ ਹੋਏ ਹਨ।

ਪਗ 2 ਪਹਿਲਾ ਸਮੂਹ '375' ਤੁਹਾਨੂੰ ਲੋੜੀਂਦੇ ਘਣਮੂਲ ਦੀ ਇਕਾਈ ਦਾ ਅੰਕ ਦੇਵੇਗਾ। ਸੰਖਿਆ 375 ਦਾ ਆਖਰੀ (ਇਕਾਈ ਦਾ) ਅੰਕ 5 ਹੈ।ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 5 ਕਿਸੀ ਸੰਖਿਆ ਦੇ ਇਕਾਈ ਦੇ ਸਥਾਨ 'ਤੇ ਉਦੋਂ ਆਉਂਦਾ ਹੈ ਜਦੋਂ ਉਸਦੇ ਘਣਮੂਲ ਦੇ ਇਕਾਈ ਦਾ ਅੰਕ 5 ਹੁੰਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਸਾਨੂੰ ਘਣਮੂਲ ਦੇ ਇਕਾਈ ਦਾ ਅੰਕ 5 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

uਗ 3 ਹੁਣ ਦੂਸਰੇ ਸਮੂਹ 857 ਨੂੰ ਲਵੇ।

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 9³ = 729 ਅਤੇ 10³ = 1,000 ਨਾਲ ਹੀ, 729 < 857 < 1,000 ਅਸੀਂ ਛੋਟੀ ਸੰਖਿਆ 729 ਦੇ ਇਕਾਈ ਦੇ ਐਕ ਨੂੰ ਲੋੜੀਂਦੇ ਘਣਮੂਲ ਦੇ ਦਹਾਈ ਦੇ ਐਕ ਦੇ ਰੂਪ ਵਿੱਚ ਲੈਂਦੇ ਹਾਂ।

ਉਦਾਹਰਣ 8 : 17,576 ਦਾ ਘਣਮੂਲ ਇਕਾਈ ਅੰਕ ਦੀ ਵਰਤੋਂ ਨਾਲ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਦਿੱਤੀ ਗਈ ਸੰਖਿਆ 17,576 ਹੈ।

124 🔳 ਗਣਿਤ

- ਪਗ 1 17,576 ਦੇ ਸਭ ਤੋਂ ਸੱਜੇ ਪਾਸੇ ਦੇ ਅੰਕ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ, ਤਿੰਨ-ਤਿੰਨ ਅੰਕਾਂ ਦੇ ਸਮੂਹ ਬਣਾਉ। ਇਹ ਸਮੂਹ 17 ਅਤੇ 576 ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਇੱਕ ਸਮੂਹ 576 ਹੈ। ਜਿਸ ਵਿੱਚ ਤਿੰਨ ਅੰਕ ਹਨ ਅਤੇ ਦੂਸਰਾ ਸਮੂਹ 17 ਹੈ ਜਿਸ ਵਿੱਚ ਸਿਰਫ਼ ਦੋ ਅੰਕ ਹਨ।
- ਪਗ 2 576 ਨੂੰ ਲਵੇ। ਇਸਦੀ ਇਕਾਈ ਦਾ ਅੰਕ 6 ਹੈ। ਅਸੀਂ ਲੋੜੀਂਦੇ ਘਣਮੂਲ ਦੀ ਇਕਾਈ ਦਾ ਅੰਕ 6 ਲੈਂਦੇ ਹਾਂ।
- ਪਗ 3 ਦੂਸਰੇ ਸਮੂਹ 17 ਨੂੰ ਲਵੇ। 2 ਦਾ ਘਣ 8 ਹੈ ਅਤੇ 3 ਦਾ ਘਣ 27 ਹੈ। ਸੰਖਿਆ 17 ਸੰਖਿਆਵਾਂ 8 ਅਤੇ 27 ਦੇ ਵਿੱਚ ਸਥਿਤ ਹੈ। ਹੁਣ 2 ਅਤੇ 3 ਵਿੱਚ ਛੋਟੀ ਸੰਖਿਆ 2 ਹੈ। 2 ਵਿੱਚ ਇਕਾਈ ਦਾ ਅੰਕ ਆਪ 2 ਹੀ ਹੈ। ਅਸੀਂ 2 ਨੂੰ ਲੋੜੀਂਦੇ ਘਣਮੂਲ ਦੀ ਦਹਾਈ ਦਾ ਅੰਕ

ਲੈਂਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ, 🕴 17576 = 26 (ਇਸਦੀ ਪੜਤਾਲ ਕਰ ਲਵੇਂ)।

ਅਭਿਆਸ 7.2

ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿਧੀ ਦੁਆਰਾ ਹੇਠਾਂ ਲਿਖੀਆਂ ਵਿੱਚੋਂ ਹਰੇਕ ਸੰਖਿਆ ਦਾ ਘਣਮੂਲ ਪਤਾ ਕਰੋ।

(iii) 10648

(vii) 110592

(iv) 27000

(viii) 46656

- A
- (i) 64(v) 15625
- (ix) 175616
 - x) 1/3616
- ਦੱਸੋ ਸੱਚ ਹੈ ਜਾਂ ਝੂਠ :
 - (i) ਕਿਸੀ ਵੀ ਟਾਂਕ ਸੰਖਿਆ ਦਾ ਘਣ ਜਿਸਤ ਹੁੰਦਾ ਹੈ।
 - (ii) ਇੱਕ ਪੂਰਨ ਘਣ ਦੋ ਸਿਫ਼ਰਾਂ 'ਤੇ ਖਤਮ ਨਹੀਂ ਹੁੰਦਾ ਹੈ।

(ii) 512

(vi) 13824

(x) 91125

- (iii) ਜੇ ਕਿਸੇ ਸੰਖਿਆ ਦਾ ਵਰਗ 5 'ਤੇ ਖਤਮ ਹੁੰਦਾ ਹੈ ਤਾਂ ਉਸਦਾ ਘਣ 25 'ਤੇ ਖਤਮ ਹੁੰਦਾ ਹੈ।
- (iv) ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਕੋਈ ਪੁਰਨ ਘਣ ਨਹੀਂ ਹੈ ਜੋ 8 'ਤੋਂ ਖਤਮ ਹੁੰਦਾ ਹੈ।
- (v) ਦੋ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਘਣ ਤਿੰਨ ਅੰਕਾਂ ਵਾਲੀ ਸੰਖਿਆ ਹੋ ਸਕਦੀ ਹੈ।
- (vi) ਦੋ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਘਣ ਵਿੱਚ ਸੱਤ ਜਾਂ ਜ਼ਿਆਦਾ ਅੰਕ ਹੋ ਸਕਦੇ ਹਨ।
- (vii) ਇੱਕ ਅੰਕ ਵਾਲੀ ਸੰਖਿਆ ਦਾ ਘਣ ਇੱਕ ਅੰਕ ਵਾਲੀ ਸੰਖਿਆ ਹੋ ਸਕਦੀ ਹੈ।
- 3. ਤੁਹਾਨੂੰ ਇਹ ਦੱਸਿਆ ਜਾਂਦਾ ਹੈ ਕਿ 1331 ਇੱਕ ਪੂਰਨ ਘਣ ਹੈ। ਕੀ ਬਿਨ੍ਹਾਂ ਗੁਣਨਖੰਡ ਕੀਤੇ ਤੁਸੀਂ ਇਹ ਅਨੁਮਾਨ ਲਗਾ ਸਕਦੇ ਹੋ ਕਿ ਇਸਦਾ ਘਣਮੂਲ ਕੀ ਹੈ? ਇਸੇ ਤਰ੍ਹਾਂ 4913, 12167 ਅਤੇ 32768 ਦੇ ਘਣਮੂਲਾਂ ਦੇ ਅਨੁਮਾਨ ਲਗਾਉ।

ਅਸੀਂ ਕੀ ਚਰਚਾ ਕੀਤੀ ?

- ਸੰਖਿਆਵਾਂ, ਜਿਵੇਂ ਕਿ 1729. 4104. 13832 ਨੂੰ ਹਾਰਡੀ-ਰਾਮਾਨੁਜਨ ਸੰਖਿਆਵਾਂ ਆਖਦੇ ਹਾਂ। ਇਹਨਾਂ ਨੂੰ ਦੋ ਘਣਾਂ ਦੇ ਜੋੜ ਦੇ ਰੂਪ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਢੰਗ ਨਾਲ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।
- ਇੱਕ ਸੰਖਿਆ ਨੂੰ ਉਸੇ ਨਾਲ ਹੀ ਤਿੰਨ ਵਾਰ ਗੁਣਾ ਕਰਨ 'ਤੇ ਪ੍ਰਾਪਤ ਹੋਈ ਸੰਖਿਆ ਨੂੰ ਘਣ ਸੰਖਿਆ ਆਖਦੇ ਹਾਂ। ਉਦਾਹਰਣ ਲਈ 1, 8, 27 ਆਦਿ।
- ਜੇ ਕਿਸੇ ਸੰਖਿਆ ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡ ਵਿੱਚ ਹਰੇਕ ਅਭਾਜ ਗੁਣਨਖੰਡ ਤਿੰਨ ਵਾਰ ਆਉਂਦਾ ਹੈ ਤਾਂ ਉਹ ਸੰਖਿਆ ਇੱਕ ਪੂਰਨ ਘਣ ਹੁੰਦੀ ਹੈ।

ਸੰਕੇਤ ' ∛ ' ਘਣਮੂਲ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ ∛27 = 3 ਹੈ।

ਅਧਿਆਇ

ਰਾਸ਼ੀਆਂ ਦੀ ਤੁਲਨਾ

8.1 ਅਨੁਪਾਤ ਅਤੇ ਪ੍ਰਤੀਸ਼ਤ ਦੀ ਦੁਹਰਾਈ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਅਨੁਪਾਤ ਦਾ ਅਰਥ ਹੈ ਦੋ ਰਾਸ਼ੀਆਂ ਦੀ ਤੁਲਨਾ ਕਰਨਾ। ਇੱਕ ਟੋਕਰੀ ਵਿੱਚ ਦੋ ਤਰ੍ਹਾਂ ਦੇ ਫਲ ਹਨ, ਮੰਨ ਲਓ ਇਸ ਵਿੱਚ 20 ਸੇਬ ਅਤੇ 5 ਸੰਤਰੇ ਹਨ। ਤਾਂ, ਸੰਤਰਿਆਂ ਦੀ ਸੰਖਿਆ ਦਾ ਸੇਬਾਂ ਦੀ ਸੰਖਿਆ ਨਾਲ ਅਨੁਪਾਤ = 5 : 20 ਹੈ। ਇਹ ਤੁਲਨਾ ਭਿੰਨਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ $\frac{5}{20} = \frac{1}{4}$ ਦੇ ਰੂਪ ਵਿੱਚ ਵੀ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

ਸੰਤਰਿਆਂ ਦੀ ਸੰਖਿਆ, ਸੇਬਾਂ ਦੀ ਸੰਖਿਆ ਦਾ $rac{1}{4}$ ਹੈ। ਅਨੁਪਾਤ ਦੇ ਰੂਪ ਵਿੱਚ ਇਹ 1 : 4 ਹੈ ਅਤੇ ਇਸ ਨੂੰ 4 ਦੀ ਤੁਲਨਾ ਵਿੱਚ 1 ਹੈ। ਪੜ੍ਹਿਆ ਜਾਂਦਾ ਹੈ ਜਿਵੇਂ

ਸੰਤਰਿਆਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਸੇਬਾਂ ਦੀ ਸੰਖਿਆ = $\frac{20}{5} = \frac{4}{1}$ ਹੈ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਸੰਤਰਿਆਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਸੇਬਾਂ ਦੀ ਸੰਖਿਆ 4 ਗੁਣਾ ਹੈ।ਇਹ ਤੁਲਨਾ ਪ੍ਰਤੀਸ਼ਤ ਦੀ ਵਰਤੋਂ ਨਾਲ ਵੀ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।

 25 ਫਲਾਂ ਵਿੱਚ 5 ਸੰਤਰੇ ਹਨ।
 ਇਕਾਈ ਵਿਧੀ ਤੋਂ :

 ਇਸ ਲਈ ਸੰਤਰਿਆਂ ਦਾ ਪ੍ਰਤੀਸ਼ਤ
 $\frac{5}{25} \times \frac{4}{4} = \frac{20}{100} = 20\%$ ਹੈ।

 ਜਾਂ
 ਹੋ, ਇਸ ਲਈ 100 ਫਲਾਂ ਵਿੱਚ ਸੰਤਰਿਆਂ ਹੈ, ਇਸ ਲਈ 100 ਫਲਾਂ ਵਿੱਚ ਸੰਤਰਿਆਂ

 (ਹਰ ਨੂੰ 100) ਬਣਾਇਆ ਗਿਆ ਹੈ)

ਕਿਉਂਕਿ 🎬 ਵਿੱਚ ਸਿਰਫ ਸੇਬ ਅਤੇ ਸੰਤਰੇ ਹਨ,

ਇਸ ਲਈ, ਸੇਬਾਂ ਦਾ ਪ੍ਰਤੀਸ਼ਤ + ਸੰਤਰਿਆਂ ਦਾ ਪ੍ਰਤੀਸ਼ਤ = 100 ਜਾਂ ਸੇਬਾਂ ਦਾ ਪ੍ਰਤੀਸ਼ਤ + 20 = 100 ਜਾਂ ਸੇਬਾਂ ਦਾ ਪ੍ਰਤੀਸ਼ਤ = 100 - 20 = 80

ਇਸ ਲਈ ਟੋਕਰੀ ਵਿੱਚ 20% ਸੰਤਰੇ ਅਤੇ 80% ਸੇਸ਼ ਹਨ।

ਉਦਾਹਰਣ 1 : ਕਿਸੇ ਸਕੂਲ ਵਿੱਚ ਜਮਾਤ VII ਦੇ ਲਈ ਪਿਕਨਿਕ ਦੀ ਯੋਜਨਾ ਬਣਾਈ ਜਾ ਰਹੀ ਹੈ। ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ ਦਾ 60% ਲੜਕੀਆਂ ਹਨ ਅਤੇ ਇਹਨਾਂ ਦੀ ਸੰਖਿਆ 18 ਹੈ। ਪਿਕਨਿਕ ਦਾ ਸਥਾਨ ਸਕੂਲ ਤੋਂ 55 km ਦੂਰ ਹੈ ਅਤੇ ਟਰਾਂਸਪੋਰਟ ਕੰਪਨੀ ₹ 12 ਪ੍ਰਤੀ km ਦੀ ਦਰ ਨਾਲ ਕਿਰਾਇਆ ਲੈਂਦੀ ਹੈ। ਖਾਣ-ਪੀਣ ਦਾ ਕੁੱਲ ਖਰਚ ₹ 4280 ਹੋਵੇਗਾ।

126 🔳 ਗਣਿਤ

ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ :

- ਜਮਾਤ ਵਿੱਚ ਲੜਕੀਆਂ ਦੀ ਸੰਖਿਆ ਦਾ ਲੜਕਿਆਂ ਦੀ ਸੰਖਿਆ ਨਾਲ ਅਨੁਪਾਤ ?
- 2. ਜੇ ਦੋ ਅਧਿਆਪਕ ਵੀ ਜਮਾਤ ਦੇ ਨਾਲ ਪਿਕਨਿਕ 'ਤੇ ਜਾ ਰਹੇ ਹਨ ਤਾਂ ਪ੍ਰਤੀ ਵਿਅਕਤੀ ਖਰਚ?
- 3. ਜੇ ਉਹਨਾਂ ਦਾ ਪਹਿਲਾ ਠਹਿਰਾਅ ਸਕੂਲ ਤੋਂ 22 km ਦੀ ਦੂਰੀ 'ਤੇ ਹੈ ਤਾਂ ਉਹ ਕੁੱਲ 55 km ਦੀ ਦੂਰੀ ਦਾ ਕਿੰਨੇ ਪ੍ਰਤੀਸ਼ਤ ਹੈ ? ਕਿੰਨੇ ਪ੍ਰਤੀਸ਼ਤ ਦੂਰੀ ਤੈਅ ਕਰਨਾ ਬਾਕੀ ਹੈ ?

चॅल :

 ਲੜਕੀਆਂ ਦੀ ਸੰਖਿਆ ਦਾ ਲੜਕਿਆਂ ਦੀ ਸੰਖਿਆ ਨਾਲ ਅਨੁਪਾਤ ਪਤਾ ਕਰਨ ਦੇ ਲਈ, ਆਸ਼ਿਮਾ ਅਤੇ ਜਾੱਨ ਨੇ ਹੇਠਾਂ ਲਿਖੀਆਂ ਵਿਧੀਆਂ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਹੈ। ਉਹਨਾਂ ਨੂੰ ਲੜਕਿਆਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਕੁੱਲ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਸੰਖਿਆ ਦਾ ਪਤਾ ਹੋਣਾ ਚਾਹੀਦਾ ਸੀ।

ਆਸ਼ਿਮਾ ਨੇ ਹੇਠ ਲਿਖੀ ਵਿਧੀ ਦੀ ਵਰਤੋਂ ਕੀਤੀ : ਮੰਨ ਲਓ ਕੁੱਲ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਸੰਖਿਆ x ਹੈ, ਜਿਸ ਵਿੱਚ 60% ਲੜਕੀਆਂ ਹਨ। ਇਸ ਲਈ $x \ensuremath{ er 60\% = 18}$ ਜਾਂ $\frac{60}{100} \times x = 18$ ਭਾਵ $x = \frac{18 \times 100}{60} = 30$	ਜਾਨ ਨੇ ਇਕਾਈ ਵਿਧੀ ਦੀ ਵਰਤੋਂ ਕੀਤੀ : 100 ਵਿਦਿਆਰਥੀਆ ਵਿੱਚ 60 ਲੜਕੀਆਂ ਹਨ। ਇਸ ਲਈ $\frac{100}{60}$ ਵਿਦਿਆਰਥੀਆਂ ਵਿੱਚ ਇੱਕ ਲੜਕੀ ਹੈ। ਇਸ ਲਈ ਕਿੰਨੇ ਵਿਦਿਆਰਥੀਆਂ ਵਿੱਚ 18 ਲੜਕੀਆਂ ਹੋਣਗੀਆਂ ? ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਸੰਖਿਆ = $\frac{100}{60} \times 18$
ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ = 30	$\frac{1}{60} \times 10 = 30$

ਇਸ ਲਈ, ਲੜਕਿਆਂ ਦੀ ਸੰਖਿਆ = 30 – 18 = 12 ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਲੜਕੀਆਂ ਦੀ ਸੰਖਿਆ ਦਾ ਲੜਕਿਆਂ ਦੀ ਸੰਖਿਆ ਨਾਲ 18 : 12 ਜਾਂ $\frac{18}{12} = \frac{3}{2}$ ਦਾ ਅਨੁਪਾਤ ਹੈ। $\frac{3}{2}$ ਨੂੰ 3 : 2 ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ 2 ਦੀ ਤੁਲਨਾ ਵਿੱਚ 3 ਪੜ੍ਹਿਆ ਜਾਂਦਾ ਹੈ।

2. ਪ੍ਰਤੀ ਵਿਅਕਤੀ ਖਰਚ ਪਤਾ ਕਰਨ ਦੇ ਲਈ :

ਟਰਾਂਸਪੋਰਟ ਖਰਚ = ਦੋਨੋਂ ਪਾਸਿਆਂ ਦੀ ਦੂਰੀ × ਦਰ

= (55 × 2) × ₹ 12

= 110 × 12 = ₹ 1320

ਕੁੱਲ ਖਰਚ = ਖਾਣ-ਪੀਣ ਦਾ ਖਰਚ + ਟਰਾਂਸਪੋਰਟ ਖਰਚ

=₹4280 + ₹1320

=₹ 5600

ਕੁੱਲ ਵਿਅਕਤੀ = 18 ਲੜਕੀਆਂ + 12 ਲੜਕਿਆਂ + 2 ਅਧਿਆਪਕ = 32 ਵਿਅਕਤੀ

ਆਸ਼ਿਮਾ ਅਤੇ ਜਾੱਨ ਨੇ ਪ੍ਰਤੀ ਵਿਅਕਤੀ ਖਰਚ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਇਕਾਈ ਵਿਧੀ ਦਾ ਉਪਯੋਗ ਕੀਤਾ। 32 ਵਿਅਕਤੀਆਂ ਦੇ ਲਈ ਖਰਚ ਕੀਤੇ ਜਾਣ ਵਾਲੀ ਰਾਸ਼ੀ ₹ 5600 ਹੋਵੇਗੀ।

ਇਸ ਲਈ 1 ਵਿਅਕਤੀ ਦੇ ਲਈ ਖਰਚ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਰਾਸ਼ੀ = ₹ $\frac{5600}{32}$ = ₹ 175

ਰਾਸ਼ੀਆਂ ਦੀ ਤੁਲਨਾ 🔳 127

 ਪਹਿਲੇ ਠਹਿਰਾਅ ਦੀ ਦੂਰੀ = 22 km ਦੂਰੀ ਦਾ ਪ੍ਰਤੀਸ਼ਤ ਪਤਾ ਕਰਨ ਦੇ ਲਈ :

> ਆਸ਼ਿਆ ਨੇ ਇਹ ਵਿਧੀ ਵਰਤੀ : $\frac{22}{55} = \frac{22}{55} \times \frac{100}{100} = 40\%$ (ਉਹ ਅਨੁਪਾਤ ਨੂੰ $\frac{100}{100} = 1$ ਨਾਲ ਗੁਣਾ ਕਰ ਰਹੀ ਹੈ ਅਤੇ ਪ੍ਰਤੀਸ਼ਤ ਵਿੱਚ ਬਦਲ ਰਹੀ ਹੈ)

ਜਾਨ ਨੇ ਇਕਾਈ ਵਿਧੀ ਵਰਤੀ : 55 km ਵਿੱਚੋਂ 22 km ਦੀ ਦੂਰੀ ਤੈਅ ਕੀਤੀ ਜਾ ਚੁੱਕੀ ਹੈ। 1 km ਵਿੱਚੋਂ $\frac{22}{55}$ km ਦੂਰੀ ਤੈਅ ਕੀਤੀ ਗਈ ਹੈ 100 km ਵਿੱਚੋਂ $\frac{22}{55} \times 100$ km ਦੂਰੀ ਤੈਅ ਕੀਤੀ ਗਈ ਹੈ ਭਾਵ 40% ਦੂਰੀ ਤੈਅ ਕੀਤੀ ਗਈ ਹੈ।

ਦੋਨਾਂ ਦਾ ਉੱਤਰ ਇੱਕ ਤਰ੍ਹਾਂ ਦਾ ਹੀ ਪਾਇਆ ਗਿਆ ਅਤੇ ਇਸਦਾ ਉੱਤਰ ਇਸ ਤਰ੍ਹਾਂ ਹੈ : ਰੁਕਣ ਵਾਲੇ ਸਥਾਨ ਦੀ ਸਕੂਲ ਤੋਂ ਦੂਰੀ ਕੁੱਲ ਤੈਅ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਦੂਰੀ ਦਾ 40% ਸੀ। ਇਸ ਲਈ, ਤੈਅ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਬਾਕੀ ਦੂਰੀ ਦਾ ਪ੍ਰਤੀਸ਼ਤ = 100% – 40% = 60%

ਕੋਸ਼ਿਸ਼ ਕਰੋ

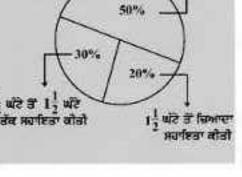
ਇੱਕ ਪ੍ਰਾਇਮਰੀ ਸਕੂਲ ਵਿੱਚ ਮਾਪਿਆਂ ਕੋਲੋਂ ਪੁੱਛਿਆ ਗਿਆ ਕਿ ਉਹ ਆਪਣੇ ਬੱਚਿਆਂ ਦੇ ਘਰ ਦੇ ਕੰਮ

ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਨ ਦੇ ਲਈ ਪ੍ਰਤੀ ਦਿਨ ਕਿੰਨੇ ਘੰਟੇ ਬਿਤਾਉਂਦੇ ਹਨ। 90 ਮਾਪਿਆਂ ਨੇ 🗍 ਘੰਟੇ

ਤੋਂ । ¹/₂ ਘੰਟੇ ਤਕ ਸਹਾਇਤਾ ਕੀਤੀ। ਜਿੰਨੇ ਸਮੇਂ ਦੇ ਲਈ ਮਾਪਿਆਂ ਨੇ ਆਪਣੇ ਬੱਚਿਆਂ ਦੀ ਸਹਾਇਤਾ ਕਰਨਾ ਦੱਸਿਆ ਉਸਦੇ ਅਨੁਸਾਰ ਮਾਪਿਆਂ ਦੀ ਵੰਡ ਨਾਲ ਦਿੱਤੀ ਗਈ ਚਿੱਤਰ ਵਿੱਚ ਦਿਖਾਈ ਗਈ ਹੈ

ਜਿਹੜੀ ਇਸ ਤਰ੍ਹਾਂ ਹੈ : 20% ਨੇ ਪ੍ਰਤੀ ਦਿਨ 1 - ਘੋਟੇ ਤੋਂ ਜ਼ਿਆਦਾ

ਸਹਾਇਤਾ ਦਿੱਤੀ, 30% ਨੇ $rac{1}{2}$ ਘੰਟੇ ਤੋਂ 1 $rac{1}{2}$ ਘੰਟੇ ਤੱਕ ਸਹਾਇਤਾ ਕੀਤੀ। 50% ਨੇ ਬਿੱਲਕੁਲ ਸਹਾਇਤਾ ਨਹੀਂ ਕੀਤੀ।


ਇਸਦੇ ਅਧਾਰ ਤੇ ਹੇਠਾਂ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਉ :

- (i) ਕਿੰਨੇ ਮਾਪਿਆਂ ਦਾ ਸਰਵੇ ਕੀਤਾ ਗਿਆ ?
- (ii) ਕਿੰਨੇ ਮਾਪਿਆਂ ਨੇ ਕਿਹਾ ਕਿ ਉਹਨਾਂ ਨੇ ਸਹਾਇਤਾ ਨਹੀਂ ਕੀਤੀ ?
- (iii) ਕਿੰਨੇ ਮਾਪਿਆਂ ਨੇ ਕਿਹਾ ਹੈ ਕਿ ਉਹਨਾਂ 1 1/2 ਘੰਟੇ ਤੋਂ ਜ਼ਿਆਦਾ ਸਹਾਇਤਾ ਕੀਤੀ ?

ਅਭਿਆਸ 8.1

- 1. ਹੇਠਾਂ ਲਿਖਿਆਂ ਦਾ ਅਨੁਪਾਤ ਪਤਾ ਕਰੋ :
 - (a) ਇੱਕ ਸਾਇਕਲ ਦੀ 15 km ਪ੍ਰਤੀ ਘੰਟੇ ਦੀ ਗਤੀ ਦਾ ਇੱਕ ਸਕੂਟਰ ਦੀ 30 km ਪ੍ਰਤੀ ਘੰਟੇ ਦੀ ਗਤੀ ਨਾਲ।
 - (b) 5 m ਦਾ 10 km ਨਾਲ (c) 50 ਪੈਸੇ ਦਾ ₹ 5 ਨਾਲ
- ਹੇਠਾਂ ਲਿਖੇ ਅਨੁਪਾਤਾਂ ਨੂੰ ਪ੍ਰਤੀਸ਼ਤ ਵਿੱਚ ਬਦਲੋ : (a) 3 : 4 (b) 2 : 3
- 25 ਵਿਦਿਆਰਥੀਆਂ ਵਿੱਚੋਂ 72% ਵਿਦਿਆਰਥੀ ਗਣਿਤ ਵਿੱਚ ਚੰਗੇ ਹਨ। ਕਿੰਨੇ ਵਿਦਿਆਰਥੀ ਗਣਿਤ ਵਿੱਚ ਚੰਗੇ ਨਹੀਂ ਹਨ?
- ਇੱਕ ਫੁੱਟਬਾਲ ਟੀਮ ਨੇ ਕੁੱਲ ਜਿੰਨੇ ਮੈਚ ਖੇਡੇ ਉਹਨਾਂ ਵਿੱਚੋਂ 10 ਮੈਚਾਂ ਵਿੱਚ ਜਿੱਤ ਹਾਸਿਲ ਕੀਤੀ। ਜੇ ਉਹਨਾਂ ਦੀ ਜਿੱਤ ਦਾ ਪ੍ਤੀਸ਼ਤ 40 ਸੀ ਤਾਂ ਉਸ ਟੀਮ ਨੇ ਕੁੱਲ ਕਿੰਨੇ ਮੈਚ ਖੇਡੇ ?

Downloaded from https:// www.studiestoday.com

ਬਿੱਲਕੁਲ ਸਹਾਇਤਾ ਨਹੀਂ ਕੀਤੀ

128 🖩 ਗਣਿਤ

- 5. ਜੇ ਚਮੇਲੀ ਦੇ ਕੋਲ ਆਪਣੀ ਰਕਮ ਦਾ 75% ਖਰਚ ਕਰਨ ਦੇ ਬਾਅਦ ₹ 600 ਬਚੇ ਤਾਂ ਪਤਾ ਕਰੋ ਉਸਦੇ ਕੋਲ ਸ਼ੁਰੂ ਵਿੱਚ ਕਿੰਨੀ ਰਕਮ ਸੀ ?
- 6. ਜੇ ਕਿਸੇ ਸ਼ਹਿਰ ਵਿੱਚ 60% ਵਿਅਕਤੀ ਕ੍ਰਿਕੇਟ ਪਸੰਦ ਕਰਦੇ ਹਨ, 30% ਫੁੱਟਬਾਲ ਪਸੰਦ ਕਰਦੇ ਹਨ ਅਤੇ ਬਾਕੀ ਹੋਰ ਖੇਡਾਂ ਪਸੰਦ ਕਰਦੇ ਹਨ, ਤਾਂ ਪਤਾ ਕਰੋ ਕਿ ਕਿੰਨੇ ਪ੍ਰਤੀਸ਼ਤ ਵਿਅਕਤੀ ਹੋਰ ਖੇਡਾਂ ਪਸੰਦ ਕਰਦੇ ਹਨ ? ਜੇ ਕੁੱਲ ਵਿਅਕਤੀ 50 ਲੱਖ ਹਨ ਤਾਂ ਹਰੇਕ ਤਰ੍ਹਾਂ ਦੀ ਖੇਡ ਨੂੰ ਪਸੰਦ ਕਰਨ ਵਾਲੇ ਵਿਅਕਤੀਆਂ ਦੀ ਅਸਲ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।

8.2 ਲਾਭ ਪ੍ਰਤੀਸ਼ਤ ਜਾਂ ਹਾਨੀ ਪ੍ਰਤੀਸ਼ਤ ਪਤਾ ਕਰਨਾ

ਸਾਨੂੰ ਆਪਣੇ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਆਮ ਤੌਰ 'ਤੇ ਹੇਠਾਂ ਲਿਖੇ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸੂਚਨਾਵਾਂ ਮਿਲਦੀਆਂ ਹਨ :

(i) ਅੰਕਿਤ ਮੁੱਲ 'ਤੇ 25% ਦੀ ਕਮੀ
 (ii) ਪੈਟਰੋਲ ਦੇ ਮੁੱਲ 'ਤੇ 10% ਵਾਧਾ

ਆਉ, ਕੁੱਝ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ 'ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹਾਂ :

ਉਦਾਹਰਣ 2 : ਪਿਛਲੇ ਸਾਲ ਇੱਕ ਸਕੂਟਰ ਦਾ ਮੁੱਲ ₹ 34,000 ਸੀ। ਇਸ ਸਾਲ ਇਸਦੇ ਮੁੱਲ ਵਿੱਚ 20% ਵਾਧਾ ਹੋ ਗਿਆ ਹੈ। ਸਕੂਟਰ ਦਾ ਨਵਾਂ ਮੁੱਲ ਪਤਾ ਕਰੋ ?

ਹੱਲ :

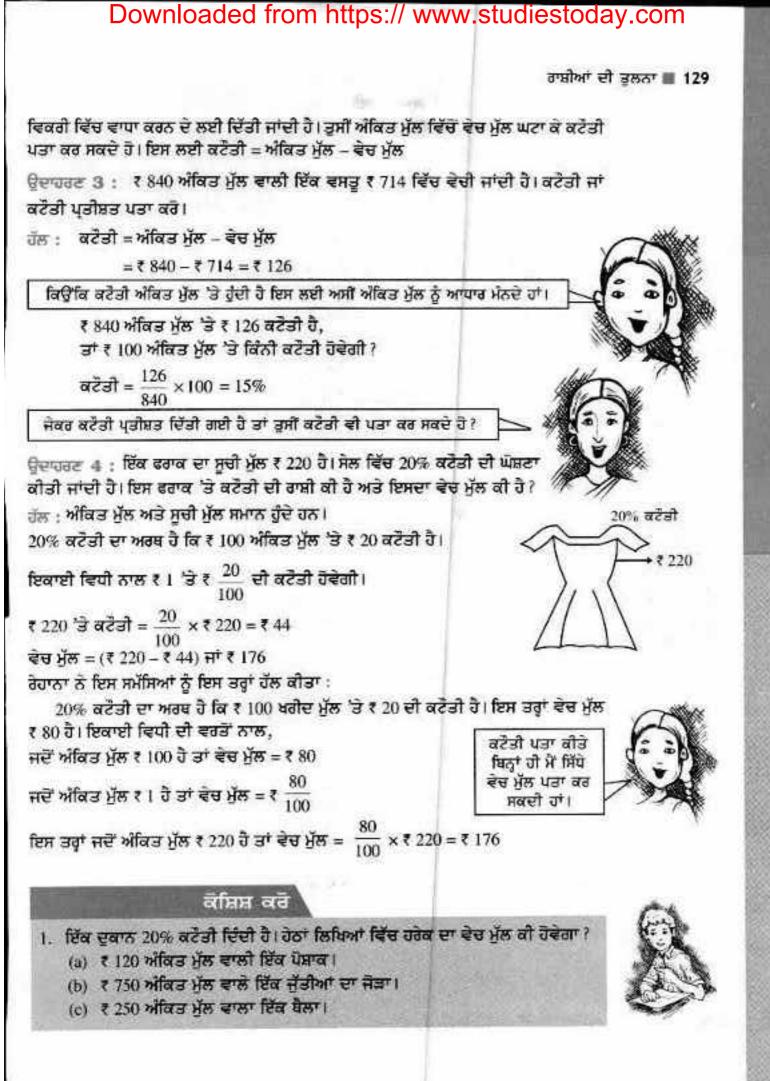
ਅਨੀਤਾ ਨੇ ਕਿਹਾ ਕਿ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਮੁੱਲ ਵਿੱਚ ਵਾਧਾ ਪਤਾ ਕਰੇਗੀ ਜੋ ਕਿ ₹ 34,000 ਦਾ 20% ਹੈ ਅਤੇ ਫਿਰ ਸਕੂਟਰ ਦਾ ਨਵਾਂ ਮੁੱਲ ਪਤਾ ਕਰੇਗੀ ₹ 34,000 ਦਾ 20% = $\frac{20}{100} \times ₹ 34,000$ = ₹ 6800 ਨਵਾਂ ਮੁੱਲ = ਪੁਰਾਣਾ ਮੁੱਲ + ਵਾਧਾ = ₹ 34,000 + ₹ 6,800 = ₹ 40,800	ਜਾਂ	ਸੁਨੀਤਾ ਨੇ ਇਕਾਈ ਵਿਧੀ ਦੀ ਵਰਤੋਂ ਕੀਤੀ। 20% ਵਾਧੇ ਦਾ ਅਰਥ ਹੈ ਕਿ ₹ 100 ਵਾਧੇ ਤੋਂ ਬਾਅਦ ₹ 120 ਹੋ ਜਾਂਦੇ ਹਨ। ਇਸ ਲਈ ₹ 34000 ਵੱਧ ਕੇ ਕਿੰਨਾ ਹੋ ਜਾਣਗੇ? ਵਾਧੇ ਤੋਂ ਬਾਅਦ ਮੁੱਲ = $\frac{120}{100} \times ₹ 34,000$ = ₹ 40,800
--	-----	---

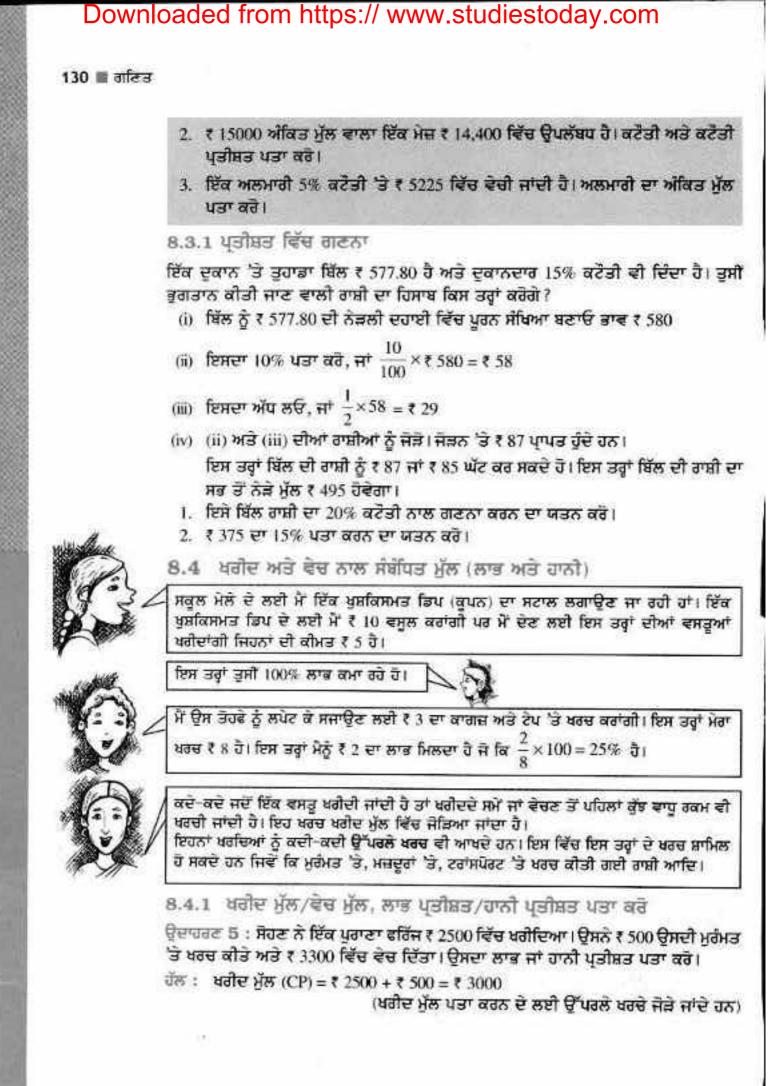
ਇਸੇ ਤਰ੍ਹਾਂ ਮੁੱਲ ਵਿੱਚ ਦਿੱਤੀ ਪ੍ਤੀਸ਼ਤ ਕਮੀ ਨਾਲ ਅਸਲ ਕਮੀ ਪਤਾ ਕਰੋ ਅਤੇ ਇਹ ਅਸਲ ਮੁੱਲ ਵਿੱਚੋਂ ਘਟਾਉਣ 'ਤੇ ਨਵਾਂ ਮੁੱਲ ਹੋਵੇਗਾ।

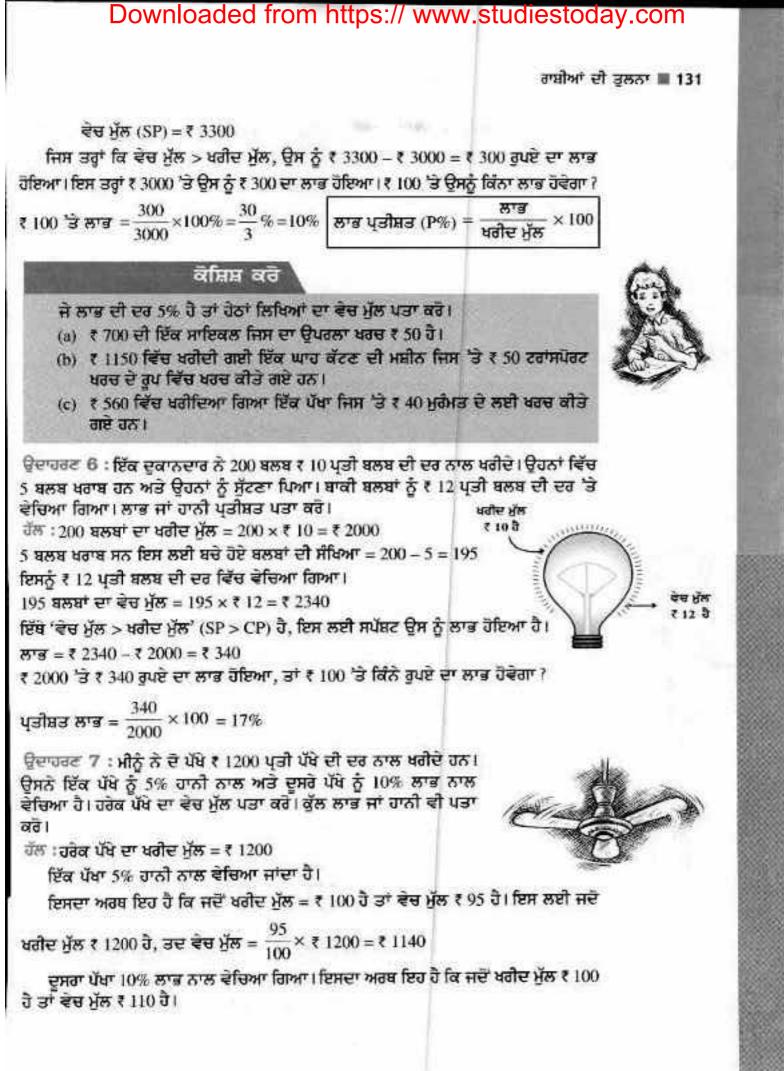
ਮੰਨ ਲਓ ਵਿਕਰੀ ਵਿੱਚ ਵਾਧਾ ਕਰਨ ਦੇ ਲਈ ਸਕੂਟਰ ਦਾ ਮੁੱਲ 5% ਘਟਾ ਦਿੱਤਾ ਗਿਆ, ਤਾਂ ਸਕੂਟਰ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰਦੇ ਹਾਂ।

ਸਕੂਟਰ ਦਾ ਮੁੱਲ = ₹ 34000

ਮੁੱਲ ਵਿੱਚ ਕਮੀ = ₹ 34000 ਦਾ 5% = $\frac{5}{100}$ ×₹ 34000 = ₹ 1700


ਨਵਾਂ ਮੁੱਲ = ਪੁਰਾਣਾ ਮੁੱਲ – ਮੁੱਲ ਵਿੱਚ ਕਮੀ = ₹ 34000 – ₹ 1700 = ₹ 32300


ਅਸੀਂ ਇਸ ਨੂੰ ਅਧਿਆਇ ਦੇ ਅਗਲੇ ਭਾਗ ਵਿੱਚ ਵੀ ਪ੍ਰਯੋਗ ਕਰਾਂਗੇ।


8.3 ਕਟੌਤੀ ਪਤਾ ਕਰਨਾ

ਕਿਸੇ ਵਸਤੂ ਦੇ ਅੰਕਿਤ ਮੁੱਲ ਵਿੱਚ ਦਿੱਤੀ ਜਾਣ ਵਾਲੀ ਕਮੀ ਨੂੰ ਕਟੌਤੀ ਆਖਦੇ ਹਾਂ। ਇਹ ਆਮ ਤੌਰ 'ਤੇ ਖਰੀਦਦਾਰ ਨੂੰ ਖਰੀਦਦਾਰੀ ਦੇ ਲਈ ਧਿਆਨ ਖਿੱਚਣ ਲਈ ਜਾਂ ਸ਼ਾਮਾਨ ਦੀ

132 🔳 ਗਣਿਤ

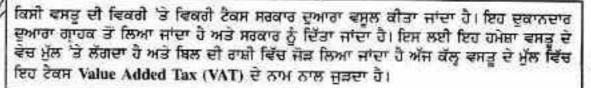
ਇਸ ਲਈ, ਜਦੋਂ ਖਗੀਦ ਮੁੱਲ ₹ 1200 ਹੈ ਤਦ ਵੇਚ ਮੁੱਲ = $\frac{110}{100}$ × ₹ 1200 = ₹ 1320

ਕੁੱਲ ਮਿਲਾ ਕੇ ਲਾਭ ਹੋਇਆ ਜਾਂ ਹਾਨੀ

ਇਹ ਜਾਨਣ ਦੇ ਲਈ ਕਿ ਕੁੱਲ ਮਿਲਾ ਕੇ ਲਾਭ ਹੋਇਆ ਜਾਂ ਹਾਨੀ ਸਾਨੂੰ ਕੁੱਲ ਖਰੀਦ ਮੁੱਲ ਅਤੇ ਕੁੱਲ ਵੇਚ ਮੁੱਲ ਪਤਾ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਹੈ।

ਕੁੱਲ ਖਰੀਦ ਮੁੱਲ = ₹ 1200 + ₹ 1200 = ₹ 2400 ਕੁੱਲ ਵੇਚ ਮੁੱਲ = ₹ 1140 + ₹ 1320 = ₹ 2460 ਕਿਉਂਕਿ ਕੁੱਲ ਵੇਚ ਮੁੱਲ > ਕੁੱਲ ਖਰੀਦ ਮੁੱਲ ਇਸ ਲਈ, ₹ (2460 – 2400) ਜਾਂ ₹ 60 ਦਾ ਲਾਭ ਹੋਇਆ

ਕੋਸ਼ਿਸ਼ ਕਰੋ


ਇੱਕ ਦੁਕਾਨਦਾਰ ਨੇ ਦੋ ਟੈਲੀਵਿਜ਼ਨ ਸੈੱਟ ₹ 10,000 ਪ੍ਰਤੀ ਸੈੱਟ ਦੀ ਦਰ ਨਾਲ ਖਰੀਦੇ। ਉਸਨੇ ਇੱਕ ਨੂੰ 10% ਹਾਨੀ ਨਾਲ ਅਤੇ ਦੂਸਰੇ ਨੂੰ 10% ਲਾਭ ਨਾਲ ਵੇਚ ਦਿੱਤਾ। ਪਤਾ ਕਰੋ ਕਿ ਕੁੱਲ ਮਿਲਾ ਕੇ ਉਸ ਨੂੰ ਇਸ ਸ਼ੈਂਦੇ ਵਿੱਚ ਲਾਭ ਹੋਇਆ ਜਾਂ ਹਾਨੀ।

8.5 ਵਿਕਰੀ ਟੈਕਸ / Value Added Tax (ਵੈਟ)

ਅਧਿਆਪਕ ਨੇ ਜਮਾਤ ਵਿੱਚ ਇੱਕ ਬਿੱਲ ਦਿਖਾਇਆ ਜਿਸ ਵਿੱਚ ਹੇਠਾਂ ਲਿਖੇ ਸਿਰਲੇਖ ਲਿਖੇ ਹੋਏ ਸਨ :

	ਬਿੱਲ ਨੰ.			ਦਿਨ
		ਮੀਨੂ		
ਲੜੀ ਨੰ.	ਵਸਤੂ	ਮਾਤਰਾ	ਦਰ	ਰਾਸ਼ੀ
		ਬਿੱਲ ਰਾਸ਼ੀ + ਵਿਕਰੀ ਟੈਕਸ (5%)		
	ਕੁੱਲ ਜੋੜ			2012

ST ਦਾ ਅਰਥ ਹੈ Sales Tax ਜਾਂ ਵਿਕਰੀ ਟੈਕਸ। ਜਦੋਂ ਅਸੀਂ ਵਸਤੂਆਂ ਨੂੰ ਖਰੀਦਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਇਸਦਾ ਭੂਗਤਾਨ ਕਰਨਾ ਪੈਂਦਾ ਹੈ।

ਉਦਾਹਰਣ 8 : (**ਵਿਕਰੀ ਕਰ ਪਤਾ ਕਰਨਾ**) ਕਿਸੇ ਦੁਕਾਨ 'ਤੇ ਇੱਕ ਜੋੜੀ ਰੋਲਰ ਸਕੇਟਸ (ਪਹੀਏ 'ਤੇ ਘੁੰਮਣ ਵਾਲੇ ਜੁੱਤੇ) ਦਾ ਮੁੱਲ ₹ 450 ਸੀ।ਵਸੂਲੇ ਗਏ ਵਿਕਰੀ ਟੈਕਸ ਦੀ ਦਰ 5% ਸੀ। ਬਿੱਲ ਦੀ ਭੁਗਤਾਨ ਰਾਸ਼ੀ ਪਤਾ ਕਰੋ।

ਰਾਸ਼ੀਆਂ ਦੀ ਤੁਲਨਾ 🗏 133

ਹੱਲ : र 100 'ਤੇ ਭੁਗਤਾਨ ਕੀਤਾ ਗਿਆ ਟੈਕਸ र 5 ਸੀ।

₹ 450 `ਤੋਂ ਭੁਗਤਾਨ ਕੀਤੇ ਜਾਣ ਵਾਲਾ ਟੈਕਸ ਹੋਵੇਗਾ = $\frac{5}{100}$ ×₹ 450 = ₹ 2 2.50 ਬਿਲ ਦੀ ਭੁਗਤਾਨ ਰਾਸ਼ੀ = ਖਰੀਦ ਮੁੱਲ + ਵਿਕਰੀ ਟੈਕਸ = ₹ 450 + ₹ 22.50 = ₹ 472.50

ਉਦਾਹਰਣ 9 : ਵਹੀਦਾ ਨੇ ਇੱਕ ਕੂਲਰ 10% ਟੈਕਸ ਸਮੇਤ ₹ 3300 ਵਿੱਚ ਮਰੀ/ਦਿਆ ਹੈ। ਵੈਟ ਦੇ ਜੁੜਨ ਤੋਂ ਪਹਿਲਾਂ ਕੂਲਰ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।[ਵੈਟ (VAT) Value / dc/ed Tax] ਹੱਲ : ਮੁੱਲ ਵਿੱਚ ਵੈਟ ਵੀ ਸ਼ਾਮਿਲ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ 10% ਵੈਟ ਦਾ ਅਰਥ ਹੈ ਕਿ ਜੇਕਰ ਵੈਟ ਰਹਿਤ ਮੁੱਲ ₹ 100 ਹੈ ਤਾਂ ਓੁ/ਸ 'Aਮੇਤ ਮੁੱਲ ₹ 110 ਹੈ। ਹੁਣ ਜੇਕਰ ਵੈਟ ਸਮੇਤ ਮੁੱਲ ₹ 110 ਹੈ ਤਾਂ ਅਸਲ ਮੁੱਲ ₹ 100 ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਜਦੋਂ ਕਿ ਟੈਕਸ ਸਮੇਤ ਮੁੱਲ ₹ 3300 ਹੈ ਤਾਂ ਅਸਲ ਮੁੱਲ = $\frac{10.0}{1.10}$ ₹ 3300 = ₹ 3000

ਕੋਸ਼ਿਸ਼ ਕਰੋ

- ਹੇਠਾਂ ਲਿਖੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਖਰੀਦਣ 'ਤੇ ਜੇਕਰ 5% ਵਿਕਰੀ' ਟੈਂਕਸ ਜੁੜਦਾ ਹੈ ਤਾਂ ਹਰੇਕ ਦਾ ਖਰੀਦ (ਵੇਚ) ਮੁੱਲ ਪਤਾ ਕਰੋ :
 - (i) ₹ 50 ਵਾਲਾ ਇੱਕ ਤੋਲੀਆ।
 - (ii) ਸਾਬਣ ਦੀਆਂ ਦੋ ਟਿੱਕੀਆਂ ਜਿਸ ਵਿੱਚ ਹਰੇਕ ਦਾ ਮੁੱਲ 衰 35 ਹੈ।
 - (iii) 🕈 15 ਪ੍ਰਤੀ ਕਿਲੋਗ੍ਰਾਮ ਦੀ ਦਰ ਨਾਲ 5 kg ਆਟਾ।
- ਹੇਠਾਂ ਲਿਖੀਆਂ ਵਸਤੂਆਂ ਦੇ ਮੁੱਲ ਵਿੱਚ ਜੇਕਰ 8% ਵੈਟ / aਾਮਿਲ ਹੈ ਤਾਂ ਅਸਲ / ਰੁੱਲ ਪਤਾ ਕਰੋ।
 - (i) ₹ 14,500 ਵਿੱਚ ਖਰੀਦਿਆ ਗਿਆ ਇੱਕ ਟੈਲੀਓ ਜ਼ਨ
 - (ii) ₹180 ਵਿੱਚ ਖਗੋਦੀ ਗਈ ਸ਼ੈਂਪੂ ਦੀ ਇੱਕ ਸ਼ੀਸ਼ੀ

ਸੋਚੋ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ 💘

- ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ ਦੁਗਣਾ ਕਰਨ 'ਤੇ ਉਸ ਸੰਖਿਆ ਵਿੱਚ 100% ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਜੇ ਅਸੀਂ ਉਸ ਸੰਖਿਆ ਨੂੰ ਅੱਧਾ ਕਰ ਦਈਏ ਤਾਂ ਕਮੀ ਕਿੰਨੇ ਪ੍ਰਭ ਸੇਸ਼ਤ ਹੋਵੇਗੀ ?
- ₹ 2400 ਦੀ ਤੁਲਨਾ ਵਿੱਚ ₹ 2000 ਕਿੰਨਾ ਪ੍ਰ? ਤੀਸ਼ਤ ਘੱਟ ਹੈ ? ਕੀ ਇਹ: ਪ੍ਰਤੀਸ਼ਤ ਉਨ੍ਹਾਂ ਹੀ ਹੈ ਜਿੰਨਾਂ ₹ 2000 ਦੀ ਤੁਲਨਾ ਵਿੱਚ ₹ 2400 ਜਿ ਆਦਾ ਹੈ ?

ਅਭਿਆਸ 8.2

- ਇੱਕ ਵਿਅਕਤੀ ਦੀ ਤਨਖਾਹ ਵਿੱਚ 10% ਵਭਾਧਾ ਹੁੰਦਾ ਹੈ। ਜੇ ਉਸਦੀ ਨਵੀਂ ਤਨਖਾਹ ₹ 1,54,000 ਹੈ ਤਾਂ ਉਸਦੀ ਮੂਲ ਤਨਖਾਹ ਪਤਾ ਕਰੋ।
- ਐਤਵਾਰ ਨੂੰ 845 ਵਿਅਕਤੀ ਚਿੜੀਆ ਘਰ ਗਏ। ਸੋਮਵਾਰ ਨੂੰ ਸਿਰਫ 169 ਵਿਅਕਤੀ ਗਏ। ਚਿੜੀਆਘਰ ਦੀ ਸੈਰ ਕਰਨ ਵਾਲੇ ਵਿਅਕਤੀਆਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਸੋਮਵਾਰ ਨੂੰ ਕਿੰਨੇ ਪ੍ਰਤੀਸ਼ਤ ਕਮੀ ਹੋਈ ?
- ਇੱਕ ਦੁਕਾਨਦਾਰ ₹ 2400 ਵਿੱਚ 80 ਵਸਤੂਆਂ ਖਰੀਦਦਾ ਹੈ ਅਤੇ 'ਉਹਨਾਂ ਨੂੰ 16% ਲਾਭ 'ਤੇ ਵੇਚਦਾ ਹੈ। ਇੱਕ ਵਸਤੂ ਦਾ ਵੇਚ ਮੁੱਲ ਪਤਾ ਕਰੋ।

134 🕮 ਗਣਿਤ

- 4. ਇੱਕ ਵਸਤੂ ਦਾ ਮੁੱਲ ₹ 15,500 ਸੀ। ₹ 450 ਇਸਦੀ ਮੁਰੰਮਤ 'ਤੇ ਖਰਚ ਕੀਤੇ ਗਏ ਸਨ। ਜੇ ਇ. ٩ ਨੂੰ 15% ਲਾਭ 'ਤੇ ਵੇਚਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਉਸਦਾ ਵੇਚ ਮੁੱਲ ਪਤਾ ਕਰੋ।
- 5. ਨਿੱਕ \ 'CR ਅਤੇ TV ਵਿੱਚੋਂ ਹਰੇਕ ਨੂੰ ₹ 8000 'ਤੇ ਖਰੀਦਿਆ ਗਿਆ। ਦੁਕਾਨਦਾਰ ਨੂੰ \\CR 'ਤੇ 4% ਹਾਨੀ ਅਤੇ TV 'ਤੇ 8% ਲਾਭ ਹੋਇਆ। ਇਸ ਪੂਰੇ ਲੈਣ-ਦੇਣ ਵਿੱਚ ਲਾਜ਼ ਜਾਂ ਹਾਨੀ ਪ੍ਰਤੀਸ਼ਤ ਪਤਾ ਕਰੋ।
- 6. ਸੋਲ ਦੇ ਦੋ ਰਾਨ ਇੱਕ ਦੁਕਾਨ ਸਾਰੀਆਂ ਵਸਤੂਆਂ ਦੇ ਅੰਕਿਤ ਮੁੱਲ 'ਤੇ 10% ਕਟੋਤੀ ਦਿੰਦੀ ਹੈ। ₹ 1450 ਅੰਕਿਤ ਮੁੱਲ ਵਾਲੀ ਇੱਕ ਜੀਨ ਅਤੇ ਦੋ ਕਮੀਜ਼ਾਂ, ਜਿਸ ਵਿੱਚ ਹਰੇਕ ਦਾ ਅੰਕਿਤ' ਮੁੱਲਾ ₹ 850 ਹੈ, ਨੂੰ ਖਰੀਦਣ ਦੇ ਲਈ ਕਿਸੇ ਗ੍ਰਾਹਕ ਨੂੰ ਕਿੰਨਾ ਭੁਗਤਾਨ ਕਰਨਾ ਪਵੇਗਾ ?
- 7. ਇੱਕ ਦੁੱਧ ਵਾਲੇ ਨੇ ਆ ਪਣੀਆਂ ਦੋ ਮੱਝਾਂ ਨੂੰ ₹ 20,000 ਪ੍ਰਤੀ ਮੱਝ ਦੀ ਦਰ ਨਾਲ ਵੇਚਿਆ। ਇੱਕ ਮੱਝ 'ਤੇ ਉਸ ਨੇ 5% ਲਾਭ ਹੋਇਆ ਅਤੇ ਦੂਸਰੀ 'ਤੇ ਉਸ ਨੂੰ 10% ਹਾਨੀ ਹੋਈ। ਇਸ ਸੌਦੇ ਵਿੱਚ ਉਮਦਾ ਕੁੱਲ ਲਾਭ ਜਾਂ ਹਾ ਨੀ ਪਤਾ ਕਰੋ।(ਸੰਕੇਤ : ਪਹਿਲਾਂ ਹਰੇਕ ਦਾ ਖ਼ਰੀਦ ਮੱਲ ਪਤਾ ਕਰੋ।)
- 8. ਇੱਕ ਟੈਲੀਵਿਜ਼ਨ ਦਾ ਮੁੱਲ ₹ 13,000 ਹੈ। ਇਸ 'ਤੇ 12% ਦੀ ਦਰ ਨਾਲ ਵਿਕਰੀ ਟੈਕਸ ਵ੍ਯਾਲਿਆ ਜਾਂਦਾ ਹੈ। ਜੇ ਵਿਨੋਦ ਇਸ ਟੈਲੀਜ਼ਿਜ਼ਨ ਨੂੰ ਖਰੀਦਦਾ ਹੈ =ਾਂ ਉਸਦੇ ਦੁਆਰਾ ਭੁਗਤਾਨ ਕੀਤੀ ਜਾਣ ਖ਼ਾਲੀ ਰਾਸ਼ੀ ਪਤਾ ਕਰੋ।

- 9. ਅਰੁਣ ਇੱਕ ਜੋੜੀ ਸਕੇਟਸ (ਪ੍ਰੀਏ ਵਾਲੇ ਬੂਟ) ਕਿਸੇ ਸੇਲ ਤੋਂ ਖਰੀਦ ਕੇ ਲਿਆਇਆ ਜਿਸ '\ो ਦਿੱਤੀ ਗਈ ਕਟੌਤੀ ਦੀ ਦਰ 20% ਸੀ। ਜੋ ਉਸ ਦੁਆਰਾ ਭੁਗਤਾਨ ਖੀਤੀ ਜਾਣ ਵਾਲੀ ਰਾ⊾ੀ ₹ 1600 ਹੈ ਤਾਂ ਅੰਕਿਤ ਮੁੱਲ ਪਤਾ ਕਰੋ।
- 10. ਮੈਂ ਇੱਕ ਹੇਅਰ ਡਰਾਇਰ (ਵਾਲ ਸ਼ੁਕਾ\ਉਣ ਵਾਲਾ ਯੰਤਰ) 8% ਵੈਟ ਸਮੇਤ ₹ 5400 ਵਿੱਚ ਖਰੀਦਿਆ। ਵੈਟ ਨੂੰ ਜੋੜਨ ਤੋਂ ਪਹਿਲਾਂ ਦਾ ਉਸਦ\`ਮੁੱਲ ਪਤਾ ਕਰੋ।

8.6 ਮਿਸ਼ਰਤ ਵਿਆਜ

ਸ਼ਾਇਦ ਤੁਹਾਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਕਥਨ ਮਿਲੇ ਹੋਣ ਗੇ 'ਬੈਂਕ ਵਿੱਚ FD (ਮਿਆਦੀ ਜਮ੍ਹਾਂ) 'ਤੇ ਇੱਕ ਸਾਲ ਦਾ ਵਿਆਜ 9% ਸਲਾਨਾ ਦੀ ਦਰ ਨਾਲ ਜਾਂ ਬਚਤ' ਖਾਤੇ ਵਿੱਚ ਵਿਆਜ ਦੀ ਦਰ 5% ਸਲਾਨਾ।

ਬੈਂਕ ਜਾਂ ਡਾਕਖਾਨੇ ਵਰਗੀਆਂ ਸੰਸਥਾਵਾਂ ਦੇ ਵਿੱਚ ਜਮਾਂ ਕੀਤੀ ਗਈ ਰਕਮ 'ਤੇ ਇਹਨਾਂ ਸੰਸਥਾਵਾਂ ਦੁਆਰਾ ਭੁਗਤਾਨ ਕੀਤੀ ਗਈ ਵਾਧੂ ਰਕਮ ਨੂੰ ਵਿਆਜ ਆ ਖਦੇ ਹਨ। ਜਦੋਂ ਵਿਅਕਤੀ ਰਕਮ ਉਧਾਰ ਲੈਂਦੇ ਹਨ ਤਾਂ ਉਹਨਾਂ ਦੁਆਰਾ ਵੀ ਵਿਲ਼ਆਜ ਦਾ ਭੁਗਤਾਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਅਸੀਂ ਸਧਾਰਨ ਵਿਆਜ ਗਣਨਾ ਕਰਨਾ ਪਹਿਲਾਂ ਤੋਂ ਹੀ ਜਾਣਦੇ ਹਾਂ।

ਉਦਾਹਰਣ 10 : ₹ 10.000 ਦੀ ਰਾਸ਼ੀ 15% ਸਲਾਨਾ ਵਿਆਜ ਦਰ 'ਤੇ 2 ਸਾਲ ਦੇ ਲਈ ਉਧਾਰ ਲਈ ਜਾਂਦੀ ਹੈ। ਇਸ ਰਾਸ਼ੀ 'ਤੇ ਸਾਧਾਰਨ ਵਿਆਜ ਅਤੇ 2 ਸਾਲ ਦੇ ਔਤ ਵਿੱਚ ਭੁਗਤਾਨ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਰਾਸ਼ੀ ਪਤਾ ਕਰੋ।

ਹੱਲ ∶₹ 100 'ਤੇ 1 ਸਾਲ ਦੇ ਲਈ ਦਿੱਤਾ ਵਿਆਜ ₹ 15 ਹੈ।

ਇਸ ਲਈ 10,000 ਦਾ 1 ਸਾਲ ਦਾ ਵਿਆਜ = $\frac{15}{100} \times 10000 = ₹ 1500$ 2 ਸਾਲ ਦਾ ਵਿਆਜ = ₹ 1500 × 2 = ₹ 3000

ਰਾਸ਼ੀਆਂ ਦੀ ਤੁਲਨਾ 🔳 135

2 ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ ਭੁਗਤਾਨ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਰਾਸ਼ੀ = ਮੁਲਧਨ + ਵਿਆਜ

=₹ 10000 + ₹ 3000 = ₹ 13000

ਕੋਸ਼ਿਸ਼ ਕਰੋ

5% ਸਲਾਨਾ ਦਰ ਨਾਲ १ 15000 ਦਾ 2 ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ ਵਿਆਜ ਅਤੇ ਭੂਗਤਾਨ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਕੁੱਲ ਰਾਸ਼ੀ ਪਤਾ ਕਰੇ।

ਮੇਰੇ ਪਿਤਾ ਨੇ ਕੁੱਝ ਰਕਮ 3 ਸਾਲ ਦੇ ਲਈ ਡਾਕਘਰ ਵਿੱਚ ਜਮ੍ਹਾਂ ਕਰ ਰੱਖੀ ਹੈ। ਹਰੇਕ ਸਾਲ ਰਕਮ ਦਾ ਵਾਧਾ ਪਿੱਛਲੇ ਸਾਲ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਜ਼ਿਆਦਾ ਹੁੰਦਾ ਹੈ।

ਸਾਡੇ ਕੋਲ ਬੈਂਕ ਵਿੱਚ ਕੁੱਝ ਰਕਮ ਹੈ।ਪ੍ਰਤੀ ਸਾਲ ਕੁੱਝ ਵਿਆਜ ਇਸ ਰਕਮ ਵਿੱਚ ਜੁੜ ਜਾਂਦਾ ਹੈ ਜਿਸਨੂੰ ਪਾਸ ਬੁੱਕ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।ਜੁੜਨ ਵਾਲਾ ਇਹ ਵਿਆਜ ਹਰ ਸਾਲ ਇੱਕ ਸਮਾਨ ਨਹੀਂ ਹੈ। ਹਰੇਕ ਸਾਲ ਇਸ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ।

ਆਮ ਤੌਰ 'ਤੇ ਲਿਆ ਜਾਣ ਵਾਲਾ ਜਾਂ ਭੁਗਤਾਨ ਕੀਤੇ ਜਾਣ ਵਾਲਾ ਵਿਆਜ ਕਦੀ ਸਥਾਰਨ ਨਹੀਂ ਹੁੰਦਾ ਹੈ। ਵਿਆਜ ਦੀ ਗਣਨਾ ਪਿਛਲੇ ਸਾਲ ਦੀ ਰਾਸ਼ੀ 'ਤੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਨੂੰ ਵਿਆਜ ਦਾ ਸੰਯੋਜਨ ਜਾਂ ਮਿਸ਼ਰਤ ਵਿਆਜ (C.1.) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਆਉ, ਅਸੀਂ ਇੱਕ ਉਦਾਹਰਣ `ਤੇ ਚਰਚਾ ਕਰਦੇ ਹਾਂ ਅਤੇ ਹਰੇਕ ਸਾਲ ਦਾ ਵੱਖ-ਵੱਖ ਵਿਆਜ ਪਤਾ ਕਰਦੇ ਹਾਂ। ਹਰੇਕ ਸਾਲ ਸਾਡੀ ਜਮਾਂ ਰਾਸ਼ੀ ਭਾਵ ਮੁਲਧਨ ਬਦਲਦਾ ਹੈ।

ਮਿਸ਼ਰਤ ਵਿਆਜ ਦੀ ਗਟਨਾ

8% ਵਿਆਜ ਦੀ ਦਰ ਨਾਲ ਹਿਨਾ 2 ਸਾਲ ਦੇ ਲਈ ₹ 20,000 ਉਧਾਰ ਲੈਂਦੀ ਹੈ ਜਦਕਿ ਵਿਆਜ ਸਲਾਨਾ ਜੁੜਦਾ ਹੈ।2 ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ ਮਿਸ਼ਰਤ ਵਿਆਜ ਅਤੇ ਉਸਦੇ ਦੁਆਰਾ ਭੁਗਤਾਨ ਕੀਤੇ ਜਾਣ ਵਾਲੀ ਰਾਸ਼ੀ ਪਤਾ ਕਰੋ।

ਅਸਲਮ ਨੇ ਅਧਿਆਪਕ ਨੂੰ ਪੁੱਛਿਆ ਕਿ ਕੀ ਇਸ ਦਾ ਅਰਥ ਹੈ ਕਿ ਉਹਨਾਂ ਨੂੰ ਹਰੇਕ ਸਾਲ ਦਾ ਵਿਆਜ ਵੱਖ-ਵੱਖ ਪਤਾ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। ਅਧਿਆਪਕ ਨੇ ਕਿਹਾ 'ਹਾਂ' ਅਤੇ ਉਸਨੂੰ ਹੇਠਾਂ ਲਿਖੇ ਪਗਾਂ ਦਾ ਉਪਯੋਗ ਕਰਨ ਦੇ ਲਈ ਕਿਹਾ :

ਇੱਕ ਸਾਲ ਦਾ ਸਧਾਰਨ ਵਿਆਜ ਪਤਾ ਕਰੇ ਮੰਨ ਲਓ ਪਹਿਲੇ ਸਾਲ ਦਾ ਮੁਲਧਨ P, ਹੈ

ਇੱਥੇ,

P, = ₹ 20,000

SI, = 8% ਸਲਾਨਾ ਦਰ ਨਾਲ ਪਹਿਲੇ ਸਾਲ ਦਾ ਸਧਾਰਨ ਵਿਆਜ

$$=$$
 $\frac{20000 \times 8}{100} =$ $\frac{1600}{100}$

 ਇਸ ਤੋਂ ਬਾਅਦ ਭੁਗਤਾਨ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਜਾਂ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਰਾਸ਼ੀ ਪਤਾ ਕਰੋ। ਇਹ ਦੂਸਰੇ ਸਾਲ ਦੇ ਲਈ ਮੂਲਧਨ ਬਣ ਜਾਂਦਾ ਹੈ। ਪਹਿਲਾ ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ ਰਾਸ਼ੀ = P₁ + SI₁ = ₹ 20000 + ₹ 1600

= ₹ 21600 = P, (ਦੁਸਰੇ ਸਾਲ ਦਾ ਮੁਲਧਨ)

136 🔳 ਗਣਿਤ

ਇਸਦਾ ਅਰਥ ਇਹ ਹੋਇਆ ਕਿ ਤੁਸੀਂ ਉਸ ਸਮੇਂ ਤੱਕ ਜਮ੍ਹਾਂ ਵਿਆਜ 'ਤੇ ਵਿਆਜ ਦਿੰਦੇ ਹੈ। ਇਸ ਰਾਸ਼ੀ 'ਤੋਂ ਦੂਸਰੇ ਸਾਲ ਦਾ ਵਿਆਜ ਪਤਾ ਕਰੋ।

S1_ = 8% ਸਲਾਨਾਂ ਦਰ ਨਾਲ ਦੂਸਰੇ ਸਾਲ ਦਾ ਸਧਾਰਨ ਵਿਆਜ

$$= \frac{21600 \times 8}{100} = 1728$$

 ਦੂਸਰੇ ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ ਭੁਗਤਾਨ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਜਾਂ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਰਾਸ਼ੀ ਪਤਾ ਕਰੋ।

ਦੁਸਰੇ ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ ਰਾਸ਼ੀ = P, + SI,

ਕੁੱਲ ਦੇਣ ਯੋਗ ਵਿਆਜ =₹ 1600 + ₹ 1728

=₹ 3328

ਰੀਤਾ ਨੇ ਪੁਛਿਆ ਕਿ ਕੀ ਵਿਆਜ ਦੀ ਰਾਸ਼ੀ ਸਧਾਰਨ ਵਿਆਜ ਦੇ ਲਈ ਵੱਖ ਹੋਵੇਗੀ।ਅਧਿਆਪਕ ਨੇ ਉਸਨੂੰ 2 ਸਾਲ ਦਾ ਸਧਾਰਨ ਵਿਆਜ ਕੱਢਣ ਲਈ ਕਿਹਾ ਅਤੇ ਆਪਣੇ ਆਪ ਐਤਰ ਮਹਿਸੂਸ ਕਰਨ ਲਈ ਸਲਾਹ ਦਿੱਤੀ।

2 ਸਾਲ ਦਾ ਸਧਾਰਨ ਵਿਆਜ = ₹
$$\frac{20000 \times 8 \times 2}{100}$$
 = ₹ 3200

ਰੀਤਾ ਨੇ ਕਿਹਾ ਕਿ ਮਿਸ਼ਰਤ ਵਿਆਜ ਦੇ ਕਾਰਨ ਹਿਨਾ ਨੂੰ ₹ 128 ਦਾ ਜ਼ਿਆਦਾ ਭੁਗਤਾਨ ਕਰਨਾ ਪਵੇਗਾ।

ਆਉ, ਹੁਣ ਅਸੀਂ ਸਧਾਰਨ ਵਿਆਜ ਅਤੇ ਮਿਸ਼ਰਤ ਵਿਆਜ ਵਿੱਚ ਐਤਰ ਦੇਖਦੇ ਹਾਂ। र 100 ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹਾਂ। ਸਾਰਣੀ ਨੂੰ ਪੂਰਾ ਕਰਨ ਦੇ ਲਈ ਯਤਨ ਕਰੋ

		ਸਧਾਰਨ ਵਿਆਜ ਦੇ ਅੰਤਰਗਤ	ਮਿਸ਼ਰਤ ਵਿਆਜ ਦੇ ਅੰਤਰਗਤ
ਪਹਿਲਾ ਸਾਲ	ਮੂਲਧਨ	₹ 100.00	₹ 100.00
	10% ਦੀ ਦਰ ਨਾਲ ਵਿਆਜ	₹ 10.00	₹ 10.00
	ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ ਰਾਸ਼ੀ	₹ 110.00	₹ 110.00
ਦੂਸਰਾ ਸਾਲ ਮੁਲਧਨ	₹ 100.00	₹ 110.00	
199	10% ਦੀ ਦਰ ਨਾਲ ਵਿਆਜ	₹ 10.00	₹ 11.00
ਸਾਲ	ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ ਰਾਸ਼ੀ	₹ (110 + 10) = ₹120.00	₹ 121.00
ਤੀਸਰਾ ਸਾਲ ਮੂਲਧਨ	₹ 100.00	₹ 121.00	
	10% ਦੀ ਦਰ ਨਾਲ ਵਿਆਜ	₹ 10.00	₹ 12.10
	ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ ਰਾਸ਼ੀ	₹ (120 + 10) = ₹ 130.00	₹ 133.10

ਧਿਆਨ ਦਿਓ ਕਿ 3 ਸਾਲ ਵਿੱਚ

ਸਧਾਰਨ ਵਿਆਜ ਤੋਂ ਪ੍ਰਾਪਤ ਵਿਆਜ = ₹ (130 - 100) = ₹ 30

ਮਿਸ਼ਰਤ ਵਿਆਜ ਤੋਂ ਪ੍ਰਾਪਤ ਵਿਆਜ = ₹ (133.10 – 100) = ₹ 33.10

ਰਾਸ਼ੀਆਂ ਦੀ ਤੁਲਨਾ 🖩 137

ਇਹ ਵੀ ਧਿਆਨ ਦਿਓ ਕਿ ਸਧਾਰਨ ਵਿਆਜ ਦੇ ਹੇਠ ਹਰੇਕ ਸਾਲ ਮੂਲਧਨ ਸਮਾਨ ਰਹਿੰਦਾ ਹੈ ਜਦੋਂ ਕਿ ਮਿਸ਼ਰਤ ਵਿਆਜ ਦੇ ਹੇਠ ਇਹ ਹਰੇਕ ਸਾਲ ਦੇ ਬਾਅਦ ਬਦਲਦਾ ਰਹਿੰਦਾ ਹੈ।

8.7 ਮਿਸ਼ਰਤ ਵਿਆਜ ਦੇ ਲਈ ਸੂਤਰ ਦਾ ਸਿੱਟਾ ਕੱਢਣਾ

ਜ਼ੂਬੈਦਾ ਨੇ ਆਪਣੇ ਅਧਿਆਪਕ ਤੋਂ ਪੁਛਿਆ, 'ਕੀ ਮਿਸ਼ਰਤ ਵਿਆਜ ਪਤਾ ਕਰਨ ਦੀ ਕੋਈ ਸਰਲ ਵਿਧੀ ਹੈ ?' ਅਧਿਆਪਕ ਨੇ ਕਿਹਾ, 'ਮਿਸ਼ਰਤ ਵਿਆਜ ਪਤਾ ਕਰਨ ਦੀ ਇੱਕ ਛੋਟੀ ਵਿਧੀ ਹੈ। ਆਓ, ਇਸਨੂੰ ਪਤਾ ਕਰਨ ਦਾ ਯਤਨ ਕਰਦੇ ਹਾਂ।'

ਮੈਨ ਲਓ R% ਸਲਾਨਾ ਵਿਆਜ ਦੀ ਦਰ ਨਾਲ ਮੁਲਧਨ P₁ `ਤੇ ਵਿਆਜ ਜੁੜਦਾ ਹੈ। ਮੰਨ ਲਓ P₁ = ₹ 5000 ਅਤੇ R = 5% ਸਲਾਨਾ, ਤਦ ਲੋੜੀਂਦੇ ਪਗਾਂ ਦੀ ਸਹਾਇਤਾ ਨਾਲ :

1.
$$SI_{1} = \overline{\tau} \frac{5000 \times 5 \times 1}{100}$$
 $\overline{\pi}^{+}$
 $ER \,\overline{RR}^{+}, A_{1} = 5000 + \overline{\tau} \frac{5000 \times 5 \times 1}{100}$ $\overline{\pi}^{+}$
 $= 5000 \left(1 + \frac{5}{100}\right) = \overline{\tau} P_{2}$
2. $SI_{2} = 5000 \left(1 + \frac{5}{100}\right) \times \overline{\tau} \frac{5 \times 1}{100}$ $\overline{\pi}^{+}$
 $= \overline{\tau} \frac{5000 \times 5}{100} \left(1 + \frac{5}{100}\right)$
 $= \overline{\tau} \frac{5000 \times 5}{100} \left(1 + \frac{5}{100}\right)$
 $A_{2} = 5000 \left(1 + \frac{5}{100}\right)$
 $A_{2} = 5000 \left(1 + \frac{5}{100}\right)$
 $= \overline{\tau} \frac{5000 \times 5}{100} \left(1 + \frac{5}{100}\right)$
 $= \overline{\tau} \frac{5000 \times 5}{100} \left(1 + \frac{5}{100}\right)$
 $= \overline{\tau} \frac{5000 (1 + \frac{5}{100})}{1 + \frac{5}{100}} \left(1 + \frac{5}{100}\right)$
 $= \overline{\tau} \frac{5000 (1 + \frac{5}{100})}{1 + \frac{5}{100}} = P_{3}$
 $ER \, arg \pi^{+} \, arg \pi^$

$$A_{x} = P_{i} \left(1 + \frac{R}{100}\right)^{n}$$
ਹੋਵੇਗੀ।

138 🔳 ਗਣਿਤ

ਜਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ A = $P\left(1+\frac{R}{100}\right)^n$

ਜ਼ੁਬੈਦਾ ਨੇ ਕਿਹਾ ਪਰ ਇਸਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਅਸੀਂ ਸਿਰਫ n ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ ਦੇਣ ਯੋਗ ਕੁੱਲ ਰਾਸ਼ੀ ਦਾ ਸੂਤਰ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ, ਨਾ ਕਿ ਮਿਸ਼ਰਤ ਵਿਆਜ ਦਾ ਸੂਤਰ।ਅਰੁਣ ਨੇ ਤੁਰੰਤ ਕਿਹਾ ਕਿ ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ :

ਮਿਸ਼ਰਤ ਵਿਆਜ = ਕੁੱਲ ਰਾਸ਼ੀ – ਮੁਲਧਨ

ਜਾਂ CI = A - P, ਇਸ ਲਈ ਅਸੀਂ ਮਿਸ਼ਰਤ ਵਿਆਜ ਵੀ ਅਸਾਨੀ ਨਾਲ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ।

ਉਦਾਹਰਣ 11 : ₹ 12,600 ਦਾ 2 ਸਾਲ ਦੇ ਲਈ 10% ਸਲਾਨਾ ਦਰ ਨਾਲ ਮਿਸ਼ਰਤ ਵਿਆਜ ਪਤਾ ਕਰੋ ਜਦੋਂ ਕਿ ਵਿਆਜ ਸਲਾਨਾ ਜੁੜਦਾ ਹੋਵੇ।

ਹੱਲ : ਸਾਨੂੰ ਪਤਾ ਹੈ, $A = P\left(1 + \frac{R}{100}\right)^{"}$

ਇੱਥੇ ਮੁਲਧਨ (P) = ₹ 12600, ਦਰ (R) = 10, ਸਾਲਾਂ ਦੀ ਸੰਖਿਆ (n) = 2

A = ₹ 12600
$$\left(1 + \frac{10}{100}\right)^2$$
 = ₹ 12600 $\left(\frac{11}{10}\right)^2$

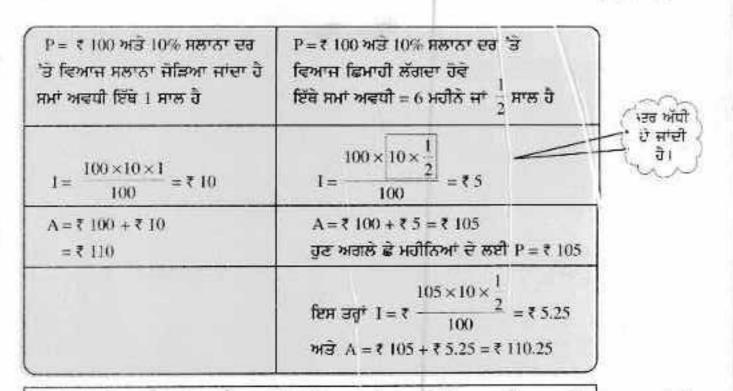
$$= \stackrel{?}{=} \frac{12600 \times \frac{11}{10} \times \frac{11}{10}}{10} = \stackrel{?}{=} 15246$$

ਮਿਸ਼ਰਤ ਵਿਆਜ (Cl) = A - P = ₹ 15246 - ₹ 12600 = ₹ 2646

ਕੋਸ਼ਿਸ਼ ਕਰੋ

₹ 8000 ਦਾ 2 ਸਾਲ ਦੇ ਲਈ 5% ਸਲਾਨਾ ਦਰ ਨਾਲ ਮਿਸ਼ਰਤ ਵਿਆਜ ਪਤਾ ਕਰੋ ਜਦੋਂ ਕਿ ਵਿਆਜ ਸਲਾਨਾ ਜੁੜਦਾ ਹੈ।

8.8 ਦਰ ਦਾ ਸਲਾਨਾ ਜਾਂ ਛਿਮਾਹੀ ਸੰਯੋਜਨ


ਸ਼ਾਇਦ ਤੁਸੀਂ ਜਾਣਨਾ ਚਾਹੁੰਦੇ ਹੋ ਕਿ 'ਦਰ' ਦੇ ਬਾਅਦ 'ਸਲਾਨਾ ਸੰਯੋਜਨ ਜਾਂ ਜੋੜਿਆ' ਕਿਉਂ ਲਿਖਿਆ ਹੋਇਆ ਸੀ। ਕੀ ਇਸਦਾ ਕੋਈ ਅਰਥ ਹੈ ?

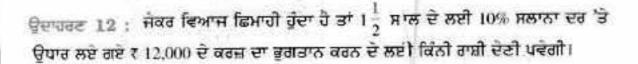
ਂ ਬਿਲਕੁੱਲ ਇਸਦਾ ਅਰਥ ਹੈ, ਕਿਉਂਕਿ ਅਸੀਂ ਮਿਸ਼ਰਤ ਵਿਆਜ ਦੀ ਦਰ ਛਿਮਾਹੀ ਜਾਂ ਤਿਮਾਹੀ ਵੀ ਕਰ ਸਕਦੇ ਹਾਂ।

ਆਉ, ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਜਦੋਂ ਵਿਆਜ ਸਲਾਨਾ ਜਾਂ ਛਿਮਾਹੀ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ₹ 100 ਦੇ ਵਿਆਜ ਵਿੱਚ ਕਿੰਨਾ ਫਰਕ ਪਵੇਗਾ ? ਜਦੋਂ ਵਿਆਜ ਸਲਾਨਾ ਜੁੜਦਾ ਨਾ ਹੋਵੇ ਤਾਂ ਸਮੇਂ ਦੀ ਅਵਧੀ ਅਤੇ ਦਰ

ਉਹ ਸਮਾਂ ਅਵਧੀ ਜਿਸਦੇ ਬੀਤਣ 'ਤੇ ਹਰੇਕ ਵਾਰ ਨਵਾਂ ਮੂਲਧਨ ਬਣਾਉਣ ਦੇ ਲਈ ਵਿਆਜ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ, ਰੂਪਾਂਤਰਨ ਅਵਧੀ ਅਖਵਾਉਂਦੀ ਹੈ। ਜਦੋਂ ਵਿਆਜ ਛਿਮਾਹੀ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇੱਕ ਸਾਲ ਵਿੱਚ ਹਰੇਕ ਛਿਮਾਹੀ ਦੀਆਂ ਦੋ ਰੂਪਾਂਤਰਨ ਅਵਧੀ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ ਛਿਮਾਹੀ ਦਰ ਸਲਾਨਾ ਦਰ ਦੀ ਅੱਧੀ ਹੁੰਦੀ ਹੈ। ਜਦੋਂ ਵਿਆਜ ਨੂੰ ਤਿਮਾਹੀ ਜੋੜਿਆ ਜਾਵੇ ਤਾਂ ਕੀ ਹੋਵੇਗਾ? ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਇੱਕ ਸਾਲ ਦੇ 4 ਰੂਪਾਂਤਰਨ ਅਵਧੀ ਹੋਣਗੀਆਂ ਅਤੇ ਤਿਮਾਹੀ ਦਰ ਸ਼ਲਾਨਾ ਦਰ ਦੀ ਇੱਕ ਚੌਥਾਈ ਹੋਵੇਗੀ।

ਰਾਸ਼ੀਆਂ ਦੀ ਤੁਲਨਾ 📰 139

ਕੀ ਤੁਸੀਂ ਦੇਖਿਆ ਹੈ ਕਿ ਜੇਕਰ ਵਿਆਜ ਛਿਮਾਹੀ ਜੁੜਦਾ ਹੈ ਤਾਂ ਅਸੀਂ ਵਿਆਜ ਦੀ ਗਣਨਾ ਦੇ ਵਾਰ ਕਰਦੇ ਹਾਂ। ਇਸ ਲਈ ਸਮਾਂ ਅਵਧੀ ਦੁੱਗਣੀ ਹੋ ਜਾਂਦੀ ਹੈ ਅਤੇ ਦਰ ਅੱਧੀ ਕਰ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ।


ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਹੇਠਾਂ ਲਿਖਿਆਂ ਵਿੱਚ ਵਿਆਜ ਪਤਾ ਕਰਨ ਲਈ ਸਮਾਂ ਅਵਧੀ ਅਤੇ ਦਰ ਪਤਾ ਕਰੋ :

- 1. 1¹/₂ ਸਾਲ ਦੇ ਲਈ, 8% ਸਲਾਨਾ ਦਰ 'ਤੇ ਉਧਾਰ ਲਈ ਗਈ ਇੱਕ ਰਾਸ਼ੀ ਜਿਸ 'ਤੇ ਵਿਆਜ ਛਿਮਾਹੀ ਲੱਗਦਾ ਹੋਵੇ।
- 2 ਸਾਲ ਦੇ ਲਈ 4% ਸਲਾਨਾ ਦਰ 'ਤੇ ਉਧਾਰ ਲਈ ਗਈ ਇੱਕ ਰਾਸ਼ੀ ਜਿਸ 'ਤੇ ਵਿਆਜ ਛਿਮਾਹੀ ਲੱਗਦਾ ਹੋਵੇ।

ਸ਼ਿੰਗ ਸ਼ਿੰਹ ਸਿੱਚੇ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ

ਇੱਕ ਰਾਸ਼ੀ 16% ਸਲਾਨਾ ਦਰ 'ਤੇ । ਸਾਲ ਦੇ ਲਈ ਉਧਾਰ ਲਈ ਜਾਂਦੀ ਹੈ ਜੇਕਰ ਵਿਆਜ ਹਰੇਕ ਤਿੰਨ ਮਹੀਨੇ ਬਾਅਦ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ । ਸਾਲ ਵਿੱਚ ਕਿੰਨੀ ਵਾਰ ਵਿਆਜ ਦੇਣਾ ਹੋਵੇਗਾ।

140 📷 ਗਣਿਤ

ਪਹਿਲੇ 🕯 1 ਮਹੀਨੇ 🤃 ਲਈ ਮੁਲਪਨ = ₹ 12,000	ਪਹਿਲੇ ਛੇ ਮਹੀਨੇ ਦੇ ਲਈ ਮੁਲਧਨ = ₹ 12,000	
। ¹ / ₂ ਸਾਲ ⁷⁻ ਵਿੱਚ 3 ਛਿਮਾਹੀਆਂ ਹੁੰਦੀਆਂ ਹਨ।	ਸਮਾਂ = 6 ਮਹੀਨੇ = $\frac{6}{12}$ ਸਾਲ = $\frac{1}{2}$ ਸਾਲ	
ਇਸ ਲਈ ਵਿਆਜ ਸੋਯੋਜਨ 3 ਵਾਰ ਹੋਣਾ ਹੈ।	ਦਰ = 10% 12000 × 10 × ¹	
ਵਿਆਜ ਦੀ ਦਰ = 10% ਦਾ ਅੱਧਾ	$1 = \sqrt[7]{\frac{12000 \times 10 \times \frac{1}{2}}{100}} = \sqrt[7]{600}$	
= 5% โਛਮਾਹੀ	A = P + 1 = ₹ 12000 + ₹ 600	
$A = P \left(1 + \frac{R}{100} \right)^{\alpha}$	= ₹ 12600 ਇਹ ਅਗਲੇ 6 ਮਹੀਨਿਆਂ ਦੇ ਲਈ ਮੂਲਧਨ ਹੈ	
$= ₹ 12000 \left(1 + \frac{5}{100}\right)^3$	$I = \bar{\tau} \ \frac{12600 \times 10 \times \frac{1}{2}}{100} = \bar{\tau} \ 630$	
$= ₹ 12000 × \frac{21}{20} × \frac{21}{20} × \frac{21}{20}$ = ₹ 13891.50	ਤੀਸਰੀ ਅਵਧੀ ਦਾ ਮੂਲਧਨ = ₹ 12600 + ₹ 630	
= ₹ 13891.50	=₹ 13230	
	$1 = ₹ \frac{13230 \times 10 \times \frac{1}{2}}{100} = ₹ 661.50$	
	A = P + I = ₹ 13230 + ₹ 661.50 = ₹ 13891.50	

ইচিচ বই

ਹੇਠਾਂ ਲਿਖਿਆਂ ਦੇ ਲਈ ਭੁਗਤਾਨ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਰਾਸ਼ੀ ਪਤਾ ਕਰੋ : 1. ₹ 2400 'ਤੇ 5% ਸਲਾਨਾ ਦਰ ਨਾਲ ਵਿਆਜ ਸਲਾਨਾ ਜੋੜਦੇ ਹੋਏ 2 ਸਾਲ ਦੇ ਐਤ ਵਿੱਚ। 2. ₹ 1800 'ਤੇ 8% ਸਲਾਨਾ ਦਰ ਨਾਲ ਵਿਆਜ ਤਿਮਾਹੀ ਜੋੜਦੇ ਹੋਏ 1 ਸਾਲ ਦੇ ਐਤ ਵਿੱਚ।

ਉਦਾਹਰਣ 13 ;₹ 10.000 ਦੀ ਰਾਸ਼ੀ ਦਾ । ਸਾਲ ਅਤੇ 3 ਮਹੀਨੇ ਦੇ ਲਈ 8 ½ % ਸਲਾਨਾ ਦਰ ਨਾਲ ਨਿਵੇਸ਼ ਕਰਨ 'ਤੇ ਮਿਸ਼ਰਤ ਵਿਆਜਾ ਪਤਾ ਕਰੋ, ਜਦੋਂ ਕਿ ਵਿਆਜ ਸਲਾਨਾ ਲਗਦਾ ਹੋਵੇ। _{ਹੋਲ :}ਮਯੂਰੀ ਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਸਮੇਂ ਨੂੰ ਸਾਲਾਂ ਵਿੱਚ ਬਦਲਿਆ

1 ਸਾਲ 3 ਮਹੀਨੇ = 1 $\frac{3}{12}$ ਸਾਲ = 1 $\frac{1}{4}$ ਸਾਲ ਮਯੂਗੇ ਨੇ ਸੂਤਰ ਵਿੱਚ ਮੁੱਲ ਰੱਖਣ ਦਾ ਯਤਨ ਕੀਤਾ ਅਤੇ

A=₹ 10000 $\left(1+\frac{17}{200}\right)^{l_{1}^{1}}$ ਪ੍ਰਾਪਤ ਕੀਤਾ।

ਰਾਸ਼ੀਆਂ ਦੀ ਤੁਲਨਾ 🖩 141

ਉਹ ਪਰੇਸ਼ਾਨ ਸੀ। ਉਸਨੇ ਆਪਣੇ ਅਧਿਆਪਕ ਨੂੰ ਪੁੱਛਿਆ ਕਿ ਭਿੰਨ ਰੂਪੀ ਘਾਤ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਪਤਾ ਕਰੇਗੀ। ਅਧਿਆਪਕ ਨੇ ਉਸਨੂੰ ਹੇਠਾਂ ਲਿਖਿਆ ਸੰਕੇਤ ਦਿੱਤਾ :

ਪਹਿਲਾਂ ਅਵਧੀ ਦੇ ਇੱਕ ਪੂਰੇ ਹਿੱਸੇ ਜਾਂ । ਸਾਲ ਦੇ ਲਈ ਕੁੱਲ ਰਾਸ਼ੀ ਪਤਾ ਕਰੋ। ਉਸ ਤੋਂ ਬਾਅਦ ਇਸ ਨੂੰ ਮੁਲਧਨ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਤਦੇ ਹੋਏ ¹/₄ ਸਾਲ ਦਾ ਸਧਾਰਨ ਵਿਆਜ ਪਤਾ ਕਰੋ

A = ₹ 10000
$$\left(1 + \frac{17}{200}\right)$$

= ₹ 10000 × $\frac{217}{200}$ = ₹ 10850

ਹੁਣ ਇਹ ਰਾਸ਼ੀ ਅਗਲੇ <mark>1</mark> ਸਾਲ ਦੇ ਲਈ ਮੂਲਧਨ ਦਾ ਕੰਮ ਕਰੇਗੀ। ਅਸੀਂ ₹ 10,850 ਦਾ ¹/₄ ਸਾਲ ਦੇ ਲਈ ਸਧਾਰਨ ਵਿਆਜ ਪਤਾ ਕਰਦੇ ਹਾਂ।

ਸਧਾਰਨ ਵਿਆਜ (SI) = ₹
$$\frac{10850 \times \frac{1}{4} \times 17}{100 \times 2}$$

= ₹ $\frac{10850 \times 1 \times 17}{800}$ = ₹ 230.56

ਪਹਿਲੇ ਸਾਲ ਦਾ ਵਿਆਜ = ₹ 10850 - ₹ 10000 = ₹ 850

ਅਤੇ ਅਗਲੋਂ ¹/₄ ਸਾਲ ਦਾ ਵਿਆਜ = ₹ 230.56

ਇਸ ਤਰ੍ਹਾਂ ਕੁੱਲ ਮਿਸ਼ਰਤ ਵਿਆਜ = 850 + 230.56 = ₹ 1080.56

8.9 ਮਿਸ਼ਰਤ ਵਿਆਜ ਦੇ ਸੂਤਰ ਦੇ ਹੋਰ ਪ੍ਰਯੋਗ

ਕੁੱਝ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹਨ ਜਿੱਥੇ ਅਸੀਂ ਮਿਸ਼ਰਤ ਵਿਆਜ ਦੀ ਕੁੱਲ ਰਾਸ਼ੀ ਪਤਾ ਕਰਨ ਵਾਲੇ ਸੂਤਰ ਦਾ ਉਪਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਸ ਵਿੱਚ ਕੁੱਝ ਹੇਠ ਲਿਖੀਆਂ ਹਨ :

- (i) ਜਨਸੰਖਿਆ ਵਿੱਚ ਵਾਧਾ (ਜਾਂ ਕਮੀ)
- (ii) ਜੇਕਰ ਬੈਕਟਰੀਆਂ ਦੇ ਵਾਧੇ ਦੀ ਦਰ ਪਤਾ ਹੋਵੇ ਤਾਂ ਉਸਦਾ ਕੁੱਲ ਵਾਧਾ ਪਤਾ ਕਰਨਾ।
- (iii) ਕਿਸੇ ਵਸਤੂ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰਨਾ ਜੇਕਰ ਵਿਚਲੇ ਸਾਲਾਂ ਵਿੱਚ ਇਸਦੇ ਮੁੱਲ ਵਿੱਚ ਵਾਧਾ ਜਾਂ ਕਮੀ ਹੁੰਦੀ ਹੈ।

ਉਦਾਹਰਣ 14 : ਸਾਲ 1997 ਦੇ ਅੰਤ ਵਿੱਚ ਕਿਸੇ ਸ਼ਹਿਰ ਦੀ ਜਨਸੰਖਿਆ 20,000 ਸੀ। ਇਸ ਵਿੱਚ 5% ਸਲਾਨਾ ਦਰ ਨਾਲ ਵਾਧਾ ਹੋਇਆ। ਸਾਲ 2000 ਦੇ ਅੰਤ ਵਿੱਚ ਸ਼ਹਿਰ ਦੀ ਜਨਸੰਖਿਆ ਪਤਾ ਕਰੋ। ਹੱਲ : ਹਰੇਕ ਸਾਲ ਜਨਸੰਖਿਆ ਵਿੱਚ 5% ਦਾ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਇਸ ਲਈ ਹਰੇਕ ਨਵੇਂ ਸਾਲ ਦੀ ਨਵੀਂ ਜਨਸੰਖਿਆ ਹੁੰਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਇਹ ਮਿਸ਼ਰਿਤ ਰੂਪ ਵਿੱਚ ਵੱਧ ਰਹੀ ਹੈ। 1998 ਦੇ ਸ਼ੁਰੂ ਵਿੱਚ ਜਨਸੰਖਿਆ = 20,000 (ਇਸਨੂੰ ਅਸੀਂ ਸਾਲ ਦੇ ਲਈ ਮੁਲਧਨ ਮੰਨਦੇ ਹਾਂ)

> 5% ਦੀ ਦਰ ਨਾਲ ਵਾਧਾ = $\frac{5}{100} \times 20,000 = 1000$ ਸਾਲ 1999 ਦੀ ਜਨਸੰਖਿਆ = 20000 + 1000 = 21000

ਇਸ ਨੂੰ ਦੂਸਰੇ ਸਾਲ ਦੇ ਲਈ ਮੂਲਧਨ ਮੰਨ ਲਵੇ।

142 🖩 ਗਣਿਤ

5% ਦੀ ਦਰ ਨਾਲ ਵਾਧਾ =
$$\frac{5}{100} \times 21000 = 1050$$

ਸਾਲ 2000 ਦੀ ਜਨਸੰਖਿਆ = $21000 + 1050 = 22050$
ਸਾਲ 2000 ਦੀ ਜਨਸੰਖਿਆ = $\frac{5}{100} \times 22050 = 1102.5$
ਸਾਲ 2000 ਦੇ ਅੰਤ ਵਿੱਚ ਜਨਸੰਖਿਆ = $22050 + 1102.5 = 23152.5$
ਸਾਲ 2000 ਦੇ ਅੰਤ ਵਿੱਚ ਜਨਸੰਖਿਆ = $22050 + 1102.5 = 23152.5$

= 20000 ×
$$\frac{21}{20}$$
 × $\frac{21}{20}$ × $\frac{21}{20}$ = 23152.5
ਇਸ ਲਈ, ਲਗਭਗ ਜਨਸੰਖਿਆ = 23153

ਅਰੁਣ ਨੇ ਪੁਛਿਆ, ਜੇਕਰ ਜਨਸੰਖਿਆ ਵਿੱਚ ਕਮੀ ਹੁੰਦੀ ਹੈ ਤਾਂ ਕੀ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਤਦ ਅਧਿਆਪਕ ਨੇ ਹੇਠ ਲਿਖੀ ਉਦਾਹਰਣ ਦੀ ਚਰਚਾ ਕੀਤੀ।

ਉਦਾਹਰਣ 15 : ਇੱਕ T.V. ₹ 21,000 ਵਿੱਚ ਖਰੇਦਿਆ ਗਿਆ। ਇੱਕ ਸਾਲ ਬਾਅਦ T.V. ਦਾ ਮੁੱਲ 5% ਘੱਟ ਹੋ ਗਿਆ। (ਇੱਥੇ ਘੱਟਣ ਦਾ ਅਰਥ ਹੈ ਵਸਤੂ ਦੇ ਉਪਯੋਗ ਅਤੇ ਉਮਰ ਦੇ ਕਾਰਨ ਉਸਦੇ ਮੁੱਲ ਵਿੱਚ ਕਮੀ ਹੋਣੀ)। ਇੱਕ ਸਾਲ ਬਾਅਦ T.V. ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।

ਮੂਲਧਨ = ₹ 21,000
ਮੁੱਲ ਵਿੱਚ ਕਮੀ = ਪ੍ਰਤੀ ਸਾਲ ₹ 21,000 ਦਾ 5%
= ₹
$$\frac{21,000 \times 5 \times 1}{100}$$
 = ₹ 1050
ਕਿ ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ T.V. ਦਾ ਮੁੱਲ = ₹ 21,000 - ₹ 1050 = ₹ 19,950
ਵੂਜਾ ਢੰਗ : ਅਸੀਂ ਇਸ ਨੂੰ ਹੇਠਾਂ ਲਿਖੀ ਵਿਧੀ ਨਾਲ ਸਿੱਧਾ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ।
1 ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ = ₹ 21,000 $\left(1 - \frac{5}{100}\right)$

चलः :

- ₹ 10,500 ਦੇ ਮੁੱਲ ਦੀ ਇੱਕ ਮਸ਼ੀਨ ਦਾ 5% ਦੀ ਦਰ ਨਾਲ ਮੁੱਲ ਘਟਦਾ ਹੈ। ਇੱਕ ਸਾਲ ਬਾਅਦ ਇਸਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।
- ਇੱਕ ਸ਼ਹਿਰ ਦੀ ਵਰਤਮਾਨ ਜਨਸੰਖਿਆ 12 ਲੱਖ ਹੈ ਜੋ ਵਾਧੇ ਦੀ ਦਰ 4% ਹੈ ਤਾਂ 2 ਸਾਲ ਬਾਅਦ ਸ਼ਹਿਰ ਦੀ ਜਨਸੰਖਿਆ ਪਤਾ ਕਰੋ।

🛋 ਅਭਿਆਸ 8.3

- 1. ਹੇਠਾਂ ਲਿਖਿਆਂ ਦੇ ਲਈ ਮਿਸ਼ਰਧਨ (ਕੁੱਲ ਰਾਸ਼ੀ) ਅਤੇ ਮਿਸ਼ਰਤ ਵਿਆਜ ਪਤਾ ਕਰੋ।
 - (a) ₹ 10, 800 'ਤੇ 3 ਸਾਲ ਦੇ ਲਈ 12¹/₂% ਸਲਾਨਾ ਦਰ 'ਤੇ ਸਲਾਨਾ ਜੋੜਨ 'ਤੇ।

ਰਾਸ਼ੀਆਂ ਦੀ ਤੁਲਨਾ 🔳 143

- (b) ₹ 18,000 'ਤੇ 2¹/₂ ਸਾਲ ਦੇ ਲਈ 10% ਸਲਾਨਾ ਦਰ 'ਤੇ ਸਲਾਨਾ ਜੋੜਨ 'ਤੇ।
- (c) ₹ 62,500 'ਤੇ 1 ¹/₂ ਸਾਲ ਦੇ ਲਈ 8% ਸਲਾਨਾ ਦਰ 'ਤੇ ਛਿਮਾਹੀ ਜੋੜਨ 'ਤੇ।

- (d) ₹ 8000 'ਤੇ 1 ਸਾਲ ਦੇ ਲਈ 9% ਸਲਾਨਾ ਦਰ 'ਤੇ ਛਿਮਾਹੀ ਜੋੜਨ 'ਤੇ। (ਤੁਸੀਂ ਪੜਤਾਲ ਕਰਨ ਦੇ ਲਈ ਸਧਾਰਨ ਵਿਆਜ ਦੇ ਸੂਤਰ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਇੱਕ ਦੇ ਬਾਅਦ ਦੂਸਰੇ ਸਾਲ ਦੇ ਲਈ ਗਣਨਾ ਕਰ ਸਕਦੇ ਹੋ)
- (e) ₹ 10,000 'ਤੇ 1 ਸਾਲ ਦੇ ਲਈ 8% ਸਲਾਨਾ ਦਰ 'ਤੇ ਛਿਮਾਹੀ ਜੋੜਨ 'ਤੇ।
- 2. ਕਮਲਾ ਨੇ ਇੱਕ ਸਕੂਟਰ ਖਰੀਦਣ ਦੇ ਲਈ ਕਿਸੇ ਬੈਂਕ ਵਿੱਚ ₹ 26400, 15% ਸਲਾਨਾ ਤੇ ਉਧਾਰ ਲਏ ਜਦੋਂ ਕਿ ਵਿਆਜ ਸਲਾਨਾ ਜੁੜਦਾ ਹੋਵੇ। 2 ਸਾਲ ਅਤੇ 4 ਮਹੀਨੇ ਦੇ ਐਤ ਵਿੱਚ ਉਧਾਰ ਖਤਮ ਕਰਨ ਦੇ ਲਈ ਉਸ ਨੂੰ ਕਿੰਨੀ ਰਾਸ਼ੀ ਦਾ ਭੁਗਤਾਨ ਕਰਨਾ ਪਿਆ ?

(ਸੰਕੇਤ : ਵਿਆਜ ਨੂੰ ਸਲਾਨਾ ਜੋੜਦੇ ਹੋਏ ਪਹਿਲਾਂ 2 ਸਾਲ ਲਈ A ਪਤਾ ਕਰੋ ਅਤੇ ਦੂਜੇ ਸਾਲ ਲਈ

ਕੁੱਲ ਰਾਸ਼ੀ 'ਤੇ $\frac{4}{12}$ ਸਾਲ ਦਾ ਸਧਾਰਨ ਵਿਆਜ ਪਤਾ ਕਰੋ।)

- 3. ਫੈਬਿਨਾ ਨੇ ₹ 12,500, 3 ਸਾਲ ਦੇ ਲਈ 12% ਸਲਾਨਾ ਦਰ 'ਤੇ ਸਧਾਰਨ ਵਿਆਜ 'ਤੇ ਉਧਾਰ ਲਏ ਅਤੇ ਰਾਧਾ ਨੇ ਉਨ੍ਹੀ ਰਾਸ਼ੀ ਉਨ੍ਹੇ ਸਮੇਂ ਦੇ ਲਈ 10% ਸਲਾਨਾ ਦਰ ਨਾਲ ਮਿਸ਼ਰਤ ਵਿਆਜ 'ਤੇ ਉਧਾਰ ਲਈ। ਜੇਕਰ ਵਿਆਜ ਸਲਾਨਾ ਜੁੜਦਾ ਹੋਵੇ ਤਾਂ ਕਿਸ ਨੇ ਜ਼ਿਆਦਾ ਵਿਆਜ ਦਾ ਭੁਗਤਾਨ ਕਰਨਾ ਹੈ ਅਤੇ ਕਿੰਨਾ ਵੱਧ ਕਰਨਾ ਹੈ ?
- 4. ਮੈਂ ਜਮਸ਼ੇਦ ਤੋਂ ₹ 12,000, 2 ਸਾਲ ਦੇ ਲਈ 6% ਸਲਾਨਾ ਦਰ 'ਤੇ ਸਧਾਰਨ ਵਿਆਜ 'ਤੇ ਉਧਾਰ ਲਏ। ਜੇ ਮੈਂ ਇਹ ਰਾਸ਼ੀ 6% ਸਲਾਨਾ ਦੀ ਦਰ ਨਾਲ ਮਿਸ਼ਰਤ ਵਿਆਜ 'ਤੇ ਉਧਾਰ ਲਈ ਹੁੰਦੀ ਤਾਂ ਮੈਨੂੰ ਕਿੰਨੀ ਵੱਧ ਰਾਸ਼ੀ ਦਾ ਭੁਗਤਾਨ ਕਰਨਾ ਪੈਂਦਾ ?
- 5. ਵਾਸੂਦੇਵ ਨੇ 12% ਸਲਾਨਾ ਦਰ 'ਤੇ ₹ 60,000 ਦਾ ਨਿਵੇਸ਼ ਕੀਤਾ। ਜੇਕਰ ਵਿਆਜ ਛਿਮਾਹੀ ਜੁੜਦਾ ਹੋਵੇ ਤਾਂ ਪਤਾ ਕਰੋ ਕਿ ਉਹ (i) 6 ਮਹੀਨੇ ਦੇ ਐਤ ਵਿੱਚ (ii) ਇੱਕ ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ, ਕੁੱਲ ਕਿੰਨੀ ਰਾਸ਼ੀ ਪ੍ਰਾਪਤ ਕਰੇਗਾ ?
- ਆਰਿਫ ਨੇ ਇੱਕ ਬੈਂਕ ਤੋਂ ₹ 80,000 ਦਾ ਕਰਜ਼ਾ ਲਿਆ। ਜੇਕਰ ਵਿਆਜ ਦੀ ਦਰ 10% ਸਲਾਨਾ ਹੈ

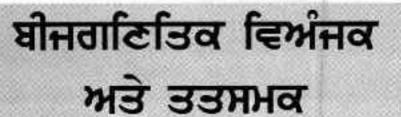
ਤਾਂ 1 $\frac{1}{2}$ ਸਾਲ ਬਾਅਦ ਉਸਦੇ ਦੁਆਰਾ ਭੁਗਤਾਨ ਕੀਤੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਰਾਸ਼ੀਆਂ ਵਿੱਚ ਐਤਰ

- ਪਤਾ ਕਰੋ। ਜੇਕਰ ਵਿਆਜ (i) ਸਲਾਨਾ ਜੁੜਦਾ ਹੋਵੇ (ii) ਛਿਮਾਹੀ ਜੁੜਦਾ ਹੋਵੇ।
- ਮਾਰੀਆ ਨੇ ਕਿਸੇ ਵਪਾਰ ਵਿੱਚ ₹ 8000 ਦਾ ਨਿਵੇਸ਼ ਕੀਤਾ। ਉਸ ਨੂੰ 5% ਸਲਾਨਾ ਦਰ 'ਤੇ ਮਿਸ਼ਰਤ ਵਿਆਜ ਦਾ ਭੁਗਤਾਨ ਕੀਤਾ ਜਾਵੇਗਾ। ਜੇਕਰ ਵਿਆਜ ਸਲਾਨਾ ਜੁੜਦਾ ਹੋਵੇ ਤਾਂ
 - (i) ਦੋ ਸਾਲ ਦੇ ਅੰਤ ਵਿੱਚ ਉਸਦੇ ਨਾਂ 'ਤੇ ਜਮ੍ਹਾਂ ਕੀਤੀ ਗਈ ਰਾਸ਼ੀ ਪਤਾ ਕਰੋ।
 - (ii) ਤੀਸਰੇ ਸਾਲ ਦਾ ਵਿਆਜ ਪਤਾ ਕਰੋ।
- 8. ₹ 10,000 ਤੋ 1 ¹/₂ ਸਾਲ ਦੇ ਲਈ 10% ਸਲਾਨਾ ਦਰ ਨਾਲ ਮਿਸ਼ਰਤ ਵਿਆਜ ਅਤੇ ਕੁੱਲ ਰਾਸ਼ੀ ਪਤਾ ਕਰੋ ਜਦੋਂ ਕਿ ਵਿਆਜ ਛਿਮਾਹੀ ਜੁੜਣਾ ਹੈ। ਕੀ ਇਹ ਵਿਆਜ ਉਸ ਵਿਆਜ ਤੋਂ ਜ਼ਿਆਦਾ ਹੋਵੇਗਾ ਜਿਹੜਾ ਸਲਾਨਾ ਜੁੜਦਾ ਹੋਵੇ ?

144 🔳 ਗਣਿਤ

- 9. ਜੇਕਰ ਰਾਮ ₹ 4096, 18 ਮਹੀਨੇ ਦੇ ਲਈ 12¹/₂% ਸਲਾਨਾ ਦਰ 'ਤੇ ਉਧਾਰ ਦਿੰਦਾ ਹੈ ਅਤੇ ਵਿਆਜ ਛਿਮਾਹੀ ਜੁੜਦਾ ਹੋਵੇ ਤਾਂ ਪਤਾ ਕਰੋ ਕਿ ਰਾਮ ਕੁੱਲ ਕਿੰਨੀ ਰਾਸ਼ੀ ਪ੍ਰਾਪਤ ਕਰੇਗਾ ?
- 10. 5% ਸਲਾਨਾ ਦਰ ਨਾਲ ਵੱਧਦੇ ਹੋਏ ਸਾਲ 2003 ਦੇ ਅੰਤ ਵਿੱਚ ਇੱਕ ਸਥਾਨ ਦੀ ਜਨਸੰਖਿਆ 54,000 ਹੋ ਗਈ। ਹੇਠਾਂ ਲਿਖਿਆ ਨੂੰ ਪਤਾ ਕਰੋ :
 - (i) ਸਾਲ 2001 ਵਿੱਚ ਜਨਸੰਖਿਆ
 - (ii) ਸ਼ਾਲ 2005 ਵਿੱਚ ਕਿੰਨੀ ਜਨਸੰਖਿਆ ਹੋਵੇਗੀ ?
- ਇੱਕ ਪ੍ਰਯੋਗਸ਼ਾਲਾ ਵਿੱਚ, ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਪ੍ਰਯੋਗ ਵਿੱਚ ਬੈਕਟੀਰੀਆ ਦੀ ਸੰਖਿਆ 2.5% ਪ੍ਰਤੀ ਘੰਟੇ ਦੀ ਦਰ ਨਾਲ ਵੱਧ ਰਹੀ ਹੈ। ਜਦੋਂ ਪ੍ਰਯੋਗ ਦੇ ਸ਼ੁਰੂ ਵਿੱਚ ਬੈਕਟੀਰੀਆ ਦੀ ਸੰਖਿਆ 5,06,000 ਸੀ ਤਾਂ 2 ਘੰਟੇ ਦੇ ਅੰਤ ਵਿੱਚ ਬੈਕਟੀਰੀਆ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।

12. ਇੱਕ ਸਕੂਟਰ ₹ 42,000 ਰੁਪਏ ਵਿੱਚ ਖਰੀਦਿਆ ਗਿਆ। 8% ਸਲਾਨਾ ਦਰ ਨਾਲ ਇਸਦੇ ਮੁੱਲ ਵਿੱਚ ਕਮੀ ਹੋ ਗਈ। 1 ਸਾਲ ਬਾਅਦ ਸਕੂਟਰ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।


ਅਸੀਂ ਕੀ ਚਰਚਾ ਕੀਤੀ ?

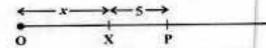
- ਅੰਕਿਤ ਮੁੱਲ 'ਤੇ ਦਿੱਤੀ ਗਈ ਛੂਟ ਕਟੌਤੀ ਅਖਵਾਉਂਦੀ ਹੈ। ਕਟੋਤੀ = ਅੰਕਿਤ ਮੁੱਲ – ਵੇਚ ਮੁੱਲ
- ਜੇਕਰ ਕਟੌਤੀ ਪ੍ਰਤੀਸ਼ਤ ਦਿੱਤੀ ਹੋਵੇ ਤਾਂ ਕਟੌਤੀ ਦੀ ਗਣਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਕਟੌਤੀ = ਅੰਕਿਤ ਮੁੱਲ ਦਾ ਕਟੌਤੀ ਪ੍ਰਤੀਸ਼ਤ।
- 3. ਕਿਸੇ ਵਸਤੂ ਖਰੀਦਣ ਦੇ ਬਾਅਦ ਉਸ ਤੇ ਕੀਤੇ ਗਏ ਵਾਧੂ ਖਰਚੇ ਖਰੀਦ ਮੁੱਲ ਵਿੱਚ ਸ਼ਾਮਿਲ ਕਰ ਲਏ ਜਾਂਦੇ ਹਨ ਅਤੇ ਇਹਨਾਂ ਖਰਚਾਂ ਨੂੰ ਉਪਰਲੇ ਖਰਚ ਆਖਦੇ ਹਨ। ਅਸਲ ਖਰੀਦ ਮੁੱਲ = ਖਰੀਦ ਮੁੱਲ + ਉਪਰਲਾ ਖਰਚ।
- ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਵੇਚਣ 'ਤੇ ਸਰਕਾਰ ਦੁਆਰਾ ਵਿਕਰੀ ਟੈਕਸ ਲਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਨੂੰ ਬਿੱਲ ਦੀ ਰਾਸ਼ੀ ਵਿੱਚ ਜੋੜ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਵਿਕਰੀ ਟੈਕਸ = ਬਿੱਲ ਰਾਸ਼ੀ ਦਾ ਟੈਕਸ %
- 5. ਪਿਛਲੇ ਸਾਲ ਦੀ ਕੁੱਲ ਰਾਸ਼ੀ (A = P + I) 'ਤੇ ਗਣਨਾ ਕੀਤੇ ਗਏ ਵਿਆਜ ਨੂੰ ਮਿਸ਼ਰਤ ਵਿਆਜ ਆਖਦੇ ਹਨ।
- 6. (i) ਜਦੋਂ ਵਿਆਜ ਸਲਾਨਾ ਜੁੜਦਾ ਹੋਵੇ ਤਾਂ

ਕੁੱਲ ਰਾਸ਼ੀ (A) = $P\left(1 + \frac{R}{100}\right)^n$, ਇੱਥੇ P ਮੂਲਧਨ, R ਵਿਆਜ ਦੀ ਦਰ ਅਤੇ n ਸਮਾਂ ਹੈ।

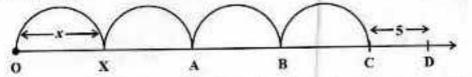
(ii) ਜਦੋਂ ਵਿਆਜ ਫ਼ਿਮਾਹੀ ਜੁੜਦਾ ਹੋਵੇ ਤਾਂ

ਕੁੱਲ ਰਾਸ਼ੀ = P $\left(1 + \frac{R}{200}\right)^{2n}$ ਇੱਥੇ $\begin{cases} rac{R}{2} ext{ ਵਿਆਜ ਦੀ ਛਿਮਾਹੀ ਦਰ} \\ 2n = ext{ ਛਿਮਾਹੀਆਂ (ਅੱਧੋ ਸਾਲਾਂ) ਦੀ ਸੰਖਿਆ$

9.1 ਵਿਅੰਜਕ ਕੀ ਹਨ ?


ਪਿਛਲੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਅਸੀਂ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ (ਜਾਂ ਸਿਰਫ ਵਿਅੰਜਕਾਂ) ਦੇ ਬਾਰੇ ਵਿੱਚ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰ ਚੁੱਕੇ ਹਾਂ। x + 3, 2y – 5, 3x², 4xy + 7 ਆਦਿ ਵਿਅੰਜਕਾਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਹਨ।

ਤੁਸੀਂ ਹੋਰ ਜ਼ਿਆਦਾ ਵਿਅੰਜਕ ਬਣਾ ਸਕਦੇ ਹੋ। ਜਿਵੇਂ ਕਿ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਵਿਅੰਜਕ ਚਲਾਂ ਅਤੇ ਅਚਲਾਂ ਤੋਂ ਬਣਦੇ ਹਨ। ਵਿਅੰਜਕ 2y – 5 ਨੂੰ ਚਲ y ਅਤੇ ਅਚਲ 2 ਅਤੇ 5 ਨਾਲ ਬਣਾਇਆ ਗਿਆ ਹੈ। ਵਿਅੰਜਕ 4xy + 7 ਨੂੰ ਚਲਾਂ x ਤੇ y ਅਤੇ ਅਚਲਾਂ 4 ਤੇ 7 ਨਾਲ ਬਣਾਇਆ ਗਿਆ ਹੈ।


ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਵਿਅੰਜਕ 2y – 5 ਵਿੱਚ y ਦਾ ਮੁੱਲ ਕੁੱਝ ਵੀ ਹੋ ਸਕਦਾ ਹੈ। ਇਹ 2, 5, –3, 0, $\frac{5}{2}, \frac{-7}{3}$ ਆਦਿ ਹੋ ਸਕਦਾ ਹੈ। ਅਸਲ ਵਿੱਚ y ਦੇ ਅਣਗਿਣਤ ਵੱਖਰੇ-ਵੱਖਰੇ ਮੁੱਲ ਹੋ ਸਕਦੇ ਹਨ। ਵਿਅੰਜਕ ਦੇ ਚਲ ਦਾ ਮੁੱਲ ਬਦਲਣ ਨਾਲ ਵਿਅੰਜਕ ਦਾ ਮੁੱਲ ਬਦਲ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ y ਦੇ ਵੱਖਰੇ ਮੁੱਲ ਭਰਨ ਨਾਲ 2y – 5 ਦਾ ਮੁੱਲ ਬਦਲਦਾ ਜਾਂਦਾ ਹੈ। ਜਦੋਂ y = 2, 2y – 5 = 2 (2) – 5 = – 1, ਜਦੋਂ y = 0, 2y – 5 = 2 × 0 – 5 = – 5 ਆਦਿ। y ਦੇ ਕੁੱਝ ਹੋਰ ਦਿੱਤੇ ਹੋਏ ਮੁੱਲਾਂ ਨਾਲ 2y – 5 ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।

ਸੰਖਿਆ ਰੇਖਾ ਅਤੇ ਵਿਅੰਜਕ

ਵਿਅੰਜਕ x + 5 ਦੀ ਚਰਚਾ ਕਰਦੇ ਹਾਂ। ਆਉ ਮੰਨ ਲੈਂਦੇ ਹਾਂ ਕਿ ਸੰਖਿਆ ਰੇਖਾ 'ਤੇ ਚਲ x ਦੀ ਸਥਿਤੀ x ਹੈ।

X, ਸੰਖਿਆ ਰੋਖਾ ਦੇ ਕਿਤੇ ਵੀ ਹੋ ਸਕਦਾ ਹੈ ਪਰ ਇਹ ਨਿਸ਼ਚਿਤ ਹੈ ਕਿ x + 5 ਦਾ ਮੁੱਲ, x ਦੇ ਸੱਜੇ ਪਾਸੇ 5 ਇਕਾਈਆਂ ਦੀ ਦੂਰੀ 'ਤੇ ਬਿੰਦੂ P ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਵੇਗਾ। ਇਸੇ ਤਰ੍ਹਾਂ x – 4 ਦਾ ਮੁੱਲ X ਦੋ ਖੱਬੇ ਪਾਸੇ 4 ਇਕਾਈਆਂ ਦੀ ਦੂਰੀ 'ਤੇ ਹੋਵੇਗਾ। 4x ਅਤੇ 4x + 5 ਦੀ ਸਥਿਤੀ ਬਾਰੇ ਕੀ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ?

4x ਦੀ ਸਥਿਤੀ ਬਿੰਦੂ C 'ਤੇ ਹੋਵੇਗੀ। ਮੂਲ ਬਿੰਦੂ ਤੋਂ C ਦੀ ਦੂਰੀ X ਦੀ ਦੂਰੀ ਦਾ ਚਾਰ ਗੁਣਾ ਹੋਵੇਗੀ। 4x + 5 ਦੀ ਸਥਿਤੀ D, C ਦੇ ਸੱਜੇ ਪਾਸੇ 5 ਇਕਾਈ ਦੀ ਦੂਰੀ 'ਤੇ ਹੋਵੇਗੀ।

146 🔳 ਗਣਿਤ

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਇੱਕ ਚਲ ਵਾਲੇ ਅਤੇ ਦੋ ਚਲਾਂ ਵਾਲੇ ਵਿਅੰਜਕਾਂ ਦੀਆਂ ਪੰਜ-ਪੰਜ ਉਦਾਹਰਣਾਂ ਦਿਓ।
 x, x - 4, 2x + 1, 3x - 2 ਨੂੰ ਸੰਖਿਆ ਰੇਖਾ 'ਤੇ ਦਰਸਾਉ।

9.2 ਪਦ, ਗੁਣਨਖੰਡ ਅਤੇ ਗੁਣਾਂਕ

ਵਿਅੰਜਕ 4x + 5 ਨੂੰ ਲਵੇ। ਇਹ ਵਿਅੰਜਕ 4x ਅਤੇ 5 ਦੋ ਪਦਾਂ ਤੋਂ ਬਣਿਆ ਹੈ। ਪਦਾਂ ਨੂੰ ਜੋੜ ਕੇ ਵਿਅੰਜਕ ਬਣਦਾ ਹੈ। ਪਦ ਆਪ ਵੀ ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਵਿਅੰਜਕ x²y² – 10x²y + 5xy² – 20 ਦੇ ਹਰੇਕ ਪਦ ਦੇ ਗੁਣਜ ਨੂੰ ਪਹਿਚਾਣੇ। ਪਦ 4x ਆਪਣੇ ਗੁਣਨਖੰਡਾਂ 4 ਅਤੇ x ਦਾ ਗੁਣਨਫਲ ਹੈ। ਪਦ 5 ਕੇਵਲ ਇੱਕ ਗੁਣਨਖੰਡ 5 ਤੋਂ ਬਣਿਆ ਹੋਇਆ ਹੈ।

ਵਿਅੰਜਕ 7xy – 5x ਦੇ ਦੋ ਪਦ 7xy ਅਤੇ 5x ਹੈ। ਪਦ 7xy ਗੁਣਨਖੰਡ 7. x ਅਤੇ y ਦਾ ਗੁਣਨਫਲ ਹੈ। ਕਿਸੇ ਪਦ ਦਾ ਸੰਖਿਆਤਮਕ ਗੁਣਨਖੰਡ ਨੂੰ ਉਸਦਾ ਸੰਖਿਆਤਮਕ ਗੁਣਾਂਕ (Numerical Coefficient) ਜਾਂ ਗੁਣਾਂਕ ਆਖਦੇ ਹਨ। ਪਦ 7xy ਦਾ ਗੁਣਾਂਕ 7 ਹੈ ਅਤੇ ਪਦ –5x ਦਾ ਗੁਣਾਂਕ –5 ਹੈ।

9.3 ਇੱਕ ਪਦੀ, ਦੋ ਪਦੀ ਅਤੇ ਬਹੁਪਦ

ਜਿਸ ਵਿਅੰਜਕ ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਪਦ ਹੁੰਦਾ ਹੈ ਉਸਨੂੰ ਇੱਕ ਪਦੀ ਕਹਿੰਦੇ ਹਨ। ਦੋ ਪਦਾਂ ਵਾਲੇ ਵਿਅੰਜਕ ਨੂੰ ਦੋ ਪਦੀ ਆਖਦੇ ਹਨ ਤਿੰਨ ਪਦਾਂ ਵਾਲੇ ਨੂੰ ਤਿੰਨ ਪਦੀ ਆਖਦੇ ਹਨ ਅਤੇ ਇਸੇ ਤਰ੍ਹਾਂ ਹੋਰ। ਆਮ ਤੌਰ ਤੇ ਇੱਕ ਜਾਂ ਜ਼ਿਆਦਾ ਪਦਾਂ ਵਾਲੇ ਵਿਅੰਜਕ ਜਿਸਦੇ ਗੁਣਾਂਕ ਸਿਰਫ ਨਾ ਹੋਣ ਅਤੇ ਜਿਸਦੇ ਚਲਾਂ ਦੀ ਘਾਤ ਰਿਣ ਨਾ ਹੋਵੇ, ਬਹੁਪਦ ਆਖਦੇ ਹਨ। ਬਹੁਪਦ ਦੇ ਪਦਾਂ ਦੀ ਸੰਖਿਆ ਇੱਕ ਜਾਂ ਇੱਕ ਤੋ ਜ਼ਿਆਦਾ ਕੁੱਝ ਵੀ ਹੋ ਸਕਦੀ ਹੈ।

ਇੱਕ ਪਦੀ ਦੀਆਂ ਉਦਾਹਰਣਾਂ : ਦੋ ਪਦੀ ਦੀਆਂ ਉਦਾਹਰਣਾਂ : ਤਿੰਨ ਪਦੀ ਦੀਆਂ ਉਦਾਹਰਣਾਂ : ਬਹੁਪਦ ਦੀਆਂ ਉਦਾਹਰਣਾਂ :

 $4x^2$, 3xy, -7z, $5xy^2$, 10y, -9, 82mnp ਆਦਿ। a + b, 4l + 5m, a + 4, 5 - 3xy, $z^2 - 4y^2$ ਆਦਿ। a + b + c, 2x + 3y - 5, $x^2y - xy^2 + y^2$ ਆਦਿ। a + b + c + d, 3xy, 7xyz - 10, 2x + 3y + 7z ਆਦਿ।

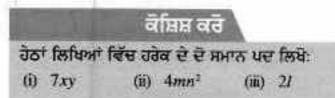
ਕੋਸ਼ਿਸ਼ ਕਰੋ

 ਹੇਠਾਂ ਲਿਖੇ ਬਹੁਪਦਾਂ ਨੂੰ ਇੱਕ ਪਦੀ, ਦੋ ਪਦੀ, ਅਤੇ ਤਿੰਨ ਪਦੀ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਗੀਕਰਨ ਕਰੋ : -z+5, x + y + z, y + z + 100, ab - ac, 17

2. ਬਣਾਓ :

- (a) ਤਿੰਨ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਦੋ ਪਦੀ ਜਿਸ ਵਿੱਚ ਕੇਵਲ ਇੱਕ ਚਲ x ਹੋਵੇ।
- (b) ਤਿੰਨ ਇਸ ਤਰ੍ਹਾਂ ਦੱਪਦੀ ਜਿਸ ਵਿੱਚ x ਅਤੇ y ਚਲ ਹੋਣ।
- (c) ਤਿੰਨ ਇੱਕ ਪਦੀ ਜਿਸ ਵਿੱਚ x ਅਤੇ y ਚਲ ਹੋਣ।
- (d) ਚਾਰ ਜਾਂ ਜ਼ਿਆਦਾ ਪਦਾਂ ਵਾਲੇ 2 ਬਹੁਪਦ।

9.4 ਸਮਾਨ ਅਤੇ ਅਸਮਾਨ ਪਦ ਹੇਠਾਂ ਲਿਖੇ ਵਿਅੰਜਕਾਂ ਨੂੰ ਦੇਖੋ : 7x, 14x, -13x, 5x², 7y, 7xy, -9y², -9x², -5yx


ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਅਤੇ ਤਤਸਮਕ 🔳 147

ਇਹਨਾਂ ਵਿੱਚ ਸਮਾਨ ਪਦ ਇਸ ਤਰ੍ਹਾਂ ਹਨ :

(i) 7x, 14x, ਅਤੇ -13x
 (ii) 5x² ਅਤੇ -9x²

(iii) 7xy ਅਤੇ -5yx

7x ਅਤੇ 7y ਸਮਾਨ ਪਦ ਕਿਉਂ ਨਹੀਂ ਹਨ ? 7x ਅਤੇ 7xy ਸਮਾਨ ਪਦ ਕਿਉਂ ਨਹੀਂ ਹਨ ? 7x ਅਤੇ 5x ਸਮਾਨ ਪਦ ਕਿਉਂ ਨਹੀਂ ਹਨ ?

9.5 ਬੀਜ ਵਿਅੰਜਕਾਂ ਦਾ ਜੋੜ ਅਤੇ ਘਟਾਉ

ਪਿਛਲੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਅਸੀਂ ਇਹ ਵੀ ਸਿੱਖਿਆ ਹੈ ਕਿ ਬੀਜ ਵਿਅੰਜਕਾਂ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਜੋੜਿਆ ਅਤੇ ਘਟਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਉਦਹਾਰਣ ਲਈ 7x' – 4x + 5 ਅਤੇ 9x – 10, ਨੂੰ ਜੋੜਨ ਦੇ ਲਈ ਅਸੀ ਇਸ ਤਰ੍ਹਾਂ ਕਰਦੇ ਹਾਂ:

$$7x^{2} - 4x + 5$$
+ 9x - 10
$$7x^{2} + 5x - 5$$

ਵਿਚਾਰ ਕਰੋ ਕਿ ਅਸੀਂ ਜੋੜਫਲ ਕਿਸ ਤਰ੍ਹਾਂ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ। ਜੋੜੇ ਜਾਣ ਵਾਲੇ ਹਰੇਕ ਵਿਅੰਜਕ ਨੂੰ ਅਸੀਂ ਵੱਖ-ਵੱਖ ਕਤਾਰਾਂ ਵਿੱਚ ਲਿਖਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ ਕਰਦੇ ਸਮੇਂ ਅਸੀਂ ਸਮਾਨ ਪਦਾਂ ਨੂੰ ਇੱਕ-ਦੂਸਰੇ ਦੇ ਉੱਪਰ ਹੇਠਾਂ ਲਿਖਦੇ ਹਾਂ ਅਤੇ ਜਿਸ ਤਰ੍ਹਾਂ ਉੱਪਰ ਦਰਸਾਇਆ ਗਿਆ ਹੈ, ਅਸੀਂ ਉਹ ਸਮਾਨ ਪਦਾਂ ਨੂੰ ਜੋੜਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ 5 + (-10) = 5 -10 = -5, ਇਸ ਤਰ੍ਹਾਂ - 4x + 9x = (-4 + 9)x = 5x. ਆਉ ਕੁੱਝ ਹੋਰ ਉਦਾਹਰਣਾਂ ਹੱਲ ਕਰੀਏ।

ਉਦਾਹਰਣ 1 : 7xy + 5yz – 3zx, 4yz + 9zx – 4y , –3xz + 5x – 2xy ਦਾ ਜੋੜ ਪਤਾ ਕਰੇ।

_{ਹੱਲ:} ਸਮਾਨ ਪਦਾਂ ਨੂੰ ਇੱਕ ਦੂਸਰੇ ਦੇ ਉੱਪਰ—ਹੇਠਾਂ ਰੱਖ ਕੇ ਤਿੰਨ ਵਿਅੰਜਕਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਕਤਾਰਾਂ ਵਿੱਚ ਲਿਖਦੇ ਹੋਏ, ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਵਿਅੰਜਕਾਂ ਦਾ ਜੋੜ 5xy + 9yz + 3zx + 5x – 4y ਹੈ। ਧਿਆਨ ਦਿਓ ਕਿ ਦੂਸਰੇ ਵਿਅੰਜਕ ਦੇ ਪਦ – 4y ਅਤੇ ਤੀਸਰੇ ਵਿਅੰਜਕ ਦੇ ਪਦ 5x ਨੂੰ ਜੋੜਫਲ ਵਿੱਚ ਉਸ ਤਰ੍ਹਾਂ ਹੀ ਲਿਖਿਆ ਗਿਆ ਹੈ ਜਿਸ ਤਰ੍ਹਾਂ ਦੇ ਉਹ ਹਨ ਕਿਉਂਕਿ ਦੂਸਰੇ ਵਿਅੰਜਕਾਂ ਵਿੱਚ ਉਸਦਾ ਕੋਈ ਸਮਾਨ ਪਦ ਨਹੀਂ ਹੈ।

ਉਦਹਾਰਣ 2 : 7x³ – 4xy + 8y² + 5x – 3y ਵਿੱਚੋਂ 5x² – 4y² + 6y – 3 ਨੂੰ ਘਟਾਉ। ਹੱਲ :

$$7x^{2} - 4xy + 8y^{2} + 5x - 3y$$

$$5x^{2} - 4y^{2} + 6y - 3$$
(-)
(+)
(-)
(+)
$$2x^{2} - 4xy + 12y^{2} + 5x - 9y + 3$$

148 🔳 ਗਣਿਤ

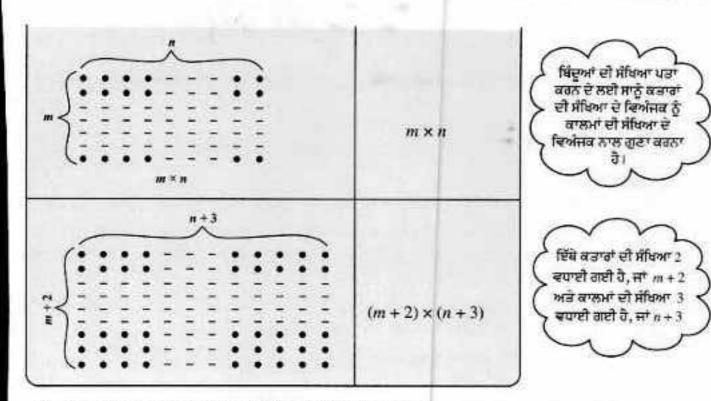
ਨੋਟ : ਕਿਸੇ ਵੀ ਸੰਖਿਆ ਨੂੰ ਘਟਾਉਣਾ ਉਸਦੇ ਜੋੜਾਤਮਕ ਉਲਟ ਨੂੰ ਜੋੜਨ ਵਰਗਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ – 3 ਨੂੰ ਘਟਾਉਣਾ, +3 ਨੂੰ ਜੋੜਨ ਦੇ ਸਮਾਨ ਹੈ, ਇਸ ਤਰ੍ਹਾਂ 6y ਨੂੰ ਘਟਾਉਣਾ, –6y ਨੂੰ ਜੋੜਨ ਦੇ ਸਮਾਨ ਹੈ। –4y² ਨੂੰ ਘਟਾਉਣਾ 4y³ ਨੂੰ ਜੋੜਨ ਦੇ ਸਮਾਨ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਹੋਰ ਦੂਸਰੀ ਕਿਤਾਬ ਦੇ ਹਰੇਕ ਪਦ ਦੇ ਹੇਠਾਂ ਤੀਸਰੀ ਕਤਾਰ ਵਿੱਚ ਲਿਖੇ ਚਿੰਨ੍ਹ ਤੋਂ ਇਹ ਜਾਨਣ ਵਿੱਚ ਸਹਾਇਤਾ ਮਿਲਦੀ ਹੈ ਕਿ ਕਿਹੜੀ ਕਿਰਿਆ ਕੀਤੀ ਜਾਣੀ ਹੈ।

ਅਭਿਆਸ 9.1

- ਹੇਠਾਂ ਲਿਖੇ ਵਿਅੰਜਕਾਂ ਵਿੱਚੋਂ ਹਰੇਕ ਦੇ ਪਦਾਂ ਅਤੇ ਗੁਣਾਂਕਾਂ ਨੂੰ ਪਹਿਚਾਣੋਂ :
 - (i) $5xyz^2 3zy$ (ii) $1 + x + x^2$ (iii) $4x^2y^2 4x^2y^2z^2 + z^2$
 - (iv) 3-pq+qr-rp (v) $\frac{x}{2}+\frac{y}{2}-xy$ (vi) 0.3a-0.6ab+0.5b
- ਹੇਠਾਂ ਲਿਖੇ ਬਹੁਪਦਾਂ ਨੂੰ ਇੱਕ ਪਦੀ, ਦੋ ਪਦੀ ਅਤੇ ਤਿੰਨ ਪਦੀ ਦੇ ਰੂਪ ਵਿੱਚ ਵਰਗੀਕਰਨ ਕਰੋ। ਕਿਹੜਾ ਬਹੁਪਦ ਇਹਨਾਂ ਤਿੰਨ ਸ਼ੇਣੀਆਂ ਵਿੱਚ ਕਿਸੇ ਵਿੱਚ ਵੀ ਨਹੀਂ ਹੈ?

x + y, 1000, $x + x^{2} + x^{3} + x^{4}$, 7 + y + 5x, $2y - 3y^{2}$, $2y - 3y^{2} + 4y^{3}$, 5x - 4y + 3xy, $4z - 15z^{2}$, ab + bc + cd + da, pqr, $p^{2}q + pq^{2}$, 2p + 2q

- 3. ਹੇਠਾਂ ਲਿਖਿਆਂ ਦਾ ਜੋੜ ਪਤਾ ਕਰੋ :
 - (i) ab bc, bc ca, ca ab (ii) a b + ab, b c + bc, c a + ac
 - (iii) $2p^2q^2 3pq + 4$, $5 + 7pq 3p^2q^2$ (iv) $l^2 + m^2$, $m^2 + n^2$, $n^2 + l^2$,


2lm + 2mn + 2nl

4. (a) 12a - 9ab + 5b - 3 ਵਿੱਚੋਂ 4a - 7ab + 3b + 12 ਨੂੰ ਘਟਾਓ।

- (b) 5xy 2yz 2zx + 10xyz ਵਿੱਚ 3xy + 5yz 7zx 古 ਘਟਾਓ।
- (c) $18 3p 11q + 5pq 2pq^2 + 5p^2q$ ਵਿੱਚ $4p^2q 3pq + 5pq^2 8p + 7q 10$ ਨੂੰ ਘਟਾਓ।
- 9.6 ਬੀਜ ਵਿਅੰਜਕਾਂ ਦਾ ਗੁਣਨ
 - ਬਿੰਦੂਆਂ ਦੇ ਹੇਠਾਂ ਲਿਖੇ ਪੈਟਰਨ ਨੂੰ ਦੇਖੋ :

ਬਿਦੂਆਂ ਦੇ ਪੈਟਰਨ									ਬਿਦੂਆਂ ਦੀ ਕੁੱਲ ਸੰਖਿਆ
									10. A 10 1 1 1 1
•	•	•	•	٠	•	•	٠	•	1
•	•	•	٠	٠	•	٠	۰	•	4×9
•	•	•	•	•	•	•	•	•	
	•	•							(16.3%)
•		٠							S. 24
	•								5×7
	•			٠					5×7

ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਅਤੇ ਤਤਸਮਕ 🔳 149

(ii) ਕੀ ਤੁਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਹੋਰ ਸਥਿਤੀਆਂ ਬਾਰੇ ਸੋਚ ਸਕਦੇ ਹੋ ਕਿ ਜਿਹਨਾਂ ਵਿੱਚ ਦੋ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨੀ ਪੈਂਦੀ ਹੋਵੇ ?

ਅਮੀਨਾ ਉੱਠ ਕੇ ਕਹਿੰਦੀ ਹੈ। "ਅਸੀਂ ਆਇਤ ਦੇ ਖੇਤਰਫਲ ਦੇ ਬਾਰੇ ਸੋਚ ਸਕਦੇ ਹਾਂ।" ਆਇਤ ਦਾ ਖੇਤਰਫਲ $l \times b$ ਹੈ ਜਿਸ ਵਿੱਚ *l* ਲੰਬਾਈ ਹੈ ਅਤੇ *b* ਚੌੜਾਈ ਹੈ ਜਦੋਂ ਆਇਤ ਦੀ ਲੰਬਾਈ 5 ਇਕਾਈ ਵਧਾ ਦਿੱਤੀ ਜਾਵੇ ਤਾਂ ਜਿਵੇਂ ਕਿ (*l* + 5) ਕਰ ਦਿੱਤੀ ਜਾਵੇ ਅਤੇ ਚੌੜਾਈ 3 ਇਕਾਈ ਘੱਟ ਕਰ ਦਿੱਤੀ ਜਾਵੇ ਜਾਂ (*b* - 3) ਕਰ ਦਿੱਤੀ ਜਾਵੇ ਤਾਂ ਆਇਤ ਦਾ ਖੇਤਰਫਲ (*l* + 5) × (*b* - 3) ਹੋਵੇਗਾ।

- (ii) ਕੀ ਤੁਸੀਂ ਆਇਤਨ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸੋਚ ਸਕਦੇ ਹੋ? (ਇੱਕ ਆਇਤਾਕਾਰ ਬਕਸੇ ਦਾ ਆਇਤਨ ਉਸਦੀ ਲੰਬਾਈ, ਚੌੜਾਈ ਅਤੇ ਉਚਾਈ ਦੇ ਗੁਣਨਫਲ ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।)
- (iv) ਸਰਿਤਾ ਕਹਿੰਦੀ ਹੈ ਕਿ ਜਦੋਂ ਅਸੀਂ ਵਸਤੂਆਂ ਖਰੀਦਦੇ ਹਾਂ ਤਾਂ ਸਾਨੂੰ ਗੁਣਾ ਕਰਨੀ ਪੈਂਦੀ ਹੈ।ਉਦਾਹਰਣ ਲਈ, ਜੋ ਪ੍ਰਤੀ ਦਰਜਨ ਕੇਲਿਆਂ ਦਾ ਮੁੱਲ p ਰੁਪਏ ਹੈ ਅਤੇ ਸਕੂਲ ਪਿਕਨਿਕ ਦੇ ਲਈ z ਦਰਜਨ ਕੇਲਿਆਂ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ਤਾਂ ਸਾਨੂੰ (p × z) ਰੁਪਏ ਦਾ ਭੁਗਤਾਨ ਕਰਨਾ ਪਵੇਗਾ।

ਮੰਨ ਲਵੇ, ਪ੍ਰਤੀ ਦਰਜਨ ਕੇਲਿਆਂ ਦਾ ਮੁੱਲ 2 ਰੁਪਏ ਘੱਟ ਹੁੰਦਾ ਅਤੇ ਪਿਕਨਿਕ ਦੇ ਲਈ 4 ਦਰਜਨ ਘੱਟ ਕੇਲਿਆਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ, ਪ੍ਰਤੀ ਦਰਜਨ ਕੇਲਿਆਂ ਦਾ ਮੁੱਲ (p – 2) ਰੁਪਏ ਹੁੰਦਾ ਹੈ ਅਤੇ (z – 4) ਦਰਜਨ ਕੇਲਿਆਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਸ ਲਈ (p – 2) × (z – 4) ਰੁਪਏ ਦਾ ਭੁਗਤਾਨ ਕਰਨਾ ਪਵੇਗਾ।

150 🔳 ਗਣਿਤ

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਕੀ ਤੁਸੀ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਹੋਰ ਦੋ ਸਥਿਤੀਆਂ ਦੇ ਬਾਰੇ ਸੋਚ ਸਕਦੇ ਹੋ ਜਿੱਥੇ ਸਾਨੂੰ ਬੀਜ ਗਣਿਤਕ ਵਿਅੰਜਕਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨੀ ਪੈਂਦੀ ਹੈ?

- ਨਿਟ : ਚਾਲ ਅਤੇ ਸਮੇਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸੋਚਣਾ
 - ਸਧਾਰਨ ਵਿਆਜ, ਮੁਲਧਨ ਅਤੇ ਸਧਾਰਨ ਵਿਆਜ ਦੀ ਦਰ ਆਦਿ ਬਾਰੇ ਵਿੱਚ ਸੋਚਣਾ]

ਉਪਰੋਕਤ ਸਾਰੀਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚ ਅਸੀਂ ਦੋ ਜਾਂ ਜ਼ਿਆਦਾ ਰਾਸ਼ੀਆਂ ਦਾ ਗੁਣਨ ਕੀਤਾ ਹੈ। ਜੇ ਰਾਸ਼ੀਆਂ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਦਿੱਤੀਆਂ ਗਈਆਂ ਹਨ ਅਤੇ ਅਸੀਂ ਗੁਣਨਫਲ ਪਤਾ ਕਰਨਾ ਹੈ ਤਾਂ ਇਸਦਾ ਅਰਥ ਇਹ ਹੋਇਆ ਹੈ ਕਿ ਸਾਨੂੰ ਇਹ ਪਤਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਗੁਣਨਫਲ ਕਿਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।ਆਉ, ਇਸ ਨੂੰ ਕ੍ਰਮਵਾਰ ਕਰਦੇ ਹਾਂ। ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਦੋ ਇੱਕ ਪਦੀਆਂ ਨੂੰ ਗੁਣਾ ਕਰਦੇ ਹਾਂ।

9.7 ਇੱਕ ਪਦੀ ਨੂੰ ਇੱਕ ਪਦੀ ਨਾਲ ਗੁਣਾ ਕਰਨਾ

9.7.1 ਦੇ ਇੱਕ ਪਦੀਆਂ ਨੂੰ ਗੁਣਾ ਕਰਨਾ ਅਸੀਂ ਸ਼ਰ ਕਰਦੇ ਹਾਂ

4 × x = x + x + x + x = 4x ਜੋ ਅਸੀਂ ਪਹਿਲਾਂ ਸਿੱਖ ਚੁੱਕੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ, 4 × (3x) = 3x + 3x + 3x + 3x = 12x ਹੁਣ ਹੇਠਾਂ ਲਿਖੇ ਗੁਣਨਫਲਾਂ 'ਤੇ ਵਿਚਾਰ ਕਰੀਏ :

ਧਿਆਨ ਦਿਓ ਕਿ ਇੱਕ ਪਦੀਆਂ) ਦੇ ਤਿੰਨ ਗੁਣਨਫਲ 3.19, 15.19, 2-15.19 ਵੀ ਇੱਕ ਪਦੀ ਹਨ।

- (i) $x \times 3y = x \times 3 \times y = 3 \times x \times y = 3xy$ (ii) $5x \times 3y = 5 \times x \times 3 \times y = 5 \times 3 \times x \times y = 15xy$
- (iii) $5x \times (-3y) = 5 \times x \times (-3) \times y$

 $= 5 \times (-3) \times x \times y = -15xy$

ਕੁੱਝ ਹੋਰ ਉਪਯੋਗੀ ਉਦਾਹਰਣ ਇਸ ਤਰਾਂ ਹਨ:

(iv) $5x \times 4x^2 = (5 \times 4) \times (x \times x^2)$ = $20 \times x^3 = 20x^3$

(v) $5x \times (-4xyz) = (5 \times -4) \times (x \times xyz)$

 $= -20 \times (x \times x \times yz) = -20x^2yz$

ਧਿਆਨ ਦਿਓ ਕਿ ਅਸੀਂ ਦੋਨਾਂ ਇੱਕ ਪਦੀਆਂ ਦੇ ਬੀਜਗਣਿਤਿਕ ਭਾਗਾਂ ਦੇ ਵੱਖ-ਵੱਖ ਚਲਾਂ ਦੀਆਂ ਘਾਤਾਂ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਇੱਕਠਾ ਕੀਤਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ ਘਾਤਾਂ ਦੇ ਨਿਯਮਾਂ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਹੈ। ਨੋਟ ਕਰੋ : 5 × 4 = 20 ਜਿਵੇਂ ਕਿ ਗੁਣਨਫਲ ਦਾ ਗੁਣਜ = ਪਹਿਲਾਂ ਇੱਕ ਪਦੀ ਦਾ ਗੁਣਜ × ਦੂਸਗੇ ਇੱਕ ਪਦੀ ਦਾ ਗੁਣਜ ਅਤੇ $x × x^2 = x^3$

ਭਾਵ ਕਿ, ਗੁਣਨਫਲ ਦਾ ਬੀਜ ਗਣਿਤਕ ਗੁਣਨਖੰਡ = ਪਹਿਲੇ ਇੱਕ ਪਦੀ ਦਾ ਬੀਜ ਗਣਿਤਕ ਗੁਣਨਖੰਡ × ਦੂਜੇ ਇੱਕ ਪਦੀ ਦਾ ਬੀਜ ਗਣਿਤਕ ਗੁਣਨਖੰਡ

9.7.2 ਤਿੰਨ ਜਾਂ ਜ਼ਿਆਦਾ ਇੱਕ ਪਦੀਆਂ ਨੂੰ ਗੁਣਾ ਕਰਨਾ

ਹੇਠਾਂ ਲਿਖਿਆਂ ਉਦਾਹਰਣਾਂ 'ਤੇ ਵਿਚਾਰ ਕਰੋ :

(i) $2x \times 5y \times 7z = (2x \times 5y) \times 7z = 10xy \times 7z = 70xyz$

(ii) $4xy \times 5x^2y^2 \times 6x^3y^3 = (4xy \times 5x^2y^2) \times 6x^3y^3 = 20x^3y^3 \times 6x^3y^3 = 120x^3y^3 \times x^3y^3$ = 120 $(x^3 \times x^3) \times (y^3 \times y^2) = 120x^6 \times y^6 = 120x^6y^6$

ਇਹ ਸਪੱਸ਼ਟ ਹੈ ਕਿ ਅਸੀਂ ਸਭ ਤੋਂ ਪਹਿਲਾਂ, ਪਹਿਲੇ ਦੋ ਇੱਕ ਪਦੀਆਂ ਨੂੰ ਗੁਣਾ ਕਰਦੇ ਹਾਂ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਇੱਕ ਪਦੀ ਨੂੰ ਤੀਸਰੀ ਪਦੀ ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹਾਂ। ਜ਼ਿਆਦਾ ਗਿਣਤੀ ਵਿੱਚ ਇੱਕ ਪਦੀ ਨੂੰ ਗੁਣਾ ਕਰਨ ਦੇ ਲਈ ਇਸ ਵਿਧੀ ਦਾ ਵਿਸਤਾਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਅਤੇ ਤਤਸਮਕ 🔳 151

ਕੋਸ਼ਿਸ਼ ਕਰੋ

4x × 5y × 7z ਪਤਾ ਕਰੋ :	ਅਸੀਂ ਦੂਸਰੇ ਤਰੀਕੇ ਨਾਲ ਵੀ ਇਸ ਗੁਣਨਫਲ ਨੂੰ ਪਤਾ
ਸਭ ਤੋਂ ਪਹਿਲਾਂ 4x × 5y ਪਤਾ ਕਰੋ ਅਤੇ ਫਿਰ ਉਸ ਨੂੰ 7z ਨਾਲ	ਕਰ ਸਕਦੇ ਹਾਂ:
ਗੁਣਾ ਕਰੋ, ਜਾਂ ਪਹਿਲਾਂ 5y x 7z ਪਤਾ ਕਰੋ ਅਤੇ ਇਸ ਨੂੰ 4x	$4xy \times 5x^2y^2 \times 6x^3 y^3$
ਨਾਲ ਗੁਣਾ ਕਰੋ। ਕੀ ਨਤੀਜਾ ਇੱਕੋ ਜਿਹਾ ਹੋਵੇਗਾ ? ਤਸੀਂ ਕੀ	$= (4 \times 5 \times 6) \times (x \times x^2 \times x^3) \times (y \times y^2 \times y^3)$
ਵਿਚਾਰ ਕਰ ਸਕਦੇ ਹੋ ? ਕੀ ਗੁਣਾ ਕਰਨ ਸਮੇਂ ਕ੍ਰਮ ਦਾ ਮਹੱਤਵ ਹੈ ?	$= 120 x^{6} y^{6}$

ਉਦਹਾਰਣ 3 : ਇੱਕ ਆਇਤ ਦੇ, ਜਿਸਦੀ ਲੰਬਾਈ ਅਤੇ ਚੌੜਾਈ ਦਿੱਤੀ ਹੋਈ ਹੈ, ਖੇਤਰਫਲ ਦੀ ਸਾਰਣੀ ਨੂੰ ਪੁਰਾ ਕਰੋ :

ਹੱਲ :

ਲੰਬਾਈ	ਚੌੜਾਈ	ਖੇਤਰਫਲ
3x	5y	$3x \times 5y = 15xy$
9y	$4y^2$	
4ab	5bc	
2 <i>l</i> ² m	3lm ²	

ਉਦਾਹਰਣ 4 : ਹੇਠਾਂ ਲਿਖੀ ਸਾਰਣੀ ਵਿੱਚ ਤਿੰਨ ਆਇਤਾਕਾਰ ਬਕਸਿਆਂ ਦੀ ਲੰਬਾਈ, ਚੌੜਾਈ ਅਤੇ ਉਚਾਈ ਦਿੱਤੀ ਹੋਈ ਹੈ। ਹਰੇਕ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰੋ :

T	ਲੰਬਾਈ	ਚੱੜਾਈ	ਉਚਾਈ
(i)	2ax	3by	5cz
(ii)	m ² n	n^2p	p^2m
(iii)	2q	4q ²	$8q^{3}$

ਹੱਲ' : ਆਇਤਨ = ਲੰਬਾਈ × ਚੌੜਾਈ × ਉਚਾਈ

ਇਸ ਲਈ (i) ਆਇਤਨ = (2ax) × (3by) × (5cz)

 $= 2 \times 3 \times 5 \times (ax) \times (by) \times (cz) = 30abcxyz$

- (ii) ਅਾਇਤਨ = $m^2n \times n^2p \times p^2m$ = $(m^2 \times m) \times (n \times n^2) \times (p \times p^2) = m^3n^3p^3$
- (iii) wreas $= 2q \times 4q^2 \times 8q^3$ $= 2 \times 4 \times 8 \times q \times q^2 \times q^3 = 64q^6$

ਅਭਿਆਸ 9.2

- ਹੇਠਾਂ ਲਿਖੇ ਇੱਕ ਪਦੀ ਜੋੜਿਆਂ ਦਾ ਗੁਣਨਫਲ ਪਤਾ ਕਰੋ :
 (i) 4, 7p
 (ii) -4p, 7p
 (iii) -4p, 7p
 (iv) 4p, 0
- ਹੇਠਾਂ ਲਿਖੇ ਇੱਕ ਪਦੀ ਜੋੜਿਆਂ ਦੇ ਰੂਪ ਵਿੱਚ ਲੰਬਾਈ ਅਤੇ ਚੌੜਾਈ ਰੱਖਣ ਵਾਲੇ ਆਇਤਾਂ ਦ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ :

(p, q); (10m, 5n); $(20x^2, 5y^2)$; $(4x, 3x^2)$; (3mn, 4np)

Downloaded from https:// www.studiestoday.com

(iv) $4p^3, -3p$

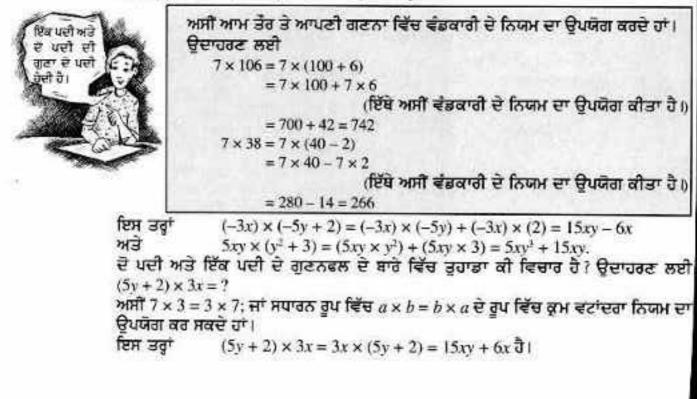
152 🔳 ਗਣਿਤ

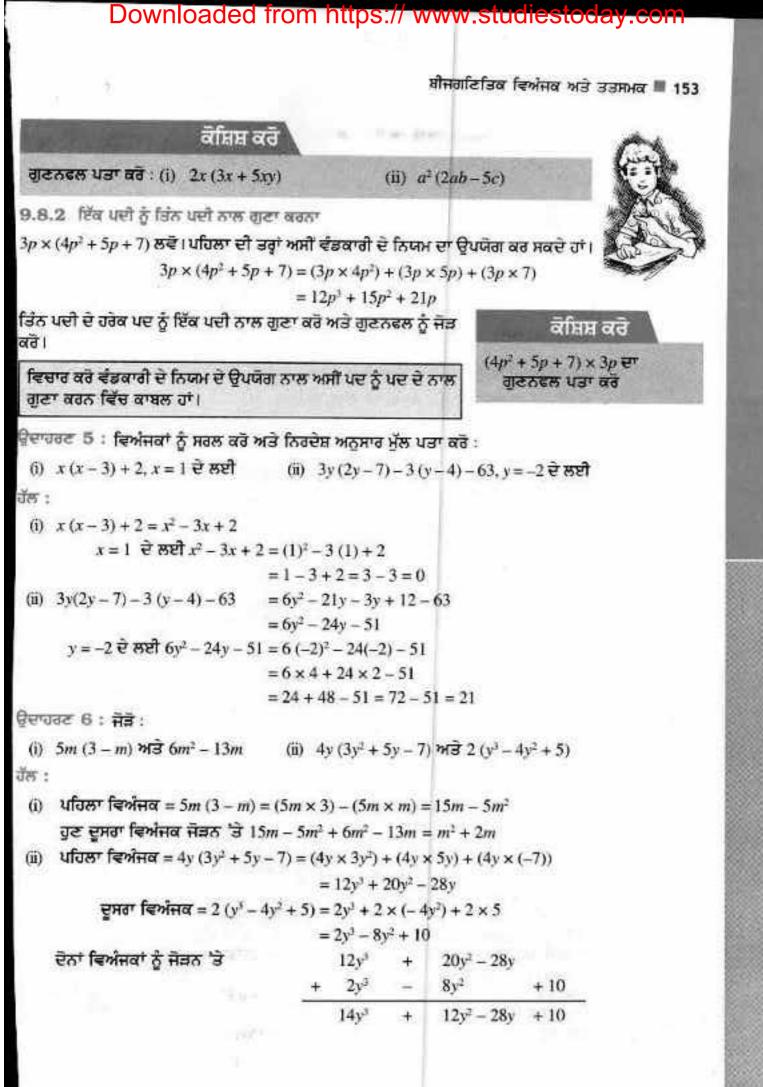
3. ਗੁਣਨਫਲਾਂ ਦੀ ਸਾਰਣੀ ਨੂੰ ਪੂਰਾ ਕਰੋ :

4 <i>x</i> ²	gee :			and the second sec	
_		124			-*12
777	(He)	$-15x^{2}y$	- 111		
	-+++	·		+++5	
Ξ.	10.114	-47	8.4	Ŧ	9-1
H		195	(88) (88)	- + <u>†</u> *	12.86
	(99)	(144)	201		(+0)
	4 1				Har Har Har Har Har Har Har Har Har Har

- ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਆਇਤਾਕਾਰ ਬਕਸਿਆਂ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰੋ : ਜਿਹਨਾਂ ਦੀ ਲੰਬਾਈ, ਚੌੜਾਈ ਅਤੇ ਉਚਾਈ ਕ੍ਰਮਵਾਰ ਹੇਠਾਂ ਲਿਖੀ ਹੈ :
 - (i) $5a, 3a^2, 7a^4$ (ii) 2p, 4q, 8r (

(iii) xy, $2x^2y$, $2xy^2$ (iv) a, 2b, 3c


- ਹੇਠਾਂ ਲਿਖਿਆਂ ਦਾ ਗੁਣਨਫਲ ਪਤਾ ਕਰੋ :
 - (i) xy, yz, zx (ii) $a, -a^2, a^3$ (iii) $2, 4y, 8y^2, 16y^3$
 - (iv) a, 2b, 3c, 6abc (v) m, mn, mnp


9.8 ਇੱਕ ਪਦੀ ਨੂੰ ਬਹੁਪਦ ਨਾਲ ਗੁਣਾ ਕਰਨਾ

9.8.1 ਇੱਕ ਪਦੀ ਨੂੰ ਦੋ ਪਦੀ ਨਾਲ ਗੁਣਾ ਕਰਨਾ

ਆਉ, ਇੱਕ ਪਦੀ 3x ਨੂੰ ਦੋ ਪਦੀ 5y + 2 ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹਾਂ, ਭਾਵ 3x × (5y + 2) ਪਤਾ ਕਰਦੇ ਹਾਂ। ਯਾਦ ਕਰੋ ਕਿ 3x ਅਤੇ (5y + 2) ਸੰਖਿਆਵਾਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ। ਇਸ ਲਈ ਵੰਡਕਾਰੀ ਦੇ ਨਿਯਮ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹੋਏ,

 $3x \times (5y + 2) = (3x \times 5y) + (3x \times 2) = 15xy + 6x$

154 🔳 ਗਣਿਤ

🖬 ਅਭਿਆਸ 9.3

ਹੇਠਾਂ ਲਿਖੇ ਜੋੜਿਆਂ ਵਿੱਚ ਹਰੇਕ ਦੇ ਵਿਅੰਜਕਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ।

(i) 4p, q + r (ii) ab, a - b (iii) $a + b, 7a^2b^2$ (iv) $a^2 - 9, 4a$ (v) pq + qr + rp, 0

ਸਾਰਣੀ ਨੂੰ ਪੂਰਾ ਕਰੋ :

	ਪਹਿਲਾ ਵਿਅੰਜਕ	ਦੂਸਰਾ ਵਿਅੰਜਕ	ব্যুহমঙ্ক
(i)	a	b+c+d	
(ii)	x+y-5	5.xy	
(iii)	р	$6p^2 - 7p + 5$	
(iv)	$4p^2q^2$	$p^2 - q^2$	
(v)	a+b+c	abc	

ਗੁਣਨਵਲ ਪਤਾ ਕਰੋ :

(i) $(a^2) \times (2a^{22}) \times (4a^{26})$

(ii) $\left(\frac{2}{3}xy\right) \times \left(\frac{-9}{10}x^2y^2\right)$

- (iii) $\left(-\frac{10}{3}pq^3\right) \times \left(\frac{6}{5}p^3q\right)$ (iv) $x \times x^3 \times x^3 \times x^4$
- 4. (a) 3x (4x − 5) + 3 ਨੂੰ ਸਰਲ ਕਰੋ ਅਤੇ (i) x = 3 ਅਤੇ (ii) x = ¹/₂ ਦੇ ਲਈ ਇਸਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।
 - (b) a (a² + a + 1) + 5 ਸਰਲ ਕਰੋ ਅਤੇ (i) a = 0, (ii) a = 1 ਅਤੋ (iii) a = -1 ਦੇ ਲਈ ਇਸਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।

- (b) 2x (z-x-y) ਅਤੇ 2y (z-y-x) ਨੂੰ ਜੋੜੋ।
- (c) 41 (10n 3m + 21) ਵਿੱਚ 31 (1 4m + 5n) 衣 ਘਟਾਉ।
- (d) 4c(-a+b+c) ਵਿੱਚ 3a(a+b+c)-2b(a-b+c) ਨੂੰ ਘਟਾਉ।

ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਅਤੇ ਤਤਸਮਕ 🗏 155

9.9 ਬਹੁਪਦ ਨੂੰ ਬਹੁਪਦ ਨਾਲ ਗੁਣਾ ਕਰਨਾ

9.9.1 ਦੇ ਪਈ ਨੂੰ ਦੇ ਪਈ ਨਾਲ ਗੁਣਾ ਕਰਨਾ

ਆਉ, ਇੱਕ ਦੋ ਪਦੀ (2a + 3b) ਨੂੰ ਦੂਸਰੇ ਦੋ ਪਦੀ (3a + 4b) ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹਾਂ। ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਪਹਿਲਾਂ ਕੀਤਾ ਹੈ, ਉਸ ਤਰ੍ਹਾਂ ਹੀ ਗੁਣਨ ਦੇ ਵੰਡਕਾਰੀ ਦੇ ਨਿਯਮ ਨੂੰ ਯਾਦ ਕਰਦੇ ਹੋਏ ਅਸੀਂ ਇਸ ਨੂੰ ਵੀ ਕ੍ਰਮਵਾਰ ਕਰਦੇ ਹਾਂ;

 $(3a+4b) \times (2a+3b) = 3a \times (2a+3b) + 4b \times (2a+3b)$ ਧਿਆਨ ਦਿਓ ਕਿ ਪਹਿਲੇ ਦੋ ਪਦੀ ਦਾ ਹਰੇਕ ਪਦ ਦੂਸਰੇ ਦੇ ਪਦੀ ਦੇ ਹਰੇਕ ਪਦ ਨਾਲ ਗੁਣਾ ਹੁੰਦਾ ਹੈ। = $6a^2 + 9ab + 8ba + 12b^2$ = $6a^2 + 17ab + 12b^2$ (ਕਿਉਂਕਿ ba = ab ਹੈ)

ਜਦੋਂ ਅਸੀਂ ਇੱਕ ਪਦ ਨੂੰ ਇੱਕ ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹਾਂ, ਤਾਂ ਆਸ ਕਰਦੇ ਹਾਂ ਕਿ ਇੱਥੇ 2 × 2 = 4 ਪਦ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ਪਰੰਤੂ ਇਹਨਾਂ ਵਿੱਚ ਦੋ ਪਦ ਸਮਾਨ ਹਨ ਜਿਨ੍ਹਾਂ ਨੂੰ ਇੱਕਠਾ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਸਾਨੂੰ 3 ਪਦ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।

ਬਰੁਪਦ ਨੂੰ ਬਰੁਪਦਾਂ ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਸਮੇਂ ਸਾਨੂੰ ਸਮਾਨ ਪਦਾਂ ਨੂੰ ਲੱਭ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਮਿਲਾ ਲੈਣਾ ਚਾਹੀਦਾ ਹੈ।

ਉਦਾਹਰਣ 8 : ਗਣਾ ਕਰੋ :

(i) (x-4) ਅਤੇ (2x+3) $\ddot{5}$ (ii) (x-y) ਅਤੇ (3x+5y) $\ddot{5}$

ਹੱਲ :

(i) $(x-4) \times (2x+3) = x \times (2x+3) - 4 \times (2x+3)$ = $(x \times 2x) + (x \times 3) - (4 \times 2x) - (4 \times 3) = 2x^2 + 3x - 8x - 12$ = $2x^2 - 5x - 12$ (用いて ਪਦਾ 点 前面で ぎ) (ii) $(x-y) \times (3x+5y) = x \times (3x+5y) - y \times (3x+5y)$

 $= (x \times 3x) + (x \times 5y) - (y \times 3x) - (y \times 5y)$

= 3x² + 5xy - 3yx - 5y² = 3x² + 2xy - 5y² (ਸਮਾਨ ਪਦਾਂ ਨੂੰ ਜੋੜਨ 'ਤੇ)

ਉਦਾਹਰਣ 9 : ਗੁਣਾ ਕਰੇ :

(i) (a+7) ਅਤੇ (b-5) ਨੂੰ (ii) (a^2+2b^2) ਅਤੇ (5a-3b) ਨੂੰ

रॉल :

(i) $(a+7) \times (b-5) = a \times (b-5) + 7 \times (b-5)$

$$=ab - 5a + 7b - 35$$

ਨੋਟ ਕਰੋ ਕਿ ਇਸ ਗੁਣਨਵਲ ਵਿੱਚ ਕੋਈ ਵੀ ਸਮਾਨ ਪਦ ਨਹੀਂ ਹੈ।

(ii) $(a^2 + 2b^2) \times (5a - 3b) = a^2 (5a - 3b) + 2b^2 \times (5a - 3b)$

$$=5a^3 - 3a^2b + 10ab^2 - 6b^3$$

9.9.2 ਦੋ ਪਦੀ ਨੂੰ ਤਿੰਨ ਪਦੀ ਨਾਲ ਗੁਣਾ ਕਰਨਾ

ਇਸ ਗੁਣਨ ਵਿੱਚ ਤਿੰਨ ਪਦੀ ਦੇ ਹਰੇਕ ਪਦ ਨੂੰ ਦੋ ਪਦੀ ਦੇ ਹਰੇਕ ਪਦ ਨਾਲ ਗੁਣਾ ਕਰਨਾ ਪਵੇਗਾ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ 3 × 2 = 6 ਪਦ ਪ੍ਰਾਪਤ ਕਰਾਂਗੇ। ਜੇ ਕਿਸੇ ਇੱਕ ਪਦ ਨੂੰ ਇੱਕ ਪਦ ਨਾਲ ਗੁਣਾ ਕਰਨ `ਤੇ ਸਮਾਨ ਪਦ ਬਣਦੇ ਹਨ ਤਾਂ ਪ੍ਰਾਪਤ ਪਦਾਂ ਦੀ ਸੰਖਿਆਂ ਘੱਟ ਦੇ ਪੰਜ ਜਾਂ ਇਸ ਤੋਂ ਵੀ ਘੱਟ ਹੋ ਸਕਦੀ ਹੈ।

156 🗏 ਗਣਿਤ

$$\frac{(a+7)}{e^{2}ve^{2}} \times \frac{(a^{2}+3a+5)}{(fx)ve^{2}} = a \times (a^{2}+3a+5) + 7 \times (a^{2}+3a+5) \frac{e^{2}}{x^{2}} = a^{2} + 3a^{2} + 5a + 7a^{2} + 21a + 35$$

$$= a^{3} + 3a^{2} + 5a + 7a^{2} + 21a + 35$$

$$= a^{3} + (3a^{2} + 7a^{2}) + (5a + 21a) + 35$$

$$= a^{3} + (10a^{2} + 26a + 35) \quad (\text{wiss} a + 2ab - 3b) c$$

$$\frac{1}{2}e^{2}ve^{2} = 10 : \pi as \pi a^{2} : (a+b) (2a-3b+c) - (2a-3b) c$$

$$\frac{1}{2}e^{2} - 3ab + ac + 2ab - 3b^{2} + bc$$

$$= 2a^{2} - 3ab + ac + 2ab - 3b^{2} + bc$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac$$

$$(furns feef fa - 3ab m 2 ab mrs ue to 0)$$

$$\frac{1}{2}e^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$= 2a^{2} - ab - 3b^{2} + bc + ac - (2ac - 3bc)$$

$$(i) (2a + 5) m^{2} (3a + 2)$$

$$(i) (2a + 5) m^{2} (3a + 2)$$

$$(i) (2a + 5) m^{2} (3a + 2)$$

$$(i) (2a + 3b) m^{2} (3a + 2)$$

$$(i) (a^{2} + b) (a + b^{2})$$

$$(i) (a^{2} + b) (a + b^{2})$$

$$(i) (a^{2} + b) (a + b^{2})$$

$$(i) (a^{2} + b)$$

ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਅਤੇ ਤਤਸਮਕ 🔳 157

9.10 ਤਤਸਮਕ ਕੀ ਹੈ?

ਤਤਸਮਕ (a + 1) (a +2) = a² + 3a + 2 ਨੂੰ ਲਵੇਂ। a ਦੇ ਕਿਸੇ ਮੁੱਲ a = 10 ਦੇ ਲਈ ਅਸੀਂ ਇਸ ਸਮਤਾ ਦੇ ਦੋਨੋਂ ਪਾਸਿਆਂ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰਾਂਗੇ।

a = 10 ਦੇ ਲਈ ਖੱਬਾ ਪਾਸਾ LHS = (a + 1) (a + 2) = (10 + 1) (10 + 2) = 11 × 12 = 132

ਸੱਜਾ ਪਾਸਾ RHS = $a^2 + 3a + 2 = 10^2 + 3 \times 10 + 2 = 100 + 30 + 2 = 132$ ਇਸ ਤਰ੍ਹਾਂ a = 10 ਦੇ ਲਈ ਸਮਤਾ ਦੇ ਦੋਨਾਂ ਪਾਸਿਆ ਦੇ ਮੁੱਲ ਸਮਾਨ ਹਨ। ਆਉਂ a = -5 ਲੈਂਦੇ ਹਾਂ।

> LHS = $(a + 1) (a + 2) = (-5 + 1) (-5 + 2) = (-4) \times (-3) = 12$ RHS = $a^2 + 3a + 2 = (-5)^2 + 3 (-5) + 2$ = 25 - 15 + 2 = 10 + 2 = 12

ਇਸ ਤਰ੍ਹਾਂ a = -5 ਦੇ ਲਈ, ਵੀ LHS = RHS ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ, ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ਕਿ a ਦੇ ਕਿਸੇ ਵੀ ਮੁੱਲ ਦੇ ਲਈ, ਇਸ ਸਮਤਾ ਦਾ LHS = RHS ਹੈ। ਉਹ ਸਮਤਾ ਜੋ ਚਲ ਦੇ ਸਾਰੇ ਮੁੱਲਾਂ ਦੇ ਲਈ ਸੱਚ ਹੈ, ਨੂੰ ਤਤਸਮਕ ਆਖਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ (a + 1) (a + 2) = a² + 3a + 2 ਇੱਕ ਤਤਸਮਕ ਹੈ।

ਇੱਕ ਸਮੀਕਰਨ ਆਪਣੇ ਚਲ ਦੇ ਲਈ ਕੇਵਲ ਕੁੱਝ ਨਿਸ਼ਚਿਤ ਮੁੱਲਾਂ ਦੇ ਲਈ ਸੱਚ ਹੁੰਦਾ ਹੈ, ਇਹ ਚਲ ਦੇ ਸਾਰੇ ਮੁੱਲਾਂ ਦੇ ਲਈ ਸੱਚ ਨਹੀਂ ਹੁੰਦਾ ਹੈ।ਉਦਾਹਰਣ ਲਈ ਸਮੀਕਰਨ $a^{1} + 3a + 2 = 132$ ਦੀ ਚਰਚਾ ਕਰੋ। ਇਹ ਸਮੀਕਰਨ a = 10 ਦੇ ਲਈ ਸੱਚ ਹੈ ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਉੱਪਰ ਦੇਖ ਚੁੱਕੇ ਹਾਂ। ਪਰ ਇਹ a = -5 ਜਾਂ a = 0 ਆਦਿ ਦੇ ਲਈ ਸੱਚ ਨਹੀਂ ਹੈ।

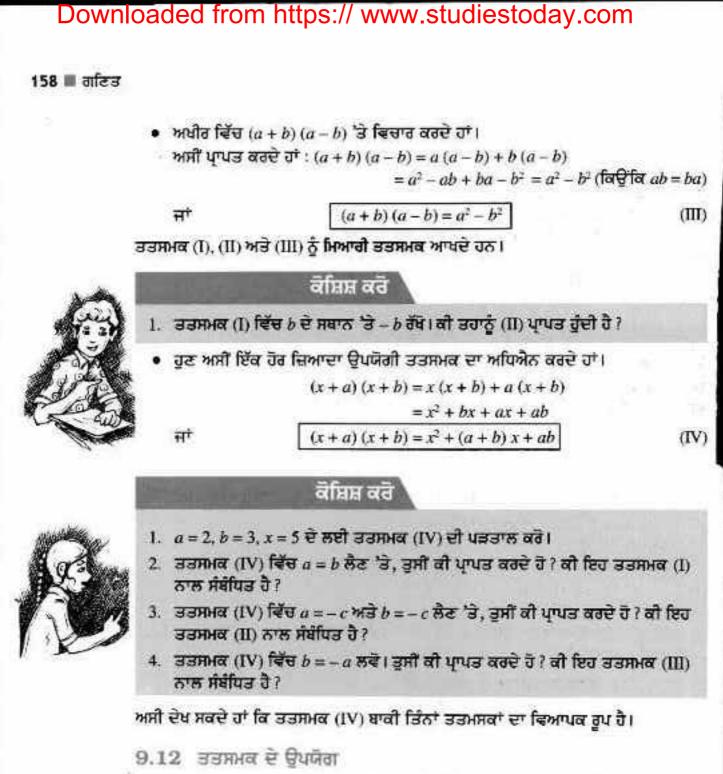
ਦਰਸਾਉ ਕਿ a² + 3a + 2 = 132, a = -5 ਅਤੇ a = 0 ਦੇ ਲਈ ਸੱਚ ਨਹੀਂ ਹੈ।

9.11 ਮਿਆਰੀ ਤਤਸਮਕ

ਹੁਣ ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਤਿੰਨ ਤਤਸਮਕਾਂ ਬਾਰੇ ਅਧਿਐਨ ਕਰਾਂਗੇ ਜੋ ਬਹੁਤ ਉਪਯੋਗੀ ਹਨ। ਇੱਕ ਦੇ ਪਦੀ ਨੂੰ ਦੂਸਰੀ ਦੇ ਪਦੀ ਨਾਲ ਗੁਣਾ ਕਰਦੇ ਹੋਏ ਇਹਨਾਂ ਤਤਸਮਕਾਂ ਨੂੰ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਅਸੀਂ ਗੁਣਨਫਲ (a + b) (a + b) ਜਾਂ (a + b)² ਦੇ ਬਾਰੇ ਵਿੱਚ ਚਰਚਾ ਕਰਦੇ ਹਾਂ।

$$(a + b)^{2} = (a + b) (a + b)$$

= $a(a + b) + b (a + b)$
= $a^{2} + ab + ba + b^{2}$
= $a^{2} + 2ab + b^{2}$
(fa@fa ab = ba)
 $(a + b)^{2} = a^{2} + 2ab + b^{2}$ (1)


ਇਸ ਤਰ੍ਹਾਂ

ਸਪੱਸ਼ਟ ਤੌਰ 'ਤੇ ਇਹ ਇੱਕ ਤਤਸਮਕ ਹੈ ਕਿਉਂਕਿ ਅਸਲ ਗੁਣਾ ਕਰਕੇ LHS ਤੋਂ RHS ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਤੁਸੀਂ ਸਥਾਪਿਤ ਕਰ ਸਕਦੇ ਹੋ ਕਿ a ਅਤੇ b ਦੇ ਕਿਸੇ ਵੀ ਮੁੱਲ ਦੇ ਲਈ, ਤਤਸਮਕ ਦੇ ਦੋਨੋਂ ਪਾਸਿਆਂ ਦੇ ਮੱਲ ਸਮਾਨ ਹਨ।

 ਇਸਦੇ ਬਾਅਦ ਅਸੀਂ ਗੁਣਨਫਲ (a − b) (a − b) ਜਾਂ (a − b)² ਦੇ ਬਾਰੇ ਵਿੱਚ ਚਰਚਾ ਕਰ ਸਕਦੇ ਹਾਂ।

$$(a-b)^{2} = (a-b) (a-b) = a (a-b) - b (a-b)$$

= $a^{2} - ab - ba + b^{2} = a^{2} - 2ab + b^{2}$
$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

नगं

ਹੁਣ ਅਸੀਂ ਦੇਖਾਂਗੇ ਕਿ ਤਤਸਮਕਾਂ ਦਾ ਉਪਯੋਗ ਦੇ ਪਦੀ ਵਿਅੰਜਕਾਂ ਦੀ ਗੁਣਾ ਅਤੇ ਸੰਖਿਆਵਾਂ ਦੀ ਗੁਣਾ ਦੇ ਲਈ ਵੀ ਸਧਾਰਨ ਬਦਲਵੀਂ ਵਿਧੀ ਦਿੰਦਾ ਹੈ।

ਉਦਾਹਰਣ 11 : ਤਤਸਮਕ (I) ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹੋਏ (i) $(2x + 3y)^2$ (ii) 103^2

ਪਤਾ ਕਰੋ।

ਹੱਲ :

(i) $(2x + 3y)^2 = (2x)^2 + 2(2x)(3y) + (3y)^2$ = $4x^2 + 12xy + 9y^2$

[ਤਤਸਮਕ (I) ਦੇ ਉਪਯੋਗ ਨਾਲ]

ਅਸੀਂ $(2x + 3y)^2$ ਦਾ ਮੁੱਲ ਸਿੱਧੇ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ :

 $(2x + 3y)^2 = (2x + 3y)(2x + 3y)$

= (2x) (2x) + (2x) (3y) + (3y) (2x) + (3y) (3y)

Downloaded from https

ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਅਤੇ ਤਤਸਮਕ 🔳 159

$$= 4x^{2} + 6xy + 6yx + 9y^{2}$$
 (at the form $xy = yx$)
$$= 4x^{2} + 12xy + 9y^{2}$$

ਤਤਸਮਕ (I) ਦੇ ਉਪਯੋਗ ਨਾਲ ਅਸੀਂ (2x + 3y) ਦਾ ਵਰਗ ਕਰਨ ਦੇ ਲਈ ਬਦਲਵੀਂ ਵਿਧੀ ਪਾਪਤ ਕਰਦੇ ਹਾਂ। ਕੀ ਤੁਸੀਂ ਧਿਆਨ ਦਿੱਤਾ ਹੈ ਕਿ ਉਪਰੋਕਤ ਵਰਤੀ ਸਿੱਧੀ ਵਿਧੀ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਤਤਸਮਕ ਵਿਧੀ ਦੇ ਪਗਾਂ ਦੀ ਸੰਖਿਆ ਘੱਟ ਹੈ ? ਤੁਸੀਂ ਇਸ ਵਿਧੀ ਦੀ ਸਰਲਤਾ ਤਦ ਜ਼ਿਆਦਾ ਮਹਿਸੂਸ ਕਰੋਗੇ ਜਦੋਂ ਤਸੀਂ (2x + 3y) ਦੀ ਤਲਨਾ ਵਿੱਚ ਜ਼ਿਆਦਾ ਗੰਝਲਦਾਰ ਵਿਅੰਜਕਾਂ ਦਾ ਵਰਗ ਪਤਾ ਕਰਨ ਦਾ ਯਤਨ ਕਰੋਗੇ।

(ii)
$$(103)^2 = (100 + 3)^2$$

= $100^2 + 2 \times 100 \times$
= $10000 + 600 + 9$

(ਤਤਸਮਕ (I) ਦੇ ਉਪਯੋਗ ਨਾਲ)

P = 10609

ਅਸੀਂ 103 ਨੂੰ 103 ਨਾਲ ਸਿੱਧਾ ਹੀ ਗੁਣਾ ਕਰਕੇ ਲੋੜੀਂਦਾ ਉੱਤਰ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਕੀ ਤੁਸੀਂ ਧਿਆਨ ਦਿੱਤਾ ਹੈ ਕਿ 103 ਦਾ ਸਿੱਧੀ ਵਿਧੀ ਨਾਲ ਵਰਗ ਕਰਨ ਦੀ ਤਲਨਾ ਵਿੱਚ ਤਤਸਮਕ (I) ਨੇ ਸਾਨੇ ਸਰਲ ਵਿਧੀ ਦੇ ਦਿੱਤੀ ਹੈ ? 1013 ਦਾ ਵਰਗ ਕਰਨ ਦਾ ਯਤਨ ਕਰੋ। ਤਸੀਂ ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਵੀ ਸਿੱਧੀ ਗਣਾ ਵਿਧੀ ਦੀ ਤਲਨਾ ਵਿੱਚ ਤਤਸਮਕ ਦੇ ਉਪਯੋਗ ਦੀ ਵਿਧੀ ਨੂੰ ਜ਼ਿਆਦਾ ਸੌਖਾ ਪਾਓਗੇ।

 $3+3^{2}$

ਉਦਾਹਰਣ 12 : ਤਤਸਮਕ (II) ਦੇ ਉਪਯੋਗ ਨਾਲ (i) $(4p - 3q)^2$ (ii) $(4.9)^2$ ਪਤਾ ਕਰੋ। ਹੱਲ :

(i)
$$(4p - 3q)^2 = (4p)^2 - 2(4p)(3q) + (3q)^2$$

= $16p^2 - 24pq + 9q^2$

[ਤਤਸਮਕ (II) ਦੇ ਉਪਯੋਗ ਨਾਲ]

ਕੀ ਤੁਸੀਂ ਸਹਿਮਤ ਹੋ ਕਿ (4p - 3q)² ਦਾ ਵਰਗ ਕਰਨ ਦੇ ਲਈ ਸਿੱਧੀ ਵਿਧੀ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਤਤਸਮਕ ਦੀ ਵਿੱਧੀ ਜ਼ਿਆਦਾ ਜਲਦੀ ਉੱਤਰ ਦੇ ਦਿੰਦੀ ਹੈ?

 $(4.9)^2 = (5.0 - 0.1)^2 = (5.0)^2 - 2(5.0)(0.1) + (0.1)^2$ (ii)

= 25.00 - 1.00 + 0.01 = 24.01

ਕੀ 4.9 ਦਾ ਵਰਗ ਕਰਨਾ, ਸਿੱਧੀ ਗੁਣਾ ਵਿਧੀ ਦੀ ਤਲਨਾ ਵਿੱਚ ਤਤਸਮਕ (II) ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਸੌਖਾ ਨਹੀਂ ਹੈ ?

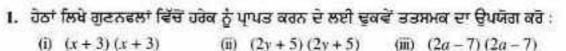
ਉਦਾਹਰਟ 13 : ਤਤਸਮਕ (III) ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹੋਏ.

(i)
$$\left(\frac{3}{2}m + \frac{2}{3}n\right)\left(\frac{3}{2}m - \frac{2}{3}n\right)$$
 (ii) $983^2 - 17^2$ (iii) 194×206 ਪਤਾ ਕਰੋ।

ਹੱਲ :

(i)
$$\left(\frac{3}{2}m+\frac{2}{3}n\right)\left(\frac{3}{2}m-\frac{2}{3}n\right) = \left(\frac{3}{2}m\right)^2 - \left(\frac{2}{3}n\right)^2$$

 $= \frac{9}{4}m^2 - \frac{4}{9}n^2$
(ii) $983^2 - 17^2 = (983 + 17)(983 - 17)$
[ĒĒĒ $a = 983, b = 17, a^2 - b^2 = (a + b)(a - b)]$
[EFE SET, $983^2 - 17^2 = 1000 \times 966 = 966000$


(iii)
$$194 \times 206 = (200 - 6) \times (200 + 6) = 200^2 - 6^2$$

= 40000 - 36 = 39964

160 🔳 ਗਣਿਤ

ਉਦਾਹਰਣ 14 : ਹੇਠਾਂ ਲਿਖਿਆਂ ਨੂੰ ਪਤਾ ਕਰਨ ਦੇ ਲਈ, (x + a) (x + b) = x² + (a + b) x + ab ਤਤਸਮਕ ਦਾ ਉਪਯੋਗ ਕਰੋ। (i) 501 × 502 (ii) 95 × 103 ਹੱਲ : (i) 501 × 502 = (500 + 1) × (500 + 2) = 500² + (1 + 2) × 500 + 1 × 2 = 250000 + 1500 + 2 = 251502 (ii) 95 × 103 = (100 - 5) × (100 + 3) = 100² + (-5 + 3) 100 + (-5) × 3

= 10000 - 200 - 15 = 9785

ਅਭਿਆਸ 9.5

- (iv) $(3a \frac{1}{2})(3a \frac{1}{2})$ (v) (1.1m 0.4)(1.1m + 0.4)
- (vi) $(a^2 + b^2)(-a^2 + b^2)$ (vii) (6x 7)(6x + 7) (viii) (-a + c)(-a + c)

(ix)
$$\left(\frac{x}{2} + \frac{3y}{4}\right) \left(\frac{x}{2} + \frac{3y}{4}\right)$$
 (x) $(7a - 9b) (7a - 9b)$

- ਹੇਠਾਂ ਲਿਖੇ ਗੁਣਨਫਲਾਂ ਨੂੰ ਪਤਾ ਕਰਨ ਦੇ ਲਈ, ਤਤਸਮਕ (x + a) (x + b) = x² + (a + b) x + ab ਦਾ ਉਪਯੋਗ ਕਰੋ।
 - (i) (x+3)(x+7) (ii) (4x+5)(4x+1)
 - (iii) (4x-5)(4x-1) (iv) (4x+5)(4x-1)
 - (v) (2x + 5y)(2x + 3y) (vi) $(2a^3 + 9)(2a^3 + 5)$
 - (vii) (xyz 4) (xyz 2)

ਤਤਸਮਕਾਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹੋਏ ਹੇਠਾਂ ਲਿਖੇ ਵਰਗਾਂ ਨੂੰ ਪਤਾ ਕਰੋ :

- (i) $(b-7)^2$ (ii) $(xy+3z)^2$ (iii) $(6x^2-5y)^2$
- (iv) $\left(\frac{2}{3}m + \frac{3}{2}n\right)^2$ (v) $(0.4p 0.5q)^2$ (vi) $(2xy + 5y)^2$

4. ਸਰਲ ਕਰੋ।

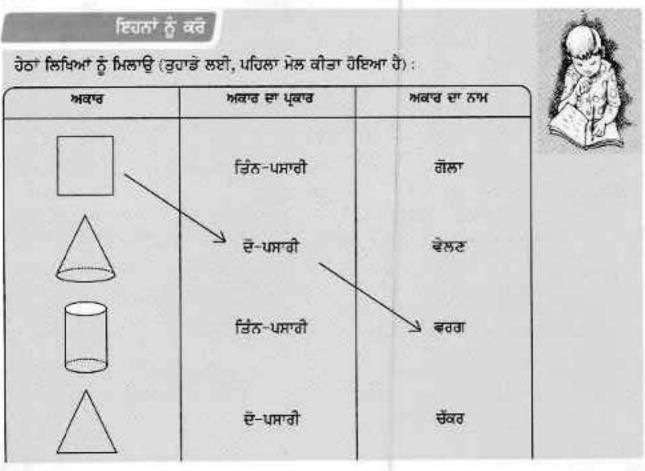
- (i) $(a^2 b^2)^2$ (ii) $(2x + 5)^2 - (2x - 5)^2$ (iii) $(7m - 8n)^2 + (7m + 8n)^2$ (iv) $(4m + 5n)^2 + (5m + 4n)^2$
- (v) $(2.5p 1.5q)^2 (1.5p 2.5q)^2$
- (vi) $(ab + bc)^2 2ab^2c$ (vii) $(m^2 n^2m)^2 + 2m^3n^2$

ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਅਤੇ ਤਤਸਮਕ 🔳 161

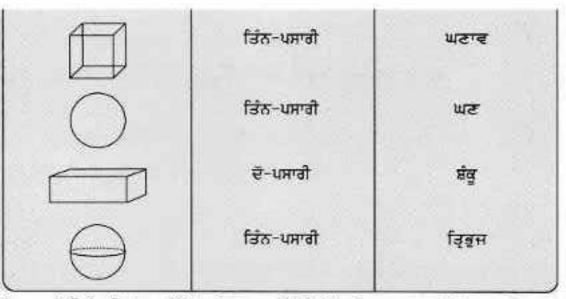
		ਾਉ ਕਿ :								
	(i)	$(3x+7)^2 - 84$	4x = (3)	$(x - 7)^2$	(ii)	$(9p - 5q)^2 + 1$	80 <i>pq</i> =	(9p + 5q)	2	
				$u = \frac{16}{9}m^2 + \frac{9}{16}$		1.1.50.010.000	1.0000101			
	(111)	(3^{m-4})	+ 2m	$l = 9^{m} + 16$, n ,					
	(iv)	$(4pq + 3q)^2 -$	(4pq -	$3q)^2 = 48pq^2$						
	AN 21.	a for a strand and	Los Change	-c)(b+c)+(a	2.200	Contraction of the				
5.				ਠਾਂ ਲਿਖਿਆਂ ਦਾ	ਮੁੱਲ ਪ	ਤਾਂ ਕਰੋ :				
		712	(ii)	Sheer war	(iii)	102 ²	(iv)	998 ²		
	A. A.	5.2 ²	(vi)	297×303	(vii)	78 × 82	(viii)	8.9 ²		
		1.05×9.5								
	a ² -	$b^2 = (a+b) (a+b) $	$(1-b) \in$	ਾ ਉਪਯੋਗ ਕਰਦੇ	ਹੋਏ ਹੇਟ	ਾਂ ਲਿਖਿਆਂ ਦਾ ਮੁੱ	ਲ ਪਤਾ	ਕਰੋ :		
	(i)	$51^2 - 49^2$	(ii)	$(1.02)^2 - (9.8)$	² (iii)	153° - 147°				
	(iv)	$12.1^2 - 7.9^2$								17
	(x +	$a)\left(x+b\right)=x^{2}\cdot$	+(a+b)) x + ab रा ਉਪ	দিবা ਕਰ	ਦੇ ਹੋਏ ਹੇਠਾਂ ਲਿਖਿ	ਆਂ ਦਾ ਮੁੱ	ਲ ਪਤਾ ਕਰੋ	È.	
	6)	103×104	(ii)	5.1 × 5.2	(iii)	103×98	(iv)	9.7 × 9.8		
						the second se				
			181			ਚਾ ਕੀਤੀ				
1.000	হি	ਅੰਜਕ ਬਣਾਉਣ		ਤਾ ਨਾਲ ਵਿਅੰਜ	ਕ ਬਣਦੇ		ਲੀਡਾਂ ਦੇ	ਗੁਣਨਫਲ	ਦੇ ਰੂਪ ਵਿੱ	ਚ ਬਣਵੇ
2.	ਵਿੱਚ ਹਟ	ਅੰਜਕ ਬਣਾਉਣ ਨ।	ਦੇ ਲਈ ਪ	ਤਾ ਨਾਲ ਵਿਅੰਜ ਪਦਾਂ ਨੂੰ ਜੋੜਿਆ ਜ	ਕ ਬਣਦੇ ਜਾਂਦਾ ਹੈ	ਾ ਹਨ। । ਪਦ ਆਪ ਗੁਣਨ				
2.	ਵਿੱ ਹਨ ਵਿ ਆ	ਅੰਜਕ ਬਣਾਉਣ ਹ ਨ। ਅੰਜਕ ਜਿਸ ਵਿੱਚ ਘਦੇ ਹਨ। ਆਮ	ਦੇ ਲਈ ਪ । ਇੱਕ, ਵੇ ਤੌਰ ਤੇ ਸਿ	ਤਾ ਨਾਲ ਵਿਅੰਜ ਪਦਾਂ ਨੂੰ ਜੋੜਿਆ ਜ ? ਅਤੇ ਤਿੰਨ ਪਦ ਏੱਕ ਜਾਂ ਜ਼ਿਆਦਾ	ਕ ਬਣਦੇ ਜਾਂਦਾ ਹੈ ਹੁੰਦੇ ਹਟ ਪਦਾਂ ਵ	ਾਂ ਹਨ। । ਪਦ ਆਪ ਗੁਣਨ ਓਉਹਨਾਂ ਨੂੰ ਕ੍ਰਮਵ ਵਾਲੇ ਵਿਅਜਕ ਜਿ	ਾਰ ਇੱਕ ਜਹਨਾਂ ਵਿ	ਪਦੀ, ਦੋ ਪ	ਦੀ ਅਤੇ ਕਿ	ਤੰਨ ਪਦ
2.	ਵਿੱਚ ਹਨ ਵਿ ਆ ਹੋਰ ਸਮ	ਅੰਜਕ ਬਣਾਉਣਾ ਨ। ਅੰਜਕ ਜਿਸ ਵਿੱਚ ਅੰਜਕ ਜਿਸ ਵਿੱਚ ਅੰਜਕ ਜਿਸ ਵਿੱਚ ਅੰਜ ਚਲਾਂ ਦੀ ਸਮ	ਦੇ ਲਈ ਪ । ਇੱਕ, ਦੋ ਤੌਰ ਤੇ ਸਿ ਘਾਤ ਰਿ ਾਨ ਪਦ ਸ	ਤਾ ਨਾਲ ਵਿਅੰਜ ਪਦਾਂ ਨੂੰ ਜੋੜਿਆ ਜ ? ਅਤੇ ਤਿੰਨ ਪਦ ਏੱਕ ਜਾਂ ਜ਼ਿਆਦਾ ਣ ਨਾ ਹੋਵੇ, ਉਹਰ ਬਣਦੇ ਹਨ, ਅਤੇ	ਕ ਬਣਦੇ ਜਾਂਦਾ ਹੈ ਹੁੰਦੇ ਹਟ ਪਦਾਂ ਬ ਨਾਂ ਨੂੰ ਬ	ਾਂ ਹਨ। । ਪਦ ਆਪ ਗੁਣਨ 5 ਉਹਨਾਂ ਨੂੰ ਕ੍ਰਮਵ	ਾਰ ਇੱਕ ਜਹਨਾਂ ਕਿ ਾ ਹੈ।	'ਪਦੀ, ਦੋ ਪ ਵੱਚ ਪਦਾਂ ਦੇ	ਦੀ ਅਤੇ ਗੁਣਜ	ਤੰਨ ਪਦੀ ਸਰਫ ਨਾ
2. 3. 4.	ਵਿੱਚ ਹਨ ਵਿ ਆ ਹੋਣ ਸਮ ਸਮ ਸ	ਅੰਜਕ ਬਣਾਉਣ ਹ ਨੂੰ ਅੰਜਕ ਜਿਸ ਵਿੱਚ ਅਦੇ ਹਨ। ਆਮ 5 ਅਤੇ ਚਲਾਂ ਦੀ ਜਾਨ ਚਲਾਂ ਦੇ ਸਮ ਜਾਨ ਹੋਣੇ ਜਰੂਰੀ ਨ ਸੁਪਦਾਂ ਨੂੰ ਜੋੜਨ।	ਦੇ ਲਈ ਪ ਇੱਕ, ਦੋ ਤੌਰ ਤੇ ਕਿ ਘਾਤ ਰਿ ਨ ਪਦ ਪ ਨਹੀਂ ਹਨ ਜਾਂ ਘਟਾ	ਤਾ ਨਾਲ ਵਿਅੰਜ ਪਦਾਂ ਨੂੰ ਜੋੜਿਆ ਜ ਏ ਅਤੇ ਤਿੰਨ ਪਦ ਏੱਕ ਜਾਂ ਜ਼ਿਆਦਾ ਣ ਨਾ ਹੋਵੇ, ਉਹ ਬਣਦੇ ਹਨ, ਅਤੇ । ਾਉਣ) ਦੇ ਲਈ ਸ	ਕ ਬਣਦੇ ਜਾਂਦਾ ਹੈ ਹੁੰਦੇ ਹਟ ਪਦਾਂ ਬ ਨਾਂ ਨੂੰ ਬ ਇਹਨਾਂ ਭਿ ਤੋਂ ਪ	ਾਂ ਹਨ। । ਪਦ ਆਪ ਗੁਣਨ ਓ ਉਹਨਾਂ ਨੂੰ ਕ੍ਰਮਵ ਵਾਲੇ ਵਿਅਜਕ ਜਿ ਹੁਪਦ ਕਿਹਾ ਜਾਂਦ ਚਲਾਂ ਦੀ ਘਾਤ ਸ ਪਹਿਲਾ ਸਮਾਨ ਪ	ਾਰ ਇੱਕ ਜ਼ਹਨਾਂ ਕਿ ਾ ਹੈ। ਜਮਾਨ ਹੁੰ	ਪਦੀ, ਦੋ ਪ ਵੱਚ ਪਦਾਂ ਦੇ ਦੀ ਹੈ। ਸਮ	ਦੀ ਅਤੇ ਕਿ ਗੁਣਜ ਕਿ	ਤੰਨ ਪਦੇ ਸਰਫ ਨ ਦੇ ਗੁਣਜ
2. 3. 4. 5.	ਵਿਹਟ ਵਿਆਹਿਤ ਸੰਸ਼ ਬਹੁ ਹੋਰ ਸੰਸ਼ ਬਹੁ ਬਹੁ	ਅੰਜਕ ਬਣਾਉਣ ਹ ਨੂੰ ਅੰਜਕ ਜਿਸ ਵਿੱਚ ਅੰਜਕ ਜਿਸ ਵਿੱਚ ਅਦੇ ਹਨ। ਆਮ ਨੂੰ ਅਤੇ ਚਲਾਂ ਦੀ ਜਾਨ ਹੋਣੇ ਜਰੂਰੀ ਨ ਸੂਪਦਾਂ ਨੂੰ ਜੋੜਨ। ਟਾਊ ਕਰੋ। ਉਸਦੇ ਸੂਤ ਸਾਰੀਆਂ ਸੀ ਦਾਹਰਣ ਲਈ ਆ	ਦੇ ਲਈ ਪ ਇੱਕ, ਦੋ ਤੌਰ ਤੇ ਕਿ ਘਾਤ ਰਿ ਨਹੀਂ ਹਨ ਜਾਂ ਘਟਾ ਬਾਅਦ ਪ ਬਤੀਆਂ ਇਤ ਦਾ	ਤਾ ਨਾਲ ਵਿਅੰਜ ਪਦਾਂ ਨੂੰ ਜੋੜਿਆ ਜ ? ਅਤੇ ਤਿੰਨ ਪਦ ? ਕਤੇ ਤਿੰਨ ਪਦ ? ਕ ਜਾਂ ਜ਼ਿਆਦਾ ਣ ਨਾ ਹੋਵੇ, ਉਹ ਬਣਦੇ ਹਨ, ਅਤੇ । ਉਣ) ਦੇ ਲਈ ਸ ਅਸਮਾਨ ਪਦਾਂ ਨੂੰ ਵਿੱਚ ਸਾਨੂੰ ਬੀਜ ਖੇਤਰਫਲ ਪਤਾ ਨ	ਕ ਬਣਦੇ ਜਾਂਦਾ ਹੈ ਹੁੰਦੇ ਹਟ ਪਦਾਂ ਕ ਨਾਂ ਨੂੰ ਬ ਇਹਨਾਂ ਭ ਤੋਂ ਪ ਵਰਤੋਂ ਕਿ ਗਣਿ	ਾਂ ਹਨ। । ਪਦ ਆਪ ਗੁਣਨ ਓ ਉਹਨਾਂ ਨੂੰ ਕ੍ਰਮਵ ਵਾਲੇ ਵਿਅਜਕ ਜਿ ਹੁਪਦ ਕਿਹਾ ਜਾਂਦ ਚਲਾਂ ਦੀ ਘਾਤ ਸ ਪਹਿਲਾ ਸਮਾਨ ਪ	ਾਰ ਇੱਕ ਜ਼ਹਨਾਂ ਕਿ ਾ ਹੈ। ਜਮਾਨ ਹੁੰ ਦਾਂ ਨੂੰ ਲੇ ਨੂੰ ਗੁਣਾ	ਪਦੀ, ਦੋ ਪ ਵੇਂਚ ਪਦਾਂ ਦੇ ਦੀ ਹੈ। ਸਮ ਭਿ ਅਤੇ ਉਮ ਕਰਨ ਦੀ	ਦੀ ਅਤੇ ਗੁਣਜ ਾਨ ਪਦਾਂ ਹਨਾਂ ਦਾ ਜਰੁਰਤ	ਤੰਨ ਪਦੇ ਸੋਰਫ ਨ ਦੇ ਗੁਣਜ ਜੋੜ ਅਤੇ ਹੁੰਦੀ ਹੈ
2. 3. 4. 5. 6.	ਵਿੱਚ ਹੋਣ ਵਿੱਚ ਨਾਇ ਸਾਂਸ਼ ਬਹੁ ਸ਼ਾਸ਼ ਬਹੁ ਸ਼ਾਸ਼ ਬਹੁ ਸ਼ੁਰੂ ਸ਼ੁਰੂ ਸ਼ੁਰੂ	ਅੰਜਕ ਬਣਾਉਣ ਹ 5। ਅੰਜਕ ਜਿਸ ਵਿੱਚ ਅਰੇ ਹਨ। ਆਮ 5 ਅਤੇ ਚਲਾਂ ਦੀ ਜਾਨ ਚਲਾਂ ਦੇ ਸਮ ਜਾਨ ਹੋਣੇ ਜਰੂਰੀ ਨ ਸ਼ੁਪਦਾਂ ਨੂੰ ਜੋੜਨ। ਟਾਉ ਕਰੋ। ਉਸਦੇ ਸ਼ੁਤ ਸਾਰੀਆਂ ਸੀ ਦਾਹਰਣ ਲਈ ਆ । ਵਿੱਚ ਦਿੱਤੀਆਂ	ਦੇ ਲਈ ਪ ਇੱਕ, ਦੋ ਤੌਰ ਤੇ ਇ ਘਾਤ ਰਿ ਨਾ ਪਦ ਬ ਨਹੀਂ ਹਨ ਜਾਂ ਘਟਾ ਬਾਅਦ ਪ ਬਤੀਆਂ ਇਤ ਦਾ ਗਈਆਂ	ਤਾ ਨਾਲ ਵਿਅੰਜ ਪਦਾਂ ਨੂੰ ਜੋੜਿਆ ਜ ? ਅਤੇ ਤਿੰਨ ਪਦ ? ਅਤੇ ਤਿੰਨ ਪਦ ? ਕ ਜਾਂ ਜ਼ਿਆਦਾ ਣ ਨਾ ਹੋਵੇ, ਉਹ ਬਣਦੇ ਹਨ, ਅਤੇ । ਉਣ) ਦੇ ਲਈ ਸ ਅਸਮਾਨ ਪਦਾਂ ਨੂੰ ਵਿੱਚ ਸਾਨੂੰ ਬੀਜ ਪੇਤਰਫਲ ਪਤਾ ਨ ਹਨ।	ਕ ਬਣਦੇ ਜਾਂਦਾ ਹੈ ਹੁੰਦੇ ਹਟ ਪਦਾਂ ਬ ਨਾਂ ਨੂੰ ਬ ਇਹਨਾਂ ਬਿ ਤੋਂ ਪ ਵਰਤੋਂ ਪਿ ਕਰਨ ਦੇ	ਦੇ ਹਨ। । ਪਦ ਆਪ ਗੁਣਨ ਨ ਉਹਨਾਂ ਨੂੰ ਕ੍ਰਮਵ ਵਾਲੇ ਵਿਅੰਜਕ ਜਿ ਹੁਪਦ ਕਿਹਾ ਜਾਂਦ ਚਲਾਂ ਦੀ ਘਾਤ ਸ ਪਹਿਲਾ ਸਮਾਨ ਪਨ ਵਿੱਚ ਲਿਆਉ। ਤਕ ਵਿਅੰਜਕਾਂ ਨੂੰ ਲਈ, ਜਿਸਦੀਆਂ	ਾਰ ਇੱਕ ਜ਼ਹਨਾਂ ਕਿ ਾ ਹੈ। ਜਮਾਨ ਹੁੰ ਦਾਂ ਨੂੰ ਲੇ ਨੂੰ ਗੁਣਾ ਭੁਜਾਵ	ਪਦੀ, ਦੋ ਪ ਵੱਚ ਪਦਾਂ ਦੇ ਦੀ ਹੈ। ਸਮ ਡਿ ਅਤੇ ਉਮ ਕਰਨ ਦੀ ਸੀਜ ਗਟਿ	ਦੀ ਅਤੇ ਗੁਣਜ ਾਨ ਪਦਾਂ ਹਨਾਂ ਦਾ ਜਰੁਰਤ	ਤੰਨ ਪਦੇ ਸੋਰਫ ਨ ਦੇ ਗੁਣਜ ਜੋੜ ਅਤੇ ਹੁੰਦੀ ਹੈ
2. 3. 4. 5. 6. 7.	ਵਿਹਾਵਿਆ ਹੋਟ ਸੰਸ ਬਾਘ ਬਾਉਂ ਰੂਪੋਏ ਬਾ	ਅੰਜਕ ਬਣਾਉਣ ਹ ਨੂੰ ਅੰਜਕ ਜਿਸ ਵਿੱਚ ਅੰਜਕ ਜਿਸ ਵਿੱਚ ਅਦੇ ਹਨ। ਆਮ ਨੂੰ ਅਤੇ ਚਲਾਂ ਦੀ ਜਾਨ ਚਲਾਂ ਦੇ ਸਮ ਜਨ ਚੋਣੇ ਜਰੂਗੀ ਨ ਪੁਪਦਾਂ ਨੂੰ ਜੋੜਨ। ਟਾਊ ਕਰੋ। ਉਸਦੇ ਹੁਤ ਸਾਰੀਆਂ ਸੀ ਦਾਹਰਣ ਲਈ ਆ । ਵਿੱਚ ਦਿੱਤੀਆਂ ਕ ਪਦੀ ਨੂੰ ਇੱਕ ਬ	ਦੇ ਲਈ ਪ ਇੱਕ, ਦੋ ਤੌਰ ਤੇ ਕਿ ਘਾਤ ਰਿ ਨਰ ਪਦ ਪ ਨਹੀਂ ਹਨ ਜਾਂ ਘਟਾ ਬਾਅਦ ਪ ਬਤੀਆਂ ਇਤ ਦਾ ਗਈਆਂ ਪਦੀ ਨਾਟ	ਤਾ ਨਾਲ ਵਿਅੰਜ ਪਦਾਂ ਨੂੰ ਜੋੜਿਆ ਜ ? ਅਤੇ ਤਿੰਨ ਪਦ ? ਅਤੇ ਤਿੰਨ ਪਦ ? ਕ ਜਾਂ ਜ਼ਿਆਦਾ ਣ ਨਾ ਹੋਵੇ, ਉਹ ਬਣਦੋ ਹਨ, ਅਤੇ । ਾਉਣ) ਦੇ ਲਈ ਸ ਅਸਮਾਨ ਪਦਾਂ ਨੂੰ ਵਿੱਚ ਸਾਨੂੰ ਬੀਜ ਖੇਤਰਫਲ ਪਤਾ ਕ ਹਨ। ਲ ਗੁਣਾ ਕਰਨ `ਤੋ	ਕ ਬਣਦੇ ਜਾਂਦਾ ਹੈ ਹੁੰਦੇ ਹਟ ਪਦਾਂ ਦ ਨਾਂ ਨੂੰ ਬ ਇਹਨਾਂ ਬਿ ਤੋਂ ਪ ਵਰਤੋਂ ਪਿ ਕਰਨ ਦੇ ਕਰਨ ਦੇ	ਾ ਹਨ। । ਪਦ ਆਪ ਗੁਣਨ ਨ ਉਹਨਾਂ ਨੂੰ ਕ੍ਰਮਵ ਵਾਲੇ ਵਿਅੰਜਕ ਜਿ ਹੁਪਦ ਕਿਹਾ ਜਾਂਦ ਚਲਾਂ ਦੀ ਘਾਤ ਸ ਪਹਿਲਾ ਸਮਾਨ ਪਨ ਵਿੱਚ ਲਿਆਉ। ਤਕ ਵਿਅੰਜਕਾਂ ਹੋ	ਾਰ ਇੱਕ ਜ਼ਹਨਾਂ ਕਿ ਾ ਹੈ। ਜਮਾਨ ਹੁੰ ਦਾਂ ਨੂੰ ਲੇ ਨੂੰ ਗੁਣਾ ਭੁਜਾਵ ਤ ਹੁੰਦਾ ਹੈ	ਪਦੀ, ਦੋ ਪ ਵੇਂਚ ਪਦਾਂ ਦੇ ਦੀ ਹੈ। ਸਮ ਭਿ ਅਤੇ ਉਹ ਕਰਨ ਦੀ ' ਬੀਜ ਗਟਿ ਹੈ।	ਦੀ ਅਤੇ । ਗੁਣਜ । ਨ ਪਦਾਂ । ਹਨਾਂ ਦਾ । ਜਰੂਰਤ ਦਤਕ ਵਿਅ	ਤੰਨ ਪਦੇ ਸੋਰਫ ਨ ਦੇ ਗੁਣਜ ਜੋੜ ਅਤੇ ਹੁੰਦੀ ਹੈ ਮੰਜਕਾਂ ਦੇ

162 🔳 ਗਣਿਤ

- 10. ਤਤਸਮਕ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਮਤਾ ਹੈ ਜੋ ਚਲ ਦੇ ਸਾਰੇ ਮੁੱਲਾਂ ਦੇ ਲਈ ਸੱਚ ਹੈ, ਜਦੋਂ ਕਿ ਸਮੀਕਰਨ ਚਲਾਂ ਦੇ ਕੁੱਝ ਨਿਸ਼ਚਿਤ ਮੁੱਲਾਂ ਦੇ ਲਈ ਸੱਚ ਹੁੰਦਾ ਹੈ। ਸਮੀਕਰਨ ਤਤਸਮਕ ਨਹੀਂ ਹੈ।
- 11. ਹੇਠ ਲਿਖੇ ਮਿਆਰੀ ਤਤਸਮਕ ਹਨ :
 - $(a+b)^2 = a^2 + 2ab + b^2$ (I) $(a-b)^2 = a^2 - 2ab + b^2$ (II)
 - $(a+b)(a-b) = a^2 b^2$ (III)
- 12. $(x + a) (x + b) = x^2 + (a + b) x + ab$ (IV) ਇੱਕ ਹੋਰ ਉਪਯੋਗੀ ਤਤਸਮਕ ਹੈ।
- ਉੱਪਰ ਦਿੱਤੀਆਂ ਚਾਰ ਤਤਸਮਕ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ ਦਾ ਗੁਣਨਫਲ ਪਤਾ ਕਰਨ ਵਿੱਚ ਅਤੇ ਵਰਗ ਕਰਨ ਵਿੱਚ ਸਹਾਇਕ ਹਨ। ਇਹ ਤਤਸਮਕ ਸਾਨੂੰ ਸੰਖਿਆਵਾਂ ਦਾ ਗੁਣਨਫਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਸਰਲ ਬਦਲਵੀਆਂ ਵਿਧੀਆਂ ਦਿੰਦੀਆਂ ਹਨ।



ਅਧਿਆਇ


ਠੋਸ ਅਕਾਰਾਂ ਦਾ ਚਿਤਰਨ

10.1 ਭੁਮਿਕਾ

ਜਮਾਤ VII ਵਿੱਚ ਤੁਸੀਂ ਸਮਤਲ ਅਕਾਰਾਂ ਅਤੇ ਠੋਸ ਅਕਾਰਾਂ ਬਾਰੇ ਪੜ੍ਹ ਚੁੱਕੇ ਹੋ। ਸਮਤਲ ਅਕਾਰਾਂ ਦੀ ਲੰਬਾਈ ਅਤੇ ਚੌੜਾਈ, ਭਾਵ ਦੇ ਮਾਪ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਸ ਲਈ ਇਹਨਾਂ ਨੂੰ ਦੋ-ਪਸਾਰੀ (two dimensional) ਅਕਾਰ ਆਖਦੇ ਹਾਂ। ਜਦੋਂ ਕਿ ਠੋਸ ਅਕਾਰਾਂ ਦੀ ਲੰਬਾਈ, ਚੌੜਾਈ ਅਤੇ ਉਚਾਈ ਜਾਂ ਡੂੰਘਾਈ ਜਿਹੇ ਤਿੰਨ ਮਾਪ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ, ਇਹਨਾਂ ਅਕਾਰਾਂ ਨੂੰ ਤਿੰਨ-ਪਸਾਰੀ (three dimensional) ਅਕਾਰ ਕਹਿੰਦੇ ਹਨ। ਨਾਲ ਹੀ, ਇੱਕ ਠੋਸ ਵਸਤੂ ਕੁੱਝ ਥਾਂ ਘੇਰਦੀ ਹੈ। ਦੋ ਪਸਾਰੀ ਅਤੇ ਤਿੰਨ ਪਸਾਰੀ ਚਿੱਤਰਾਂ ਨੂੰ ਸੰਖੇਪ ਵਿੱਚ ਕ੍ਰਮਵਾਰ 2–D ਅਤੇ 3–D ਚਿੱਤਰ ਵੀ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ। ਤੁਹਾਨੂੰ ਯਾਦ ਹੋਵੇਗਾ ਕਿ ਤ੍ਰਿਭੂਜ, ਆਇਤ, ਚੱਕਰ ਆਦਿ 2–D ਚਿੱਤਰ ਹਨ, ਜਦੋਂ ਕਿ ਘਣ, ਵੇਲਣ, ਸ਼ੰਕੂ, ਗੱਲਾ ਆਦਿ 3–D ਚਿੱਤਰ ਹਨ।

164 🔳 ਗਣਿਤ

ਧਿਆਨ ਦਿਓ ਕਿ ਉਪਰੋਕਤ ਵਿੱਚੋਂ ਸਾਰੇ ਅਕਾਰ ਇੱਕਲੇ-ਇੱਕਲੇ ਹਨ? ਪਰ ਸਾਡੇ ਰੋਜ਼ਾਨਾ ਵਿਹਾਰਕ ਜੀਵਨ ਵਿੱਚ, ਅਨੇਕ ਵਾਰ ਸਾਡੇ ਸਾਹਮਣੇ ਵੱਖ-ਵੱਖ ਅਕਾਰਾਂ ਵਿੱਚ ਸੰਯੋਜਨ (combinations) ਆਉਂਦੇ ਹਨ। ਉਦਾਹਰਣ ਲਈ, ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਵਸਤੂਆਂ ਨੂੰ ਦੇਖੋ :

Į

ਆਇਸ ਕ੍ਰੀਮ ਸ਼ੱਕੂ ਉੱਤੇ ਇੱਕ ਅਰਧ ਗੋਲਾ

ਇੱਕ ਵੋਟੋਂ ਫਰੇਮ ਇੱਕ ਆਇਤਾਕਾਰ ਰਸਤਾ

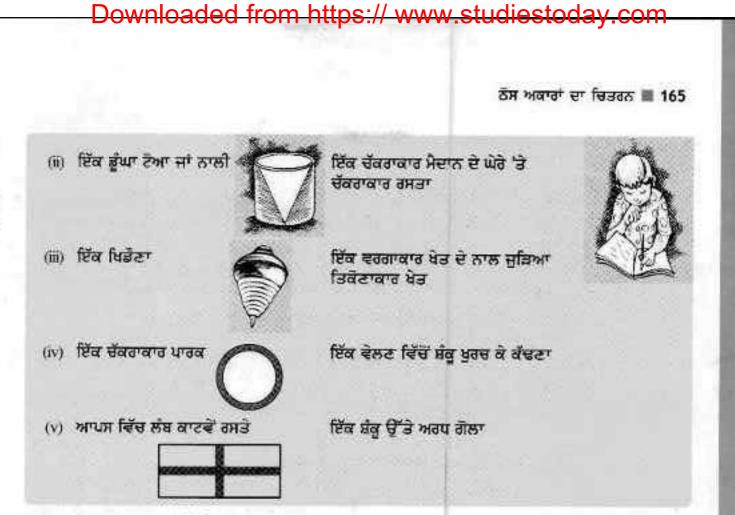
ਇੱਕ ਵੇਲਣਾਕਾਰ ਖੋਲ

ਇੱਕ ਕਟੋਰਾ ਇੱਕ ਅਰਧ ਗੋਲਾਕਾਰ ਖੋਲ

ਹੇਠਾਂ ਦਿੱਤੇ ਚਿੱਤਰਾਂ (ਵਸਤੂਆਂ) ਦਾ ਉਹਨਾਂ ਦੇ ਅਕਾਰਾਂ ਨਾਲ ਮਿਲਾਣ ਕਰੋ :

ਅਕਾਰ

ਮੀਨਾਰ ਉੱਤੇ ਗ੍ਰੀਬਦ ਵੋਲਣ ਉੱਤੇ ਅਰਧ ਗੋਲਾ


ਇਹਨਾਂ ਨੂੰ ਕਰੋ

ਚਿੱਤਰ (ਵਸਤੂ)

(i) ਇੱਕ ਖੇਤੀ ਯੋਗ ਖੇਤ

ਇੱਕ ਆਇਤਾਕਾਰ ਪਾਰਕ ਦੇ ਅੰਦਰ ਦੋ ਲੰਬ ਆਇਤਾਕਾਰ ਰਸਤੇ



10.2 3-D ਅਕਾਰਾਂ ਦੇ ਦਿਸ਼

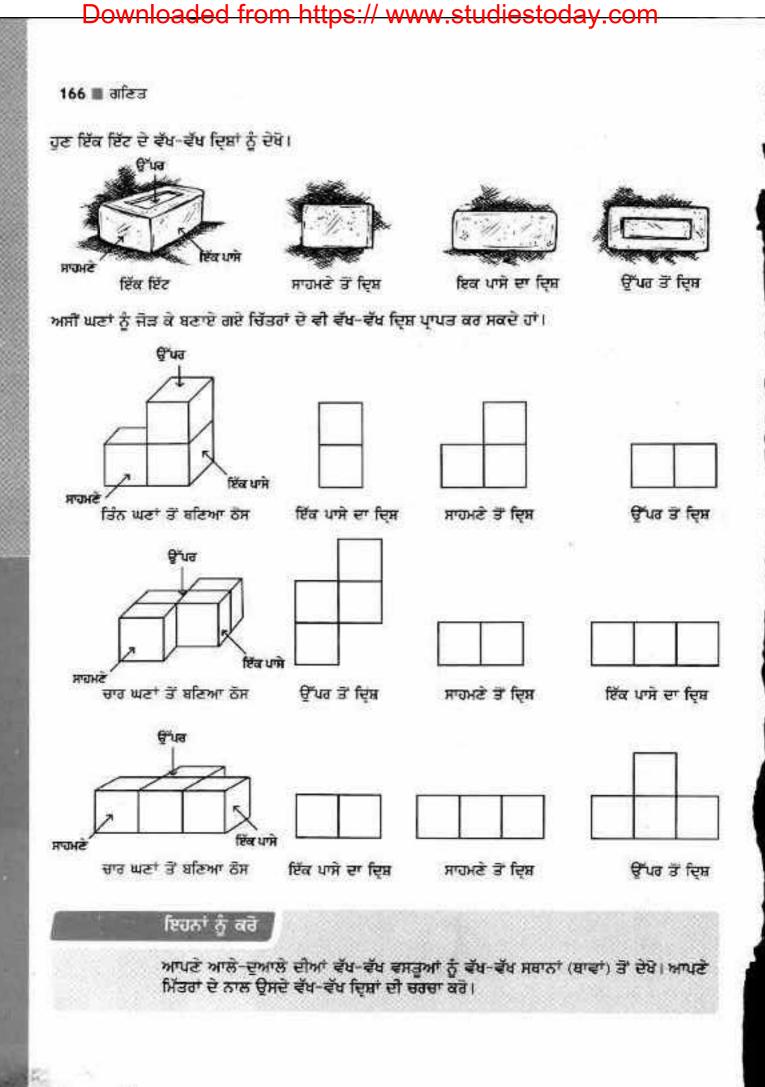
ਤੁਸੀਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹੋ ਕਿ ਤਿੰਨ ਪਸਾਰੀ ਵਸਤੂਆਂ ਵੱਖ-ਵੱਖ ਬਾਂਵਾ ਤੋਂ ਭਿੰਨ-ਭਿੰਨ ਰੂਪ ਵਿੱਚ ਦਿਖਾਈ ਦੇ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਇਹਨਾਂ ਨੂੰ ਵੱਖ-ਵੱਖ ਪਰਿਪੇਖਾਂ ਤੋਂ ਖਿੱਚਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਦੇ ਲਈ, ਇੱਕ ਦਿੱਤੀ ਹੋਈ ਝੌਪੜੀ ਦੇ ਹੇਠੂ ਲਿਖੇ ਦ੍ਰਿਸ਼ ਹੋ ਸਕਦੇ ਹਨ :

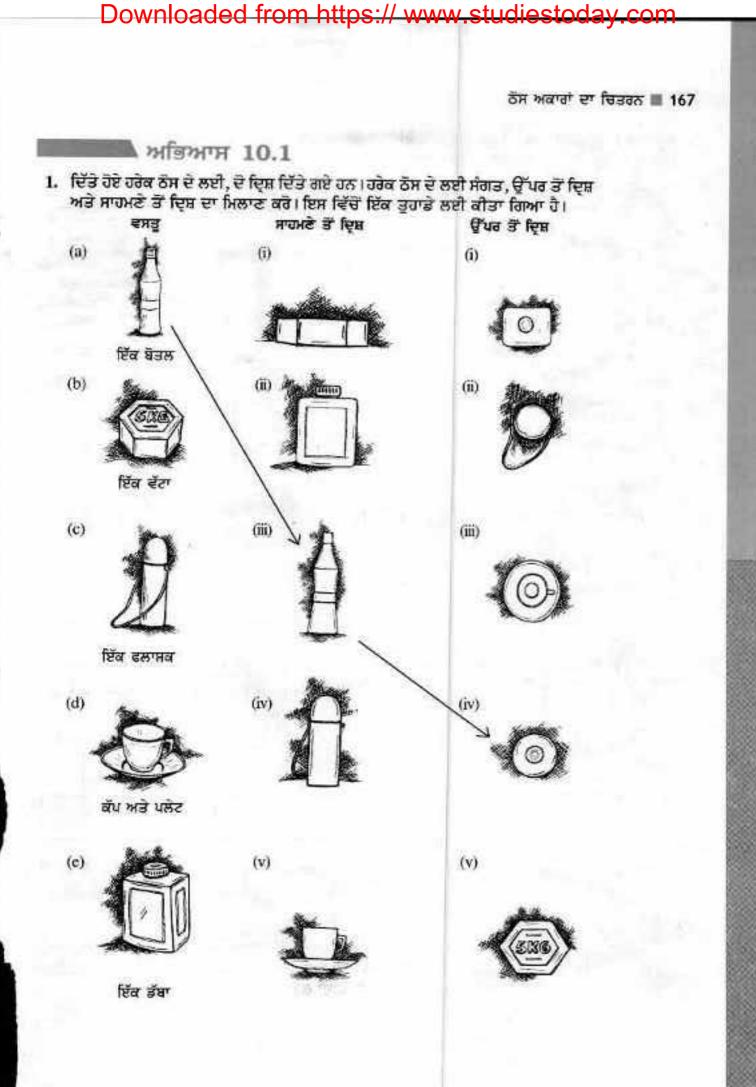
ਸਾਹਮਣੇ ਵਲੋਂ ਦਿਸ਼

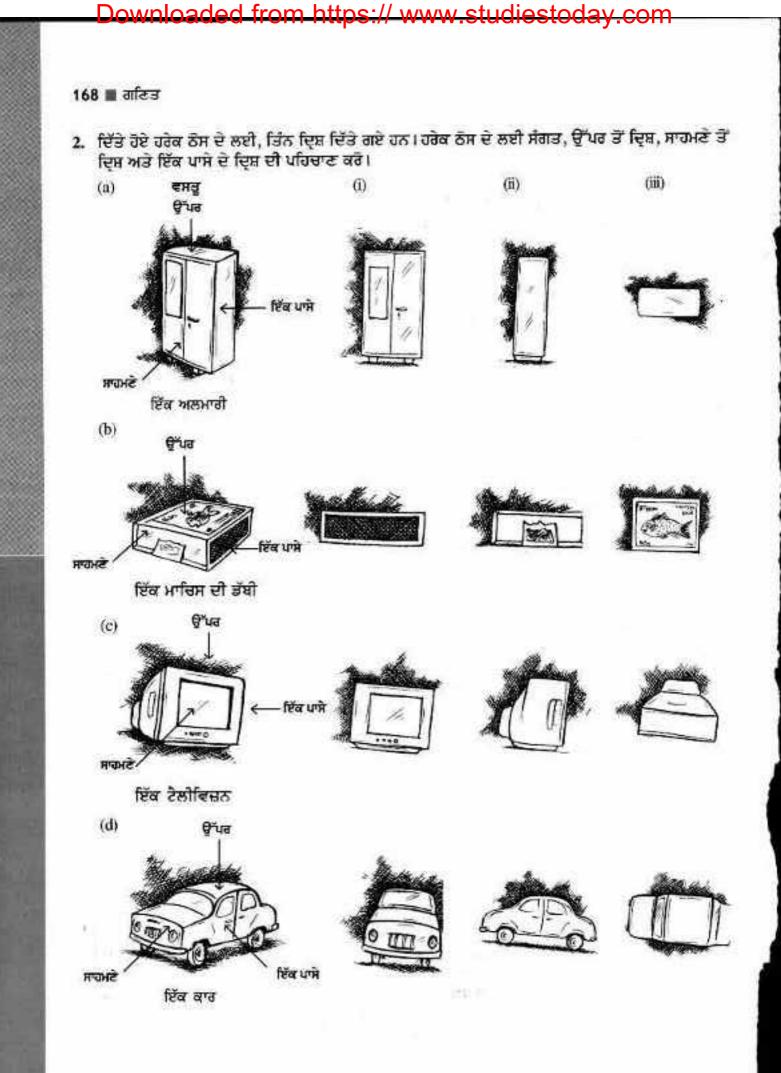
ਇਸ ਪਕਾਰ, ਇੱਕ ਗਿਲਾਸ ਦੇ ਹੇਠਾਂ ਲਿਖੇ ਦਿਸ਼ ਹੋ ਸਕਦੇ ਹਨ :

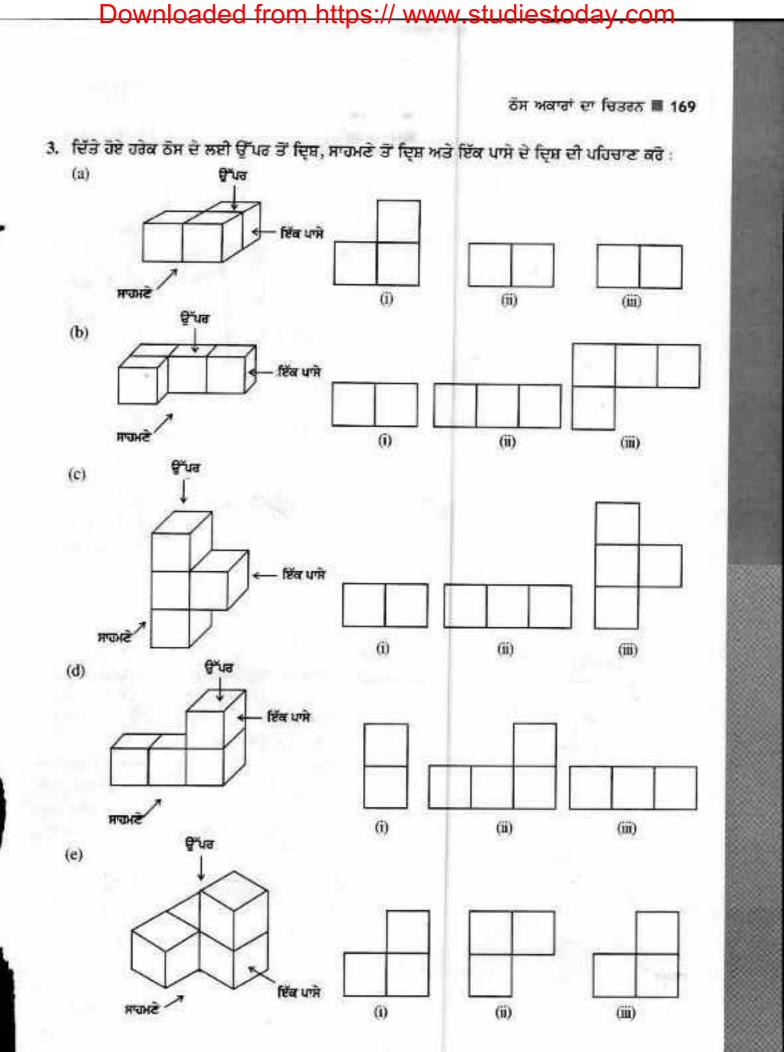
ਇੱਕ ਪਾਸੇ ਤੋਂ ਦਿਸ਼

ਉੱਪਰ ਦਾ ਦਿਸ਼

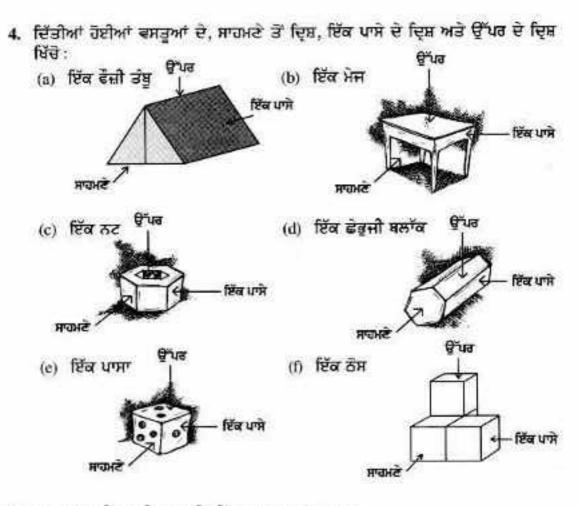

ਇੱਕ ਪਾਸੇ ਤੋਂ ਦਿਸ਼

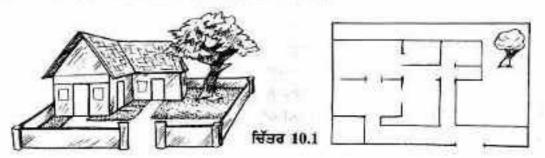



ਉੱਪਰ ਦਾ ਦਿਸ਼


ਇੱਕ ਗਿਲਾਸ ਦਾ ਉੱਪਰ ਦਾ ਦ੍ਰਿਸ਼ (top view) ਦੋ ਸਮ ਕੇਂਦਰੀ ਚੱਕਰਾਂ ਦਾ ਇੱਕ ਜੋੜਾ ਕਿਉਂ ਹੈ ? ਜੇ ਇਸ ਨੂੰ ਵੱਖ ਦਿਸ਼ਾ ਤੋਂ ਦੇਖਿਆ ਜਾਵੇ, ਤਾਂ ਇੱਕ ਪਾਸੇ ਦਾ ਦਿਸ਼ ਕੁੱਝ ਹੋਰ ਅਕਾਰ ਦਾ ਪ੍ਰਤੀਤ ਹੋਵੇਗਾ ? ਇਸ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸੋਚੋ।

Downloaded from https:// www.studies




170 🖩 ਗਣਿਤ

10.3 ਆਪਣੇ ਆਲੇ-ਦੁਆਲੇ ਦੇ ਸਥਾਨ ਦਾ ਨਕਸ਼ਾ

ਤੁਸੀਂ ਆਪਣੀਆਂ ਪ੍ਰਾਇਮਰੀ ਜਮਾਤਾਂ ਤੋਂ ਹੀ ਨਕਸ਼ਿਆਂ (maps) ਦੇ ਨਾਲ ਕੈਮ ਕਰਦੇ ਆ ਰਹੇ ਹੋ।ਭੂਗੋਲ (geography) ਵਿੱਚ, ਤੁਹਾਨੂੰ ਨਕਸ਼ੇ 'ਤੇ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਰਾਜ, ਇੱਕ ਵਿਸ਼ੇਸ਼ ਨਦੀ, ਪਰਬਤ ਆਦਿ ਦੇ ਸਥਾਨ ਨੂੰ ਦੱਸਣ ਲਈ ਕਿਹਾ ਗਿਆ ਹੋਵੇਗਾ। ਇਤਿਹਾਸ ਵਿੱਚ, ਤੁਹਾਡੇ ਤੋਂ ਬਹੁਤ ਪਹਿਲਾਂ ਹੋਈ ਘਟਨਾ ਦੇ ਸਥਾਨ ਨੂੰ ਦੱਸਣ ਲਈ ਸੰਭਵ ਤੌਰ 'ਤੇ ਕਿਹਾ ਗਿਆ ਹੋਵੇਗਾ। ਤੁਸੀਂ ਨਦੀਆਂ, ਸੜਕਾਂ, ਰੇਲ ਲਾਈਨਾਂ, ਵਪਾਰਕ ਅਤੇ ਹੋਰ ਬਹੁਤ ਸਾਰੇ ਰਸਤਿਆਂ ਨੂੰ ਖਿੱਚਿਆ (ਜਾਂ ਉਸਦਾ ਚਿਤਰਨ ਕੀਤਾ) ਹੈ।

ਅਸੀਂ ਨਕਸ਼ਿਆਂ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਪੜ੍ਹਦੇ ਹਾਂ ? ਇੱਕ ਨਕਸ਼ੋ ਨੂੰ ਪੜ੍ਹਦੇ ਸਮੇਂ ਅਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹਾਂ ਅਤੇ ਕੀ ਸਮਝ ਸਕਦੇ ਹਾਂ ? ਇੱਕ ਨਕਸ਼ੇ ਵਿੱਚ ਕਿਹੜੀਆਂ ਸੂਚਨਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ ਅਤੇ ਕਿਹੜੀਆਂ ਸੂਚਨਾਵਾਂ ਨਹੀਂ ਹੁੰਦੀਆਂ ਹਨ ? ਕੀ ਇਹ ਇੱਕ ਚਿੱਤਰ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਵੱਖਰਾ ਹੈ ? ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਇਹਨਾਂ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਪਤਾ ਕਰਨ ਦਾ ਯਤਨ ਕਰਾਂਗੇ। ਕਿਸੇ ਘਰ ਦੇ ਨਕਸ਼ੇ ਨੂੰ ਦੇਖਦੇ ਹਾਂ, ਜਿਸਦਾ ਚਿੱਤਰ ਨਾਲ ਹੀ ਦਿੱਤਾ ਗਿਆ ਹੈ (ਚਿੱਤਰ 10.1)।

ਠੱਸ ਅਕਾਰਾਂ ਦਾ ਚਿਤਰਨ 🔳 171

ਮੇਰੀ ਭੈਣ ਦਾ ਸਕਲ

ਇਸ ਚਿੱਤਰ ਤੋਂ ਅਸੀਂ ਕੀ ਸਿੱਟਾ ਕੱਢ ਸਕਦੇ ਹਾਂ ? ਜਦੋਂ ਅਸੀਂ ਕੋਈ ਚਿੱਤਰ ਖਿੱਚਦੇ ਹਾਂ, ਤਾਂ ਅਸੀਂ ਉਸ ਦੀਆਂ ਸਪੱਸ਼ਟ ਦਿਖਾਈ ਦੇਣ ਵਾਲੀਆਂ ਜਾਣਕਾਰੀਆਂ ਦੀ ਅਸਲੀਅਤ ਨੂੰ ਦਰਸਾਉਣ ਦਾ ਯਤਨ ਕਰਦੇ ਹਾਂ, ਜਦੋਂ ਕਿ ਇੱਕ ਨਕਸ਼ਾ ਕਿਸੇ ਇੱਕ ਵਸਤੂ ਦਾ ਹੋਰ ਵਸਤੂਆਂ ਦੇ ਪਰਿਪੇਖ ਵਿੱਚ ਸਿਰਫ ਸਥਾਨ ਦਰਸਾਉਂਦਾ ਹੈ। ਦੂਸਰੀ ਗੱਲ ਇਹ ਹੈ ਕਿ ਵੱਖ-ਵੱਖ ਵਿਅਕਤੀ ਚਿੱਤਰਾਂ ਦਾ ਇੱਕ-ਦੂਸਰੇ ਨਾਲੋਂ ਬਿਲਕੁੱਲ ਵੱਖ-ਵੱਖ ਵਰਨਣ ਕਰ ਸਕਦੇ ਹਨ, ਜੋ ਇਸ 'ਤੇ ਨਿਰਭਰ ਕਰੇਗਾ ਕਿ ਉਹ ਘਰ ਨੂੰ ਕਿਸ ਸਥਾਨ ਤੋਂ ਦੇਖ ਰਹੇ ਹਨ। ਪਰ ਇਹ ਇੱਕ ਨਕਸ਼ੇ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਸੱਚ ਨਹੀਂ ਹੈ। ਨਿਰੀਖਕ ਦੀ ਸਥਿਤੀ ਕਿਤੇ ਵੀ ਹੋਵੇ,

ਘਰ ਦਾ ਨਕਸ਼ਾ ਉਹੀ ਰਹਿੰਦਾ ਹੈ। ਦੂਸਰੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਇੱਕ ਚਿੱਤਰ ਖਿੱਚਣ ਦੇ ਲਈ, ਪਰਿਪੇਖ ਬਹੁਤ ਮਹੱਤਵਪੂਰਨ ਹੈ, ਪਰ ਇਹ ਇੱਕ ਨਕਸ਼ੇ ਦੇ ਲਈ ਅਨੁਕੂਲ ਨਹੀਂ ਹੈ।

ਹੁਣ ਇੱਕ ਨਕਸ਼ੇ (ਚਿੱਤਰ 10.2) ਨੂੰ ਦੇਖੋ ਜੋ ਇੱਕ ਸੱਤ ਸਾਲ ਦੇ ਬੱਚੇ ਰਾਘਵ ਨੇ ਆਪਣੇ ਘਰ ਤੋਂ ਆਪਣੇ ਸਕੂਲ ਤੱਕ ਦੇ ਰਸਤੇ ਦੇ ਲਈ ਖਿੱਚਿਆ ਹੈ। ਇਸ ਨਕਸ਼ੇ ਤੋਂ ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ

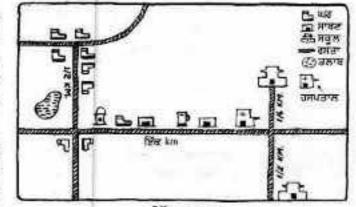
- (i) ਰਾਘਵ ਦਾ ਸਕੂਲ ਉਸਦੇ ਘਰ ਤੋਂ ਕਿੰਨੀ ਦੂਰ ਹੈ?
- (ii) ਨਕਸ਼ੇ ਵਿੱਚ ਹਰੇਕ ਚੱਕਰ ਕੀ ਇੱਕ ਗੋਲ ਚੈਂਕ ਦਰਸਾਉਂਦਾ ਹੈ?
- (iii) ਘਰ ਤੋਂ ਕਿਸ ਦਾ ਸਕੂਲ ਜ਼ਿਆਦਾ ਨੇੜੇ ਹੈ ਰਾਘਵ ਦਾ ਜਾਂ ਉਸਦੀ ਭੈਣ ਦਾ ?

ਦਿੱਤੇ ਹੋਏ ਨਕਸ਼ੇ ਨੂੰ ਦੇਖ ਕੇ, ਉਪਰੋਕਤ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦੇਣਾ ਬਹੁਤ ਔਖਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਕਿਉਂ?

ਇਸਦਾ ਕਾਰਨ ਇਹ ਹੈ ਕਿ ਅਸੀਂ ਨਹੀਂ ਜਾਣਦੇ ਕਿ ਇਸ ਵਿੱਚ ਦੂਰੀਆਂ ਸਹੀ ਤਰ੍ਹਾਂ ਖਿੱਚੀਆਂ ਗਈਆਂ ਹਨ ਜਾਂ ਖਿੱਚੇ ਗਏ ਚੱਕਰ, ਚੌਂਕ ਹਨ ਜਾਂ ਕੁੱਝ ਹੋਰ ਦਰਸਾਉਂਦੇ ਹਨ।

ਹੁਣ ਇੱਕ ਹੋਰ ਨਕਸ਼ੇ ਨੂੰ ਦੇਖੋ, ਜੋ ਉਸਦੀ 10 ਸਾਲ ਦੀ ਭੈਣ ਮੀਨਾ ਨੇ ਆਪਣੇ ਘਰ ਤੋਂ ਆਪਣੇ ਸਕੂਲ ਦਾ ਰਸਤਾ ਦਰਸਾਉਣ ਲਈ ਖਿੱਚਿਆ ਹੈ (ਚਿੱਤਰ 10.3)।

ਇਹ ਨਕਸ਼ਾ ਪਿਛਲੇ ਨਕਸ਼ੇ ਤੋਂ ਭਿੰਨ ਹੈ। ਇੱਥੇ ਮੀਨਾ ਨੇ ਵੱਖ-ਵੱਖ ਸੀਮਾ-ਚਿੰਨ੍ਹਾਂ (landmarks) ਦੇ ਲਈ ਵੱਖ-ਵੱਖ ਸੰਕੇਤਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਹੈ। ਦੂਸਰੀ ਗੱਲ ਇਹ ਹੈ ਕਿ ਲੰਬੀ ਦਰੀ ਦੇ ਲਈ ਲੰਬੇ ਰੇਖਾਖੰਡ ਖਿੱਚੇ ਗਏ ਹਨ ਅਤੇ ਛੋਟੀ ਦਰੀ


ਲਈ ਛੋਟੇ ਰੇਖਾਖੰਡ ਖਿੱਚੇ ਗਏ ਹਨ। ਭਾਵ ਉਸਨੇ ਇਹ ਨਕਸ਼ਾ ਇੱਕ ਪੈਮਾਨੇ (scale) ਦੇ ਅਨੁਸਾਰ ਖਿੱਚਿਆ ਹੈ। ਹੁਣ, ਤੁਸੀਂ ਹੇਠਾਂ ਲਿਖੇ ਪਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦੇ ਸਕਦੇ ਹੋ।

- ਰਾਘਵ ਦਾ ਸਕੂਲ ਉਸਦੇ ਘਰ ਤੋਂ ਕਿੰਨੀ ਦੂਰੀ 'ਤੇ ਹੈ?
- ਕਿਸ ਦਾ ਸਕੂਲ ਉਸਦੇ ਘਰ ਤੋਂ ਜ਼ਿਆਦਾ ਨੇੜੇ ਹੈ ਰਾਘਵ ਦਾ ਜਾਂ ਮੀਨਾ ਦਾ ?
- ਰਸਤੇ ਵਿੱਚ ਕਿਹੜੇ-ਕਿਹੜੇ ਮਹੱਤਵਪੂਰਨ ਸੀਮਾ-ਚਿੰਨ੍ਹ ਹਨ ?

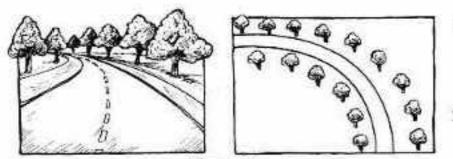
ਇਸ ਤਰ੍ਹਾਂ, ਅਸੀਂ ਇਹ ਅਨੁਭਵ ਕਰਦੇ ਹਾਂ ਕਿ ਕੁੱਝ ਸੰਕੇਤਾਂ ਦਾ ਪ੍ਰਯੋਗ ਕਰਨ ਨਾਲ ਅਤੇ ਦੂਰੀਆਂ ਦਾ ਵਰਣਨ ਕਰਨ (ਜਾਣਕਾਰੀ ਦੇਣ) ਨਾਲ ਸਾਨੂੰ ਨਕਸ਼ੇ ਨੂੰ ਪੜ੍ਹਨ ਵਿੱਚ ਸਹਾਇਤਾ ਮਿਲਦੀ ਹੈ। ਧਿਆਨ ਦਿਓ ਕਿ ਨਕਸ਼ੇ 'ਤੇ ਦਰਸਾਈਆਂ ਗਈਆਂ ਦੂਰੀਆਂ, ਜਮੀਨ 'ਤੇ ਅਸਲ ਦੂਰੀਆਂ ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ (proportional) ਹਨ। ਇਹ ਇੱਕ ਢੁੱਕਵਾਂ ਪੈਮਾਨਾ ਮੰਨ ਕੇ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਨਕਸ਼ੇ ਨੂੰ ਖਿੱਚਦੇ (ਜਾਂ ਪੜ੍ਹਦੇ) ਸਮੇਂ ਇਹ ਧਿਆਨ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਉਸ ਨੂੰ ਕਿਸ ਪੈਮਾਨੇ ਵਿੱਚ ਖਿੱਚਣਾ ਹੈ (ਜਾਂ ਉਹ ਕਿਸ ਪੈਮਾਨੇ ਵਿੱਚ ਖਿੱਚਿਆ ਗਿਆ ਹੈ), ਜਿਵੇਂ ਕਿ ਕਿੰਨੀ ਅਸਲ ਦੂਰੀ ਨੂੰ ਨਕਸ਼ੇ ਤੇ 1 mm ਜਾਂ 1 cm ਦੂਰੀ ਨਾਲ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਸਦਾ ਅਰਥ ਹੈ ਕਿ ਜਦੋਂ ਕੋਈ ਵਿਅਕਤੀ ਇੱਕ ਨਕਸ਼ਾ ਖਿੱਚਦਾ ਹੈ, ਤਾਂ

0000000

ਮਰਾ ਘਰ

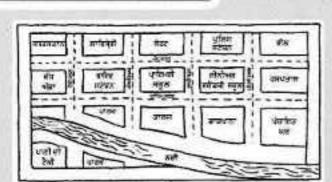
o

0


 \odot

172 🔳 ਗਣਿਤ

ਉਸਨੂੰ ਇਹ ਨਿਰਣਾ ਕਰਨਾ ਪੈਂਦਾ ਹੈ ਕਿ ਉਸ ਨਕਸ਼ੇ ਵਿੱਚ 1 cm ਸਥਾਨ ਇੱਕ ਨਿਸ਼ਚਿਤ ਦੂਰੀ ਜਿਵੇਂ ਕਿ 1 km ਜਾਂ 10 km ਦਰਸਾਉਂਦਾ ਹੈ। ਇਹ ਪੈਮਾਨਾ ਇੱਕ ਨਕਸ਼ੇ ਤੋਂ ਦੂਸਰੇ ਨਕਸ਼ੇ ਵਿੱਚ ਬਦਲ ਸਕਦਾ ਹੈ, ਪਰ ਇੱਕ ਹੀ ਨਕਸ਼ੇ ਵਿੱਚ ਨਹੀਂ ਬਦਲਦਾ। ਉਦਾਹਰਣ ਲਈ, ਭਾਰਤ ਦੇ ਨਕਸ਼ੇ ਨੂੰ ਦਿੱਲੀ ਦੇ ਨਕਸ਼ੇ ਦੇ ਨਾਲ ਰੱਖ ਕੇ ਦੇਖੋ।

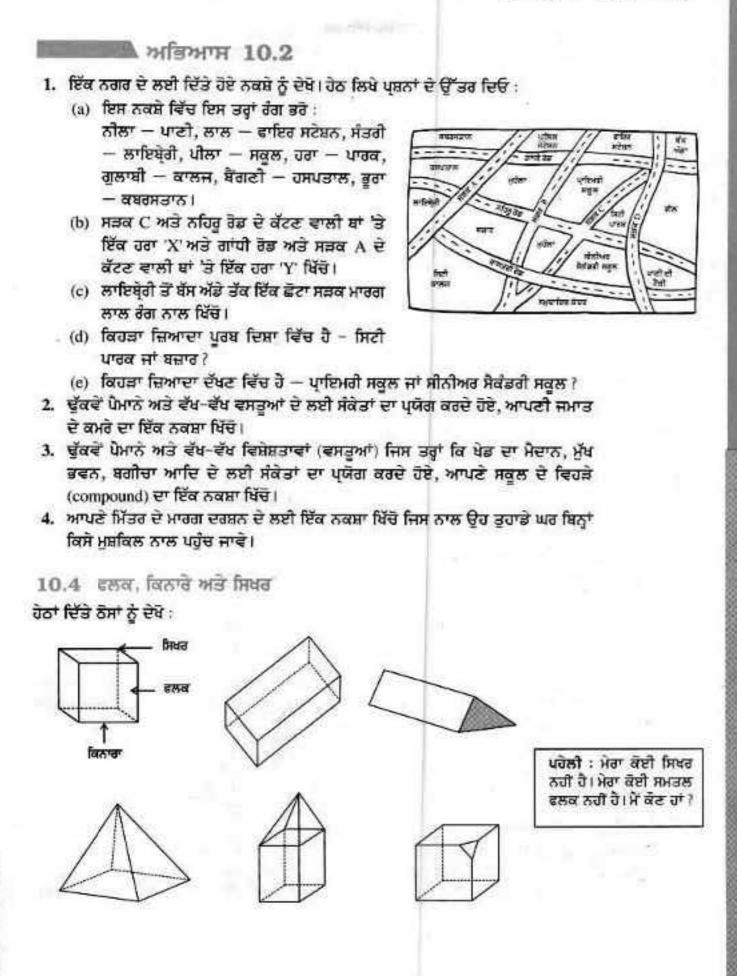

ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਜਦੋਂ ਨਕਸ਼ੇ ਨੂੰ ਵੱਖ-ਵੱਖ ਪੈਮਾਨਿਆਂ ਦੇ ਅਨੁਸਾਰ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਦੋ ਨਕਸ਼ਿਆਂ ਵਿੱਚ ਦੂਰੀਆਂ ਬਦਲ ਜਾਂਦੀਆਂ ਹਨ। ਜਿਵੇਂ ਕਿ ਦਿੱਲੀ ਦੇ ਨਕਸ਼ੇ ਵਿੱਚ 1 cm ਸਥਾਨ ਭਾਰਤ ਦੇ ਨਕਸ਼ੇ ਦੀਆਂ ਦੂਰੀਆਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਛੋਟੀ ਦੂਰੀਆਂ ਦਰਸਾਏਗਾ। ਸਥਾਨ ਜਿੰਨਾ ਵੱਡਾ ਹੋਵੇਗਾ ਅਤੇ ਖਿੱਚੇ ਗਏ ਨਕਸ਼ੇ ਦਾ ਅਕਾਰ ਜਿੰਨਾ ਛੋਟਾ ਹੋਵੇਗਾ ਉਨੀ ਹੀ ਜ਼ਿਆਦਾ ਦੂਰੀ 1 cm ਦੁਆਰਾ ਦਰਸਾਈ ਜਾਵੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ ਸੰਖੇਪ ਵਿੱਚ, ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ

ਚਿੱਤਰ 10.4

1.

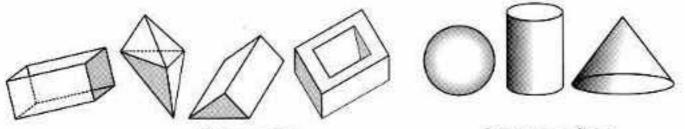
- ਇੱਕ ਨਕਸ਼ਾ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਵਸਤੂ/ ਸਥਾਨ ਦੀ ਹੋਰ ਵਸਤੂਆਂ/ਸਥਾਨਾਂ ਦੇ ਪਰਿਪੇਖ ਵਿੱਚ ਸਥਿਤੀ ਦਰਸਾਉਂਦਾ ਹੈ।
- ਵੱਖ-ਵੱਖ ਵਸਤੂਆਂ/ਸਥਾਨਾਂ ਨੂੰ ਦਰਸਾਉਣ ਦੇ ਲਈ ਢੁੱਕਵੇਂ ਸੰਕੇਤਾਂ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
- ਇੱਕ ਨਕਸ਼ੇ ਵਿੱਚ ਕੋਈ ਪਰਿਪੇਖ ਨਹੀਂ ਹੁੰਦਾ ਹੈ ਭਾਵ ਨਿਰੀਖਕ ਦੇ ਨੋੜੇ ਵਾਲੀਆਂ ਵਸਤੂਆਂ ਉਸੇ ਅਕਾਰ ਵਿੱਚ ਦਰਸਾਈਆਂ ਜਾਂਦੀਆਂ ਹਨ ਜਿੰਨੀਆਂ ਦੂਰ ਵਾਲੀਆਂ। ਉਦਾਹਰਣ ਲਈ, ਚਿੱਤਰ 10.4 ਨੂੰ ਦੇਖੋ।
- ਹਰੇਕ ਨਕਸ਼ੇ ਵਿੱਚ ਇੱਕ ਪੈਮਾਨਾ ਹੁੰਦਾ ਹੈ, ਜੋ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਨਕਸ਼ੇ ਦੇ ਲਈ ਸਥਿਰ (fixed) ਹੁੰਦਾ ਹੈ। ਇਹ ਅਸਲ ਦੁਰੀਆਂ ਨੂੰ ਕਾਗਜ਼ ਉੱਤੇ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਛੋਟਾ (ਘੱਟ) ਕਰ ਦਿੰਦਾ ਹੈ।

ਇਹਨਾਂ ਨੂੰ ਕਰੋ


ਚਿੱਤਰ 10.5

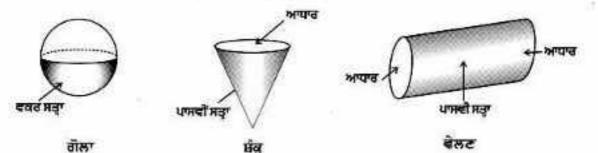
ਇੱਕ ਨਗਰ ਦੇ ਨਾਲ ਦਿੱਤੇ ਨਕਸ਼ੇ ਨੂੰ ਦੇਖੋ (ਚਿੱਤਰ 10.5) :

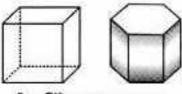
- (a) ਨਕਸ਼ੇ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਰੰਗ ਭਰੋ : ਨੀਲਾ ਪਾਣੀ, ਲਾਲ - ਫਾਇਰ ਸਟੇਸ਼ਨ, ਸੰਤਰੀ - ਲਾਇਬਰੇਰੀ, ਪੀਲਾ - ਸਕੂਲ, ਹਰਾ - ਪਾਰਕ, ਗੁਲਾਬੀ - ਪੰਚਾਇਤ ਘਰ, ਬੈਂਗਣੀ - ਹਸਪਤਾਲ, ਭੂਰਾ - ਕਬਰਸਤਾਨ।
- (b) ਦੂਸਰੀ ਸੜਕ ਅਤੇ ਦਾਨਿਮ (Danim) ਸੜਕ ਦੇ ਕੱਟਣ ਵਾਲੀ ਥਾਂ (intersection) 'ਤੇ ਇੱਕ ਹਰਾ 'X' ਅੰਕਿਤ ਕਰੋ। ਜਿੱਥੇ ਨਦੀ, ਤੀਜੀ ਸੜਕ ਨੂੰ ਮਿਲਦੀ ਹੈ, ਉੱਥੇ ਇੱਕ ਕਾਲਾ 'Y' ਅੰਕਿਤ ਕਰੋ ਅਤੇ ਮੁੱਖ ਸੜਕ ਅਤੇ ਪਹਿਲੀ ਸੜਕ ਦੇ ਕੱਟਣ ਵਾਲੀ ਥਾਂ 'ਤੇ ਇੱਕ ਲਾਲ 'Z' ਅੰਕਿਤ ਕਰੋ।


(c) ਕਾਲਜ ਤੋਂ ਝੀਲ ਤੱਕ ਦੇ ਲਈ ਇੱਕ ਛੋਟਾ ਸੜਕ ਦਾ ਮਾਰਗ ਗੂੜ੍ਹੇ ਗੁਲਾਬੀ ਰੰਗ ਵਿੱਚ ਖਿੱਚੋ।
2. ਆਪਣੇ ਘਰ ਤੋਂ ਆਪਣੇ ਸਕੂਲ ਤੱਕ ਦੇ ਮਾਰਗ ਦਾ ਉਸ ਤੇ ਆਉਣ ਵਾਲੇ ਮਹੱਤਵਪੂਰਨ ਸੀਮਾ-ਚਿੰਨ੍ਹਾਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹੋਏ ਇੱਕ ਨਕਸ਼ਾ ਖਿੱਚੋ।

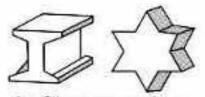
ਠੋਸ ਅਕਾਰਾਂ ਦਾ ਚਿਤਰਨ 🔳 173

174 🔳 ਗਣਿਤ

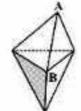

ਉਪਰੋਕਤ ਠੌਸਾਂ ਵਿੱਚੋਂ ਹਰੇਕ ਠੌਸ ਬਹੁਭੂਜੀ ਖੇਤਰਾਂ (polygonal regions) ਨੂੰ ਮਿਲਾ ਕੇ ਬਣਿਆ ਹੈ, ਇਹਨਾਂ ਨੂੰ ਉਸਦੇ ਫਲਕ (faces) ਆਖਦੇ ਹਨ। ਇਹ ਫਲਕ ਕਿਨਾਰਿਆਂ ਜਾਂ ਕੌਰਾਂ (edges) 'ਤੇ ਮਿਲਦੇ ਹਨ, ਜੋ ਰੇਖਾਖੰਡ ਹਨ ਅਤੇ ਇਹ ਕਿਨਾਰੇ ਸਿਖਰਾਂ 'ਤੇ ਮਿਲਦੇ ਹਨ, ਜੋ ਬਿੰਦੂ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਠੌਸਾਂ ਨੂੰ ਬਹੁਫਲਕ ਜਾਂ ਬਹੁਫਲਕੀ (polyhedral) ਆਖਦੇ ਹਨ।


ਇਹ ਬਹੁਫਲਕ ਹਨ

ਇਹ ਬਹੁਫਲਕ ਨਹੀਂ ਹਨ

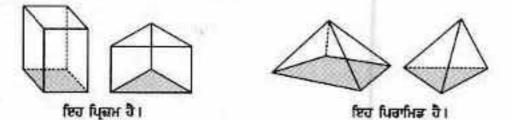

ਬਹੁਫਲਕ ਉਹਨਾਂ ਠੋਸਾਂ ਨਾਲੋਂ ਕਿਸ ਤਰ੍ਹਾਂ ਵੱਖਰੇ ਹਨ ਜਿਹੜੇ ਬਹੁਫਲਕ ਨਹੀਂ ਹਨ ? ਹੇਠਾਂ ਚਿੱਤਰਾਂ ਦਾ ਧਿਆਨ ਨਾਲ ਅਧਿਐਨ ਕਰੋ। ਤੁਸੀਂ ਤਿੰਨ ਤਰ੍ਹਾਂ ਦੇ ਆਮ ਠੋਸਾਂ ਬਾਰੇ ਵਿੱਚ ਜਾਣਦੇ ਹੋ।

ਉੱਤਲ ਬਹੁਫਲਕ : ਤੁਹਾਨੂੰ ਉੱਤਲ (convex) ਬਹੁਭੂਜ ਦੇ ਸੰਕਲਪ ਬਾਰੇ ਯਾਦ ਹੋਵੇਗਾ। ਉੱਤਲ ਬਹੁਫਲਕ ਦਾ ਸੰਕਲਪ ਵੀ ਉਸੇ ਤਰ੍ਹਾਂ ਦਾ ਹੈ।


ਇਹ ਉੱਤਲ ਬਹੁਫਲਕ ਹਨ।

ਇਹ ਉੱਤਲ ਬਹੁਵਲਕ ਨਹੀਂ ਹਨ।

ਸਮ ਬਹੁਫਲਕ : ਇੱਕ ਬਹੁਫਲਕ ਨੂੰ ਤਦ ਸਮ ਬਹੁਫਲਕ (regular polyhedron) ਆਖਦੇ ਹਨ ਜਦੋਂ ਉਸਦੇ ਸਾਰੇ ਫਲਕ ਸਰਬੰਗਸਮ ਸਮ ਬਹੁਭੁਜਾਂ (regular polygons) ਤੋਂ ਬਣੇ ਹੋਣ ਅਤੇ ਹਰੇਕ ਸਿਖਰ 'ਤੇ ਮਿਲਣ ਵਾਲੇ ਫਲਕਾਂ ਦੀ ਸੰਖਿਆ ਸਮਾਨ ਹੋਵੇ।



ਇਹ ਇੱਕ ਸਮ ਬਹੁਫਲਕ ਹੈ। ਇਸਦੇ ਸਾਰੇ ਫਲਕ ਸਰਬੰਗਸਮ ਸਮ ਬਹੁਭੂਜ ਹਨ। ਫਲਕਾਂ ਦੀ ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਤੋਂ ਸਿਖਰ ਬਣਦੇ ਹਨ। ਇਹ ਇੱਕ ਸਮ ਬਹੁਫਲਕ ਨਹੀਂ ਹੈ। ਸਾਰੇ ਫਲਕ ਸਰਬੰਗਸਮ ਨਹੀਂ ਹਨ, ਪਰ ਸਿਖਰ ਫਲਕਾਂ ਦੀ ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਤੋਂ ਨਹੀਂ ਬਣਦੇ ਹਨ। A 'ਤੇ 3 ਫਲਕ ਮਿਲਦੇ ਹਨ ਪਰੰਤ B 'ਤੇ 4 ਫਲਕ ਮਿਲਦੇ ਹਨ।

ਠੋਸ ਅਕਾਰਾਂ ਦਾ ਚਿਤਰਨ 🔳 175

studiestoday.com

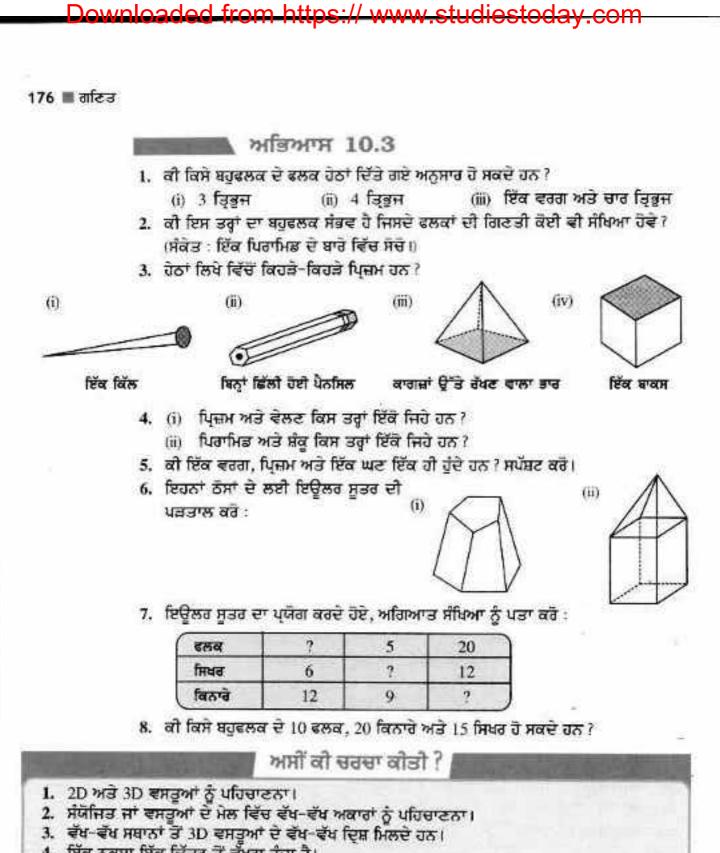
ਸਾਡੇ ਆਲੇ-ਦੁਆਲੇ ਬਹੁਫਲਕ ਪਰਿਵਾਰ (ਕੁੱਲ ਜਾਂ family) ਵਿੱਚ ਮਿਲਣ ਵਾਲੇ ਦੋ ਮਹੱਤਵਪੂਰਨ ਮੈਂਬਰ ਪ੍ਰਿਜ਼ਮ (prisms) ਅਤੇ ਪਿਰਾਮਿਡ (pyramids) ਹਨ।

ਅਸੀਂ ਆਖਦੇ ਹਾਂ ਕਿ ਇੱਕ ਬਹੁਫਲਕ ਪ੍ਰਿਜ਼ਮ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ ਉਸਦਾ ਆਧਾਰ (base) ਅਤੇ ਉੱਪਰਲਾ ਸਿਰਾ (top) ਸਰਬੰਗਸਮ ਬਹੁਭੁਜ ਹੋਣ ਅਤੇ ਉਸਦੇ ਹੋਰ ਫਲਕ ਜਾਂ ਪਾਸਵੇਂ ਫਲਕ (lateral faces) ਸਮਾਂਤਰ ਚਤੁਰਭੁਜਾਂ ਦੇ ਅਕਾਰ ਦੇ ਹੋਣ।

ਉਸਦੇ ਦੂਸਰੇ ਪਾਸੇ, ਇੱਕ ਪਿਰਾਮਿਡ ਉਹ ਬਹੁਫਲਕ ਹੁੰਦਾ ਹੈ ਜਿਸਦਾ ਆਧਾਰ (ਕਿੰਨੀ ਵੀ ਭੁਜਾਵਾਂ ਵਾਲਾ) ਇੱਕ ਬਹੁਭੁਜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਦੇ ਪਾਸਵੇਂ ਫਲਕ ਇੱਕ ਸਿਖਰ ਵਾਲੇ ਤਿਕੋਣ ਹੁੰਦੇ ਹਨ। (ਜੇ ਤੁਸੀਂ ਇੱਕ ਬਹੁਭੁਜ ਦੇ ਸਾਰੇ ਕੋਨੇ ਜਾਂ ਸਿਖਰਾਂ ਨੂੰ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਬਿੰਦੂ ਨਾਲ ਮਿਲਾ ਦਿਓ ਜੋ ਉਸਦੇ ਤਲ (plane) ਵਿੱਚ ਨਾ ਹੋਵੇ, ਤਾਂ ਤੁਹਾਨੂੰ ਪਿਰਾਮਿਡ ਦਾ ਇੱਕ ਮਾਡਲ (model) ਪ੍ਰਾਪਤ ਹੋ ਜਾਵੇਗਾ।

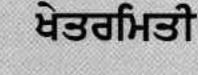
ਇੱਕ ਪ੍ਰਿਜ਼ਮ ਜਾਂ ਪਿਰਾਮਿਡ ਨੂੰ ਉਸਦੇ ਆਧਾਰ ਦੇ ਅਨੁਸਾਰ ਨਾਂ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਇੱਕ ਛੇਭੂਜੀ (hexagonal) ਪ੍ਰਿਜ਼ਮ ਦਾ ਆਧਾਰ ਇੱਕ ਛੇਭੁਜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਤਿਕੋਣਾਕਾਰ ਪਿਰਾਮਿਡ ਦਾ ਆਧਾਰ ਇੱਕ ਤਿਕੋਣ ਹੁੰਦਾ ਹੈ। ਤਦ, ਇੱਕ ਆਇਤਾਕਾਰ ਪ੍ਰਿਜ਼ਮ ਕੀ ਹੈ? ਇੱਕ ਵਰਗ ਪਿਰਾਮਿਡ ਕੀ ਹੈ? ਸਪੱਸ਼ਟ ਤੌਰ ਤੇ ਇਸਦੇ ਆਧਾਰ ਕ੍ਰਮਵਾਰ : ਆਇਤ ਅਤੇ ਵਰਗ ਹਨ।

ਇਹਨਾਂ ਨੂੰ ਕਰੋ


ਹੇਠਾਂ ਲਿਖੇ ਬਹੁਫਲਕਾਂ ਦੇ ਲਈ ਫਲਕਾਂ (faces), ਕਿਨਾਰਿਆਂ (edges) ਅਤੇ ਸਿਖਰਾਂ (vertices) ਦੀ ਗਿਣਤੀ ਨੂੰ ਸਾਰਣੀਬੱਧ ਕਰੋ : (ਇੱਥੇ V ਸਿਖਰਾਂ ਦੀ ਸੰਖਿਆ, F ਫਲਕਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ E ਕਿਨਾਰਿਆਂ ਦੀ ਸੰਖਿਆ ਦਰਸਾਉਂਦਾ ਹੈ।)

ਠੌਸ	F	v	E	F+V	E+2
ਘਣਾਵ					
ਤ੍ਰਿਭੂਜਕਾਰ			1 KV		
ਤ੍ਰਿਭੂਜਕਾਰ ਪ੍ਰਿਜ਼ਮ					
ਵਰਗ ਆਧਾਰ ਵਾਲਾ ਪਿਰਾਮਿਡ	2		Jane 1		
ਵਰਗ ਆਧਾਰ ਵਾਲਾ ਪ੍ਰਿਜ਼ਮ					

ਤੁਸੀਂ ਆਖਰੀ ਦੇ ਕਾਲਮਾਂ ਤੋਂ ਕੀ ਸਿੱਟਾ ਕੱਢਦੇ ਹੋ ? ਕੀ ਹਰੇਕ ਸਥਿਤੀ ਵਿੱਚ ਤੁਹਾਨੂੰ F+V=E+2, ਭਾਵ F+V–E=2 ਮਿਲਦਾ ਹੈ ? ਇਸ ਸੰਬੰਧ ਨੂੰ ਇਊਲਰ ਸੂਤਰ (Euler's Formula) ਆਖਦੇ ਹਨ। ਅਸਲ ਵਿੱਚ, ਇਹ ਸੂਤਰ ਹਰੇਕ ਬਹੁਫਲਕ ਦੇ ਲਈ ਸੱਚ ਹੈ।

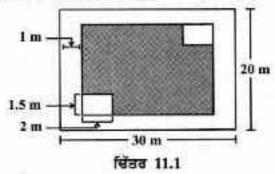

ਸੋਚੋ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੇ

ਜਦੋਂ ਕਿਸੀ ਨੇਸ ਵਿੱਚੋਂ ਕੋਈ ਟੁੱਕੜਾ ਕੱਟ ਦਿੱਤਾ ਜਾਵੇ, ਤਾਂ F. V ਅਤੇ E ਵਿੱਚ ਕੀ ਬਲਦਾਓ ਹੁੰਦਾ ਹੈ? (ਸ਼ੁਰੂ ਕਰਨ ਦੇ ਲਈ, ਇੱਕ ਪਲਾਸਟਿਕ ਦਾ ਘਣ ਲਵੋ ਅਤੇ ਇੱਕ ਕੋਨਾ ਕੱਟਕੇ ਇਸਦਾ ਨਿਰੀਖਣ ਕਰੇ।)

- ਇੱਕ ਨਕਸ਼ਾ ਇੱਕ ਚਿੱਤਰ ਤੋਂ ਵੱਖਰਾ ਹੁੰਦਾ ਹੈ।
- 5. ਇੱਕ ਨਕਸ਼ਾ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਵਸਤੂ/ਸਥਾਨ ਅਤੇ ਹੋਰ ਵਸਤੂਆਂ/ਸਥਾਨਾਂ ਦੇ ਪਰਿਪੇਖ ਵਿੱਚ ਸਹੀ-ਸਹੀ ਸਥਿਤੀਆਂ ਦਰਸਾਉਂਦਾ ਹੈ।
- ਵੱਖ-ਵੱਖ ਵਸਤੂਆਂ/ਸਥਾਨਾਂ ਨੂੰ ਦਰਸਾਉਣ ਦੇ ਲਈ, ਨਕਸ਼ੇ ਵਿੱਚ ਸ਼ੱਕੇਤਾਂ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
- ਇੱਕ ਨਕਸ਼ੇ ਵਿੱਚ ਕੋਈ ਪਰਿਪੇਖ ਨਹੀਂ ਹੁੰਦਾ ਹੈ।
- 8. ਹਰੋਕ ਨਕਸ਼ੇ ਵਿੱਚ ਇੱਕ ਪੋਮਾਨਾ ਸੰਬੰਧ ਹੁੰਦਾ ਹੈ, ਜੋ ਕਿ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਨਕਸ਼ੇ ਦੇ ਲਈ ਇੱਕ ਹੀ ਰਹਿੰਦਾ ਹੈ।
- 9. ਕਿਸੀ ਵੀ ਬਹੁਫਲਕ ਦੇ ਲਈ F + V E = 2 ਸੱਚ ਹੁੰਦਾ ਹੈ, ਇੱਥੋ F ਫਲਕਾਂ ਦੀ ਸੰਖਿਆ, V ਸਿਖਰਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ E ਕਿਨਾਰਿਆ ਦੀ ਸੰਖਿਆ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਇਸ ਸੰਬੰਧ ਨੂੰ ਇਉਲਰ ਸੂਤਰ ਆਖਦੇ ਹਾਂ।

https://www.studiestoday.com Jownloaded from

11.1 ਭੂਮਿਕਾ


ਅਸੀਂ ਅਧਿਐਨ ਕਰ ਚੁੱਕੇ ਹਾਂ ਕਿ ਕਿਸੇ ਬੰਦ ਸਮਤਲ ਚਿੱਤਰ ਦੀ ਸੀਮਾਂ ਦੇ ਚਾਰੇ ਪਾਸਿਆਂ ਦੀ ਦੂਰੀ ਨੂੰ ਉਸਦਾ ਪਰਿਮਾਪ ਆਖਦੇ ਹਨ। ਅਤੇ ਉਸ ਚਿੱਤਰ ਦੁਆਰਾ ਘਿਰੇ ਹੋਏ ਖੇਤਰ ਨੂੰ ਉਸਦਾ ਖੇਤਰਫਲ ਆਖਦੇ ਹਨ। ਅਸੀਂ ਤ੍ਰਿਭੁਜ, ਆਇਤ, ਚੱਕਰ ਆਦਿ ਵੱਖ-ਵੱਖ ਸਮਤਲ ਚਿੱਤਰਾਂ ਦਾ ਪਰਿਮਾਪ ਅਤੇ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨਾ ਸਿੱਖ ਚੁੱਕੇ ਹਾਂ ਅਤੇ ਆਇਤਾਕਾਰ ਆਕਾਰ ਦੇ ਕਿਨਾਰੇ ਜਾਂ ਵਿਚਲੇ ਰਸਤਿਆਂ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨਾ ਵੀ ਸਿੱਖ ਚੁੱਕੇ ਹਾਂ।

ਇਸ ਅਧਿਆਇ ਵਿੱਚ, ਅਸੀਂ ਚਤੁਰਭੁਜ ਵਰਗੀਆਂ ਦੂਸਰੀਆਂ ਬੰਦ ਚਿੱਤਰਾਂ ਦੇ ਖੇਤਰਫਲ ਅਤੇ ਪਰਿਮਾਪ ਨਾਲ ਸੰਬੰਧਿਤ ਸਮੱਸਿਆਵਾਂ ਹੱਲ ਕਰਨ ਦਾ ਯਤਨ ਕਰਾਂਗੇ। ਅਸੀਂ ਘਣ ਤੇ ਘਣਾਵ ਅਤੇ ਵੇਲਣ ਵਰਗੇ ਠੋਸ਼ਾਂ ਦੇ ਸਤ੍ਹਈ ਖੇਤਰਫਲ ਅਤੇ ਆਇਤਨ ਦਾ ਵੀ ਅਧਿਐਨ ਕਰਾਂਗੇ।

11.2 ਆਉ ਦੁਹਰਾਈ ਕਰਦੇ ਹਾਂ

ਆਪਣੇ ਪਹਿਲਾਂ ਪ੍ਰਾਪਤ ਗਿਆਨ ਦੇ ਸਰਵੇਖਣ ਲਈ ਅਸੀਂ ਇੱਕ ਉਦਾਹਰਣ ਦੀ ਚਰਚਾ ਕਰਦੇ ਹਾਂ। ਇਹ ਇੱਕ ਆਇਤਾਕਾਰ ਬਗੀਚੇ ਦਾ ਚਿੱਤਰ ਹੈ ਜਿਸਦੀ ਲੰਬਾਈ 30 ਮੀਟਰ ਅਤੇ ਚੌੜਾਈ 20 ਮੀਟਰ ਹੈ।

- (i) ਇਸ ਬਗੀਚੇ ਨੂੰ ਚਾਰੇ ਪਾਸਿਆਂ ਤੋਂ ਘੇਰਨ ਵਾਲੀ ਵਾੜ ਦੀ ਲੰਬਾਈ ਕੀ ਹੈ ? ਵਾੜ ਦੀ ਲੰਬਾਈ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਸਾਨੂੰ ਬਗੀਚੇ ਦਾ ਪਰਿਮਾਪ ਪਤਾ ਕਰਨ ਦੀ ਜ਼ਰਰਤ ਹੈ ਜੋ ਕਿ 100 ਮੀਟਰ ਹੈ (ਪੜਤਾਲ ਕਰੋ)।
- (ii) ਕਿੰਨੀ ਜਮੀਨ ਬਗੀਚੇ ਨੇ ਘੋਰੀ ਹੈ? ਇਸ ਬਗੀਚੇ ਦੁਆਰਾ ਘੇਰੀ ਗਈ ਜਮੀਨ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਸਾਨੂੰ ਇਸਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ਜੋ ਕਿ 600 ਵਰਗ ਮੀਟਰ (m²) ਹੈ (ਕਿਵੇਂ)?
- (iii) ਬਗੀਚੇ ਦੇ ਪਰਿਮਾਪ ਦੇ ਨਾਲ-ਨਾਲ ਅੰਦਰਲੇ ਪਾਸੇ ਇੱਕ ਮੀਟਰ ਚੌੜਾ ਰਸਤਾ ਹੈ ਜਿਸ ਤੇ ਸੀਮੈਂਟ ਲਗਾਉਣਾ ਹੈ। ਜੋ 4 ਵਰਗ ਮੀਟਰ (m²) ਖੇਤਰਫਲ 'ਤੇ ਸੀਮੈਂਟ ਲਗਾਉਣ ਦੇ ਲਈ ਇੱਕ ਬੋਰੀ

ਅਧਿਆਇ

ਸੀਮੈਂਟ ਚਾਹੀਦਾ ਹੋਵੇ ਤਾਂ ਇਸ ਪੂਰੇ ਰਸਤੇ 'ਤੇ ਸੀਮੈਂਟ ਲਾਉਣ ਲਈ ਸੀਮੈਂਟ ਦੀਆਂ ਕਿੰਨੀਆਂ ਬੋਰੀਆਂ ਦੀ ਜ਼ਰੂਰਤ ਹੈ?

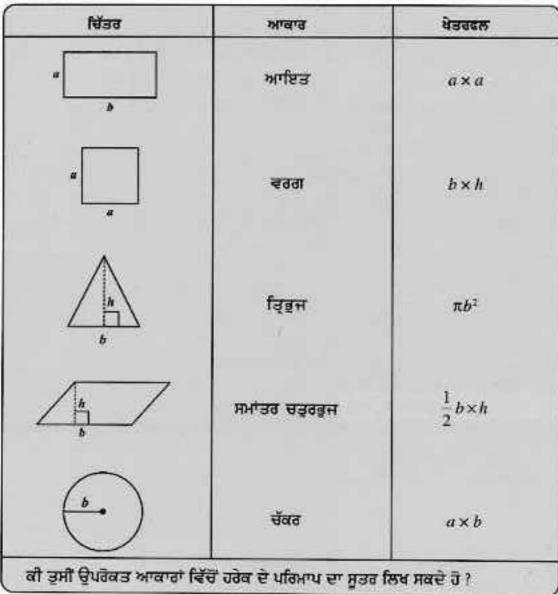
ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਉਪਯੋਗ ਕੀਤੀ ਗਈ ਸੀਮੈਂਟ ਦੀਆਂ ਬੋਰੀਆਂ ਦੀ ਸੰਖਿਆ

= ਰਸਤੇ ਦਾ ਖੇਤਰਫਲ 1 ਬੋਰੀ ਦੁਆਰਾ ਸੀਮੈਂਟ ਕੀਤਾ ਗਿਆ ਖੇਤਰਫਲ

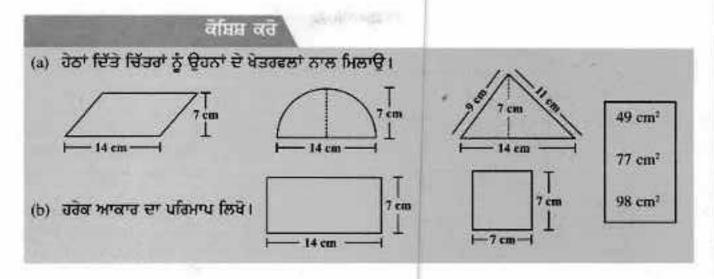
ਸੀਮੈਂਟ ਨਾਲ ਬਣਨ ਵਾਲੇ ਰਸਤੇ ਦਾ ਖੇਤਰਫਲ = ਬਗੀਚੇ ਦਾ ਖੇਤਰਫਲ – ਬਗੀਚੇ ਦਾ ਉਹ ਖੇਤਰਫਲ ਜਿਸ ਤੇ ਸੀਮੈਂਟ ਨਹੀਂ ਲਗਾਉਣਾ ਹੈ।

178 🔳 ਗਣਿਤ

ਰਸਤੇ ਦੀ ਚੌੜਾਈ । ਮੀਟਰ ਹੈ, ਇਸ ਲਈ ਸੀਮੈਂਟ ਨਹੀਂ ਕੀਤੇ ਜਾਣ ਵਾਲਾ ਆਇਤਾਕਾਰ ਖੇਤਰਫਲ (30 – 2) × (20 – 2) m² ਹੈ। ਇਹ 28 × 18 m² ਹੈ।

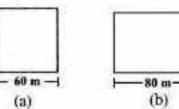

ਇਸ ਤਰ੍ਹਾਂ ਉਪਯੋਗ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸੀਮੈਂਟ ਦੀਆਂ ਬੋਰੀਆਂ ਦੀ ਸੰਖਿਆ =

(iv) ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਚਿੱਤਰ 11.1 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਬਗੀਚੇ ਵਿੱਚ ਫੁੱਲਾਂ ਦੀਆਂ ਦੋ ਆਇਤਾਕਾਰ ਕਿਆਰੀਆਂ ਹਨ, ਜਿਸ ਵਿੱਚ ਹਰੇਕ ਦਾ ਆਕਾਰ 1.5 m × 2 m ਹੈ ਅਤੇ ਬਾਕੀ ਬਗੀਚੇ ਦੇ ਉੱਤੇ ਘਾਹ ਹੈ। ਘਾਹ ਦੁਆਰਾ ਘਿਰਿਆ ਹੋਇਆ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ;

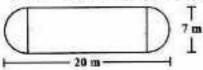

ਆਇਤਾਕਾਰ ਕਿਆਰੀਆਂ ਦਾ ਖੇਤਰਫਲ =

ਰਸਤੇ 'ਤੇ ਸੀਮੈਂਟ ਲਗਾਉਣ ਦੇ ਬਾਅਦ ਬਗੀਚੇ ਦਾ ਬਚਿਆ ਹੋਇਆ ਖੇਤਰਫਲ = ਘਾਹ ਦੁਆਰਾ ਘਿਰਿਆ ਹੋਇਆ ਖੇਤਰਫਲ =

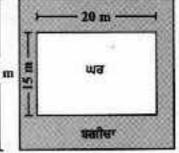
ਜੇਕਰ ਸਾਨੂੰ ਕੁੱਝ ਨਿਸ਼ਚਿਤ ਮਾਪ ਦਿੱਤੇ ਹੋਏ ਹਨ, ਤਾਂ ਆਇਤਾਂ ਦੇ ਇਲਾਵਾ ਅਸੀਂ ਕੁੱਝ ਹੋਰ ਜਿਆਮਿਤੀ ਅਕਾਰਾਂ ਦਾ ਵੀ ਖੇਤਰਫਲ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ। ਹੇਠਾਂ ਲਿਖੇ ਨੂੰ ਯਾਦ ਕਰਕੇ ਮਿਲਾਣ ਕਰਨ ਦਾ ਯਤਨ ਕਰੇ।



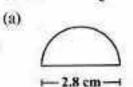
ਖੇਤਰਮਿਤੀ 🔳 179

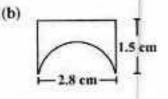


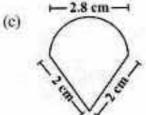
ਅਭਿਆਸ 11.1


 ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਨਾਲ ਦਿੱਤੇ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ਕਿ, ਇੱਕ ਆਇਤਾਕਾਰ ਅਤੇ ਇੱਕ ਵਰਗਾਕਾਰ ਖੇਤ ਦੇ ਮਾਪ ਦਿੱਤੇ ਗਏ ਹਨ।ਜੈ ਇਹਨਾਂ ਦੇ ਪਰਿਮਾਪ ਸਮਾਨ ਹੋਣ, ਤਾਂ ਕਿਸ ਖੇਤ ਦਾ ਖੇਤਰਫਲ ਜ਼ਿਆਦਾ ਹੋਵੇਗਾ?

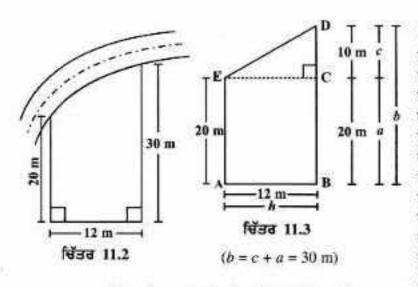
- ਸ੍ਰੀਮਤੀ ਕੋਸ਼ਿਕ ਦੇ ਕੋਲ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਮਾਪ ਵਾਲਾ ਇੱਕ (a) ਵਰਗਾਕਾਰ ਪਲਾਟ ਹੈ। ਉਹ ਪਲਾਟ ਦੇ ਵਿੱਚ ਇੱਕ ਘਰ ਬਣਾਉਣਾ (a) ਚਾਹੁੰਦੀ ਹੈ। ਘਰ ਦੇ ਚਾਰੇ ਪਾਸੇ ਇੱਕ ਬਗੀਚੇ ਨੂੰ ਤਿਆਰ ਕੀਤਾ ਗਿਆ ਹੈ। ₹ 55 ਪ੍ਰਤੀ ਵਰਗ ਮੀਟਰ ਦੀ ਦਰ ਨਾਲ ਇਸ ਬਗੀਚੇ ਨੂੰ ਤਿਆਰ ਕਰਨ ਦਾ ਖਰਚ ਪਤਾ ਕਰੋ।
- 3. ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ, ਇੱਕ ਬਗੀਚੇ ਦਾ ਆਕਾਰ ਮੱਧ




ਵਿੱਚ ਆਇਤਾਕਾਰ ਹੈ ਅਤੇ ਕਿਨਾਰਿਆਂ ਤੋਂ ^{25 m} ਅਰਧ ਚੱਕਰ ਦੇ ਰੂਪ ਵਿੱਚ ਹੈ। ਇਸ ਬਗੀਚੇ ਦਾ ਪਰਿਮਾਪ ਅਤੇ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ। (ਆਇਤ ਦੀ ਲੰਬਾਈ 20 – (3.5 + 3.5) ਮੀਟਰ ਹੈ।)



- 4. ਫਰਸ਼ ਬਣਾਉਣ ਦੇ ਲਈ ਉਪਯੋਗ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਇੱਕ ਟਾਈਲ ਦਾ ਆਕਾਰ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਦਾ ਹੈ ਜਿਸਦਾ ਅਧਾਰ 24 cm ਅਤੇ ਇਸ ਦੀ ਸੰਗਤ ਉਚਾਈ 10 cm ਹੈ। 1080 ਵਰਗ ਮੀਟਰ ਖੇਤਰਫਲ ਦੇ ਇੱਕ ਫਰਸ਼ ਨੂੰ ਢਕਣ ਦੇ ਲਈ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਕਿੰਨੀਆਂ ਟਾਈਲਾਂ ਦੀ ਜਰੂਰਤ ਹੈ ? (ਫਰਸ਼ ਦੀਆਂ ਨੁੱਕਰਾਂ ਨੂੰ ਢਕਣ ਦੇ ਲਈ ਤੁਸੀਂ ਟਾਈਲਾਂ ਨੂੰ ਲੋੜ ਅਨੁਸਾਰ ਕਿਸੇ ਵੀ ਰੂਪ ਵਿੱਚ ਤੋੜ ਸਕਦੇ ਹੋ)
- 5. ਇੱਕ ਕੀੜੀ ਕਿਸੇ ਫਰਸ਼ 'ਤੇ ਖਿਲਰੇ ਹੋਏ ਵੱਖ-ਵੱਖ ਅਕਾਰਾਂ ਦੇ ਭੋਜਨ ਪਦਾਰਥ ਦੇ ਟੁਕੜਿਆਂ ਦੇ ਚਾਰੇ ਪਾਸੇ ਘੁੰਮ ਰਹੀ ਹੈ। ਭੋਜਨ ਪਦਾਰਥ ਦੇ ਕਿਸ ਟੁੱਕੜੇ ਲਈ ਕੀੜੀ ਨੂੰ ਲੰਬਾ ਚੱਕਰ ਲਗਾਉਣਾ ਪਵੇਗਾ ? ਯਾਦ ਰੱਖੋ, ਚੱਕਰ ਦਾ ਘੇਰਾ, ਸੂਤਰ c = 2πc ਇੱਥੇ r ਚੱਕਰ ਦਾ ਅਰਧ ਵਿਆਸ ਹੈ, ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।



180 🔳 ਗਣਿਤ

11.3 ਸਮਲੰਬ ਦਾ ਖੇਤਰਫਲ

ਨਜਮਾ ਦੇ ਕੋਲ ਮੁੱਖ ਮਾਰਗ ਦੇ ਨਜ਼ਦੀਕ ਇੱਕ ਪਲਾਟ ਹੈ (ਚਿੱਤਰ 11.2)। ਉਸਦਾ ਪਲਾਟ ਗੁਆਂਢ ਦੇ ਦੁਸਰੇ ਆਇਤਾਕਾਰ ਪਲਾਟਾਂ ਦੇ ਆਕਾਰ ਦਾ ਨਹੀਂ ਹੈ। ਇਸ ਪਲਾਟ ਵਿੱਚ ਸਨਮੁੱਖ ਭੁਜਾਵਾਂ ਦਾ ਇੱਕ ਹੀ ਜੋੜਾ ਸਮਾਂਤਰ ਹੈ। ਇਸ ਲਈ ਇਹ ਲਗਭਗ ਸਮਲੰਬ ਦੇ ਅਕਾਰ ਦਾ ਹੈ। ਕੀ ਤਸੀਂ ਇਸਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰ ਸਕਦੇ ਹੋ ?

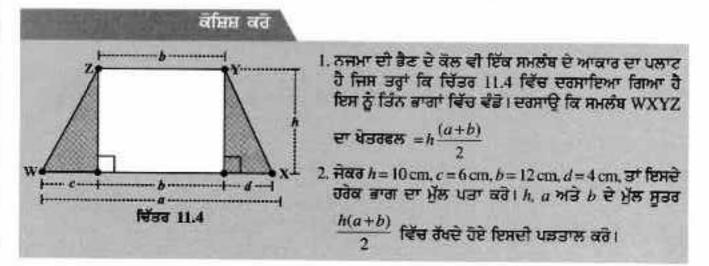
ਆਉ, ਜਿਸ ਤਰਾਂ ਕਿ ਚਿੱਤਰ 11.3 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ਕਿ ਅਸੀਂ ਇਸ ਪਲਾਟ ਦੇ ਸਿਖਰਾਂ ਨੂੰ ਨਾਂ ਦਿੰਦੇ ਹਾਂ।

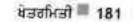
EC II AB, ਖਿੱਚ ਕੇ ਅਸੀਂ ਇਸ ਨੂੰ ਦੋ ਭਾਗਾਂ

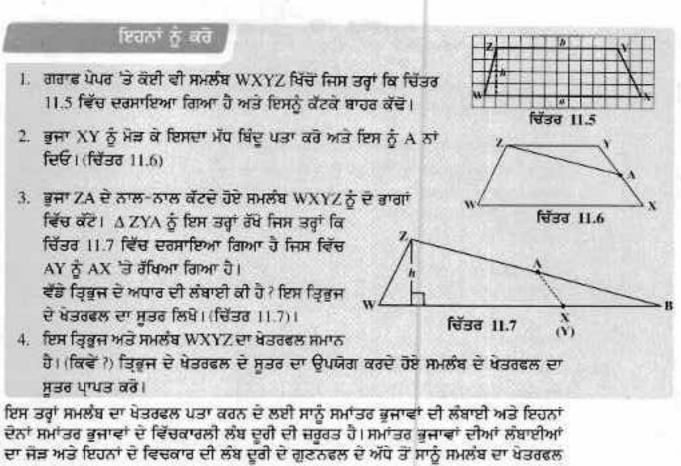
ਾਂ ਦਾ ਜੋੜ

ਵਿੱਚ ਵੰਡ ਸਕਦੇ ਹਾਂ ਜਿਸ ਵਿੱਚ ਇੱਕ ਆਇਤਾਕਾਰ ਦਾ ਅਕਾਰ ਹੈ ਅਤੇ ਦੂਸਰਾ ਤ੍ਰਿਭੂਜ ਦਾ ਅਕਾਰ ਹੈ (ਇਹ C 'ਤੇ ਸਮਕੋਣ ਹੈ) ਜਿਸ ਤਰਾਂ ਕਿ ਚਿੱਤਰ 11.3 ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।)

$$\Delta \text{ ECD ਦਾ ਖੇਤਰਫਲ } = \frac{1}{2}h \times c = \frac{1}{2} \times 12 \times 10 = 60 \text{ m}^2.$$

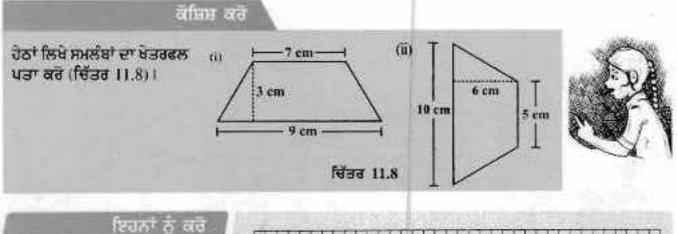

ਆਇਤ ABCE ਦਾ ਖੇਤਰਫਲ= h × a = 12 × 20 = 240 m². ਸਮਲੰਬ ਚਤੁਰਭੁਜ ABDE ਦਾ ਖੇਤਰਫਲ = ∆ ECD ਦਾ ਖੇਤਰਫਲ + ਆਇਤ ABCE ਦਾ ਖੇਤਰਫਲ = 6

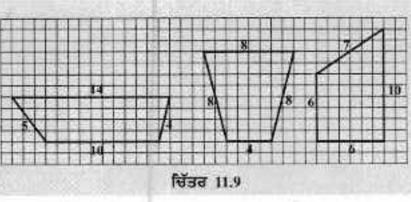

$$0 + 240 = 300 \text{ m}^2$$


ਅਸੀਂ ਇਹਨਾਂ ਦੋਨਾਂ ਖੇਤਰਫਲਾਂ ਨੂੰ ਸੰਯੁਕਤ ਰੂਪ ਵਿੱਚ ਲਿਖਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ

ਸਮਲੰਬ ABDE ਦਾ ਖੇਤਰਫਲ
$$= \frac{1}{2}h \times c + h \times a = h\left(\frac{c}{2} + a\right)$$

 $= h\left(\frac{c+2a}{2}\right) = h\left(\frac{c+a+a}{2}\right)$
 $= h\frac{(b+a)}{2} = \Theta$ ਚਾਈ $\times \frac{$ ਸਮਾਂਤਰ ਭੁਜਾਵ


ਇਸ ਵਿਅੰਜਕ ਵਿੱਚ h, b ਅਤੇ a ਦੇ ਮੁੱਲ ਰੱਖਣ 'ਤੇ ਅਸੀ' h ${(b+a)\over 2}$ = 300 m² ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ।



ਪਾਪਤ ਹੁੰਦਾ ਹੈ।

ਜਮਾਤ VII ਵਿੱਚ ਅਸੀਂ ਵੱਖ-ਵੱਖ ਪਰਿਮਾਪਾਂ ਪਰ ਸਮਾਨ ਖੇਤਰਫਲਾਂ ਵਾਲੇ ਸਮਾਂਤਰ ਚਤੁਰਕੁਜਾਂ ਦੀ ਰਚਨਾ ਕਰਨਾ ਸਿੱਖੀ ਹੈ। ਕੀ ਇਹ ਸਮਲੰਬਾਂ ਦੇ ਲਈ ਵੀ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ? ਪੜਤਾਲ ਕਰੋ ਕੀ ਵੱਖ-ਵੱਖ ਪਰਿਮਾਪਾਂ ਵਾਲੇ ਹੇਠਾਂ ਲਿਖੇ ਸਮਲੰਬ ਦੇ ਖੇਤਰਫਲ ਸਮਾਨ ਹਨ : (ਚਿੱਤਰ 11.9)

182 🔳 ਗਣਿਤ

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਸਾਰੇ ਸਰਬੰਗਸਮ ਚਿੱਤਰਾਂ ਖੇਤਰਫਲ ਵਿੱਚ ਸਮਾਨ ਹੁੰਦੇ ਹਨ। ਕੀ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਸਮਾਨ ਖੇਤਰਫਲ ਵਾਲੇ ਚਿੱਤਰ ਸਰਬੰਗਸਮ ਹੀ ਹੁੰਦੇ ਹਨ? ਕੀ ਇਹ ਚਿੱਤਰ ਸਰਬੰਗਸਮ ਹਨ?

ਇੱਕ ਵਰਗਕਾਰ ਸ਼ੀਟ ਤੇ ਘੱਟ ਤੋਂ ਘੱਟ ਤਿੰਨ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਸਮਲੰਬ ਖਿੱਚੋ ਜਿਸਦੇ ਪਰਿਮਾਪ ਸਮਾਨ ਹੋਣ ਪਰ ਖੇਤਰਫਲ ਵੱਖ-ਵੱਖ ਹੋਣ।

11.4 ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਦਾ ਖੇਤਰਫਲ

ਕਿਸੇ ਆਮ ਚਤੁਰਭੁਜ ਦਾ ਇੱਕ ਵਿਕਰਨ ਖਿੱਚ ਕੇ ਉਸ ਨੂੰ ਦੋ ਤ੍ਰਿਭੁਜਾਂ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ 'ਵੰਡਣ ਦੀ ਕਿਰਿਆ' ਆਮ ਚਤੁਰਭੁਜ ਦੇ ਲਈ ਸੂਤਰ ਪਤਾ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦੀ ਹੈ। ਦਿੱਤੇ ਹੋਏ ਚਿੱਤਰ ਦਾ ਅਧਿਐਨ ਕਰੋ (ਚਿੱਤਰ 11.10)।

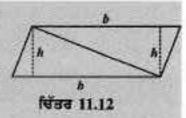
ਚਤਰਭਜ ABCD ਖੇਤਰਫਲ

= (Δ ABC ਦਾ ਖੇਤਰਫਲ) + (Δ ADC ਦਾ ਖੇਤਰਫਲ)

$$\int_{A}^{B} \frac{h_{1}}{h_{2}} \int_{D}^{C} = (\frac{1}{2} \operatorname{AC} \times h_{1}) + (\frac{1}{2} \operatorname{AC} \times h_{2}) = \frac{1}{2} \operatorname{AC} \times (h_{1} + h_{2})$$

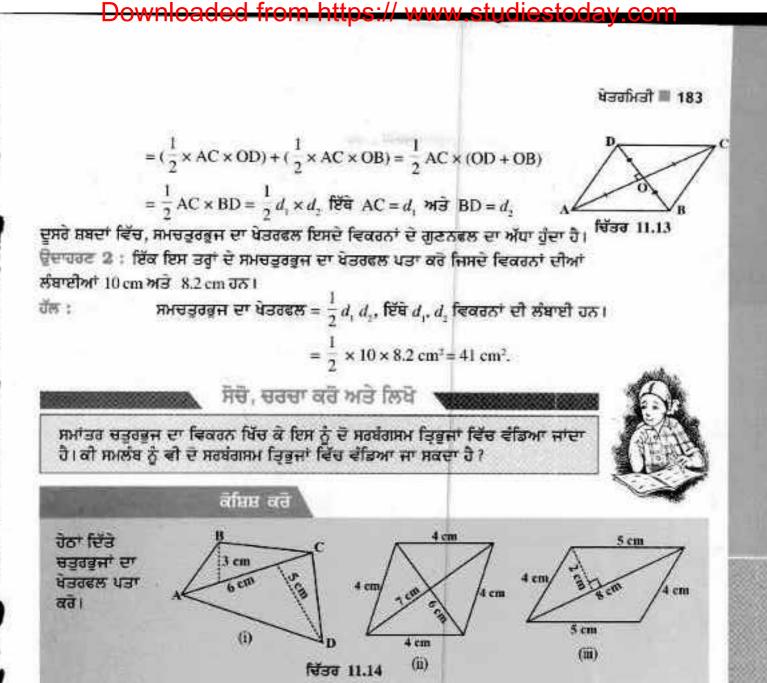
ਚਿੱਤਰ 11.10

= $\frac{1}{2} d(h_1 + h_2)$ ਇੱਥੇ AC ਦੀ ਲੰਬਾਈ d ਹੈ।

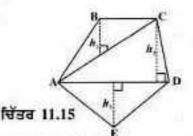

ਉਦਾਹਰਣ 1 : ਚਿੱਤਰ 11.11 ਵਿੱਚ ਦਰਸਾਏ ਗਏ ਚਤੁਰਭੁਜ PQRS ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ। ਹੱਲ : ਇੱਥੇ, d = 5.5 cm, h, = 2.5 cm, h, = 1.5 cm,

ਖੇਤਰਫਲ = $\frac{1}{2} d(h_1 + h_2) = \frac{1}{2} \times 5.5 \times (2.5 + 1.5) \text{ cm}^2$ = $\frac{1}{2} \times 5.5 \times 4 \text{ cm}^2 = 11 \text{ cm}^2$

ਕੋਸ਼ਿਸ਼ ਕਰੋ


ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਵੀ ਇੱਕ ਚਤੁਰਭੁਜ ਹੈ। ਆਉ, ਇਸ ਨੂੰ ਵੀ ਦੋ ਤ੍ਰਿਭੁਜਾਂ ਵਿੱਚ ਵੰਡਦੇ ਹਾਂ ਅਤੇ ਇਹਨਾਂ ਦੋਨਾਂ ਤ੍ਰਿਭੁਜਾਂ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਦੇ ਹਾਂ।ਇਸ ਤਰ੍ਹਾਂ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਦਾ ਖੇਤਰਫਲ ਵੀ ਪਤਾ ਕਰਦੇ ਹਾਂ। ਕੀ ਇਹ ਸੂਤਰ ਤੁਹਾਨੂੰ ਪਹਿਲਾਂ ਪਤਾ ਸੂਤਰ ਨਾਲ ਮੇਲ ਖਾਂਦਾ ਹੈ? (ਚਿੱਤਰ 11.12)

11.4.1 ਵਿਸ਼ੇਸ਼ ਚਰੁਰਭੂਜਾਂ ਦਾ ਖੇਤਰਫਲ


ਤ੍ਰਿਭੁਜਾਂ ਵਿੱਚ ਵੰਡ ਕਰਨ ਵਾਲੀ ਇਸ ਵਿਧੀ ਨੂੰ ਅਸੀਂ ਸਮਚਤੁਰਭੁਜ ਦੇ ਖੇਤਰਫਲ ਦਾ ਸੂਤਰ ਪਤਾ ਕਰਨ ਵਿੱਚ ਉਪਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ।ਚਿੱਤਰ 11.13 ਵਿੱਚ ABCD ਇੱਕ ਸਮਚਤੁਰਭੁਜ ਹੈ।ਇਸ ਲਈ, ਇਸਦੇ ਵਿਕਰਨ ਇੱਕ ਦੂਸਰੇ ਦੇ ਲੰਬ ਸਮਦੁਭਾਜਿਕ ਹੈ।

ਸਮਚਤੁਰਭੁਜ ABCD ਦਾ ਖੇਤਰਫਲ = (Δ ACD ਦਾ ਖੇਤਰਫਲ) + (Δ ABC ਦਾ ਖੇਤਰਫਲ)

11.5 ਬਹੁਭਜ ਦਾ ਖੇਤਰਵਲ

ਅਸੀਂ ਇੱਕ ਚਤੁਰਭੁਜ ਨੂੰ ਤ੍ਰਿਭੁਜਾਂ ਵਿੱਚ ਵੰਡਦੇ ਹੋਏ ਇਸਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਵਿਧੀ ਬਹੁਭੁਜ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਉਪਯੋਗ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਇੱਕ ਪੰਜਭੁਜ ਦੇ ਲਈ ਹੇਠਾਂ ਲਿਖਿਆਂ 'ਤੇ ਵਿਚਾਰ ਕਰੋ (ਚਿੱਤਰ 11.15, 11.16)।

карана каран

ਵਿਕਰਨ AC ਅਤੇ AD ਦੀ ਰਚਨਾ ਕਰਦੇ ਹੋਏ ਪੰਜਭੁਜ ABCDE ਨੂੰ ਤਿੰਨ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ। ਇਸ ਲਈ ABCDE ਦਾ ਖੇਤਰਫਲ = ΔABC ਦਾ ਖੇਤਰਫਲ + ΔADC ਦਾ ਖੇਤਰਫਲ + ΔAED ਦਾ ਖੇਤਰਫਲ।

ਇੱਕ ਵਿਕਰਨ AD ਅਤੇ ਇਸ 'ਤੇ ਦੋ ਲੱਬ BF ਅਤੇ CG ਦੀ ਰਚਨਾ ਕਰਦੇ ਹੋਏ ਪੰਜਭੁਜ ABCDE ਨੂੰ ਚਾਰ ਭਾਗਾਂ ਵਿੱਚ ਵੱਡਿਆ ਗਿਆ ਹੈ। ਇਸ ਲਈ ABCDE ਦਾ ਖੇਤਰਫਲ = ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ AFB ਦਾ ਖੇਤਰਫਲ + ਸਮਲੰਬ BFGC ਦਾ ਖੇਤਰਫਲ + ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ CGD ਦਾ ਖੇਤਰਫਲ + Δ AED ਦਾ ਖੇਤਰਫਲ (ਸਮਲੰਬ BFGC ਦੀਆਂ ਸਮਾਂਤਰ ਭੁਜਾਵਾਂ ਨੂੰ ਪਹਿਚਾਣੋਂ)

184 🔳 ਗਣਿਤ

ਕੋਸ਼ਿਸ਼ ਕਰੋ (i) ਹੇਠਾਂ ਦਿੱਤੇ ਬਹੁਭਜਾਂ (ਚਿੱਤਰ 11.17) ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਇਸ ਨੂੰ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ (ਤਿਭਜਾਂ ਅਤੇ ਸਮਲੰਬਾਂ) ਵਿੱਚ ਵੰਡੇ। ਚਿੱਤਰ 11.17 ਬਹੁਭਜ MNOPQR ਦਾ ਇੱਕ ਵਿਕਰਨ NO ਹੈ। ਬਹਭਜ EFGHI ਦਾ ਇੱਕ ਵਿਕਰਨ FI ਹੈ। (ii) ਬਹੁਭਜ ABCDE ਨੂੰ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਚਿੱਤਰ 11.18 ਵਿੱਚ ਦਰਸ਼ਾਇਆ ਗਿਆ ਹੈ ਜੋ AD = 8 cm, AH = 6 cm, AG = 4 cm, AF = 3 cm ਅਤ ਲੱਬ BF = 2 cm, CH = 3 cm, EG = 2.5 cm ਹੋਵੇ ਤਾਂ ਇਸਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੇ। ਬਹੁਭਜ ABCDE ਦਾ ਖੇਤਰਫਲ = ∆ AFB ਦਾ ਖੇਤਰਫਲ + $\Delta \text{ AFB ਦਾ ਖੇਤਰਵਲ } = \frac{1}{2} \times \text{ AF} \times \text{BF} = \frac{1}{2} \times 3 \times 2 = \dots$ ਸਮਲੰਬ FBCH ਦਾ ਖੇਤਰਫਲ = $FH \times \frac{(BF+CH)}{2}$ ਚਿੱਤਰ 11.18 $= 3 \times \frac{(2+3)}{2}$ [FH = AH - AF] $\Delta CHD ਦਾ ਖੇਤਰਫਲ = \frac{1}{2} \times HD \times CH =; \Delta ADE ਦਾ ਖੇਤਰਫਲ = \frac{1}{2} \times AD \times GE =$ ਇਸ ਲਈ ਬਹੁਭੁਜ ABCDE ਦਾ ਖੇਤਰਫਲ = (iii) Hard MP = 9 cm, MD = 7 cm, MC = 6 cm, MB=4 cm, MA=2 cm ਹੋਵੇ ਤਾਂ ਬਹੁਭਜ MNOPOR (ਚਿੱਤਰ 11.19) ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ। NA, OC, OD ਅਤੇ RB ਵਿਕਰਨ MP 'ਤੇ ਪਿੱਚੇ ਗਏ ਲੰਬ ਹਨ। ਚਿੱਤਰ 11.19 ਉਦਾਹਰਣ 3 : ਸਮਲੰਬ ਦੇ ਆਕਾਰ ਦੇ ਇੱਕ ਖੇਤ ਦਾ ਖੇਤਰਫਲ 480 m² ਹੈ; ਦੋ ਸਮਾਂਤਰ ਭੂਜਾਵਾਂ ਦੇ ਵਿੱਚ ਦੀ ਦੂਰੀ 15 m ਹੈ ਅਤੇ ਉਸ ਵਿੱਚ ਇੱਕ ਸਮਾਂਤਰ ਭੂਜਾ ਦੀ ਲੰਬਾਈ 20 m ਹੈ। ਦੂਸਰੀ ਸਮਾਂਤਰ

> ਹੱਲ : ਸਮਲੰਬ ਦੀ ਸਮਾਂਤਰ ਭੂਜਾਵਾਂ ਵਿੱਚੋਂ ਇੱਕ ਦੀ ਲੰਬਾਈ a = 20 m, ਮੌਨ ਲਵੇਂ ਦੂਸਰੀ ਸਮਾਂਤਰ ਭੂਜਾ b ਹੈ, ਉਚਾਈ h = 15 m

ਸਮਲੰਬ ਦਾ ਦਿੱਤਾ ਹੋਇਆ ਖੇਤਰਫਲ = 480 m³

ਭਜਾ ਦੀ ਲੰਬਾਈ ਪਤਾ ਕਰੋ।

ਸਮਲੰਬ ਦਾ ਖੇਤਰਫਲ =
$$rac{1}{2}h\left(a+b
ight)$$

ਖੇਤਰਮਿਤੀ 🖩 185

4 cm

ਚਿੱਤਰ 11.22

ਇਸ ਲਈ
$$480 = \frac{1}{2} \times 15 \times (20 + b)$$
 ਜਿਵੇਂ ਕਿ $\frac{480 \times 2}{15} = 20 + b$

 $\vec{n}^{\dagger} = 64 = 20 + b$ $\vec{n}^{\dagger} = b = 44 \text{ m}$

ਇਸ ਤਰ੍ਹਾਂ ਸਮਲੰਬ ਦੀ ਦੂਸਰੀ ਸਮਾਂਤਰ ਭੁਜਾ 44 m ਹੈ।

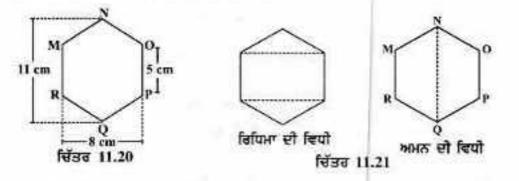
ਉਦਾਹਰਣ 4 : ਇੱਕ ਸਮਚਤੁਰਭੁਜ ਦਾ ਖੇਤਰਫਲ 240 cm² ਹੈ ਅਤੇ ਵਿਕਰਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਦੀ ਲੰਬਾਈ 16 cm ਹੈ। ਦੂਸਰਾ ਵਿਕਰਨ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਮੰਨ ਲਵੇ ਇੱਕ ਵਿਕਰਨ ਦੀ ਲੰਬਾਈ d₁ = 16 cm

ਅਤੇ

ਦੂਸਰੇ ਵਿਕਰਨ ਦੀ ਲੰਬਾਈ = d

ਸਮਚਤੁਰਭੁਜ ਦਾ ਖੇਤਰਫਲ = $\frac{1}{2} d_1 \cdot d_2 = 240$


ਇਸ ਲਈ,

 $\frac{1}{2} \frac{16}{d_2} = 240$ $d_2 = 30 \text{ cm}$

ਇਸ ਤਰ੍ਹਾਂ,

ਇਸ ਤਰ੍ਹਾਂ ਦੂਸਰੇ ਵਿਕਰਨ ਦੀ ਲੰਬਾਈ 30 cm ਹੈ।

ਉਦਾਹਰਣ 5 : MNOPQR (ਚਿੱਤਰ 11.20) ਇੱਕ ਛੇਭੂਜ ਹੈ ਜਿਸਦੀ ਹਰੇਕ ਭੂਜਾ 5 cm ਹੈ। ਅਮਨ ਅਤੇ ਰਿਧਿਮਾ ਨੇ ਇਸ ਨੂੰ ਵੱਖ-ਵੱਖ ਤਰ੍ਹਾਂ ਨਾਲ ਵੰਡਿਆ (ਚਿੱਤਰ 11.21)। ਦੋਨਾਂ ਤਰ੍ਹਾਂ ਦੀ ਵੰਡ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹੋਏ ਇਸ ਛੇਭੂਜ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ।

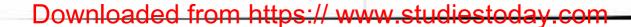
ਹੱਲ : ਅਮਨ ਦੀ ਵਿਧੀ :

ਚਿੱਤਰ 11.23

M

3 cm

3 cm

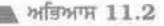

5 cm

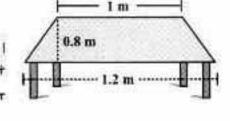
ਕਿਉਂਕਿ ਇਹ ਇੱਕ ਛੇਭੁਜ ਹੈ ਇਸ ਲਈ NQ ਇਸ ਛੇਭੁਜ ਨੂੰ ਦੋ ਸਰਬੰਗਸਮ ਸਮਲੰਬਾਂ ਵਿੱਚ ਵੰਡਦਾ ਹੈ। ਤਸੀਂ ਇਸ ਦੀ ਕਾਗਜ਼ ਮੋੜਨ ਦੀ ਵਿਧੀ ਨਾਲ ਪੜਤਾਲ ਕਰ ਸਕਦੇ ਹੋ।(ਚਿੱਤਰ 11.22)

ਹੁਣ ਸਮਲੰਬ MNQR ਦਾ ਖੇਤਰਫਲ = $4 \times \frac{(11+5)}{2} = 2 \times 16 = 32$ cm²

ਇਸ ਲਈ ਛੇਕ੍ਰਜ MNOPQR ਦਾ ਖੇਤਰਫਲ = 2 × 32 = 64 cm² ਰਿਧਿਆ ਦੀ ਵਿਧੀ :

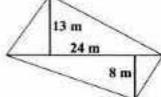
∆ MNO ਅਤੇ ∆ RPQ ਸਰਬੰਗਸਮ ਤ੍ਰਿਭੂਜ ਹਨ ਜਿਸ ਵਿੱਚ ਹਰੇਕ ਦਾ ਸਿਖਰਲੰਬ 3 cm ਹੈ (ਚਿੱਤਰ 11.23) (1) ਤੁਸੀਂ ਇਹਨਾਂ ਤ੍ਰਿਭੂਜਾਂ ਨੂੰ ਕੱਟਕੇ ਅਤੇ ਇੱਕ-ਦੂਸਰੇ ਦੇ ਉੱਪਰ ਰੱਖ ਕੇ ਇਸਦੀ ਪੜਤਾਲ ਕਰ ਸਕਦੇ ਹੋ।



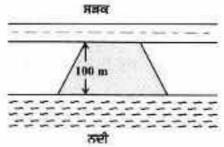


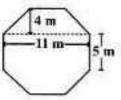
 Δ MNO ਦਾ ਖੇਤਰਫਲ = $\frac{1}{2} \times 8 \times 3 = 12 \text{ cm}^2 = \Delta \text{ RPQ}$ ਦਾ ਖੇਤਰਫਲ

ਆਇਤ MOPR ਦਾ ਖੇਤਰਫਲ = 8 × 5 = 40 cm². ਹੁਣ, ਛੇਭੂਜ MNOPQR ਦਾ ਖੇਤਰਫਲ = 40 + 12 + 12 = 64 cm²



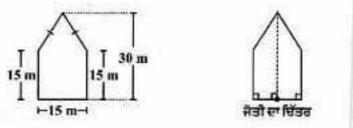
 ਇੱਕ ਮੇਜ਼ ਦੇ ਉਪਰੀ ਸਤ੍ਹਾ ਦਾ ਆਕਾਰ ਸਮਲੰਬ ਵਰਗਾ ਹੈ। ਜੇਕਰ ਸਮਾਂਤਰ ਭੁਜਾਵਾਂ 1 m ਅਤੇ 1.2 m ਹੈ ਅਤੇ ਇਹਨਾਂ ਸਮਾਂਤਰ ਭੁਜਾਵਾਂ ਦੇ ਵਿੱਚ ਦੂਰੀ 0.8 m ਹੈ, ਤਾਂ ਇਸਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ।

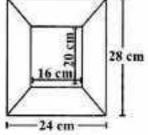



 ਇੱਕ ਸਮਲੰਬ ਦਾ ਖੇਤਰਫਲ 34 cm² ਹੈ ਅਤੇ ਇਸਦੀ ਉਚਾਈ 4 cm ਹੈ। ਸਮਾਂਤਰ ਭੁਜਾਵਾਂ ਵਿੱਚੋਂ ਇੱਕ ਦੀ ਲੰਬਾਈ 10 cm ਹੈ। ਦੁਸਰੀ ਸਮਾਂਤਰ ਭੁਜਾ ਦੀ ਲੰਬਾਈ ਪਤਾ ਕਰੋ।

- 3. ਇੱਕ ਸਮਲੰਬ ਦੇ ਆਕਾਰ ਦੇ ਖੇਤ ABCD ਦੀ ਵਾੜ ਦੀ ਲੰਬਾਈ 120 m ਹੈ। ਜੇ BC = 48 m, CD = 17 m ਅਤੇ AD = 40 m ਹਨ, ਤਾਂ ਇਸ ਖੇਤ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ। ਭਜਾ AB ਸਮਾਂਤਰ ਭਜਾਵਾਂ AD ਅਤੇ BC 'ਤੇ ਲੰਬ ਹੈ।
- 4. ਇੱਕ ਚਤੁਰਭੁਜ ਆਕਾਰ ਦੇ ਖੇਤ ਦਾ ਵਿਕਰਨ 24 m ਹੈ ਅਤੇ ਬਾਕੀ ਸਨਮੁੱਖ ਸਿਖਰਾਂ ਤੋਂ ਇਸ ਦੇ ਵਿਕਰਨ 'ਤੇ ਖਿੱਚੇ ਗਏ ਲੰਬ 8 m ਅਤੇ 13 m ਹਨ। ਖੇਤ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ।
- ਕਿਸੇ ਸਮਚਤੁਰਭੁਜ ਦੇ ਵਿਕਰਨ 7.5 cm ਅਤੇ 12 cm ਹੈ। ਇਸਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ।

- ਇੱਕ ਸਮਚਤੁਰਭੁਜ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ ਜਿਸਦੀ ਭੁਜਾ 6 cm ਅਤੇ ਸਿਖਰਲੰਬ 4 cm ਹੈ। ਜੇ ਇੱਕ ਵਿਕਰਨ ਦੀ ਲੰਬਾਈ 8 cm ਹੈ ਤਾਂ ਦੂਸਰੇ ਵਿਕਰਨ ਦੀ ਲੰਬਾਈ ਪਤਾ ਕਰੋ।
- 7. ਕਿਸੇ ਭਵਨ ਦੇ ਫਰਸ਼ ਤੇ ਸਮਚਤੂਰਭੁਜ ਦੇ ਅਕਾਰ ਦੀਆਂ 3000 ਟਾਈਲਾਂ ਹਨ ਅਤੇ ਇਸ ਵਿੱਚ ਹਰੇਕ ਵਿਕਰਨ 45 cm ਅਤੇ 30 cm ਲੰਬਾਈ ਦੇ ਹਨ। 4 ਰੁਪਏ ਪ੍ਰਤੀ ਵਰਗ ਮੀਟਰ ਦੀ ਦਰ ਨਾਲ ਇਸ ਫਰਸ਼ ਨੂੰ ਪਾਲਿਸ਼ ਕਰਨ ਦਾ ਖਰਚ ਪਤਾ ਕਰੋ ?
- 8. ਮੋਹਨ ਇੱਕ ਸਮਲੰਬ ਦੇ ਆਕਾਰ ਦਾ ਖੇਤ ਖਰੀਦਣਾ ਚਾਹੁੰਦਾ ਹੈ। ਇਸ ਖੇਤ ਦੀ ਨਦੀ ਦੇ ਨਾਲ ਵਾਲੀ ਭੂਜਾ ਸੜਕ ਦੇ ਨਾਲ ਵਾਲੀ ਭੁਜਾ ਦੇ ਸਮਾਂਤਰ ਹੈ ਅਤੇ ਲੰਬਾਈ ਵਿੱਚ ਦੁੱਗਣੀ ਹੈ। ਜੇ ਇਸ ਖੇਤ ਦਾ ਖੇਤਰਫਲ 10,500 m² ਹੈ ਅਤੇ ਦੋ ਸਮਾਂਤਰ ਭੁਜਾਵਾਂ ਦੇ ਵਿਚਕਾਰਲੀ ਲੰਬ ਦੂਰੀ 100 m ਹੈ ਤਾਂ ਨਦੀ ਦੇ ਨਾਲ ਵਾਲੀ ਭੁਜਾ ਦੀ ਲੰਬਾਈ ਪਤਾ ਕਰੋ।

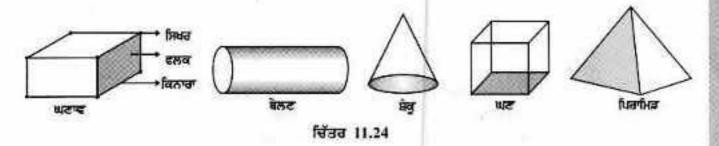



9. ਇੱਕ ਉੱਪਰ ਉੱਠੇ ਹੋਏ ਚਬੂਤਰੇ ਦੀ ਉਪਰਲੀ ਸਤ੍ਹਾ ਅੱਠਭੂਜੀ ਆਕਾਰ ਦੀ ਹੈ? ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਅੱਠਭੂਜੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ।

ਖੇਤਰਮਿਤੀ 🔳 187

10. ਇੱਕ ਪੰਜਭੂਜ ਆਕਾਰ ਦਾ ਬਗੀਚਾ ਹੈ ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸ਼ਾਇਆ ਗਿਆ ਹੈ। ਇਸਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਜੋੜੀ ਅਤੇ ਕਵਿਤਾ ਨੇ ਇਸ ਨੂੰ ਦੋ ਵੱਖ-ਵੱਖ ਤਰੀਕਿਆਂ ਨਾਲ ਵੰਡਿਆ। ਦੋਨੋਂ ਤਰੀਕਿਆਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹੋਏ ਇਸ ਬਗੀਚੇ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ। ਕੀ ਤੁਸੀਂ ਇਸਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨ ਦੀ ਕੋਈ ਹੋਰ ਵਿਧੀ ਦੱਸ ਸਕਦੇ ਹੋ?

 ਨਾਲ ਦਿੱਤੇ ਫੋਟੋ ਫਰੇਮ ਦੇ ਚਿੱਤਰ ਦਾ ਬਾਹਰੀ ਅਤੇ ਅੰਦਰੂਨੀ ਮਾਪ 24 cm × 28 cm ਅਤੇ 16 cm × 20 cm ਹੈ। ਜੇਕਰ ਫਰੇਮ ਦੇ ਹਰੇਕ ਹਿੱਸੇ ਦੀ ਚੌੜਾਈ ਸਮਾਨ ਹੈ ਤਾਂ ਹਰੇਕ ਹਿੱਸੇ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ।

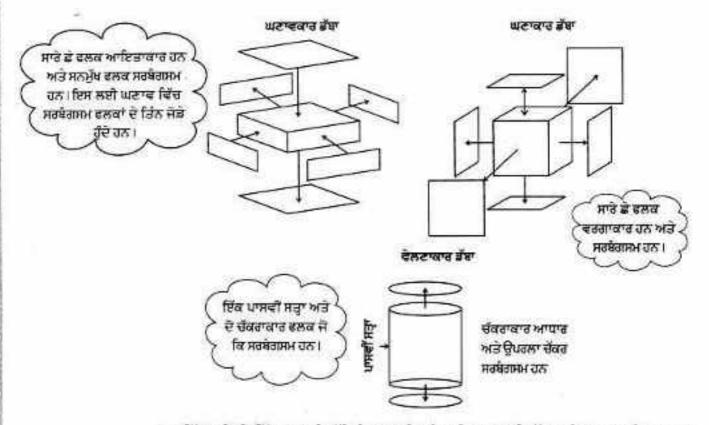


ਕਵਿਤਾ ਦਾ ਚਿੱਤਰ

11.6 ਠੱਸ ਆਕਾਰ

ਤੁਸੀਂ ਆਪਣੀ ਪਿਛਲੀਆਂ ਜਮਾਤਾਂ ਵਿੱਚ ਅਧਿਐਨ ਕਰ ਚੁੱਕੇ ਹੋ ਕਿ ਦੋ ਪਸਾਰੀ ਚਿੱਤਰਾਂ ਨੂੰ ਤਿੰਨ ਪਸਾਰੀ ਆਕਾਰਾਂ ਦੇ ਫਲਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪਹਿਚਾਣਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਹੁਣ ਤੱਕ ਅਸੀਂ ਜਿਨ੍ਹਾਂ ਠੋਸਾਂ ਦਾ ਅਧਿਐਨ ਕੀਤਾ ਹੈ ਉਹਨਾਂ 'ਤੇ ਧਿਆਨ ਦਿਉ (ਚਿੱਤਰ 11.24)।

ਧਿਆਨ ਦਿਓ ਕਿ ਕੁੱਝ ਆਕਾਰਾਂ ਵਿੱਚ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਜ਼ਿਆਦਾ ਸਮਰੂਪ (ਸਰਬੰਗਸਮ) ਫਲਕ ਹਨ। ਉਹਨਾਂ ਨੂੰ ਨਾਂ ਦਿਓ। ਕਿਹੜੇ ਠੋਸਾਂ ਵਿੱਚ ਸਾਰੇ ਫਲਕ ਸਰਬੰਗਸਮ ਹਨ?

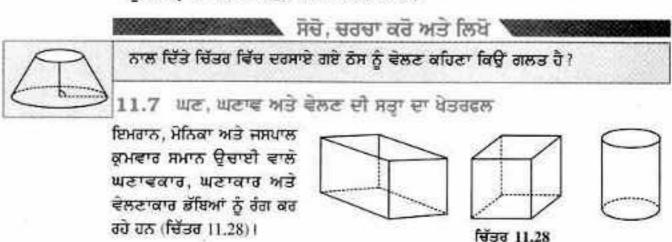


ਇਹਨਾਂ ਨੂੰ ਕਰੋ

ਸਾਬਣ, ਖਿਡੌਣੇ, ਮੰਜਨ, ਬਿਸਕੁਟ ਆਦਿ ਆਮ ਤੌਰ ਤੇ ਘਣਾਵਕਾਰ, ਘਣਾਕਾਰ ਅਤੇ ਵੇਲਣਾਕਾਰ ਡੱਬਿਆਂ ਵਿੱਚ ਬੰਦ ਆਉਂਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਡੱਬਿਆਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।(ਚਿੱਤਰ 11.25)

188 🔳 ਗਣਿਤ

ਹੁਣ ਇੱਕ ਸਮੇਂ ਤੇ ਇੱਕੋ ਤਰ੍ਹਾਂ ਦੇ ਡੱਬੇ ਨੂੰ ਲਵੇ। ਇਸਦੇ ਸਾਰੇ ਫਲਕਾਂ ਨੂੰ ਕੱਟੋ। ਹਰੇਕ ਫਲਕ ਦੇ ਆਕਾਰ ਨੂੰ ਦੇਖੋ ਅਤੇ ਸਮਾਨ ਫਲਕਾਂ ਨੂੰ ਇੱਕ-ਦੂਸਰੇ ਦੇ ਉੱਪਰ ਰੱਖ ਕੇ ਡੱਬੇ ਵਿੱਚ ਫਲਕਾਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।


ਆਪਣੇ ਨਿਰੀਖਣਾਂ ਨੂੰ ਲਿਖੇ।

ਚਿੱਤਰ 11.26 (ਇਹ ਇੱਕ ਲੇਖ ਚੱਕਰੀ ਵੇਲਣ ਹੈ II

ਕੀ ਤੁਸੀਂ ਹੇਠਾਂ ਲਿਖੇ 'ਤੇ ਧਿਆਨ ਦਿੱਤਾ-ਵੇਲਣ ਦੇ ਸਰਬੰਗਸਮ ਚੱਕਰਾਕਾਰ ਫਲਕ ਇੱਕ—ਦੂਸਰੇ ਦੇ ਸਮਾਂਤਰ ਹਨ (ਚਿੱਤਰ 11.26)। ਧਿਆਨ ਦਿਓ ਕਿ ਚੱਕਰਾਕਾਰ ਫਲਕਾਂ ਦੇ ਮੱਧ ਬਿੰਦੂਆਂ ਨੂੰ ਮਿਲਾਉਣ ਵਾਲਾ ਰੇਖਾਖੰਡ, ਆਧਾਰ 'ਤੇ ਲੰਬ ਹੈ। ਇਸ ਵੇਲਣ ਨੂੰ ਲੰਬ ਚੱਕਰੀ ਵੇਲਣ ਆਖਦੇ ਹਨ। ਅਸੀਂ ਕੇਵਲ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਵੇਲਣਾਂ ਦਾ ਹੀ ਅਧਿਐਨ ਕਰਾਂਗੇਂ, ਭਾਵੇਂ ਦੂਸਰੇ ਤਰ੍ਹਾਂ ਦੇ ਵੇਲਣ ਵੀ ਹੁੰਦੇ ਹਨ। (ਚਿੱਤਰ 11.27)।

ਚਿੱਤਰ 11.27 (ਇਹ ਇੱਕ ਲੇਬ ਚੈਕਰੀ ਵੇਲਣ ਨਹੀਂ ਹੈ)

ਖੇਤਰਮਿਤੀ 🔳 189

ਉਹ ਇਹ ਪਤਾ ਕਰਨ ਦਾ ਯਤਨ ਕਰਦੇ ਹਨ ਕਿ ਕਿਸਨੇ ਜ਼ਿਆਦਾ ਖੇਤਰਫਲ ਨੂੰ ਰੰਗ ਕੀਤਾ ਹੈ। ਹਰੀ ਉਹਨਾਂ ਨੂੰ ਸਲਾਹ ਦਿੰਦਾ ਹੈ ਕਿ ਹਰੇਕ ਡੱਬੇ ਦੀ ਸਤਾ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨਾ ਉਹਨਾਂ ਦੀ ਮਦਦ वतेता ।

ਕੁੱਲ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਹਰੇਕ ਫਲਕ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ ਅਤੇ ਇਹਨਾਂ ਦਾ ਜੋੜ ਕਰੋ। ਕਿਸੇ ਠੋਸ ਦੀ ਸਤਾ ਦਾ ਖੇਤਰਫਲ ਉਸਦੇ ਫਲਕਾਂ ਦੇ ਖੇਤਰਫਲਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜ਼ਿਆਦਾ ਸਪੱਸ਼ਟ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ ਹਰੇਕ ਆਕਾਰ ਨੂੰ ਇੱਕ-

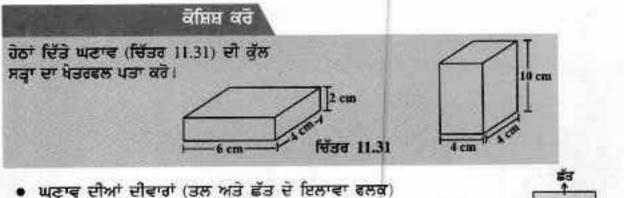
ਇੱਕ ਕਰਕੇ ਲੈਂਦੇ ਹਾਂ।

11.7.1 ਘਣਾਵ

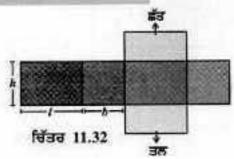
ਮੰਨ ਲਵੋ, ਤੁਸੀਂ ਇੱਕ ਘਣਾਵਕਾਰ ਡੱਬੇ (ਚਿੱਤਰ 11.29) ਨੇ ਕੱਟ ਕੇ ਖੋਲ ਕੇ ਸਮਤਲ ਫੈਲਾ ਦਿੰਦੇ ਹੋ (ਚਿੱਤਰ 11.30), ਸਾਨੂੰ ਇੱਕ ਜਾਲ (ਨੈੱਟ) ਪਾਪਤ ਹੱਦਾ ਹੈ।

ਹਰੇਕ ਭੂਜਾ ਦਾ ਮਾਪ ਲਿਖੋ। ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਘਣਾਵ ਵਿੱਚ ਸਰਬੇਗਸਮ ਫਲਕਾਂ ਦੇ ਤਿੰਨ ਜੋੜੇ ਹੁੰਦੇ ਹਨ। ਹਰੇਕ ਫਲਕ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਤਸੀਂ ਕਿਹੜੇ ਵਿਅੰਜਕ (ਸਤਰ) ਦਾ ਉਪਯੋਗ ਕਰ ਸਕਦੇ ਹੋ ?

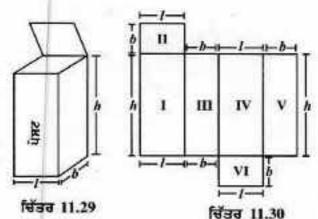
ਡੱਬੇ ਦੇ ਸਾਰੇ ਫਲਕਾਂ ਦਾ ਕੁੱਲ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ।


ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਘਣਾਵ ਦੀ ਕੱਲ ਸਤਾ ਦਾ ਖੇਤਰਫਲ = ਖੇਤਰਫਲ I + ਖੇਤਰਫਲ II + ਖੇਤਰਫਲ III + ਖੇਤਰਫਲ IV + ਖੇਤਰਫਲ V + ਖੇਤਰਫਲ VI

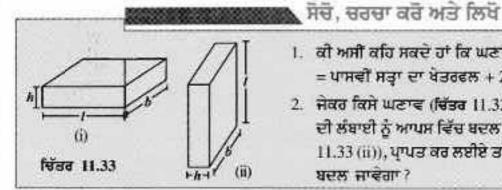
 $=h \times l + b \times l + b \times h + l \times h + b \times h + l \times b$


ਇਸ ਲਈ ਕੁੱਲ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ = $2(h \times l + b \times h + b \times l) = 2(lb + bh + hl)$

ਜਿਸ ਵਿੱਚ h, l ਅਤੇ b ਕਮਵਾਰ ਘਣਾਵ ਦੀ ਉਚਾਈ, ਲੰਬਾਈ ਅਤੇ ਚੌੜਾਈ ਹੈ।


ਜੇ ਉਪਰੋਕਤ ਦਰਸਾਏ ਗਏ ਡੱਬੇ ਦੀ ਉਚਾਈ, ਲੰਬਾਈ ਅਤੇ ਚੌੜਾਈ ਕਮਵਾਰ 20 cm, 15 cm ਅਤੇ 10 cm ਹੈ ਤਾਂ ਕੱਲ ਸਤਾ ਦਾ ਖੇਤਰਫਲ = 2 (20 × 15 + 20 × 10 + 10 × 15) $= 2(300 + 200 + 150) = 1300 \text{ cm}^2$

ਪਾਸਵੀਂ ਸਤਾ ਦਾ ਖੇਤਰਫਲ ਦਰਸਾਉਂਦੀਆਂ ਹਨ।ਉਦਾਹਰਣ ਲਈ ਜਿਸ ਘਣਾਵਕਾਰ ਕਮਰੇ ਵਿੱਚ ਤਸੀਂ ਬੈਠੇ ਹੋਏ ਹੋ ਉਸ ਕਮਰੇ ਦੀ ਚਾਰ ਦੀਵਾਰੀ ਦਾ ਕੁੱਲ ਖੇਤਰਫਲ, ਕਮਰੇ ਦੀ ਪਾਸਵੀਂ ਸਤਾ ਦਾ ਖੇਤਰਫਲ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਘਣਾਵ ਦੀ ਪਾਸਵੀਂ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ 2(h × l + b × h) ਜਾਂ 2h(l + b) ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

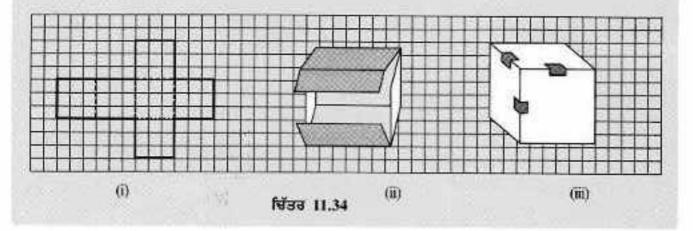

Jownload

190 🔳 ਗਣਿਤ

ਇਹਨਾ ਨੂੰ ਕਰੋ

(i) ਇੱਕ ਘਣਾਵਕਾਰ ਡਸਟਰ (ਜਿਸ ਨੂੰ ਤੁਹਾਡੇ ਅਧਿਆਪਕ ਜਮਾਤ ਵਿੱਚ ਉਪਯੋਗ ਕਰਦੇ ਹਨ) ਦੇ ਪਾਸਵੇਂ ਪਾਸੇ ਨੂੰ ਭੂਰੇ ਰੰਗ ਦੇ ਕਾਗਜ਼ ਦੀ ਪੱਟੀ ਨਾਲ ਇਸ ਤਰ੍ਹਾਂ ਢੱਕੋ ਕਿ ਇਹ ਡਸਟਰ ਦੀ ਸਤ੍ਹਾ ਦੇ ਚਾਰੇ ਪਾਸੇ ਬਿੱਲਕੁਲ ਠੀਕ ਬੈਠੇ। ਕਾਗਜ਼ ਨੂੰ ਹਟਾਉ। ਕਾਗਜ਼ ਦਾ ਖੇਤਰਫਲ ਮਾਪੋ। ਕੀ ਇਹ ਡਸਟਰ ਦੀ ਪਾਸਵੀਂ ਸਤਾ ਦਾ ਖੇਤਰਫਲ ਹੈ?

- ਆਪਣੀ ਜਮਾਤ ਦੇ ਕਮਰੇ ਦੀ ਲੰਬਾਈ, ਚੌੜਾਈ ਅਤੇ ਉਚਾਈ ਮਾਪੋ ਅਤੇ ਹੇਠਾਂ ਲਿਖੇ ਨੂੰ ਪਤਾ (ii) वतेः
 - (a) ਖਿੜਕੀਆਂ ਅਤੇ ਦਰਵਾਜ਼ਿਆਂ ਦੇ ਖੇਤਰਫਲ ਨੂੰ ਛੱਡ ਕੇ ਕਮਰੇ ਦੀ ਕੁੱਲ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ।
 - (b) ਇਸ ਕਮਰੇ ਦੀ ਪਾਸਵੀਂ ਸਤਾ ਦਾ ਖੇਤਰਫਲ
 - (c) ਕਲੀ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਕਮਰੇ ਦਾ ਕੁੱਲ ਖੇਤਰਫਲ।

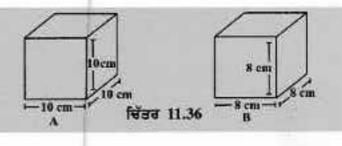


- ਕੀ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਘਣਾਵ ਦੀ ਕੁੱਲ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ = ਪਾਸਵੀਂ ਸਤਾ ਦਾ ਖੇਤਰਫਲ + 2 × ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ ?
- 2. ਜੇਕਰ ਕਿਸੇ ਘਣਾਵ (ਚਿੱਤਰ 11.33(i)) ਦੀ ਉਚਾਈ ਅਤੇ ਆਧਾਰ ਦੀ ਲੰਬਾਈ ਨੂੰ ਆਪਸ ਵਿੱਚ ਬਦਲ ਕੇ ਇੱਕ ਦੂਸਰਾ ਘਣਾਵ (ਚਿੱਤਰ 11.33 (ii)), ਪ੍ਰਾਪਤ ਕਰ ਲਈਏ ਤਾਂ ਕੀ ਪਾਸਵੀਂ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਬਦਲ ਜਾਵੇਗਾ?

11.7.2 単さ

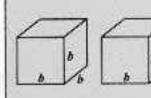
ਇਹਨਾਂ ਨੂੰ ਕਰੋ

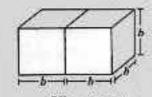
ਇੱਕ ਵਰਗਾਕਾਰ ਕਾਗਜ਼ 'ਤੇ ਦਰਸਾਏ ਗਏ ਪੈਟਰਨ ਨੂੰ ਖਿੱਚੋ ਅਤੇ ਇਹਨਾਂ ਨੂੰ ਕੱਟੋ।(ਚਿੱਤਰ 11,34(i))। ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਇਹ ਪੈਟਰਨ ਘਣ ਦਾ ਜਾਲ (ਨੈੱਟ) ਹੈ। ਇਹਨਾਂ ਨੂੰ ਰੇਖਾਵਾਂ ਦੇ ਅਨੁਸਾਰ ਮੋੜੋਂ (ਚਿੱਤਰ 11.34 (ii) ਅਤੇ ਘਣ ਬਣਾਉਣ ਦੇ ਲਈ ਕਿਨਾਰਿਆਂ 'ਤੇ ਟੇਪ ਲਗਾਉ।(ਚਿੱਤਰ 11.34 (iii))

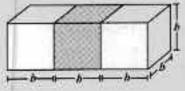


studiestoday.com ਖੇਤਰਮਿਤੀ 🔳 191 (a) ਇਸ ਘਣ ਦੀ ਲੰਬਾਈ, ਚੌੜਾਈ ਅਤੇ ਉਚਾਈ ਕੀ ਹੈ ? ਧਿਆਨ ਦਿਉ ਕਿ ਘਣ ਦੇ ਸਾਰੇ ਫਲਕ ਵਰਗਾਕਾਰ ਹਨ। ਇਸ ਲਈ ਘਣ ਦੀ ਲੰਬਾਈ, ਚੌੜਾਈ ਅਤੇ ਉਚਾਈ ਸਮਾਨ ਹੁੰਦੀ ਹੈ। (ਚਿੱਤਰ 11.35(i))। (b) ਹਰੇਕ ਫਲਕ ਦਾ ਖੇਤਰਫਲ ਲਿਖੋ। ਕੀ ਸਾਰੇ ਫਲਕਾਂ ਦਾ ਖੇਤਰਫਲ ਸਮਾਨ ਹੈ ? (c) ਇਸ ਘਣ ਦੀ ਕੱਲ ਸਤਾ ਦਾ ਖੇਤਰਫਲ ਲਿਖੋ। (1) (ii) ਚਿੱਤਰ 11.35 (d) ਜੇਕਰ ਘਣ ਦੀ ਹਰੇਕ ਭਜਾ / ਹੈ ਤਾਂ ਹਰੇਕ ਫਲਕ ਦਾ ਖੇਤਰਵਲ ਕੀ ਹੋਵੇਗਾ (ਚਿੱਤਰ 11.35 (ii))।

ਕੀ ਤੁਸੀਂ ਕਹਿ ਸਕਦੇ ਹੋ ਕਿ / ਭੂਜਾ ਵਾਲੇ ਘਣ ਦੀ ਕੁੱਲ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ 6/° ਹੈ ?


ਕੋਸ਼ਿਸ਼ ਕਰੋ


ਘਣ A ਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਵਲ ਅਤੇ ਘਣ B ਦੀ ਪਾਸਵੀਂ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ (ਚਿੱਤਰ 11.36)1



ਸੋਚੋ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ

 b ਭੂਜਾ ਵਾਲੇ ਦੋ ਘਣਾਂ ਨੂੰ ਮਿਲਾ ਕੇ ਇੱਕ ਘਣਾਵ ਬਣਾਇਆ ਗਿਆ ਹੈ (ਚਿੱਤਰ 11.37)। ਇਸ ਘਣਾਵ ਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਕੀ ਹੈ? ਕੀ ਇਹ 126' ਹੈ? ਕੀ ਇਸ ਤਰ੍ਹਾਂ ਤਿੰਨ ਘਣਾਵਾਂ ਨੂੰ ਮਿਲਾ ਕੇ ਬਣਾਏ ਗਏ ਘਣਾਵ ਦੀ ਸਤਾ ਦਾ ਖੇਤਰਫਲ 18b² ਹੈ? ਕਿਉਂ?

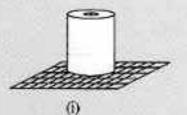


ਚਿੱਤਰ 11.37

- (ii) ਘੱਟ ਤੋਂ ਘੱਟ ਸਤ੍ਹਾ ਦੇ ਖੇਤਰਫਲ ਦਾ ਘਣਾਵ ਬਣਾਉਣ ਦੇ ਲਈ ਸਮਾਨ ਭੂਜਾ ਵਾਲੇ 12 ਘਣਾਂ ਨੂੰ ਕਿਸ ਤਰਤੀਬ ਵਿੱਚ ਜੋੜਾਂਗੇ ?
- (iii) ਕਿਸੇ ਘਣ ਦੀ ਵਕਰ ਸਤ੍ਹਾ ਦੇ ਖੇਤਰਫਲ 'ਤੇ ਪੇਂਟ ਕਰਨ ਦੇ ਬਾਅਦ ਉਸ ਘਣ ਨੂੰ ਸਮਾਨ ਭੁਜਾ ਵਾਲੇ 64 ਘਣਾਂ ਵਿੱਚ ਕੱਟਿਆ ਜਾਂਦਾ ਹੈ (ਚਿੱਤਰ 11.38)। ਇਹਨਾਂ ਵਿੱਚ ਕਿੰਨੇ ਘਣਾਂ ਦਾ ਕੋਈ ਫਲਕ ਪੇਂਟ ਨਹੀਂ ਹੋਇਆ ਹੈ ? ਕਿੰਨੇ ਘਣਾਂ ਦਾ । ਫਲਕ ਪੇਂਟ ਹੋਇਆ ਹੈ ? ਕਿੰਨੇ ਘਣਾਂ ਦੇ 2 ਫਲਕ ਪੇਂਟ ਹੋਏ ਹਨ 7 ਕਿੰਨੇ ਘਣਾਂ ਦੇ ਤਿੰਨ ਫਲਕ ਪੇਂਟ ਹੋਏ ਹਨ ?

192 🔳 ਗਣਿਤ

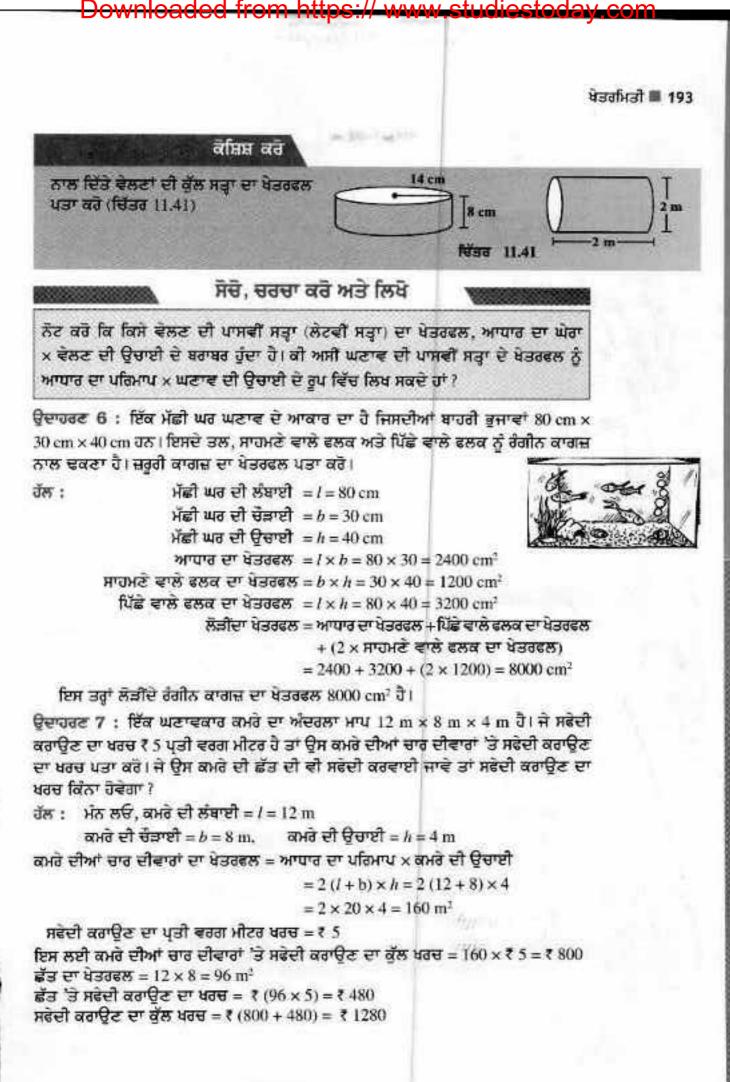
11.7.3 देलह


ਜਿੰਨੇ ਵੀ ਵੇਲਣ ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਉਹਨਾਂ ਵਿੱਚੋਂ ਜਿਆਦਾਤਰ ਲੰਬ ਚੱਕਰੀ ਵੇਲਣ ਹਨ। ਉਦਾਹਰਣ ਲਈ ਇੱਕ ਟੀਨ, ਇੱਕ ਗੋਲ ਖੰਬਾ, ਟਿਊਬ ਲਾਈਟ, ਪਾਣੀ ਦਾ ਪਾਈਪ ਆਦਿ :

ਇਹਨਾਂ ਨੂੰ ਕਰੋ

(i) ਇੱਕ ਵੇਲਣਾਕਾਰ ਕੈਨ ਜਾਂ ਡੱਬਾ ਲਵੋਂ ਅਤੇ ਇਸਦੇ ਆਧਾਰ ਨੂੰ ਗ੍ਰਾਫ ਪੇਪਰ 'ਤੇ ਬਣਾਉ ਅਤੇ ਇਸ ਨੂੰ ਕੱਟ ਕੇ ਬਾਹਰ ਕੱਢ ਲਵੋ (ਚਿੱਤਰ

ਪੱਧਰ ਤੋਂ ਬਣਾਓ ਅਤੇ ਇਸ ਨੂੰ ਕਟ ਕੇ ਬਾਹਰ ਕਢ ਲਵ (ਚਿਤਰ 11.39(i)) । ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਗ੍ਰਾਫ ਪੱਪਰ ਲਵੇਂ ਜਿਸਦੀ ਚੌੜਾਈ ਡੱਬੇ ਦੀ ਉਚਾਈ ਦੇ ਬਰਾਬਰ ਹੋਵੇ। ਇਸ ਪੱਟੀ ਨੂੰ ਕੈਨ ਦੇ ਚਾਰੋਂ ਪਾਸੇ ਇਸ ਤਰ੍ਹਾਂ ਲਪੇਟੋ ਤਾਂ ਕਿ ਡੱਬ ਦੇ ਚਾਰੇ ਪਾਸੇ ਬਿਲਕੁਲ ਠੀਕ ਲੱਗ ਜਾਵੇ (ਵਾਧੂ ਕਾਗਜ਼ ਨੂੰ ਹਟਾ ਦਿਓ) (ਚਿੱਤਰ 11.39(ii) ਟੁਕੜਿਆਂ ਨੂੰ ਇੱਕ-ਦੂਸਰੇ ਨਾਲ ਮਿਲਾ ਕੇ ਟੇਪ ਲਗਾਓ (ਚਿੱਤਰ 11.39 (iii)) ਤਾਂ ਕਿ ਇੱਕ ਵੇਲਣ ਬਣ ਜਾਵੇ (ਚਿੱਤਰ 11.39(iv)) ਡੱਬੇ ਦੇ ਚਾਰੇ ਪਾਸੇ ਲਪੇਟੇ ਗਏ ਕਾਗਜ਼ ਦਾ ਆਕਾਰ ਕੀ ਹੈ ?


-	()	-
H		IIII II
	ananan	THE H
(ii) যি ব	e 11.39 (iii)	

(iv)

ਬਿਨਾਂ ਸ਼ੱਕ ਇਹ ਆਕਾਰ ਵਿੱਚ ਆਇਤਾਕਾਰ ਹੈ। ਜਦੋਂ ਤੁਸੀਂ ਇਸ ਵੇਲਣ ਦੇ ਭਾਗਾਂ ਨੂੰ ਇੱਕ-ਦੂਸਰੇ ਨਾਲ ਮਿਲਾ ਕੇ ਟੇਪ ਲਗਾ ਦਿੰਦੇ ਹੋ ਤਾਂ ਆਇਤਾਕਾਰ ਪੱਟੀ ਦੀ ਲੰਬਾਈ ਚੱਕਰ ਦੇ ਘੇਰੇ ਦੇ ਬਰਾਬਰ ਹੈ। ਚੱਕਰਾਕਾਰ ਆਧਾਰ ਦਾ ਅਰਧ ਵਿਆਸ (r) ਅਤੇ ਆਇਤਾਕਾਰ ਪੱਟੀ ਦੀ ਲੰਬਾਈ (l) ਜਾਂ ਚੈੜਾਈ (h) ਨੂੰ ਨੋਟ ਕਰੋ। ਕੀ 2πr = ਪੱਟੀ ਦੀ ਲੰਬਾਈ ? ਪੜਤਾਲ ਕਰੋ ਕਿ ਆਇਤਾਕਾਰ ਪੱਟੀ ਦਾ ਖੇਤਰਫਲ 2πrh ਹੈ ? ਗਿਣਤੀ ਕਰੋ ਕਿ ਗਰਾਫ ਪੇਪਰ ਦੀਆਂ ਕਿੰਨੀਆਂ ਵਰਗ ਇਕਾਈਆਂ ਵੇਲਣ ਨੂੰ ਬਣਾਉਣ ਵਿੱਚ ਵਰਤੀਆਂ ਗਈਆਂ ਹਨ। ਪੜਤਾਲ ਕਰੋ ਕਿ ਇਹ ਗਿਣਤੀ 2πr (r + h) ਦੇ ਮੁੱਲ ਦੇ ਲਗਭਗ ਬਰਾਬਰ ਹੈ।

(ii) ਅਸੀਂ ਵੇਲਣ ਦੀ ਸਤ੍ਹਾ ਦੇ ਖੇਤਰਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਬੰਧ 2πr (r + h) ਦਾ ਨਿਗਮਨ ਦੂਸਰੀ ਵਿਧੀ ਨਾਲ ਵੀ ਕਰ ਸਕਦੇ ਹਾਂ। ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਹੇਠਾਂ ਦਿੱਤੇ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ਉਸ ਤਰ੍ਹਾਂ ਹੀ ਇੱਕ ਵੇਲਣ ਨੂੰ ਕੱਟਣ ਦੀ ਕਲਪਨਾ ਕਰੋ (ਚਿੱਤਰ 11.40)

194 🖩 ਗਣਿਤ

ਉਦਾਹਰਣ 8 : ਇੱਕ ਭਵਨ ਵਿੱਚ 24 ਵੇਲਣਾਕਾਰ ਖੰਬੇ ਹਨ। ਹਰੇਕ ਖੰਬੇ ਦਾ ਅਰਧ ਵਿਆਸ 28 ਸੈਂਟੀਮੀਟਰ ਅਤੇ ਉਚਾਈ 4 ਮੀਟਰ ਹੈ।8 ਰੁਪਏ ਪ੍ਰਤੀ ਵਰਗ ਮੀਟਰ ਦੀ ਦਰ ਨਾਲ ਸਾਰੇ ਖੰਬੇ ਦੀ ਪਾਸਵੀਂ ਸਤ੍ਹਾ ਦੇ ਖੇਤਰਫਲ `ਤੇ ਪੇਂਟ ਕਰਾਉਣ ਦਾ ਖਰਚ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਵੇਲਣਾਕਾਰ ਖੰਬੇ ਦਾ ਅਰਧ ਵਿਆਸ r = 28 cm = 0.28 m

ਉਚਾਈ *h* = 4 m

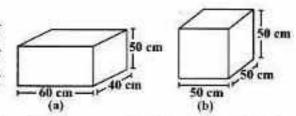
ਵੇਲਣ ਦੀ ਪਾਸਵੀਂ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ = 2πrh

[ਖੰਬੋ ਦਾ ਪਾਸਵੀਂ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ = $2 \times \frac{22}{7} \times 0.28 \times 4 = 7.04$ m²

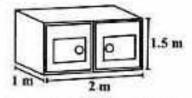
Ŵ

ਇਸ ਤਰ੍ਹਾਂ 24 ਖੱਬਿਆਂ ਦੀ ਪਾਸਵੀਂ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ = 7.04 × 24 = 168.96 m² 1 m² 'ਤੇ ਪੇਂਟ ਕਰਾਉਣ ਦਾ ਖਰਚ = ₹ 8

ਇਸ ਤਰ੍ਹਾਂ 168.96 m² ਖੇਤਰਫਲ 'ਤੇ ਪੇਂਟ ਕਰਾਉਣ ਦਾ ਖਰਚ = 168.96 × ₹ 8 = ₹ 1351.68 ਉਦਾਹਰਣ 9 : ਇੱਕ ਇਸ ਤਰ੍ਹਾ ਦੇ ਵੇਲਣ ਦੀ ਉਚਾਈ ਖਤਾ ਕਰੋ ਜਿਸਦਾ ਅਰਧ ਵਿਆਸ 7 cm ਅਤੇ ਕੁੱਲ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ 968 cm² ਹੈ।


ਹੱਲ : ਮੰਨ ਲਵੋਂ, ਵੇਲਣ ਦੀ ਉਚਾਈ = h, ਅਰਧ ਵਿਆਸ = r = 7cm ਕੁੱਲ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ = 2πr (h + r) ਜਾਂ 2 × $\frac{22}{7}$ × 7 × (7 + h) = 968 ਜਾਂ h = 15 cm ਇਸ ਤਰੀ ਫੇਲਣ ਦੀ ਉਦਾਈ 15 cm ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਵੇਲਣ ਦੀ ਉਚਾਈ 15 cm ਹੈ।


শ্রু পরিপাস 11.3

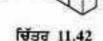
 ਦੋ ਘਣਾਵਕਾਰ ਡੱਬੇ ਹਨ ਜਿਸ ਤਰ੍ਹਾਂ ਕਿ ਨਾਲ ਦਿੱਤੇ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਕਿਸ ਡੱਬੇ ਨੂੰ ਬਣਾਉਣ ਦੇ ਲਈ ਘੱਟ ਸਮੱਗਰੀ ਦੀ ਜ਼ਰੂਰਤ ਹੈ?

- 2. 80 cm × 48 cm × 24 cm ਮਾਪ ਵਾਲੇ ਇੱਕ ਸੂਟਕੇਸ ਨੂੰ ਤਰਪਾਲ ਦੇ ਕੱਪੜੇ ਨਾਲ ਢਕਣਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ 100 ਸੂਟਕੇਸਾਂ ਨੂੰ ਢਕਣ ਦੇ ਲਈ 96 cm ਚੌੜਾਈ ਵਾਲੇ ਕਿੰਨੇ ਮੀਟਰ ਤਰਪਾਲ ਦੇ ਕੱਪੜੇ ਦੀ ਜ਼ਰੂਰਤ ਹੈ ?
- 3. ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਘਣ ਦੀ ਭੂਜਾ ਪਤਾ ਕਰੋ ਜਿਸਦੀ ਕੁੱਲ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ 600 cm² ਹੈ।
- ਰੁਖਸਾਰ ਨੇ 1m × 2 m × 1.5 m ਮਾਪ ਵਾਲੀ ਇੱਕ ਪੋਟੀ ਨੂੰ ਬਾਹਰ ਤੋਂ ਪੇਂਟ ਕੀਤਾ। ਜੋ ਉਸਨੇ ਪੋਟੀ ਦੇ ਤਲ ਨੂੰ ਛੱਡ ਕੇ ਉਸਨੂੰ ਸਾਰੀ ਜਗ੍ਹਾ ਤੋਂ ਪੇਂਟ ਕੀਤਾ ਹੋਵੇ ਤਾਂ ਪਤਾ ਕਰੇ ਕਿ ਉਸਨੇ ਕਿੰਨੀ ਸਤ੍ਹਾ ਦੇ ਖੇਤਰਫਲ ਨੂੰ ਪੇਂਟ ਕੀਤਾ।

5. ਡੇਨੀਅਲ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਘਣਾਵਕਾਰ ਕਮਰੇ ਦੀਆਂ ਦੀਵਾਰਾਂ ਅਤੇ ਛੱਤ ਨੂੰ ਪੇਂਟ ਕਰ ਰਿਹਾ ਹੈ ਜਿਸਦੀ ਲੰਬਾਈ, ਚੋੜਾਈ ਅਤੇ ਉਚਾਈ ਕ੍ਰਮਵਾਰ 15 m, 10 m ਅਤੇ 7 m ਹੈ। ਪੇਂਟ ਦੇ ਹਰੇਕ ਡੱਬੇ ਨਾਲ 100 m² ਖੇਤਰਫਲ ਨੂੰ ਪੇਂਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਤਾਂ ਉਸ ਕਮਰੇ ਦੇ ਲਈ ਉਸ ਨੂੰ ਪੇਂਟ ਦੇ ਕਿੰਨੇ ਡੱਬਿਆਂ ਦੀ ਜਰੂਰਤ ਹੋਵੇਗੀ ?

- ਵਰਣਨ ਕਰੋ ਕਿ ਸੱਜੇ ਪਾਸੇ ਦਿੱਤੇ ਗਏ ਚਿੱਤਰ ਕਿਸ ਤਰਾਂ ਸਮਾਨ ਹਨ ਅਤੇ ਕਿਸ ਤਰਾਂ ਇੱਕ ਦੂਸਰੇ ਤੋਂ ਵੱਖਰੇ ਹਨ ? ਕਿਸ ਡੱਬੇ ਦਾ ਪਾਸਵੀਂ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਜ਼ਿਆਦਾ ਹੈ?
- 7 m ਅਰਧ ਵਿਆਸ ਅਤੇ 3 m ਉਚਾਈ ਵਾਲਾ ਇੱਕ ਬੰਦ ਵੇਲਣਾਕਾਰ ਟੈਂਕ 1-7 cm-4
- ਕਿਸੇ ਧਾਤ ਦੀ ਇੱਕ ਚਾਦਰ ਨਾਲ ਬਣਿਆ ਹੋਇਆ ਹੈ। ਉਸਨੂੰ ਬਣਾਉਣ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਧਾਤੂ ਦੀ ਚਾਦਰ ਦੀ ਮਾਤਰਾ ਪਤਾ ਕਰੋ।
- 8. ਇੱਕ ਖੋਖਲੇ ਵੇਲਣ ਦੀ ਪਾਸਵੀਂ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ 4224 cm² ਹੈ। ਇਸ ਤੋਂ ਇਸਦੀ ਉੱਚਾਈ ਦੇ ਅਨਸਾਰ ਕੱਟਕੇ 33 cm ਚੌੜਾਈ ਦੀ ਇੱਕ ਆਇਤਾਕਾਰ ਚਾਦਰ ਬਣਾਈ ਜਾਂਦੀ ਹੈ। ਆਇਤਾਕਾਰ ਚਾਦਰ ਦਾ ਪਰਿਮਾਪ ਪਤਾ ਕਰੋ।
- 9. ਕਿਸੇ ਸੜਕ ਨੂੰ ਪੱਧਰਾ ਕਰਨ ਲਈ ਇੱਕ ਰੋਡਰੋਲਰ ਨੂੰ ਸੜਕ ਦੇ ਉੱਪਰ ਇੱਕ ਵਾਰ ਘੁੰਮਣ ਲਈ 750 ਚੱਕਰ ਲਗਾਉਣੇ ਪੈਂਦੇ ਹਨ। ਜੇ ਰੋਡਰੋਲਰ ਦਾ ਵਿਆਸ 84 cm ਅਤੇ 1 m ਲੰਬਾਈ ਹੋਵੇ ਤਾਂ ਸਤਕ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ।
- 10. ਇੱਕ ਕੰਪਨੀ ਆਪਣੇ ਦੱਧ ਪਾਉਡਰ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਵੇਲਣਾਕਾਰ ਬਰਤਨਾਂ ਵਿੱਚ ਪੈਕ ਕਰਦੀ ਹੈ ਜਿਹਨਾਂ ਦਾ ਵਿਆਸ 14 cm ਅਤੇ ਉਚਾਈ 20 cm ਹੈ। ਕੰਪਨੀ ਬਰਤਨ ਦੀ ਸਤਾ ਦੇ ਚਾਰੇ ਪਾਸੇ ਇੱਕ ਲੇਬਲ ਲਗਾਉਂਦੀ ਹੈ (ਜਿਸ ਤਰਾਂ ਕਿ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ)। ਜੇ ਇਹ ਲੇਬਲ ਬਰਤਨ ਦੇ ਤਲ ਅਤੇ ਸਿਖਰ ਦੋਨਾਂ ਤੋਂ 2 cm ਦੀ ਦਰੀ 'ਤੇ ਚਿਪਕਾਇਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਲੇਬਲ ਦਾ ਖੇਤਰਫਲ ਕੀ ਹੈ?

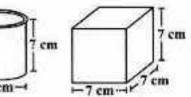
11.8 ਘਣ, ਘਣਾਵ ਅਤੇ ਵੇਲਣ ਦਾ ਆਇਤਨ


ਇੱਕ ਤਿੰਨ ਪਸਾਰੀ ਵਸਤੂ ਦੁਆਰਾ ਘੇਰੀ ਹੋਈ ਜਗ੍ਹਾ ਨੂੰ ਉਸਦਾ ਆਇਤਨ ਆਖਦੇ ਹਨ। ਆਪਣੇ ਆਲੇ-ਦੁਆਲੇ ਦੀਆਂ ਵਸਤੂਆਂ ਦੇ ਆਇਤਨ ਦੀ ਤੁਲਨਾ ਕਰਨ ਦਾ ਯਤਨ ਕਰੋ। ਉਦਾਹਰਣ ਲਈ ਕਿਸੇ ਕਮਰੇ ਦੇ ਅੰਦਰ ਰੱਖੀ ਹੋਈ ਅਲਮਾਰੀ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਕਮਰੇ ਦਾ ਆਇਤਨ ਜ਼ਿਆਦਾ ਹੈ। ਇਸ ਤਰਾਂ ਤੁਹਾਡੀ

> ਪੈੱਨਸਿਲ ਬਾਕਸ ਦਾ ਆਇਤਨ ਇਸਦੇ ਅੰਦਰ ਰੱਖੋ ਪੈਨ ਅਤੇ ਮਿਟਾਉਣ ਵਾਲੀ ਰਬੜ ਦੇ ਆਇਤਨ ਤੋਂ ਜ਼ਿਆਦਾ ਹੈ। ਕੀ ਤੁਸੀਂ ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਵੀ ਵਸਤੂ ਦਾ ਆਇਤਨ ਮਾਪ ਸਕਦੇ ਹੈ? ਯਾਦ ਕਰ ਕਿ. ਅਸੀਂ ਕਿਸੇ ਖੇਤਰ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਵਰਗ ਇਕਾਈਆਂ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹਾਂ। ਇੱਥੇ ਅਸੀਂ ਠੋਸ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਘਣ ਇਕਾਈਆਂ ਦਾ ਉਪਯੋਗ ਕਰਾਂਗੇ ਕਿਉਂਕਿ ਘਣ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਉੱਚਿਤ ਠੋਸ ਆਕਾਰ ਹੈ (ਠੀਕ ਉਸੇ ਤਰਾਂ ਜਿਵੇਂ ਕਿਸੇ ਖੇਤਰ ਦਾ ਖੇਤਰਫਲ ਮਾਪਣ ਦੇ ਲਈ ਵਰਗ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਉੱਚਿਤ ਆਕਾਰ ਹੈ।।

ਖੇਤਰਫਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਅਸੀਂ ਖੇਤਰ ਨੂੰ ਵਰਗ ਇਕਾਈਆਂ ਵਿੱਚ ਵੰਡਦੇ ਹਾਂ, ਇਸੇ ਤਰਾਂ ਕਿਸੇ ਠੋਸ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਸਾਨੂੰ ਉਸ ਠੋਸ ਨੂੰ ਘਣ ਇਕਾਈਆਂ ਵਿੱਚ ਵੰਡਣ ਦੀ ਜ਼ਰਰਤ ਹੈ।

ਵਿਚਾਰ ਕਰੋ ਕਿ ਹੇਠਾਂ ਲਿਖੇ ਠੱਸਾਂ ਵਿੱਚ ਹਰੇਕ ਦਾ ਆਇਤਨ 8 ਘਣ ਇਕਾਈ ਹਨ।(ਚਿੱਤਰ 11.42)।


Downloaded from https:// www.studiestoday.com

14 cm

ਖੇਤਰਮਿਤੀ 🔳 195

196 🖩 ਗਣਿਤ

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਠੇਂਸ ਦਾ ਆਇਤਨ ਮਾਪਣ ਦੇ ਲਈ ਅਸੀਂ ਉਸ ਵਿੱਚ ਸਥਿਤ ਘਣ ਇਕਾਈਆਂ ਨੂੰ ਗਿਣਦੇ ਹਾਂ।

1 ਘਣ ਸੈਂਟੀਮੀਟਰ = 1 cm × 1 cm × 1 cm = 1 cm*

 $= 10 \text{ mm} \times 10 \text{ mm} \times 10 \text{ mm} = \dots \text{ mm}^3$

1 ਘਣ ਮੀਟਰ = 1 m × 1 m × 1 m = 1 m³

= cm³

1 ਘਣ ਮਿਲੀਮੀਟਰ = 1 mm × 1 mm × 1 mm = 1 mm³

 $= 0.1 \text{ cm} \times 0.1 \text{ cm} \times 0.1 \text{ cm} = \dots \text{ cm}^3$

ਹੁਣ ਅਸੀਂ ਘਣਾਵ, ਘਣ ਅਤੇ ਵੇਲਣ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਕੁੱਝ ਵਿਅੰਜਕ (ਸੂਤਰ) ਪਤਾ ਕਰਦੇ ਹਾਂ। ਆਉ, ਹਰੇਕ ਨੇਸ ਤੇ ਇੱਕ-ਇੱਕ ਕਰਕੇ ਚਰਚਾ ਕਰਦੇ ਹਾਂ।

11.8.1 ਘਣਾਵ

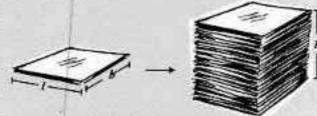
ਬਰਾਬਰ ਆਕਾਰ (ਹਰੇਕ ਘਣ ਦੀ ਲੰਬਾਈ ਬਰਾਬਰ) ਵਾਲੇ 36 ਘਣ ਲਵੇਂ ਇੱਕ ਘਣਾਵ ਬਣਾਉਣ ਦੇ ਲਈ ਉਨਾਂ ਨੂੰ ਤਰਤੀਬਵਾਰ ਜੋੜੋ। ਤੁਸੀਂ ਇਹਨਾਂ ਨੂੰ ਕਈ ਢੰਗ ਨਾਲ ਤਰਤੀਬ ਦੇ ਸਕਦੇ ਹੋ। ਹੇਠਾਂ ਲਿਖੀ ਸਾਰਣੀ `ਤੇ ਵਿਚਾਰ ਕਰੋ ਅਤੇ ਖਾਲੀ ਥਾਂਵਾਂ ਭਰੋ :

ਘਣਾਵ	ਲੰਬਾਈ	ਚੰੜਾਈ	ਉਚਾਈ	$l \times b \times h = V$
	I I I I I I I I I I I I I I I I I I I	3	1	$12 \times 3 \times 1 = 36$
(ii)				-
	***		Ŧ	
(iv)		-11		

ਤੁਸੀਂ ਕੀ ਦੇਖਦੇ ਹੈ?

Downloaded from https:// www.studiestoday.com

125


ਖੇਤਰਮਿਤੀ 🗏 197

ਕਿਉਂਕਿ ਇਹਨਾਂ ਘਣਾਵਾਂ ਨੂੰ ਬਣਾਉਣ ਦੇ ਲਈ ਅਸੀਂ 36 ਘਣਾਂ ਦਾ ਉਪਯੋਗ ਕੀਤਾ ਹੈ ਇਸ ਲਈ ਹਰੇਕ ਘਣਾਵ ਦਾ ਆਇਤਨ 36 ਘਣ ਇਕਾਈਆਂ ਹੈ। ਇਸਦੇ ਇਲਾਵਾ ਹਰੇਕ ਘਣਾਵ ਦਾ ਆਇਤਨ ਉਸਦੀ ਲੰਬਾਈ, ਚੌੜਾਈ ਅਤੇ ਉਚਾਈ ਦੇ ਗੁਣਨਫਲ ਦੇ ਬਰਾਬਰ ਹੈ।ਉੱਪਰ ਦਿੱਤੀ ਉਦਾਹਰਣ ਤੋਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਘਣਾਵ ਦਾ ਆਇਤਨ = $l \times b \times h$ ਹੈ। ਕਿਉਂਕਿ $l \times b$ ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ ਹੈ ਇਸ ਲਈ ਅਸੀਂ ਇਹ ਵੀ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਘਣਾਵ ਦਾ -lਆਇਤਨ = ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ × ਉਚਾਈ।

ਇੱਕ ਕਾਗਜ਼ ਦੀ ਸੀਟ ਲਵੇਂ ਅਤੇ ਇਸਦੇ ਖੇਤਰਫਲ ਨੂੰ ਮਾਪੋ। ਇਸਦੇ ਬਰਾਬਰ ਆਕਾਰ ਵਾਲੀਆਂ ਕਾਗਜ਼ ਦੀਆਂ ਸ਼ੀਟਾਂ ਦਾ ਢੇਰ ਲਗਾ ਕੇ ਇੱਕ ਘਣਾਵ ਬਣਾਓ (ਚਿੱਤਰ 11.43)। ਇਸ ਢੇਰ ਦੀ ਉਚਾਈ ਮਾਪੋ। ਸ਼ੀਟ ਦਾ ਖੇਤਰਫਲ ਅਤੇ ਸ਼ੀਟਾਂ ਦੀ ਉਚਾਈ ਦਾ ਗੁਣਨਫਲ ਪਤਾ ਕਰਦੇ ਹੋਏ ਘਣਾਵ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰੋ।

ਇਹ ਕਿਰਿਆ ਇਸ ਵਿਚਾਰ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ ਨੇਸ ਦੇ ਆਇਤਨ ਦਾ ਨਿਗਮਨ ਇਸ ਵਿਧੀ ਰਾਹੀਂ ਵੀ ਪਤਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ (ਜੇਕਰ ਕਿਸੇ ਠੋਸ ਦਾ ਆਧਾਰ ਅਤੇ ਸਿਖਰ ਸਰਬੰਗਸਮ ਹਨ ਅਤੇ ਇੱਕ-ਦੂਸਰੇ ਦੇ ਸਮਾਂਤਰ ਹਨ ਅਤੇ ਇਸਦੇ ਕਿਨਾਰੇ ਆਧਾਰ `ਤੇ ਲੰਬ ਹਨ) ਕੀ ਤੁਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਵਸਤੂਆਂ ਦੇ ਬਾਰੇ ਸੋਚ ਸਕਦੇ ਹੋ ਜਿਹਨਾਂ ਦਾ ਆਇਤਨ ਇਸ ਵਿਧੀ ਦਾ ਉਪਯੋਗ ਕਰਦੇ ਹੋਏ ਪਤਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ 7

ਵਿੱਚ l = h = h. ਘਣ ਦਾ ਅਇਤਨ = l × l × l = l³

ਹੇਠਾਂ ਲਿਖੇ ਘਣਾਂ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰੋ : (a) 4 cm ਭੂਜਾ ਵਾਲਾ (b) 1.5 m ਭੂਜਾ ਵਾਲਾ

ਇਹਨਾਂ ਨੂੰ ਕਰੋ

ਸਮਾਨ ਆਕਾਰ ਵਾਲੇ 64 ਘਣਾਂ ਨੂੰ ਜਿੰਨੇ ਰੂਪਾਂ ਵਿੱਚ ਤੁਸੀਂ ਤਰਤੀਬ ਦੇ ਸਕਦੇ ਹੋ ਉਨੇ ਰੂਪਾਂ ਵਿੱਚ ਤਰਤੀਬ ਦੇ

ਕੇ ਘਣਾਵ ਬਣਾਉ। ਹਰੇਕ ਰੂਪ ਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ। ਕੀ ਸਮਾਨ ਆਇਤਨ ਵਾਲੀ ਠੱਸ ਆਗ੍ਰਿਤੀਆਂ ਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਸਮਾਨ ਹੁੰਦਾ ਹੈ?

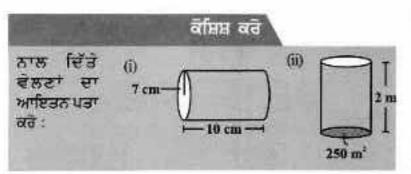
ਸ਼ਿੰਦ ਸ਼ਿੰਦ

ਇੱਕ ਕੰਪਨੀ ਬਿਸਕੁੱਟ ਵੇਚਦੀ ਹੈ। ਬਿਸਕੁਟਾਂ ਨੂੰ ਪੈਕ ਕਰਨ ਲਈ ਘਣਾਵਕਾਰ ਡੱਬੇ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾ ਰਹੀ ਹੈ। ਭੱਬਾ A \rightarrow 3 cm × 8 cm × 20 cm, ਡੱਬਾ B \rightarrow 4 cm × 12 cm × 10 cm

198 🖩 ਗਣਿਤ

ਡੱਬੇ ਦਾ ਕਿਹੜਾ ਆਕਾਰ ਕੰਪਨੀ ਦੇ ਲਈ ਸਸਤਾ ਰਹੇਗਾ ? ਕਿਉਂ ? ਕੀ ਤੁਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਹੋਰ ਆਕਾਰ (ਮਾਪ) ਦੇ ਡੱਬੇ ਦਾ ਸੁਝਾਓ ਦੇ ਸਕਦੇ ਹੋ ਜਿਸਦਾ ਆਇਤਨ ਇਸਦੇ ਸਮਾਨ ਹੋਵੇ ਪਰ ਇਸਦੀ ਤੁਲਨਾ ਵਿੱਚ ਜ਼ਿਆਦਾ ਸਸਤਾ ਹੋਵੇ ?

11.8. 3 ਵੇਲਣ


ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਘਣਾਵ ਦਾ ਆਇਤਨ ਉਸਦੇ ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ ਅਤੇ ਉਚਾਈ ਦਾ ਗੁਣਨਫਲ ਪਤਾ ਕਰਦੇ ਹੋਏ ਪਤਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕੀ ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਵੈਲਣ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ ? ਘਣਾਵ ਦੀ ਤਰ੍ਹਾਂ ਵੇਲਣ ਵਿੱਚ ਵੀ ਇੱਕ ਆਧਾਰ ਅਤੇ ਸਿਖਰ ਹੁੰਦਾ ਹੈ ਜੋ ਕਿ ਇੱਕ-ਦੂਸਰੇ ਦੇ ਸਰਬੰਗਸਮ ਅਤੇ ਸਮਾਂਤਰ ਹੁੰਦੇ ਹਨ। ਘਣਾਵ ਦੀ ਤਰ੍ਹਾਂ ਇਸ ਦਾ ਪਾਸਵੀਂ ਸਤ੍ਹਾ ਆਧਾਰ ਤੇ ਲੰਬ ਹੁੰਦਾ ਹੈ। ਇਸ ਲਈ ਘਣਾਵ ਦਾ ਆਇਤਨ = ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ × ਉਚਾਈ $=l \times h \times h = lbh$ ਵੇਲਣ ਦਾ ਆਇਤਨ = ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ × ਉਚਾਈ ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ × ਉਚਾਈ

$$=\pi r^2 \times h = \pi r^2$$

11.9 ਆਇਤਨ ਅਤੇ ਸਮਾਈ (ਸਮਰੱਥਾ)

ਇਹਨਾਂ ਦੋ ਸ਼ਬਦਾਂ ਵਿੱਚ ਜ਼ਿਆਦਾ ਅੰਤਰ ਨਹੀਂ ਹੈ।

- (a) ਕਿਸੇ ਵਸਤੂ ਦੁਆਰਾ ਘੇਰੀ ਗਈ ਜਗ੍ਹਾ ਦੀ ਮਾਤਰਾ ਨੂੰ ਉਸਦਾ ਆਇਤਨ ਆਖਦੇ ਹਾਂ।
- (b) ਕਿਸੇ ਬਰਤਨ ਵਿੱਚ ਭਗੇ ਗਈ ਵਸਤੂ ਦੀ ਮਾਤਰਾ ਨੂੰ ਉਸਦੀ ਸਮਾਈ (ਸਮਰੱਥਾ) ਆਖਦੇ ਹਾਂ।

ਨੋਟ : ਜੇਕਰ ਕਿਸੇ ਪਾਣੀ ਰੱਖੇ ਜਾਣ ਵਾਲੇ ਟੀਨ ਦੇ ਬਰਤਨ ਵਿੱਚ 100 cm¹ ਪਾਣੀ ਭਰਿਆ ਜਾ ਸਕਦਾ ਹੈ ਤਾਂ ਉਸ ਟੀਨ ਦੇ ਬਰਤਨ ਦੀ ਸਮਾਈ (ਸਮਰੱਬਾ) 100 cm³ ਹੈ।

 $(=\pi r')$

ਸਮਾਈ (ਸਮਰੱਥਾ) ਨੂੰ ਲਿਟਰਾਂ ਵਿੱਚ ਵੀ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ। ਲਿਟਰ ਅਤੇ cm³ ਵਿੱਚ ਹੇਠ ਲਿਖੇ ਸੰਬੰਧ ਹਨ। 1 mL = 1 cm³,1 L = 1000 cm³. ਇਸ ਤਰ੍ਹਾਂ 1 m³ = 1000000 cm³ = 1000 L.

ਉਦਾਹਰਣ 10 : ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਘਣਾਵ ਦੀ ਉਚਾਈ ਪਤਾ ਕਰੋ ਜਿਸਦਾ ਆਇਤਨ 275 cm³ ਅਤੇ ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ 25 cm² ਹੈ।

ਹੱਲ : ਘਣਾਵ ਦਾ ਆਇਤਨ = ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ × ਉਚਾਈ

ਇਸ ਤਰ੍ਹਾਂ ਘਣਾਵ ਦੀ ਉਚਾਈ = $\frac{}{}$ ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ = $\frac{275}{25}$ = 11 cm

ਇਸ ਤਰ੍ਹਾਂ ਘਣਾਵ ਦੀ ਉਚਾਈ 11 cm ਹੈ।

ਉਦਾਹਰਣ 11 : ਇੱਕ ਘਣਾਵਕਾਰ ਗੋਦਾਮ, ਜਿਸਦਾ ਮਾਪ 60 m × 40 m × 30 m ਹੈ, ਦੇ ਐਦਰ ਕਿੰਨੇ ਘਣਾਵਕਾਰ ਡੱਬੇ ਰੱਖੇ ਜਾ ਸਕਦੇ ਹਨ, ਜੇਕਰ ਇੱਕ ਡੱਬੇ ਦਾ ਆਇਤਨ 0.8 m³ ਹੈ ? ਹੱਲ : ਇੱਕ ਡੱਬੇ ਦਾ ਆਇਤਨ = 0.8 m³

ਗੋਦਾਮ ਦਾ ਆਇਤਨ = 60 × 40 × 30 = 72000 m³

ਖੇਤਰਮਿਤੀ 🔳 199

20 cm

14 cm

ਗੋਦਾਮ ਦੇ ਅੰਦਰ ਰੱਖੇ ਜਾ ਸਕਣ ਵਾਲੇ ਡੱਬਿਆਂ ਦੀ ਸੰਖਿਆ = ਗੋਬਾਮ ਦਾ ਆਇਤਨ

 $=\frac{60 \times 40 \times 30}{0.8}=90,000$

ਇਸ ਤਰ੍ਹਾਂ ਗੋਦਾਮ ਦੇ ਅੰਦਰ ਰੱਖੇ ਜਾ ਸਕਣ ਵਾਲੇ ਡੱਬਿਆਂ ਦੀ ਸੰਖਿਆ 90,000 ਹੈ। ਉਦਾਹਰਣ 12 : 14 cm ਚੌੜਾਈ ਵਾਲੀ ਇੱਕ ਆਇਤਕਾਰ ਕਾਗਜ਼ ਨੂੰ ਚੌੜਾਈ ਦੇ ਅਨੁਸਾਰ ਮੋੜ ਕੇ 20 cm ਅਰਧ ਵਿਆਸ ਵਾਲਾ ਇੱਕ ਵੇਲਣ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਵੇਲਣ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰੋ।

(ਚਿੱਤਰ 11.45)। (
$$\pi$$
 ਦੇ ਲਈ $rac{22}{7}$ ਲਵ

ਹੱਲ : ਕਾਗਜ਼ ਨੂੰ ਚੌੜਾਈ ਦੇ ਅਨੁਸਾਰ ਮੋੜ ਕੇ ਵੇਲਣ ਬਣਾਇਆ ਗਿਆ ਹੈ, ਇਸ ਲਈ ਕਾਗਜ਼ ਦੀ ਚੌੜਾਈ ਵੇਲਣ ਦੀ ਉਚਾਈ ਹੋਵੇਗੀ ਅਤੇ ਵੇਲਣ ਦਾ ਅਰਧ ਵਿਆਸ 20 cm ਹੋਵੇਗਾ।

ਵੇਲਣ ਦੀ ਉਚਾਈ = h = 14 cm

ਅਰਧ ਵਿਆਸ = r = 20 cm

ਵੇਲਣ ਦਾ ਆਇਤਨ = V = π r²h

ਇਸ ਤਰ੍ਹਾਂ ਵੇਲਣ ਦਾ ਆਇਤਨ 17600 cm³ ਹੈ।

$$=\frac{22}{7} \times 20 \times 20 \times 14 = 17600 \text{ cm}^3$$

ਚਿੱਤਰ 11.45

14 cm

ਉਦਾਹਰਣ 13 : 11 cm × 4 cm ਮਾਪਣ ਵਾਲੇ ਆਇਤਾਕਾਰ ਕਾਗਜ਼ ਦੇ ਟੁਕੜੇ ਤੋਂ ਇਕ ਦੂਜੇ ਉੱਤੇ ਢੱਕੇ ਬਿਨਾਂ, ਮੋੜ ਕੇ ਇੱਕ 4 cm ਉਚਾਈ ਦਾ ਵੇਲਣ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਵੇਲਣ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਕਾਗਜ਼ ਦੀ ਲੰਬਾਈ ਵੇਲਣ ਦੇ ਆਧਾਰ ਦਾ ਘੇਰਾ ਬਣ ਜਾਂਦੀ ਹੈ ਅਤੇ ਚੌੜਾਈ, ਉਚਾਈ ਬਣ ਜਾਂਦੀ ਹੈ।

ਮੰਨ ਲਵੋਂ ਵੇਲਣ ਦਾ ਅਰਧ ਵਿਆਸ = r ਅਤੇ ਉਚਾਈ = h ਵੇਲਣ ਦੇ ਆਧਾਰ ਦਾ ਘੇਰਾ = 2πr = 11

नां

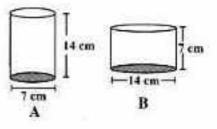
 $2 \times \frac{22}{7} \times r = 11$

ਇਸ ਲਈ

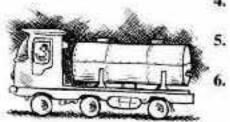
$$r = \frac{7}{7}$$
 cm

$$=\frac{22}{7}\times\frac{7}{4}\times\frac{7}{4}\times4$$
 cm³ = 38.5 cm³

ਇਸ ਲਈ ਵੇਲਣ ਦਾ ਆਇਤਨ 38.5 cm³ ਹੈ।


ਅਭਿਆਸ 11.4

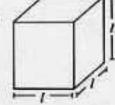
- ਤੁਹਾਨੂੰ ਇੱਕ ਵੇਲਣਾਕਾਰ ਟੈਂਕ ਦਿੱਤਾ ਗਿਆ ਹੈ, ਹੇਠਾਂ ਲਿਖੇ ਵਿੱਚੋਂ ਕਿਸ ਸਥਿਤੀ ਵਿੱਚ ਤੁਸੀਂ ਉਸਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋਗੇ ਅਤੇ ਕਿਸ ਸਥਿਤੀ ਵਿੱਚ ਆਇਤਨ:
 - (a) ਇਹ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਇਸ ਵਿੱਚ ਕਿੰਨਾ ਪਾਣੀ ਰੱਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
 - (b) ਇਸਦਾ ਪਲੱਸਤਰ ਕਰਨ ਦੇ ਲਈ ਲੋੜੀਂਦੀ ਸੀਮੈਂਟ ਬੋਰੀਆਂ ਦੀ ਸੰਖਿਆ।
 - (c) ਇਸ ਵਿਚਲੇ ਪਾਣੀ ਨਾਲ ਭਰੇ ਜਾਣ ਵਾਲੇ ਛੋਟੇ ਟੈਂਕਾਂ ਦੀ ਸੰਖਿਆ।

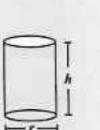


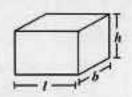
200 🔳 ਗਣਿਤ

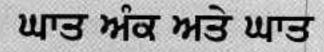
 ਵੇਲਣ A ਦਾ ਵਿਆਸ 7 cm ਅਤੇ ਉਚਾਈ 14 cm ਹੈ। ਵੇਲਣ B ਦਾ ਵਿਆਸ 14 cm ਅਤੇ ਉਚਾਈ 7cm ਹੈ। ਗਣਨਾ ਕੀਤੇ ਬਿਨ੍ਹਾਂ ਕੀ ਤੁਸੀਂ ਦੱਸ ਸਕਦੇ ਹੋ ਕਿ ਇਹਨਾਂ ਦੋਨਾਂ ਵਿੱਚ ਕਿਸਦਾ ਆਇਤਨ ਜ਼ਿਆਦਾ ਹੈ ? ਦੋਨਾਂ ਵੇਲਣਾਂ ਦਾ ਆਇਤਨ ਪਤਾ ਕਰਦੇ ਹੋਏ ਇਸਦੀ ਪੜਤਾਲ ਕਰੋ। ਜਾਂਚ ਕਰੋ ਕਿ ਕੀ ਜਿਆਦਾ ਆਇਤਨ ਵਾਲੇ ਵੇਲਣ ਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਵੀ ਜ਼ਿਆਦਾ ਹੈ ?

 ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਘਣਾਵ ਦੀ ਉਚਾਈ ਪਤਾ ਕਰੋ ਜਿਸ ਦੇ ਆਧਾਰ ਦਾ ਖੇਤਰਫਲ 180 cm² ਅਤੇ ਆਇਤਨ 900 cm³ਹੈ।

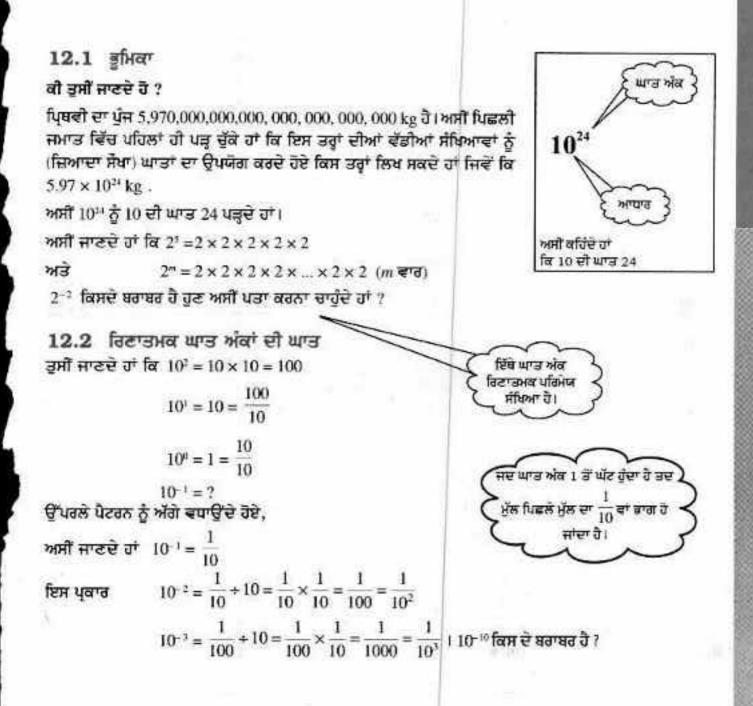

- ਇੱਕ ਘਣਾਵ ਦਾ ਮਾਪ 60 cm × 54 cm × 30 cm ਹੈ। ਇਸ ਘਣਾਵ ਦੇ ਅੰਦਰ 6 cm ਭੂਜਾ ਵਾਲੇ ਕਿੰਨੇ ਛੋਟੇ ਘਣ ਰੱਖੇ ਜਾ ਸਕਦੇ ਹਨ।
- 5. ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਵੇਲਣ ਦੀ ਉਚਾਈ ਪਤਾ ਕਰੋ ਜਿਸਦਾ ਆਇਤਨ 1.54 m³ ਅਤੇ ਜਿਸਦਾ ਆਧਾਰ ਦਾ ਵਿਆਸ 140 cm ਹੈ ?
- . ਇੱਕ ਦੁੱਧ ਦਾ ਟੈਂਕ ਵੇਲਣ ਦੇ ਆਕਾਰ ਦਾ ਹੈ ਜਿਸ ਦਾ ਅਰਧ ਵਿਆਸ 1.5 m ਅਤੇ ਲੰਬਾਈ 7 m ਹੈ। ਇਸ ਟੈਂਕ ਵਿੱਚ ਭਰੇ ਜਾ ਸਕਣ ਵਾਲੇ ਦੁੱਧ ਦੀ ਮਾਡਰਾ ਲਿਟਰ ਵਿੱਚ ਪਤਾ ਕਰੋ।
- 7. ਜੇਕਰ ਘਣ ਦੇ ਹਰੇਕ ਕਿਨਾਰੇ ਨੂੰ ਦੁੱਗਣਾ ਕਰ ਦਿੱਤਾ ਜਾਵੇ, ਤਾਂ
 - (i) ਇਸਦੇ ਸਤ੍ਹਾ ਦੇ ਖੇਤਰਫੈਲ ਵਿੱਚ ਕਿੰਨੇ ਗੁਣਾ ਵਾਧਾ ਹੋਵੇਗਾ?
 - (ii) ਇਸਦੇ ਆਇਤਨ ਵਿੱਚ ਕਿੰਨੇ ਗੁਣਾ ਵਾਧਾ ਹੋਵੇਗਾ ?
- 8. ਇੱਕ ਟੈਂਕ ਅੰਦਰ 60 ਲਿਟਰ ਪ੍ਰਤੀ ਮਿੰਟ ਦੀ ਦਰ ਨਾਲ ਪਾਣੀ ਡਿੱਗ ਰਿਹਾ ਹੈ।ਜੇਕਰ ਟੈਂਕ ਦਾ ਆਇਤਨ 108 m³ ਹੈ, ਤਾਂ ਪਤਾ ਕਰੋ ਕਿ ਇਸ ਟੈਂਕ ਨੂੰ ਭਰਨ ਵਿੱਚ ਕਿੰਨੇ ਘੰਟੇ ਲੱਗਣਗੇ।

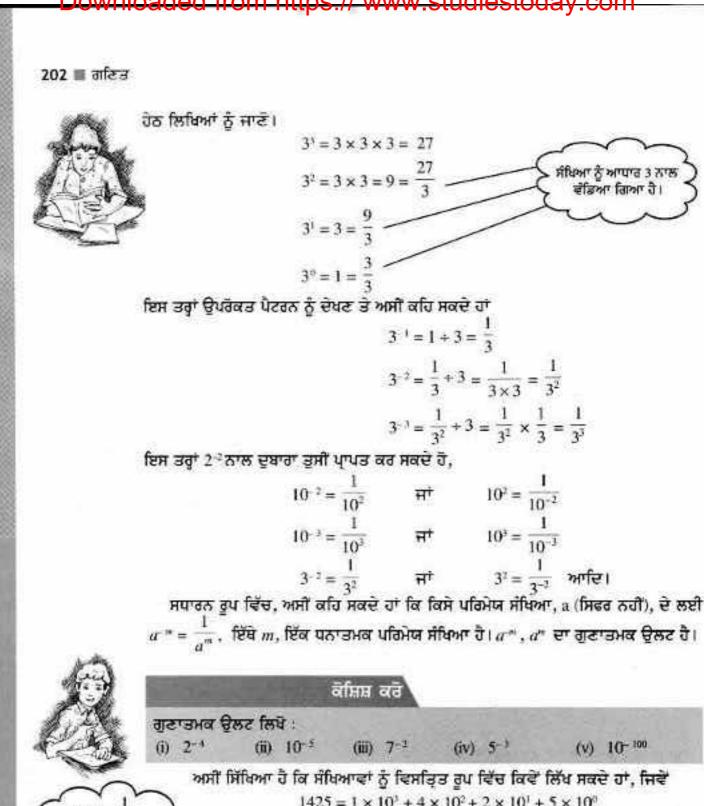

ਅਸੀਂ ਕੀ ਚਰਚਾ ਕੀਤੀ ?


- ਸਮਲੰਬ ਦਾ ਖੇਤਰਫਲ
 - (i) ਸਮਲੰਬ ਦਾ ਖੇਤਰਫਲ = ਸਮਾਂਤਰ ਭੁਜਾਵਾਂ ਦੀ ਲੰਬਾਈਆਂ ਦੇ ਜੋੜ ਦਾ ਅੱਧ × ਉਹਨਾਂ ਵਿੱਚ ਲੰਬਿਕ ਦੂਰੀ।
 - (ii) ਸਮਚਤੁਰਭੁਜ ਦਾ ਖੇਤਰਫਲ = ਵਿਕਰਨਾਂ ਦੇ ਗੁਣਨਫਲ ਦਾ ਅੱਧ
- 2. ਇੱਕ ਠੋਸ ਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ ਇਸਦੇ ਫਲਕਾਂ ਦੇ ਖੇਤਰਫਲਾਂ ਦੇ ਜੋੜ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ।
- ਘਣਾਵ ਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ = 2(lb + bh + hl) ਘਣ ਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ = 6l² ਵੇਲਣ ਦੀ ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ = 2πr(r + h)
- ਕਿਸੇ ਠੋਸ ਦੁਆਰਾ ਘੇਰੀ ਗਈ ਜਗ੍ਹਾ ਦੀ ਮਾਤਰਾ ਨੂੰ ਇਸਦਾ ਆਇਤਨ ਆਖਦੇ ਹਾਂ।
- ਘਣਾਵ ਦਾ ਆਇਤਨ = l × b × h ਘਣ ਦਾ ਆਇਤਨ = l¹ ਵੇਲਣ ਦਾ ਆਇਤਨ = πr²h

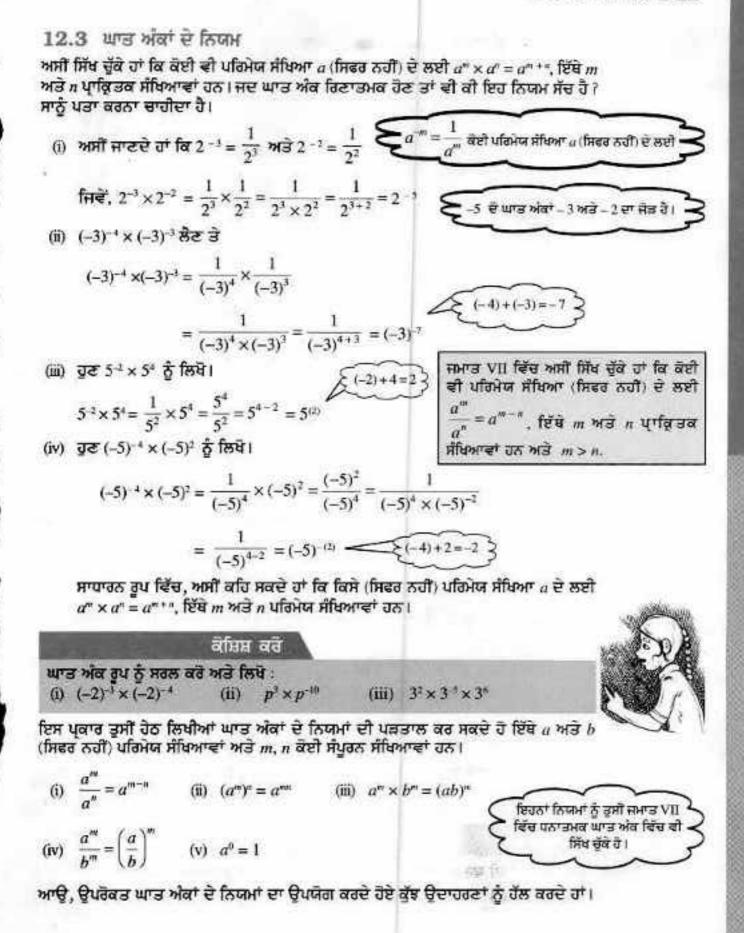

6. (i) $1 \text{ cm}^3 = 1 \text{ mL}$

- (ii) $1L = 1000 \text{ cm}^3$
 - (iii) $1 \text{ m}^3 = 1000000 \text{ cm}^3 = 1000 \text{L}$





ਸੰਖਿਆ ਨੂੰ ਆਧਾਰ 3 ਨਾਲ ਵੱਡਿਆ ਗਿਆ ਹੈ।


(v) 10-100

 $1425 = 1 \times 10^3 + 4 \times 10^2 + 2 \times 10^1 + 5 \times 10^6$ ਹੁਣ ਅਸੀਂ ਦੇਖਣਾ ਚਾਹੁੰਦੇ ਹਾਂ ਕਿ 1425.36 ਨੂੰ ਵਿਸਤ੍ਰਿਤ ਰੂਪ ਵਿੱਚ ਕਿਵੇਂ ਦਰਸਾ ਸਕਦੇ ਹਾਂ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 1425.36 = $1 \times 1000 + 4 \times 100 + 2 \times 10 + 5 \times 1 + \frac{3}{10} + \frac{3}{10}$ $= 1 \times 10^{3} + 4 \times 10^{2} + 2 \times 10 + 5 \times 1 + 3 \times 10^{-1} + 6 \times 10^{-2}$

ਕੋਸ਼ਿਸ਼ ਕਰੋ ਘਾਤ ਅੰਕਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ ਹੇਠ ਲਿਖਿਆਂ ਨੂੰ ਵਿਸਤ੍ਰਿਤ ਰੂਪ ਵਿੱਚ ਲਿਖੇ। (i) 1025.63 (ii) 1256.249

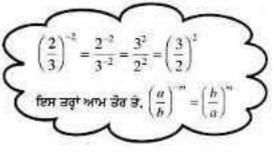
ਘਾਤ ਅੰਕ ਅਤੇ ਘਾਤ 🖩 203

204 🏢 ਗਣਿਤ

ਉਦਾਹਰਣ 1 : ਮੁੱਲ ਪਤਾ ਕਰੋ : (ii) 3.2 (i) 2⁻³ ਹੱਲ : (i) $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$ (ii) $\frac{1}{3^{-2}} = 3^2 = 3 \times 3 = 9$ ਉਦਾਹਰਣ 2 : ਸਰਲ ਕਰੋ : (i) $(-4)^5 \times (-4)^{-10}$ (ii) $2^5 + 2^{-6}$ ਹੱਲ : (i) $(-4)^5 \times (-4)^{-10} = (-4)^{15-100} = (-4)^{-5} = \frac{1}{(-4)^5} \quad (a^m \times a^n = a^{m+n} \ \text{MS} \ a^{-m} = \frac{1}{a^m})$ (ii) $2^{5} \div 2^{-n} = 2^{5-(-n)} = 2^{11}$ $(a^{n} \div a^{n} = a^{n-n})$ ਉਦਾਹਰਣ 3 : 4 ' ਨੂੰ ਘਾਤ ਅਤੇ ਉਸਦੇ ਆਧਾਰ 2 ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ। ਹੱਲ : ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੈ, 4 = 2 × 2 = 2¹ ਜਿਵੇਂ $(4)^{-3} = (2 \times 2)^{-1} = (2^2)^{-1} = 2^{2 \times (-3)} = 2^{-6}$ $[(a^m)^n = a^{nn}]$ ਉਦਾਹਰਣ 4 : ਸਰਲ ਕਰੋਂ ਅਤੇ ਉੱਤਰ ਘਾਤ ਔਕ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੇ। (i) $(2^5 + 2^8)^5 \times 2^{-5}$ (ii) $(-4)^{-3} \times (5)^{-3} \times (-5)^{-3}$ (iv) $(-3)^4 \times \left(\frac{5}{3}\right)^4$ (iii) $\frac{1}{8} \times (3)^{-3}$ ਹੱਲ : (i) $(2^5 + 2^8)^5 \times 2^{-5} = (2^{5-8})^5 \times 2^{-5} = (2^{-3})^5 \times 2^{-5} = 2^{-15-5} = 2^{-20} = \frac{1}{2^{20}}$ (ii) $(-4)^{-3} \times (5)^{-3} \times (-5)^{-3} = [(-4) \times 5 \times (-5)]^{-3} = [100]^{-3} = \frac{1}{100^3}$ [ਨਿਯਮ $a^m \times b^m = (ab)^m, a^m = \frac{1}{a^m}$] (iii) $\frac{1}{8} \times (3)^{-3} = \frac{1}{2^3} \times (3)^{-3} = 2^{-3} \times 3^{-3} = (2 \times 3)^{-3} = 6^{-3} = \frac{1}{6^3}$ (iv) $(-3)^4 \times \left(\frac{5}{3}\right)^4 = (-1 \times 3)^4 \times \frac{5^4}{3^4} = (-1)^4 \times 3^4 \times \frac{5^4}{3^4}$ $= (-1)^4 \times 5^4 = 5^4 [(-1)^4 = 1]$ ਉਦਾਹਰਣ 5 : m ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ਤਾਂ ਕਿ (-3)" ' ' × (-3)' = (-3)' $(-3)^{m+1} \times (-3)^5 = (-3)^7$ ਹੱਲ : $(-3)^{m+1+5} = (-3)^7$ a"=1 ਜੇਕਰ n=0 ਹੈ 1a=1 ਜਾ a=-1 ਦੇ $(-3)^{m+6} = (-3)^7$ ਇਲਾਵਾ ਕੋਈ ਵੀ a ਦੇ ਲਈ ਇਹ ਹੋਵੇਗਾ। ਦੋਨਾਂ ਪਾਸੇ ਦੀਆਂ ਘਾਤਾਂ ਦੇ ਆਧਾਰ ਸਮਾਨ ਹਨ ਜੋ 1 a = 1 से सभी 1³ = 1² = 1³ = 1⁻² = ਅਤੇ -1 ਤੋਂ ਭਿੰਨ ਹੈ, ਇਸ ਤਰ੍ਹਾਂ ਉਸਦੇ ਘਾਤ ਅੰਕ ... = 1 ਜਾਂ (1)" = 1 ਅਣਗਿਣਤ n ਦੇ ਲਈ। a = -1 ਦੇ ਲਈ, (-1)" = ਬਰਾਬਰ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। m + 6 = 7 H m = 7 - 6 = 1 $(-1)^2 = (-1)^2 = (-1)^{-2} = \dots = 1$ ਜ[†] ਇਸ ਤਰਾਂ (-1)^p = 1, p ਕੋਈ ਜਿਸਰ ਸੰਪੂਰਨ ਸੰਖਿਆ।

Downloaded from https:// www.studieste

(i)
$$3^{-2}$$
 (ii) $(-4)^{-2}$ (iii) $\left(\frac{1}{2}\right)$
2. ਸਰਲ ਕਰੋ ਅਤੇ ਉੱਤਰ ਨੂੰ ਧਨਾਤਮਕ ਘਾਤ ਐਕਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਓ :
(i) $(-4)^{5} + (-4)^{5}$ (ii) $\left(\frac{1}{2^{3}}\right)^{2}$
(iii) $(-3)^{4} \times \left(\frac{5}{3}\right)^{4}$ (iv) $(3^{-7} + 3^{-10}) \times 3^{-5}$ (v) $2^{-3} \times (-7)^{-3}$
3. ਮੁੱਲ ਪਤਾ ਕਰੋ :
(i) $(3^{\circ} + 4^{-1}) \times 2^{2}$ (ii) $(2^{-1} \times 4^{-1}) + 2^{-2}$ (iii) $\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}$
(iv) $(3^{-1} + 4^{-1} + 5^{-1})^{0}$ (v) $\left\{\left(\frac{-2}{3}\right)^{-2}\right\}^{2}$
4. ਮੁੱਲ ਪਤਾ ਕਰੋ : (i) $\frac{8^{-1} \times 5^{3}}{2^{-4}}$ (ii) $(5^{-1} \times 2^{-1}) \times 6^{-1}$


1. ਮੁੱਲ ਪਤਾ ਕਰੋ :

งศ์สพาห 12.1

ਉਦਾਹਰਣ 6 : $\left(\frac{2}{3}\right)^2$ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।

 $\vec{u}_{\overline{N}}$: $\left(\frac{2}{3}\right)^{-2} = \frac{2^{-2}}{3^{-2}} = \frac{3^2}{2^2} = \frac{9}{4}$

Find a 7 : Hold and 1
(i)
$$\left\{ \left(\frac{1}{3}\right)^{-2} - \left(\frac{1}{2}\right)^{-3} \right\} + \left(\frac{1}{4}\right)^{-2}$$
 (ii) $\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-5}$
(i) $\left\{ \left(\frac{1}{3}\right)^{-2} - \left(\frac{1}{2}\right)^{-3} \right\} + \left(\frac{1}{4}\right)^{-2} = \left\{ \frac{1^{-2}}{3^{-2}} - \frac{1^{-3}}{2^{-3}} \right\} + \frac{1^{-2}}{4^{-2}}$
 $= \left\{ \frac{3^2}{1^2} - \frac{2^3}{1^3} \right\} + \frac{4^2}{1^2} = \{9 - 8\} + 16 = \frac{1}{16}$
(ii) $\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-5} = \frac{5^{-7}}{8^{-7}} \times \frac{8^{-5}}{5^{-5}} = \frac{5^{-7}}{5^{-5}} \times \frac{8^{-5}}{8^{-7}} = 5^{(-7) - (-5)} \times 8^{(-5) - (-7)}$
 $= 5^{-2} \times 8^2 = \frac{8^2}{5^2} = \frac{64}{25}$

ਘਾਤ ਅੰਕ ਅਤੇ ਘਾਤ 🔳 205

diestoday com ownload

206 🔳 ਗਣਿਤ

6. ਮੁੱਲ ਪਤਾ ਕਰੋ: (i)
$$\left\{ \left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\}$$
 (ii) $\left(\frac{5}{8}\right)^{-1} \times \left(\frac{8}{5}\right)^{-1}$

7. ਸਰਲ ਕਰੋ :

- (i) $\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}}$ $(t \neq 0)$ (ii) $\frac{3^{-5} \times 10^{-3} \times 125}{5^{-7} \times 6^{-3}}$
- 12.4 ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਘਾਤ ਅੰਕਾਂ ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਦਰਸਾਉਣਾ।

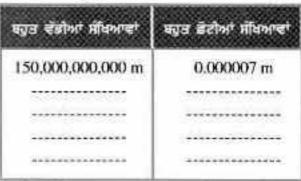
ਹੇਠ ਲਿਖੇ ਤੱਥਾਂ ਵੱਲ ਧਿਆਨ ਦਿਓ :

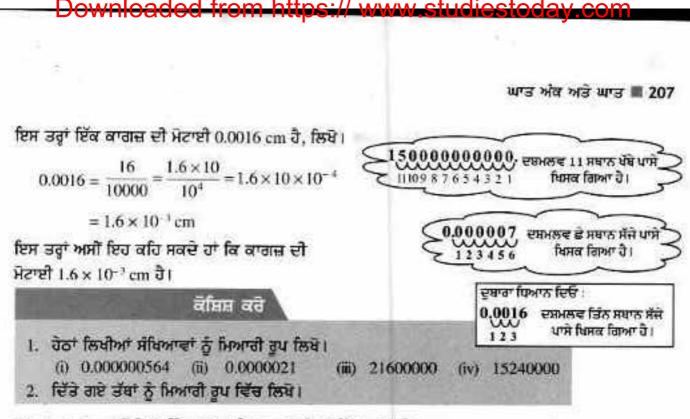
1. ਪ੍ਰਿਬਵੀ ਤੋਂ ਸੁਰਜ ਦੀ ਦੂਰੀ 149,600,000,000 m ਹੈ।

ਪ੍ਰਕਾਸ਼ ਦੀ ਗਤੀ 300,000,000 m/s ਹੈ।

- 3. ਜਮਾਤ VII ਦੀ ਗਣਿਤ ਦੀ ਕਿਤਾਬ ਦੀ ਮੋਟਾਈ 20 mm ਹੈ।
- 4. ਲਾਲ ਖੁਨ ਕੋਸ਼ਿਕਾਵਾਂ ਦਾ ਔਸਤ ਵਿਆਸ 0.000007 mm ਹੈ।
- 5. ਮਨੁੱਖ ਦੇ ਵਾਲ ਦੀ ਮੋਟਾਈ ਦੀ ਸੀਮਾ 0.005 cm ਤੋਂ 0.01 cm ਹੁੰਦੀ ਹੈ।
- 6. ਪ੍ਰਿਬਵੀ ਤੋਂ ਚੰਦਰਮਾ ਦੀ ਦੂਰੀ ਲਗਭਗ 384,467,000 m ਹੁੰਦੀ ਹੈ।
- 7. ਪੈਂਦਿਆਂ ਦੀਆਂ ਕੋਸ਼ਿਕਾਵਾਂ ਦਾ ਆਕਾਰ 0.00001275 m ਹੈ।
- 8. ਸੂਰਜ ਦਾ ਔਸਤ ਅਰਧ ਵਿਆਸ 695000 km ਹੈ।
- 9. ਸਪੇਸ ਸ਼ਟਲ ਵਿੱਚ ਠੋਸ ਰਾੱਕਟ ਬੁਸਟਰ ਨੂੰ ਧੱਕਣ ਲਈ ਬਾਲਣ ਦਾ ਪੁੰਜ 503600 kg ਹੈ।
- 10. ਇੱਕ ਕਾਗਜ਼ ਦੀ ਮੋਟਾਈ 0.0016 cm ਹੈ।
- 11. ਕੰਪਿਊਟਰ ਚਿਪ ਦੇ ਇੱਕ ਤਾਰ ਦਾ ਵਿਆਸ 0.000003 m ਹੈ।
- 12. ਮਾਊਂਟ ਐਵਰਸਟ ਦੀ ਉਚਾਈ 8848 m ਹੈ।

ਧਿਆਨ ਦਿਓ ਕਿ ਇੱਥੇ ਕੁਝ ਸੰਖਿਆਵਾਂ ਅਸੀਂ ਪੜ੍ਹ ਸਕਦੇ ਹਾਂ ਜਿਵੇਂ ਕਿ 2 cm. 8848 m, 6.95,000 km ;


ਇੱਥੇ ਕੁੱਝ ਵੱਡੀਆਂ ਸੰਖਿਆਵਾਂ ਹਨ। ਜਿਵੇਂ ਕਿ 150,000,000,000 m ਅਤੇ ਕੁੱਝ ਬਹੁਤ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਹਨ ਜਿਵੇਂ 0.000007 m ।


ਉਪਰੋਕਤ ਤੱਥਾਂ ਦੇ ਆਧਾਰ ਤੇ ਬਹੁਤ ਵੱਡੀਆਂ ਅਤੇ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਦੀ ਪਹਿਚਾਣ ਕਰੋ ਅਤੇ ਨਾਲ ਦਿੱਤੀ ਸਾਰਣੀ ਵਿੱਚ ਲਿਖੋ।

ਪਿਛਲੀ ਜਮਾਤ ਵਿੱਚ ਅਸੀਂ ਸਿੱਖਿਆ ਕਿ ਕਿਸੇ ਬਹੁਤ ਵੱਡੀ ਸੰਖਿਆ ਨੂੰ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਕਿਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।

ਉਦਾਹਰਣ ਦੇ ਲਈ 150,000,000,000 = 1.5 × 10¹¹। ਹੁਣ ਅਸੀਂ 0.000007 ਨੂੰ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਦਰਸਾਉਂਦੇ ਹਾਂ।

$$0.000007 = \frac{7}{1000000} = \frac{7}{10^6} = 7 \times 10^{-6}$$
$$0.000007 \text{ m} = 7 \times 10^{-6} \text{ m}$$

12.4.1 ਬਹੁਤ ਵੱਡੀਆਂ ਸੱਖਿਆਵਾਂ ਅਤੇ ਬਹੁਤ ਛੋਟੀਆਂ ਸੱਖਿਆਵਾਂ ਦੀ ਤੁਲਨਾ

ਸੂਰਜ ਦਾ ਵਿਆਸ 1.4 × 10° m ਅਤੇ ਪ੍ਰਿਥਵੀ ਦਾ ਵਿਆਸ 1.2756 × 10⁷ m ਹੈ। ਅਸੀਂ ਇਹਨਾਂ ਦੇ ਵਿਆਸਾਂ ਦੀ ਤੁਲਨਾ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਾਂ। ਸੂਰਜ ਦਾ ਵਿਆਸ = 1.4 × 10° m; ਪ੍ਰਿਥਵੀ ਦਾ ਵਿਆਸ = 1.2756 × 10° m

ਇਸ ਤਰ੍ਹਾਂ $\frac{1.4 \times 10^9}{1.2756 \times 10^7} = \frac{1.4 \times 10^{9-7}}{1.2756} = \frac{1.4 \times 100}{1.2756}$ ਜੋ ਕਿ ਲਗਭਗ 100 ਗੁਣਾ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ, ਸੂਰਜ ਦਾ ਵਿਆਸ, ਪ੍ਰਿਬਵੀ ਦੇ ਵਿਆਸ ਦਾ ਲਗਭਗ 100 ਗੁਣਾ ਹੈ। ਲਾਲ ਖੂਨ ਕੋਸ਼ਿਕਾਵਾਂ ਜੋ ਕਿ 0.000007 m ਮਾਪ ਦੀਆਂ ਹਨ ਅਤੇ ਪੌਦਿਆਂ ਦੀਆਂ ਕੋਸ਼ਿਕਾਵਾਂ ਜੋ ਕਿ 0.00001275 m ਮਾਪ ਦੀਆਂ ਹਨ, ਇਸਦੇ ਮਾਪਾਂ ਦੀ ਤੁਲਨਾ ਕਰੋ।

ਲਾਲ ਖੂਨ ਕੋਸ਼ਿਕਾਵਾਂ ਦਾ ਆਕਾਰ = 0.000007 m = 7 × 10⁻⁵ m

ਪੈਂਦਿਆਂ ਦੀਆਂ ਕੋਸ਼ਿਕਾਵਾਂ ਦਾ ਆਕਾਰ = 0.00001275 m = 1.275 × 10⁻³ m

fex эд[†], $\frac{7 \times 10^{-6}}{1.275 \times 10^{-5}} = \frac{7 \times 10^{-6-(-5)}}{1.275} = \frac{7 \times 10^{-1}}{1.275} = \frac{0.7}{1.275} = \frac{0.7}{1.3} = \frac{1}{2}$ (жалэат)

ਇਸ ਤਰ੍ਹਾਂ ਲਾਲ ਖੂਨ ਕੋਸ਼ਿਕਾਵਾਂ ਆਕਾਰ ਵਿੱਚ, ਪੌਦਿਆਂ ਦੀਆਂ ਕੋਸ਼ਿਕਾਵਾਂ ਦੀਆਂ ਲਗਭਗ ਅੱਧੀਆਂ ਹਨ।

ਪ੍ਰਿਬਵੀ ਦਾ ਪੁੰਜ 5.97 × 10²⁴ kg ਅਤੇ ਚੰਦਰਮਾ ਦਾ ਪੁੰਜ 7.35 × 10²² kg ਹੈ । ਦੋਨਾਂ ਦਾ ਕੁੱਲ ਪੁੰਜ ਕੀ ਹੋਵੇਗਾ ?

> ਕੁੱਲ ਪੁੱਜ = 5.97 × 10²⁴ kg + 7.35 × 10²² kg = 5.97 × 100 × 10²² + 7.35 × 10²² = 597 × 10²² + 7.35 × 10²²

 $= (597 + 7.35) \times 10^{22} = 604.35 \times 10^{22} \text{ kg}$

ਜਦ ਅਸੀਂ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜਦੇ ਹਾਂ ਡਦ ਅਸੀਂ ਇਹਨਾਂ ਨੂੰ 10 ਦੀਆਂ ਸਮਾਨ ਘਾਤ ਵਿੱਚ ਬਦਲਦੇ ਹਾਂ।

ਸੂਰਜ ਅਤੇ ਪ੍ਰਿਥਵੀ ਦੇ ਵਿੱਚ ਦੀ ਦੂਰੀ 1.496 × 10¹¹ m ਅਤੇ ਪ੍ਰਿਥਵੀ ਅਤੇ ਚੰਦਰਮਾ ਦੇ ਵਿੱਚ ਦੀ ਦੂਰੀ 3.84 × 10⁸ m ਹੈ।ਸੂਰਜ ਗ੍ਰਹਿਣ ਦੇ ਦੌਰਾਨ ਚੰਦਰਮਾ ਪ੍ਰਿਥਵੀ ਅਤੇ ਸੂਰਜ ਦੇ ਵਿੱਚ ਆ ਜਾਂਦਾ ਹੈ। ਇਸ ਸਮੇਂ ਚੰਦਰਮਾ ਅਤੇ ਸਰਜ ਦੇ ਵਿੱਚ ਦੂਰੀ ਕਿੰਨੀ ਹੁੰਦੀ ਹੈ?

ਸਰਜ ਅਤੇ ਪ੍ਰਿਥਵੀ ਦੇ ਵਿੱਚ ਦੀ ਦੂਰੀ =1.496 × 10¹¹ m

ਪ੍ਰਿਥਵੀ ਅਤੇ ਚੰਦਰਮਾ ਦੇ ਵਿੱਚ ਦੀ ਦੂਰੀ = 3.84 × 10⁸ m

208 🔳 ਗਣਿਤ

(a)

ਅਧਿਆਇ

tudiestodav,com

ਸਿੱਧਾ ਅਤੇ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ

13.1 **ਭ**ਮਿਕਾ

ਮੋਹਨ ਸਵੇਰੇ ਆਪਣੇ ਅਤੇ ਆਪਣੀ ਭੈਣ ਲਈ ਚਾਹ ਬਣਾਉਂਦਾ ਹੈ। ਉਹ 300 mL ਪਾਣੀ, 2 ਚਮਚ ਖੰਡ, 1 ਚਮਚ ਚਾਹ – ਪੱਤੀ ਅਤੇ 50 mL ਦੁੱਧ ਦੀ ਵਰਤੋਂ ਕਰਦਾ ਹੈ। ਜੇਕਰ ਉਹ ਪੰਜ ਵਿਅਕਤੀਆਂ ਦੇ ਲਈ ਚਾਹ ਬਣਾਵੇ, ਤਾਂ ਹਰੇਕ ਵਸਤੂ ਦੀ ਕਿੰਨੀ ਮਾਤਰਾ ਦੀ ਜ਼ਰਰਤ ਹੋਵੇਗੀ?

ਜੇਕਰ ਦੋ ਵਿਦਿਆਰਥੀ ਕਿਸੇ ਸਭਾ ਦੇ ਲਈ ਕੁਰਸੀਆਂ ਨੂੰ ਤਰਤੀਬ ਵਿੱਚ ਕਰਨ ਲਈ 20 ਮਿੰਟ ਦਾ ਸਮਾਂ ਲਗਾਉਂਦੇ ਹਨ, ਤਾਂ ਇਸ ਕੰਮ ਨੂੰ ਕਰਨ ਵਿੱਚ 5 ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਕਿੰਨਾ ਸਮਾਂ ਲੱਗੇਗਾ?

ਸਾਨੂੰ ਆਪਣੇ ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਅਨੇਕ ਸਥਿਤੀਆਂ ਦਾ ਸਾਹਮਣਾ

ਕਰਨਾ ਪੈਂਦਾ ਹੈ, ਇੱਥੇ ਸਾਨੂੰ ਇਹ ਦੇਖਣਾ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਇੱਕ ਰਾਸ਼ੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋਣ ਨਾਲ ਦੂਸਰੀ ਰਾਸ਼ੀ ਵਿੱਚ ਵੀ ਪਰਿਵਰਤਨ ਹੋ ਰਿਹਾ ਹੈ।

ਉਦਾਹਰਣ ਲਈ :

- (i) ਜੇਕਰ ਖਰੀਦੀਆਂ ਗਈਆਂ ਵਸਤੂਆਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਉਸ ਦੋ ਮੁੱਲ ਵਿੱਚ ਵੀ ਵਾਧਾ ਹੁੰਦਾ ਹੈ।
- (ii) ਬੈਂਕ ਵਿੱਚ ਜਿੰਨੀ ਧਨ ਰਾਸ਼ੀ ਜ਼ਿਆਦਾ ਜਮ੍ਹਾਂ ਕੀਤੀ ਜਾਵੇਗੀ, ਓਨਾ ਹੀ ਜ਼ਿਆਦਾ ਵਿਆਜ਼ ਮਿਲੇਗਾ।
- (iii) ਜੇ ਕਿਸੇ ਵਾਹਨ ਦੀ ਚਾਲ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਉਸਦੇ ਦੁਆਰਾ ਉਹੀ ਦੂਰੀ ਤੈਅ ਕਰਨ ਦੇ ਲਈ ਲਏ ਗਏ ਸਮੇਂ ਵਿੱਚ ਕਮੀ ਹੁੰਦੀ ਹੈ।
- (iv) ਇੱਕ ਦਿੱਤੇ ਹੋਏ ਕੰਮ ਦੇ ਲਈ, ਜਿੰਨੇ ਜ਼ਿਆਦਾ ਆਦਮੀ ਕੰਮ ਤੇ ਲਗਾਏ ਜਾਣਗੇ, ਓਨਾ ਹੀ ਉਸ ਕੰਮ ਨੂੰ ਕਰਨ ਵਿੱਚ ਘੱਟ ਸਮਾਂ ਲੱਗੇਗਾ।

ਧਿਆਨ ਦਿਓ ਕਿ ਇੱਕ ਰਾਸ਼ੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋਣ ਨਾਲ ਦੂਸਰੀ ਰਾਸ਼ੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋ ਰਿਹਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਪੰਜ ਹੋਰ ਸਥਿਤੀਆਂ ਲਿਖੋ, ਜਿੱਥੇ ਇੱਕ ਰਾਸ਼ੀ ਵਿੱਚ ਪਰਿਵਰਤਨ ਹੋਣ ਤੋ ਦਸਰੀ ਰਾਸ਼ੀ ਵਿੱਚ ਵੀ ਪਰਿਵਰਤਨ ਹੁੰਦਾ ਹੈ।

ਮੋਹਨ ਦੁਆਰਾ ਜ਼ਰੂਰੀ ਹਰੇਕ ਲੋੜੀਂਦੀ ਵਸਤੂ ਦੀ ਮਾਤਰਾ ਅਸੀਂ ਕਿਸ ਤਰ੍ਹਾਂ ਪਤਾ ਕਰਦੇ ਹਾਂ ? ਜਾਂ ਪੰਜ ਵਿਦਿਆਰਥੀਆਂ ਦੁਆਰਾ ਕੰਮ ਪੂਰਾ ਕਰਨ ਦੇ ਲਈ ਸਮੇਂ ਦਾ ਕਿਸ ਤਰ੍ਹਾਂ ਪਤਾ ਕਰੋਗੇ ? ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦੇਣ ਦੇ ਲਈ, ਅਸੀਂ ਹੁਣ ਕੁੱਝ ਪਰਿਵਰਤਨ (variation) ਦੇ ਸੰਕਲਪਾਂ ਦਾ ਅਧਿਐਨ ਕਰਾਂਗੇ।

13.2 ਸਿੱਧਾ ਸਮਾਨ ਅਨੁਪਾਤ

ਜੇਕਰ 1 kg ਖੰਡ ਦਾ ਮੁੱਲ ₹ 18 ਹੈ, ਤਾਂ 3 kg ਖੰਡ ਦਾ ਮੁੱਲ ਕੀ ਹੋਵੇਗਾ? ਇਹ ₹ 54 ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਅਸੀਂ 5 kg ਜਾਂ 8 kg ਖੰਡ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰ ਸਕਦੇ ਹਾਂ।

210 🔳 ਗਣਿਤ

ਧਿਆਨ ਦਿਓ ਕਿ ਜਿਵੇਂ -ਜਿਵੇਂ ਖੰਡ ਦੇ ਭਾਰ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਤਿਵੇਂ-ਤਿਵੇਂ ਉਸਦੇ ਮੁੱਲ ਵਿੱਚ ਵੀ ਇਸ ਤਰ੍ਹਾਂ ਵਾਧਾ ਹੁੰਦਾ ਹੈ ਕਿ ਇਸਦਾ ਅਨੁਪਾਤ (ratio) ਅਚਲ ਰਹਿੰਦਾ ਹੈ।

ਇੱਕ ਹੋਰ ਉਦਾਹਰਣ ਲਓ।ਮੰਨ ਲਵੇਂ ਇੱਕ ਕਾਰ 60 km ਦੀ ਦੂਰੀ ਤੈਅ ਕਰਨ ਤੇ 4 ਲਿਟਰ ਪੈਟਰੋਲ ਦਾ ਉਪਯੋਗ ਕਰਦੀ ਹੈ ਤਾਂ ਉਹ 12 ਲਿਟਰ ਪੈਟਰੋਲ ਵਿੱਚ ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕਰੇਗੀ? ਇਸਦਾ ਉੱਤਰ 180 km ਹੈ। ਅਸੀਂ ਇਸ ਦੀ ਕਿਸ ਤਰ੍ਹਾਂ ਗਣਨਾ ਕੀਤੀ? ਕਿਉਂਕਿ ਦੁਸਰੀ

ਸਥਿਤੀ ਵਿੱਚ 12 ਲਿਟਰ, ਭਾਵ 4 ਲਿਟਰ ਦਾ ਤਿੰਨ ਗੁਣਾ ਪੈਟਰੋਲ ਉਪਯੋਗ ਹੁੰਦਾ ਹੈ, ਇਸ ਲਈ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਵੀ 60 km ਦੀ ਤਿੰਨ ਗੁਣਾ ਹੋਵੇਗੀ। ਦੂਸਰੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਜੇ ਪੈਟਰੋਲ ਦੀ ਖਪਤ ਤਿੰਨ ਗੁਣਾ ਹੋਵੇਗੀ, ਤਾਂ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਵੀ ਪਹਿਲੀ ਦੂਰੀ ਤੋਂ ਤਿੰਨ ਗੁਣਾ ਹੋਵੇਗੀ। ਮੰਨ ਲਵੇ ਕਿ ਪੈਟਰੋਲ ਦੀ ਖਪਤ x ਲਿਟਰ ਹੈ ਅਤੇ ਤੈਅ ਕੀਤੀ ਗਈ ਅਨੁਸਾਰੀ ਦੂਰੀ y km ਹੈ। ਹੁਣ ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਨੂੰ ਪੂਰਾ ਕਰੋ :

ਪੈਟਰੋਲ (x) ਲਿਟਰ ਵਿੱਚ	4	8	12	15	20	25
ਦुवी (y) km ਵਿੱਚ	60	244	180			

ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਜੇ x ਦੇ ਮੁੱਲ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਤਾਂ y ਦੇ ਮੁੱਲ ਵਿੱਚ ਵੀ ਇਸ ਤਰ੍ਹਾਂ ਵਾਧਾ ਹੁੰਦਾ ਹੈ ਕਿ ਅਨੁਪਾਤ $rac{x}{y}$ ਵਿੱਚ ਕੋਈ ਬਦਲਾਓ ਨਹੀਂ ਆਉਂਦਾ ਹੈ। ਇਹ ਅਚਲ (ਮੰਨ ਲਵੇ k) ਰਹਿੰਦਾ ਹੈ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ ਇਹ $rac{1}{15}$ ਹੈ, (ਇਸਦੀ ਪੜਤਾਲ ਕਰੋ)।

ਜੇ $\frac{x}{y} = k$ ਜਾਂ x = ky ਹੋਵੇ, ਤਾਂ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ x ਅਤੇ y ਵਿੱਚ ਸਿੱਧਾ ਜਾਂ ਪ੍ਰਤੱਖ ਸਮਾਨ ਅਨੁਪਾਤ (direct proportion) ਹੈ, ਭਾਵ ਉਹ ਸਮਾਨ ਅਨੁਪਾਤੀ (directly proportional) ਹੈ। ਇਸ ਉਦਾਹਰਣ ਤੋਂ, $\frac{4}{60} = \frac{12}{180}$ ਇੱਥੇ 4 ਅਤੇ 12 ਪੈਟਰੋਲ ਦੇ ਖਪਤ ਦੀ ਲਿਟਰ ਵਿੱਚ ਮਾਤਰਾਵਾਂ (x) ਹੈ ਅਤੇ 60 ਅਤੇ 180 km ਵਿੱਚ ਦੂਰੀਆਂ (y) ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਜੇ x ਅਤੇ y ਵਿੱਚ ਪ੍ਰਤੱਖ ਜਾਂ ਸਿੱਧਾ ਸਮਾਨ ਅਨੁਪਾਤ ਹੁੰਦਾ ਹੈ ਤਾਂ, ਅਸੀਂ $\frac{x_1}{y_1} = \frac{x_2}{y_2}$ ਲਿਖ ਸਕਦੇ ਹਾਂ। $[x \in ਮੁੱਲਾਂ x_1, x_2]$ ਦੇ ਲਈ y ਦੇ ਸੰਗਤ ਮੁੱਲ ਕ੍ਰਮਵਾਰ y_1, y_2 ਹਨ I)

ਪੈਟਰੋਲ ਦੀ ਖਪਤ ਅਤੇ ਇੱਕ ਕਾਰ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਇੱਕ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਦੀ ਸਥਿਤੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਖਰਚ ਕੀਤੀ ਗਈ ਕੁੱਲ ਧਨ ਰਾਸ਼ੀ ਅਤੇ ਖਰੀਦੀਆਂ ਗਈਆਂ ਵਸਤੂਆਂ ਦੀ ਸੰਖਿਆ ਵੀ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਦੀ ਇੱਕ ਉਦਾਹਰਣ ਹੈ।

ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਦੀਆਂ ਕੁੱਝ ਹੋਰ ਉਦਾਹਰਣਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸੌਚੋ। ਪੜਤਾਲ ਕਰੋ ਕਿ ਕੀ ਮੋਹਨ (ਸ਼ੁਰੂਆਤੀ ਉਦਾਹਰਣ ਵਿੱਚ) ਪੰਜ ਵਿਅਕਤੀਆਂ ਦੇ ਲਈ ਚਾਹ ਬਣਾਉਣ ਦੇ ਲਈ 750 mL ਪਾਣੀ,

ਸਿੱਧਾ ਅਤੇ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ 🔳 211

5 ਚਮਚ ਖੰਡ, 2 $\frac{1}{2}$ ਚਮਚ ਚਾਹ ਪੱਤੀ, 125 mL ਦੁੱਧ ਦੀ ਵਰਤੋਂ ਕਰੋਗਾ। ਆਓ, ਹੇਠਾਂ ਲਿਖੀ ਕਿਰਿਆ ਦੀ ਸਹਾਇਤਾ ਨਾਲ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਦੇ ਸੰਕਲਪ ਨੂੰ ਜ਼ਿਆਦਾ ਸਮਝਣ ਦਾ ਯਤਨ ਕਰੀਏ।

rem https://www.studiestod/

ਇਹਨਾਂ ਨੂੰ ਕਰੋ

- ਇੱਕ ਘੜੀ ਲਵੇ ਅਤੇ ਉਸਦੀ ਮਿੰਟਾਂ ਵਾਲੀ (ਵੱਡੀ) ਸਈ ਨੂੰ 12 'ਤੇ ਸਥਿਤ ਕਰੋ।
 - ਮਿੰਟ ਦੀ ਸੂਈ ਦੁਆਰਾ ਆਪਣੀ ਅਰੰਭਿਕ ਸਥਿਤੀ ਤੋਂ ਘੁੰਮੇ ਗਏ ਕੋਣਾਂ ਅਤੇ ਬੀਤੇ ਹੋਏ ਸਮੇਂ ਨੂੰ ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਦੇ ਰਪ ਵਿੱਚ ਲਿਖੋ :

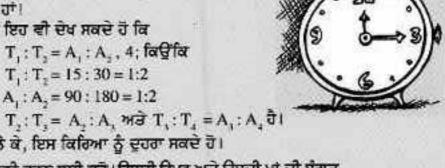
ਬਤੀਤ ਹੋਇਆ ਸਮਾਂ	(T ₁)	(T ₂)	(T _y)	(T4)
(T) (ਮਿੰਟਾਂ ਵਿੱਚ)	15	30	45	60
ਘੁੰਮਿਆ ਗਿਆ ਕੋਣ (A)	(A ₁)	(A ₂)	(A,)	(A,)
(ਡਿਗਰੀ ਵਿੱਚ)	90			
			Tana	-14

ਤਸੀਂ T ਅਤੇ ∧ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੀ ਦੇਖਦੇ ਹਾਂ? ਕੀ ਇਸ ਵਿੱਚ ਨਾਲ-ਨਾਲ

ਵਾਧਾ ਹੁੰਦਾ ਹੈ ? ਕੀ 🕺 ਹਰੇਕ ਸਮਾਂ ਉਹ ਹੀ ਰਹਿੰਦਾ ਹੈ ? ਕੀ ਮਿੰਟ ਦੀ ਸੂਈ ਦੁਆਰਾ ਘੁੰਮਿਆ ਗਿਆ ਕੋਣ ਬਤੀਤ ਹੋਏ ਸਮੇਂ ਦੇ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤੀ (directly proportional) ਹੈ ? ਹਾਂ।

ਉਪਰੋਕਤ ਸਾਰਣੀ ਵਿੱਚ, ਤੁਸੀਂ ਇਹ ਵੀ ਦੇਖ ਸਕਦੇ ਹੋ ਕਿ

$$T_1: T_2 = A_1: A_2, 4;$$
 for g for
 $T_1: T_2 = 15: 30 = 1:2$
 $A_1: A_2 = 90: 180 = 1:2$


ਪੜਤਾਲ ਕਰੋ ਕਿ ਕੀ

ਤੁਸੀਂ ਖ਼ੁਦ ਆਪਣੇ ਸਮੇਂ-ਅੰਤਰਾਲ ਲੈ ਕੇ, ਇਸ ਕਿਰਿਆ ਨੂੰ ਦੁਹਰਾ ਸਕਦੇ ਹੋ।

(ii) ਆਪਣੇ ਮਿੱਤਰ ਨੂੰ ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਭਰਨ ਲਈ ਕਹੋ। ਉਸਦੀ ਉਮਰ ਅਤੇ ਉਸਦੀ ਮਾਂ ਦੀ ਸੰਗਤ ਉਮਰ ਦਾ ਅਨੁਪਾਤ ਪਤਾ ਕਰਨ ਦੇ ਲਈ ਵੀ ਕਹੇ।

	ਪੰਜ ਸਾਲ ਪਹਿਲਾਂ ਦੀ ਉਮਰ	ਵਰਤਮਾਨ ਉਮਰ	ਪੰਜ ਸਾਲ ਦੇ ਬਾਅਦ ਦੀ ਉਮਰ
ਮਿੱਤਰ ਦੀ ਉਮਰ (F)			
ਮਾਂ ਦੀ ਉਮਰ (M)			
F			
M			

ਤਸੀਂ ਕੀ ਦੇਖਿਆ ਹੈ ? ਕੀ F ਅਤੇ M ਵਿੱਚ ਨਾਲ-ਨਾਲ ਵਾਧਾ (ਜਾਂ ਕਮੀ) ਹੁੰਦੀ ਹੈ ? 📊 ਹਰੇਕ ਵਾਰੀ ਉਹ ਹੀ ਹੈ ? ਨਹੀਂ। ਤੁਸੀਂ ਇਸ ਕਿਰਿਆ ਨੂੰ ਆਪਣੇ ਹੋਰ ਮਿੱਤਰਾਂ ਦੇ ਨਾਲ ਦੁਹਰਾ ਸਕਦੇ ਹੋ ਅਤੇ ਆਪਣੇ ਨਿਰੀਖਣਾਂ ਨੂੰ ਲਿਖ ਸਕਦੇ ਹਾਂ।

212 🔳 ਗਣਿਤ

)ownloaded_trom_https://

ਇਸ ਤਰ੍ਹਾਂ, ਇਹ ਜ਼ਰੂਰੀ ਨਹੀਂ ਹੈ ਕਿ ਨਾਲ-ਨਾਲ ਵੱਧਦੇ (ਜਾਂ ਘੱਟਣ) ਵਾਲੇ ਚਲ ਹਮੇਸ਼ਾ ਸਿੱਧੇ ਅਨੁਪਾਤ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹੀ ਹੋਣ। ਉਦਾਹਰਣ ਦੇ ਲਈ :

- (i) ਮਨੁੱਖਾਂ ਵਿੱਚ ਭੌਤਿਕ ਪਰਿਵਰਤਨ ਸਮੇਂ ਦੇ ਨਾਲ ਹੁੰਦੇ ਰਹਿੰਦੇ ਹਨ, ਪਰ ਜ਼ਰੂਰੀ ਨਹੀਂ ਕਿ ਇਹ ਇੱਕ ਪਹਿਲਾਂ ਨਿਰਧਾਰਿਤ ਅਨੁਪਾਤ ਵਿੱਚ ਹੀ ਹੋਣ।
- (ii) ਵਿਅਕਤੀਆਂ ਦੇ ਭਾਰ ਅਤੇ ਲੰਬਾਈ ਵਿੱਚ ਪਰਿਵਰਤਨ ਕਿਸੇ ਖਾਸ ਅਨੁਪਾਤ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦੇ ਹਨ।
- (iii) ਕਿਸੇ ਦਰੱਖਤ ਦੀ ਉਚਾਈ ਅਤੇ ਉਸਦੀਆਂ ਟਹਿਣੀਆਂ ਤੇ ਉੱਗਣ ਵਾਲੀਆਂ ਪੱਤੀਆਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਸਿੱਧਾ ਸੰਬੰਧ ਜਾਂ ਅਨੁਪਾਤ ਨਹੀਂ ਹੁੰਦਾ ਹੈ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

 ਹੇਠਾਂ ਲਿਖੀਆਂ ਸਾਰਣੀਆਂ ਨੂੰ ਦੇਖੋ ਤੇ ਪਤਾ ਕਰੋ ਕਿ ਕੀ x ਅਤੇ y ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹਨ।

(i)	a	20	17	14	-11	8	5	2
	y	40	34	28	22	16	10	4
(ii)	(x	6	10	14	18	22	26	30
	(Y	4	8	12	16	20	24	28
i)	x	5	8	12	15	18	20	ŕ
	y	15	24	36	60	72	100	

 ਮੂਲਧਨ = ₹ 1000, ਵਿਆਜ ਦਰ = 8% ਸਲਾਨਾ। ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਨੂੰ ਭਰੋ ਅਤੇ ਪਤਾ ਕਰੋ ਕਿ, ਕਿਸ ਤਰ੍ਹਾਂ ਦਾ ਵਿਆਜ (ਸਧਾਰਨ ਜਾਂ ਮਿਸ਼ਰਿਤ) ਸਮਾਂ ਔਤਰਾਲ ਦੇ ਨਾਲ ਸਿੱਧੇ ਅਨੁਪਾਤ ਵਿੱਚ ਬਦਲਦਾ ਹੈ।

1	ਸਮਾਂ ਕਾਲ/ਅੰਤਰਾਲ	1 ਸਾਲ	2 ਸਾਲ	3 ਸਾਲ
٦	ਸਧਾਰਨ ਵਿਆਜ (ਰੁਪਏ ਵਿੱਚ)			1
-	ਮਿਸ਼ਰਿਤ ਵਿਆਜ (ਰੁਪਏ ਵਿੱਚ)			1

ਸੋਚੋ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ

 $P \times r \times t$

100

1+

ਜੇ ਅਸੀਂ ਸਮੇਂ ਅੰਤਰਾਲ ਅਤੇ ਵਿਆਜ ਦੀ ਦਰ ਸਥਿਰ ਰੱਖੀਏ, ਤਾਂ ਸਧਾਰਨ ਵਿਆਜ ਮੁਲਧਨ ਦੇ ਨਾਲ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਬਦਲਦਾ ਹੈ। ਕੀ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਸੰਬੰਧ ਮਿਸ਼ਰਿਤ ਵਿਆਜ ਦੇ ਲਈ ਵੀ ਸੰਭਵ ਹੋਵੇਗਾ? ਕਿਉਂ?

ਆਓ, ਹੁਣ ਕੁੱਝ ਉਦਾਹਰਣਾਂ ਹੱਲ ਕਰੀਏ, ਇੱਥੇ ਅਸੀਂ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਦੇ ਸੰਕਲਪ ਦਾ ਪ੍ਰਯੋਗ ਕਰਾਂਗੇ।

ਉਦਾਹਰਣ 1 : ਇੱਕ ਵਿਸ਼ੇਸ਼ ਪ੍ਰਕਾਰ ਦੇ 5 ਮੀਟਰ ਕੱਪੜੇ ਦਾ ਮੁੱਲ ₹ 210 ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ 2,4,10 ਅਤੇ 13 ਮੀਟਰ ਦੇ ਕੱਪੜੇ ਦੇ ਲਈ ਇੱਕ ਸਾਰਣੀ ਬਣਾਓ।

ਹੱਲ : ਮੈਨ ਲਵੇ ਕਿ ਕੱਪੜੇ ਦੀ ਲੰਬਾਈ x ਮੀਟਰ ਹੈ ਅਤੇ ਉਸਦਾ ਮੁੱਲ (ਵ ਵਿੱਚ) y ਹੈ।

x	2	2 4		10	13
y	<i>y</i> 2	y,	210	<i>y</i> ₄	y,

ਸਿੱਧਾ ਅਤੇ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ 🔳 213

ਜਿਵੇਂ - ਜਿਵੇਂ ਕੱਪੜੇ ਦੀ ਲੰਬਾਈ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਉਸਦੇ ਮੁੱਲ ਵਿੱਚ ਵੀ ਉਸੇ ਅਨੁਪਾਤ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਇੱਕ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਦੀ ਸਥਿਤੀ ਹੈ।

$$\begin{aligned} \text{wff} \quad \frac{x_1}{y_1} = \frac{x_2}{y_2} \quad \text{ead} \quad \dot{\text{y}} \dot{\text{ku}} \text{ er } \dot{\text{g}} \textbf{u} \ddot{\text{u}} \text{ a de} \vec{\text{e}} \vec{\text{u}}^{\dagger} \text{ 1} \\ \text{(i)} \quad \vec{\text{E}} \vec{\text{u}} \quad x_1 = 5, \quad y_1 = 210 \quad \text{wf} \vec{\text{s}} \quad x_2 = 2 \quad \vec{0} \text{ 1} \\ \vec{\text{E}} \textbf{p} \quad \text{sagt} \quad \frac{x_1}{y_1} = \frac{x_2}{y_2} \quad \vec{\text{e}} \vec{\text{e}} \vec{\text{e}} \vec{\text{w}} \vec{\text{m}} \frac{5}{210} = \frac{2}{y_2} \quad \textbf{u} \text{uss} \vec{\text{g}} \vec{\text{e}} \vec{\text{v}} \vec{\text{b}} \text{ 1} \\ \vec{\text{H}} \vec{\text{e}}^{\dagger} \vec{\text{fa}}, \quad 5y_2 = 2 \times 210 \quad \vec{\text{H}}^{\dagger} \quad y_2 = \frac{2 \times 210}{5} = 84 \end{aligned}$$

$$(\text{ii)} \quad \vec{\text{H}} \vec{\text{e}} \quad x_3 = 4, \quad \vec{\text{s}}^{\dagger} \quad \frac{5}{210} = \frac{4}{y_3} \quad \vec{\text{H}}^{\dagger} \quad 5y_3 = 4 \times 210 \quad \vec{\text{H}}^{\dagger} \quad y_3 = \frac{4 \times 210}{5} = 168 \end{aligned}$$

$$(\vec{\text{a}} \text{ wff} \quad \vec{\text{E}} \vec{\text{u}} \quad \frac{x_2}{y_2} = \frac{x_3}{y_3} \quad \vec{\text{er}} \quad \vec{\text{g}} \textbf{u} \vec{\text{u}} \vec{\text{a}} \vec{\text{a}} \vec{\text{m}} \vec{\text{s}} y_3 = 4 \times 210 \quad \vec{\text{H}}^{\dagger} \quad y_3 = \frac{4 \times 210}{5} = 168 \end{aligned}$$

$$(\vec{\text{a}} \text{ wff} \quad \vec{\text{E}} \vec{\text{u}} \quad \frac{x_2}{y_2} = \frac{x_3}{y_3} \quad \vec{\text{er}} \quad \vec{\text{g}} \textbf{u} \vec{\text{u}} \vec{\text{a}} \vec{\text{a}} \vec{\text{a}} \vec{\text{c}} \vec{\text{u}} \end{aligned}$$

$$(\text{ii)} \quad \vec{\text{H}} \vec{\text{e}} \quad x_4 = 10, \quad \vec{\text{s}}^{\dagger} \quad \frac{5}{210} = \frac{10}{y_4} \quad \vec{\text{H}}^{\dagger} \quad 5 \times y_4 = 10 \times 210 \quad \vec{\text{H}}^{\dagger} \quad y_4 = \frac{10 \times 210}{5} = 420 \end{aligned}$$

$$(\text{iv)} \quad \vec{\text{H}} \vec{\text{e}} \quad x_5 = 13, \quad \vec{\text{s}}^{\dagger} \quad \frac{5}{210} = \frac{13}{y_5} \quad \vec{\text{H}}^{\dagger} \quad 5 \times y_5 = 13 \times 210 \quad \vec{\text{H}}^{\dagger} \quad y_3 = \frac{13 \times 210}{5} = 546 \end{aligned}$$

$$(\vec{\text{I}} \text{wns} \quad \vec{\text{E}} \vec{\text{b}} \quad \vec{\text{a}} \vec{\text{M}}^{\dagger} \quad \frac{5}{210} \quad \vec{\text{s}} \quad \vec{\text{h}}^{\dagger} \quad 5 \times y_5 = 13 \times 210 \quad \vec{\text{H}}^{\dagger} \quad \frac{4}{168} \quad \vec{\text{H}}^{\dagger} \quad \frac{10}{420} \quad \vec{\text{er}} \quad \vec{\text{e}} \quad \vec{\text{g}} \text{u} \vec{\text{u}} \vec{\text{a}} \end{aligned}$$

ਉਦਾਹਰਣ 2 : 14 ਮੀਟਰ ਉੱਚੇ ਇੱਕ ਬਿਜਲੀ ਦੇ ਖੇਭੇ ਦਾ ਪਰਛਾਵਾਂ 10 ਮੀਟਰ ਹੈ। ਸਮਾਨ ਸਥਿਤੀਆਂ ਵਿੱਚ ਉਸ ਦਰਖਤ ਦੀ ਉਚਾਈ ਪਤਾ ਕਰੋ ਜਿਸਦਾ ਪਰਛਾਵਾਂ 15 ਮੀਟਰ ਹੈ।

ਹੱਲ : ਮੰਨ ਲਵੋ ਕਿ ਦਰਖਤ ਦੀ ਉਚਾਈ x ਮੀਟਰ ਹੈ। ਅਸੀਂ ਹੇਠਾਂ ਦਰਸਾਏ ਅਨੁਸਾਰ ਇੱਕ ਸਾਰਣੀ ਬਣਾਉਂਦੇ ਹਾਂ :

ਵਸਤੂ ਦੀ ਉਚਾਈ (ਮੀਟਰ ਵਿੱਚ)	14	x
ਪਰਛਾਵੇਂ ਦੀ ਲੰਬਾਈ (ਮੀਟਰ ਵਿੱਚ)	10	15

ਧਿਆਨ ਦਿਓ ਕਿ ਵਸਤੂ ਦੀ ਉਚਾਈ ਜਿੰਨੀ ਜ਼ਿਆਦਾ ਹੋਵੇਗੀ, ਉਸਦੇ ਪਰਛਾਵੇਂ ਦੀ ਲੰਬਾਈ ਵੀ ਉਨੀ ਜ਼ਿਆਦਾ ਹੋਵੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਇੱਕ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਦੀ ਸਥਿਤੀ ਹੈ।

ਭਾਵ,
$$\frac{x_1}{y_1} = \frac{x_2}{y_2}$$
 ਤੋਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ : $\frac{14}{10} = \frac{x}{15}$ (ਕਿਉਂ ?)
ਜਾਂ $\frac{14 \times 15}{10} = x$ ਜਾਂ $\frac{14 \times 3}{2} = x$
ਇਸ ਤਰ੍ਹਾਂ $x = 21$, ਇਸ ਤਰ੍ਹਾਂ ਦਰਖਤ ਦੀ ਉਚਾਈ 21 ਮੀਟਰ ਹੈ।
ਬਦਲਵੇਂ ਢੰਗ ਵਿੱਚ ਅਸੀਂ $\frac{x_1}{y_1} = \frac{x_2}{y_2}$ ਨੂੰ $\frac{x_1}{x_2} = \frac{y_1}{y_2}$ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖ ਸਕਦੇ ਹਾਂ।
ਇਸ ਤਰ੍ਹਾਂ $x_1 : x_2 = y_1 : y_2$ ਜਾਂ $14 : x = 10 : 15$
ਇਸ ਤਰ੍ਹਾਂ $10 \times x = 15 \times 14$ ਜਾਂ $x = \frac{15 \times 14}{10} = 21$

214 🔳 ਗਣਿਤ

ਉਦਾਹਰਣ 3 : ਜੋ ਮੋਟੇ ਕਾਗਜ਼ ਦੀ 12 ਸ਼ੀਟਾਂ (sheets) ਦਾ ਭਾਰ 40 ਗ੍ਰਾਮ ਹੈ, ਤਾਂ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਕਾਗਜ਼ ਦੀਆਂ ਕਿੰਨੀਆਂ ਸ਼ੀਟਾਂ ਦਾ ਭਾਰ 2 $rac{1}{2}$ ਕਿਲੋਗ੍ਰਾਮ ਹੋਵੇਗਾ।

ਹੱਲ : ਮੰਨ ਲਵੇ ਕਿ ਉਹਨਾਂ ਸ਼ੀਟਾਂ ਦੀ ਗਿਣਤੀ x ਹੈ ਜਿਹਨਾਂ ਦਾ ਭਾਰ 2 $rac{1}{2}$ ਕਿਲੇਗ੍ਰਾਮ ਹੈ। ਅਸੀਂ ਉਪਰੋਕਤ ਸੁਚਨਾ ਨੂੰ ਹੇਠਾਂ ਦਰਸਾਏ ਅਨੁਸਾਰ ਇੱਕ ਸਾਰਣੀ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਦੇ ਹਾਂ :

ਬੀਟਾਂ ਦੀ ਸੰਖਿਆ	12	x
ਬੀਟਾਂ ਦਾ ਭਾਰ (ਗ੍ਰਾਮ ਵਿੱਚ)	40	2500

ਸ਼ੀਟਾਂ ਦੀ ਸੰਖਿਆ ਜ਼ਿਆਦਾ ਹੋਵੇਗੀ, ਤਾਂ ਉਹਨਾਂ ਦਾ ਭਾਰ ਵੀ ਓਨਾ ਹੀ ਜ਼ਿਆਦਾ ਹੋਵੇਗਾ। ਇਸ ਤਰ੍ਹਾਂ ਸ਼ੀਟਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ $2\frac{1}{2}$ ਕਿਲੋਗਾਮ = 1000 ਗਾਮ ਉਹਨਾਂ ਦਾ ਭਾਰ ਆਪਸ ਵਿੱਚ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹਨ। $2\frac{1}{2}$ ਕਿਲੋਗਾਮ = 2500 ਗਾਮ

feਸ ਤਰ੍ਹਾਂ $\frac{12}{40} = \frac{x}{2500}$ ਜਾਂ $\frac{12 \times 2500}{40} = x$ ਜਾਂ 750 = x

ਇਸ ਤਰ੍ਹਾਂ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟਾਂ ਦੀ ਪ੍ਰਾਪਤ ਸੰਖਿਆ 750 ਹੈ।

ਬਦਲਵੀਂ ਵਿਧੀ : ਦੋ ਰਾਸ਼ੀਆਂ x ਅਤੇ y ਜੋ ਸਿੱਧੇ ਅਨੁਪਾਤ ਵਿੱਚ ਬਦਲਦੀਆਂ ਹਨ ਉਹਨਾਂ ਵਿੱਚ

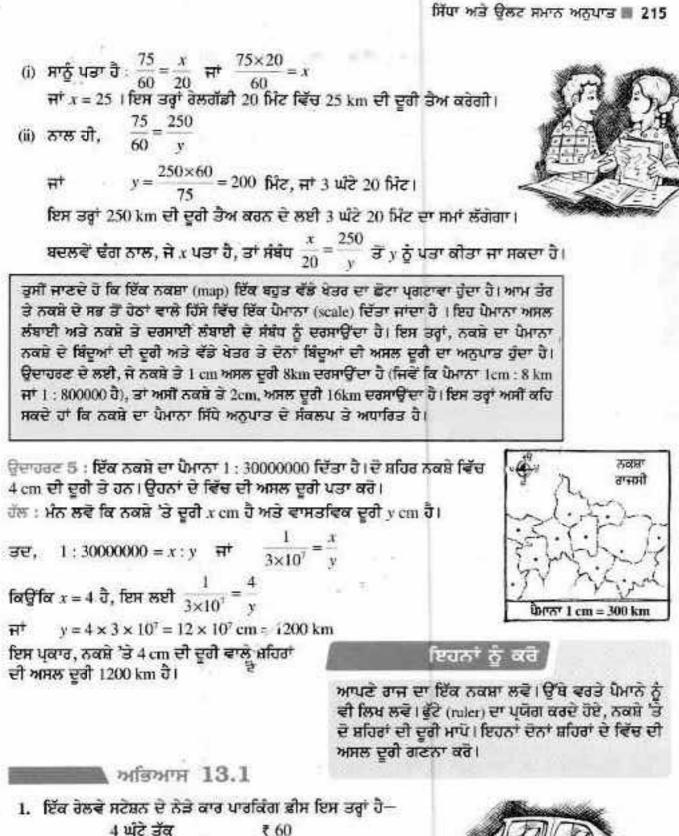
$$x = ky$$
 ਜਾਂ $\frac{x}{y} = k$ ਦਾ ਸੰਬੰਧ ਹੁੰਦਾ ਹੈ।
ਇੱਥੇ $k = \frac{\mathrm{ਸੀਟ^{\dagger}} \mathrm{el} \mathrm{\hat{r}} \mathrm{flawr}}{\mathrm{anvi} \mathrm{fease ultrane}} = \frac{12}{40} = \frac{3}{10}$

ਹੁਣ x ਉਹ ਕਾਗਜ਼ ਦੀਆਂ ਸ਼ੀਟਾਂ ਦੀ ਸੰਖਿਆ ਹੈ ਜਿਸਦਾ ਭਾਰ 2 1/2 kg (2500 gm) ਹੈ।

ਸੰਬੰਧ x = ky ਦਾ ਉਪਯੋਗ ਕਰਨ ਤੇ, $x = \frac{3}{10} \times 2500 = 750$

ਇਸ ਪ੍ਰਕਾਰ, ਕਾਗਜ਼ ਦੀ 750 ਸ਼ੀਟਾਂ ਦਾ ਭਾਰ 2 <mark>-</mark> ਕਿਲੋਗ੍ਰਾਮ ਹੋਵੇਗਾ।

ਉਦਾਹਰਣ 4 : ਇੱਕ ਰੇਲਗੱਡੀ 75 km/h ਦੇ ਇੱਕ ਸਮਾਨ (uniform) ਚਾਲ ਤੇ ਚੱਲ ਰਹੀ ਹੈ।


(i) ਉਹ 20 ਮਿੰਟ ਵਿੱਚ ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕਰੋਗੀ ?

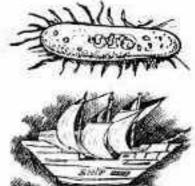
(ii) 250 km ਦੀ ਦੂਰੀ ਤੈਅ ਕਰਨ ਤੇ ਲੱਗਣ ਵਾਲਾ ਸਮਾਂ ਪਤਾ ਕਰੋ।

ਹੱਲ : ਮੰਨ ਲਵੇ ਕਿ 20 ਮਿੰਟ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (km ਵਿੱਚ) x ਹੈ ਅਤੇ 250 km ਦੀ ਦੂਰੀ ਵਿੱਚ ਤੈਅ ਕਰਨ ਵਿੱਚ ਲੱਗਣ ਵਾਲਾ ਸਮਾਂ (ਮਿੰਟਾਂ ਵਿੱਚ) y ਹੈ।

F1 w2r=60 fitz 3	ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (km ਵਿੱਚ)	75	x	250
L'ac advine 3	ਲਿਆ ਗਿਆ ਸਮਾਂ (ਮਿੰਟਾਂ ਵਿੱਚ)	60	20	y)

ਕਿਉਂਕਿ ਚਾਲ ਇੱਕਸਾਰ ਹੈ, ਇਸ ਲਈ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਲਏ ਗਏ ਸਮੇਂ ਦੇ ਸਿੱਧੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹੋਵੇਗੀ।

8 ਘੰਟੇ ਤੱਕ ₹ 100 12 ਘੰਟੇ ਤੱਕ ₹ 140 24 ਘੰਟੇ ਤੱਕ ₹ 180


ਪੜਤਾਲ ਕਰੋ ਕਿ ਕੀ ਕਾਰ ਪਾਰਕਿੰਗ ਫ਼ੀਸ, ਪਾਰਕਿੰਗ ਸਮੇਂ ਦੇ ਸਿੱਧੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹੈ।

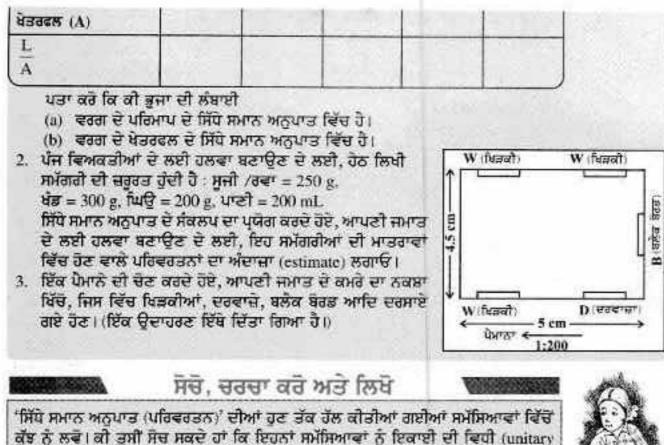
216 🖩 ਗਣਿਤ

 ਇੱਕ ਪੇਂਟ ਦੇ ਮੂਲ ਮਿਸ਼ਰਨ (base) ਦੇ 8 ਭਾਗਾਂ ਵਿੱਚ ਲਾਲ ਰੰਗ ਦੇ ਪਦਾਰਥ ਦਾ 1 ਭਾਗ ਮਿਲਾਕੇ ਮਿਸ਼ਰਨ ਤਿਆਰ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਹੇਠਾਂ ਲਿਖੀ ਸਾਰਣੀ ਵਿੱਚ, ਮੂਲ ਮਿਸ਼ਰਨ ਦੇ ਉਹ ਭਾਗ ਪਤਾ ਕਰੋ ਜਿਨ੍ਹਾਂ ਨੂੰ ਮਿਲਾਏ ਜਾਣ ਦੀ ਜ਼ਰੂਰਤ ਹੈ :

ਲਾਲ ਰੰਗ ਦੇ ਪਦਾਰਥ ਦੇ ਭਾਗ	1	4	7	12	20
ਮੂਲ ਮਿਸ਼ਰਨ ਦੇ ਭਾਗ	8				

- 3. ਪ੍ਰਸ਼ਨ 2 ਵਿੱਚ ਜੇ ਲਾਲ ਰੱਗ ਦੇ ਪਦਾਰਥ ਦੇ 1 ਭਾਗ ਦੇ ਲਈ 75 mL ਮੂਲ ਮਿਸ਼ਰਨ ਦੀ ਜ਼ਰੂਰਤ ਹੈ, ਤਾਂ ਮੂਲ ਮਿਸ਼ਰਨ ਦੇ 1800 mL ਵਿੱਚ ਸਾਨੂੰ ਕਿੰਨਾ ਲਾਲ ਰੰਗ ਦਾ ਪਦਾਰਥ ਮਿਲਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ?
- 4. ਕਿਸੇ ਸਾਫਟ ਡਰਿੰਕ ਫੈਕਟਰੀ ਵਿੱਚ ਇੱਕ ਮਸ਼ੀਨ 840 ਬੋਤਲਾਂ 6 ਘੰਟੇ ਵਿੱਚ ਭਰਦੀ ਹੈ ਉਹ ਮਸ਼ੀਨ ਪੰਜ ਘੰਟੇ ਵਿੱਚ ਕਿੰਨੀਆਂ ਬੋਤਲਾਂ ਭਰੇਗੀ ?
- 5. ਇੱਕ ਬੈਕਟੀਰੀਆ (bacteria) ਜਾਂ ਜੀਵਾਣੂ ਦੇ ਫੋਟੋਗ੍ਰਾਫ (ਚਿੱਤਰ) ਨੂੰ 50,000 ਗੁਣਾ ਵੱਡਾ ਕਰਨ ਤੇ ਉਸਦੀ ਲੰਬਾਈ 5 cm ਹੋ ਜਾਂਦੀ ਹੈ, ਜਿਵੇਂ ਕਿ ਨਾਲ ਦਿੱਤੇ ਚਿੱਤਰ ਵਿੱਚ ਦਿਖਾਇਆ ਗਿਆ ਹੈ। ਇਸ ਬੈਕਟੀਰੀਆ ਦੀ ਅਸਲ ਲੰਬਾਈ ਕੀ ਹੈ? ਜੇਕਰ ਫੋਟੋਗ੍ਰਾਫ ਨੂੰ ਸਿਰਫ਼ 20,000 ਗੁਣਾ ਵੱਡਾ ਕੀਤਾ ਜਾਵੇ, ਤਾਂ ਉਸਦੀ ਵਧਾਈ ਗਈ ਲੰਬਾਈ ਕੀ ਹੋਵੇਗੀ ?
- 6. ਇੱਕ ਜਹਾਜ਼ ਦੇ ਮਾਡਲ ਵਿੱਚ, ਉਸਦਾ ਮਸਤੂਲ (mast) 9 cm ਉੱਚਾ ਹੈ, ਜਦ ਕਿ ਅਸਲ ਵਿੱਚ ਜਹਾਜ਼ ਦਾ ਮਸਤੂਲ 12 m ਉੱਚਾ ਹੈ। ਜੋ ਜਹਾਜ ਦੀ ਲੰਬਾਈ 28 m ਹੈ, ਤਾਂ ਉਸਦੇ ਮਾਡਲ ਦੀ ਲੰਬਾਈ ਕਿੰਨੀ ਹੈ ?

- ਮੰਨ ਲਵੇ 2kg ਖੰਡ ਵਿੱਚ 9 × 10° ਕ੍ਰਿਸਟਲ ਹਨ। ਹੇਠਾਂ ਲਿਖੀ ਖੰਡ ਵਿੱਚ ਖੰਡ ਦੇ ਕਿੰਨੇ ਕ੍ਰਿਸਟਲ ਹੋਣਗੇ ?
 - (i) 5 kg (ii) 1.2 kg
- 8. ਰਸ਼ਮੀ ਦੇ ਕੋਲ ਇੱਕ ਸੜਕ ਦਾ ਨਕਸ਼ਾ ਹੈ, ਜਿਸਦੇ ਪੈਮਾਨੇ ਵਿੱਚ 1 cm ਦੀ ਦੂਰੀ 18 km ਦਰਸਾਉਂਦੀ ਹੈ। ਉਹ ਉਸ ਸੜਕ ਤੇ ਆਪਣੀ ਗੱਡੀ ਤੋਂ 72 km ਦੀ ਦੂਰੀ ਤੈਅ ਕਰਦੀ ਹੈ। ਉਸ ਦੇ ਦੁਆਰਾ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ ਨਕਸ਼ੇ ਵਿੱਚ ਕੀ ਹੋਵੇਗੀ ?
- 9. ਇੱਕ 5 m 60 cm ਉੱਚੇ ਖੜ੍ਹਵੇਂ ਖੰਡੇ ਦੇ ਪਰਛਾਵੇਂ ਦੀ ਲੰਬਾਈ 3 m 20 cm ਹੈ। ਉਸ ਸਮੇਂ ਪਤਾ ਕਰੋ—
 - (i) 10 m 50 cm ਉੱਚੇ ਇੱਕ ਹੋਰ ਖੰਭੇ ਦੇ ਪਰਛਾਵੇਂ ਦੀ ਲੰਬਾਈ
 - (ii) ਉਸ ਖੰਭੇ ਦੀ ਉਚਾਈ ਜਿਸਦੇ ਪਰਛਾਵਾਂ ਦੀ ਲੰਬਾਈ 5 m ਹੈ।
- ਮਾਲ ਦਾ ਲੱਦਿਆ ਹੋਇਆ ਇੱਕ ਟਰੱਕ 25 ਮਿੰਟ ਵਿੱਚ 14km ਚਲਦਾ ਹੈ। ਜੋ ਚਾਲ ਉਹੀ ਰਹੇ, ਤਾਂ ਉਹ 5 ਘੰਟੇ ਵਿੱਚ ਕਿੰਨੀ ਦੂਰੀ ਡੈਅ ਕਰ ਲਵੇਗਾ ?



 ਇੱਕ ਵਰਗੀਕ੍ਰਿਤ ਕਾਗਜ਼ 'ਤੇ ਭਿੰਨ-ਭਿੰਨ ਭੁਜਾਵਾਂ ਦੇ ਪੰਜ ਵਰਗ ਖਿੱਚੇ। ਹੇਠਾਂ ਲਿਖੀ ਸੂਚਨਾ ਨੂੰ ਇੱਕ ਸਾਰਣੀ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ:

	ਵਰਗ-1	ਵਰਗ-2	ਵਰਗ-3	ਵਰਗ-4	ৰব্বা-5
ਇੱਕ ਭੂਜਾ ਦੀ ਲੰਬਾਈ (L)		1.5	1 N V	sif ude in	1.238
นโฮมาน (P)				an sacht	
L p	Sec. Let			ing the set	S. In this

ਸਿੱਧਾ ਅਤੇ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ 🔳 217

method) ਨਾਲ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ?

13.3 ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ

ਦੋਂ ਰਾਸ਼ੀਆਂ ਇਸ ਤਰ੍ਹਾਂ ਵੀ ਬਦਲ ਸਕਦੀਆਂ ਹਨ ਕਿ ਜੇ ਇੱਕ ਰਾਸ਼ੀ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਦੂਸਰੀ ਰਾਸ਼ੀ ਵਿੱਚ ਕਮੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇੱਕ ਵਿੱਚ ਕਮੀ ਹੋਣ ਤੇ ਦੂਸਰੀ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ, ਜੇ ਕਿਸੇ ਕੰਮ ਲਈ ਵੱਧ ਮਜ਼ਦੂਰ ਲਗਾਏ ਜਾਂਦੇ ਹਨ ਤਾਂ ਉਹ ਕੰਮ ਘੱਟ ਸਮੇਂ ਵਿੱਚ ਪੂਰਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਜਦ ਚਾਲ ਵੱਧ ਜਾਵੇ ਤਾਂ ਇੱਕ ਨਿਸ਼ਚਿਤ ਦੂਰੀ ਤੈਅ ਕਰਨ ਵਿੱਚ ਘੱਟ ਸਮਾਂ ਲੱਗਦਾ ਹੈ। ਇਸਨੂੰ ਸਮਝਣ ਦੇ ਲਈ, ਆਓ ਹੇਠਾਂ ਲਿਖੀ ਸਥਿਤੀ ਨੂੰ ਦੇਖੋ :

ਜਾਹਿੰਦਾ ਆਪਣੇ ਸਕੂਲ ਚਾਰ ਵੱਖ-ਵੱਖ ਢੰਗਾਂ ਨਾਲ ਜਾ ਸਕਦੀ ਹੈ। ਉਹ ਪੈਦਲ ਜਾ ਸਕਦੀ ਹੈ, ਦੋੜ ਕੈ ਜਾ ਸਕਦੀ ਹੈ, ਸਾਈਕਲ 'ਤੇ ਜਾ ਸਕਦੀ ਹੈ ਅਤੇ ਕਾਰ 'ਤੇ ਵੀ ਜਾ ਸਕਦੀ ਹੈ। ਨਾਲ ਦਿੱਤੀ ਸਾਰਣੀ ਦਾ ਅਧਿਐਨ ਕਰੋ:

ਧਿਆਨ ਦਿਓ ਕਿ ਜਦ ਚਾਲ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਸਮਾਨ ਦੂਰੀ ਨੂੰ ਤੈਅ ਕਰਨ ਵਿੱਚ ਲੱਗਣ ਵਾਲੇ ਸਮੇਂ ਵਿੱਚ ਕਮੀ ਹੁੰਦੀ ਹੈ।ਜਦ ਜਾਹਿਦਾ ਦੌੜ ਕੇ ਆਪਣੀ ਚਾਲ ਦੱਗਣੀ ਕਰਦੀ ਹੈ, ਤਾਂ ਉਸਦੇ ਦੁਆਰਾ ਲਿਆ ਗਿਆ ਸਮਾਂ

ਾ ਚੁਸਦ ਦੁਆਰਾ ਕਿ | - ਹੋ ਜਾਂਦਾ ਹੈ।

	ਪੈਦਲ ਚੱਲ ਕੇ	ਦੇਸ਼ ਕੇ	ਸਾਈਕਲ 'ਤੇ	ਕਾਰ ਦੁਆਰਾ
ਚਾਲ (km/hour ਵਿੱਚ)	3	6	9	45
ਲਿਆ ਗਿਆ ਸਮਾਂ (ਮਿੰਟਾਂ ਵਿੱਚ)	30	15	10	2

218 🔳 ਗਣਿਤ

ਜਦ ਉਹ ਆਪਣੀ ਚਾਲ ਸਾਈਕਲ `ਤੇ ਤਿੰਨ ਗੁਣਾ ਕਰਦੀ ਹੈ, ਤਾਂ ਉਸਦੇ ਦੁਆਰਾ ਲਿਆ ਗਿਆ ਸਮਾਂ ¹/₃ ਰਹਿ ਜਾਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਜਦ ਉਹ ਆਪਣੀ ਚਾਲ 15 ਗੁਣਾ ਕਰਦੀ ਹੈ, ਤਾਂ ਉਸਦੇ ਦੁਆਰਾ ਲਿਆ ਗਿਆ ਸਮਾਂ ¹/₁₅ ਰਹਿ ਜਾਂਦਾ ਹੈ।

ਜਿਵੇਂ ਕਿ ਸਮੇਂ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਕਮੀ ਦਾ ਅਨਪਾਤ

ਕਿਸੇ ਸੱਖਿਆ ਦਾ ਗੁਣਾਤਮਕ ਉਲਟ (inverse) ਉਸਦਾ ਉਲਟਕ੍ਰਮ (reciprocal) ਹੁੰਦਾ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ, $\frac{1}{2}$, 2 ਦਾ ਉਲਟ ਹੈ। (ਧਿਆਨ ਦਿਉ ਕਿ $2 \times \frac{1}{2} = \frac{1}{2} \times 2 = 1$ ਹੈ।)

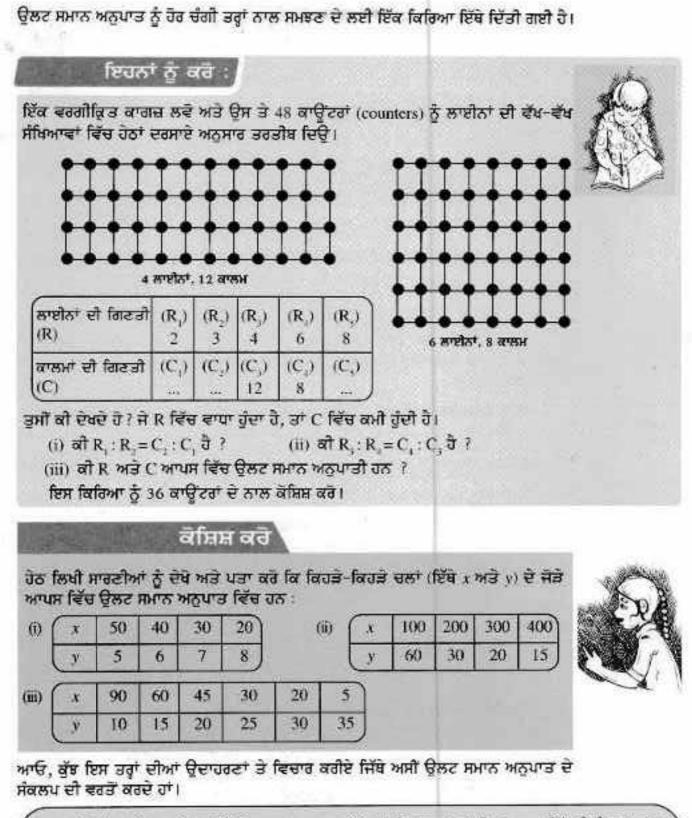
ਚਾਲ ਵਿੱਚ ਹੋਣ ਵਾਲੀ ਅਨੁਸਾਰੀ ਵਾਧੇ ਦੇ ਅਨੁਪਾਤ ਦਾ ਉਲਟ (inverse) ਹੁੰਦਾ ਹੈ। ਕੀ ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਗਤੀ ਅਤੇ ਸਮਾਂ ਉਲਟ ਅਨੁਪਾਤ ਵਿੱਚ ਬਦਲਦੇ ਹਨ।

ਆਓ, ਇੱਕ ਹੋਰ ਉਦਾਹਰਣ ਤੇ ਵਿਚਾਰ ਕਰੀਏ। ਇੱਕ ਸਕੂਲ ਗਣਿਤ ਦੀਆਂ ਪਾਠ ਪੁਸਤਕਾਂ ਦੇ ਲਈ ₹ 6000 ਖਰਚ ਕਰਦਾ ਹੈ। ₹ 40 ਪ੍ਰਤੀ ਪੁਸਤਕ ਦੀ ਦਰ ਨਾਲ ਕਿੰਨੀਆਂ ਪੁਸਤਕਾਂ ਖਗੋਦੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ ? ਸਪੱਸ਼ਟ ਹੈ ਕਿ 150 ਪੁਸਤਕਾਂ ਖਗੇਦੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ। ਜਦ ਇੱਕ ਪਾਠ ਪੁਸਤਕ ਦਾ ਮੁੱਲ ₹ 40 ਤੋਂ ਜ਼ਿਆਦਾ ਹੋਵੇ, ਤਾਂ ਉਸੇ ਨਿਸ਼ਚਿਤ ਰਾਸ਼ੀ ਵਿੱਚ 150 ਤੋਂ ਘੱਟ ਪੁਸਤਕਾਂ ਖਰੀਦੀਆਂ ਜਾਣਗੀਆਂ। ਹੇਠਾਂ ਲਿਖੀ ਸਾਰਣੀ ਵਿੱਚ ਦੇਖੋ:

40	50	60	75	80	100
150	120	100	80	75	60
	a Sala	I DANKAL HEADLE	I LIGHT HERE AND AND A	I I CHAIL HERE AND AND A STREET	40 50 60 75 80 150 120 100 80 75

ਕੀ ਤੁਸੀਂ ਜਾਣਦੇ ਹੋ ਕਿ ਜੇ ਹਰੇਕ ਪੁਸਤਕ ਦੇ ਮੁੱਲ ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਇੱਕ ਨਿਸ਼ਚਿਤ ਫੰਡ (ਰਾਸ਼ੀ) ਵਿੱਚ ਖਰੀਦੀਆਂ ਜਾ ਸਕਣ ਵਾਲੀਆਂ ਪੁਸਤਕਾਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ ਕਮੀ ਹੋ ਜਾਵੇਗੀ।

ਜਦ ਪੁਸਤਕ ਦਾ ਮੁੱਲ ₹ 40 ਤੋਂ ₹ 50 ਹੁੰਦਾ ਹੈ, ਤਾਂ ਇਸਦੇ ਵਾਧੇ ਦਾ ਅਨੁਪਾਤ 4 : 5 ਹੈ ਅਤੇ ਅਨੁਸਾਰੀ ਪੁਸਤਕਾਂ ਦੀ ਸੰਖਿਆ 150 ਤੋਂ ਘੱਟ ਹੋ ਕੇ 120 ਹੋਣ ਤੇ ਅਨੁਪਾਤ 5 : 4 ਹੈ। ਇਸਦਾ ਅਰਥ ਹੈ ਕਿ ਦੋਨਾਂ ਦਾ ਅਨੁਪਾਤ ਇੱਕ ਦੂਸਰੇ ਦੇ ਉਲਟ (inverse) ਹੈ। ਧਿਆਨ ਦਿਓ ਕਿ ਦੋਨਾਂ ਰਾਸ਼ੀਆਂ ਦੇ ਅਨੁਸਾਰੀ ਮਾਨਾਂ ਦਾ ਗੁਣਨਫਲ ਅਚਲ ਜਿਵੇਂ ਕਿ


40 × 150 = 50 × 120 = 6000 t

ਜੇਕਰ ਅਸੀਂ ਹਰੇਕ ਪੁਸਤਕ ਦਾ ਮੁੱਲ (ਰੁਪਏ ਵਿੱਚ) ਨੂੰ x ਅਤੇ ਖਰੀਦੀਆਂ ਗਈਆਂ ਪੁਸਤਕਾਂ ਦੀ ਸੰਖਿਆਵਾਂ ਨੂੰ y ਨਾਲ ਦਰਸਾਈਏ, ਤਾਂ ਜਦੋਂ x ਵਿੱਚ ਵਾਧਾ ਹੁੰਦਾ ਹੈ, ਤਦ y ਵਿੱਚ ਕਮੀ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਸ ਦੇ ਉਲਟ ਵੀ ਸੱਚ ਹੈ। ਇਹ ਧਿਆਨ ਦੇਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿ ਗੁਣਨਫਲ xy ਅਚਲ ਰਹਿੰਦਾ ਹੈ। ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ x, y ਦੇ ਨਾਲ ਉਲਟ ਰੂਪ ਵਿੱਚ ਬਦਲਦਾ (varies inversely) ਹੈ ਅਤੇ y, x ਦੇ ਨਾਲ ਉਲਟ ਰੂਪ ਵਿੱਚ ਬਦਲਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਦੋ ਰਾਸ਼ੀਆਂ x ਅਤੇ y ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਬਦਲਦੀਆਂ ਹਨ, ਜਦੋਂ ਉਸਦੇ ਮੁੱਲ ਵਿੱਚ xy = k ਦਾ ਇਸ ਤਰ੍ਹਾਂ ਕੋਈ ਸੰਬੰਧ ਹੋਵੇ, ਇੱਥੇ k ਕੋਈ ਅਚਲ ਹੈ। ਜਦ x ਦੇ ਮੁੱਲਾਂ x, x, ਦੇ ਲਈ y ਅਨੁਸਾਰੀ ਮੁੱਲ y, y, ਹਨ, ਤਾਂ x, y, = x, y, (=k), ਜਿਵੇਂ ਕਿ $x_i/x_i = y_i/y_i$ ਹੁੰਦਾ ਹੈ।

ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ x ਅਤੇ y ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ (inverse proportion) ਵਿੱਚ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਉਪਰੋਕਤ ਉਦਾਹਰਣ ਵਿੱਚ, ਇੱਕ ਪੁਸਤਕ ਦਾ ਮੁੱਲ ਅਤੇ ਇੱਕ ਨਿਸ਼ਚਿਤ ਧਨ ਰਾਸ਼ੀ ਵਿੱਚ ਖਰੀਦੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਪੁਸਤਕਾਂ ਦੀ ਸੰਖਿਆ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ, ਇੱਕ ਵਾਹਨ ਦੀ ਚਾਲ ਅਤੇ ਉਸਦੇ ਦੁਆਰਾ ਇੱਕ ਨਿਸ਼ਚਿਤ ਦੂਰੀ ਡੈਅ ਕਰਨ ਵਿੱਚ ਲਿਆ ਗਿਆ ਸਮਾਂ ਆਪਸ ਵਿੱਚ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਬਦਲਦੇ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਕੁੱਝ ਹੋਰ ਰਾਸ਼ੀਆਂ ਦੇ ਜੋੜਿਆਂ ਦੀਆਂ ਉਦਾਹਰਣਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸੋਚੋ ਜੋ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਬਦਲਦੀਆਂ ਹਨ। ਹੁਣ ਤੁਸੀਂ ਫਰਨੀਚਰ ਨੂੰ ਤਰਤੀਬਵਾਰ ਕਰਨ ਦੀ ਉਹ ਸਮੱਸਿਆ ਤੇ ਧਿਆਨ ਦੇ ਸਕਦੇ ਹੋ, ਜੋ ਅਸੀਂ ਇਸ ਅਧਿਆਇ ਦੀ ਭੂਮਿਕਾ ਵਿੱਚ ਬਿਆਨ ਕੀਤੀ ਸੀ।

ਸਿੱਧਾ ਅਤੇ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ 🔳 219

ਜਦ ਰਾਸ਼ੀਆਂ x ਅਤੇ y ਪ੍ਰਤੱਖ ਜਾਂ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਰ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ, ਤਾਂ ਇਹ x α y ਵਿੱਚ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ। ਜੋ ਦੋ ਰਾਸ਼ੀਆਂ x ਅਤੇ y ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਰ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ, ਤਾਂ ਉਹਨਾਂ xα + ਵੀ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।

220 🔳 ਗਣਿਤ

ਉਦਾਹਰਣਾ 6 : ਇੱਕ ਟੈਂਕੀ ਨੂੰ 1 ਘੰਟੇ 20 ਮਿੱਟ ਵਿੱਚ ਭਰਨ ਦੇ ਲਈ 6 ਪਾਈਪਾਂ (pipes) ਦੀ ਜ਼ਰੂਰਤ ਪੈਂਦੀ ਹੈ।ਜੇ ਉਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਕੇਵਲ 5 ਪਾਈਪਾਂ ਦਾ ਹੀ ਉਪਯੋਗ ਕੀਤਾ ਜਾਵੇ, ਤਾਂ ਉਹ ਟੈਂਕੀ ਕਿੰਨੇ ਸਮੇਂ ਵਿੱਚ ਭਰੇਗੀ ?

ਹੱਲ : ਮੰਨ ਲਵੋ ਕਿ ਟੈਂਕੀ ਨੂੰ ਭਰਨ ਦਾ ਲੋੜੀਂਦਾ ਸਮਾਂ x ਮਿੰਟ ਹੈ। ਤਦ, ਸਾਨੂੰ ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ :

ਪਾਈਪਾਂ ਦੀ ਸੱਖਿਆ	6	5
ਸਮਾਂ (ਮਿੰਟਾਂ ਵਿੱਚ)	80	x

ਪਾਈਪਾਂ ਦੀ ਸੰਖਿਆ ਜਿੰਨੀ ਘੱਟ ਹੋਵੇਗੀ, ਟੈਂਕੀ ਨੂੰ ਭਰਨ ਵਿੱਚ ਓਨਾ ਹੀ ਜ਼ਿਆਦਾ ਸਮਾਂ ਲੱਗੇਗਾ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਇੱਕ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਦੀ ਸਥਿਤੀ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ
$$80 \times 6 = x \times 5 (x_1 y_1 = x_2 y_2)$$

$$H^{\dagger} = \frac{80 \times 6}{5} = x H^{\dagger} x = 96$$

ਇਸ ਪ੍ਰਕਾਰ, ਟੈਂਕੀ ਨੂੰ 5 ਪਾਈਪਾਂ ਦੁਆਰਾ 96 ਮਿੰਟ, ਜਾਂ 1 ਘੰਟਾ 36 ਮਿੰਟ ਵਿੱਚ ਭਰਿਆ ਜਾਵੇਗਾ।

ਉਦਾਹਰਣ 7 : ਇੱਕ ਹੋਸਟਲ ਵਿੱਚ 100 ਵਿਦਿਆਰਥੀ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦੇ ਭੋਜਨ ਦੀ ਸਮੱਗਰੀ 20 ਦਿਨ ਦੇ ਲਈ ਕਾਫੀ ਹੈ।ਜੇ ਇਸ ਸਮੂਹ ਵਿੱਚ 25 ਵਿਦਿਆਰਥੀ ਹੋਰ ਆ ਜਾਣ, ਤਾਂ ਇਹ ਭੋਜਨ ਸਮੱਗਰੀ ਕਿੰਨੇ ਦਿਨ ਚੱਲੇਗੀ ?

ਹੱਲ : ਮੈਨ ਲਵੇ ਕਿ ਭੋਜਨ ਸਮੱਗਰੀ 125 ਵਿਦਿਆਰਥੀਆਂ ਦੇ ਲਈ y ਦਿਨ ਤੱਕ ਚੱਲੇਗੀ।ਅਸੀਂ ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ।

दिस्लिभावबीओं सी प्रंधिआ	100	125
ਦਿਨਾਂ ਦੀ ਸੰਖਿਆ	20	y ,

ਧਿਆਨ ਦਿਓ ਕਿ ਜਿੰਨੇ ਵਿਦਿਆਰਥੀ ਜ਼ਿਆਦਾ ਹੋਣਗੇ ਉਨੇ ਹੀ ਘੱਟ ਸਮੇਂ ਵਿੱਚ ਭੋਜਨ ਸਮੱਗਰੀ ਖ਼ਤਮ ਹੋ ਜਾਵੇਗੀ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਇੱਕ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਦੀ ਸਥਿਤੀ ਹੈ।

ਇਸ ਲਈ 100 x 20 = 125 x y

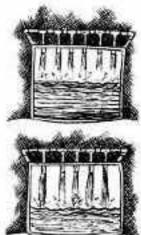
125

 $100 \times 20 = v$

ਜਾਂ

ਜ[†] y = 16

ਬਦਲਵੇਂ ਰੂਪ ਵਿੱਚ, ਅਸੀਂ $x_1y_1 = x_2y_2$ ਨੂੰ $\frac{x_1}{x_2} = \frac{y_2}{y_1}$ ਲਿਖ ਸਕਦੇ ਹਾਂ।


निर्दे वि $y_1 : x_2 = y_2 : y_1$

न[†] 100:125=y:20

 π^{+} $y = \frac{100 \times 20}{125} = 16$

ਸਿੱਧਾ ਅਤੇ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ 🔳 221

ਉਦਾਹਰਣ 8 : ਜੇ 15 ਮਜ਼ਦੂਰ ਕਿਸੇ ਦੀਵਾਰ ਨੂੰ 48 ਘੰਟੇ ਵਿੱਚ ਬਣਾ ਸਕਦੇ ਹਨ, ਤਾਂ ਇਸੇ ਕੰਮ ਨੂੰ 30 ਘੰਟੇ ਵਿੱਚ ਪੂਰਾ ਕਰਨ ਦੇ ਲਈ, ਕਿੰਨੇ ਮਜ਼ਦੂਰਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ ?

ਹੱਲ : ਮੰਨ ਲਵੇ ਦੀਵਾਰ ਨੂੰ 30 ਘੰਟੇ ਵਿੱਚ ਬਣਾਉਣ ਲਈ y ਮਜ਼ਦੂਰਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੈ, ਤਦ ਅਸੀਂ ਹੇਠਾਂ ਲਿਖੀ ਸਾਰਣੀ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ :

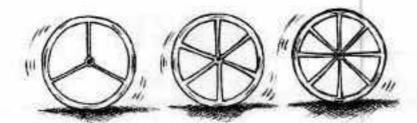
ਘੰਟਿਆਂ ਦੀ ਸੰਖਿਆ	48	30
ਮਜ਼ਦੂਰਾਂ ਦੀ ਸੱਖਿਆ	15	у

ਸਪੱਸ਼ਟ ਤੌਰ ਤੇ, ਜ਼ਿਆਦਾ ਮਜ਼ਦੂਰ ਹੋਣ ਤੇ, ਦੀਵਾਰ ਬਣਾਉਣ ਵਿੱਚ ਘੱਟ ਸਮਾਂ ਲੱਗੇਗਾ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਇੱਕ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਦੀ ਸਥਿਤੀ ਹੈ।

ਇਸ ਲਈ, $48 \times 15 = 30 \times y$

ਇਸ ਤਰ੍ਹਾਂ

 $\frac{48 \times 15}{30} = y = 24$

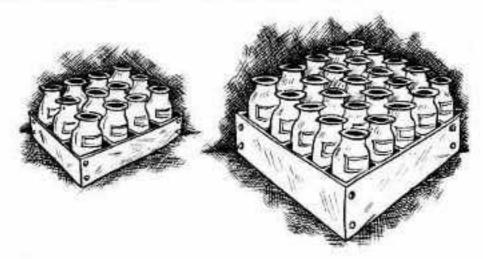

ਭਾਵ ਇਸ ਕੰਮ ਨੂੰ 30 ਘੰਟੇ ਵਿੱਚ ਖ਼ਤਮ ਕਰਨ ਦੇ ਲਈ 24 ਮਜ਼ਦੂਰਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੈ।

ਅਭਿਆਸ 13.2

- ਹੇਠਾਂ ਲਿਖੇ ਵਿੱਚ ਕਿਹੜੇ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹਨ ?
 - (i) ਕਿਸੇ ਕੰਮ ਤੇ ਲੱਗੇ ਵਿਅਕਤੀਆਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਉਸ ਕੰਮ ਨੂੰ ਪੂਰਾ ਕਰਨ ਵਿੱਚ ਲੱਗਾ ਸਮਾਂ।
 - (ii) ਇੱਕ ਸਮਾਨ ਚਾਲ ਨਾਲ ਕਿਸੇ ਯਾਤਰਾ ਵਿੱਚ ਲਿਆ ਗਿਆ ਸਮਾਂ ਅਤੇ ਤੈਅ ਕੀਤੀ ਦੂਰੀ।
 - (iii) ਖੇਤੀ ਕੀਤੀ ਗਈ ਜ਼ਮੀਨ ਦਾ ਖੇਤਰਫਲ ਅਤੇ ਕੱਟੀ ਗਈ ਫਸਲ।
 - (iv) ਇੱਕ ਨਿਸ਼ਚਿਤ ਯਾਤਰਾ ਵਿੱਚ ਲਿਆ ਗਿਆ ਸਮਾਂ ਅਤੇ ਵਾਹਨ ਦੀ ਚਾਲ।
 - (v) ਕਿਸੇ ਦੇਸ਼ ਦੀ ਜਨਸੰਖਿਆ ਅਤੇ ਪ੍ਰਤੀ ਵਿਅਕਤੀ ਜ਼ਮੀਨ ਦਾ ਖੇਤਰਫਲ।
- 2. ਇੱਕ ਟੈਲੀਵਿਜ਼ਨ ਗੇਮ ਸ਼ੋ (game show) ਵਿੱਚ, ₹ 1,00,000 ਦੀ ਇਨਾਮੀ ਰਾਸ਼ੀ ਜੇਤੂਆਂ ਵਿੱਚ ਬਰਾਬਰ ਰੂਪ ਵਿੱਚ ਵੰਡੀ ਜਾਣੀ ਹੈ। ਹੇਠਾਂ ਲਿਖੀ ਸਾਰਣੀ ਨੂੰ ਪੂਰਾ ਕਰੋ ਅਤੇ ਪਤਾ ਕਰੋ ਕਿ ਕੀ ਇੱਕ ਵਿਅਕਤੀਗਤ ਜੇਤੂ ਨੂੰ ਦਿੱਤੇ ਜਾਣ ਵਾਲੇ ਇਨਾਮ ਦੀ ਧਨ ਰਾਸ਼ੀ ਜੇਤੂਆਂ ਦੀ ਸੰਖਿਆ ਦੇ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹੈ ਜਾਂ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹੈ।

ਜੇਤੂਆਂ ਦੀ ਸੰਖਿਆ	1	2	4	5	8	10	20
ਹਰੇਕ ਜੇੜ੍ਹ ਦਾ ਇਨਾਮ (₹ ਵਿੱਚ)	1,00,000	50,000	5 66		- 499		

 ਰਹਿਮਾਨ ਤੀਲੀਆਂ ਜਾਂ ਡੰਡਿਆਂ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹੋਏ, ਇੱਕ ਪਹੀਆਂ ਬਣਾ ਰਿਹਾ ਹੈ। ਉਹ ਬਰਾਬਰ ਤੀਲੀਆਂ ਇਸ ਤਰ੍ਹਾਂ ਲਗਾਉਣਾ ਚਾਹੁੰਦਾ ਹੈ ਕਿ ਕਿਸੇ ਵੀ ਲਗਾਤਾਰ ਤੀਲੀਆਂ ਦੇ ਜੋੜਿਆਂ ਦੇ ਵਿਚਕਾਰ ਦੇ ਕੋਣ ਬਰਾਬਰ ਹੋਣ।



222 🖩 ਗਣਿਤ

ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਨੂੰ ਪੂਰਾ ਕਰਕੇ, ਉਸਦੀ ਸਹਾਇਤਾ ਕਰੋ :

डोलोਆं सी मौथिਆ	4	6	8	10	12
ਕ੍ਰਮਾਗਤ ਤੀਲੀਆਂ ਦੇ ਇੱਕ ਜੋੜੇ ਦੇ ਵਿਚਕਾਰ ਦਾ ਕੋਣ	90°	60°	**	***	

- (i) ਕੀ ਤੀਲੀਆਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਲਗਾਤਾਰ ਤੀਲੀਆਂ ਦੇ ਕਿਸੇ ਜੋੜੇ ਦੇ ਵਿਚਲਾ ਕੋਣ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹੈ?
- (ii) 15 ਤੀਲੀਆਂ ਵਾਲੇ ਇੱਕ ਪਹੀਏ ਦੇ ਲਗਾਤਾਰ ਤੀਲੀਆਂ ਦੇ ਕਿਸੇ ਜੋੜੇ ਵਿਚਲਾ ਕੋਣ ਪਤਾ ਕਰੋ।
- (iii) ਜੇ ਲਗਾਤਾਰ ਤੀਲੀਆਂ ਦੇ ਹਰੇਕ ਜੋੜੇ ਵਿਚਲਾ ਕੋਣ 40° ਹੈ, ਤਾਂ ਜ਼ਰੂਰੀ ਤੀਲੀਆਂ ਦੀ ਸੰਖਿਆ ਕਿੰਨੀ ਹੋਵੇਗੀ ?
- 4. ਜੇਕਰ ਕਿਸੇ ਡੱਬੇ ਦੀ ਮਿਠਾਈ ਨੂੰ 24 ਬੱਚਿਆਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾਵੇ ਤਾਂ, ਹਰੇਕ ਬੱਚੇ ਨੂੰ 5 ਮਿਠਾਈਆਂ ਮਿਲਦੀਆਂ ਹਨ। ਜੇ ਬੱਚਿਆਂ ਦੀ ਸੰਖਿਆ ਵਿੱਚ 4 ਦੀ ਕਮੀ ਹੋ ਜਾਵੇ, ਤਾਂ ਹਰੇਕ ਬੱਚੇ ਨੂੰ ਕਿੰਨੀਆਂ ਮਿਠਾਈਆਂ ਮਿਲਣਗੀਆਂ ?
- 5. ਇੱਕ ਕਿਸਾਨ ਦੀ ਡੇਅਰੀ ਵਿੱਚ 20 ਪਸ਼ੂਆਂ ਦੇ ਲਈ 6 ਦਿਨ ਦਾ ਭੋਜਨ ਪਿਆ ਹੈ। ਜੋ ਇਸ ਡੇਅਰੀ ਵਿੱਚ 10 ਪਸ਼ੂ ਹੋਰ ਆ ਜਾਣ, ਤਾਂ ਇਹ ਭੋਜਨ ਕਿੰਨੇ ਦਿਨ ਤੱਕ ਕਾਫੀ ਹੋਵੇਗਾ ?
- 6. ਇੱਕ ਠੇਕੇਦਾਰ ਇਹ ਗਣਨਾ ਕਰਦਾ ਹੈ ਕਿ ਜਸਮਿੰਦਰ ਦੋ ਘਰ ਵਿੱਚ ਦੁਬਾਰਾ ਤਾਰ ਲਗਾਉਣ ਦਾ ਕੰਮ 3 ਵਿਅਕਤੀ 4 ਦਿਨ ਵਿੱਚ ਕਰ ਸਕਦੇ ਹਨ। ਜੇ ਉਹ ਤਿੰਨ ਦੀ ਥਾਂ ਤੇ ਚਾਰ ਵਿਅਕਤੀਆਂ ਨੂੰ ਇਸ ਕੰਮ ਤੇ ਲਗਾਉਂਦਾ ਹੈ, ਤਾਂ ਇਹ ਕੰਮ ਕਿੰਨੇ ਦਿਨਾਂ ਵਿੱਚ ਪੂਰਾ ਹੋ ਜਾਵੇਗਾ?
- 7. ਬੋਤਲਾਂ ਦੇ ਇੱਕ ਬੈਚ (batch) ਨੂੰ 25 ਬਕਸਿਆਂ ਵਿੱਚ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਹਰੇਕ ਬਕਸੇ ਵਿੱਚ 12 ਬੋਤਲਾਂ ਹਨ। ਜੋ ਇਸ ਬੈਚ ਦੀਆਂ ਬੋਤਲਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਰੱਖਿਆ ਜਾਵੇ ਤਾਂ ਕਿ ਹਰੇਕ ਬਕਸੇ ਵਿੱਚ 20 ਬੋਤਲਾਂ ਹੋਣ, ਤਾਂ ਕਿੰਨੇ ਬਕਸੇ ਭਰੇ ਜਾਣਗੇ ?

- 8. ਇੱਕ ਫੈਕਟਰੀ ਨੂੰ ਕੁਝ ਵਸਤੂਆਂ 63 ਦਿਨਾਂ ਵਿੱਚ ਬਣਾਉਣ ਦੇ ਲਈ 42 ਮਸ਼ੀਨਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਉਨ੍ਹੀਆਂ ਹੀ ਵਸਤੂਆਂ 54 ਦਿਨ ਵਿੱਚ ਬਣਾਉਣ ਦੇ ਲਈ, ਕਿੰਨੀਆਂ ਮਸ਼ੀਨਾਂ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ?
- 9. ਇੱਕ ਕਾਰ ਇੱਕ ਸਥਾਨ ਤੱਕ ਪਹੁੰਚਣ ਵਿੱਚ 60 km/h ਦੀ ਚਾਲ ਵਿੱਚ ਚੱਲ ਕੇ 2 ਘੈਟਿਆਂ ਦਾ ਸਮਾਂ ਲੈਂਦੀ ਹੈ। 80 km/h ਦੀ ਚਾਲ ਨਾਲ ਉਸ ਕਾਰ ਨੂੰ ਕਿੰਨਾ ਸਮਾਂ ਲੱਗੇਗਾ ?

ਸਿੱਧਾ ਅਤੇ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ 🗏 223

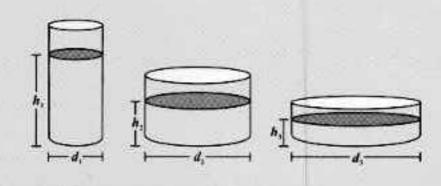
- ਦੋ ਵਿਅਕਤੀ ਇੱਕ ਘਰ ਵਿੱਚ ਨਵੀਂਆਂ ਖਿੜਕੀਆਂ 3 ਦਿਨ ਵਿੱਚ ਲਗਾ ਸਕਦੇ ਹਨ।
 - (i) ਕੰਮ ਸ਼ੁਰੂ ਹੋਣ ਤੋਂ ਪਹਿਲਾਂ, ਇੱਕ ਵਿਅਕਤੀ ਬੀਮਾਰ ਹੋ ਜਾਂਦਾ ਹੈ। ਹੁਣ ਇਹ ਕੰਮ ਕਿੰਨੇ ਦਿਨ ਵਿੱਚ ਪੂਰਾ ਹੋ ਜਾਵੇਗਾ?
 - (ii) ਇੱਕ ਹੀ ਦਿਨ ਵਿੱਚ ਖਿੜਕੀਆਂ ਲਗਵਾਉਣ ਦੇ ਲਈ, ਕਿੰਨੇ ਵਿਅਕਤੀਆਂ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ।
- 11. ਕਿਸੇ ਸਕੂਲ ਵਿੱਚ, 45 ਮਿੰਟ ਦੀ ਅੰਤਰਾਲ ਦੇ 8 ਪੀਰੀਅਡ ਹੁੰਦੇ ਹਨ। ਇਹ ਕਲਪਨਾ ਕਰਦੇ ਹੋਏ ਕਿ ਸਕੂਲ ਦੇ ਕੰਮ ਦਾ ਸਮਾਂ ਉਨਾ ਹੀ ਹੁੰਦਾ ਹੈ, ਜੇਕਰ ਸਕੂਲ ਵਿੱਚ ਬਰਾਬਰ ਅੰਤਰਾਲ ਦੇ 9 ਪੀਰੀਅਡ ਹੋਣ, ਤਾਂ ਹਰੇਕ ਪੀਰੀਅਡ ਕਿੰਨੇ ਸਮੇਂ ਦਾ ਹੋਵੇਗਾ ?

ਇਹਨਾਂ ਨੂੰ ਕਰੋ :

 ਇੱਕ ਕਾਗਜ਼ ਦੀ ਸ਼ੀਟ ਲਵੇ। ਇਸ ਚਿੱਤਰ ਵਿੱਚ ਦਰਸਾਏ ਅਨੁਸਾਰ ਮੋੜੋ। ਹਰੇਕ ਸਥਿਤੀ ਵਿੱਚ, ਭਾਗਾਂ ਦੀ ਸੰਖਿਆ ਅਤੇ ਇੱਕ ਭਾਗ ਦਾ ਖੇਤਰਫਲ ਲਿਖੋ।

8	
	8 8

-	e.
1000	


	10 - 10 10 10	
Constant of the local division of the local	104	

1		1	
	2	12.4	
			_

ਆਪਣੇ ਨਿਰੀਖਣਾਂ ਦੀ ਸਾਰਣੀ ਬਣਾਉ ਅਤੇ ਉਸਦੀ ਆਪਣੇ ਮਿੱਤਰਾਂ ਵਿੱਚ ਚਰਚਾ ਕਰੋ। ਕੀ ਇਹ ਇੱਕ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਦੀ ਸਥਿਤੀ ਹੈ 7 ਕਿਉਂ?

ਭਾਗਾਂ ਦੀ ਸੱਖਿਆ	1	2	4	8	16
ਹਰੇਕ ਭਾਗ ਦਾ ਖੇਤਰਫਲ	ਕਾਗਜ਼ ਦਾ ਖੇਤਰਫਲ	ਕਾਗਜ਼ ਦੇ ਖੇਤਰਫਲ ਦਾ 1/2		Sec.	-

 ਚੱਕਰਾਕਾਰ ਅਧਾਰ ਵਾਲੇ ਵੱਖ-ਵੱਖ ਮਾਪਾਂ ਦੇ ਕੁਝ ਬਰਤਨ ਲਓ। ਹਰੇਕ ਬਰਤਨ ਵਿੱਚ ਪਾਣੀ ਦੀ ਸਮਾਨ ਮਾਤਰਾ ਭਰੋ। ਹਰੇਕ ਬਰਤਨ ਦਾ ਵਿਆਸ ਅਤੇ ਉਸ ਬਰਤਨ ਵਿੱਚ ਪਾਣੀ ਕਿਸ ਉਚਾਈ ਤੱਕ ਹੈ ਉਸਨੂੰ ਮਾਪ ਕੇ ਲਿਖੋ। ਆਪਣੇ ਨਿਰੀਖਣਾਂ ਦੀ ਇੱਕ ਸਾਰਣੀ ਬਣਾਉ। ਕੀ ਇਹ ਇੱਕ ਉਲਟ ਸਮਾਨ ਅਨਪਾਤ ਦੀ ਸਥਿਤੀ ਹੈ?

ਬਰਤਨ ਦਾ ਵਿਆਸ (cm ਵਿੱਚ)	
ਪਾਣੀ ਦੇ ਸਤਰ ਦੀ ਉਚਾਈ (cm ਵਿੱਚ)	

224 🗏 ਗਣਿਤ

ਅਸੀਂ ਕੀ ਚਰਚਾ ਕੀਤੀ ?

- ਦੋ ਰਾਸ਼ੀਆਂ x ਅਤੇ y ਪ੍ਰਤੱਖ ਜਾਂ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਜਾਂ ਆਪਸ ਵਿੱਚ ਸਮਾਨ ਅਨੁਪਾਤੀ ਕਹੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਜੇ ਉਹ ਨਾਲ-ਨਾਲ ਇਸ ਤਰ੍ਹਾਂ ਵੱਧਦੀਆਂ (ਘੱਟਦੀਆਂ) ਹਨ ਕਿ ਉਹਨਾਂ ਦੇ ਅਨੁਸਾਰੀ ਮੁੱਲਾਂ ਦਾ ਅਨੁਪਾਤ ਅਚਲ ਰਹਿੰਦਾ ਹੈ। ਭਾਵ, ਜੇ ^x/_y = k ਹੋਵੇ (ਜਿੱਬੇ k ਇੱਕ ਧਨਾਤਮਕ ਅਚਲ ਹੈ) ਤਾਂ x ਅਤੇ y ਨੂੰ ਆਪਸ ਵਿੱਚ ਸਿੱਧੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਆਖਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਥਿਤੀ ਵਿੱਚ, ਜੇ x ਦੇ ਮੁੱਲਾਂ x₁, x₂ ਦੇ ਲਈ y ਅਨੁਸਾਰੀ ਮੁੱਲਾ ਕੁਮਵਾਰ y₁, y₂ ਹੋਣ ਤਾਂ ^{x₁}/_{y₁} = ^{x₂}/_{y₂} ਹੁੰਦਾ ਹੈ।
- 2. ਦੋ ਰਾਸ਼ੀਆਂ x ਅਤੇ y ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਜਾਂ ਆਪਸ ਵਿੱਚ ਉਲਟ ਪਰਿਵਰਤਨ ਆਖੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਜੇ x ਵਿੱਚ ਹੋਇਆ ਇੱਕ ਵਾਧੇ ਕਾਰਨ y ਵਿੱਚ ਇੱਕ ਸਮਾਨ ਅਨੁਪਾਤੀ ਕਮੀ ਹੋਵੇ ਜਾਂ x ਵਿੱਚ ਹੋਈ ਕਮੀ y ਵਿੱਚ ਇੱਕ ਸਮਾਨ ਅਨੁਪਾਤੀ ਵਾਧਾ ਹੋਵੇ ਤਾਂ ਕਿ ਇਸਦੇ ਅਨੁਸਾਰੀ ਮੁੱਲਾਂ ਦਾ ਗੁਣਨਫਲ ਅਚਲ ਰਹੇ। ਜਾਂ ਜੇ xy = k ਹੋਵੇ, ਤਾਂ x ਅਤੇ y ਨੂੰ ਆਪਸ ਵਿੱਚ ਉਲਟ ਪਰਿਵਰਤਨ ਆਖਦੇ ਹਾਂ। ਇਸ ਸਥਿਤੀ ਵਿੱਚ, ਜੋ x ਦੇ ਮੁੱਲਾਂ x₁, x₂

ਦੇ ਲਈ, y ਦੇ ਅਨੁਸਾਰੀ ਮੁੱਲ ਕੁਮਵਾਰ y_1, y_2 ਹੋਵੇ ਤਾਂ $x_1y_1 = x_2y_2$ ਜਾਂ $\frac{x_1}{x_2} = \frac{y_2}{y_1}$ ਹੁੰਦਾ ਹੈ।

ਅਧਿਆਇ

ਗੁਣਨਖੰਡੀਕਰਨ

14.1 ਭੂਮਿਕਾ

14.1.1 ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਦੇ ਗੁਣਨਖੰਡ

ਤੁਹਾਨੂੰ ਯਾਦ ਹੋਵੇਗਾ ਕਿ ਤੁਸੀਂ ਗੁਣਨਖੰਡਾਂ (factors) ਦੇ ਬਾਰੇ ਵਿੱਚ ਜਮਾਤ VI ਵਿੱਚ ਪੜ੍ਹਿਆ ਸੀ। ਆਉ, ਇੱਕ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਲੈਂਦੇ ਹਾਂ। ਮੰਨ ਲਵੇ ਕਿ ਇਹ ਸੰਖਿਆ 30 ਹੈ। ਅਸੀਂ ਇਸ ਨੂੰ ਹੋਰ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਦੇ ਹਾਂ, ਜਿਵੇਂ ਕਿ

 $30 = 2 \times 15$

$$= 3 \times 10 = 5 \times 6$$

ਇਸ ਭਰ੍ਹਾਂ 1, 2, 3, 5, 6, 10, 15 ਅਤੇ 30 ਸੰਖਿਆ 30 ਦੇ ਗੁਣਨਖੰਡ ਹਨ। ਇਸ ਵਿੱਚ 2, 3 ਅਤੇ 5, ਸੰਖਿਆ 30 ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡ ਹਨ (ਕਿਉਂ?) ਜਦ ਕੋਈ ਸੰਖਿਆ ਅਭਾਜ ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਨਫਲ ਰੂਪ ਵਿੱਚ ਲਿਖੀ ਹੋਵੇ ਤਾਂ ਉਹ ਉਸਦਾ ਅਭਾਜ ਗੁਣਨਖੰਡ ਰੂਪ ਕਹਿਲਾਉਂਦਾ ਹੈ।ਉਦਾਹਰਣ ਦੇ ਲਈ 30 ਨੂੰ ਅਭਾਜ ਗੁਣਨਖੰਡ ਰੂਪ ਵਿੱਚ 2 × 3 × 5 ਲਿਖਦੇ ਹਨ। ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ 30 ਨੂੰ ਇਸ ਰੂਪ ਵਿੱਚ ਵੀ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ : 30 = 1 × 30 ਇਸ ਤਰ੍ਹਾਂ, 1 ਅਤੇ 30 ਵੀ 30 ਦੇ ਗੁਣਨਖੰਡ ਹਨ। ਤੁਸੀਂ ਦੇਖਦੇ ਹੋ ਕਿ 1 ਹਰੇਕ ਸੰਖਿਆ ਦਾ ਇੱਕ ਗੁਣਨਖੰਡ ਹੁੰਦਾ ਹੈ ਉਦਾਹਰਣ ਦੇ ਲਈ, 101 = 1 × 101 ਹੁੰਦਾ ਹੈ।

ਪਰ ਜਦ ਵੀ ਅਸੀਂ ਕਿਸੇ ਸੰਖਿਆ ਨੂੰ ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਦੇ ਹਾਂ, ਤਾਂ ਅਸੀਂ । ਨੂੰ ਗੁਣਨਖੰਡ ਦੇ ਰੂਪ ਵਿੱਚ ਤੱਦ ਤੱਕ ਨਹੀਂ ਲਿਖਾਂਗੇ। ਜਦ ਤੱਕ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਨਾਲ ਜ਼ਰੂਰੀ ਨਾ ਹੋਵੇ।

70 ਦਾ ਅਭਾਜ ਗੁਣਨਖੰਡ ਰੂਪ 2 × 5 × 7 ਹੈ।90 ਦਾ ਅਭਾਜ ਗੁਣਨਖੰਡ ਰੂਪ 2 × 3 × 3 × 5 ਹੈ, ਆਦਿ।

ਇਸ ਪ੍ਰਕਾਰ, ਅਸੀਂ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ (algebraic expression) ਨੂੰ ਵੀ ਉਸਦੇ ਗੁਣਨਖੰਡਾਂ

ਦੇ ਗੁਣਨਫਲਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾ ਸਕਦੇ ਹਾਂ। ਇਸਦਾ ਅਸੀਂ ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਧਿਐਨ ਕਰਾਂਗੇ।

14.1.2 ਸ਼ੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ ਦੇ ਗੁਣਨਖੰਡ

ਅਸੀਂ ਜਮਾਤ VII ਵਿੱਚ ਦੇਖ ਚੁੱਕੇ ਹਾਂ ਕਿ ਬੀਜਗਣਿਤਿਕ ਵਿਅੇਜਕਾਂ ਦੇ ਪਦ (terms) ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਨਫਲਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਬਣਦੇ ਹਨ।ਉਦਾਹਰਣ ਦੇ ਲਈ, ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ 5xy + 3x ਵਿੱਚ, ਪਦ 5xy ਗੁਣਨਖੰਡਾਂ 5, x ਅਤੇ y ਨਾਲ ਬਣਿਆ ਹੈ, ਜਿਵੇਂ ਕਿ

$$5xy = 5 \times x \times y$$

ਧਿਆਨ ਦਿਓ ਕਿ 5xy ਦੇ ਗੁਣਨਖੰਡ 5,x ਅਤੇ y ਨੂੰ ਹੋਰ ਅੱਗੇ ਗੁਣਨਖੰਡਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਉਹਨਾਂ ਦੇ ਗੁਣਨਖੰਡਾਂ ਨੂੰ ਗੁਣਨਵਲ ਧਿਆਨ ਦਿਓ ਕਿ । ਪਦ 5ਲਾ. ਦਾ ਇੱਕ ਗੁਣਨਖੰਡ ਹੈ, ਕਿਉਂਕਿ

 $5xy = 1 \times 5 \times x \times y$

ਅਸਲ ਵਿੱਚ, । ਹਰੇਕ ਪਦ ਦਾ ਇੱਕ ਗੁਣਨਖੰਡ ਹੁੰਦਾ ਹੈ। ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ ਦੀ ਸਥਿਤੀ ਦੀ ਤਰ੍ਹਾਂ, ਜਦ ਤੱਕ ਵਿਸ਼ੇਸ਼ ਰੂਪ ਵਿੱਚ ਜ਼ਰੂਰਤ ਨਾ ਹੋਵੇ, ਅਸੀਂ । ਨੂੰ ਕਿਸੇ ਵੀ ਪਦ ਦਾ ਵੱਖ ਤੋਂ ਗੁਣਨਖੰਡ ਨਹੀਂ ਲਿਖਦੇ ਹਾਂ। 226 🔳 ਗਣਿਤ

ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਨਹੀਂ ਜਾ ਸਕਦਾ ਹੈ। ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ 5.xy ਦੇ ਅਭਾਜ ਗੁਣਨਖੰਡ (prime factors) 5, x ਅਤੇ y ਹਨ। ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ ਵਿੱਚ, ਅਸੀਂ 'ਅਭਾਜ' ਦੇ ਸਥਾਨ ਤੇ ਸ਼ਬਦ 'ਅਖੰਡ' (irreducible) ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹਾਂ। ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ 5.xy ਦਾ ਅਖੰਡ ਰੂਪ 5 × x × y ਹੈ। ਧਿਆਨ ਦਿਓ ਕਿ 5 × (xy) ਪਦ 5.xy ਦਾ ਅਖੰਡ ਰੂਪ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਗੁਣਨਖੰਡ xy ਨੂੰ ਅੱਗੇ x ਅਤੇ y ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਭਾਵ xy = x × y ਹੈ।

ਹੁਣ, ਵਿਅੰਜਕ 3x (x + 2) ਤੇ ਵਿਚਾਰ ਕਰੋ। ਇਸ ਨੂੰ ਗੁਣਨਖੰਡਾਂ 3, x ਅਤੇ (x + 2) ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ

$$3x(x+2) = 3 \times x \times (x+2)$$

ਵਿਅੰਜਕ 3x (x + 2) ਦੇ ਅਖੰਡ ਗੁਣਨਖੰਡ 3, x ਅਤੇ (x + 2) ਹਨ। ਇਸ ਤਰ੍ਹਾਂ, ਵਿਅੰਜਕ 10x (x + 2) (y + 3) ਨੂੰ ਅਖੰਡ ਰੂਪ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ : 10x (x + 2) (y + 3) = 2 × 5 × x × (x + 2) × (y + 3)

14.2 ਗਣਨਖੰਡੀਕਰਨ ਕੀ ਹੈ?

ਜਦ ਅਸੀਂ ਕਿਸੇ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨਖੰਡ ਕਰਦੇ ਹਾਂ, ਤਾਂ ਅਸੀਂ ਉਸ ਨੂੰ ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਦੇ ਹਾਂ। ਇਹ ਗੁਣਨਖੰਡ, ਸੰਖਿਆਵਾਂ, ਬੀਜਗਣਿਤਿਕ ਚਲ ਜਾਂ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਹੋ ਸਕਦੇ ਹਨ। 3xy, 5x'y, 2x (y + 2), 5 (y + 1) (x + 2) ਜਿਵੇਂ ਕਿ ਵਿਅੰਜਕ ਪਹਿਲਾਂ ਤੋਂ ਹੀ ਗੁਣਨਖੰਡ ਰੂਪ ਵਿੱਚ ਹਨ। ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਪਹਿਲਾਂ ਤੋਂ ਹੀ ਜਾਣਦੇ ਹਾਂ ਕਿ ਅਸੀਂ ਉਪਰੋਕਤ ਵਿਅੰਜਕਾਂ ਦੇ ਗੁਣਨਖੰਡ ਇਹਨਾਂ ਨੂੰ ਦੇਖ ਕੇ ਹੀ ਪੜ੍ਹ ਸਕਦੇ ਹਾਂ।

ਇਸਦੇ ਉੱਲਟ 2x + 4, 3x + 3y, x² + 5x, x³ + 5x + 6 ਵਰਗੇ ਵਿਅੰਜਕਾਂ 'ਤੋਂ ਵਿਚਾਰ ਕਰੋ। ਇਹ ਸਪੱਸ਼ਟ ਨਹੀਂ ਹੈ ਕਿ ਇਹਨਾਂ ਦੇ ਗੁਣਨਖੰਡ ਕੀ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਵਿਅੰਜਕਾਂ ਦੇ ਗੁਣਨਖੰਡ ਕਰਨ ਦੇ ਲਈ, ਸਾਨੂੰ ਲੜੀਵਾਰ ਵਿਧੀਆਂ ਵਿਕਸਿਤ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਹੈ। ਇਹੀ ਹੁਣ ਅਸੀਂ ਕਰਾਂਗੇ।

14.2.1 ਸਾਂਝੇ ਗੁਣਨਖੰਡਾਂ ਦੀ ਵਿਧੀ

ਅਸੀਂ ਇੱਕ ਸਰਲ ਉਦਾਹਰਣ ਤੋਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹਾਂ : 2x + 4 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉ।
 ਅਸੀਂ ਇਸਦੇ ਹਰੇਕ ਪਦ ਨੂੰ ਅਖੰਡ ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਦੇ ਹਾਂ :

ਇਸ ਤਰ੍ਹਾਂ

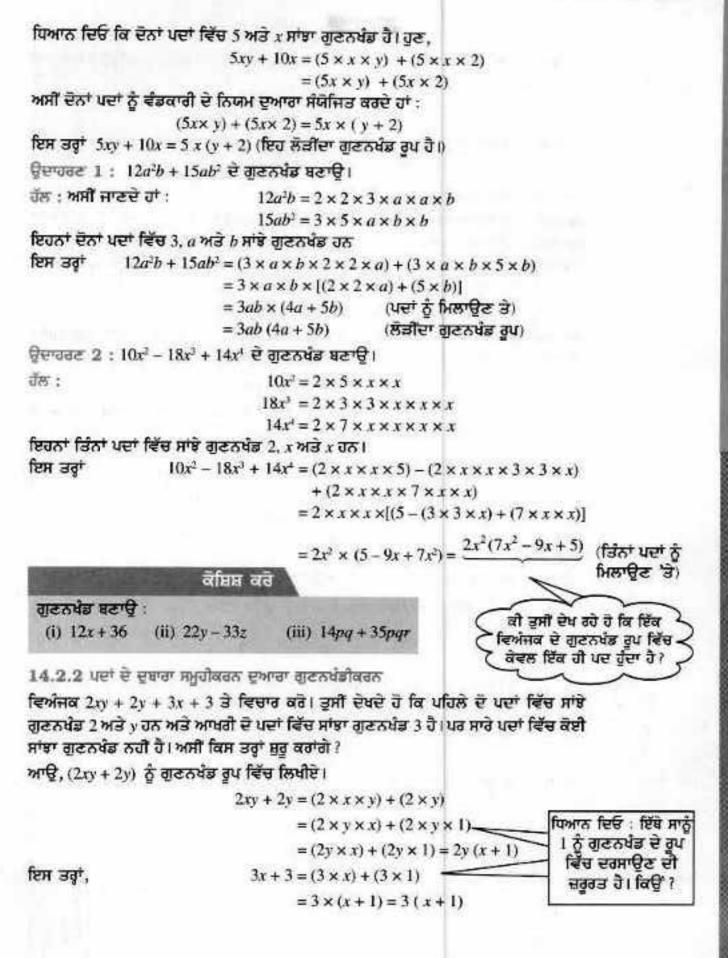
ਧਿਆਨ ਦਿਓ ਕਿ ਗੁਣਨਖੰਡ 2 ਦੋਨਾਂ ਪਦਾਂ ਵਿੱਚ ਸਾਂਝਾ ਹੈ। ਦੇਖੋ, ਵੰਡਕਾਰੀ ਦੇ ਨਿਯਮ ਦੁਆਰਾ

$$2 \times (x + 2) = (2 \times x) + (2 \times 2)$$

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਲਿਖ ਸਕਦੇ ਹਾਂ ਕਿ

 $2x + 4 = 2 \times (x + 2) = 2 (x + 2)$

ਇਸ ਤਰ੍ਹਾਂ ਵਿਅੰਜਕ 2x + 4 ਉਹ ਹੀ ਹੈ ਜੋ 2 (x + 2) ਹੈ। ਹੁਣ ਅਸੀਂ ਇਸਦੇ ਗੁਣਨਖੰਡ ਪੜ੍ਹ ਸਕਦੇ ਹਾਂ : ਇਹ 2 ਅਤੇ (x + 2) ਹੈ। ਇਹ ਗੁਣਨਖੰਡ ਅਖੰਡ ਹਨ।


ਹੁਣ, 5xy + 10x ਦੇ ਗੁਣਨਖੰਡ ਕਰੇ।

5.ry ਅਤੇ 10x ਦੇ ਅਖੰਡ ਗੁਣਨਖੰਡ ਰੂਪ ਵਿੱਚ ਕ੍ਰਮਵਾਰ ਹਨ :

$$5xy = 5 \times x \times y$$
$$10x = 2 \times 5 \times x$$

ਗੁਣਨਖੰਡੀਕਰਨ 🔳 227

228 🔳 ਗਣਿਤ

ਇਸ ਤਰ੍ਹਾਂ

$$2xy + 2y + 3x + 3 = 2y (x + 1) + 3 (x + 1)$$

ਧਿਆਨ ਦਿਓ ਕਿ ਇੱਥੇ ਸੱਜੇ ਪੱਖ ਦੇ ਦੋਨਾਂ ਪਦਾਂ ਵਿੱਚ ਇੱਕ ਸਾਂਝਾ ਗੁਣਨਖੰਡ (x + 1) ਹੈ। ਦੋਨਾਂ ਪਦਾਂ ਨੂੰ ਮਿਲਾਉਣ ਤੋਂ,

2xy + 2y + 3x + 3 = 2y (x + 1) + 3 (x + 1) = (x + 1) (2y + 3)

ਹੁਣ, ਵਿਅੰਜਕ 2xy + 2y + 3x + 3 ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਹੈ। ਇਸਦੇ ਗੁਣਨਖੰਡ (x + 1) ਅਤੇ (2y + 3) ਹਨ। ਧਿਆਨ ਦਿਓ ਕਿ ਇਹ ਗੁਣਨਖੰਡ ਅਖੇਡ ਹਨ।

ਦੁਬਾਰਾ ਸਮੂਹੀਕਰਨ (regrouping) ਕੀ ਹੈ ?

ਮੰਨ ਲਉ ਕਿ ਉਪਰੋਕਤ ਵਿਅੰਜਕ 2xy + 3 + 2y + 3x ਦੇ ਰੂਪ ਵਿੱਚ ਦਿੱਤਾ ਗਿਆ ਹੈ, ਤਦ ਇਸਦਾ ਗੁਣਨਖੰਡੀਕਰਨ ਦੇਖਣਾ ਸਰਲ ਨਹੀਂ ਹੈ। ਇਸ ਵਿਅੰਜਕ ਨੂੰ 2xy + 2y + 3x + 3 ਦੇ ਰੂਪ ਵਿੱਚ ਦੁਬਾਰਾ ਵਿਵਸਥਿਤ ਕਰਨ 'ਤੋ, ਇਸਦੇ (2xy + 2y) ਅਤੇ (3x + 3) ਸਮੂਹ ਬਣਾ ਕੇ ਗੁਣਨਖੰਡੀਕਰਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇਹੀ ਦੁਬਾਰਾ ਸਮੂਹੀਕਰਨ ਹੈ।

ਦੁਬਾਰਾ ਸਮੂਹੀਕਰਨ ਇੱਕ ਤੋਂ ਜ਼ਿਆਦਾ ਵਿਧੀਆਂ ਦੁਆਰਾ ਸੰਭਵ ਹੋ ਸਕਦਾ ਹੈ।ਮੰਨ ਲਉ ਕਿ ਅਸੀਂ ਉਪਰੋਕਤ ਵਿਅੰਜਕ ਨੂੰ 2xy + 3x + 2y + 3 ਦੇ ਰੂਪ ਵਿੱਚ ਦੁਬਾਰਾ ਸਮੂਹੀਕਰਨ ਕਰਦੇ ਹਾਂ। ਇਸ ਵਿੱਚ ਵੀ ਅਸੀਂ ਗੁਣਨਖੰਡ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ। ਆਉ, ਕੋਸ਼ਿਸ਼ ਕਰੀਏ :

$$2xy + 3x + 2y + 3 = 2 \times x \times y + 3 \times x + 2y + 3$$
$$= x \times (2y + 3) + 1 \times (2y + 3)$$
$$= (2y + 3) (x + 1)$$

ਗੁਣਨਖੰਡ ਉਹੀ ਹੈ (ਜਿਵੇਂ ਕਿ ਉਹਨਾਂ ਨੂੰ ਹੋਣਾ ਚਾਹੀਦਾ ਸੀ), ਭਾਵੇ ਉਹ ਵੱਖ ਕ੍ਰਮ ਵਿੱਚ ਦਿਖਾਈ ਦੇ ਰਹੇ ਹਨ।

ਉਦਾਹਰਣ 3 : 6xy – 4y + 6 – 9x ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉ।

ਹੱਲ :

- ਪਗ 1 ਪੜਤਾਲ ਕਰੋ ਕੀ ਸਾਰੇ ਪਦਾਂ ਵਿੱਚ ਕੋਈ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਹੈ। ਇੱਥੇ ਕੋਈ ਨਹੀਂ ਹੈ।
- ਪਗ 2 ਸਮੂਹੀਕਰਨ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸੋਚੋ। ਧਿਆਨ ਦਿਉ ਕਿ ਪਹਿਲੇ ਦੋ ਪਦਾਂ ਵਿੱਚ ਸਾਂਝਾ ਗੁਣਨਖੰਡ 2y ਹੈ।

6xy - 4y = 2y(3x - 2)

ਇਸ ਤਰ੍ਹਾਂ

(a)

ਅੰਤਿਮ ਦੋ ਪਦਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ ? ਇਹਨਾਂ ਨੂੰ ਦੇਖੋ। ਜਦ ਤੁਸੀਂ ਇਸਦਾ ਕ੍ਰਮ ਬਦਲ ਕੇ – 9x + 6, ਲਿਖ ਲਓ ਤਾਂ ਗੁਣਨਖੰਡ (3x – 2) ਆ ਜਾਵੇਗਾ।

$$= -3(3x-2)$$
 (b)

ਪਗ 3 (a) ਅਤੇ (b) ਨੂੰ ਇੱਕਠੇ ਰੱਖਣ 'ਤੇ,

$$6xy - 4y + 6 - 9x = 6xy - 4y - 9x + 6$$

= 2y (3x - 2) - 3 (3x - 2)
= (3x - 2) (2y - 3)

ਇਸ ਤਰ੍ਹਾਂ (6xy – 4y + 6 – 9x) ਦੇ ਗੁਣਨਖੇਡ (3x – 2) ਅਤੇ (2y – 3) ਹਨ।

				ਗੁਣਨਖੰਡੀਕਰਨ 🔳 229
ਅਭਿ	ਆਸ 14.1			and the second s
1. ਦਿੱਤੇ ਹੋਏ ਪਦਾਂ ਵਿੱਚ	ਰ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਪਤਾ ਕ	ਕਰੋ :		1
(i) 12x, 36			14 pa. $28p^2a^2$	
	(v) 6abc, 24ab			and the second
(vi) $16 x^3, -4x^2$			10 pq, 20qr, 30rp	21 3
(viii) $3x^2 y^3$, $10x^3$	$y^2.6 x^2 y^2 z$		22.50 Per 22.0	
2. ਹੇਠਾਂ ਲਿਖੇ ਵਿਅੰਜਕ	ਾਂ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉ :			
(i) $7x - 42$	(ii) $6p - 12q$	(iii)	$7a^2 + 14a$	
(iv) $-16z + 20$	z^3 (v) 20 $l^2 m + 30$	COCCUPY CALL IN		
(vi) $5x^2y - 15$	AY ²	(vii)	$10 a^2 - 15 b^2 + 20 a^2$	c ²
(viii) $-4 a^2 + 4 a^3$		(ix)	$x^2 y z + x y^2 z + x y$	ਟੇ (ਤਿੰਨਾਂ ਪਦਾਂ ਨੂੰ ਮਿਲਾਉਣ ਤੇ)
(x) $ax^2y + bx$				(190, de, Ö (No, õc 9)
3. ਗੁਣਨਖੰਡ ਬਣਾਉ :		بعلز		
(i) $x^2 + xy + 1$		10.02	15 xy - 6x + 5y - 2	
(iii) $ax + bx - a$	NU 12-5102	(IV)	15 pq + 15 + 9q + 3	25p
(v) $z - 7 + 7x$	to	12		
14.2.3 ਸਰਬਸਮਤਾਵਾਂ		धंडीवरत		
			1.025	
ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ	$(a+b)^2 = a^2$		9833	(1)
ਅਸੀ ਜਾਣਦ ਹਾਂ ਕਿ	$(a-b)^1 = a^2$	-2ab + -	b ²	(II)
	$(a-b)^{2} = a^{2}$ $(a+b)(a-b)^{2}$	$-2ab + b) = a^{2} - b$	b^2 b^2	(II) (TIT)
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤਂ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇਸ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ	$(a - b)^2 = a^2$ $(a + b) (a - a^2)$ ੀਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚੋਂ ਕਿ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰੋ	- 2ab + b) = a ³ - ਇਹ ਸਪੱਸ਼ਟ ਕਾਰ ਪ੍ਰਯੋਕ ਕਿਤ ਸਰਬ	^{b² ^{b² ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ}}	(II) (III) ਮੁੱਡੀਕਰਨ ਦੇ ਪਹਿਲਾਂ ਅਸੀਂ ਕ ਦੇ ਸੱਜੇ ਪੱਖ
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤੂੰ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ ਜਾਂਦੇ ਹਨ।	$(a - b)^2 = a^2$ (a + b) (a - b) ਗਿਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚੋਂ ਇ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰੋ ਰਬਸਮਤਾ ਦੇ ਖੱਬੇ ਪੱਖ ਦੇ	– 2ab + b) = a ³ – ਇਹ ਸਪੱਸ਼ਨ ਕਿਾਰ ਪ੍ਰਯੋਨ ਕਿਤ ਸਰਬ ਸੰਗਤ ਵਿਅ	^{b² ^{b² ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ}}	(II) (III) ਮੁੱਡੀਕਰਨ ਦੇ ਪਹਿਲਾਂ ਅਸੀਂ ਕ ਦੇ ਸੱਜੇ ਪੱਖ
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤੂ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇਸ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ 4 : x ² +8x ·	$(a - b)^{2} = a^{2}$ $(a + b) (a - c)^{2}$ ੀਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚੋਂ ਇ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰ ਰਬਸਮਤਾ ਦੇ ਖੱਬੇ ਪੱਖ ਦੇ + 16 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾ	– 2ab + b) = a ³ – ਇਹ ਸਪੱਸ਼ਟ ਕਾਰ ਪ੍ਰਯੋਰ ਕਿਤ ਸਰਬ ਸੰਗਤ ਵਿਅ ਉ।	^{b² ^{b² ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ}}	(II) (III) ਮੁੱਡੀਕਰਨ ਦੇ ਪਹਿਲਾਂ ਅਸੀਂ ਕ ਦੇ ਸੱਜੇ ਪੱਖ ਖੰਡ ਪ੍ਰਾਪਤ ਹੋ
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤੂ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇਸ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ 4 : x ² + 8x ਹੋਲ : ਇਸ ਵਿਅੰਜਕ ਨੇ ਦੇ	$(a - b)^2 = a^2$ $(a + b) (a - b)^2 = a^2$ ਗਿਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚੋਂ ਇ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰੋ ਰਬਸਮਤਾ ਦੇ ਖੱਬੇ ਪੱਖ ਦੇ + 16 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾ ਇਸਦੇ ਤਿੰਨ ਪਦ ਹਨ	– 2ab + (b) = a ³ – ਇਹ ਸਪੱਸ਼ਕ ਕਿਤ ਸਰਬ ਸ਼ੱਗਤ ਵਿਅ ਉ। (ਇਸ ਤਰ੍ਹ	^{b² ^{b² ਹ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਸ਼ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਾਂ ਇਸ ਵਿੱਚ ਸਰਬਸਮਤਾ}}	(II) (III) ਮੁੱਡੀਕਰਨ ਦੇ ਪਹਿਲਾਂ ਅਸੀਂ ਕ ਦੇ ਸੱਜੇ ਪੱਖ ਖੰਡ ਪ੍ਰਾਪਤ ਹੋ III ਦਾ ਪ੍ਰਯੋਗ
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤੂ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇਸ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ 4 : x ² +8x ਹੋਲ : ਇਸ ਵਿਅੰਜਕ ਨੂੰ ਦੇ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ	$(a - b)^2 = a^2$ $(a + b) (a - c)^2 = a^2$ ਗਿਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚੋਂ ਇੱ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰ ਰਬਸਮਤਾ ਦੇ ਖੱਬੇ ਪੱਖ ਦੇ + 16 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾ ਇੱ। ਇਸਦੇ ਤਿੰਨ ਪਦ ਹਨ ਹੈ। ਨਾਲ ਹੀ, ਇਸਦੇ ਪਹਿ	– 2ab + + b) = a ³ – ਇਹ ਸਪੱਸ਼ਨ ਕਾਰ ਪ੍ਰਯੋਨ ਕਿਤ ਸਰਬ ਸੰਗਤ ਵਿਅ ਉ। । ਇਸ ਤਰ੍ਹ ਲਾ ਅਤੇ ਤ	^{b² ^{b² ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਸੰਸਰਾ ਪਦ ਪੂਰਨ ਵਰਗ}}	(II) (III) ਮੁੱਡੀਕਰਨ ਦੇ ਪਹਿਲਾਂ ਅਸੀਂ ਕ ਦੇ ਸੱਜੇ ਪੱਖ ਖੰਡ ਪ੍ਰਾਪਤ ਹੋ III ਦਾ ਪ੍ਰਯੋਗ ਹੈ ਅਤੇ ਵਿੱਚ
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤਂ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ	$(a - b)^2 = a^2$ $(a + b) (a - c)^2 = a^2$ ਗਿਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚੋਂ ਇੱ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰ ਰਬਸਮਤਾ ਦੇ ਖੱਬੇ ਪੱਖ ਦੇ + 16 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾ ਇੱ। ਇਸਦੇ ਤਿੰਨ ਪਦ ਹਨ ਹੈ। ਨਾਲ ਹੀ, ਇਸਦੇ ਪਹਿ	– 2ab + + b) = a ³ – ਇਹ ਸਪੱਸ਼ਨ ਕਾਰ ਪ੍ਰਯੋਨ ਕਿਤ ਸਰਬ ਸੰਗਤ ਵਿਅ ਉ। । ਇਸ ਤਰ੍ਹ ਲਾ ਅਤੇ ਤ	^{b² ^{b² ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਸੰਸਰਾ ਪਦ ਪੂਰਨ ਵਰਗ}}	(II) (III) ਮੁੱਡੀਕਰਨ ਦੇ ਪਹਿਲਾਂ ਅਸੀਂ ਕ ਦੇ ਸੱਜੇ ਪੱਖ ਖੰਡ ਪ੍ਰਾਪਤ ਹੋ III ਦਾ ਪ੍ਰਯੋਗ ਹੈ ਅਤੇ ਵਿੱਚ
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤੂ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇਸ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ 4 : x ² + 8x ਹੋਲ : ਇਸ ਵਿਅੰਜਕ ਨੂੰ ਦੇ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਵਾਲੇ ਪਦ ਦਾ ਚਿੰਨੂ ਧਨਾਤ b = 4 ਹੈ।	$(a - b)^2 = a^2$ $(a + b) (a - c)^2 = a^2$ ਗਿਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚੋਂ ਇੱ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰ ਰਬਸਮਤਾ ਦੇ ਖੱਬੇ ਪੱਖ ਦੇ + 16 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾ ਇੱ। ਇਸਦੇ ਤਿੰਨ ਪਦ ਹਨ ਹੈ। ਨਾਲ ਹੀ, ਇਸਦੇ ਪਹਿ	– 2ab + + b) = a ³ – ਇਹ ਸਪੱਸ਼ਟ ਕਾਰ ਪ੍ਰਯੋਨ ਕਿਤ ਸਰਬ ਸੰਗਤ ਵਿਅ ਸੰਗਤ ਵਿਅ ਉ। । ਇਸ ਤਰ੍ਹ ਲਾ ਅਤੇ ਤ a ² + 2ab	b^2 b^2 ਨੂੰ ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਸੰਸਰਾ ਪਦ ਪੂਰਨ ਵਰਗ + b^2 ਦੇ ਰੂਪ ਦਾ ਹੈ, ਇੱ	(II) (III) ਮੁੱਡੀਕਰਨ ਦੇ ਪਹਿਲਾਂ ਅਸੀਂ ਕ ਦੇ ਸੱਜੇ ਪੱਖ ਖੰਡ ਪ੍ਰਾਪਤ ਹੋ III ਦਾ ਪ੍ਰਯੋਗ ਹੈ ਅਤੇ ਵਿੱਚ
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤੂ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇਸ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ 4 : x ² + 8x ਹੋਲ : ਇਸ ਵਿਅੰਜਕ ਨੂੰ ਦੇ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਵਾਲੇ ਪਦ ਦਾ ਚਿੰਨੂ ਧਨਾਤ b = 4 ਹੈ।	$(a - b)^2 = a^2$ $(a + b) (a - b)^2$ ਗਿਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚੋਂ ਇ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰ ਰਬਸਮਤਾ ਦੇ ਖੱਬੇ ਪੱਖ ਦੇ + 16 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾ ਸ਼ੇਖੋ। ਇਸਦੇ ਤਿੰਨ ਪਦ ਹਨ ਹੈ। ਨਾਲ ਹੀ, ਇਸਦੇ ਪਹਿ ਤਮਕ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ $a^2 + 2ab + b^2 = b^2$	– 2ab + + b) = a ³ – ਇਹ ਸਪੱਸ਼ਟ ਕਾਰ ਪ੍ਰਯੋਨ ਕਿਤ ਸਰਬ ਸੰਗਤ ਵਿਅ ਸੰਗਤ ਵਿਅ ਉ। । ਇਸ ਤਰ੍ਹ ਲਾ ਅਤੇ ਤ a ² + 2ab	b^2 b^2 ਨ ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਸੰਸਰਾ ਪਦ ਪੂਰਨ ਵਰਗ $(+b^2 \ c ਰੂਪ ਦਾ ਹੈ, ਇੱ(4) + 42$	(II) (III) Stable add of the second stable state of the second
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤੂ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇਸ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ 4 : x ² +8x ਹੋਲ : ਇਸ ਵਿਅੰਜਕ ਨੂੰ ਦੇ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਵਾਲੇ ਪਦ ਦਾ ਚਿੰਨੂ ਧਨਾਤ b = 4 ਹੈ। ਇਸ ਤਰ੍ਹਾਂ,	$(a - b)^2 = a^2$ $(a + b) (a - c)^2$ ੀਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚੋਂ ਹਿ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰ ਰਬਸਮਤਾ ਦੇ ਖੱਬੇ ਪੱਖ ਦੇ + 16 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾ ਇੱੱਥੇ। ਇਸਦੇ ਤਿੰਨ ਪਦ ਹਨ ਹੈ। ਨਾਲ ਹੀ, ਇਸਦੇ ਪਹਿਤ ਤਮਕ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ $a^2 + 2ab + b^2 = c)^2$	- 2ab + 1 b) = a ³ - ਇਹ ਸਪੱਸ਼ਟ ਕਾਰ ਪ੍ਰਯੋਨ ਕਿਤ ਸਰਬ ਸੰਗਤ ਵਿਅ ਸੰਗਤ ਵਿਅ ਉ। 1 ਇਸ ਤਰ੍ਹ ਲਾ ਅਤੇ ਤ a ² + 2ab $x^{2} + 2(x)$ $x^{2} + 8x + (a + b)^{2}$,	^{b²} ^{b²} 7 ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਸੰਸਰਾ ਪਦ ਪੂਰਨ ਵਰਗ (+ b ² ਦੇ ਰੂਪ ਦਾ ਹੈ, ਇੱ (4) + 4 ³ - 16	(II) (III) 54ਂਡੀਕਰਨ ਦੇ ਪਹਿਲਾਂ ਅਸੀਂ ਕ ਦੇ ਸੱਜੇ ਪੱਖ ਬੇਡ ਪ੍ਰਾਪਤ ਹੋ III ਦਾ ਪ੍ਰਯੋਗ ਹੈ ਅਤੇ ਵਿੱਚ ਬਿ a = x ਅਤੇ ਧਿਆਨ ਵਿਓ ਕਿ ਦਿੱਤਾ ਹੋਇਆ ਵਿਅੰਜਕ a ¹ - 2ab + b ² ਦੇ ਤੁਪ ਦਾ ਹੈ, ਇੱਥੇ a = 2y,
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤੂ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇਸ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ 4 : x ² +8x ਹੋਲ : ਇਸ ਵਿਅੰਜਕ ਨੂੰ ਦੇ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਵਾਲੇ ਪਦ ਦਾ ਚਿੰਨੂ ਧਨਾਤ b = 4 ਹੈ। ਇਸ ਤਰ੍ਹਾਂ,	$(a - b)^2 = a^2$ $(a + b) (a - c)^2$ ੀਆਂ ਉਦਾਹਰਣਾਂ ਵਿੱਚੋਂ ਹਿ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰ ਰਬਸਮਤਾ ਦੇ ਖੱਬੇ ਪੱਖ ਦੇ + 16 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾ ਇੱੱਥੇ। ਇਸਦੇ ਤਿੰਨ ਪਦ ਹਨ ਹੈ। ਨਾਲ ਹੀ, ਇਸਦੇ ਪਹਿਤ ਤਮਕ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ $a^2 + 2ab + b^2 = c)^2$	- 2ab + 1 b) = a ³ - ਇਹ ਸਪੱਸ਼ਟ ਕਾਰ ਪ੍ਰਯੋਨ ਕਿਤ ਸਰਬ ਸੰਗਤ ਵਿਅ ਸੰਗਤ ਵਿਅ ਉ। 1 ਇਸ ਤਰ੍ਹ ਲਾ ਅਤੇ ਤ a ² + 2ab $x^{2} + 2(x)$ $x^{2} + 8x + (a + b)^{2}$,	b^2 b^2 ਨ ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਜੋ ਕਿਸੇ ਕਿ ਗੁਣਨ ਸ਼ਿਲ ਕਿਸੇ ਕਿ ਗੁਣਨ ਸ਼ਿਲ ਕਿਸੇ ਕਿ ਗੁਣਨ ਸ਼ਿਲ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ ਇੱਕ ਸ਼ਿਲ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ ਇੱਕ ਸ਼ਿਲ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ ਕਿਸੇ	(II) (III) Stable add of the second state o
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤਂ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇਸ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ 4 : x ² + 8x - ਹੱਲ : ਇਸ ਵਿਅੰਜਕ ਨੂੰ ਦੇ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਵਾਲੇ ਪਦ ਦਾ ਚਿੰਨੂ ਧਨਾਤ b = 4 ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਕਿਉਂਕਿ ਤੁਲਨਾ ਕਰਨ ਤੋ,	$(a - b)^2 = a^2$ $(a + b) (a - b)^2$ (a + b) (a - b	- 2ab + 1 b) = a ³ - ਇਹ ਸਪੱਸ਼ਟ ਕਾਰ ਪ੍ਰਯੋਨ ਕਿਤ ਸਰਬ ਸੰਗਤ ਵਿਅ ਉ। 1 ਇਸ ਤਰ੍ਹ ਲਾ ਅਤੇ ਤ a ² + 2ab x ² + 2 (x x ² + 8x + (a + b) ² , (x + 4) ²	^{b²} ^{b²} 7 ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਸੰਸਰਾ ਪਦ ਪੂਰਨ ਵਰਗ (+ b ² ਦੇ ਰੂਪ ਦਾ ਹੈ, ਇੱ (4) + 4 ³ - 16	(II) (III) 54ਂਡੀਕਰਨ ਦੇ ਪਹਿਲਾਂ ਅਸੀਂ ਕ ਦੇ ਸੱਜੇ ਪੱਖ ਬੰਡ ਪ੍ਰਾਪਤ ਹੋ III ਦਾ ਪ੍ਰਯੋਗ ਹੈ ਅਤੇ ਵਿੱਚ ਬਿ a = x ਅਤੇ ਧਿਆਨ ਵਿਓ ਕਿ ਦਿੱਤਾ ਹੋਇਆ ਵਿਅੰਜਕ a² - 2ab + b² ਦੇ ਰੁਪ ਦਾ ਹੈ, ਇੱਥੇ a = 2y, b = 3 ਅਤੇ 2ab = 2 × 2y × 3
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤਂ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇਸ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ 4 : x ² + 8x ਹੋਲ : ਇਸ ਵਿਅੰਜਕ ਨੂੰ ਦੇ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਵਾਲੇ ਪਦ ਦਾ ਚਿੰਨੂ ਧਨਾਤ b = 4 ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਕਿਉਂਕਿ	$(a - b)^2 = a^2$ $(a + b) (a - b)^2$ (a + b) $(a - b)^2$ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰੋ ਰਬਸਮਤਾ ਦੇ ਖੱਬੇ ਪੱਖ ਦੇ + 16 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾ ਇਸ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾ (a ² + 2ab + b ² = c) (a ² + 2ab + b ² + c) (a ² + a ² + b ² + c) (a ² + a ² + a ² + c) (a ² + a ²	- 2ab + 1 b) = a ³ - ਇਹ ਸਪੱਸ਼ਕ ਕਾਰ ਪ੍ਰਯੋਕ ਕਿਤ ਸਰਬ ਸੰਗਤ ਵਿਅ ਉ। 1 ਇਸ ਤਰ੍ਹ ਲਾ ਅਤੇ ਤ a ² + 2ab x ² + 2(x x ² + 8x + (a + b) ² , (x + 4) ² ਾਉ।	b ² 5 ³ 5 ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਸੈਂਸਰਾ ਪਦ ਪੂਰਨ ਵਰਗ (ਲੋੜੀਂਦਾ ਗੁਣਨਖੰਡ) (ਲੋੜੀਂਦਾ ਗੁਣਨਖੰਡ)	(II) (III) 54ਂਡੀਕਰਨ ਦੇ ਪਹਿਲਾਂ ਅਸੀਂ ਕ ਦੇ ਸੱਜੇ ਪੱਖ ਬੰਡ ਪ੍ਰਾਪਤ ਹੋ III ਦਾ ਪ੍ਰਯੋਗ ਹੈ ਅਤੇ ਵਿੱਚ ਬਿ a = x ਅਤੇ ਧਿਆਨ ਵਿਓ ਕਿ ਦਿੱਤਾ ਹੋਇਆ ਵਿਅੰਜਕ a² - 2ab + b² ਦੇ ਰੁਪ ਦਾ ਹੈ, ਇੱਥੇ a = 2y, b = 3 ਅਤੇ 2ab = 2 × 2y × 3
ਹੇਠਾਂ ਲਿਖੀਆਂ ਹੱਲ ਕੀਤੇ ਲਈ ਇਹ ਸਰਬਸਮਤਾਵਾਂ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਨੂੰ ਦੇਸ ਦੇ ਰੂਪ ਦਾ ਹੈ, ਤਾਂ ਉਸ ਸ ਜਾਂਦੇ ਹਨ। ਉਦਾਹਰਣ 4 : x ² + 8x - ਹੋਲ : ਇਸ ਵਿਅੰਜਕ ਨੂੰ ਦੇ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਵਾਲੇ ਪਦ ਦਾ ਚਿੰਨ੍ਹ ਧਨਾਤ b = 4 ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਕਿਉਂਕਿ ਤੁਲਨਾ ਕਰਨ ਤੇ, ਉਦਾਹਰਣ 5 : 4y ² – 12	$(a - b)^2 = a^2$ $(a + b) (a - b)^2$ (a + b) $(a - b)^2$ (identities) ਦਾ ਕਿਸ ਪ੍ਰ ਖਦੇ ਹਾਂ। ਜੇਕਰ ਇਹ ਉਪਰੋ ਰਬਸਮਤਾ ਦੇ ਖੱਬੇ ਪੱਖ ਦੇ + 16 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾ ਇਸ ਹੈ, ਇਸਦੇ ਪਹਿਲ ਤਮਕ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ $a^2 + 2ab + b^2 = b^2$ $a^2 + 2ab + b^2 = b^2$	- 2ab + 1 b) = a ³ - ਇਹ ਸਪੱਸ਼ਕ ਕਾਰ ਪ੍ਰਯੋਕ ਕਿਤ ਸਰਬ ਸੰਗਤ ਵਿਅ ਉ। 1 ਇਸ ਤਰ੍ਹ ਲਾ ਅਤੇ ਡ a ² + 2ab x ² + 2 (x x ² + 8x + (a + b) ² , (x + 4) ² ਾਉ। ਤੇ 12y = 2	b ² 5 ³ 5 ਹੋ ਜਾਵੇਗਾ ਕਿ ਗੁਣਨ ਗ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਮਤਾਵਾਂ ਵਿੱਚ ਕਿਸੇ ਇੱ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਅੰਜਕ ਤੋਂ ਲੋੜੀਂਦੇ ਗੁਣਨ ਸੈਂਸਰਾ ਪਦ ਪੂਰਨ ਵਰਗ (ਲੋੜੀਂਦਾ ਗੁਣਨਖੰਡ) (ਲੋੜੀਂਦਾ ਗੁਣਨਖੰਡ)	(II) (III) 54ਂਡੀਕਰਨ ਦੇ ਪਹਿਲਾਂ ਅਸੀਂ ਕ ਦੇ ਸੱਜੇ ਪੱਖ ਬੰਡ ਪ੍ਰਾਪਤ ਹੋ III ਦਾ ਪ੍ਰਯੋਗ ਹੈ ਅਤੇ ਵਿੱਚ ਬਿ a = x ਅਤੇ ਧਿਆਨ ਵਿਓ ਕਿ ਦਿੱਤਾ ਹੋਇਆ ਵਿਅੰਜਕ a² - 2ab + b² ਦੇ ਰੁਪ ਦਾ ਹੈ, ਇੱਥੇ a = 2y, b = 3 ਅਤੇ 2ab = 2 × 2y × 3

230 🔳 ਗਣਿਤ

ਉਦਾਹਰਣ 6 : 49p² – 36 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉ।

ਹੱਲ : ਇੱਥੇ ਦੋ ਪਦ ਹਨ। ਦੋਨੋਂ ਹੀ ਪੂਰਨ ਵਰਗ ਹਨ ਅਤੇ ਦੂਸਰਾ ਰਿਣਾਤਮਕ ਹੈ ਭਾਵ ਇਹ ਵਿਅੰਜਕ (a² – b²) ਦੇ ਰੂਪ ਦਾ ਹੈ। ਇੱਥੇ ਸਰਬਸਮਤਾ III ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਵੇਗਾ।

$$49p^2 - 36 = (7p)^2 - (6)^2$$

= (7p-6) (7p+6) (ਲੋੜੀਂਦਾ ਗੁਣਨਖੰਡ)

ਉਦਾਹਰਣ 7 : a¹ – 2ab + b² – c¹ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉ।

ਹੱਲ : ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਦੇ ਪਹਿਲੇ ਤਿੰਨ ਪਦਾਂ ਨਾਲ $(a-b)^2$ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਚੌਥਾ ਪਦ ਇੱਕ ਵਰਗ ਹੈ। ਇਸ ਲਈ ਇਸ ਵਿਅੰਜਕ ਨੂੰ ਦੋ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਦੇ ਰੂਪ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ $a^2 - 2ab + b^2 - c^2 = (a-b)^2 - c^2$ (ਸਰਬਸਮਤਾ II ਨਾਲ) = [((a-b)-c)((a-b)+c)] (ਸਰਬਸਮਤਾ III ਨਾਲ) = (a-b-c)(a-b+c) (ਲੋੜੀਂਦਾ ਗੁਣਨਖੰਡ)

ਧਿਆਨ ਦਿਉ ਕਿ ਲੋੜੀਂਦਾ ਗੁਣਨਖੰਡੀਕਰਨ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ, ਅਸੀਂ ਕਿਸ ਤਰ੍ਹਾਂ ਇੱਕ ਦੇ ਬਾਅਦ ਇੱਕ, ਦੋ ਸਰਬਸਮਤਾਵਾਂ ਦਾ ਪ੍ਰਯੋਗ ਕੀਤਾ ਹੈ।

ਉਦਾਹਰਣ 8 : m⁴ – 256 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉ।

ਹੱਲ : ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ $m^4 = (m^2)^2$ ਅਤੇ 256 = (16) ² ਇਸ ਤਰ੍ਹਾਂ ਦਿੱਤੇ ਗਏ ਵਿਅੰਜਕ ਵਿੱਚ ਸਰਬਸਮਤਾ III ਦਾ ਪ੍ਰਯੋਗ ਹੋਵੇਗਾ। ਇਸ ਲਈ $m^4 - 256 = (m^2)^2 - (16)^2$

= (m²-16) (m²+16) [(ਸਰਬਸਮਤਾ (III) ਨਾਲ]

ਹੁਣ m² + 16 ਦੇ ਅੱਗੇ ਗੁਣਨਖੰਡ ਨਹੀਂ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਪਰ (m² –16) ਦੇ ਸਰਬਸਮਤਾ III ਦੇ ਪ੍ਰਯੋਗ ਨਾਲ ਹੋਰ ਵੀ ਗੁਣਨਖੰਡ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ।

ਹੁਣ

 $m^2 - 16 = m^2 - 4^2$ = (m - 4) (m + 4)

 $m^4 - 256 = (m - 4)(m + 4)(m^2 + 16)$

ਇਸ ਲਈ

14.2.4 (x+a)(x+b) ਦੇ ਰੂਪ ਵਿੱਚ ਗੁਣਨਖੰਡ

ਆਉ ਹੁਣ ਚਰਚਾ ਕਰੀਏ ਕਿ ਅਸੀਂ ਇੱਕ ਚਲ ਵਾਲੇ ਵਿਅੰਜਕਾਂ, ਜਿਵੇਂ ਕਿ $x^2 + 5x + 6$, $y^2 - 7y + 12$, $z^2 - 4z - 12$, $3m^2 + 9m + 6$, ਆਦਿ ਦੇ ਗੁਣਨਖੰਡ ਕਿਸ ਤਰ੍ਹਾਂ ਬਣਾ ਸਕਦੇ ਹਾਂ। ਧਿਆਨ ਦਿਉ ਕਿ ਇਹ ਵਿਅੰਜਕ $(a + b)^2$ ਜਾਂ $(a - b)^2$ ਦੇ ਕਿਸਮ ਨਹੀਂ ਹਨ, ਭਾਵ ਕਿ ਇਹ ਪੂਰਨ ਵਰਗ ਨਹੀਂ ਹਨ। ਉਦਾਹਰਣ ਦੇ ਲਈ $x^2 + 5x + 6$ ਵਿੱਚ ਪਦ 6 ਪੂਰਨ ਵਰਗ ਨਹੀਂ ਹੈ। ਸਪੱਸ਼ਟ ਤੌਰ ਤੇ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਵਿਅੰਜਕ $(a^2 - b^2)$ ਦੇ ਕਿਸਮ ਦੇ ਵੀ ਨਹੀਂ ਹਨ।

ਪਰ ਇਹ x¹ + (a + b) x + ab ਦੇ ਕਿਸਮ ਦੇ ਪ੍ਰਤੀਤ ਹੁੰਦੇ ਹਨ। ਇਸ ਲਈ ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉਣ ਦੇ ਲਈ, ਅਸੀਂ ਪਿਛਲੇ ਅਧਿਆਇ ਵਿੱਚ ਅਧਿਐਨ ਕੀਤਾ ਗਿਆ ਸਰਬਸਮਤਾ (VII) ਦਾ ਪ੍ਰਯੋਗ ਕਰ ਸਕਦੇ ਹਾਂ। ਇਹ ਸਰਬਸਮਤਾ ਹੈ:

 $(x + a) (x + b) = x^{2} + (a + b) x + ab$ (IV)

ਇਸਦੇ ਲਈ ਸਾਨੂੰ x ਦੇ ਗੁਣਾਂਕ (coefficient) ਅਤੇ ਅਚਲ ਪਦ ਨੂੰ ਦੇਖਣਾ ਹੋਵੇਗਾ। ਆਉ, ਹੇਠਾਂ ਲਿਖੀ ਉਦਾਹਰਣ ਵਿੱਚ ਦੇਖਦੇ ਹਾਂ ਕਿ ਇਹ ਕਿਸ ਤਰ੍ਹਾਂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਗੁਣਨਖੰਡੀਕਰਨ 🔳 231

ਉਦਾਹਰਣ 9 : x² + 5x + 6 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉ।

ਹੱਲ : ਜਦ ਅਸੀਂ ਸਰਬਸਮਤਾ (IV) ਦੇ ਸੱਜੇ ਪੱਖ (RHS) ਨਾਲ x² + 5x + 6 ਦੀ ਤੁਲਨਾ ਕਰੀਏ ਤਾਂ ਅਸੀਂ ਦੇਖਾਂਗੇ ਕਿ ab = 6 ਅਤੇ a + b = 5 ਹੈ। ਇੱਥੇ ਸਾਨੂੰ a ਅਤੇ b ਪਤਾ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ। ਤਦ (x + a) ਅਤੇ (x + b) ਗੁਣਨਖੰਡ ਹੋਣਗੇ।

ਜੇ ab = 6 ਹੈ, ਤਾਂ ਇਸਦਾ ਅਰਥ ਹੈ ਕਿ a ਅਤੇ b ਸੰਖਿਆ 6 ਦੇ ਗੁਣਨਖੰਡ ਹਨ।

ਆਉ, a = 6 ਅਤੇ b = 1 ਲੈ ਕੇ ਕੋਸ਼ਿਸ਼ ਕਰੀਏ। ਇਸਦੇ ਲਈ, a + b = 7 ਹੈ ਅਤੇ 5 ਨਹੀਂ ਇਸ ਲਈ ਇਹ ਵਿਕਲਪ ਸਹੀ ਨਹੀਂ ਹੈ।

ਆਉ, a = 2 ਅਤੇ b = 3 ਲੈ ਕੇ ਕੋਸ਼ਿਸ਼ ਕਰੀਏ। ਇਸਦੇ ਲਈ, a + b = 5 ਹੈ, ਜੋ ਠੀਕ ਉਹੀ ਹੈ ਜੋ ਅਸੀਂ ਚਾਹੁੰਦੇ ਹਾਂ।

ਤਦ, ਇਸ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਦਾ ਗੁਣਨਖੰਡ ਰੂਪ (x +2) (x + 3) ਹੈ।

ਆਮ ਤੌਰ ਤੇ, $x^2 + px + q$ ਕਿਸਮ ਦੇ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨਖੰਡ ਕਰਨ ਦੇ ਲਈ, ਅਸੀਂ q ਦੇ (ਭਾਵ ਅਚਲ ਪਦ ਦੇ) ਦੇ ਗੁਣਨਖੰਡ a ਅਤੇ b ਇਸ ਤਰ੍ਹਾਂ ਪਤਾ ਕਰਦੇ ਹਾਂ ਕਿ ab = q ਅਤੇ a + b = p ਹੈ। ਤਦ, ਇਹ ਵਿਅੰਜਕ ਹੋ ਜਾਂਦਾ ਹੈ: $x^2 + (a + b) x + ab$ ਜਾਂ $x^2 + ax + bx + ab$ ਜਾਂ x(x + a) + b(x + a)ਜਾਂ (x + a)(x + b) ਜੋ, ਲੋੜੀਂਦਾ ਗੁਣਨਖੰਡ ਹੈ।

ਉਦਾਰਰਣ 10 : y²-7y +12 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉ।

ਹੱਲ : ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ 12 = 3 × 4 ਅਤੇ 3 + 4 = 7 ਹੈ।

ਇਸ ਲਈ

= y(y-3) - 4(y-3) = (y-3)(y-4)

ਧਿਆਨ ਦਿਊ ਕਿ ਇਸ ਵਾਰ a ਅਤੇ b ਪਤਾ ਕਰਨ ਦੇ ਲਈ, ਦਿੱਤੇ ਗਏ ਵਿਅੰਜਕ ਦੀ ਤੁਲਨਾ ਸਰਬਸਮਤਾ IV ਨਾਲ ਨਹੀਂ ਕੀਤੀ। ਕਾਫੀ ਅਭਿਆਸ ਦੇ ਬਾਅਦ, ਤੁਹਾਨੂੰ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕਾਂ ਦੇ ਗੁਣਨਖੰਡ ਕਰਨ ਦੇ ਲਈ ਉਸਦੀ ਤੁਲਨਾ ਸਰਬਸਮਤਾ ਦੇ ਵਿਅੰਜਕਾਂ ਨਾਲ ਕਰਨ ਦੀ ਜ਼ਰੂਰਤ ਨਹੀਂ ਹੈ ਅਤੇ ਤੁਸੀਂ ਸਿੱਧੇ ਹੀ ਗੁਣਨਖੰਡ ਕਰ ਸਕਦੇ ਹਾਂ ਜਿਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਉੱਪਰ ਕੀਤਾ ਹੈ।

 $y^2 - 7y + 12 = y^2 - 3y - 4y + 12$

ਉਦਾਰਗਣ 11 : z²- 4z - 12 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉ।

ਹੱਲ : ਇੱਥੇ $a \ b = -12$ ਹੈ। ਇਸਦਾ ਅਰਥ ਹੈ ਕਿ a ਅਤੇ b ਵਿੱਚੋਂ ਇੱਕ ਰਿਣਾਤਮਕ ਹੈ। ਨਾਲ ਹੀ, a + b = -4 ਹੈ। ਇਸਦਾ ਅਰਥ ਹੈ ਕਿ ਵੱਡੀ ਸੰਖਿਆ ਮੁੱਲ ਵਾਲਾ ਰਿਣਾਤਮਕ ਹੈ। ਅਸੀਂ a = -4 ਅਤੇ b = 3; ਲੈ ਕੇ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ। ਪਰੰਤੂ ਇਹ ਕੰਮ ਨਹੀਂ ਕਰੇਗਾ, ਕਿਉਂਕਿ a + b = -1 ਹੈ। ਇਸ ਤੋਂ ਅਗਲੇ ਸੰਭਵ ਮੁੱਲ a = -6 ਅਤੇ b = 2 ਹੈ, ਤਦ a + b = -4 ਹੈ, ਜੋ ਸਾਨੂੰ ਚਾਹੀਦਾ।

ਇਸ ਤਰ੍ਹਾਂ $z^2 - 4z - 12 = z^2 - 6z + 2z - 12$

= z(z-6) + 2(z-6)= (z-6)(z+2)

232 🔳 ਗਣਿਤ

ਉਦਾਹਰਣ 12 : 3m² + 9m + 6 ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉ। ਹੱਲ : ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ 3 ਸਾਰੇ ਪਦਾਂ ਦਾ ਇੱਕ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ 3m² + 9m + 6 = 3(m² + 3m + 2) ਹੁਣ, m² + 3m + 2 = m² + m + 2m + 2 (ਕਿਉਂਕਿ 2 = 1 × 2) = m(m + 1) + 2(m + 1) = (m + 1) (m + 2)

 $3m^2 + 9m + 6 = 3(m + 1)(m + 2)$

ਇਸ ਤਰ੍ਹਾਂ

ਅਭਿਆਸ 14.2

 ਹੇਠ ਲਿਖੇ ਵਿਅੰਜਕਾਂ ਦੇ ਗਣਨਖੰਡ ਬਣਾਉ। (i) $a^2 + 8a + 16$ (ii) $p^2 - 10p + 25$ (iii) $25m^2 + 30m + 9$ (iv) $49y^2 + 84yz + 36z^2$ (v) $4x^2 - 8x + 4$ (vi) $121b^2 - 88bc + 16c^2$ (ਸੰਕੇਤ : ਪਹਿਲਾ (I + m)² ਨੂੰ ਵਿਸਥਾਰ ਕਰੋ) (vii) $(l+m)^2 - 4lm$ (viii) $a^4 + 2a^2b^2 + b^4$ 2. ਗਣਨਖੰਡ ਬਣਾਉ। (i) $4p^2 - 9q^2$ (ii) $63a^2 - 112b^2$ (iii) $49x^2 - 36$ (iv) $16x^3 - 144x^3$ (v) $(l+m)^2 - (l-m)^2$ (vi) $9x^2y^2 - 16$ (vii) $(x^2 - 2xy + y^2) - z^2$ (viii) $25a^2 - 4b^2 + 28bc - 49c^2$ ਹੇਠ ਲਿਖੇ ਵਿਅੰਜਕਾਂ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉ। (i) $ax^2 + bx$ (ii) $7p^2 + 21q^2$ (iii) $2x^3 + 2xy^2 + 2xz^2$ (iv) $am^2 + bm^2 + bn^2 + an^2$ (v) (lm+l) + m+1(vi) y(y+z) + 9(y+z)(vii) $5y^2 - 20y - 8z + 2yz$ (viii) 10ab + 4a + 5b + 2(ix) 6xy - 4y + 6 - 9x ਗਣਨਖੰਡ ਬਣਾਉ। (i) $a^4 - b^4$ (ii) $p^4 - 81$ (iii) $x^4 - (y + z)^4$ (iv) $x^4 - (x - z)^4$ (v) $a^4 - 2a^2b^2 + b^4$ ਹੇਠ ਲਿਖੇ ਵਿਅੰਜਕਾਂ ਦੇ ਗਣਨਖੰਡ ਬਣਾਉ। (i) $p^2 + 6p + 8$ (ii) $q^2 - 10q + 21$ (iii) $p^2 + 6p - 16$ 14.3 ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ ਦੀ ਵੰਡ

ਅਸੀਂ ਸਿੱਖ ਚੁੱਕੇ ਹਾਂ ਕਿ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ ਨੂੰ ਕਿਸ ਤਰ੍ਹਾਂ ਜੋੜਿਆ ਅਤੇ ਘਟਾਇਆ ਜਾਂਦਾ ਹੈ। ਅਸੀਂ ਇਹ ਵੀ ਜਾਣਦੇ ਹਾਂ ਕਿ ਦੋ ਵਿਅੰਜਕਾਂ ਦੀ ਕਿਸ ਤਰ੍ਹਾਂ ਗੁਣਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਪਰੰਤੂ ਅਸੀਂ ਇੱਕ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਨਾਲ ਦੂਸਰੇ ਵਿਅੰਜਕ ਦੀ ਵੰਡ ਤੇ ਹੁਣ ਤੱਕ ਚਰਚਾ ਨਹੀਂ ਕੀਤੀ ਹੈ ਇਸ ਭਾਗ ਵਿੱਚ, ਅਸੀਂ ਇਹੀ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਾਂ।

ਗੁਣਨਖੰਡੀਕਰਨ 🔳 233

ਤੁਹਾਨੂੰ ਯਾਦ ਹੋਵੇਗਾ ਕਿ ਵੰਡ (division) ਗੁਣਾ (multiplication) ਦੀ ਉੱਲਟ ਕਿਰਿਆ ਹੈ। ਇਸ ਤਰਾਂ, 7 x 8 = 56 ਨਾਲ 56 + 8 = 7 ਜਾਂ 56 + 7 = 8 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

ਇਹੀ ਅਸੀਂ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ ਦੇ ਵੰਡਣ (ਜਾਂ ਭਾਗ ਦੇਣ) ਦੇ ਲਈ ਵੀ ਕਰ ਸਕਦੇ ਹਾਂ। ਉਦਾਹਰਣ ਲਈ.

 $2x \times 3x^2 = 6x^3$ (i) $6x^3 + 2x = 3x^2$ ਇਸ ਤਰ੍ਹਾਂ ਅਤੇ ਨਾਲ ਹੀ $6x^3 \div 3x^2 = 2x$ (ii) $5x(x+4) = 5x^2 + 20x$

ਇਸ ਤਰਾਂ $(5x^2 + 20x) + 5x = x + 4$ ਅਤੇ ਨਾਲ ਹੀ, $(5x^2 + 20x) + (x + 4) = 5x$

ਹੁਣ ਅਸੀਂ ਧਿਆਨ ਨਾਲ ਦੇਖਾਂਗੇ ਕਿ ਇੱਕ ਵਿਅੰਜਕ ਨੂੰ ਹੋਰ ਵਿਅੰਜਕ ਨਾਲ ਕਿਸ ਤਰ੍ਹਾਂ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ।ਸ਼ੁਰੂ ਕਰਨ ਦੇ ਲਈ, ਅਸੀਂ ਇੱਕ ਪਦੀ (monomial) ਦੀ ਇੱਕ ਪਦੀ ਨਾਲ ਵੰਡ 'ਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ।

```
14.3.1 ਇੱਕ ਪਦੀ ਦੀ ਇੱਕ ਹੋਰ ਪਦੀ ਨਾਲ ਵੰਡ
6x3 + 2x ਤੇ ਵਿਚਾਰ ਕਰੋ।
ਅਸੀਂ 2x ਅਤੇ 6x<sup>3</sup> ਨੂੰ ਅਖੰਡ ਗੁਣਨਖੰਡ ਰੂਪਾਂ ਵਿੱਚ ਲਿਖ ਸਕਦੇ ਹਾਂ :
```

 $2x = 2 \times x$

$$6x^3 = 2 \times 3 \times x \times x \times x$$

ਹੁਣ ਅਸੀਂ 2x ਨੂੰ ਵੱਖ ਕਰਨ ਦੇ ਲਈ, 6x3 ਦੇ ਗੁਣਨਖੰਡਾਂ ਦੇ ਸਮੂਹ ਬਣਾਉਂਦੇ ਹਾਂ

61

 $6x^3 = 2 \times x \times (3 \times x \times x) = (2x) \times (3x^2)$

ਇਸ ਤਰ੍ਹਾਂ,

$$+2x=3x^{2}$$

ਸਾਂਝੇ ਗੁਣਨਖੰਡਾਂ ਨੂੰ ਕੱਟਣ ਦੀ ਇੱਕ ਸੰਖੇਪ ਵਿਧੀ ਉਹ ਹੈ ਕਿ ਜੋ ਅਸੀਂ ਸੰਖਿਆਵਾਂ ਦੀ ਵੰਡ ਵਿੱਚ ਕਰਦੇ ਹਾਂ।

ਜਿਵੇਂ ਕਿ

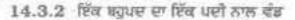
$$77 + 7 = \frac{77}{7} = \frac{7 \times 11}{7} = 11$$

ਇਸ ਤਰਾਂ.

$$6x^3 + 2x = \frac{6x^3}{2x}$$
$$= \frac{2 \times 3 \times x \times x \times x}{2 \times x} = 3 \times x \times x = 3x^2$$

ਉਦਾਹਰਣ 13 : ਹੇਠ ਲਿਖੀਆਂ ਦੀ ਵੰਡ ਕਰੋ :

(ii) $7x^2y^2z^3 + 14xyz$ (i) $-20x^4 + 10x^2$ ਹੱਲ :


(i) $-20x^4 = -2 \times 2 \times 5 \times x \times x \times x \times x$

 $10x^2 = 2 \times 5 \times x \times x$

 $(-20x^{4}) + 10x^{2} = \frac{-2 \times 2 \times 5 \times x \times x \times x \times x}{2x^{5}} = -2 \times x \times x = -2x^{2}$ ਇਸ ਤਰਾਂ 2×5×x×x

234 🖩 ਗਣਿਤ

(ii)
$$7x^2y^2z^2 + 14xyz = \frac{7 \times x \times x \times y \times y \times z \times z}{2 \times 7 \times x \times y \times z}$$

 $= \frac{x \times y \times z}{2} = \frac{1}{2}xyz$
冠行知道 在式
まです 使受:
(i) $24xy^2z^3 \frac{5}{2} 6yz^2$ 万円 (ii) $63a^2b^4c^6$ 査 $7a^2b^2c^3$ 万円

ਆਉ, ਇੱਕ ਤਿੰਨ ਪਦੀ (trinomial) 4y3 + 5y2 + 6y ਦਾ ਇੱਕ ਪਦੀ 2y ਨਾਲ ਵੰਡ 'ਤੇ ਵਿਚਾਰ ਕਰੀਏ।

 $4y^{3} + 5y^{2} + 6y = (2 \times 2 \times y \times y \times y) + (5 \times y \times y) + (2 \times 3 \times y)$

[ਇੱਥੇ ਅਸੀਂ ਬਹੁਪਦ (polynomial) ਦੇ ਹਰੇਕ ਪਦ ਨੂੰ ਗੁਣਨਖੰਡ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਦੇ ਹਾਂ।] ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ 2 × y ਦੋ ਪਦਾਂ ਵਿੱਚ ਇੱਕ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਹੈ ਨਾਲ ਹੀ, ਅਸੀਂ ਇਸ ਨੂੰ ਤੀਸਰੇ ਪਦ 5y² ਦੇ ਲਈ ਵੀ ਇੱਕ ਸਾਂਝੇ ਗੁਣਨਖੰਡ ਦੇ ਰੂਪ ਵਿੱਚ ਬਦਲ ਸਕਦੇ ਹਾਂ। ਤਦ, ਅਸੀਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ:

ਇਸ ਤਰ੍ਹਾਂ (4y² + 5y² + 6y) + 2y

$$=\frac{4y^3+5y^2+6y}{2y}=\frac{2y(2y^2+\frac{5}{2}y+3)}{2y}=2y^2+\frac{5}{2}y+3$$

ਬਦਲਵੇਂ ਰੂਪ ਵਿੱਚ, ਅਸੀਂ ਤਿੰਨ ਪਦੀ ਦੇ ਹਰੇਕ ਪਦ ਨੂੰ ਕੱਟਣ ਦੀ ਵਿਧੀ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ, ਉਸ ਨੂੰ ਇੱਕ ਪਦੀ ਨਾਲ ਭਾਗ ਦੇ ਸਕਦੇ ਹਾਂ :

ਉਦਾਹਰਣ 14 : ਉਪਰੋਕਤ ਦੋਨਾਂ ਵਿਧੀਆਂ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ, 24(x²yz + xy²z + xyz²) ਨੂੰ 8xyz ਨਾਲ ਭਾਗ ਦਿਊ।

ਗੁਣਨਖੰਡੀਕਰਨ 🔳 235

ਹੱਲ : 24 (x²yz + xy²z + xyz²) = 2 × 2 × 2 × 3 × [(x × x × y × z) + (x × y × y × z) + (x × y × z × z)] = 2 × 2 × 2 × 3 × x × y × z × (x + y + z) (ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਬਾਹਰ ਲੈਣ `ਤੇ) = 8 × 3 × xyz × (x + y + z)

ਇਸ ਤਰ੍ਹਾਂ 24 (x²yz + xy²z + xyz²) + 8xyz

$$=\frac{8 \times 3 \times xyz \times (x + y + z)}{8 \times xyz} = 3 \times (x + y + z) = 3 (x + y + z)$$

ਬਦਲਵੇਂ ਰੂਪ ਵਿੱਚ
$$24(x^2yz + xy^2z + xyz^2) + 8xyz = \frac{24x^2yz}{8xyz} + \frac{24xy^2z}{8xyz} + \frac{24xyz^2}{8xyz}$$

= $3x + 3y + 3z = 3(x + y + z)$

14.4 ਬਹੁਪਦ ਦਾ ਬਹੁਪਦ ਨਾਲ ਵੰਡ

$$7x^{2} + 14x = (7 \times x \times x) + (2 \times 7 \times x)$$
$$= 7 \times x \times (x + 2) = 7x(x + 2)$$

$$ge, \quad (7x^2 + 14x) + (x+2) = \frac{7x^2 + 14}{x+2}$$

ਕੀ ਇਹ ਅੰਬ ਦੇ ਹਰੇਕ ਪਦ ਨੂੰ ਹਰ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਦੇ ਪਦੀ ਨਾਲ ਭਾਗ ਦੇਣ ਵਿੱਚ ਕੋਈ ਸਹਾਇਤਾ ਕਰੇਗਾ ?

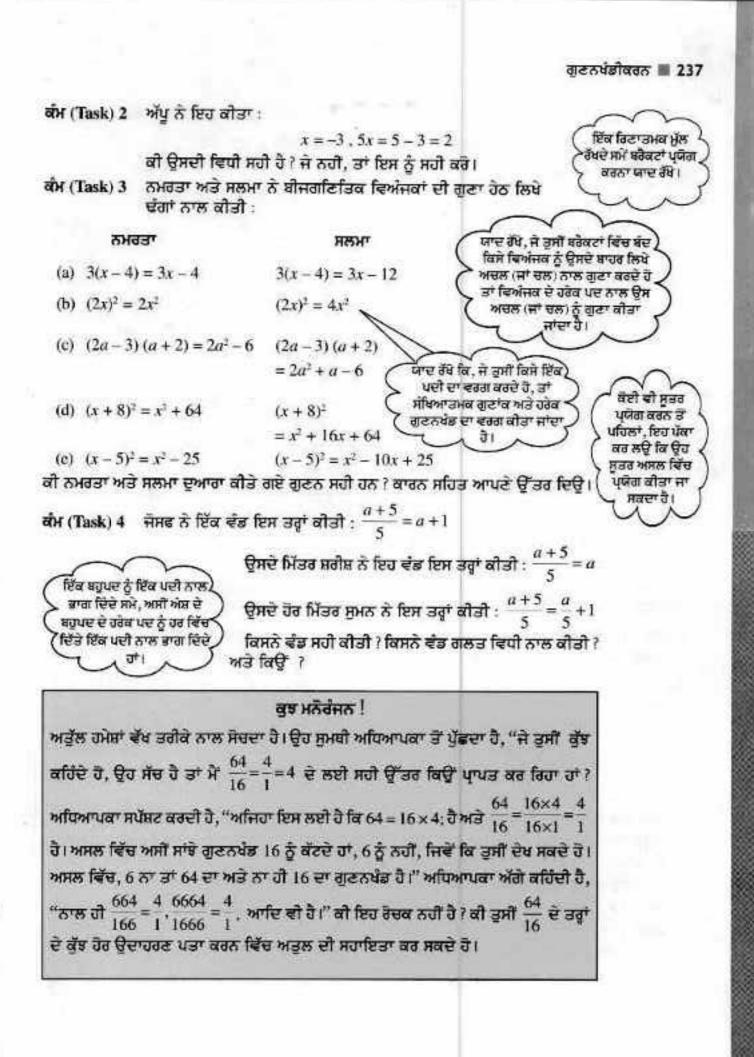
 $= \frac{7x(x+2)}{x+2} = 7x \quad (ਗੁਣਨਖੰਡ (x+2) ਨੂੰ ਕੱਟਣ `ਤੇ)$

ਉਦਾਹਰਣ 15 : 44(x⁴ – 5x³ – 24x²) ਨੂੰ 11x (x – 8) ਨਾਲ ਭਾਗ ਕਰੋ। ਹੱਲ : 44(x⁴ – 5x³ – 24x²), ਦੇ ਗੁਣਨਖੰਡ ਕਰਨ ਤੇ, ਸਾਨੂੰ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ : 44(x⁴ – 5x³ – 24x²) = 2 × 2 × 11 × x²(x² – 5x – 24)

(ਬਰੈਕਟਾਂ ਵਿੱਚੋਂ ਸਾਂਝਾ ਗੁਣਨਖੰਡ xੇ ਬਾਹਰ ਕਰਨ 'ਤੇ)

$$= 2 \times 2 \times 11 \times x^{2}(x^{2} - 8x + 3x - 24)$$

= 2 \times 2 \times 11 \times x^{2} [x (x - 8) + 3(x - 8)]
= 2 \times 2 \times 11 \times x^{2} (x - 8) (x + 3)


ਇਸ ਤਰ੍ਹਾਂ 44(x⁴ - 5x³ - 24x²) + 11x(x - 8)

$$=\frac{2\times2\times11\times x\times x\times (x+3)\times (x-8)}{11\times x\times (x-8)}$$
$$=2\times2\times x (x+3)=4x(x+3)$$

236 🔳 ਗਣਿਤ

θενασε 16 :
$$z(5z^2 - 80)$$
 $\frac{1}{25}$ $5z(z + 4)$ $5vs$ $srat felter
 mil via wärd ar felter heit dia reit di$

ਮਿ (Task) 1 ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਦੇ ਸਮੇਂ, ਸ਼ਰਿਤਾ ਹੇਠ ਲਿਖੇ ਢੰਗ ਨਾਲ ਹੱਲ ਕਰਦੀ ਹੈ : 3x + x + 5x = 72 ਇਸ ਤਰ੍ਹਾਂ 8x = 72 ਅਤੇ ਇਸ ਲਈ, $x = \frac{72}{8} = 9$ ਉਸਨੇ ਕਿਥੇ ਗਲਤੀ ਕੀਤੀ ਹੈ ? ਸਹੀ ਉੱਤਰ ਪਤਾ ਕਰੋ।

238 🔳 ਗਣਿਤ

अंडिअगम 14.4
ਹੇਠ ਲਿਖੇ ਗਣਿਓਰਕ ਕਥਨਾਂ ਵਿੱਚ ਗਲਤੀ ਪਤਾ ਕਰਕੇ ਉਸ ਨੂੰ ਸਹੀ ਕਰੋ :
1.
$$4(x-5) = 4x-5$$
 2. $x(3x+2) = 3x^2+2$ 3. $2x + 3y = 5xy$
4. $x + 2x + 3x = 5x$ 5. $5y + 2y + y - 7y = 0$ 6. $3x + 2x = 5x^2$
7. $(2x)^2 + 4(2x) + 7 = 2x^2 + 8x + 7$ 8. $(2x)^2 + 5x = 4x + 5x = 9x$
9. $(3x+2)^2 = 3x^2 + 6x + 4$
10. $x = -3$ ਮੁੱਲ ਭਰਨ 'ਤੇ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।
(a) $x^2 + 5x + 4$ ਤੋਂ $(-3)^2 + 5$ $(-3) + 4 = 9 + 2 + 4 = 15$ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।
(b) $x^2 - 5x + 4$ ਤੋਂ $(-3)^2 - 5$ $(-3) + 4 = 9 - 15 + 4 = -2$ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।
(c) $x^2 + 5x$ ਤੋਂ $(-3)^2 + 5$ $(-3) = -9 - 15 = -24$ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।
11. $(y-3)^2 = y^2 - 9$ 12. $(z+5)^2 = z^2 + 25$
13. $(2a + 3b)(a - b) = 2a^2 - 3b^2$ 14. $(a + 4)(a + 2) = a^2 + 8$
15. $(a - 4)(a - 2) = a^2 - 8$ 16. $\frac{3x^2}{3x^2} = 0$
17. $\frac{3x^2 + 1}{3x^2} = 1 + 1 = 2$ 18. $\frac{3x}{3x+2} = \frac{1}{2}$ 19. $\frac{3}{4x+3} = \frac{1}{4x}$
20. $\frac{4x+5}{4x} = 5$ 21. $\frac{7x+5}{5} = 7x$

- ਜਦ ਅਸੀਂ ਕਿਸੇ ਵਿਔਜਕ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉਂਦੇ ਹਾਂ, ਤਾਂ ਅਸੀਂ ਉਸ ਨੂੰ ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਦੇ ਹਾਂ। ਇਹ ਗੁਣਨਖੰਡ, ਸੰਖਿਆਵਾਂ, ਬੀਜਗਣਿਤਿਕ ਚਲ ਜਾਂ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕ ਹੋ ਸਕਦੇ ਹਨ।
- ਇੱਕ ਅਖੰਡ ਗੁਣਨਖੰਡ ਉਹ ਗੁਣਨਖੰਡ ਹੈ ਜਿਸ ਨੂੰ ਹੋਰ ਅੱਗੇ ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ।
- 3. ਕਿਸੇ ਵਿਅੰਜਕ ਦਾ ਗੁਣਨਖੰਡ ਕਰਨ ਦੀ ਇੱਕ ਲੜੀਵਾਰ ਵਿਧੀ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਵਿਧੀ ਹੈ। ਇਸ ਵਿਧੀ ਦੇ ਤਿੰਨ ਪਗ ਹੁੰਦੇ ਹਨ : (i) ਵਿਅੰਜਕ ਦੇ ਹਰੇਕ ਪਦ ਨੂੰ ਅਖੰਡ ਗੁਣਨਖੰਡਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ। (ii) ਸਾਂਝੇ ਗੁਣਨਖੰਡਾਂ ਦਾ ਪਤਾ ਲਗਾਉ ਅਤੇ ਉਹਨਾਂ ਨੂੰ ਅਲੱਗ ਕਰ ਲਓ। (iii) ਹਰੇਕ ਪਦ ਵਿੱਚ ਬਾਕੀ ਗੁਣਨਖੰਡਾਂ ਨੂੰ ਵੰਡਕਾਰੀ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਸੰਯੋਜਿਤ ਕਰੋ।
- 4. ਕਦੇ-ਕਦੇ ਦਿੱਤੇ ਹੋਏ ਵਿਅੰਜਕ ਦੇ ਸਾਰੇ ਪਦਾਂ ਵਿੱਚ ਇੱਕ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੁੰਦਾ, ਪਰੰਤੂ ਇਹਨਾਂ ਪਦਾਂ ਦੇ ਕੁੱਝ ਸਮੂਹ ਇਸ ਤਰ੍ਹਾਂ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ ਕਿ ਹਰੇਕ ਸਮੂਹ ਦੇ ਸਾਰੇ ਪਦਾਂ ਵਿੱਚ ਇੱਕ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਪ੍ਰਗਟ ਹੋ ਜਾਂਦਾ ਹੈ, ਜੇ ਅਸੀਂ ਇਸ ਤਰ੍ਹਾਂ ਕਰਦੇ ਹਾਂ ਕਿ ਸਾਰੇ ਸਮੂਹਾਂ ਵਿੱਚ ਇੱਕ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਪ੍ਰਗਟ ਹੋ ਜਾਂਦਾ ਹੈ, ਜਿਸ ਤੋਂ ਅਸੀਂ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨਖੰਡ ਪ੍ਰਾਪਤ ਕਰ ਲੈਂਦੇ ਹਾਂ। ਇਹ ਵਿਧੀ ਦੁਬਾਰਾ ਸਮੂਹੀਕਰਨ ਵਿਧੀ ਅਖਵਾਉਂਦੀ ਹਾਂ।
- 5. ਦੁਬਾਰਾ ਸਮੂਹੀਕਰਨ ਦੁਆਰਾ ਗੁਣਨਖੰਡੀਕਰਨ ਵਿੱਚ, ਇਹ ਯਾਦ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਵਿਅੰਜਕ ਦੇ ਪਦਾਂ ਦੇ ਹਰੇਕ ਦੁਬਾਰਾ ਸਮੂਹੀਕਰਨ ਨਾਲ ਦੁਬਾਰਾ ਗੁਣਨਖੰਡ ਪ੍ਰਾਪਤ ਨਹੀਂ ਹੁੰਦੇ ਹਨ। ਸਾਨੂੰ ਵਿਅੰਜਕਾਂ ਨੂੰ ਦੇਖਣਾ ਚਾਹੀਦਾ ਹੈ ਅਤੇ ਯਤਨ ਅਤੇ ਭੁੱਲ ਵਿਧੀ ਨਾਲ ਲੋੜੀਂਦਾ ਦੁਬਾਰਾ ਸਮੂਹੀਕਰਨ ਪ੍ਰਾਪਤ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।

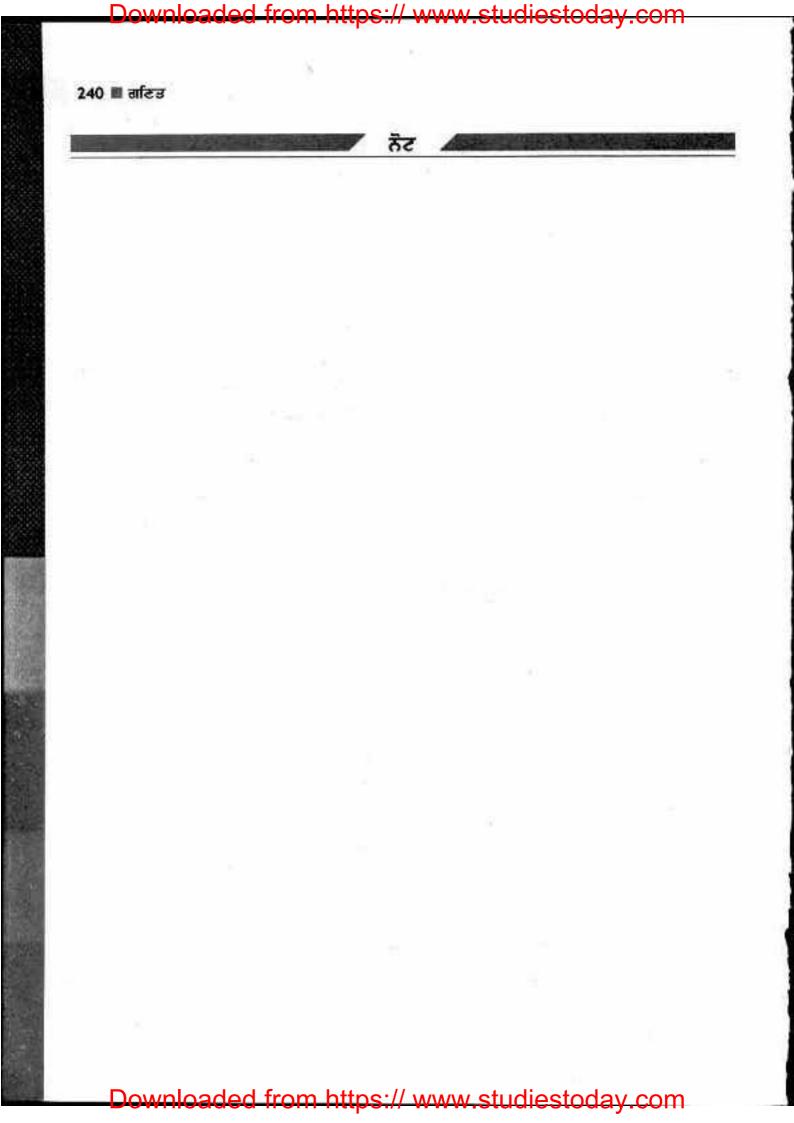
ਗੁਣਨਖੰਡੀਕਰਨ 🔳 239

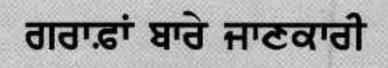
6. ਗੁਣਨਖੰਡੀਕਰਨ ਕੀਤੇ ਜਾਂ ਸਕਣ ਵਾਲੇ ਵਿਅੰਜਕਾਂ ਵਿੱਚ ਅਨੋਕ a² + 2 ab + b², a² - 2ab + b², a² - b² ਅਤੇ x² + (a + b) + ab ਦੇ ਰੂਪ ਦੇ ਹੁੰਦੇ ਹਨ ਜਾਂ ਉਹਨਾਂ ਨੂੰ ਇਸ ਰੂਪ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹਨਾਂ ਵਿਅੰਜਕਾਂ ਦੇ ਗੁਣਨਖੰਡ ਅਧਿਆਇ 9 ਵਿੱਚ ਦਿੱਤੀ ਹੇਠ ਲਿਖੀਆਂ ਸਰਬਸਮਤਾਵਾਂ I, II, III ਅਤੇ IV ਨਾਲ ਪਤਾ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ :

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$
$$a^{2} - 2ab + b^{2} = (a - b)^{2}$$
$$a^{2} - b^{2} = (a + b) (a - b)^{2}$$

$$x^{2} + (a + b) x + ab = (x + a) (x + b).$$

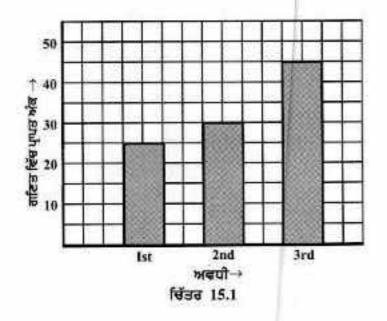
7. ਉਹਨਾਂ ਵਿਅੰਜਕਾਂ ਵਿੱਚ, ਜਿਹਨਾਂ ਦੇ ਗੁਣਨਖੰਡ (x + a) (x + b) ਦੇ ਕਿਸਮ ਦੇ ਹਨ, ਯਾਦ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਸੰਖਿਆਤਮਕ (ਅਚਲ) ਪਦ ਨਾਲ ab ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਸਦੇ ਗੁਣਨਖੰਡਾਂ a ਅਤੇ b ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਚੁਣਨਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਚਿੰਨ੍ਹ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ, ਉਸਦਾ ਜੋੜ x ਦੇ ਗੁਣਾਂਕ ਦੇ ਬਰਾਬਰ ਹੋਵੇ।


b)


- ਅਸੀਂ ਜਾਣਦੇ ਹਾਂ ਕਿ ਸੰਖਿਆਵਾਂ ਦੀ ਸਥਿਤੀ ਵਿੱਚ ਵੰਡ, ਗੁਣਾ ਦੀ ਉੱਲਟ ਕਿਰਿਆ ਹੁੰਦੀ ਹੈ। ਇਹੀ ਗੱਲ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ ਦੇ ਵੰਡ ਦੇ ਲਈ ਵੀ ਲਾਗੂ ਰਹਿੰਦੀ ਹੈ।
- 9. ਇੱਕ ਬਹੁਪਦ ਨੂੰ ਇੱਕ ਪਦੀ ਨਾਲ ਵੰਡ ਦੀ ਸਥਿਤੀ ਵਿੱਚ, ਅਸੀਂ ਜਾਂ ਤਾਂ ਵੰਡ, ਬਹੁਪਦ ਦੇ ਹਰੇਕ ਪਦ ਨੂੰ ਇੱਕ ਪਦੀ ਨਾਲ ਭਾਗ ਦੇ ਸਕਦੇ ਹਾਂ। ਜਾਂ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਵਿਧੀ ਨਾਲ ਕਰ ਸਕਦੇ ਹਾਂ।
- 10. ਇੱਕ ਬਹੁਪਦ ਨੂੰ ਇੱਕ ਬਹੁਪਦ ਨਾਲ ਵਿਭਾਜਨ ਕਰਨ ਦੀ ਸਥਿਤੀ ਵਿੱਚ, ਅਸੀਂ ਭਾਜ ਬਹੁਪਦ ਦੇ ਹਰੇਕ ਪਦ ਨੂੰ ਭਾਜਕ ਬਹੁਪਦ ਨਾਲ ਭਾਗ ਦੇ ਕੇ ਵੰਡ ਨਹੀਂ ਸਕਦੇ। ਇਸਦੀ ਥਾਂ ਤੇ, ਅਸੀਂ ਹਰੇਕ ਬਹੁਪਦ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਉਂਦੇ ਹਾਂ, ਅਤੇ ਇਸ ਵਿੱਚੋਂ ਸਾਂਝੇ ਗੁਣਨਖੰਡਾਂ ਨੂੰ ਕੱਟ ਦਿੰਦੇ ਹਾਂ।
- 11. ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਪੜ੍ਹੇ ਗਏ ਬੀਜਗਣਿਤਿਕ ਵਿਅੰਜਕਾਂ ਦੀ ਵੰਡ ਦੀ ਸਥਿਤੀ ਨਾਲ ਸਾਨੂੰ ਭਾਜ = ਭਾਜਕ × ਭਾਗਫਲ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ। ਪਰੰਤੂ ਵਿਆਪਕ ਰੂਪ ਵਿੱਚ ਇਹ ਸੰਬੰਧ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੈ: ਭਾਜ = ਭਾਜਕ × ਭਾਗਫਲ + ਬਾਕੀ ਇਸ ਤਰ੍ਹਾਂ, ਇਸ ਅਧਿਆਇ ਵਿੱਚ ਅਸੀਂ ਸਿਰਫ ਉਸ ਵੰਡ ਦੀ ਚਰਚਾ ਕੀਤੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਬਾਕੀ ਸਿਫ਼ਰ ਹੈ।
- ਬੀਜਗਣਿਤਿਕ ਪ੍ਰਸ਼ਨਾਂ ਨੂੰ ਹੱਲ ਕਰਦੇ ਸਮੇਂ ਵਿਦਿਆਰਥੀ ਅਨੇਕ ਪ੍ਰਕਾਰ ਦੀਆਂ ਗਲਤੀਆਂ ਕਰਦੇ ਹਨ। ਤੁਹਾਨੂੰ ਇਸ ਤਰਾਂ ਦੀਆਂ ਗਲਤੀਆਂ ਕਰਨ ਤੋਂ ਬਚਣਾ ਚਾਹੀਦਾ ਹੈ।

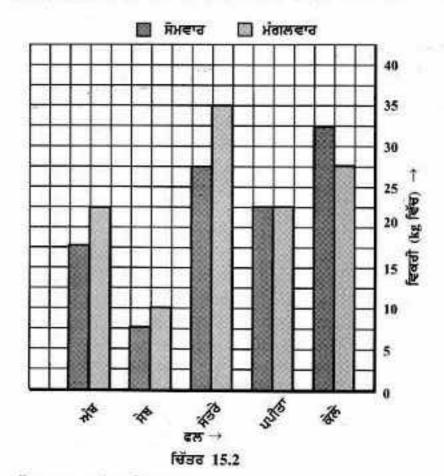
Downloaded from https:// www.studiestoday.com

191 2

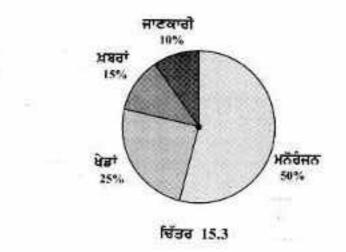

15.1 ਭੁਮਿਕਾ

ਕੀ ਤੁਸੀਂ ਅਖਬਾਰਾਂ, ਦੂਰਦਰਸ਼ਨ, ਮੈਗਜ਼ੀਨਾਂ, ਪੁਸਤਕਾਂ ਆਦਿ ਵਿੱਚ ਗਰਾਫ਼ ਦੇਖੇ ਹਨ? ਗਰਾਫ਼ਾਂ ਦਾ ਉਦੇਸ਼ ਸੰਖਿਆਤਮਕ ਤੱਥਾਂ ਨੂੰ ਚਿੱਤਰਾਂ ਦੁਆਰਾ ਦਿਖਾਉਣਾ ਹੈ, ਜਿਸ ਨਾਲ ਉਹ ਜਲਦੀ, ਸੌਖੇ ਅਤੇ ਸਪੱਸ਼ਟ ਢੰਗ ਨਾਲ ਸਮਝੇ ਜਾ ਸਕਣ। ਇਸ ਤਰ੍ਹਾਂ ਗਰਾਫ਼, ਇਕੱਤਰ ਕੀਤੇ ਐਕੜਿਆਂ ਦਾ ਚਿੱਤਰਾਂ ਦੁਆਰਾ ਪ੍ਰਦਰਸ਼ਨ ਹੈ। ਐਕੜਿਆਂ ਨੂੰ ਸਾਰਣੀ ਨਾਲ ਵੀ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਪਰੰਤੂ ਗਰਾਫ਼ ਦੁਆਰਾ ਪੇਸ਼ਕਾਰੀ ਸਮਝਣ ਵਿੱਚ ਬਹੁਤ ਆਸਾਨ ਹੈ। ਐਕੜਿਆਂ ਦਾ ਰੁਝਾਨ ਜਾਂ ਉਹਨਾਂ ਦੀ ਤੁਲਨਾ ਦਿਖਾਉਣ ਦੇ ਲਈ ਤਾਂ ਇਹ ਬਹੁਤ ਉਪਯੋਗੀ ਹੁੰਦੇ ਹਨ। ਅਸੀਂ ਹੁਣ ਤੱਕ ਅਨੇਕਾਂ ਪ੍ਰਕਾਰ ਦੇ ਗਰਾਫ਼ ਦੇਖ ਚੁੱਕੇ ਹਾਂ। ਆਉ, ਉਹਨਾਂ ਨੂੰ ਯਾਦ ਕਰ ਲਈਏ।

15.1.1 ਬਾਰ - ਗਰਾਫ਼


ਬਾਰ-ਗਰਾਫ਼ ਵੱਖ-ਵੱਖ ਸ਼੍ਰੇਣੀਆਂ ਦੇ ਵਿੱਚ ਤੁਲਨਾ ਕਰਨ ਦੇ ਕੰਮ ਆਉਂਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਦੋ ਜਾਂ ਜ਼ਿਆਦਾ ਸਮਾਂਤਰ ਖੜਵੇਂ (ਜਾਂ ਲੇਟਵੇਂ), ਬਾਰ ਜਾਂ ਆਇਤ ਹੁੰਦੇ ਹਨ।

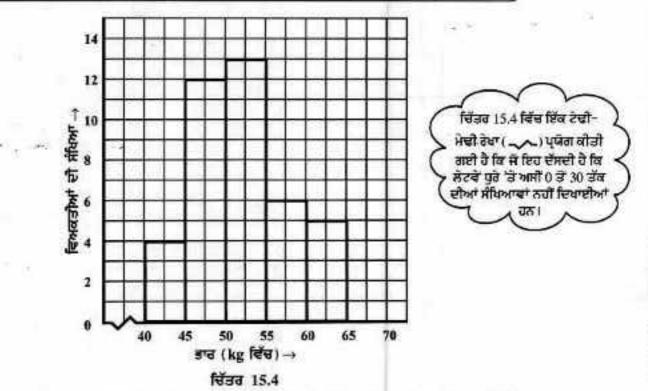
ਚਿੱਤਰ 15.1 ਵਿੱਚ ਬਾਰ-ਗਰਾਫ਼, ਅਨੂ ਦੁਆਰਾ ਸਾਲ ਦੇ ਦੌਰਾਨ ਲਈਆਂ ਤਿੰਨ ਪ੍ਰੀਖਿਆਵਾਂ ਵਿੱਚ ਗਣਿਤ ਦੇ ਪ੍ਰਾਪਤ ਅੰਕਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਹ ਤੁਹਾਨੂੰ ਉਸ ਦੀ ਕਾਰਗੁਜ਼ਾਰੀ ਦੀ ਤੁਲਨਾ, ਆਸਾਨੀ ਨਾਲ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਦਾ ਹੈ। ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਉਸਦੀ ਤਰੱਕੀ ਚੰਗੀ ਹੈ।


242 🔳 ਗਣਿਤ

ਬਾਰ ਗਰਾਫ਼ ਵਿੱਚ ਦੋਹਰੇ ਬਾਰ ਵੀ ਹੋ ਸਕਦੇ ਹਨ, ਜਿਵੇਂ' ਕਿ ਚਿੱਤਰ 15.2 ਵਿੱਚ। ਇਹ ਗਰਾਫ਼ ਕਿਸੇ ਦੋ ਦਿਨਾਂ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਦੇ ਫਲਾਂ ਦੀ ਵਿਕਰੀ (ਰੁਪਏ ਵਿੱਚ) ਦਾ ਤੁਲਨਾਤਮਕ ਬਿਓਰਾ ਹੈ। ਚਿੱਤਰ 15.2 ਅਤੇ ਚਿੱਤਰ 15.1 ਵਿੱਚ ਕੀ ਅੰਤਰ ਹੈ ? ਆਪਣੇ ਮਿੱਤਰਾਂ ਦੇ ਨਾਲ ਚਰਚਾ ਕਰੋ।

15.1.2 ਚੱਕਰ-ਗਰਾਫ਼ ਜਾਂ ਪਾਈ ਗਰਾਫ਼

ਇੱਕ ਚੱਕਰ ਗਰਾਫ਼ ਕਿਸੇ ਇੱਕ ਸੰਪੂਰਨ ਦੇ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ ਦੀ ਤੁਲਨਾ ਕਰਨ ਦੇ ਲਈ ਪ੍ਰਯੋਗ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।ਚੱਕਰ, ਇੱਕ ਸੰਪੂਰਨ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।ਚਿੱਤਰ 15.3 ਇੱਕ ਚੱਕਰ ਗਰਾਫ਼ ਹੈ।ਇਹ ਦੂਰਦਰਸ਼ਨ ਦੇ ਵੱਖ-ਵੱਖ ਚੈਨਲਾਂ ਦੇ ਦਰਸ਼ਕਾਂ ਦੀ ਪ੍ਰਤੀਸ਼ਤਤਾ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ।



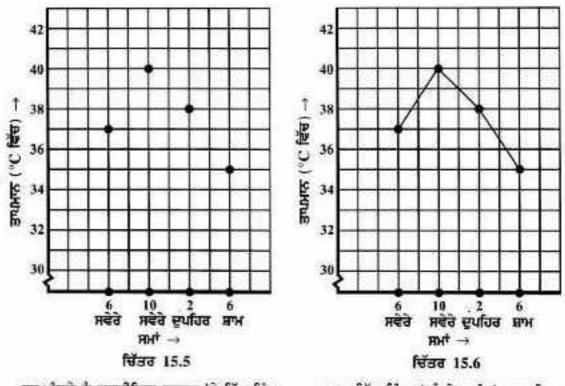
www.studiestoday.com

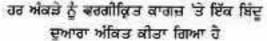
15.1.3 ਆਇਤ ਚਿੱਤਰ

ਇੱਕ ਆਇਤ ਚਿੱਤਰ, ਇੱਕ ਬਾਰ-ਗਰਾਫ਼ ਦੀ ਤਰ੍ਹਾਂ ਹੀ ਹੁੰਦਾ ਹੈ ਜੋ ਕਿ ਅੰਕੜਿਆਂ ਨੂੰ ਅੰਤਰਾਲ ਵਿੱਚ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਸ ਵਿੱਚ ਅੰਤਰਾਲਾਂ ਨੂੰ ਨਾਲ-ਨਾਲ ਦਿੱਤੇ ਬਾਰ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਚਿੱਤਰ 15.4 ਵਿੱਚ ਆਇਤ ਚਿੱਤਰ ਇੱਕ ਖੇਤਰ ਦੇ 40 ਵਿਅਕਤੀਆਂ ਦੇ ਭਾਰ (kg ਵਿੱਚ) ਦੀ ਵੰਡ ਦਰਸਾਉਂਦਾ ਹੈ।

ਭਾਰ (kg ਵਿੱਚ)	40-45	45-50	50-55	55-60	60-65
ਵਿਅਕਤੀਆਂ ਦੀ ਸੱਖਿਆ	4	12	13	6	5

ਧਿਆਨ ਰੱਖੋ, ਬਾਰਾਂ ਦੇ ਵਿੱਚ ਕੋਈ ਖਾਲੀ ਸਥਾਨ ਨਹੀਂ ਹੈ ਕਿਉਂਕਿ ਅੰਤਰਾਲਾਂ ਦੇ ਵਿੱਚ ਵੀ ਕੋਈ ਵਿੱਥ ਨਹੀਂ ਹੈ। ਤੁਸੀਂ ਇਸ ਆਇਤ ਚਿੱਤਰ ਤੋਂ ਕੀ ਸੂਚਨਾਵਾਂ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹੋ? ਇਸਦੀ ਇੱਕ ਸੂਚੀ ਬਣਾਉ।


15.1.4 ਰੇਖਾ ਗਰਾਫ਼


ਇੱਕ ਰੇਖਾ-ਗਰਾਫ਼, ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਅੰਕੜੇ ਪੇਸ਼ ਕਰਦਾ ਹੈ ਜੋ ਸਮੇਂ ਦੇ ਨਾਲ-ਨਾਲ ਲਗਾਤਾਰ ਬਦਲਦੇ ਰਹਿੰਦੇ ਹਨ। ਜਦ ਰੋਨੂੰ ਬੀਮਾਰ ਹੋਈ ਸੀ ਤਾਂ ਉਸ ਦੇ ਡਾਕਟਰ ਨੇ ਚਾਰ-ਚਾਰ ਘੰਟੇ ਬਾਅਦ ਉਸਦੇ ਸਰੀਰਕ ਤਾਪਮਾਨ ਦਾ ਰਿਕਾਰਡ ਕੀਤਾ। ਇਹ ਇੱਕ ਗਰਾਫ਼ ਦੇ ਰੂਪ ਵਿੱਚ ਸੀ। (ਚਿੱਤਰ 15.5 ਅਤੇ 15.6 ਵਿੱਚੋਂ ਦੇਖੋ)।

ਅਸੀਂ ਇਸਨੂੰ 'ਸਮਾਂ ਤਾਪਮਾਨ' ਦਾ ਗਰਾਫ਼ ਵੀ ਕਹਿ ਸਕਦੇ ਹਾਂ। ਇਹ ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਅੰਕੜਿਆਂ ਦਾ ਚਿੱਤਰ ਰੂਪ ਵਿੱਚ ਪ੍ਰਦਰਸ਼ਨ ਹੈ।

ਸਮਾਂ	6 ਵਜੇ ਸਵੇਰ	10 ਵਜੇ ਸਵੇਰ	2 ਵਜੇ ਦੁਪਹਿਰ	6 ਵਜੇ ਸ਼ਾਮ	
ਤਾਪਮਾਨ (°C ਵਿੱਚ)	37	40	38	35	

244 🖩 ਗਣਿਤ

ਬਾਅਦ ਵਿੱਚ ਬਿੰਦੂਆਂ ਨੂੰ ਰੇਖਾ ਖੰਡਾਂ ਨਾਲ ਮਿਲਾ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਨਤੀਜਾ, ਇਹ ਰੇਖਾ ਗਰਾਫ਼ ਹੈ।

ਲੋਟਵੀਂ ਰੇਖਾ (ਜਿਸ ਨੂੰ x-ਧੁਰਾ ਵੀ ਕਹਿੰਦੇ ਹਨ) ਉਹ ਸਮਾਂ ਦਿਖਾਉਂਦੀ ਹੈ, ਜਦ-ਜਦ ਤਾਪਮਾਨ ਲਿਆ ਗਿਆ। ਖੜਵੀਂ ਰੇਖਾ (ਜਿਸ ਨੂੰ y-ਧੁਰਾ ਵੀ ਕਹਿੰਦੇ ਹਨ) 'ਤੇ ਕੀ ਦਿਖਾਇਆ ਗਿਆ ਹੈ?

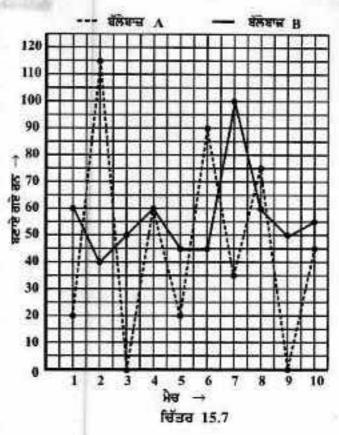
ਇਹ ਗਰਾਫ਼ ਤੁਹਾਨੂੰ ਕੀ-ਕੀ ਦੱਸਦਾ ਹੈ ? ਉਦਾਹਰਣ ਦੇ ਲਈ, ਤੁਸੀਂ ਇਸ ਵਿੱਚ ਤਾਪਮਾਨ ਦੇ ਪੈਟਰਨ ਦੇਖ ਸਕਦੇ ਹੋ : 10 ਵਜੇ ਸਵੇਰੇ ਜ਼ਿਆਦਾ ਸੀ ਤੇ ਫਿਰ 6 ਵਜੇ ਸ਼ਾਮ ਤੱਕ ਘਟਦਾ ਗਿਆ। ਧਿਆਨ ਦਿਓ ਕਿ 6 ਵਜੇ ਸਵੇਰ ਅਤੇ 10 ਵਜੇ ਸਵੇਰ ਦੇ ਵਿੱਚ ਤਾਪਮਾਨ 3°C (40°C – 37°C) ਵਧਿਆ।

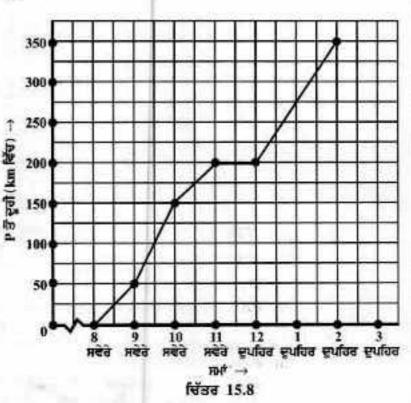
8 ਵਜੇ ਸਵੇਰੇ ਤਾਪਮਾਨ ਨਹੀਂ ਪੜ੍ਹਿਆ ਗਿਆ, ਫਿਰ ਵੀ ਗਰਾਫ਼ ਦੇਖ ਕੇ ਲੱਗਦਾ ਹੈ ਕਿ ਇਹ 37°C ਨਾਲੋਂ ਜ਼ਿਆਦਾ ਸੀ। (ਕਿਵੇਂ ?)

ਉਦਾਹਰਣ 1 : ਦਿੱਤਾ ਗਿਆ ਗਰਾਫ਼ (ਚਿੱਤਰ 15.7) ਸਾਲ 2007 ਵਿੱਚ, ਦੋ ਬੱਲੇਬਾਜ A ਅਤੇ B ਦੁਆਰਾ ਖੇਡੇ ਗਏ 10 ਮੈਚਾਂ ਵਿੱਚ ਬਣਾਏ ਗਏ ਰਨਾਂ ਨੂੰ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਗਰਾਫ਼ ਦਾ ਅਧਿਐਨ ਕਰੋ ਅਤੇ ਹੇਠ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ :

- (i) ਦੋਨੋਂ ਧੁਰਾਂ 'ਤੇ ਕਿਹੜੀ-ਕਿਹੜੀ ਸੂਚਨਾ ਦਿੱਤੀ ਗਈ ਹੈ ?
- (ii) ਕਿਹੜੀ ਰੇਖਾ ਬੱਲੋਬਾਜ਼ A ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਰਨ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦੀ ਹੈ ?
- (iii) ਸਾਲ 2007 ਵਿੱਚ, ਕੀ ਕਿਸੇ ਮੈਚ ਦੇ ਦੋਨਾਂ ਬੱਲੇਬਾਜ਼ਾਂ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਰਨ ਸਮਾਨ ਹਨ ? ਜੋ ਹਾਂ, ਤਾਂ ਕਿਸ ਮੈਚ ਵਿੱਚ ?

(iv) ਦੋਨਾਂ ਬੱਲੇਬਾਜ਼ਾਂ ਵਿੱਚ ਕਿਹੜਾ ਜ਼ਿਆਦਾ ਸਥਿਰ ਹੈ ? ਤੁਸੀਂ ਇਹ ਨਿਰਣਾ ਕਿਸ ਤਰ੍ਹਾਂ ਲਿਆ ? ਹੱਲ :


 (i) ਲੋਟਵਾਂ ਧੁਰਾ (ਜਾਂ x- ਧੁਰਾ), ਸਾਲ 2007 ਵਿੱਚ ਖੋਡੇ ਗਏ ਮੈਚਾਂ ਦੀ ਸੰਖਿਆ ਦਰਸਾਉਂਦਾ ਹੈ। ਖੜਵਾਂ ਧੁਰਾ (ਜਾਂ y-ਧੁਰਾ) ਹਰੇਕ ਮੈਚ ਵਿੱਚ ਬਣਾਏ ਗਏ ਰਨਾਂ ਦੀ ਸੰਖਿਆ ਦਰਸਾਉਂਦਾ ਹੈ।

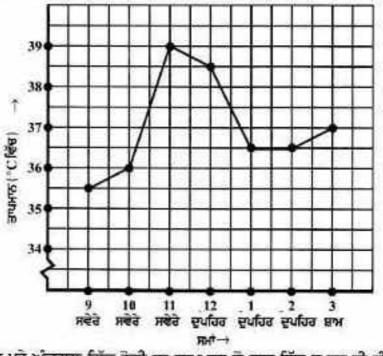

ਗਰਾਫ਼ਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ 🔳 245

- ਬਿੰਦੂਵਾਰ ਰੇਖਾ A ਬੱਲੇਬਾਜ਼ ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਰਨਾਂ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ ਜਿਸ ਤਰ੍ਹਾਂ ਗਰਾਫ਼ ਦੇ ਉੱਪਰ ਸੰਕੇਤ ਵੀ ਹੈ।
- (iii) ਚੌਥੇ ਮੈਚ ਦੇ ਦੌਰਾਨ ਦੋਨਾਂ ਨੇ ਇੱਕ ਸਮਾਨ 60 ਰਨ ਬਣਾਏ। (ਇਹ ਉਸ ਬਿੰਦੂ ਤੋਂ ਪਤਾ ਚਲਦਾ ਹੈ, ਜਿੱਥੇ ਦੋਨੋਂ ਰੇਖਾਵਾਂ ਇੱਕ-ਦੁਸਰੇ ਨੂੰ ਕੱਟਦੀਆਂ ਹਨ।
- (iv) ਬੱਲੇਬਾਜ਼ A ਦੇ ਗਰਾਫ਼ ਵਿੱਚ ਇੱਕ ਉੱਚਾ ਸਿਖਰ ਹੈ ਅਤੇ ਉਸਦੇ ਹੇਠਾਂ ਘਾਟੀਆਂ। ਉਹ ਹਨ ਬਣਾਉਣ ਵਿੱਚ ਸਥਿਰ ਨਹੀਂ ਹੈ। ਜਦ ਕਿ ਦੂਸਰੇ ਪਾਸੇ, ਬੱਲੇਬਾਜ਼ B ਨੇ ਕਦੇ 40 ਤੋਂ ਘੱਟ ਰਨ ਨਹੀਂ ਬਣਾਏ ਜਦੋਂ ਕਿ ਉਸਨੇ B ਦੇ 115 ਦੇ ਮੁਕਾਬਲੇ ਜਿਆਦਾਤਰ 100 ਹੀ ਰਨ ਬਣਾਏ। A ਨੇ ਦੋਨਾਂ ਮੈਚਾਂ ਵਿੱਚ ਸਿਫ਼ਰ ਰਨ ਹੀ ਬਣਾਏ ਤੇ ਕੁੱਲ ਪੰਜ ਮੈਚਾਂ ਵਿੱਚ 40 ਤੋਂ ਘੱਟ। ਕਿਉਂਕਿ A ਦੁਆਰਾ ਬਣਾਏ ਗਏ ਰਨਾਂ ਵਿੱਚ ਜਿਆਦਾ ਉਤਾਰ-ਚੜ੍ਹਾਅ ਹੈ, ਇਸ ਤਰ੍ਹਾਂ B ਹੀ ਇੱਕ ਭਰੋਸੇਯੋਗ ਸਥਿਰ ਬੱਲੇਬਾਜ਼ ਹੈ।

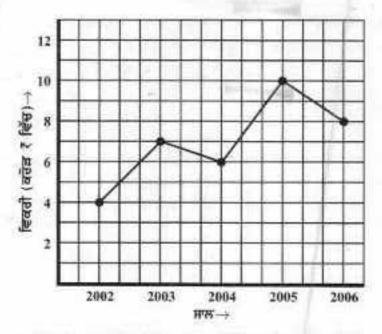
ਉਦਾਹਰਣ 2 : ਇੱਕ ਕਾਰ ਸ਼ਹਿਰ P ਤੋਂ ਦੂਸਰੇ ਸ਼ਹਿਰ Q ਦੇ ਵੱਲ ਜਾ ਰਹੀ ਹੈ ਜੋ ਕਿ ਇੱਕ ਦੂਸਰੇ ਤੋਂ 350 km ਦੂਰੀ 'ਤੇ ਹਨ। ਦਿੱਤਾ ਗਿਆ ਗਰਾਫ਼ (ਚਿੱਤਰ 15.8) ਵੱਖ-ਵੱਖ ਸਮਿਆਂ 'ਤੇ ਕਾਰ ਦੀ P ਸ਼ਹਿਰ ਤੋਂ ਦੂਰੀਆਂ ਦਰਸਾਉਂਦਾ ਹੈ। ਗਰਾਫ਼ ਦਾ ਅਧਿਐਨ ਕਰੋ ਅਤੇ ਹੇਠ ਲਿਖੇ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਉੱਤਰ ਦਿਓ :

- (i) ਦੋਨੋਂ ਧੁਰਾਂ 'ਤੇ ਕੀ-ਕੀ ਦਰਸਾਇਆ ਗਿਆ ਹੈ ?
- (ii) ਕਾਰ ਨੇ ਕਿਸ ਸਮੇਂ ਅਤੇ ਕਿੱਥੋਂ ਯਾਤਰਾ ਸ਼ੁਰੂ ਕੀਤੀ ?
- (iii) ਪਹਿਲੇ ਘੰਟੇ ਵਿੱਚ ਕਾਰ ਕਿੰਨੀ ਦੂਰੀ ਚੱਲੀ?
- (iv) ਦੂਸਰੇ ਘੰਟੇ ਅਤੇ ਤੀਸਰੇ ਘੰਟੇ ਵਿੱਚ ਕਾਰ ਨੇ ਕਿੰਨੀ-ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕੀਤੀ ?
- (v) ਕੀ ਪਹਿਲੇ ਤਿੰਨ ਘੰਟੇ ਵਿੱਚ ਕਾਰ ਦੀ ਚਾਲ ਸਮਾਨ ਸੀ ? ਤੁਸੀਂ ਕਿਵੇਂ ਜਾਣਦੇ ਹੈ ?
- (vi) ਕੀ ਕਾਰ ਕਿਸੇ ਸਥਾਨ 'ਤੇ ਰੁਕੀ ? ਆਪਣੇ ਉੱਤਰ ਦੇ ਲਈ ਤਰਕ ਵੀ ਦਿਓ ?
- (vii) ਕਾਰ, ਸ਼ਹਿਰ Q 'ਤੇ ਕਿਸ ਸਮੇਂ ਪਹੁੰਚੀ ? ਹੱਲ :
- (i) ਲੇਟਵਾਂ ਧੁਰਾ (x) ਸਮਾਂ ਦਰਸਾਉਂਦਾ ਹੈ। ਖੜਵਾਂ (y) ਧੁਰਾ, P ਸ਼ਹਿਰ ਤੋਂ ਕਾਰ ਦੀ ਦੁਰੀਆਂ ਦਰਸਾਉਂਦਾ ਹੈ।)
- (ii) ਕਾਰ 8 ਵਜੇ ਸਵੇਰੇ ਸ਼ਹਿਰ P ਤੋਂ ਚਲਦੀ ਹੈ।

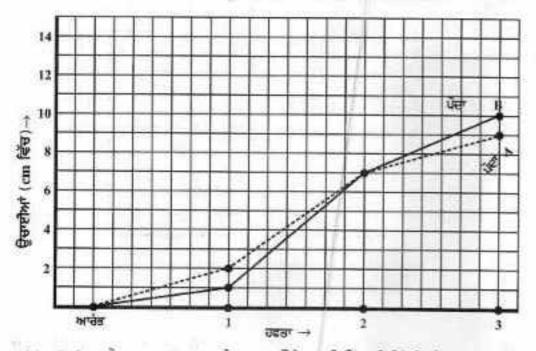
w.studiestoday.com


246 🏼 ਗਣਿਤ

- (iii) ਕਾਰ ਪਹਿਲੇ ਘੰਟੇ ਵਿਚ 50 km ਦੀ ਦੂਰੀ ਤੈਅ ਕਰਦੀ ਹੈ। ਤੁਸੀਂ ਇਹ ਦੇਖ ਸਕਦੇ ਹੋ ਕਿ ਕਾਰ ਸਵੇਰੇ 8 ਵਜੇ ਸ਼ਹਿਰ P ਤੋਂ ਚਲਦੀ ਹੈ ਅਤੇ ਸਵੇਰੇ 9 ਵਜੇ ਗਰਾਫ਼ ਦੇ ਅਨੁਸਾਰ, 50 km ਦੀ ਦੂਰੀ ਤੇ ਸੀ। ਇਸ ਤਰ੍ਹਾਂ ਸਵੇਰੇ 8 ਅਤੇ 9 ਵਜੇ ਦੇ ਵਿੱਚ, ਇੱਕ ਘੰਟੇ ਵਿੱਚ ਕਾਰ ਨੇ 50 km ਦੂਰੀ ਤੈਅ ਕੀਤੀ ਹੈ।
- (iv) (a) ਕਾਰ ਦਸਰੇ ਘੰਟੇ (ਸਵੇਰ 9 ਵਜੇ ਤੋਂ 10 ਵਜੇ) ਵਿੱਚ 100 km ਦੂਰੀ (150-50) ਤੈਅ ਕਰਦੀ ਹੈ। (b) ਕਾਰ ਤੀਸਰੇ ਘੰਟੇ (ਸਵੇਰੇ 10 ਵਜੇ ਤੋਂ 11 ਵਜੇ) ਤੱਕ 50 km ਦੀ ਦੂਰੀ (200-150) ਤੈਅ ਕਰਦੀ ਹੈ।
- (v) ਪਸ਼ਨ (iii) ਅਤੇ (iv) ਦੇ ਉੱਤਰਾਂ ਤੋਂ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਕਾਰ ਦੀ ਚਾਲ ਹਮੇਸ਼ਾਂ ਸਮਾਨ ਨਹੀਂ ਸੀ। (ਗਰਾਫ਼ ਇਹ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਚਾਲ ਕਿਸ ਤਰ੍ਹਾਂ ਬਦਲਦੀ ਹੈ।)
- (vi) ਗਰਾਫ਼ ਵਿੱਚ ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਕਾਰ ਸਵੇਰੇ 11 ਵਜੇ ਅਤੇ 12 ਵਜੇ ਵੀ ਸ਼ਹਿਰ P ਤੋਂ 200 km ਦੂਰ ਸੀ। ਇਸ ਅੰਤਰਾਲ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ, ਇੱਕ ਲੇਟਵਾਂ ਰੇਖਾਖੰਡ ਹੈ ਜੋ ਇਸ ਤੱਬ ਦੀ ਪਸ਼ਟੀ ਕਰਦਾ ਹੈ
- (vii) 2 ਵਜੇ ਦੁਪਹਿਰ ਕਾਰ Q ਸ਼ਹਿਰ ਪਹੁੰਚੀ।


\Lambda ਅਭਿਆਸ 15.1

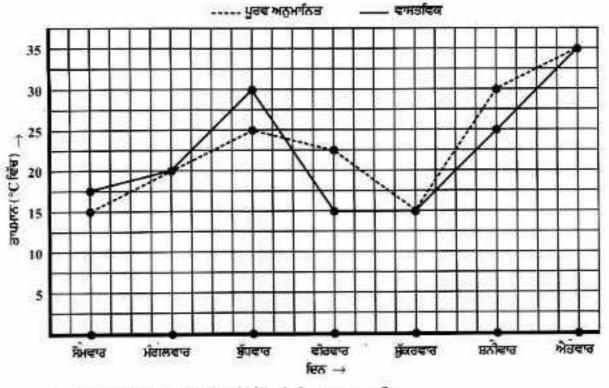
- 1. ਹੇਠਾਂ ਲਿਖੇ ਗਰਾਫ਼, ਕਿਸੇ ਹਸਪਤਾਲ ਵਿੱਚ ਇੱਕ ਰੋਗੀ ਦਾ ਪ੍ਰਤੀ ਘੰਟੇ ਲਿਆ ਗਿਆ ਤਾਪਮਾਨ ਦਰਸਾਉਂਦਾ ਹੈ :
 - (a) ਦੁਪਹਿਰ 1 ਵਜੇ ਰੋਗੀ ਦਾ ਤਾਪਮਾਨ ਕੀ ਸੀ?
 - (b) ਰੋਗੀ ਦਾ ਤਾਪਮਾਨ 38.5° C ਕਦੋਂ ਸੀ?



- (c) ਇਸ ਪੂਰੇ ਅੰਤਰਾਲ ਵਿੱਚ ਰੋਗੀ ਦਾ ਤਾਪਮਾਨ ਦੋ ਵਾਰ ਇੱਕ ਸਮਾਨ ਹੀ ਸੀ। ਇਹ ਦੋ ਸਮੇਂ, ਕਿਹੜੇ-ਕਿਹੜੇ ਸਨ?
- (d) 1.30 ਵਜੇ ਦੁਪਹਿਰ ਰੋਗੀ ਦਾ ਤਾਪਮਾਨ ਕੀ ਸੀ ? ਇਸ ਸਿੱਟੇ 'ਤੇ ਤੁਸੀਂ ਕਿਸ ਤਰ੍ਹਾਂ ਪਹੁੰਚੋਗੇ ?
- (e) ਕਿਹੜੇ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਰੋਗੀ ਦਾ ਤਾਪਮਾਨ 'ਵਧਣ ਦੇ ਰੁਝਾਣ' ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ?
 2. ਇੱਕ ਨਿਰਮਾਣ ਕੰਪਨੀ ਦੇ ਵੱਖ-ਵੱਖ ਸਾਲਾਂ ਵਿੱਚ ਕੀਤੀ ਗਈ ਵਿਕਰੀ ਹੇਠਾਂ ਦਿੱਤੇ ਗਰਾਫ਼ ਦਆਰਾ ਦਰਸਾਈ ਗਈ ਹੈ:
 - (a) (i) ਸਾਲ 2002 ਵਿੱਚ (ii) ਸਾਲ 2006 ਵਿੱਚ ਕਿੰਨੀ ਵਿਕਰੀ ਸੀ ?
 - (b) (i) ਸਾਲ 2003 ਵਿੱਚ (ii) ਸਾਲ 2005 ਵਿੱਚ ਕਿੰਨੀ ਵਿਕਰੀ ਸੀ ?

ਗਰਾਫ਼ਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ 🔳 247

- (c) ਸਾਲ 2002 ਅਤੇ ਸਾਲ 2006 ਵਿੱਚ ਵਿਕਰੀ ਵਿੱਚ ਕਿੰਨਾ ਅੰਤਰ ਸੀ ?
- (d) ਕਿਸ ਅੰਤਰਾਲ ਵਿੱਚ ਵਿਕਰੀ ਦਾ ਇਹ ਅੰਤਰ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਸੀ ?
- ਬਨਸਪਤੀ-ਵਿਗਿਆਨ ਦੇ ਇੱਕ ਪ੍ਰਯੋਗ ਵਿੱਚ, ਸਮਾਨ ਪ੍ਰਯੋਗਸ਼ਾਲਾਂ ਪਹਿਸਬਿਤੀਆਂ ਵਿੱਚ ਦੋ ਪੈਂਦੇ A ਅਤੇ B ਉਗਾਏ ਗਏ। ਤਿੰਨ ਹਫਤਿਆਂ ਤੱਕ ਉਹਨਾਂ ਦੀਆਂ ਉਚਾਈਆਂ ਨੂੰ ਹਰ ਹਫਤੇ ਦੇ ਅੰਤ ਵਿਚ ਮਾਪਿਆ ਗਿਆ। ਨਤੀਜਿਆਂ ਨੂੰ ਹੋਠਾਂ ਦਿੱਤੇ ਗਰਾਫ਼ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ:



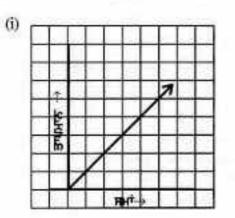
- (a) (i) 2 ਹਫਤੇ ਬਾਅਦ (ii) 3 ਹਫਤੇ ਬਾਅਦ ਪੌਦੇ A ਦੀ ਉਚਾਈ ਕਿੰਨੀ ਸੀ?
- (b) (i) 2 ਹਫਤੇ ਬਾਅਦ (ii) 3 ਹਫਤੇ ਬਾਅਦ ਪੌਦੇ B ਦੀ ਉਚਾਈ ਕਿੰਨੀ ਸੀ ?
- (c) ਤੀਸਰੇ ਹਫਤੇ ਵਿੱਚ ਪੌਦੇ A ਦੀ ਉਚਾਈ ਕਿੰਨੀ ਵਧੀ ?

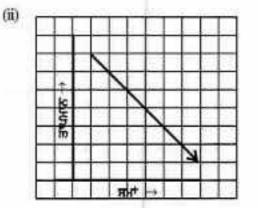
(d) ਦੂਸਰੇ ਹਫਤੇ ਤੇ ਔਤ ਤੋਂ ਤੀਸਰੇ ਹਫਤੇ ਦੇ ਔਤ ਤੱਕ ਪੈਂਦੇ B ਦੀ ਉਚਾਈ ਕਿੰਨੀ ਵਧੀ ?

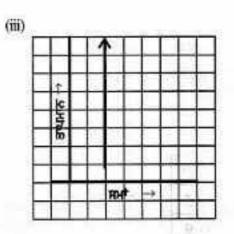
248 🔳 ਗਣਿਤ

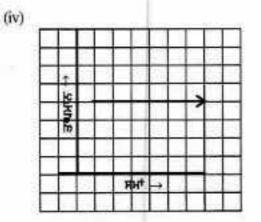
- (e) ਕਿਸ ਹਫਤੇ ਵਿੱਚ ਪੌਦੇ A ਦੀ ਉਚਾਈ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਵਧੀ ?
- (f) ਕਿਸ ਹਫਤੇ ਵਿੱਚ ਪੌਦੇ B ਦੀ ਉਚਾਈ ਸਭ ਤੋਂ ਘੱਟ ਵਧੀ ?
- (g) ਕੀ ਕਿਸੇ ਹਫਤੇ ਵਿੱਚ ਦੋਨਾਂ ਪੈਂਦਿਆਂ ਦੀ ਉਚਾਈ ਬਰਾਬਰ ਸੀ ? ਪਛਾਣੋ।
- ਹੇਠਾਂ ਦਿੱਤਾ ਗਰਾਫ਼, ਕਿਸੇ ਹਫਤੇ ਦੇ ਹਰੇਕ ਦਿਨ ਦੇ ਲਈ ਪੂਰਵ ਅਨੁਮਾਨਿਤ ਅਤੇ ਅਸਲ ਤਾਪਮਾਨ ਦਰਸਾਉਂਦਾ ਹੈ:
 - (a) ਕਿਸ ਦਿਨ ਪੁਰਵ ਅਨੁਮਾਨਿਤ ਤਾਪਮਾਨ ਅਤੇ ਵਾਸਤਵਿਕ ਸਮਾਨ ਹਨ ?
 - (b) ਹਫਤੇ ਵਿੱਚ ਵੱਧ ਤੋਂ ਵੱਧ ਪੂਰਵ ਅਨੁਮਾਨਿਤ ਤਾਪਮਾਨ ਕੀ ਸੀ?
 - (c) ਹਫਤੇ ਵਿੱਚ ਘੱਟ ਤੋਂ ਘੱਟ ਅਸਲ ਤਾਪਮਾਨ ਕੀ ਸੀ ?
 - (d) ਕਿਸ ਦਿਨ ਅਸਲ ਤਾਪਮਾਨ ਅਤੇ ਪੂਰਵ ਅਨੁਮਾਨਿਤ ਤਾਪਮਾਨ ਵਿੱਚ ਅੰਤਰ ਵੱਧ ਤੋਂ ਵੱਧ ਸੀ ?

- ਹੇਠਾਂ ਦਿੱਤੀ ਸਾਰਣੀ ਨੂੰ ਦੇਖ ਕੇ ਇੱਕ ਰੇਖੀ ਗਰਾਫ਼ ਬਣਾਉ :
 - (a) ਵੱਖ-ਵੱਖ ਸਾਲਾਂ ਵਿੱਚ ਕਿਸੇ ਪਹਾੜੀ ਸ਼ਹਿਰ ਵਿੱਚ ਬਰਫ਼ ਪੈਣ ਦੇ ਦਿਨਾਂ ਦੀ ਸੰਖਿਆ :

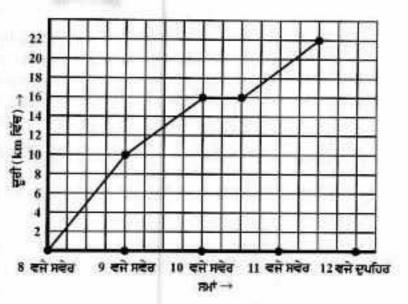

भण्ड	2003	2004	2005	2006
দিন 🛛	8	10	5	12


 (b) ਵੱਖ-ਵੱਖ ਸਾਲਾਂ ਵਿੱਚ ਇੱਕ ਪਿੰਡ ਵਿੱਚ, ਪੁਰਸ਼ਾਂ ਅਤੇ ਇਸਤਰੀਆਂ ਦੀ ਸੰਖਿਆ (ਹਜ਼ਾਰਾਂ ਵਿੱਚ)

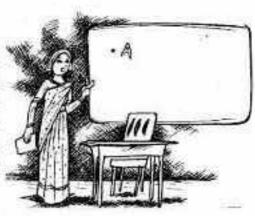

ਸਾਲ	2003	2004	2005	2006	2007
ਪੁਰਸ਼ਾਂ ਦੀ ਸੰਖਿਆ	12	12.5	13	13.2	13,5
ਇਸਤਰੀਆਂ ਦੀ ਸੰਖਿਆ	11.3	11.9	13	13.6	12.8


ਗਰਾਫ਼ਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ 🖩 249

- 6. ਇੱਕ ਡਾਕੀਆ ਕਿਸੇ ਸ਼ਹਿਰ ਦੇ ਕੋਲ ਹੀ ਪੈਂਦੇ ਇੱਕ ਕਸਬੇ ਵਿੱਚ ਇੱਕ ਵਪਾਰੀ ਕੋਲ ਪਾਰਸਲ ਪਹੁੰਚਾਉਣ ਲਈ ਸਾਈਕਲ 'ਤੇ ਜਾਂਦਾ ਹੈ। ਵੱਖ-ਵੱਖ ਸਮਿਆਂ ਤੇ ਸ਼ਹਿਰ ਤੋਂ ਉਸਦੀ ਦੂਰੀ ਹੇਠਾਂ ਦਿੱਤੇ ਗਰਾਫ਼ਾ ਦੁਆਰਾ ਦਰਸਾਈ ਗਈ ਹੈ।
 - (a) x-ਧੁਰੇ 'ਤੇ ਸਮਾਂ ਦਰਸਾਉਣ ਦੇ ਲਈ ਕੀ ਪੈਮਾਨਾ ਵਰਤਿਆ ਗਿਆ ਹੈ ?
 - (b) ਉਸਨੇ ਪੂਰੀ ਯਾਤਰਾ ਦੇ ਲਈ ਕਿੰਨਾ ਸਮਾਂ ਲਿਆ ?
 - (c) ਵਪਾਰੀ ਦੇ ਥਾਂ ਦੀ ਸ਼ਹਿਰ ਤੋਂ ਦੂਰੀ ਕਿੰਨੀ ਹੈ?
 - (d) ਕੀ, ਡਾਕੀਆ ਰਸਤੇ ਵਿੱਚ ਕਿਤੇ ਰੁਕਿਆ? ਵਿਸਥਾਰ ਨਾਲ ਦੱਸੋ।
 - (e) ਕਿਸ ਔਤਰਾਲ ਵਿੱਚ ਉਸਦੀ ਚਾਲ ਸਭ ਤੋਂ ਜ਼ਿਆਦਾ ਸੀ ?
- ਹੇਠਾਂ ਦਿੱਤੇ ਗਰਾਫ਼ਾਂ ਵਿੱਚ ਕਿਹੜੇ-ਕਿਹੜੇ ਗਰਾਫ਼ ਸਮੇਂ ਅਤੇ ਤਾਪਮਾਨ ਦੇ ਵਿੱਚ ਸੰਭਵ ਹਨ ? ਤਰਕ ਦੇ ਨਾਲ ਆਪਣੇ ਉੱਤਰ ਦਿਓ।



Downloaded from https:// www.studiestoday.com


rom https:// www.studiestoday.com

250 🔳 ਗਣਿਤ

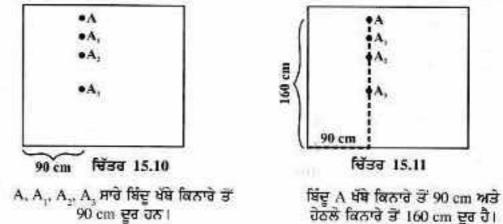
15.2 ਰੇਖੀ ਗਰਾ*ਫ*

Downloaded_trom_https

ਰੇਖੀ ਗਰਾਫ਼, ਅਨੇਕ ਰੇਖਾਖੰਡਾਂ ਨੂੰ ਆਪਸ ਵਿੱਚ ਮਿਲਾ ਕੇ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ। ਕਦੇ-ਕਦੇ ਇਹ ਗਰਾਫ਼ ਇੱਕ ਪੂਰੀ (ਬਿਨ੍ਹਾਂ ਟੁੱਟੋ) ਰੇਖਾ ਵੀ ਹੋ ਸਕਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਗਰਾਫ਼ ਨੂੰ ਰੇਖੀ ਗਰਾਫ਼ ਕਹਿੰਦੇ ਹਾਂ। ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਗਰਾਫ਼ ਬਣਾਉਣ ਦੇ ਲਈ ਵਰਗੀਕ੍ਰਿਤ ਕਾਗਜ਼ 'ਤੇ ਕੁਝ ਬਿੰਦੂ ਅੰਕਿਤ ਕਰਨੇ ਪੈਂਦੇ ਹਨ। ਹੁਣ ਅਸੀਂ ਸਿੱਖਾਂਗੇ ਕਿ ਵਰਗੀਕ੍ਰਿਤ ਕਾਗਜ਼ ਦੇ ਬਿੰਦੂ ਅਸਾਨੀ ਨਾਲ ਕਿਵੇਂ ਅੰਕਿਤ ਕੀਤੇ ਜਾਂਦੇ ਹਨ।

aay.com

15.2.1 ਬਿੰਦੂ ਦੀ ਸਥਿਤੀ


ਅਧਿਆਪਕਾ ਨੇ ਬਲੈਕਬੋਰਡ 'ਤੇ ਇੱਕ ਬਿੰਦੂ ਅੰਕਿਤ ਕੀਤਾ। ਫਿਰ ਉਸਨੇ ਵਿਦਿਆਰਥੀਆਂ ਤੋਂ ਪੁੱਛਿਆ ਕਿ ਉਹ ਉਸਦੀ ਬਲੈਕਬੋਰਡ 'ਤੇ ਸਥਿਤੀ ਕਿਸ ਤਰ੍ਹਾਂ ਦੱਸਣਗੇ ? ਇਸ 'ਤੇ ਅਨੋਕ ਉੱਤਰ ਮਿਲੇ (ਚਿੱਤਰ 15.9)।

ਚਿੱਤਰ 15.9

ਕੀ ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਵੀ ਕਥਨ ਬਿੰਦੂ ਦੀ ਸਥਿਤੀ ਨੂੰ ਸਹੀ-ਸਹੀ ਨਿਸ਼ਚਿਤ ਕਰਦਾ ਹੈ? ਨਹੀਂ, ਕੋਈ ਵੀ ਨਹੀਂ। ਕਿਉਂ ? ਇਸਦੇ ਬਾਰੇ ਵਿੱਚ ਸੋਚੋ।

ਤਦ ਜੋਹਨ ਨੇ ਇੱਕ ਸੁਝਾਓ ਦਿੱਤਾ।ਉਸਨੇ ਬਿੰਦੂ ਦੀ ਦੂਰੀ ਬਲੈਕਬੋਰਡ ਦੇ ਖੱਬੇ ਕਿਨਾਰੇ ਤੋਂ ਮਾਪੀ ਅਤੇ ਕਿਹਾ, "ਇਹ ਬਿੰਦੂ ਬਲੈਕਬੋਰਡ ਦੇ ਖੱਬੇ ਕਿਨਾਰੇ ਤੋਂ 90 cm ਦੂਰ ਹੈ।" ਕੀ ਤੁਸੀਂ ਸਮਝਦੇ ਹੋ ਕਿ ਉਸਦਾ ਸੁਝਾਓ ਬਿਲਕੁੱਲ ਸਹੀ ਹੈ ? (ਚਿੱਤਰ 15.10)

90 cm ਦੂਰ ਹਨ।

ਗਰਾਫ਼ਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ 🔳 251

ਹੋਨ ਦੁਕਾਰਤ (1596 - 1650)

diestoday

ਤਦ ਰੇਖਾ ਨੇ ਕਥਨ ਨੂੰ ਸੁਧਾਰਦੇ ਹੋਏ ਕਿਹਾ, "ਇਹ ਬਿੰਦੂ ਬਲੈਂਕਬੋਰਡ ਦੇ ਖੱਬੇ ਕਿਨਾਰੇ ਤੋਂ 90 cm ਅਤੇ ਹੇਠਲੇ ਕਿਨਾਰੇ ਤੋਂ 160 cm ਦੂਰੀ 'ਤੇ ਸਥਿਤ ਹੈ। ਇਸ ਪ੍ਰਕਾਰ ਸਮੱਸਿਆ ਦਾ ਠੀਕ ਹੱਲ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਨ, (ਚਿੱਤਰ 15.7)। ਤਦ ਅਧਿਆਪਕ ਨੇ ਦੱਸਿਆ, ਅਸੀਂ ਬਿੰਦੂ ਦੀ ਸਥਿਤੀ ਇਸ ਪ੍ਰਕਾਰ (90, 160) ਲਿਖ ਕੇ ਦਰਸਾਉਂਦੇ ਹਾਂ। ਕੀ ਬਿੰਦੂ (160, 90) ਬਿੰਦੂ (90, 160) ਤੋਂ ਵੱਖਰਾ ਹੋਵੇਗਾ ?" ਇਸਦੇ ਬਾਰੇ ਵਿਚਾਰ ਕਰੋ।

ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਸਤਾਰਵੀਂ ਸਦੀ ਵਿੱਚ ਰੇਨੇ ਦਕਾਰਤੇ (Rene Descartes) ਨੇ ਕੀੜੀ ਨੂੰ ਛੱਤ ਦੇ ਕੋਨੇ ਦੇ ਕੋਲ ਚਲਦੇ ਹੋਏ ਦੇਖਿਆ ਅਤੇ ਤਲ 'ਤੇ ਕਿਸੇ ਬਿੰਦੂ ਦੀ ਸਥਿਤੀ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸੰਚਣਾ ਸ਼ੁਰੂ ਕੀਤਾ। ਲੇਟਵੀਂ ਅਤੇ ਖੜ੍ਹਵੀਂ, ਦੋ ਰੇਖਾਵਾਂ ਤੋਂ ਬਿੰਦੂ ਦੀਆਂ ਦੋ ਦੂਰੀਆਂ ਮਾਪ ਕੇ, ਸਥਿਤੀ ਦੱਸਣ ਦੀ ਵਿਧੀ ਨੂੰ, ਉਹਨਾਂ ਦੇ ਸਨਮਾਨ ਵਿੱਚ ਅੱਜ ਕਾਰਟੀਜੀਅਨ ਵਿਧੀ (Cartesian system) ਆਖਦੇ ਹਨ।

ਕਲਪਨਾ ਕਰੋ ਕਿ ਤੁਸੀਂ ਕਿਸੇ ਬਿਏਟਰ ਵਿੱਚ ਜਾਂਦੇ ਹੋ ਅਤੇ ਆਪਣੀ ਰਿਜ਼ਰਵ ਸੀਟ ਲੱਭਦੇ ਹੋ। ਇਸਦੇ ਲਈ ਤੁਹਾਨੂੰ ਦੋ ਸੰਖਿਆਵਾਂ ਚਾਹੀਦੀਆਂ ਹਨ; ਇੱਕ ਲਾਈਨ ਨੰਬਰ ਅਤੇ ਸੀਟ

6

5

4

3

2

1

(3, 4)

4 fearent m

1

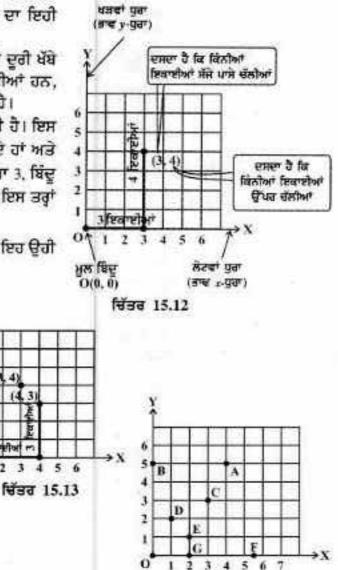
14.31

2 3 4

ਨੰਬਰ। ਕਿਸੇ ਤਲ ਤੋਂ ਬਿੰਦ ਦੀ ਸਥਿਤੀ ਨਿਰਧਾਰਿਤ ਕਰਨ ਦਾ ਇਹੀ ਅਧਾਰ ਹੈ।

ਚਿੱਤਰ 15.12 ਤੇ ਧਿਆਨ ਦਿਓ ਕਿ ਬਿੰਦੂ (3.4) ਜਿਸਦੀ ਦਰੀ ਖੱਬੇ ਕਿਨਾਰੇ ਤੋਂ 3 ਇਕਾਈਆਂ ਅਤੇ ਹੇਠਲੇ ਕਿਨਾਰੇ ਤੋਂ 6 ਇਕਾਈਆਂ ਹਨ. ਵਰਗੀਕਿਤ ਕਾਗਜ਼ 'ਤੇ ਕਿਸ ਪਕਾਰ ਅੰਕਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।

ਗਰਾਫ਼ ਵਾਲਾ ਕਾਗਜ਼ ਵੀ ਇੱਕ ਵਰਗੀਕਿਤ ਕਾਗਜ਼ ਹੀ ਹੈ। ਇਸ 'ਤੇ ਅਸੀਂ x-ਧਰਾ ਅਤੇ y-ਧਰਾ ਸੁਵਿਧਾ ਦੇ ਅਨੁਸਾਰ ਦਰਸਾਉਂਦੇ ਹਾਂ ਅਤੇ ਫਿਰ ਉਸ ਤੇ ਬਿੰਦ ਦੀ ਸਥਿਤੀ ਨਿਰਧਾਰਿਤ ਕਰਦੇ ਹਾਂ। ਸੰਖਿਆ 3. ਬਿੰਦ ਦਾ x-ਨਿਰਦੇਸ਼ ਔਕ ਅਤੇ 4, y-ਨਿਰਦੇਸ਼ ਔਕ ਅਖਵਾਉਂਦਾ ਹੈ। ਇਸ ਤਰਾਂ ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ (3, 4) ਬਿੰਦ ਦੇ ਨਿਰਦੇਸ਼ ਅੰਕ ਹਨ।


ਉਦਾਹਰਣ 3 : ਇੱਕ ਗਰਾਫ਼ 'ਤੇ ਬਿੰਦੂ (4, 3) ਅੰਕਿਤ ਕਰੋ। ਕੀ ਇਹ ਉਹੀ ਬਿੰਦ ਹੈ ਜੋ (3, 4) ਦਰਸਾਉਂਦਾ ਹੈ ?

ਹੱਲ : ਵਰਗੀਕਿਤ ਕਾਗਜ਼ 'ਤੇ x-ਧਰਾ ਅਤੇ y-ਧਰਾ ਨਿਰਧਾਰਿਤ ਕਰੋ। (ਇਹ ਅਸਲ ਵਿੱਚ ਸੰਖਿਆ ਰੇਖਾਵਾਂ ਹੀ ਹਨ) ਮੁਲ ਬਿੰਦੂ (0, 0) ਤੋਂ ਸ਼ੁਰੂ ਕਰੋ। 4 ਇਕਾਈਆਂ ਸੱਜੇ ਪਾਸੇ ਜਾ ਕੇ ਫਿਰ 3 ਇਕਾਈਆਂ ਉੱਪਰ ਦੇ ਵੱਲ ਚਲੋ ਤਾਂ ਤਹਾਨੂੰ ਬਿੰਦ (4,3) ਪ੍ਰਾਪਤ ਹੰਦਾ ਹੈ। ਚਿੱਤਰ 15.13 ਦੇਖ ਕੇ ਤਸੀਂ ਸਮਝ ਸਕਦੇ ਹੋ ਕਿ ਬਿੰਦੂ (4,3) ਅਤੇ ਬਿੰਦੂ (3,4) ਵੱਖ-ਵੱਖ ਬਿੰਦੂ 170

ਉਦਾਹਰਣ 4 : ਚਿੱਤਰ 15.14 ਦੇਖ ਕੇ ਹੇਠਾਂ ਦਿੱਤੇ ਬਿੰਦੂਆਂ ਦੀ ਸਥਿਤੀ ਲਈ ਸਹੀ ਅੱਖਰ ਚੁਣੋ :

(i) (2, 1) (ii)(0, 5) (iii) (2, 0) ਅਤੇ ਲਿਖੋ

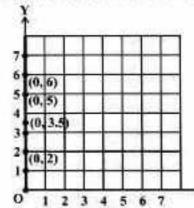
- (iv) ਬਿੰਦੂ A ਦੇ ਨਿਰਦੇਸ਼ ਅੰਕ
- (v) ਬਿੰਦ F ਦੇ ਨਿਰਦੇਸ਼ ਅੰਕ

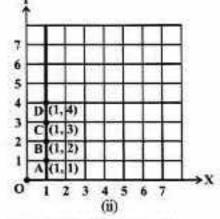
ਚਿੱਤਰ 15.14

www.studiestoday.com

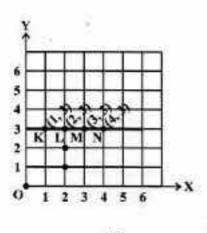
252 🔳 ਗਣਿਤ

ਹੱਲ :


- (i) (2, 1) ਹੈ ਬਿੰਦੂ E (D ਨਹੀਂ, ਸੋਚੋ)।
- (ii) (0, 5) ਹੈ ਬਿੰਦੂ B (ਕਿਉਂ ? ਮਿੱਤਰਾਂ ਦੇ ਨਾਲ ਚਰਚਾ ਕਰੋ)।
- (iii) (2,0) ਹੈ ਬਿੰਦੂ G |
- (iv) ਬਿੰਦੂ A ਦੇ ਨਿਰਦੇਸ਼ ਅੰਕ ਹਨ (4,5)।
- (v) ਬਿੰਦ F ਦੇ ਨਿਰਦੇਸ਼ ਔਕ ਹਨ (5.5, 0) |


ਉਦਾਹਰਣ 5 : ਹੇਠ ਲਿਖੇ ਬਿੰਦੂਆਂ ਨੂੰ ਵਰਗੀਕ੍ਰਿਤ ਕਾਗਜ਼ 'ਤੇ ਅੰਕਿਤ ਕਰੋ ਅਤੇ ਦੇਖੋ ਕਿ ਕੀ ਉਹ ਸਾਰੇ ਇੱਕ ਹੀ ਸਰਲ ਰੇਖਾ ਵਿੱਚ ਹਨ। ਜੋ ਹਨ ਤਾਂ ਉਸ ਰੇਖਾ ਨੂੰ ਨਾਂ ਦਿਓ।

(i) (0, 2), (0, 5), (0, 6), (0, 3.5)

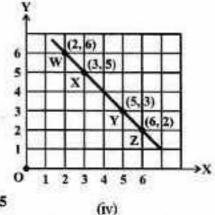

(iii) K(1, 3), L(2, 3), M(3, 3), N(4, 3) (iv) W(2, 6), X(3, 5), Y(5, 3), Z(6, 2) ਹੱਲ :

- (ii) A(1, 1), B(1, 2), C(1, 3), D(1, 4)

ਇਹ ਸਾਰੇ ਬਿੰਦ ਇੱਕ ਹੀ ਰੇਖਾ 'ਤੋਂ ਹਨ। ਉਹ ਹੈ y-ਧੁਰਾ

(iii)

ਚਿੱਤਰ 15.15


ਇਹ ਸਾਰੋ ਬਿੰਦੂ ਇੱਕ ਹੀ ਰੇਖਾ 'ਤੇ ਹਨ। ਅਸੀਂ ਇਸ ਨੂੰ XY ਜਾਂ WY ਜਾਂ YZ ਆਦਿ ਨਾਂ ਦੇ ਸਕਦੇ ਹਾਂ।

ਇਸ ਸਾਰੇ ਬਿੰਦੂ ਇੱਕ ਹੀ ਰੇਖਾ 'ਤੇ ਹਨ। ਇਸ ਨੂੰ ਅਸੀਂ KL ਜਾਂ KM ਜਾਂ MN ਆਦਿ ਨਾਮ ਦੇ ਸਕਦੇ ਹਾਂ। ਇਹ .c-ਧੁਰੇ ਦੇ ਸਮਾਂਤਰ ਹੈ।

ਧਿਆਨ ਦਿਓ ਕਿ ਉੱਪਰ ਦਿੱਤੇ ਗਏ ਹਰੇਕ ਉਦਾਹਰਣ ਵਿੱਚ ਅੰਕਿਤ ਬਿੰਦੂਆਂ ਨੂੰ ਮਿਲਾਉਣ ਤੇ ਪ੍ਰਾਪਤ ਗਰਾਫ਼ ਇੱਕ ਸਰਲ ਰੇਖਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੇ ਗਰਾਡਾਂ ਨੂੰ ਰੇਖੀ ਗਰਾਫ਼ ਕਹਿੰਦੇ ਹਨ।

Downloaded from https:// www.studiestoday.com

ਇਥੇ ਸਾਰੇ ਬਿੰਦੂ ਇੱਕ ਹੀ ਰੇਖਾ 'ਤੇ ਹਨ। ਇਹ ਹੈ ਰੇਖਾ AD (ਤੁਸੀਂ ਇਸ ਨੂੰ ਕੋਈ ਹੋਰ ਨਾਂ ਵੀ ਦੇ ਸਕਦੇ ਹੈ।) ਇਹ y-ਪੂਰੇ ਦੇ ਸਮਾਂਤਰ ਹੈ।)

ਗਰਾਫ਼ਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ 🔳 253

ਅਭਿਆਸ 15.2

Downloaded from

- ਹੇਠ ਦਿੱਤੇ ਬਿੰਦੂਆਂ ਨੂੰ ਇੱਕ ਵਰਗੀਕ੍ਰਿਤ ਕਾਗਜ਼ (Graph Sheet) 'ਤੇ ਐਕਿਤ ਕਰੋ ਅਤੇ ਜਾਂਚੇ ਕਿ ਕੀ ਇਹ ਸਾਰੇ ਇੱਕ ਸਰਲ ਰੇਖਾ 'ਤੇ ਸਥਿਤ ਹਨ ?
 - (a) A(4, 0), B(4, 2), C(4, 6), D(4, 2.5)
 - (b) P(1, 1), Q(2, 2), R(3, 3), S(4, 4)
 - (c) K(2, 3), L(5, 3), M(5, 5), N(2, 5)
- ਬਿੰਦੂਆਂ (2,3) ਅਤੇ (3,2) ਵਿੱਚੋਂ ਲੰਘਦੀ ਹੋਈ ਇੱਕ ਸਰਲ ਰੇਖਾ ਬਿੱਚੋ। ਉਹਨਾਂ ਬਿੰਦੂਆਂ ਦੇ ਨਿਰਦੇਸ਼ ਔਕ ਲਿਖੇ ਜਿਹਨਾਂ 'ਤੇ ਇਹ ਰੇਖਾ x-ਧੁਰੇ ਅਤੇ y-ਧੁਰੇ ਨੂੰ ਕੱਟਦੀ ਹੈ।
- ਗਰਾਫ਼ ਵਿੱਚ ਬਣਾਏ ਗਏ ਚਿੱਤਰਾਂ ਵਿੱਚ ਹਰੇਕ ਦੇ ਸਿਖਰਾਂ ਦੇ ਨਿਰਦੇਸ਼ ਅੰਕ ਲਿਖੋ।
- ਹੇਠ ਲਿਖੇ ਕਥਨਾਂ ਵਿੱਚ ਕਿਹੜੇ ਸੱਚ ਹਨ ਅਤੇ ਕਿਹੜੇ ਝੂਠ ? ਝੂਠ ਨੂੰ ਠੀਕ ਕਰੋ।
 - (i) ਕੋਈ ਬਿੰਦੂ ਜਿਸਦਾ x-ਨਿਰਦੇਸ਼ ਐਕ ਸਿਫ਼ਰ ਹੈ, ਅਤੇ y-ਨਿਰਦੇਸ਼ ਅੰਕ ਸਿਫ਼ਰ ਨਹੀਂ ਹੈ, y-ਧੁਰੇ 'ਤੇ ਸਥਿਤ ਹੁੰਦਾ ਹੈ।
 - (ii) ਕੋਈ ਬਿੰਦੂ ਜਿਸਦਾ y-ਨਿਰਦੇਸ਼ ਅੰਕ ਸਿਫ਼ਰ ਹੈ, ਅਤੇ x-ਨਿਰਦੇਸ਼ ਅੰਕ 5 ਹੈ, y-ਧੁਰੇ 'ਤੇ ਸਥਿਤ ਹੁੰਦਾ ਹੈ।
 - (iii) ਮੂਲ ਬਿੰਦੂ ਦੇ ਨਿਰਦੇਸ਼ ਔਕ (0, 0) ਹੈ।

8 7 Ł 6 5 R 4 C 3 B P 2 1 3 4 5 6 7

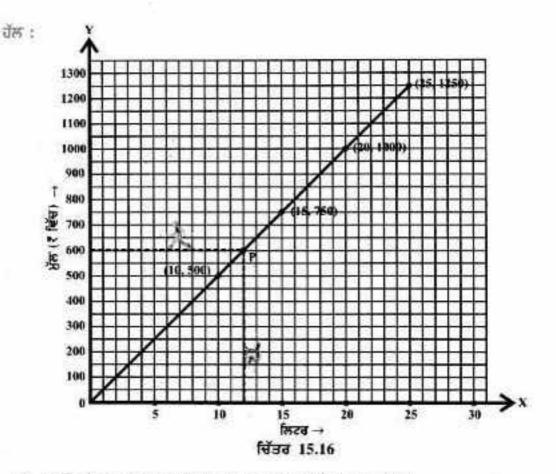
15.3 ਕੁਝ ਪ੍ਰਯੋਗ

ਰੋਜ਼ਾਨਾ ਜੀਵਨ ਵਿੱਚ ਤੁਸੀਂ ਦੇਖਿਆ ਹੋਵੇਗਾ ਕਿ ਕਿਸੇ ਵੀ ਸੁਵਿਧਾ ਦੀ ਜਿੰਨੀ ਜ਼ਿਆਦਾ ਵਰਤੋਂ ਤੁਸੀਂ ਕਰਦੇ ਹੋ, ਉਨ੍ਹਾਂ ਹੀ ਜ਼ਿਆਦਾ ਉਸਦੇ ਲਈ ਮੁੱਲ ਦੇਣਾ ਹੁੰਦਾ ਹੈ। ਜੇ ਤੁਸੀਂ ਬਿਜਲੀ ਜ਼ਿਆਦਾ ਖਰਚ ਕਰਦੇ ਹੋ ਤਾਂ ਤੁਹਾਨੂੰ ਬਿੱਲ ਵੀ ਜ਼ਿਆਦਾ ਦੇਣਾ ਪਵੇਗਾ। ਜੇ ਤੁਸੀਂ ਬਿਜਲੀ ਘੱਟ ਖਰਚ ਕਰਦੇ ਹੋ ਤਾਂ ਬਿੱਲ ਵੀ ਘੱਟ ਆਵੇਗਾ। ਇਹ ਇੱਕ ਉਦਾਹਰਣ ਹੈ ਜਿੱਥੇ ਇੱਕ ਰਾਸ਼ੀ ਦੂਸਰੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ। ਬਿਜਲੀ ਦਾ ਬਿੱਲ, ਉਪਯੋਗ ਕੀਤੀ ਗਈ ਬਿਜਲੀ ਦੀ ਮਾਤਰਾ 'ਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਅਸੀਂ ਕਹਿ ਸਕਦੇ ਹਾਂ ਕਿ ਬਿਜਲੀ ਦੀ ਮਾਤਰਾ ਇੱਕ ਮੁਕਤ ਜਾਂ ਸੁਤੰਤਰ ਚਲ ਹੈ ਜਦੋਂ ਕਿ ਬਿਜਲੀ ਦਾ ਬਿੱਲ ਇੱਕ ਨਿਰਭਰ ਚਲ ਹੈ। ਇਹਨਾਂ ਰਾਸ਼ੀਆਂ ਦੇ ਸੰਬੰਧ ਨੂੰ ਅਸੀਂ ਗਰਾਫ਼ ਦੁਆਰਾ ਵੀ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ।

ਸ਼ੋਚੋ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ

ਇੱਕ ਕਾਰ ਦੀ ਪੈਟਰੋਲ ਟੈਂਕੀ ਨੂੰ ਭਰਨ ਦੇ ਲਈ ਦਿੱਤੀ ਗਈ ਰਾਸ਼ੀ ਖਰੀਦੇ ਗਏ ਪੈਟਰੋਲ ਦੀ ਮਾਤਰਾ (ਲਿਟਰ ਵਿੱਚ) ਦੁਆਰਾ ਨਿਸ਼ਚਿਤ ਹੁੰਦੀ ਹੈ। ਇੱਥੇ ਕਿਹੜਾ ਚਲ ਸੁਤੰਤਰ ਹੈ? ਚਰਚਾ ਕਰੋ?

8


9 10

ਉਦਾਹਰਣ 6 : (ਮਾਤਰਾ ਅਤੇ ਮੁੱਲ) ਹੇਠ ਦਿੱਤੀ ਸਾਰਣੀ ਪੈਟਰੋਲ ਦੀ ਮਾਤਰਾ ਅਤੇ ਉਸਦੇ ਮੁੱਲ ਦੱਸਦੀ ਹੈ:

ਪੈਟਰੋਲ ਦੀ ਮਾਤਰਾ (ਲਿਟਰ ਵਿੱਚ)	10	15	20	25
ਪੈਟਰੋਲ ਦਾ ਮੁੱਲ (ਰੁਪਏ ਵਿੱਚ)	500	750	1000	1250

ਇਹਨਾਂ ਅੰਕੜਿਆਂ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਗੁਰਾਫ਼ ਬਣਾਉ।

254 🏢 ਗਣਿਤ

- (i) ਆਉ, ਦੋਨਾਂ ਧੁਰਿਆਂ ਲਈ (ਚਿੱਤਰ 15.16) ਸਹੀ ਪੈਮਾਨਾ ਚੁਣੀਏ।
- (ii) ਲੇਟਵੇਂ ਧੁਰੇ 'ਤੇ ਪੈਟਰੋਲ ਦੀ ਮਾਤਰਾ ਦਰਸਾਉਂਦੇ ਹਾਂ।
- (iii) ਖੜ੍ਹਵੇਂ ਧੁਰੇ 'ਤੇ ਮੁੱਲ ਦਰਸਾਉਂਦੇ ਹਾਂ।
- (iv) (10, 500), (15, 750), (20, 1000) ਅਤੇ (25, 1250) ਬਿੰਦੂਆਂ ਨੂੰ ਅੰਕਿਤ ਕਰੋ।
- (v) ਬਿੰਦੂਆਂ ਨੂੰ ਮਿਲਾਉ।

ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਗਰਾਫ਼ ਇੱਕ ਸਰਲ ਰੇਖਾ ਹੈ।(ਇਹ ਇੱਕ ਰੇਖੀ ਗਰਾਫ਼ ਹੈ) ਇਹ ਗਰਾਫ਼ ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਕਿਉਂ ਲੰਘਦਾ ਹੈ? ਇਸਦੇ ਬਾਰੇ ਵਿੱਚ ਸੋਚੋ।

ਇਹ ਗਰਾਫ਼ ਸਾਡੇ ਕੁੱਝ ਤੱਥਾਂ 'ਤੇ ਅਨੁਮਾਨ ਲਗਾਉਣ ਵਿੱਚ ਸਹਾਇਕ ਹੋ ਸਕਦੇ ਹਨ। ਮੰਨ ਲਵੋ, ਅਸੀਂ ਜਾਨਣਾ ਚਾਹੁੰਦੇ ਹਾਂ ਕਿ 12 ਲਿਟਰ ਪੈਟਰੋਲ ਦੇ ਲਈ ਕਿੰਨਾ ਮੁੱਲ ਦੇਣਾ ਹੋਵੇਗਾ ?

ਲੇਟਵੇਂ ਧੁਰੇ 'ਤੇ 12 ਦੀ ਸਥਿਤੀ ਦੇਖੋ। 12 ਦੇ ਚਿੰਨ੍ਹ 'ਤੇ ਖੜ੍ਹਵੀਂ ਰੇਖਾ ਦੇ ਅਨੁਸਾਰ ਚਲ ਕੇ ਗਰਾਫ਼ ਨੂੰ ਬਿੰਦੂ P 'ਤੇ ਮਿਲਦੇ ਹਾਂ।

ਬਿੰਦੂ P ਤੋਂ ਲੇਟਵੀਂ ਰੇਖਾ ਦੇ ਅਨੁਸਾਰ ਚਲ ਕੇ ਖੜ੍ਹਵੇਂ ਧੁਰੇ 'ਤੇ ਪਹੁੰਚਦੇ ਹਾਂ ਜਿੱਥੇ ਸਾਨੂੰ ਉਹ ਬਿੰਦੂ ਮਿਲਦਾ ਹੈ, ਜੋ ₹ 600 ਉੱਤਰ ਦਰਸਾਉਂਦਾ ਹੈ।

ਇਹ ਗਰਾਫ਼ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸਥਿਤੀ ਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਦੋ ਰਾਸ਼ੀਆਂ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹਨ। ਕਿਵੇਂ ? ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ, ਗਰਾਫ਼ ਹਮੇਸ਼ਾਂ ਰੇਖੀ ਹੀ ਹੁੰਦੇ ਹਨ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਉੱਪਰ ਦਿੱਤੀ ਉਦਾਹਰਣ ਵਿੱਚ, ਗਰਾਫ਼ ਤੋਂ ਪਤਾ ਕਰੋ ਕਿ ₹ 800 ਵਿੱਚ ਕਿੰਨਾ ਪੈਟਰੋਲ ਖਰੀਦਿਆ ਜਾ ਸਕਦਾ ਹੈ ?

ਗਰਾਫ਼ਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ 🔳 255

ਉਦਾਹਰਣ 7 : (ਮੁਲਧਨ ਅਤੇ ਸਧਾਰਨ ਵਿਆਜ)

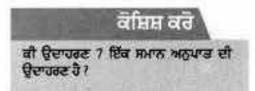
ਇੱਕ ਬੈਂਕ ਸੀਨੀਅਰ ਸਿਟੀਜ਼ਨ ਨੂੰ ਉਹਨਾਂ ਦੇ ਜਮ੍ਹਾਂ ਧਨ 'ਤੇ 10% ਸਧਾਰਨ ਵਿਆਜ ਦਿੰਦਾ ਹੈ।ਜਮ੍ਹਾਂ ਧਨ ਅਤੇ ਉਸ 'ਤੇ ਬਣੇ ਸਧਾਰਨ ਵਿਆਜ ਦੇ ਸੰਬੰਧ ਨੂੰ ਦਰਸਾਉਣ ਦੇ ਲਈ ਇੱਕ ਗਰਾਫ਼ ਖਿੱਚੋ।ਇਹ ਗਰਾਫ਼ ਤੋਂ ਹੇਠਾਂ ਲਿਖੇ ਪਤਾ ਕਰੋ :

- (a) ₹ 250 ਜਮ੍ਹਾਂ ਕਰਨ 'ਤੇ ਪ੍ਰਾਪਤ ਵਿਆਜ।
- (b) ₹ 70 ਵਿਆਜ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਕਿੰਨਾ ਧਨ ਜਮ੍ਹਾਂ ਕਰਨਾ ਪਵੇਗਾ ?

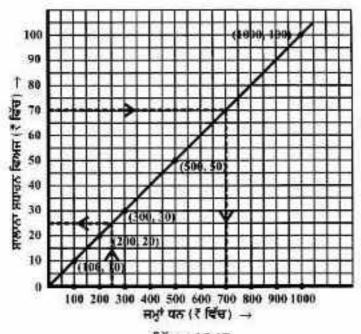
नभुगं परः	1 ਸਾਲ ਦੇ ਲਈ ਸਧਾਰਨ ਵਿਆਸ
₹ 100	$\frac{100 \times 1 \times 10}{100} = ₹ 10$
₹ 200	$\frac{200 \times 1 \times 10}{100} = ₹ 20$
₹ 300	$\frac{300 \times 1 \times 10}{100} = ₹ 30$
₹ 500	$\frac{500 \times 1 \times 10}{100} = ₹50$
₹ 1000	₹ 100

ਲੋਡੀਂਦੇ ਪਗ :

- ਐਕਿਤ ਕੀਤੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਰਾਸ਼ੀਆਂ, ਜਮ੍ਹਾਂ ਧਨ ਅਤੇ ਉਸ 'ਤੇ ਬਣਿਆ ਵਿਆਜ ਪਤਾ ਕਰੋ।
- x-ਪੁਰੇ ਅਤੇ y-ਪੁਰੇ 'ਤੇ ਦਰਸਾਈਆਂ ਜਾਣ ਵਾਲੀਆਂ ਰਾਸ਼ੀਆਂ ਨਿਰਧਾਰਿਤ ਕਰੋ।
- ਉੱਚਿਤ ਪੈਮਾਨੇ ਚੁਣੋ।
- 4. ਬਿੰਦੂ ਅੰਕਿਤ ਕਰੋ।
- 5. ਬਿੰਦੂਆਂ ਨੂੰ ਮਿਲਾਓ।


ਇਹਨਾਂ ਰਾਸ਼ੀਆਂ ਤੋਂ ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ।

सभुगे यत (१ दिंच)	100	200	300	500	1000
ਸਾਲਾਨਾ ਸਧਾਰਨ ਵਿਆਜ (ਵ ਵਿੱਚ)	10	20	30	50	100


(i) ਪੈਮਾਨਾ : ਲੇਟਵੇਂ ਧੁਰੇ `ਤੇ । ਇਕਾਈ = ₹ 100 ਖੜ੍ਹਵੇਂ ਧੁਰੇ `ਤੇ 1 ਇਕਾਈ = ₹ 10

(ii) ਜਮ੍ਹਾਂ ਧਨ ਨੂੰ ਲੇਟਵੇਂ ਧੁਰੇ 'ਤੋ ਦਰਸਾਉਂਦੇ ਹਾਂ।

- (iii) ਸਧਾਰਨ ਵਿਆਜ ਨੂੰ ਖੜ੍ਹਵੇਂ ਧੁਰੇ 'ਤੇ ਦਰਸਾਉਂਦੇ ਹਾਂ।
- (iv) (100, 10), (200, 20), (300, 30), (500, 50) ਅਤੇ (1000, 100) ਬਿੰਦੂਆਂ ਨੂੰ ਅੰਕਿਤ ਕਰੋ।
- (v) ਬਿੰਦੂਆਂ ਨੂੰ ਮਿਲਾਉ। ਸਾਨੂੰ ਗਰਾਫ਼ ਵਿੱਚ ਇੱਕ ਸਰਲ ਰੇਖਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ, (ਚਿੱਤਰ 15.17)।
 - (a) ਲੋਟਵੇਂ ਧੁਰੇ 'ਤੇ ₹ 250 ਮੂਲਧਨ ਦੇ ਲਈ ਖੜ੍ਹਵੇਂ ਧੁਰੇ 'ਤੇ ₹ 25 ਸਧਾਰਨ ਵਿਆਜ ਹੈ।
 - (b) ਖੜ੍ਹਵੇਂ ਧੁਰੇ 'ਤੇ ₹ 70 ਵਿਆਜ ਦੇ ਲਈ ਲੋਟਵੇਂ ਧੁਰੇ 'ਤੇ ₹ 700 ਮੁਲਧਨ ਹੈ।

256 🔳 ਗਣਿਤ

ਉਦਾਹਰਣ 8 : (ਸਮੇਂ ਅਤੇ ਦੂਰੀ) ਅਜੀਤ ਲਗਾਤਾਰ 30 km/hour ਦੀ ਗਤੀ ਨਾਲ ਸਕੂਟਰ ਚਲਾਉਂਦਾ ਹੈ। ਇਸ ਸਥਿਤੀ ਦੇ ਲਈ ਸਮੇਂ-ਦੂਰੀ ਦੇ ਵਿੱਚ ਇੱਕ ਗਰਾਫ਼ ਖਿੱਚੋ। ਇਸ ਗਰਾਫ਼ ਤੋਂ ਪਤਾ ਕਰੋ :

(i) ਅਜੀਤ ਨੂੰ 75 km ਦੂਰੀ ਤੈਅ ਕਰਨ ਵਿੱਚ ਲੱਗਣ ਵਾਲਾ ਸਮਾਂ।

(ii) ਅਜੀਤ ਵਲੋਂ 3¹/₂ ਘੰਟੇ ਵਿੱਚ ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ

ਹੱਲ :

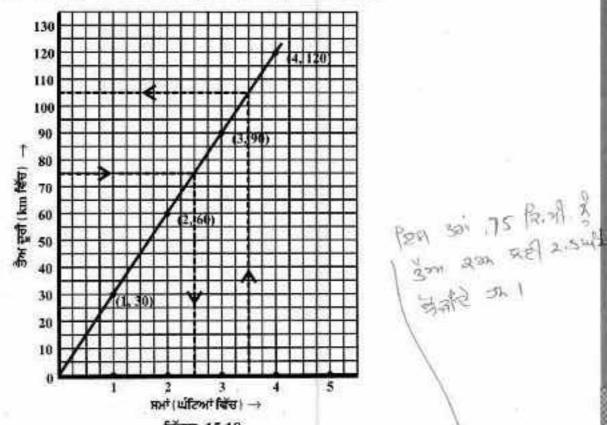
ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰ
30 km
$2 \times 30 = 60 \text{ km}$
$3 \times 30 = 90 \text{ km}$
$4 \times 30 = 120 \text{ km}$

ਇਹਨਾਂ ਰਾਸ਼ੀਆਂ ਤੋਂ ਹੇਠ ਲਿਖੀ ਸਾਰਣੀ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ:

ਸਮਾਂ (ਘੰਟਿਆਂ ਵਿੱਚ)	1	2	3	4
ਤੈਅ ਕੀਤੀ ਗਈ ਦੂਰੀ (km ਵਿੱਚ)	30	60	90	120

ਪੈਮਾਨਾ : ਲੇਟਵੇਂ ਧੁਰੇ 'ਤੇ 2 ਇਕਾਈਆਂ = 1 ਘੰਟਾ

ਖੜ੍ਹਵੇਂ ਧੁਰੇ 'ਤੇ l ਇਕਾਈ = 10 km


(ii) ਲੇਟਵੇਂ ਧੁਰੇ 'ਤੇ ਸਮਾਂ ਦਰਸਾਉਂਦੇ ਹਨ।

(iii) ਖੜ੍ਹਵੇਂ ਧੁਰੇ 'ਤੇ ਦੂਰੀ ਦਰਸਾਉਂਦੇ ਹਨ।

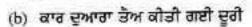
(iv) (1, 30), (2, 60), (3, 90) ਅਤੇ (4, 120) ਬਿੰਦੂਆਂ ਨੂੰ ਅੰਕਿਤ ਕਰੋ।

ਗਰਾਫ਼ਾਂ ਬਾਰੇ ਜਾਣਕਾਰੀ 🔳 257

tudiestoday.com

(v) ਬਿੰਦੂਆਂ ਨੂੰ ਮਿਲਾਉ। ਸਾਨੂੰ ਇੱਕ ਰੇਖੀ ਗਰਾਫ਼ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ; (ਚਿੱਤਰ 15.18)।

Downloaded fr


(a) ਖੜ੍ਹਵੇਂ ਧੁਰੇ 'ਤੇ 75 km ਦੂਰੀ ਲੈਣ 'ਤੇ, ਉਸਦੇ ਅਨੁਸਾਰੀ ਲੋਟਵੇਂ ਧੁਰੇ 'ਤੇ 2.5 ਘੰਟੇ ਲੱਗਦੇ ਹਨ।

(b) ਲੋਟਵੇਂ ਧੁਰੇ 'ਤੇ 3¹/₂ ਘੰਟੇ ਦੇ ਅਨੁਸਾਰੀ ਖੜ੍ਹਵੇਂ ਧੂਰੇ 'ਤੇ ਦੂਰੀ 105 km ਮਿਲਦੀ ਹੈ।

শরিপাস 15.3

- ਢੁੱਕਵੇ ਪੈਮਾਨੇ ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹੋਏ, ਹੇਠਾਂ ਲਿਖੀਆਂ ਸਾਰਣੀਆਂ ਵਿੱਚ ਦਿੱਤੀਆਂ ਗਈਆਂ ਰਾਸ਼ੀਆਂ ਦੇ ਲਈ ਗਰਾਫ਼ ਬਣਾਉ :
 - (a) ਸੇਬਾਂ ਦਾ ਮੁੱਲ

ਸ਼ੇਬਾਂ ਦੀ ਸੰਖਿਆ	1	2	3	4	5
ਮ্র্রস (१ ਵਿੱਚ)	5	10	15	20	25

ਸਮਾਂ (ਘੱਟਿਆਂ ਵਿੱਚ)	6 ਵਜੋ ਸਵੇਰ	7 ਵਜੇ ਸਵੇਰ	8 ਵਜੇ ਸਵੇਰ	9 ਵਜੋਂ ਸਵੇਰ
ਦੂਰੀ (km ਵਿੱਚ)	40	80	120	160

258 🏼 ਗਣਿਤ

- (i) 7.30 ਵਜੇ ਸਵੇਰ ਅਤੇ 8 ਵਜੇ ਸਵੇਰ ਦੇ ਅੰਤਰਾਲ ਵਿੱਚ ਕਾਰ ਦੁਆਰਾ ਕਿੰਨੀ ਦੂਰੀ ਤੈਅ ਕੀਤੀ ਗਈ?
- (ii) ਕਾਰ ਦੀ 100 km ਦੂਰੀ ਤੈਅ ਕਰ ਲੈਣ 'ਤੇ ਸਮਾਂ ਕੀ ਸੀ?
- (c) ਜਮ੍ਹਾਂ ਧਨ 'ਤੇ ਸਾਲਾਨਾ ਵਿਆਜ

सभुगं पਨ (₹ ਵਿੱਚ)	1000	2000	3000	4000	5000
ਸਧਾਰਨ ਵਿਆਜ (ਵ ਵਿੱਚ)	80	160	240	320	400

- (i) ਕੀ ਗਰਾਫ਼ ਮੂਲ ਬਿੰਦੂ ਤੋਂ ਲੰਘਦਾ ਹੈ?
- (ii) ਗਰਾਫ਼ ਤੋਂ ₹ 2500 ਦਾ ਸਾਲਾਨਾ ਵਿਆਜ ਪਤਾ ਕਰੇ।
- (iii) ₹ 280 ਵਿਆਜ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਲਈ ਕਿੰਨਾ ਧਨ ਜਮ੍ਹਾਂ ਕਰਨਾ ਹੋਵੇਗਾ ?
- ਸਾਰਣੀਆਂ ਦੇ ਲਈ ਗਰਾਫ਼ ਖਿੱਚੇ।

i) [ਵਰਗ ਦੀ ਭੂਜਾ (cm ਵਿੱਚ)	2	3	3.5	5	6
Ī	ਪਰਿਮਾਪ (cm ਵਿੱਚ)	8	12	14	20	24

ਕੀ ਇਹ ਰੱਖੀ ਗਰਾਫ਼ ਹੈ?

(ii)	ਵਰਗ ਦੀ ਭੂਜਾ (cm ਵਿੱਚ)	2	3	4	5	6
Ì	ਖੇਤਰਫਲ (cm² ਵਿੱਚ)	4	9	16	25	36

ਕੀ ਇਹ ਰੇਖੀ ਗਰਾਫ਼ ਹੈ?

ਅਸੀਂ ਕੀ ਚਰਚਾ ਕੀਤੀ ?

- ਗਰਾਫ਼ ਚਿੱਤਰ ਸਮਝਣਾ ਸੌਖਾ ਹੁੰਦਾ ਹੈ।
- (i) ਬਾਰ ਗਰਾਫ਼ ਵੱਖ-ਵੱਖ ਸ਼੍ਰੇਣੀਆਂ ਦੀ ਤੁਲਨਾ ਕਰਨ ਦੇ ਲਈ ਢੁੱਕਵਾਂ ਹੁੰਦਾ ਹੈ ?
 (ii) ਚੱਕਰ ਗਰਾਫ਼ ਇੱਕ ਸੰਪੂਰਨ ਦੇ ਵੱਖ-ਵੱਖ ਭਾਗਾਂ ਦੀ ਤੁਲਨਾ ਕਰਨ ਦੇ ਲਈ ਢੁੱਕਵਾਂ ਹੁੰਦਾ ਹੈ।
 (iii) ਆਇਤ ਚਿੱਤਰ ਲਗਾਤਾਰ ਅੰਤਰਾਲ ਵਾਲੇ ਅੰਕੜਿਆਂ ਦੇ ਲਈ ਬਾਰ-ਗਰਾਫ਼ ਹੈ।
- ਰੇਖਾ-ਗਰਾਫ਼, ਸਮੇਂ ਦੇ ਅੰਤਰਾਲਾਂ ਦੇ ਨਾਲ ਅੰਕੜਿਆਂ ਵਿੱਚ ਬਦਲਾਓ ਦਰਸਾਉਂਦਾ ਹੈ।
- ਰੇਖਾ-ਗਰਾਫ਼ ਜੋ ਕਿ ਇੱਕ ਪੂਰਨ ਅਖੰਡਿਤ (ਨਾ ਟੁੱਟੀ) ਰੇਖਾ ਹੋਵੇ, ਇੱਕ ਰੇਖੀ ਗਰਾਫ਼ ਕਹਿਲਾਉਂਦਾ ਹੈ।
- 5. ਵਰਗੀਕ੍ਰਿਤ ਕਾਗਜ਼ 'ਤੇ ਕਿਸੇ ਬਿੰਦੂ ਦੀ ਸਥਿਤੀ ਨਿਰਧਾਰਿਤ ਕਰਨ ਦੇ ਲਈ ਸਾਨੂੰ x-ਨਿਰਦੇਸ਼ ਅੰਕ ਅਤੇ y-ਨਿਰਦੇਸ਼ ਅੰਕ ਚਾਹੀਦੇ ਹਨ।
- ਇੱਕ ਸੁਤੰਤਰ ਚਲ ਅਤੇ ਨਿਰਭਰ ਚਲ ਵਿੱਚ ਸੰਬੰਧ ਇੱਕ ਗਰਾਫ਼ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

diestoday

ਅਧਿਆਇ

ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਖੇਡਣਾ

16.1 ghar

ਤਸੀਂ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ, ਜਿਵੇਂ ਕਿ ਪਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ, ਪੂਰਨ ਸੰਖਿਆਵਾਂ, ਸੰਪਰਨ ਸੰਖਿਆਵਾਂ ਅਤੇ ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਅਧਿਐਨ ਕਰ ਚੁੱਕੇ ਹੈ। ਤਸੀਂ ਇਹਨਾਂ ਦੇ ਅਨੇਕ ਰੋਚਕ ਗਣਾਂ ਦਾ ਵੀ ਅਧਿਐਨ ਕਰ ਚੱਕੇ ਹੋ। ਜਮਾਤ VI ਵਿੱਚ, ਅਸੀਂ ਗਣਨਖੰਡਾਂ ਅਤੇ ਗਣਜਾਂ ਨੂੰ ਪਤਾ ਕਰਨ ਦੀ ਖੋਜ ਕੀਤੀ ਅਤੇ ਇਹ ਵੀ ਦੇਖਿਆ ਕਿ ਇਹਨਾਂ ਦੇ ਵਿੱਚ ਕੀ ਸੰਬੰਧ ਪਤਾ ਕੀਤੇ ਜਾ ਸਕਦੇ ਹਨ। ਇਸ ਅਧਿਆਇ ਵਿੱਚ, ਅਸੀਂ ਸੰਖਿਆਵਾਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਹੋਰ ਜ਼ਿਆਦਾ ਵਿਸਥਾਰ ਨਾਲ ਜਾਣਕਾਰੀ ਪਾਪਤ ਕਰਾਂਗੇ। ਇਹ ਸੰਕਲਪ ਵੰਡਣ ਦੇ ਨਿਯਮਾਂ ਦੀ ਜਾਂਚ (test of divisibility) ਦੀ ਜ਼ਰਰਤ ਨੇ ਸਮਝਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰਨਗੇ।

16.2 ਆਮ ਰੂਪ ਵਿੱਚ ਸੰਖਿਆਵਾਂ

ਆਉ ਇੱਕ ਸੰਖਿਆ 52 ਲਵੋ ਅਤੇ ਉਸ ਨੂੰ ਇਸ ਰੂਪ ਵਿੱਚ ਲਿਖੋ :

$$52 = 50 + 2 = 10 \times 5 + 2$$

ਇਸੇ ਤਰ੍ਹਾਂ, ਸੰਖਿਆ 37 ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ :

 $37 = 10 \times 3 + 7$

ਵਿਆਪਕ ਰੂਪ ਵਿੱਚ, ਅੰਕਾਂ a ਅਤੇ b ਨਾਲ ਬਣੀ ਕਿਸੇ ਦੋ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ab ਨੂੰ ਇਸ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ : $ab = 10 \times a + b = 10a + b$ ਇੱਥੇ ab ਦਾ ਮਤਲਬ ba ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੀ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ? ba = 10 × b + a = 10b + a

ਆਉ, ਹੁਣ ਸੰਖਿਆ 351 ਲੈ ਲਵੋ। ਇਹ ਇੱਕ ਤਿੰਨ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਹੈ abc ਨੂੰ ਇਸ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ :

 $351 = 300 + 50 + 1 = 100 \times 3 + 10 \times 5 + 1 \times 1$ $497 = 100 \times 4 + 10 \times 9 + 1 \times 7$ ਵਿਆਪਕ ਰੂਪ ਵਿੱਚ, ਐਕਾਂ a, b ਅਤੇ c ਨਾਲ ਬਣੀ ਕਿਸੇ ਤਿੰਨ ਅੰਕਾਂ ਦੀ ਸੱਖਿਆ abc ਨੂੰ ਇਸ ਰੂਪ

ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ :

 $abc = 100 \times a + 10 \times b + 1 \times c$ = 100a + 10b + ccab = 100c + 10a + bbca = 100b + 10c + a

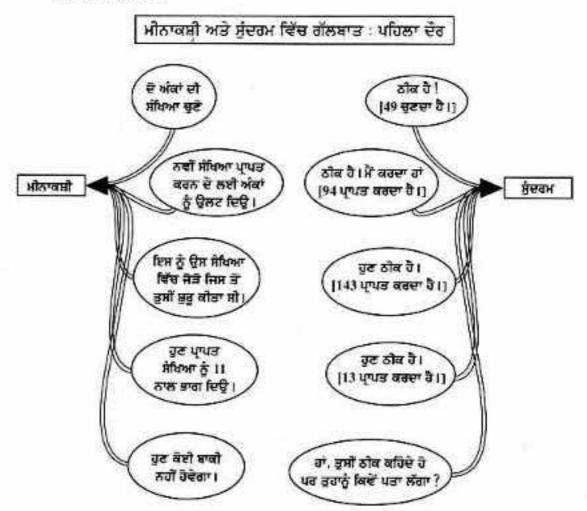
ਆਦਿ।

axb ठरों रे।

ਇਸ ਤਰ੍ਹਾਂ,

ਇਸ ਤਰਾਂ.

260 🔳 ਗਣਿਤ



	1	র্মিয়া বর্ত	(
1.	ਹੇਠ ਲਿਖੀਆਂ ਸੰਖਿਆ	ਵਾਂ ਨੂੰ ਵਿਆਪਕ ਰੂਪ	ਵਿੱਚ ਲਿਖੋ :	
	(i) 25	(ii) 73	(iii) 129	(iv) 302
2.	ਹੇਠਾਂ ਲਿਖਿਆਂ ਨੂੰ ਸਧਾ	ਰਨ ਰੂਪ ਵਿੱਚ ਲਿਖੋ		
	(i) 10 × 5 + 6	(ii) 100 × 7 +	$10 \times 1 + 8$ (iii	ii) $100a + 10c + b$

16.3 ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਖੇਡਾਂ

(i) ਅੰਕਾਂ ਨੂੰ ਪਲਟਨਾ-ਦੋ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ

ਮੀਨਾਕਸ਼ੀ ਨੇ ਸੁੰਦਰਮ ਨੂੰ ਕੋਈ ਦੋ ਅੰਕਾਂ ਵਾਲੀ ਸੰਖਿਆ ਸੋਚਣ ਨੂੰ ਕਿਹਾ ਅਤੇ ਇਹ ਵੀ ਕਿਹਾ ਕਿ ਉਹ ਹੁਣ ਜਿਸ ਤਰ੍ਹਾਂ ਕਹਿੰਦੀ ਜਾਵੇ ਉਸ ਤਰ੍ਹਾਂ ਕਰਦਾ ਜਾਵੇ। ਉਹਨਾਂ ਦੀ ਗੱਲਬਾਤ ਨੂੰ ਹੇਠਾਂ ਦਿੱਤੇ ਚਿੱਤਰਾਂ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਅੱਗੇ ਪੜ੍ਹਨ ਤੋਂ ਪਹਿਲਾਂ, ਕ੍ਰਿਪਾ ਕਰਕੇ ਚਿੱਤਰ ਦਾ ਧਿਆਨ ਨਾਲ ਅਧਿਐਨ ਕਰੋ।

ਇੱਥੇ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦਾ ਹੈ ਕਿ ਸੁੰਦਰਮ 49 ਚੁਣਦਾ ਹੈ। ਅੰਕ ਉਲਟਾਉਣ ਤੇ ਉਸ ਨੂੰ ਸੰਖਿਆ 94 ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਫਿਰ ਉਹ ਇਹਨਾਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜ ਕੇ 49 + 94 = 143 ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ।

ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਖੇਡਣਾ 🔳 261

ਅੰਤ ਵਿੱਚ, ਉਸਨੇ ਇਸ ਸੰਖਿਆ ਨੂੰ 11 ਨਾਲ ਭਾਗ ਦੇ ਕੇ 143 ÷ 11 = 13 ਭਾਗਫਲ ਪ੍ਰਾਪਤ ਕੀਤਾ ਅਤੇ ਕੋਈ ਬਾਕੀ ਨਹੀਂ ਰਿਹਾ। ਇਹੀ ਉਹ ਗੱਲ ਹੈ ਜੋ ਮੀਨਾਕਸ਼ੀ ਨੇ ਪਹਿਲਾਂ ਹੀ ਦੱਸੀ ਸੀ (ਭਵਿੱਖਬਾਣੀ ਕੀਤੀ ਸੀ)।

ਕੋਸ਼ਿਸ਼ ਕਰੋ ਪੜਤਾਲ ਕਰੋ ਕਿ ਜੋ ਸ਼ੁੰਦਰਮ ਨੇ ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਚੁਣੀਆਂ ਹੁੰਦੀਆਂ, ਤਾਂ ਕੀ ਨਤੀਜੇ ਮਿਲਦੇ :

1. 27 2. 39 3. 64 4. 17

ਆਉ, ਹੁਣ ਦੇਖੀਏ ਕਿ ਕੀ ਅਸੀਂ ਮੀਨਾਕਸ਼ੀ ਦੀ ਚਤੁਰਾਈ (trick)" ਨੂੰ ਸਪੱਸ਼ਟ ਕਰ ਸਕਦੇ ਹਾਂ।ਮੰਨ ਲਵੇ ਕਿ ਸੁੰਦਰਮ ਸੰਖਿਆ ab ਚੁਣਦਾ ਹੈ, ਜੋ ਦੋ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ 10a + b ਦਾ ਸੰਖੇਪ ਰੂਪ ਹੈ। ਅੰਕਾਂ ਨੂੰ ਪਲਟਨ 'ਤੋ, ਇਹ ਸੰਖਿਆ ba = 10b + a ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਇਹਨਾਂ ਦੋਨਾਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜਨ 'ਤੇ, ਉਸ ਨੂੰ ਮਿਲਦਾ ਹੈ :

$$(10a + b) + (10b + a) = 11a + 11b$$

= 11 (a + b)

ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਜੋੜ ਹਮੇਸ਼ਾਂ 11 ਦਾ ਇੱਕ ਗੁਣਜ (multiple) ਹੈ, ਜਿਵੇਂ ਮੀਨਾਕਸ਼ੀ ਨੇ ਦਾਅਵਾ ਕੀਤਾ ਹੈ। ਧਿਆਨ ਦਿਓ ਕਿ ਜੇਕਰ ਅਸੀਂ ਜੋੜ ਨੂੰ 11 ਨਾਲ ਭਾਗ ਦਈਏ ਤਾਂ ਭਾਗਫਲ (a + b) ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਇਹ ਭਾਗਫਲ ਦੁਣੀ ਹੋਈ ਸੰਖਿਆ ba ਦੇ ਅੰਕਾਂ ਦੇ ਜੋੜ ਦੇ ਬਰਾਬਰ ਹੈ।

ਤੁਸੀਂ ਉਪਰੋਕਤ ਕੀਤੀ ਪੜਤਾਲ ਹੋਰ ਵੀ ਦੋ ਅੰਕਾਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਲੈ ਕੇ ਕਰ ਸਕਦੇ ਹੋ।

ਮੀਨਾਕਸ਼ੀ ਅਤੇ ਸੁੰਦਰਮ ਦੀ ਖੇਡ ਚਾਲੂ ਰਹਿੰਦੀ ਹੈ।

ਮੀਨਾਕਸ਼ੀ	: ਇੱਕ ਹੋਰ ਦੋ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ਦੇ ਬਾਰੇ ਵਿੱਚ ਸੋਚੋ। ਪਰ ਮੈਨੂੰ ਉਹ ਸੰਖਿਆ ਨਹੀਂ ਦੱਸਣੀ।
10 A	

ਸੁੰਦਰਮ	: ਠੀਕ ਹੈ।
ਮੀਨਾਕਸ਼ੀ	: ਹੁਣ ਅੰਕਾਂ ਨੂੰ ਪਲਟੋ ਅਤੇ ਵੱਡੀ ਸੰਖਿਆ ਵਿੱਚ ਛੋਟੀ ਸੰਖਿਆ ਘਟਾਓ।
ਸ਼ੁੰਦਰਮ	: ਮੈਂ ਘਟਾ ਲਈ ਹੈ। ਹੁਣ ਅੱਗੇ ਕੀ ਕਰਨਾ ਹੈ ?
ਮੀਨਾਕਸ਼ੀ	: ਹੁਣ ਆਪਣੇ ਉੱਤਰ ਨੂੰ 9 ਨਾਲ ਭਾਗ ਦੇਵੇ।ਮੋਰਾ ਵਿਸ਼ਵਾਸ ਹੈ ਕਿ ਬਾਕੀ () ਹੋਵੇਗਾ।
ਸੁੰਦਰਮ	: ਹਾਂ, ਤੂੰ ਸਹੀ ਕਹਿ ਰਹੀ ਹੈ। ਅਸਲ ਵਿੱਚ, ਇੱਥੇ ਬਾਕੀ 0 ਹੀ ਹੈ। ਪਰ ਇਸ ਬਾਰੇ ਵਿੱਚ ਮੈਂ ਜਾਣਦਾ ਹਾਂ ਕਿ ਤੂੰ ਇਸ ਬਾਰੇ ਵਿੱਚ ਇੰਨੀ ਨਿਸ਼ਚਿਤ ਕਿਉਂ ਹੈ 7

ਅਸਲ ਵਿੱਚ, ਸੁੰਦਰਮ ਨੇ ਸੰਖਿਆ 29 ਸੋਚੀ ਸੀ। ਇਸਦੇ ਅੰਕਾਂ ਨੂੰ ਪਲਟ ਕੇ ਉਸਨੇ ਸੰਖਿਆ 92 ਪ੍ਰਾਪਤ ਕੀਤੀ। ਫਿਰ ਉਸਨੇ 92 – 29 = 63 ਪ੍ਰਾਪਤ ਕੀਤਾ ਅਤੇ ਅੰਤ ਵਿੱਚ ਉਸਨੇ 63 + 9 ਪਤਾ ਕੀਤਾ, ਜੋ ਭਾਗਫਲ 7 ਦਿੰਦਾ ਹੈ ਅਤੇ ਬਾਕੀ 0 ਹੈ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਪੜਤਾਲ ਕਰੋ ਕਿ ਜੇ ਸੁੰਦਰਮ ਨੇ ਉਪਰੋਕਤ ਦੇ ਲਈ ਹੇਠ ਲਿਖੀਆਂ ਸੱਖਿਆਵਾਂ ਚੁਣੀਆਂ ਹੁੰਦੀਆਂ, ਤਾਂ ਕੀ ਨਤੀਜੇ ਮਿਲਦੇ :

1. 17 2. 21 3. 96 4. 37

ਆਉ ਵੇਖੀਏ ਕਿ ਕਿਸ ਤਰ੍ਹਾਂ ਸੁੰਦਰਮ ਮੀਨਾਕਸ਼ੀ ਦੀ ਦੂਸਰੀ ਚਤੁਰਾਈ ਨੂੰ ਸਪੱਬਟ ਕਰਦਾ ਹੈ।(ਹੁਣ ਉਹ ਇਸ ਤਰ੍ਹਾਂ ਕਰਨ ਵਿੱਚ ਆਤਮ-ਵਿਸ਼ਵਾਸ ਮਹਿਸੂਸ ਕਰਨ ਲੱਗਾ ਹੈ।)

262 🗏 ਗਣਿਤ 👘

ਮੰਨ ਲਵੇ ਕਿ ਉਹ ਦੋ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ ab = 10a + b ਚੁਣਦਾ ਹੈ। ਅੰਕਾਂ ਨੂੰ ਪਲਟਨ 'ਤੇ, ਉਹ ਸੰਖਿਆ ba = 10b + a ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਮੀਨਾਕਸ਼ੀ ਉਸ ਵੱਡੀ ਸੰਖਿਆ ਵਿੱਚੋਂ ਛੋਟੀ ਸੰਖਿਆ ਘਟਾਉਣ ਨੂੰ ਕਹਿੰਦੀ ਹੈ।

 ਜਦ ਦਹਾਈ ਦਾ ਔਕ ਇਕਾਈ ਦੇ ਔਕ ਤੋਂ ਵੱਡਾ ਹੈ (ਭਾਵ a > b ਹੈ), ਤਾਂ ਉਹ ਇਸ ਤਰ੍ਹਾਂ ਘਟਾਉਂਦਾ ਹੈ :

$$(10a + b) - (10b + a) = 10a + b - 10b - a$$

$$=9a - 9b = 9(a - b)$$

 ਜਦ ਇਕਾਈ ਦਾ ਅੰਕ ਦਹਾਈ ਦੇ ਅੰਕ ਤੋਂ ਵੱਡਾ ਹੈ (ਭਾਵ h > a ਹੈ), ਤਾਂ ਉਹ ਇਸ ਤਰ੍ਹਾਂ ਘਟਾਉਂਦਾ ਹੈ:

$$(10b + a) - (10a + b) = 9(b - a)$$

ਬਿਨ੍ਹਾਂ ਸ਼ੱਕ, ਜਦ a = b ਹੈ, ਤਾਂ ਉਹ 0 ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ।

ਹਰੇਕ ਸਥਿਤੀ ਵਿੱਚ, ਪ੍ਰਾਪਤ ਸੰਖਿਆ 9 ਨਾਲ ਵੰਡੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਬਾਕੀ 0 ਹੈ। ਧਿਆਨ ਰੈੱਖੋ ਕਿ ਜਦ ਅਸੀਂ (ਘਟਾਉਣ 'ਤੇ) ਪ੍ਰਾਪਤ ਸੰਖਿਆ ਨੂੰ ਭਾਗ ਦੇਈਏ ਤਾਂ ਸਾਨੂੰ a > b ਜਾਂ a < b ਦੇ ਅਨੁਸਾਰ ਭਾਗਫਲ (a - b) ਜਾਂ (b - a) ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਤੁਸੀਂ ਕੋਈ ਵੀ ਹੋਰ ਦੋ ਅੰਕਾਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਲੈ ਕੇ ਉਪਰੋਕਤ ਤੱਥ ਦੀ ਪੜਤਾਲ ਕਰ ਸਕਦੇ ਹੋ।

(ii) ਅੰਕਾਂ ਦਾ ਪਲਟਨਾ— ਤਿੰਨ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ

ਹੁਣ ਸ਼ੁੰਦਰਮ ਦੀ ਵਾਰੀ ਹੈ ਕਿ ਉਹ ਚਤੁਰਾਈ ਦਿਖਾਵੇ।

ਸੁੰਦਰਮ : ਇੱਕ ਤਿੰਨ ਅੰਕਾਂ ਦੀ ਕੋਈ ਸੰਖਿਆ ਸੋਚੋ, ਪਰ ਇਸਦੇ ਬਾਰੇ ਵਿੱਚ ਮੈਨੂੰ ਨਾ ਦੱਸੇ।

ਮੀਨਾਕਸ਼ੀ : ਠੀਕ ਹੈ।

ਸੁੰਦਰਮ : ਹੁਣ ਇਹਨਾਂ ਅੰਕਾਂ ਨੂੰ ਉੱਲਟ ਕਮ ਵਿੱਚ (ਪਲਟਦੇ ਹੋਏ) ਲੈ ਕੇ ਇੱਕ ਨਵੀਂ ਸੰਖਿਆ ਬਣਾਓ ਅਤੇ ਵੱਡੀ ਸੰਖਿਆ ਵਿੱਚੋਂ ਛੋਟੀ ਸੰਖਿਆ ਘਟਾਉ।

ਮੀਨਾਕਸ਼ੀ : ਠੀਕ ਹੈ, ਮੈਂ ਘਟਾ ਲਿਆ ਹੈ। ਅੱਗੇ ਕੀ ਕਰਨਾ ਹੈ ?

ਸ਼ੁੰਦਰਮ : ਆਪਣੇ ਉੱਤਰ ਨੂੰ 99 ਨਾਲ ਭਾਗ ਦਿਓ। ਮੈਂ ਨਿਸ਼ਚਿਤ ਰੂਪ ਵਿੱਚ ਕਹਿ ਸਕਦਾ ਹਾਂ ਕਿ ਬਾਕੀ 0 ਹੋਵੇਗਾ।

ਅਸਲ ਵਿੱਚ, ਮੀਨਾਕਸ਼ੀ ਨੇ ਤਿੰਨ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ 349 ਚੁਣੀ ਸੀ। ਇਸ ਲਈ ਉਸਨੇ ਪ੍ਰਾਪਤ ਕੀਤਾ :

- ਅੰਕ ਪਲਟਨ ਤੋਂ ਸੰਖਿਆ : 943;
- ਅੰਤਰ : 943 349 = 594
- ਵੰਡ : 594 + 99 = 6, ਬਾਕੀ 0 ਨਾਲ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਪੜਤਾਲ ਕਰੋ ਕਿ ਜੇ ਮੀਨਾਕਸ਼ੀ ਨੇ ਹੇਠਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਚੁਣੀਆਂ ਹੁੰਦੀਆਂ, ਤਾਂ ਨਤੀਜਾ ਕੀ ਮਿਲਦਾ ? ਹਰੇਕ ਸਥਿਤੀ ਵਿੱਚ, ਐਤ ਵਿੱਚ ਪ੍ਰਾਪਤ ਹੋਏ ਭਾਗਫਲ ਦਾ ਇੱਕ ਰਿਕਾਰਡ (record) ਰੱਖੋ। 1. 132 2. 469 3. 737 4. 901

ਆਉ ਦੇਖੀਏ ਕਿ ਇਹ ਚਤੁਰਾਈ ਕਿਸ ਤਰ੍ਹਾਂ ਕੰਮ ਕਰਦੀ ਹੈ।ਮੰਨ ਲਵੋ ਕਿ ਮੀਨਾਕਸ਼ੀ ਵੱਲੋਂ ਚੁਣੀ ਗਈ ਤਿੰਨ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ abc = 100a + 10b + c ਹੈ।

ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਖੇਡਣਾ 🖩 263

ਅੰਕਾਂ ਨੂੰ ਪਲਟਨ `ਤੇ, ਉਹ ਸੰਖਿਆ cba = 100c + 10b + a ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ। ਘਟਾਉਣ `ਤੇ ਪ੍ਰਾਪਤ ਹੋਵੇਗਾ :

ਜਦ a > c ਹੈ, ਤਾਂ ਸੰਖਿਆਵਾਂ ਦਾ ਅੰਤਰ ਹੈ,

(100a + 10b + c) - (100c + 10b + a) = 100a + 10b + c - 100c - 10b - a

=99a - 99c = 99(a - c).

ਜਦ c > a ਹੈ, ਤਾਂ ਸੰਖਿਆਵਾਂ ਦਾ ਅੰਤਰ ਹੈ,

(100c + 10b + a) - (100a + 10b + c) = 99c - 99a = 99(c - a).

ਬਿਨ੍ਹਾਂ ਸ਼ੱਕ, ਜਦ, a = c ਹੈ ਤਾਂ ਅੰਤਰ 0 ਹੈ।

ਹਰੇਕ ਸਥਿਤੀ ਵਿੱਚ, ਨਤੀਜੇ ਦੇ ਤੌਰ ਤੇ ਪ੍ਰਾਪਤ ਸੰਖਿਆ 99 ਨਾਲ ਭਾਜ ਹੈ। ਇਸ ਲਈ ਬਾਕੀ 0 ਮਿਲਦਾ ਹੈ। ਧਿਆਨ ਰੱਖੋ ਕਿ ਭਾਗਫਲ (a – c) ਜਾਂ (c – a) ਹੋਵੇਗਾ। ਤੁਸੀਂ ਤਿੰਨ ਅੰਕਾਂ ਦੀਆਂ ਹੋਰ ਸੰਖਿਆਵਾਂ ਲੈ ਕੇ ਇਸ ਤੱਥ ਦੀ ਪੜਤਾਲ ਕਰ ਸਕਦੇ ਹੋ।

(iii) ਦਿੱਤੇ ਹੋਏ ਤਿੰਨ ਅੰਕਾਂ ਤੋਂ ਤਿੰਨ ਅੰਕਾਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਬਣਾਉਣਾ

ਹੁਣ ਇੱਕ ਵਾਰ ਫਿਰ ਮੀਨਾਕਸ਼ੀ ਦੀ ਵਾਰੀ ਹੈ।

ਮੀਨਾਕਸ਼ੀ : ਤਿੰਨ ਅੰਕਾਂ ਦੀ ਕੋਈ ਸੰਖਿਆ ਸੋਚੋ।

ਸੁੰਦਰਮ : ਠੀਕ ਹੈ, ਮੈਂ ਇਸ ਤਰ੍ਹਾਂ ਕਰ ਲਿਆ ਹੈ।

ਮੀਨਾਕਸ਼ੀ : ਹੁਣ ਇਸ ਸੰਖਿਆ ਦਾ ਪ੍ਰਯੋਗ ਦੋ ਹੋਰ ਤਿੰਨ ਔਕਾਂ ਦੀ ਸੱਖਿਆਵਾਂ ਬਣਾਉਣ ਵਿੱਚ ਇਸ ਪ੍ਰਕਾਰ ਕਰੋ :

ਜਦ ਤੁਸੀਂ ਸੰਖਿਆ abc ਚੁਣੀ ਹੈ, ਤਾਂ

 ਪਹਿਲੀ ਸੰਖਿਆ cab (ਜਿਵੇਂ ਕਿ ਇਕਾਈ ਦਾ ਅੰਕ ਉਸ ਸੰਖਿਆ ਦੇ ਖੱਬੇ ਸਿਰੇ 'ਤੇ ਪਹੁੰਚ ਗਿਆ) ਹੈ।

 ਹੋਰ ਸੰਖਿਆ bca (ਜਿਵੇਂ ਕਿ ਸੈਂਕੜੇ ਦਾ ਅੰਕ ਉਸ ਸੰਖਿਆ ਦੇ ਸੱਜੇ ਸਿਰੇ 'ਤੇ ਪਹੁੰਚ ਗਿਆ) ਹੈ। ਹੁਣ ਇਹਨਾਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜੋ। ਨਤੀਜੇ ਦੇ ਤੋਰ ਤੇ ਪ੍ਰਾਪਤ ਸੰਖਿਆ ਨੂੰ 37 ਨਾਲ ਭਾਗ ਦਿਓ। ਮੇਰਾ

ਹੁਣ ਇਹਨਾਂ ਸੰਬੋਆਵਾਂ ਨੂੰ ਜੜ। ਨਤੀਜ ਦੇ ਤਰ ਤੇ ਪ੍ਰਾਪਤ ਸੰਬਿਆਂ ਨੂੰ 37 ਨਾਲ ਭਾਗ ਦਿਓ। ਮਰਾ ਵਿਸ਼ਵਾਸ ਹੈ ਕਿ ਬਾਕੀ 0 ਹੋਵੇਗਾ।

ਸੁੰਦਰਮ : ਹਾਂ ਤੁਸੀਂ ਸਹੀ ਹੋ।

ਅਸਲ ਵਿੱਚ, ਸੁੰਦਰਮ ਨੇ ਤਿੰਨ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ 237 ਸੋਚੀ ਸੀ। ਜਿਵੇਂ ਮੀਨਾਕਸ਼ੀ ਨੇ ਕਿਹਾ ਸੀ, ਉਸ ਤਰ੍ਹਾਂ ਕਰਨ ਤੋਂ ਬਾਅਦ ਉਸਨੂੰ ਸੰਖਿਆਵਾਂ 723 ਅਤੇ 372 ਮਿਲੀਆਂ। ਇਸ ਤਰ੍ਹਾਂ ਉਸਨੇ ਇਹ ਕੀਤਾ।

237

372

1332

+ 723

ਤਿੰਨਾਂ ਅੰਕਾਂ 2.3 ਅਤੇ 7 ਦਾ ਪ੍ਰਯੋਗ ਕਰਕੇ, ਤਿੰਨ ਅੰਕਾਂ ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਭਵ ਸੰਖਿਆਵਾਂ ਬਣਾਓ ਅਤੇ ਇਸਦਾ ਜੋੜ ਪਤਾ ਕਰੋ। ਪੜਤਾਲ ਕਰੋ ਕਿ ਕੀ ਇਹ ਜੋੜ 37 ਨਾਲ ਭਾਜ ਹੈ। ਕੀ ਇਹ ਤੱਥ, ਸੰਖਿਆ abc ਦੇ ਤਿੰਨਾ ਅੰਕਾਂ a, b ਅਤੇ c ਨਾਲ ਬਣੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਦੋ ਜੋੜ ਦੇ ਲਈ ਸੱਚ ਹੈ।

and in case

ਫਿਰ ਉਸਨੇ ਨਤੀਜੇ ਦੇ ਤੌਰ ਤੇ ਪ੍ਰਾਪਤ ਸੰਖਿਆ 1332 ਨੂੰ 37 ਨਾਲ ਭਾਗ ਦਿੱਤਾ : 1332 + 37 = 36, ਬਾਕੀ 0 ਦੇ ਨਾਲ।

-33-31	ইনিয় বর্ত	A STATE		
ਪੜਤਾਲ ਕਰੋ ਮਿਲਦਾ ?	ਕਿ ਜੇ ਸ਼ੁੰਦਰਮ ਨੇ ਹੇਠਾਂ	ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਸੋਚੀਅ	ਆਂ ਹੁੰਦੀਆਂ, ਤਾਂ ਨਤੀਜਾ ਕੀ	
1. 417	2, 632	3. 117	4. 937	C.

264 🔳 ਗਣਿਤ

ਕੀ ਇਹ ਚਤੁਰਾਈ ਹਮੇਸ਼ਾਂ ਕੰਮ ਕਰਦੀ ਹੈ ? ਆਉ ਦੇਖੀਏ : abc = 100a + 10b + ccab = 100c + 10a + bbca = 100b + 10c + aabc + cab + bca = 111(a + b + c) $= 37 \times 3(a + b + c)$ ਜੋ 37 ਨਾਲ ਭਾਜਯੋਗ ਹੈ।

16.4 ਅੰਕਾਂ ਦੇ ਲਈ ਅੱਖਰ

ਇੱਥੇ ਸਾਡੇ ਸਾਹਮਣੇ ਕੁਝ ਪਹੇਲੀਆਂ ਹਨ ਜਿੱਥੇ ਇੱਕ ਅੰਕਗਣਿਤਿਕ ਪ੍ਰਸ਼ਨ ਵਿੱਚ ਅੰਕਾਂ ਦੀ ਥਾਂ 'ਤੇ ਅੱਖਰ ਹੁੰਦੇ ਹਨ ਅਤੇ ਸਮੱਸਿਆ ਇਹ ਪਤਾ ਕਰਨ ਦੀ ਹੈ ਕਿ ਕਿਹੜਾ ਅੱਖਰ ਕਿਸ ਅੰਕ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਇੱਕ ਢੰਗ ਨਾਲ ਕੋਡ (code) ਨੂੰ ਹੱਲ ਕਰਨ ਵਰਗੀ ਗੱਲ ਹੈ। ਇੱਥੇ ਅਸੀਂ ਜੋੜ ਅਤੇ ਗੁਣਾ ਦੀਆਂ ਸਮੱਸਿਆਵਾਂ ਤੱਕ ਹੀ ਸੀਮਿਤ ਰਹਾਂਗੇ। ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਪਹੇਲੀਆਂ ਹੱਲ ਕਰਦੇ ਸਮੇਂ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਦੋ ਨਿਯਮ ਇਹ ਹਨ :

- ਪਹੇਲੀ ਵਿੱਚ, ਹਰੇਕ ਅੱਖਰ ਕੇਵਲ ਇੱਕ ਹੀ ਅੰਕ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੋਵੇ। ਇੱਕ ਅੰਕ ਕੇਵਲ ਇੱਕ ਹੀ ਅੱਖਰ ਵੱਲੋਂ ਦਰਸਾਇਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ।
- ਇੱਕ ਸੰਖਿਆ ਦਾ ਪਹਿਲਾ ਅੰਕ ਸਿਫ਼ਰ ਨਹੀਂ ਹੋ ਸਕਦਾ। ਇਸ ਤਰ੍ਹਾਂ, ਅਸੀਂ ਸੰਖਿਆ ਤੇ੍ਹਠ ਨੂੰ '063' ਜਾਂ '0063' ਨਾ ਲਿਖ ਕੇ '63' ਲਿਖਦੇ ਹਾਂ।

ਇੱਕ ਨਿਯਮ ਜਿਸਨੂੰ ਅਸੀਂ ਮੰਨਣਾ ਹੈ ਉਹ ਹੈ ਕਿ ਪਹੇਲੀ ਦਾ ਸਿਰਫ਼ ਇੱਕ ਹੀ ਉੱਤਰ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਉਦਾਹਰਣ 1 : ਹੇਠ ਲਿਖੇ ਜੋੜ ਵਿੱਚ O ਪਤਾ ਕਰੋ :

ਹੱਲ : ਇੱਥੇ ਸਿਫ਼ਰ ਇੱਕ ਅੱਖਰ Q ਹੈ, ਜਿਸਦਾ ਅਸੀਂ ਮੁੱਲ ਪਤਾ ਕਰਨਾ ਹੈ।

ਇਕਾਈ ਦੇ ਕਾਲਮ ਵਿੱਚ, ਉਪਰੋਕਤ ਜੋੜ ਦਾ ਅਧਿਐਨ ਕਰੋ। Q +3 ਤੋਂ ਸਾਨੂੰ 1 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। ਭਾਵ ਇੱਕ ਸੰਖਿਆ ਜਿਸਦੀ ਇਕਾਈ ਦਾ ਅੰਕ 1 ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਹੋਣ ਲਈ, Q ਅੰਕ 8 ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਇਸ ਪਹੇਲੀ ਨੂੰ ਹੇਠਾਂ ਦਰਸਾਏ ਅਨੁਸਾਰ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ :

		3	1	8	
	+	1	8	3	
28		5	0	1	ਭਾਵ Q = 8 ਹੈ।

ਉਦਾਹਰਣ 2 : ਹੇਠ ਲਿਖੇ ਜੋੜ ਵਿੱਚ A ਅਤੇ B ਪਤਾ ਕਰੋ :

		Α	
	+	Α	
	+	А	
_	В	A	
_			-

ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਖੇਡਣਾ 🔳 265

ਹੱਲ : ਇਸ ਵਿੱਚ ਦੋ ਅੱਖਰ A ਅਤੇ B ਹਨ, ਜਿਹਨਾਂ ਦੇ ਮੁੱਲ ਪਤਾ ਕਰਨੇ ਹਨ।

ਇਕਾਈ ਦੇ ਕਾਲਮ ਵਿੱਚ ਜੋੜ ਦਾ ਅਧਿਐਨ ਕਰੋ : ਤਿੰਨ A ਦਾ ਜੋੜ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਸੰਖਿਆ ਹੈ ਜਿਸਦੀ ਇਕਾਈ ਦਾ ਅੰਕ A ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਦੋ A ਦਾ ਜੋੜ ਐਸੀ ਸੰਖਿਆ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ਜਿਸਦਾ ਇਕਾਈ ਦਾ ਅੰਕ 0 ਹੋਵੇ। ਇਹ ਉਸ ਵੇਲੇ ਹੋਵੇਗਾ ਜਦ A = 0 ਹੋਵੇ ਜਾਂ A = 5 ਹੋਵੇ।

ਜੇਕਰ A = 0 ਹੈ ਤਾਂ ਜੋੜਫਲ 0 + 0 + 0 = 0 ਹੋਵੇਗਾ, ਜਿਸ ਤੋਂ B = 0 ਹੋ ਜਾਵੇਗਾ।ਅਸੀਂ ਇਹ ਨਹੀਂ ਚਾਹਾਂਗੇ (ਕਿਉਂਕਿ ਇਸ ਨਾਲ A = B ਹੋ ਜਾਵੇਗਾ ਅਤੇ BA ਦੇ ਦਹਾਈ ਦਾ ਅੰਕ ਵੀ 0 ਹੋ ਜਾਵੇਗਾ)। ਇਸ ਲਈ ਅਸੀਂ ਇਸ ਨੂੰ ਛੱਡ ਦਿੰਦੇ ਹਾਂ। ਇਸ ਲਈ A = 5 ਹੈ।

ਇਸ ਲਈ, ਇਹ ਪਹੇਲੀ ਹੇਠਾਂ ਦਿੱਤੇ ਅਨੁਸਾਰ ਹੱਲ ਹੋਵੇਗੀ :

1	5
t	5
t	5
	5

ਭਾਵ, A = 5 ਅਤੇ B = 1 ਹੈ।

ਉਦਾਹਰਣ 3 : A ਅਤੇ B ਨੂੰ ਪਤਾ ਕਰੋ :

	BA	
×	B 3	
5	7 A	

ਹੱਲ : ਇੱਥੇ ਵੀ ਦੋ ਅੱਖਰ A ਅਤੇ B ਹਨ, ਜਿਹਨਾਂ ਦਾ ਮੁੱਲ ਪਤਾ ਕੀਤਾ ਜਾਣਾ ਹੈ। ਕਿਉਂਕਿ 3 × A ਦੀ ਇਕਾਈ ਦਾ ਅੰਕ A ਹੈ, ਇਸ ਲਈ ਇਹ ਤਾਂ A = 0 ਹੈ ਜਾਂ A = 5 ਹੈ।

ਹੁਣ B ਨੂੰ ਦੇਖੋ।ਜੇ B = 1 ਹੋਵੇ, ਤਾਂ BA × B3 ਦਾ ਮੁੱਲ ਜ਼ਿਆਦਾ ਤੋਂ ਜ਼ਿਆਦਾ 19 × 19, ਜਿਵੇਂ ਕਿ 361 ਹੋਵੇਗਾ। ਪਰ ਇੱਥੇ ਗੁਣਨਫਲ 57A ਹੈ, ਜੋ 500 ਤੋਂ ਜ਼ਿਆਦਾ ਹੈ। ਇਸ ਲਈ B =1 ਨਹੀਂ ਹੋ ਸਕਦਾ।

ਜੇ B = 3 ਹੱਵੇ, ਤਾਂ BA × B3 ਦਾ ਗੁਣਨਫਲ 30 × 30 ਤੋਂ ਜ਼ਿਆਦਾ ਹੋਵੇਗਾ, ਜਿਵੇਂ ਕਿ ਇਹ 900 ਤੋਂ ਜ਼ਿਆਦਾ ਹੋਵੇਗਾ। ਪਰ 57A ਦਾ ਮੁੱਲ 600 ਤੋਂ ਘੱਟ ਹੈ। ਇਸ ਲਈ B = 3 ਨਹੀਂ ਹੋ ਸਕਦਾ।

ਉਪਰੋਕਤ ਦੋਨਾਂ ਤੱਥਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦੇ ਹੋਏ, B ਦਾ ਮੁੱਲ ਕੇਵਲ 2 ਹੀ ਹੋ ਸਕਦਾ ਹੈ।ਇਸ ਤਰ੍ਹਾਂ ਦਿੱਤੀ ਹੋਈ ਗੁਣਾ ਜਾਂ ਤਾਂ 20 × 23 ਹੋਵੇਗਾ ਜਾਂ 25 × 23 ਹੋਵੇਗਾ।

ਪਹਿਲੀ ਸੰਭਾਵਨਾ ਨਹੀਂ ਹੋ ਸਕਦੀ, ਕਿਉਂਕਿ 20 × 23 = 460 ਹੈ। ਪਰ ਦੂਸਰੀ ਸੰਭਾਵਨਾ ਸਹੀ ਹੈ, ਕਿਉਂਕਿ 25 × 23 = 575 ਹੈ।

ਇਸ ਤਰ੍ਹਾਂA = 5 ਅਤੇ B = 2 ਹੈ।

	2 5	
×	2 3	
5	75	

266 🔳 ਗਣਿਤ

ਇਸ ਨੂੰ ਕਰੋ

ਗਵ

ਦੋਂ ਅੰਕਾਂ ਦੀ ਇੱਕ ਸੰਖਿਆ ab ਲਿਖੇ ਅਤੇ ਇਸਦੇ ਅੰਕਾਂ ਨੂੰ ਪਲਟਨ 'ਤੇ ਪ੍ਰਾਪਤ ਸੰਖਿਆ ba ਲਿਖੇ। ਇਹਨਾਂ ਦਾ ਜੋੜ ਪਤਾ ਕਰੋ। ਮੰਨ ਲਵੇ ਕਿ ਇਹ ਜੋੜ ਤਿੰਨ ਅੰਕਾਂ ਦੀ ਸੱਖਿਆ dad ਹੈ।

$$10a + b) + (10b + a) = dad$$

$$11(a+b) = dad$$

ab + ba = dad

ਜੋੜ (a + b) ਸੰਖਿਆ 18 ਤੋਂ ਜ਼ਿਆਦਾ ਨਹੀਂ ਹੋ ਸਕਦਾ (ਕਿਉਂ ?) ਕੀ dad, 11 ਦਾ ਇੱਕ ਗੁਣਜ ਹੈ ? ਕੀ dad, 198 ਤੋਂ ਘੱਟ ਹੈ ? 98 ਤੱਕ ਤਿੰਨ ਅੰਕਾਂ ਦੀ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸਾਹੀਆਂ ਸੰਖਿਆਵਾਂ ਲਿਖੋ, ਜੋ 11 ਦਾ ਗਣਜ ਹਨ। a ਅਤੇ d ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ।

মজিਆਸ 16.1

ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚ ਹਰੇਕ ਵਿੱਚੋਂ ਅੱਖਰਾਂ ਦਾ ਮੁੱਲ ਪਤਾ ਕਰੋ ਅਤੇ ਸੰਬੰਧਤ ਪਗਾਂ ਦੇ ਲਈ ਕਾਰਨ ਵੀ ਦੱਸੋ :

		3	A		2.		4	A		3.			1	A
-4		2				+	9	8						A
-			2			С	B	3	3				9	A
		A	в		5.		A	В		6.			A	B
	+	3						3					×	5
	_	6	A			(C Á	B	-			c	A	B
		A	в		8.		A	1		9.		2	A	B
			6				+ 1	в			+	A		
	B	B	B			-	B	0				B	1	8
	Ţ									*				
13	1 6	4	A		0									
+	_	_	B	3										
	А	0	9											

ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਖੇਡਣਾ 🔳 267

16.5 ਭਾਜਯੋਗਤਾ ਦੀ ਪੜਤਾਲ

ਜਮਾਤ VI ਵਿੱਚ ਤੁਸੀਂ ਪੜ੍ਹ ਚੁੱਕੇ ਹੋ ਕਿ ਹੇਠ ਲਿਖੇ ਭਾਜਕਾਂ ਨਾਲ ਕਿਸ ਤਰ੍ਹਾਂ ਭਾਜਯੋਗਤਾ (divisibility) ਦੀ ਪੜਤਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ :

10, 5, 2, 3, 6, 4, 8, 9, 11

ਤੁਹਾਨੂੰ ਇਹਨਾਂ ਦੀ ਪੜਤਾਲ ਕਰਨ ਦੇ ਨਿਯਮ ਸੌਖੇ ਲੱਗੇ ਹੋਣਗੇ ਪਰ ਨਾਲ ਹੀ ਤੁਸੀਂ ਇਹ ਵੀ ਸੋਚ ਕੇ ਹੈਰਾਨ ਹੋਏ ਹੋਵੋਗੇ ਕਿ ਅਸੀਂ ਇਹ ਕਿਉਂ ਕਰਦੇ ਹਾਂ। ਹੁਣ ਅਸੀਂ ਇਸ ਅਧਿਆਇ ਵਿੱਚ, ਇਸਦੇ 'ਕਿਉਂ' ਵਾਲੇ ਪੱਖ 'ਤੇ ਚਰਚਾ ਕਰਾਂਗੇ।

16.5.1 10 ਨਾਲ ਭਾਜਯੋਗਤਾ

ਇਹ ਨਿਸ਼ਚਿਤ ਹੀ ਸਾਰਿਆਂ ਵਿੱਚੋਂ ਸਭ ਤੋਂ ਸੌਖੀ ਪੜਤਾਲ ਹੈ। ਅਸੀਂ ਪਹਿਲਾਂ 10 ਦੇ ਕੁਝ ਗੁਣਜ ਦੇਖਦੇ ਹਾਂ :

10, 20, 30, 40, 50, 60, ...,

ਇਸਦੇ ਨਾਲ 10 ਦੇ ਕੁਝ ਅਗੁਣਜਾਂ (non-multiples) ਨੂੰ ਦੇਖੋ 13, 27, 32, 48, 55, 69, ... ਇਹਨਾਂ ਸੰਖਿਆਵਾਂ ਤੋਂ ਇਹ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਜਿਹਨਾਂ ਦਾ ਇਕਾਈ ਅੰਕ 0 ਹੈ, 10 ਦੇ ਗੁਣਜ ਹਨ, ਅਤੇ ਉਹ ਸੰਖਿਆਵਾਂ ਜਿਹਨਾਂ ਦਾ ਇਕਾਈ ਅੰਕ 0 ਨਹੀਂ ਹੈ, 10 ਦੇ ਗੁਣਜ ਨਹੀਂ ਹਨ। ਇਸ ਤੋਂ ਸਾਨੂੰ 10 ਨਾਲ ਭਾਜਯੋਗਤਾ ਦੀ ਪੜਤਾਲ ਦਾ ਇੱਕ ਨਿਯਮ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

ਬਿਨ੍ਹਾਂ ਸ਼ੱਕ ਸਾਨੂੰ ਕੋਵਲ ਪੜਤਾਲ ਦਾ ਨਿਯਮ ਦੇ ਕੇ ਹੀ ਨਹੀਂ ਰੁੱਕ ਜਾਣਾ ਚਾਹੀਦਾ। ਸਾਨੂੰ ਇਹ ਵੀ ਸਪੱਸ਼ਟ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਇਹ ਪੜਤਾਲ ਦਾ ਨਿਯਮ ਕਿਸ ਤਰ੍ਹਾਂ ਕੰਮ ਕਰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਕਰਨਾ ਔਖਾ ਨਹੀਂ ਹੈ। ਸਾਨੂੰ ਸਿਰਫ਼ ਸਥਾਨਕ ਮੁੱਲ (place value) ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਯਾਦ ਰੱਖਣਾ ਚਾਹੀਦਾ ਹੈ। ਕੋਈ ਸੰਖਿਆ ... cba ਲਵੋ। ਇਹ ਹੇਠਾਂ ਲਿਖੀਆਂ, ਸੰਖਿਆ ਦਾ ਸੰਖੇਪ ਰੂਪ ਹੈ :

... + 100c + 10b + a

ਇੱਥੇ a ਇਕਾਈ ਦਾ ਅੰਕ ਹੈ, b ਦਹਾਈ ਦਾ ਅੰਕ ਹੈ, c ਸੈੱਕੜੇ ਦਾ ਅੰਕ ਹੈ ਆਦਿ। ਇੱਥੇ ਤਿੰਨ ਬਿੰਦੂ (...) ਇਹ ਦਰਸਾਉਂਦੇ ਹਨ ਕਿ c ਦੇ ਖੇਂਬੇ ਪਾਸੇ ਹੋਰ ਅੰਕ ਹੋ ਸਕਦੇ ਹਨ।

ਕਿਉਂਕਿ 10, 100,... 10 ਨਾਲ ਭਾਜਯੋਗ ਹੈ। ਇਸ ਲਈ 10b, 100c, ... ਵੀ 10 ਨਾਲ ਭਾਜਯੋਗ ਹੋਣਗੇ। ਜਿੱਥੋਂ ਤੱਕ ਸੰਖਿਆ a ਦਾ ਪ੍ਰਸ਼ਨ ਹੈ, ਜੇ ਦਿੱਤੀ ਹੋਈ ਸੰਖਿਆ 10 ਨਾਲ ਭਾਜਯੋਗ ਹੈ ਤਾਂ a ਨੂੰ ਵੀ 10 ਨਾਲ ਭਾਜਯੋਗ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਹ ਤਾਂ ਹੀ ਸੰਭਵ ਹੈ ਜਦ a = 0 ਹੋਵੇ।

ਇਸ ਤਰ੍ਹਾਂ ਕੋਈ ਸੰਖਿਆ 10 ਨਾਲ ਭਾਜਯੋਗ ਹੁੰਦੀ ਹੈ ਜੇਕਰ ਉਸਦਾ ਇਕਾਈ ਅੰਕ 0 ਹੈ।

16.5.2 5 ਨਾਲ ਭਾਜਯੋਗਤਾ

5 ਦੇ ਗੁਣਜਾਂ ਨੂੰ ਦੇਖੋ : 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, ...

ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਇਕਾਈ ਅੰਕ 5 ਅਤੇ () ਇੱਕ ਸੰਖਿਆ ਛੱਡ ਕੇ ਆ ਰਹੇ ਹਨ ਅਤੇ ਇਸਦੇ ਇਲਾਵਾ ਇਕਾਈ ਦੀ ਥਾਂ ਤੇ ਕੋਈ ਹੋਰ ਅੰਕ ਨਹੀਂ ਆ ਰਿਹਾ ਹੈ।

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ 5 ਨਾਲ ਭਾਜਯੋਗਤਾ ਦਾ ਇਹ ਨਿਯਮ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ : ਜੇ ਕਿਸੇ ਸੱਖਿਆ ਦਾ ਇਕਾਈ ਐਕ 5 ਜਾਂ 0 ਹੈ, ਤਾਂ ਇਹ ਸੰਖਿਆ 5 ਨਾਲ ਭਾਜਯੋਗ ਹੁੰਦੀ ਹੈ।

ਆਉ, ਇਸ ਨਿਯਮ ਨੂੰ ਸਪੱਸ਼ਟ ਕਰੀਏ। ਕਿਸੀ ਸੰਖਿਆ ... cba ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ : ... + 100c + 10b + a

ਕਿਉਂਕਿ 10, 100, ...10 ਨਾਲ ਭਾਜਯੋਗ ਹੈ, ਇਸ ਲਈ 10b, 100b, ... ਵੀ 10 ਨਾਲ ਭਾਜਯੋਗ ਹੋਵੇਗੀ ਅਤੇ ਇਹ ਬਾਅਦ ਵਿੱਚ 5 ਨਾਲ ਵੀ ਭਾਜਯੋਗ ਹੋਵੇਗੀ, ਕਿਉਂਕਿ 10 = 5×2 ਹੈ। ਜਿੱਥੋਂ ਤੱਕ ਸੰਖਿਆ a ਦਾ ਪ੍ਰਸ਼ਨ ਹੈ, ਜੇ ਸੰਖਿਆ 5 ਨਾਲ ਭਾਜਯੋਗ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਵੀ 5 ਨਾਲ ਭਾਜਯੋਗ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ a ਨੂੰ 0 ਜਾਂ 5 ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

268 🔳 ਗਣਿਤ

ইয়িয় বই

(ਪਹਿਲਾ ਪ੍ਰਸ਼ਨ ਤੁਹਾਡੀ ਸਹਾਇਤਾ ਦੇ ਲਈ ਕੀਤਾ ਹੋਇਆ ਹੈ।

- ਜਦ ਭਾਗ N + 5 ਤੋਂ ਬਾਕੀ 3 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਤਾਂ N ਦੀ ਇਕਾਈ ਦਾ ਅੰਕ ਕੀ ਹੋ ਸਕਦਾ ਹੈ ? (ਇਕਾਈ ਦੇ ਅੰਕ ਨੂੰ 5 ਨਾਲ ਭਾਗ ਦੇਣ 'ਤੋ ਬਾਕੀ 3 ਆਉਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਸ ਲਈ ਇਕਾਈ ਦਾ ਅੰਕ 3 ਜਾਂ 8 ਹੋਵੇਗਾ)
- ਜਦ ਭਾਗ N + 5 ਤੋਂ ਬਾਕੀ 1 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਤਾਂ N ਦੀ ਇਕਾਈ ਦਾ ਅੰਕ ਕੀ ਹੋ ਸਕਦਾ ਹੈ?
- 3. ਜਦ ਭਾਗ N + 5 ਤੋਂ ਬਾਕੀ 4 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਤਾਂ N ਦੀ ਇਕਾਈ ਦਾ ਅੰਕ ਕੀ ਹੋ ਸਕਦਾ ਹੈ ?

16.5.3 2 XVB STREAM

ਇਹ ਸਾਰੀਆਂ ਜਿਸਤ ਸੰਖਿਆਵਾਂ ਹਨ : 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, ...,

ਅਤੇ ਇਹ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਹਨ : 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, ...,

ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆ ਜਿਸਤ ਹੁੰਦੀ ਹੈ, ਜਦ ਇਸਦੀ ਇਕਾਈ ਦਾ ਅੰਕ ਹੋਵੇ,

2, 4, 6, 8 ਜਾਂ 0

ਇੱਕ ਸੰਖਿਆ ਟਾਂਕ ਹੁੰਦੀ ਹੈ, ਜਦ ਇਸਦੀ ਇਕਾਈ ਦਾ ਅੰਕ ਹੋਵੇ, 1. 3. 5. 7 ਜਾਂ 9

ਜਮਾਤ VI ਵਿੱਚ ਸਿੱਖੇ ਗਏ 2 ਦੀ ਭਾਜਯੋਗਤਾ ਦੀ ਪੜਤਾਲ ਕਰ ਕੇ ਨਿਯਮ ਨੂੰ ਯਾਦ ਕਰੋ। ਇਹ ਨਿਯਮ ਇਸ ਤਰ੍ਹਾਂ ਹੈ।

ਜੇ ਕਿਸੇ ਸੰਖਿਆ ਦਾ ਇਕਾਈ ਅੰਕ 0, 2, 4, 6, ਜਾਂ 8 ਹੋਵੇ ਤਾਂ ਉਹ ਸੰਖਿਆ 2 ਨਾਲ ਭਾਜਯੋਗ ਹੁੰਦੀ ਹੈ।

ਇਸਦੇ ਲਈ ਸਪਸ਼ਟੀਕਰਨ ਇਸ ਪ੍ਰਕਾਰ ਹੈ :

ਕਿਸੇ ਵੀ ਸੰਖਿਆ ... cba ਨੂੰ ... + 100c + 10b + a ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸਦੇ ਪਹਿਲੇ ਦੋਨੋਂ ਪਦ 100c ਅਤੇ 10b ਸੱਖਿਆ 2 ਨਾਲ ਭਾਜਯੋਗ ਹਨ, ਕਿਉਂਕਿ 100 ਅਤੇ 10 ਸੱਖਿਆ 2 ਨਾਲ ਭਾਜਯੋਗ ਹਨ। ਜਿੱਥੋਂ ਤੱਕ a ਦਾ ਪ੍ਰਸ਼ਨ ਹੈ, ਜੇ ਦਿੱਤੀ ਹੋਈ ਸੱਖਿਆ 2 ਨਾਲ ਭਾਜਯੋਗ ਹੈ, ਤਾਂ ਇਸ ਨੂੰ 2 ਨਾਲ ਭਾਜਯੋਗ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਇਹ ਤਾਂ ਹੀ ਸੰਭਵ ਹੈ ਜਦੋਂ a = 0, 2, 4, 6 ਜਾਂ 8 ਹੋਵੇ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

(ਪਹਿਲਾ ਪ੍ਰਸ਼ਨ ਤੁਹਾਡੀ ਸਹਾਇਤਾ ਦੇ ਲਈ ਕੀਤਾ ਹੋਇਆ ਹੈ।)

- ਜਦ ਭਾਗ N + 2 ਤੋਂ ਬਾਕੀ 1 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਤਾਂ N ਦੀ ਇਕਾਈ ਦਾ ਅੰਕ ਕੀ ਹੋ ਸਕਦਾ ਹੈ? (N ਟਾਂਕ ਹੈ ਇਸ ਲਈ ਇਸਦੀ ਇਕਾਈ ਦਾ ਅੰਕ ਟਾਂਕ ਹੋਵੇਗਾ। ਇਸ ਤਰ੍ਹਾਂ N ਦੀ ਇਕਾਈ ਦਾ ਅੰਕ 1, 3, 5, 7 ਜਾਂ 9 ਹੋਵੇਗਾ।)
- ਜੇ ਭਾਗ N + 2 ਨਾਲ ਕੋਈ ਬਾਕੀ ਪ੍ਰਾਪਤ ਨਹੀਂ ਹੁੰਦਾ (ਭਾਵ ਬਾਕੀ 0 ਹੈ), ਤਾਂ N ਦੀ ਇਕਾਈ ਦਾ ਅੰਕ ਕੀ ਹੋ ਸਕਦਾ ਹੈ ?
- ਮੰਨ ਲਵੇ ਕਿ ਭਾਗ N + 5 ਨਾਲ ਬਾਕੀ 4 ਅਤੇ ਭਾਗ N ÷ 2 ਨਾਲ ਬਾਕੀ 1 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ। N ਦੀ ਇਕਾਈ ਦਾ ਅੰਕ ਕੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ?

ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਖੇਡਣਾ 🔳 269

16.5.4 9 ਅਤੇ 3 ਨਾਲ ਭਾਜਯੋਗਤਾ

ਹੁਣ ਤੱਕ ਪਤਾ ਕੀਤੇ ਗਏ ਭਾਜਯੋਗਤਾ ਦੀ ਪੜਤਾਲ ਦੇ ਤਿੰਨਾਂ ਨਿਯਮਾਂ ਨੂੰ ਧਿਆਨ ਨਾਲ ਦੇਖੋ, ਜੋ 10, 5 ਅਤੇ 2 ਨਾਲ ਭਾਜਯੋਗਤਾ ਦੀ ਕੀਤੀ ਪੜਤਾਲ ਦੇ ਲਈ ਕੀਤੇ ਸਨ। ਅਸੀਂ ਇਹਨਾਂ ਵਿੱਚ ਇੱਕ ਸਾਂਝੀ ਗੱਲ ਦੇਖ ਸਕਦੇ ਹਾਂ : ਇਸ ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਸੰਖਿਆ ਦਾ ਇਕਾਈ ਦੇ ਅੰਕ ਦਾ ਹੀ ਪਯੋਗ ਹੁੰਦਾ ਹੈ ਅਤੇ ਹੋਰ ਅੰਕਾਂ ਦਾ ਇਸ 'ਤੇ ਕੋਈ ਅਸਰ/ਫ਼ਰਕ ਨਹੀਂ ਪੈਂਦਾ। ਇਸ ਤਰ੍ਹਾਂ ਭਾਜਯੋਗਤਾ ਦਾ ਨਿਰਣਾ ਸਿਰਫ਼ ਇਕਾਈ ਅੰਕ ਤੋਂ ਹੀ ਹੋ ਜਾਂਦਾ ਹੈ। 10, 5 ਅਤੇ 2 ਸੰਖਿਆ 10 ਦੇ ਭਾਜਕ (division) ਹਨ, ਜੋ ਸਾਡੇ ਸਥਾਨਕ ਮੁੱਲ ਸਿਸਟਮ/ਵਿਵਸਥਾ ਵਿੱਚ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਸੰਖਿਆ ਹੈ।

ਪਰ 9 ਨਾਲ ਭਾਜਯੋਗਤਾ ਦੀ ਪੜਤਾਲ ਵਿੱਚ ਇਹ ਨਿਯਮ ਨਹੀਂ ਚੱਲਣਗੇ।ਆਓ ਕੋਈ ਸੰਖਿਆ, ਮੰਨ ਲਵੇ 3573 ਲਓ

ਇਸਦਾ ਪ੍ਰਸਾਰਿਤ/ਵਿਸਤ੍ਰਤ ਰੂਪ 3 × 1000 + 5 × 100 + 7 × 10 + 3 ਹੈ। ਇਸਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਵੀ ਲਿਖ ਸਕਦੇ ਹਾਂ :

$$3 \times (999 + 1) + 5 \times (99 + 1) + 7 \times (9 + 1) + 3$$

$$= 3 \times 999 + 5 \times 99 + 7 \times 9 + (3 + 5 + 7 + 3) \qquad \dots (1)$$

ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਸੰਖਿਆ 9 ਜਾਂ 3 ਨਾਲ ਤਾਂ ਹੀ ਭਾਜਯੋਗ ਹੁੰਦੀ ਹੈ, ਜੇ (3 + 5 + 7 + 3) ਸੰਖਿਆ 9 ਜਾਂ 3 ਨਾਲ ਭਾਜਯੋਗ ਹੋਵੇ।

ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ (3 + 5 + 7 + 3) = 18 ਸੰਖਿਆ 9 ਨਾਲ ਭਾਜਯੋਗ ਹੈ ਅਤੇ 3 ਨਾਲ ਵੀ ਭਾਜਯੋਗ ਹੈ ਇਸ ਤਰ੍ਹਾਂ ਸੰਖਿਆਵਾਂ 3573 ਸੰਖਿਆਵਾਂ 9 ਅਤੇ 3 ਦੋਨਾਂ ਨਾਲ ਭਾਜਯੋਗ ਹੈ। ਆਓ ਹੁਣ ਸੰਖਿਆ 3576 ਤੇ ਵਿਚਾਰ ਕਰੀਏ ਉੱਪਰ ਦੀ ਤਰ੍ਹਾਂ ਹੀ ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ

> $3576 = 3 \times 1000 + 5 \times 100 + 7 \times 10 + 6$ = 3 × (999 + 1) + 5 × (99 + 1) + 7 × (9 + 1) + 6 = 3 × 999 + 5 × 99 + 7 × 9 + (3 + 5 + 7 + 6)

ਕਿਉਂਕਿ (3 + 5 + 7 + 6) = 21, 9 ਨਾਲ ਭਾਜਯੋਗ ਨਹੀਂ ਹੈ ਪਰ 3 ਨਾਲ ਭਾਜਯੋਗ ਹੈ, ਇਸ ਲਈ 3576, ਸੰਖਿਆ 9 ਨਾਲ ਭਾਜਯੋਗ ਨਹੀਂ ਹੈ ਪਰ ਇਹ 3 ਨਾਲ ਭਾਜਯੋਗ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ :

- (i) ਇੱਕ ਸੰਖਿਆ N ਸੰਖਿਆ 9 ਨਾਲ ਭਾਜਯੋਗ ਹੁੰਦੀ ਹੈ, ਜਦ ਇਸਦੇ ਅੰਕਾਂ ਦਾ ਜੋੜ 9 ਨਾਲ ਭਾਜਯੋਗ ਹੋਵੇ। ਨਹੀਂ ਤਾਂ ਉਹ ਸੰਖਿਆ 9 ਨਾਲ ਭਾਜਯੋਗ ਨਹੀਂ ਹੁੰਦੀ ਹੈ।
- (ii) ਇੱਕ ਸੱਖਿਆ N ਸੱਖਿਆ 3 ਨਾਲ ਭਾਜਯੋਗ ਹੁੰਦੀ ਹੈ, ਜਦ ਇਸਦੇ ਅੰਕਾਂ ਦਾ ਜੋੜ 3 ਨਾਲ ਭਾਜਯੋਗ ਹੋਵੇ। ਨਹੀਂ ਤਾਂ ਉਹ ਸੱਖਿਆ 3 ਨਾਲ ਭਾਜਯੋਗ ਨਹੀਂ ਹੁੰਦੀ ਹੈ।

ਜੇ ਸੰਖਿਆ cba ਹੈ, ਤਾਂ 100c + 10b + a = 99c + 9b + (a + b + c)

ਇਸ ਤਰ੍ਹਾਂ 9 (ਜਾਂ 3) ਦੀ ਭਾਜਯੋਗਤਾ ਤਾਂ ਹੀ ਸੰਭਵ ਹੈ, ਜਦ (a × b × c) 9 (ਜਾਂ 3) ਨਾਲ ਭਾਜਯੋਗ ਹੋਵੇ।

ਉਦਾਹਰਣ 4 : 21436587 ਦੀ 9 ਨਾਲ ਭਾਜਯੋਗਤਾ ਦੀ ਪੜਤਾਲ ਕਰੋ।

ਹੱਲ : 21436587 ਦੇ ਅੰਕਾਂ ਦਾ ਜੋੜ = 2 + 1 + 4 + 3 + 6 + 5 + 8 + 7 = 36

ਇਹ ਜੋੜਫਲ 9 ਨਾਲ ਭਾਜਯੋਗ ਹੈ। (36 ÷ 9 = 4)

270 🔳 ਗਣਿਤ

ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਇਹ ਸਿੱਟਾ ਕੱਢਦੇ ਹਾਂ ਕਿ 21436587 ਸੰਖਿਆ 9 ਨਾਲ ਭਾਜਯੋਗ ਹੈ। ਅਸੀਂ ਦੁਬਾਰਾ

ਪੜਤਾਲ ਵੀ ਕਰ ਸਕਦੇ ਹਾਂ 21436587 = 2381843 (ਭਾਗਫਲ ਪੂਰਨ ਸੰਖਿਆ ਹੈ)

ਉਦਾਹਰਣ 5 : 152875 ਦੀ 9 ਨਾਲ ਭਾਜਯੋਗਤਾ ਦੀ ਪੜਤਾਲ ਕਰੇ।

ਹੱਲ : 152875 ਦੇ ਅੰਕਾਂ ਦਾ ਜੋੜ 1 + 5 + 2 + 8 + 7 + 5 = 28 ਹੈ। ਇਹ ਸੰਖਿਆ 9 ਨਾਲ ਭਾਜਯੋਗ ਨਹੀਂ ਹੈ। ਇਸ ਲਈ ਅਸੀਂ ਸਿੱਟਾ ਕੱਢਦੇ ਹਾਂ ਕਿ 152875 ਸੰਖਿਆ 9 ਨਾਲ ਭਾਜਯੋਗ ਨਹੀਂ ਹੈ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਹੇਠ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਦੀ 9 ਨਾਲ ਭਾਜਯੋਗਤਾ ਦੀ ਪੜਤਾਲ ਕਰੋ :

1. 108	2. 616	3. 294	4. 432	5. 927
--------	--------	--------	--------	--------

ਉਦਾਹਰਣ 6 : ਜੇ ਤਿੰਨ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ 24x, 9 ਨਾਲ ਭਾਜਯੋਗ ਹੈ, ਤਾਂ x ਦਾ ਮੁੱਲ ਕੀ ਹੈ,

ਹੱਲ : ਕਿਉਂਕਿ 24x, ਸੰਖਿਆ 9 ਨਾਲ ਭਾਜਯੋਗ ਹੈ ਇਸ ਲਈ ਇਸਦੇ ਅੰਕਾਂ ਦਾ ਜੋੜ 2 + 4 + x, 9 ਨਾਲ ਭਾਜਯੋਗ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

ਭਾਵ 6 + x, a ਨਾਲ ਭਾਜਯੋਗ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।

ਇਹ ਤਾਂ ਹੀ ਸੰਭਵ ਹੈ ਜੋ 6 + x ਜਾਂ ਤਾਂ 9 ਹੋਵੇ ਜਾਂ 18 ਹੋਵੇ ਕਿਉਂਕਿ x ਇੱਕ ਔਕ ਹੈ ਇਸ ਲਈ 6 + x = 9 ਹੋਵੇਗਾ। ਇਸ ਤਰ੍ਹਾਂ, x = 3 ਹੈ।

ਸੋਚੋ, ਚਰਚਾ ਕਰੋ ਅਤੇ ਲਿਖੋ

 ਤੁਸੀਂ ਦੇਖ ਚੁੱਕੇ ਹੋ ਕਿ 450, 10 ਨਾਲ ਭਾਜਯੋਗ ਹੈ। ਇਹ 2 ਅਤੇ 5 ਨਾਲ ਵੀ ਭਾਜਯੋਗ ਹੈ, ਜੋ 10 ਦੇ ਗੁਣਨਖੰਡ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਸੰਖਿਆ 135, 9 ਨਾਲ ਭਾਜਯੋਗ ਹੈ, ਇਹ 3 ਨਾਲ ਵੀ ਭਾਜਯੋਗ ਹੈ ਜੋ ਕਿ 9 ਦਾ ਇੱਕ ਗੁਣਨਖੰਡ ਹੈ।

ਕੀ ਤੁਸੀਂ ਕਹਿ ਸਕਦੇ ਹੋ ਕਿ ਜਦ ਕੋਈ ਸੰਖਿਆ ਕਿਸੇ ਸੰਖਿਆ m ਨਾਲ ਭਾਜਯੋਗ ਹੋਵੇ, ਤਾਂ ਇਹ m ਦੇ ਹਰੇਕ ਗੁਣਨਖੰਡ ਨਾਲ ਵੀ ਭਾਜਯੋਗ ਹੋਵੇਗੀ ?

2. (i) ਇੱਕ ਤਿੰਨ ਔਕਾਂ ਦੀ ਸੰਖਿਆ abc ਨੂੰ 100a + 10b + c ਦੇ ਰੂਪ ਵਿੱਚ ਲਿਖੋ। ਹੁਣ

100a + 10b + c = 99a + 11b + (a - b + c)

= 11(9a + b) + (a - b + c)

ਜਦ ਸੰਖਿਆ abc, 11 ਨਾਲ ਭਾਜਯੋਗ ਹੋਵੇ, ਤਾਂ ਤੁਸੀਂ (a – b + c) ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ ? ਕੀ ਇਹ ਜ਼ਰੂਰੀ ਹੈ ਕਿ (a + c – b), 11 ਨਾਲ ਭਾਜਯੋਗ ਹੋਵੇ ?

(ii) ਇੱਕ ਚਾਰ ਅੰਕਾਂ ਦੀ ਸੰਖਿਆ abcd ਨੂੰ ਇਸ ਪ੍ਰਕਾਰ ਲਿਖੋ :

1000a + 100b + 10c + d

=(1001a + 99b + 11c) - (a - b + c - d)

= 11(91a + 9b + c) + [(b + d) - (a + c)]

ਸੰਖਿਆਵਾਂ ਦੇ ਨਾਲ ਖੇਡਣਾ 🔳 271

ਜੇ ਸੰਖਿਆ abcd, 11 ਨਾਲ ਭਾਜਯੋਗ ਹੈ, ਤਾਂ (b + d) – (a + c) ਦੇ ਬਾਰੇ ਵਿੱਚ ਤੁਸੀਂ ਕੀ ਕਹਿ ਸਕਦੇ ਹੋ ?

(iii) ਉਪਰੋਕਤ (i) ਅਤੇ (ii) ਵਿੱਚ, ਕੀ ਤੁਸੀਂ ਕਹਿ ਸਕਦੇ ਹੋ ਕਿ ਕੋਈ ਸੰਖਿਆ 11 ਨਾਲ ਭਾਜਯੋਗ ਹੋਵੇਗੀ, ਜਦ ਇਸਦੇ ਟਾਂਕ ਸਥਾਨਾਂ ਦੇ ਐਕਾਂ ਦੇ ਜੋੜ ਅਤੇ ਜਿਸਤ ਸਥਾਨਾਂ ਦੇ ਅੰਕਾਂ ਦੇ ਜੋੜ ਦਾ ਅੰਤਰ 11 ਨਾਲ ਭਾਜਯੋਗ ਹੋਵੇਗਾ ?

ਉਦਾਹਰਣ 7 : 2146587 ਦੀ 3 ਨਾਲ ਭਾਜਯੋਗਤਾ ਦੀ ਪੜਤਾਲ ਕਰੋ।

ਹੱਲ : 2146587 ਦੇ ਅੰਕਾਂ ਦਾ ਜੋੜ 2 + 1 + 4 + 6 + 5 + 8 + 7 = 33 ਹੈ। ਜੋ ਸਪੱਸ਼ਟ 3 ਨਾਲ ਭਾਜਯੋਗ ਹੈ। (33 + 3 = 11)। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਸਿੱਟਾ ਕੱਢਦੇ ਹਾਂ ਕਿ 2146587, ਸੰਖਿਆ 3 ਨਾਲ ਭਾਜਯੋਗ ਹੈ।

ਉਦਾਹਰਣ 8 : 15287 ਦੀ 3 ਨਾਲ ਭਾਜਯੋਗਤਾ ਦੀ ਪੜਤਾਲ ਕਰੋ।

ਕੋਸ਼ਿਸ਼ ਕਰੋ

ਹੋਨਾਂ ਲਿਖੀਆਂ ਸੰਖਿਆਵਾਂ ਦੀ 3 ਨਾਲ ਭਾਜਯੋਗਤਾ ਦੀ ਪੜਤਾਲ ਕਰੋ।

ਹੱਲ : 15287 ਦੇ ਐਕਾਂ ਦਾ ਜੋੜ = 1 + 5 + 2 + 8 + 7 = 23 ਹੈ। ਜੋ 3 ਨਾਲ ਭਾਜਯੋਗ ਨਹੀਂ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਅਸੀਂ ਸਿੱਟਾ ਕੱਢਦੇ ਹਾਂ ਕਿ 15287 ਸੰਖਿਆ 3 ਨਾਲ ਭਾਜਯੋਗ ਨਹੀਂ ਹੋ ਸਕਦੀ ਹੈ।

3. 294

4. 432

ਅਭਿਆਸ 16.2

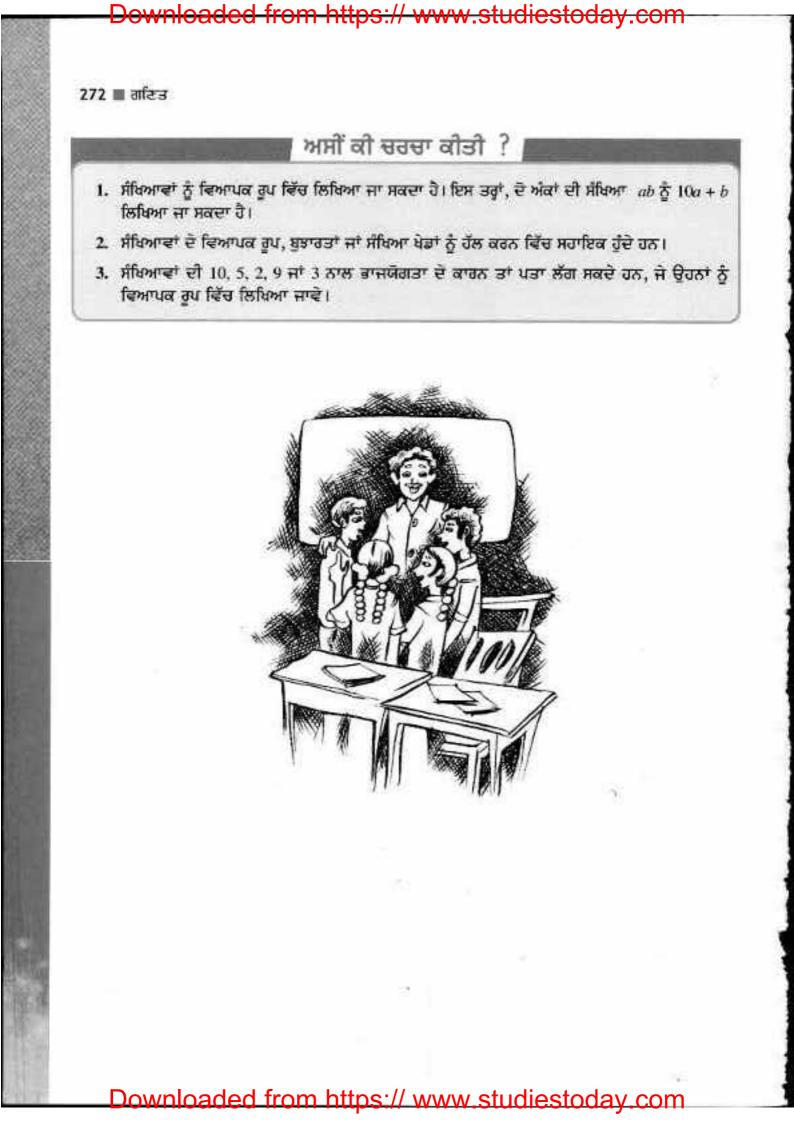
2. 616

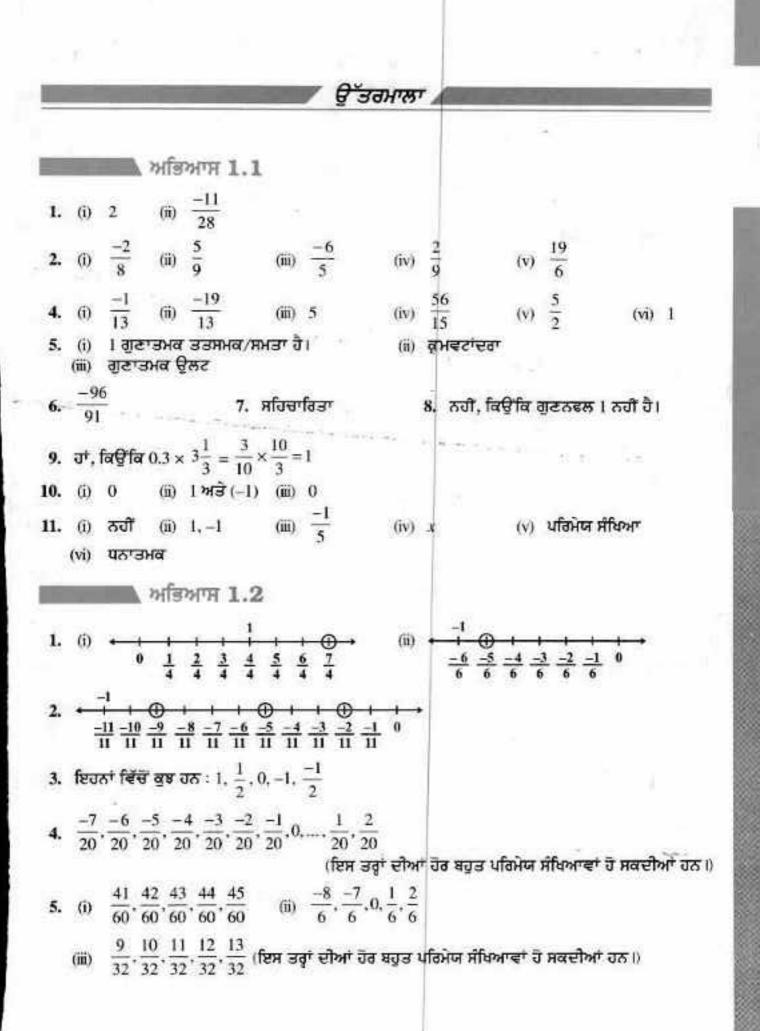
1. 108

- ਜੇ 21y 5.9 ਦਾ ਇੱਕ ਗੁਣਜ ਹੈ, ਇੱਥੇ y ਇੱਕ ਅੰਕ ਹੈ, ਤਾਂ y ਦਾ ਮੁੱਲ ਕੀ ਹੈ ?
- ਜੇ 31z 5, 9 ਦਾ ਇੱਕ ਗੁਣਜ ਹੈ, ਇੱਥੇ z ਇੱਕ ਅੰਕ ਹੈ, ਤਾਂ z ਦਾ ਮੁੱਲ ਕੀ ਹੈ ? ਤੁਸੀਂ ਦੇਖੋਗੇ ਕਿ ਇਸਦੇ ਦੋ ਉੱਤਰ ਹਨ। ਇਸ ਤਰ੍ਹਾਂ ਕਿਉਂ ਹੈ ?
- 3. ਜੋ 24x, 3 ਦਾ ਇੱਕ ਗੁਣਜ ਹੈ, ਇੱਥੋ x ਇੱਕ ਔਕ ਹੈ, ਤਾਂ x ਦਾ ਮੁੱਲ ਕੀ ਹੈ ? (ਕਿਉਂਕਿ 24x, 3 ਦਾ ਇੱਕ ਗੁਣਜ ਹੈ, ਇਸ ਲਈ ਇਸਦੇ ਔਕਾਂ ਦਾ ਜੋੜ 6 + x, 3 ਦਾ ਇੱਕ ਗੁਣਜ ਹੈ। ਜਿਵੇਂ ਕਿ 6 + x ਹੇਠ ਲਿਖੇ ਵਿੱਚ ਕੋਈ ਇੱਕ ਸੰਖਿਆ ਹੋਵੇਗੀ,

0, 3, 6, 9, 12, 15, 18, ...

ਪਰ ਕਿਉਂਕਿ x ਇੱਕ ਅੰਕ ਹੈ, ਇਸ ਲਈ 6 + x = 6 ਜਾਂ 6 + x = 9 ਜਾਂ 6 + x = 12 ਜਾਂ 6 + x = 15 ਹੋ ਸਕਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, x = 0 ਜਾਂ 3 ਜਾਂ 6 ਜਾਂ 9 ਹੋ ਸਕਦਾ ਹੈ। ਇਸ ਲਈ x ਦਾ ਮੱਲ ਇਹਨਾਂ ਚਾਰਾਂ ਵੱਖ-ਵੱਖ ਮੁੱਲਾਂ ਵਿੱਚੋਂ ਕੋਈ ਇੱਕ ਹੋ ਸਕਦਾ ਹੈ।


4. ਜੇ 31: 5, 3 ਦਾ ਇੱਕ ਗੁਣਜ ਹੈ, ਇੱਥੇ 2 ਇੱਕ ਅੰਕ ਹੈ, ਤਾਂ 2 ਦਾ ਮੁੱਲ ਕੀ ਹੋ ਸਕਦਾ ਹੈ?


Downloaded from https:// www.studiestoday.com

5. 927

8	Dowr	loaded fro)m https:/	/ ww	w.stuc	lies	stoday .	com
27	4 🖩 ਗਣਿਤ							
6.	$-\frac{3}{2}, -1, \frac{-1}{2}$, 0, <u>1</u> (ਇਸ ਤਰ੍ਹਾਂ ਰ	ਦੀਆਂ ਹੋਰ ਬਹੁਤ ਪ	ਰਮੋਯ ਸੰਕਿ	ਖਆਵਾਂ ਹੋ ਸ	ਕਦੀਅ	ਾਂ ਹਨ।)	
7.		99 <u>100 101 10</u> 160 ['] 160 [']			ਹਨ।			
		ਅਭਿਆਸ 2.1						
1.	x = 9	2. $y = 7$	3. $z = 4$	4.	x = 2	5.	x = 2	6. <i>t</i> = 50
7.	x = 27	8. <i>y</i> = 2.4	9. $x = \frac{25}{7}$	10.	$y = \frac{3}{2}$	п.	$p = -\frac{4}{3}$	12. $x = -\frac{8}{5}$
		ਅਭਿਆਸ 2.2						
L	$\frac{3}{4}$	2. ਲੰਬਾਈ = 52	m, ਚੋਂੜਾਈ = 25 n	n 3.	$1\frac{2}{5}$ cm	4.	40 ਅਤੇ 55	
5.	45, 27	6. 16, 17, 18	7. 288, 296 7	ਸਤੇ 304		8.	7, 8, 9	
9.	ਰਾਹਲ ਦੀ ਉ	ਮਰ = 20 ਸਾਲ; ਹਾਰੁ	ਨ ਦੀ ਉਮਰ = 28 1	ਸਾਲ		10.	48 ਵਿਦਿਅ	ਾਰਬੀ
		ਉਮਰ = 17 ਸਾਲ; ਬ			= 46 ਸਾਲ:			
053292		 ਦਾਦਾ ਜੀ ਦੀ ਉਮਰ :		e e		12.	5 ਸਾਲ	$13 - \frac{1}{-}$
14)00 ਨੋਟ: ₹ 50 → 3		5000 3	7		a ta shi shi shi s	2
		ਆਂ ਦੀ ਸੰਖਿਆ = 80;				-	a cit áficea	20
16.		- er nig-n = ou,	vze mon ei	nigen: -	-00,1501	nices	el vida	= 20
		ਅਭਿਆਸ 2.3						
1.	x = 18	2. $t = -1$	3. $x = -2$	4.	$z = \frac{3}{2}$	5,	x = 5	6. $x = 0$
		8. $x = 10$						
		ਅਭਿਆਸ 2.4	ł					
1.	4	2. 7,35	3. 36	4.	26 (ਜ [†] 62)			
5.	ਸ਼ੋਬੋ ਦੀ ਉਮਰ	= 5 ਸਾਲ: ਸ਼ੋਬੋ ਦੀ ਮ	ਜਾਂ ਦੀ ਉਮਰ = 30 ਸ	ਲਾਲ				
6.	ਲੰਬਾਈ = 27	5 m; ਚੌੜਾਈ = 100	m	7.	200 m	8.	72	
		ਮਰ = 6 ਸਾਲ; ਦਾਦਾ	그 요즘 영웅 영화 집에 집에 다 한 것이 같다. 것이 집에 집에 집에 들어야 한다.					
10,	ਅਮਨ ਦੀ ਉਮ	ਰ = 60 ਸਾਲ: ਅਮਰ	ਨ ਦੇ ਪੁੱਤਰ ਦੀ ਉਮਰ	f = 20 R	ਲਾ			

ਉੱਤਰਮਾਲਾ 🔳 275

ਅਭਿਆਸ 2.5 **1.** $x = \frac{27}{10}$ **2.** n = 36 **3.** x = -5 **4.** x = 8 **5.** t = 26. $m = \frac{7}{5}$ 7. t = -2 8. $y = \frac{2}{3}$ 9. z = 2 10. f = 0.6🔊 ਅਭਿਆਸ 2.6 **1.** $x = \frac{3}{2}$ **2.** $x = \frac{35}{33}$ **3.** z = 12 **4.** y = -8 **5.** $y = -\frac{4}{5}$ 6. ਹਰੀ ਦੀ ਉਮਰ = 20 ਸਾਲ; ਹੈਰੀ ਦੀ ਉਮਰ = 28 ਸਾਲ 7. $\frac{13}{21}$ ਅਭਿਆਸ 3.1 1. (a) 1, 2, 5, 6, 7 (b) 1.2, 5, 6, 7 (c) 1, 2, 4 (d) 2 (c) 1.4

 2. (a) 2
 (b) 9
 (c) 0
 3. 360° ; $\overline{\sigma}^{\dagger}$

 4. (a) 900°
 (b) 1080°
 (c) 1440°
 (d) (n-2)180°
 5. ਬਰਾਬਰ ਭੁਜਾਵਾਂ ਅਤੇ ਬਰਾਬਰ ਕੋਣਾਂ ਵਾਲਾ ਇੱਕ ਬਹੁਭੁਜ (iii) **ਸਮਛੇ**ਭਜ (i) ਸਮਭਜੀ ਤਿਕੋਣ (1) ਵਰਗ (c) 140° (d) 108° 6. (a) 60° (b) 140° 7. (a) $x + y + z = 360^{\circ}$ (b) $x + y + z + w = 360^{\circ}$ ਅਭਿਆਸ 3.2 **1.** (a) $360^{\circ} - 250^{\circ} = 110^{\circ}$ (b) $360^{\circ} - 310^{\circ} = 50^{\circ}$ 2. (i) $\frac{360^{\circ}}{9} = 40^{\circ}$ (ii) $\frac{360^{\circ}}{15} = 24^{\circ}$ 3. 360 24 = 15 ਭੁਜਾਵਾਂ
 4. ਭੁਜਾਵਾਂ ਦੀ ਸੰਖਿਆ = 24 (i) ਨਹੀਂ (ਕਿਉਂਕਿ 360 ਨੂੰ 22 ਨਹੀਂ ਵੰਡਦਾ ਹੈ)) 5. (ii) ਨਹੀਂ (ਕਿਉਂਕਿ ਹਰੇਕ ਬਾਹਰੀ ਕੋਣ 180° – 22° = 158° ਹੈ, ਜੋ 360° ਨੂੰ ਨਹੀਂ ਵੰਡਦਾ ਹੈ।) (a) ਕਿਉਂਕਿ ਸਮਭੂਜੀ ਤ੍ਰਿਭੂਜ ਤਿੰਨ ਭੁਜਾਵਾਂ ਦਾ ਇੱਕ ਸਮਬਹੁਭੂਜ ਹੈ, ਇਸ ਲਈ ਇਸਦੇ ਹਰੇਕ ਅੰਦਰਲੇ ਕੋਣ ਦੀ 6. ਘੱਟ ਤੋਂ ਘੱਟ ਮਾਪ = 60° ਹੈ। (b) (a) ਅਸੀਂ ਦੇਖ ਸਕਦੇ ਹਾਂ ਕਿ ਸਭ ਤੋਂ ਵੱਡਾ ਬਾਹਰੀ ਕੋਣ 120° ਹੋਵੇਗਾ। 🔊 ਅਭਿਆਸ 3.3 1. (i) BC (ਸਨਮੁੱਖ ਭੂਜਾਵਾਂ ਬਰਾਬਰ ਹੁੰਦੀਆਂ ਹਨ। (ii) 🖉 DAB (ਸਨਮੁੱਖ ਕੋਣ ਬਰਾਬਰ ਹੁੰਦੇ ਹਨ।)

276 🔳 ਗਣਿਤ

- (iii) OA (ਵਿਕਰਨ ਇੱਕ ਦੂਜੇ ਨੂੰ ਸਮਦੁਭਾਜਿਤ ਕਰਦੇ ਹਨ।)
- (iv) 180° (ਕਾਟਵੀਂ ਰੇਖਾ ਦੇ ਇੱਕ ਹੀ ਪਾਸੇ ਦੇ ਅੰਦਰਲੇ ਕੋਣ, ਕਿਉਂਕਿ AB I DC)
- **2.** (i) $x = 80^\circ$; $y = 100^\circ$; $z = 80^\circ$
 - (iii) $x = 90^\circ$; $y = 60^\circ$; $z = 60^\circ$
- (ii) $x = 130^{\circ}$; $y = 130^{\circ}$; $z = 130^{\circ}$ (iv) $x = 100^{\circ}$; $y = 80^{\circ}$; $z = 80^{\circ}$

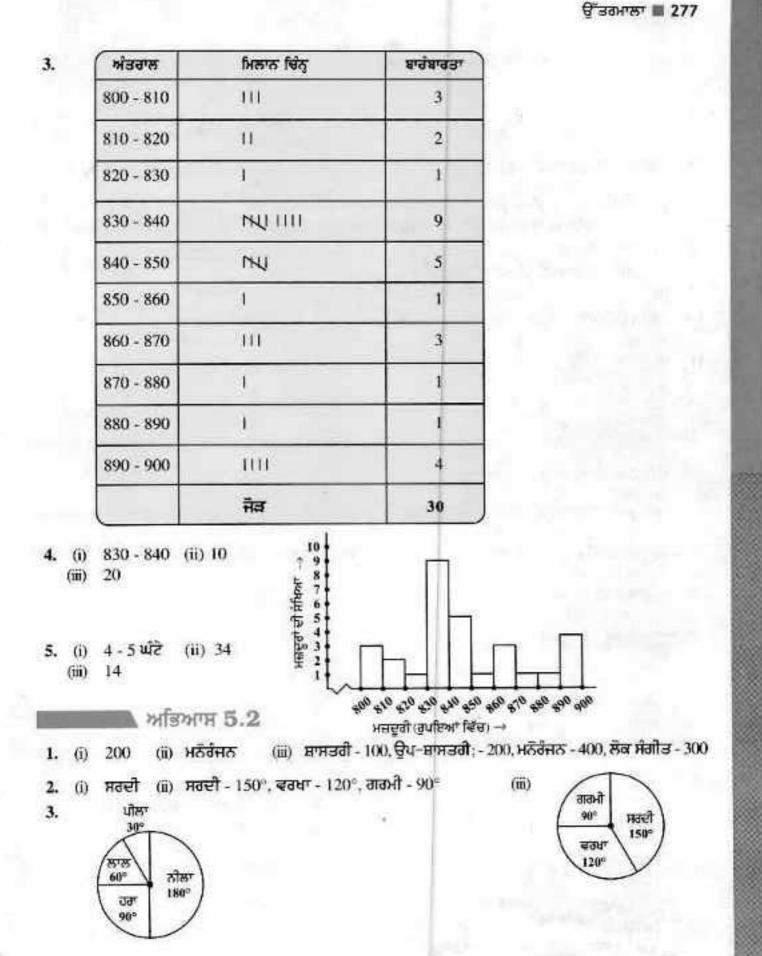
9. $x = 50^{\circ}$

- (v) $y = 112^\circ; x = 28^\circ; z = 28^\circ$
- (i) ਹੋ ਸਕਦਾ ਹੈ, ਪਰ ਜ਼ਰੂਰੀ ਨਹੀਂ ਹੈ।
 - (ii) ਨਹੀਂ ; (ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਵਿੱਚ, ਸਨਮੁੱਖ ਭੁਜਾਵਾਂ ਬਰਾਬਰ ਹੁੰਦੀਆਂ ਹਨ, ਪਰੰਤੂ ਇੱਥੇ AD ≠ BC ਹੈ।)
 - (iii) ਨਹੀਂ : (ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਵਿੱਚ, ਸਨਮੁੱਖ ਕੋਣ ਬਰਾਬਰ ਹੁੰਦੇ ਹਨ, ਪਰੰਤੂ ਇੱਥੇ ∠A ≠ ∠C ਹੈ)
- ਉਦਾਹਰਣ, ਇੱਕ ਪਤੰਗ 5. 108°; 72°;
 0. ਹਰੇਕ ਕੋਣ ਇੱਕ ਸਮਕੋਣ ਹੈ।
- 7. $x = 110^{\circ}$; $y = 40^{\circ}$; $z = 30^{\circ}$
- 8. (i) x = 6; y = 9 (ii) x = 3; y = 13;
- 10. NM II KL (ਕਾਟਵੀਂ ਰੇਖਾ ਦੇ ਇੱਕ ਹੀ ਪਾਸੇ ਦੇ ਅੰਦਰਲੇ ਕੋਣਾਂ ਦਾ ਜੋੜ 180° ਹੈ।) ਇਸ ਲਈ, KLMN ਇੱਕ ਸਮਲੰਬ ਚਤੁਰਭੁਜ ਹੈ।
- **11.** 60° **12.** $\angle P = 50^{\circ}; \angle S = 90^{\circ}$

\Lambda ਅਭਿਆਸ 3.4

- 1. (b), (c), (f), (g) ਅਤੇ (h) ਠੀਕ ਹਨ, ਬਾਕੀ ਗਲਤ ਹਨ।
- (a) সমতন্ত্রবরুন; বররা
 (b) বররা; আহির
- (i) ਇੱਕ ਵਰਗ ਵਿੱਚ ਚਾਰ ਭੁਜਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ ਇਸ ਲਈ ਇਹ ਇੱਕ ਚਤੁਰਭੁਜ ਹੈ।
 - (ii) ਇੱਕ ਵਰਗ ਦੀਆਂ ਸਨਮੁੱਖ ਭੁਜਾਵਾਂ ਸਮਾਂਤਰ ਹੁੰਦੀਆਂ ਹਨ; ਇਸ ਲਈ ਇਹ ਇੱਕ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਹੈ।
 - (iii) ਵਰਗ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਹੈ ਜਿਸਦੀਆਂ ਚਾਰ ਭੁਜਾਵਾਂ ਬਰਾਬਰ ਹੁੰਦੀਆਂ ਹਨ। ਇਸ ਲਈ ਇਹ ਇੱਕ ਸਮਚਤੁਰਭੁਜ ਹੈ।
 - (iv) ਵਰਗ ਇੱਕ ਇਸ ਤਰ੍ਹਾਂ ਦਾ ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ਹੈ, ਜਿਸਦੇ ਸਾਰੇ ਕੋਣ ਸਮਕੋਣ ਹੁੰਦੇ ਹਨ; ਇਸ ਲਈ ਇਹ ਇੱਕ ਆਇਤ ਹੈ।
- 4. (i) ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ, ਸਮਚਤੁਰਭੁਜ; ਵਰਗ ਅਤੇ ਆਇਤ
 - (ii) ਸਮਚਤੁਰਭੁਜ; ਵਰਗ (iii) ਵਰਗ; ਆਇਤ
- ਇਸਦੇ ਦੋਨੋਂ ਵਿਕਰਨ ਇਸ ਦੇ ਅੰਦਰਲੇ ਭਾਗ ਵਿੱਚ ਸਥਿਤ ਹੁੰਦੇ ਹਨ।
- 6. AD || BC; AB || DC ਹੈ। ਇਸ ਲਈ, ਸਮਾਂਤਰ ਚਤੁਰਭੁਜ ABCD ਵਿੱਚ ਵਿਕਰਨ AC ਦਾ ਮੱਧ ਬਿੰਦੂ O ਹੈ।

ਅਭਿਆਸ 5.1


2.

1. (b), (d) ਇਹਨਾਂ ਸਾਗੋਆਂ ਸਥਿਤੀਆਂ ਵਿੱਚ, ਅੰਕੜਿਆਂ ਨੂੰ ਵਰਗ ਅੰਤਰਾਲਾਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਖਰੀਦਣ ਵਾਲਾ	ਮਿਲਾਨ ਚਿੰਨ੍ਹ	ਸੱਖਿਆ
W	M M M M M M M	28
М	THI THI THI	15
• B	NU	5
G	IN INVIII	12

~

diestodav_com

Downloaded tror

	8 🖩	ਗਣਿਕ	3											
ŀ.	0	ਹਿੰਦ	गे (ii)	30 v i	वि	(iii)	ਹਾਂ		5.		ਬੈਗਲ ਤਮਿਲ ²⁰¹ 35°			
											ਮਰਾਠੀ 45°	} } f∂e 200	i)	
			১ স্পরি	איא	5.3						ਅੰਗਰੇਜ਼ੀ			
						HT ਦ	ਾ ਅਰਥ	ਹੈ ਕਿ ਪ	ਹਿਲਾ	ਸਿੱ	ਆ ਕੇ 'ਤੇ ਚਿਤ (He	:ad) 달	ਜਰੇ ਸਿੱਕੇ 'ਤੇ ਪ	र (Tai
	ਹੇਠ		ਪ੍ਰਾਪਤ a	ਰਨ ਦੱ	ो ਘਟਨ	ਾ ਦੇ ਨ	ਤੀਜੇ :							
	(i)	(a)	2, 3, 5		(b)	1, 4.	6							
	(ii)	(a)	6		(b)	1, 2,	3, 4, 5							
3.	(a)	$\frac{1}{5}$	(b)			(c)	$\frac{4}{7}$							
١.	6)	$\frac{1}{10}$	(ii)	$\frac{1}{2}$		(iii)	$\frac{2}{5}$		(iv)	9	5			
		ð =				ਜੰਭਾਵਨ		: ਇੱਕ f	ਇਸ ਤ	ਤਰ੍ਹਾਂ	ਚੱਕਰਖੰਡ ਪ੍ਰਾਪਤ	ਕਰਨ	ਦੀ ਸੰਭਾਵਨਾ	ਜੋ ਨੀਲ
			1.00	12 million - 12 mi		100 1		1.	19 B					
	ਅਭ	ਜ ਨ						100			ਤਰ੍ਹਾਂ ਦੀ ਸੰਖਿਅ ਨਾ = <mark>1</mark> 6, 5 ਤੋਂ ਵ			
	ਅਭ	ਜ ਨ	$ \vec{H} = \frac{1}{2} $ $ \vec{N} = \frac{5}{6} $.5 1		ਸੰਖਿਅ		100						
	ਅਭ	ਾਜ ਨਰ ਸ਼ਂਭਾਵ	$ \vec{H} = \frac{1}{2} $ $ \vec{N} = \frac{5}{6} $. 5 ਹੈ ਅਾਸ	ਤੋਂ ਵੱਡੀ	ਸੰਖਿਅ	ਾ ਪ੍ਰਾਪਤ	ਕਰਨ ਚ		ਾਵ	ਨਾ = <mark>1</mark> , 5 ਤੋਂ ਵ		ਖਆ ਪ੍ਰਾਪਤ ਹ	ਨਹੀਂ ਕਰ
	ਅਭ ਦੀ ਸ	ਾਜ ਨਾ ਜਂਭਾਵ 1	ਸੀ ਹੈ = <u> </u> ਨਾ = <u>5</u> ਅਭਿ	ੇ.5 ਹੈ ਆਸ 4	ਤੋਂ ਵੱਡੀ	ਸੰਖਿਅ	ਾ ਪ੍ਰਾਪਤ 1	ਕਰਨ ਚ	ਈ ਸੰਭ	ਾਵ 9	ਨਾ = <mark>1</mark> , 5 ਤੋਂ ਵ	ਵੱਡੀ ਸੰਧਿ		ਨਹੀਂ ਕਰ
	ਅਭ ਦੀ ਸ (i) (vii)	ਾਜ ਨਰ ਸ਼ਂਭਾਵ 1 4	ਸੀ ਹੈ = $rac{1}{2}$ ਨਾ = $rac{5}{6}$ ਆਭਿ (ii)	ੇ.5 ਹੈ ਅਸਾਸ 4 0	ਤੋਂ ਵੱਡੀ 6.1	ที่โชษ (iii) (ix)	ਾ ਪ੍ਰਾਪਤ 1 6	ਕਰਨ ਦ	ਈ ਸੰਭ (īv)	ਾਵ 9	ਨਾ = <mark>1</mark> , 5 ਤੋਂ ਵ	ਵੱਡੀ ਸੰਧਿ	ਖਆ ਪ੍ਰਾਪਤ ਹ	ਨਹੀਂ ਕਰ
	ਅਭ ਦੀ ਸ (i) (vii) ਇਹ (i)	ਾਜ ਨਾ ਜੇਭਾਵ 1 4 ਸੰਖਿਖ	ਸੀ ਹੈ = $rac{1}{2}$ ਨਾ = $rac{5}{6}$ ਅਭਿ (ii) (viii)	1.5 ਹੈ 1997 4 5 ਲਿਖੇ 3	ਤੋਂ ਵੱਡੀ 6.1	ที่โชษ (iii) (ix)	ਾ ਪ੍ਰਾਪਤ 1 6 ਹਿਆਂ ਹਟ	r वरत स 5 :	ਈ ਸੰਭ (īv)	ਸਾਵ 9 5	ਨਾ = <mark>1</mark> , 5 ਤੋਂ ਵ	ਵੱਡੀ ਸੰਸਿ 6	ਖਆ ਪ੍ਰਾਪਤ ਹ	ਤਹੀਂ ਕਰ 9
	ਅਭ ਦੀ ਸ (i) (vii) ਇਹ (i)	ਾਜ ਨਰ ਜਂਭਾਵ 1 4 ਸੰਖਿਖ 7 0	ਸੀ ਹੈ = $rac{1}{2}$ ਨਾ = $rac{5}{6}$ (ii) (viii) ਆਵਾਂ ਹੋਟ (ii)	1.5 ਹੈ 1997 4 5 ਲਿਖੇ 3	ਤੋਂ ਵੱਡੀ 6.1	ਸੰਖਿਅ (iii) (ix) ਤਮ ਹੁੰਦ	ਾ ਪ੍ਰਾਪਤ 1 6 ਹਿਆਂ ਹਟ	r वरत स 5 :	ਈ ਸੰਭ (iv) (x)	ਸਾਵ 9 5	ਨਾ = <mark>1</mark> , 5 ਤਾਂ ਰ (v) (v)	ਵੱਡੀ ਸੰਸਿ 6	ਖਆ ਪ੍ਰਾਪਤ ਹ (vi) (vi)	9 2
I	ਅਭ ਦੀ ਸ (i) (vii) ਇਹ (i) (vii)	ਾਜ ਨਰ ਜੇਤਾਵ 1 4 ਸੰਖਿਖ 7 0 iii)	ਸੀ ਹੈ = $rac{1}{2}$ ਨਾ = $rac{5}{6}$ (ii) (viii) ਆਵਾਂ ਹੋਟ (ii)	ੇ, 5 ਵੱ ਅਸਾਸ 4 0 5 ਲਿਖੇ 3 0	ਤੋਂ ਵੱਡੀ 6.1 'ਤੇ ਸ਼ੁਰ	ที่โชฟ (iii) (ix) มห ซู้ เ (iii)	ਾ ਪ੍ਰਾਪਤ 1 6 ਹਿਆਂ ਹਟ	r वरत स 5 :	(iv) (x) (iv)	9 5 2 4.	ਨਾ = <mark>1</mark> , 5 ਤੋਂ ਵ (v)	ਵੱਡੀ ਸੰਸਿ 6	ਖਆ ਪ੍ਰਾਪਤ ਹ (vi) (vi)	9 2
I. 2.	ਅਭ ਦੀ ਸ (i) (vii) ਇਹ (i) (vii) (i), 102	ਾਜ ਨਰ ਜੇਤਾਵ 1 4 ਸੰਖਿਖ 7 0 iii)	ਸੀ ਹੈ = $\frac{1}{2}$ ਨਾ = $\frac{5}{6}$ (ii) (viii) ਆਵਾ ਹੋਟ (ii) (viii) 030201	ੇ, 5 ਵੱ ਅਸਾਸ 4 0 5 ਲਿਖੇ 3 0	ਤੋਂ ਵੱਡੀ 6.1 'ਤੇ ਸ਼ੁਰ	ที่โชฟ (iii) (ix) มห ซู้ เ (iii)	ਾ ਪ੍ਰਾਪਤ 6 ਐਆਂ ਹਨ 8	r वरत स 5 :	(iv) (x) (iv)	9 5 2 4.	ਨਾ = <mark>1</mark> , 5 ਤਾਂ ਰ (v) 1000020000	ਵੱਡੀ ਸੰਸਿ 6	ਖਆ ਪ੍ਰਾਪਤ ਹ (vi) (vi)	9 2
	ਅਭ ਦੀ ਸ (i) (vii) (vii) (i), (i), 102 (i)	ਾਜ ਨਰ ਸੰਭਾਵ 1 ਸੀਖਿਅ 7 0 (iii) 0304 25	ਸੀ ਹੈ = $\frac{1}{2}$ ਨਾ = $\frac{5}{6}$ (ii) (viii) ਆਵਾ ਹੋਟ (ii) (viii) 030201	ੇ, 5 ਵੱ 7ਅਾਸ 4 0 5 ਲਿਬੇ 3 0 , 1010 100	ਤੋਂ ਵੱਡੀ 6.1 `ਤੇ ਖ਼ਤ	ร์โชฟ (ii) (ix) รห ปี๋ ट (ii) 1 ² (iii)	ਾ ਪ੍ਰਾਪਤ 6 ਐਆਂ ਹਨ 8	r वरत स 5 :	(iv) (x) (iv)	9 5 2 4.	ਨਾ = <mark>1</mark> , 5 ਤਾਂ ਰ (v) 1000020000	ਵੱਡੀ ਸੰਸਿ 6	ਖਆ ਪ੍ਰਾਪਤ ਹ (vi) (vi)	9 2
1.	ਅਭ ਦੀ ਸ (i) (vii) (vii) (i), (i), 102 (i)	ਾਜ ਨਰ ਸੰਭਾਵ 1 4 ਸੀਖਿਅ 7 0 (iii) 0304 25 1 +	ਸੀ ਹੈ = $rac{1}{2}$ ਨਾ = $rac{5}{6}$ (ii) (viii) ਆਵਾ ਹੋਟ (ii) (viii) 030201 (ii)	2,5 ਵੱ 79477 4 0 5 ਲਿਖੇ 3 0 , 1010 100 7 + 9	ਤੋਂ ਵੱਡੀ 6.1 'ਤੇ ਖ਼ਤ 01010 + 11 -	ร์โนฟ (iii) (ix) (ix) (iii) 1 ² (iii) + 13	ਾ ਪ੍ਰਾਪਤ 1 ਨੀਆਂ ਹਨ 8 144	ਕਰਨ ਦ 5 :	(iv) (x) (jv)	9 5 2 4.	ਨਾ = <mark>1</mark> , 5 ਤਾਂ ਰ (v) 1000020000	ਵੱਡੀ ਸੰਸਿ 6	ਖਆ ਪ੍ਰਾਪਤ ਹ (vi) (vi)	9 2

ਉੱਤਰਮਾਲਾ 🖀 279

dlestodav.com

			ਅਭਿ	ਆਸ 6.2	2			- 1				
1.	(i)	1024	(ii)	1225	(iii)	7396	(iv)	8649	(v)	5041	(vî)	2116
2.	(1)	6,8,1	0 (ii)	14,48,50	(iii)	16,63,65	(iv)	18,80,82				
	-		ਅਭਿ	দ্যাদ্য 6.3	3			-				
1.	(ī)	1, 9	(ii)	4,6	(iii)	1, 9	(iv)	5				
2.	(i), ((ii), (iii)		3.	10, 13	i.						
4.	(i)	27	(ii)	20	(iii)	42	(iv)	64	(v)	88	(vi)	98
	(vii)	77	(viii)	96	(ix)	23	(x)	90				
5.	(i)	7;42	(ii)	5; 30	(iii)	7,84	(iv)	3;78	(v)	2:54	(vi)	3;48
6.	6)	7:6	(ii)	13; 15	(iii)	11:6	(vi)	5;23	(v)	7;20	(vi)	5;18
7.	49			8. 45 8	ਸਈਨਾਂ,	ਹਰੇਕ ਲਾਈਟ	ਂ ਵਿੱਚ	45 ਪੌਦੇ	9. 9	200	10.	3600
	2	-	সভি	দ্যম 6.4	1			1.1				
1.	(i)	48	(ii)	67	(iii)	59	(iv)	23	(v)	57	(vi)	37
	(vii)		(viii)		(ix)	24	(x)	32	1000	56	(xii)	30
	(i)		(ii)	2	(iii)	2	(iv)	3	(v)	3		
- 227	- 20 C	1.6	(ii)	2.7	(iii)	7.2	(iv)	6.5	(v)	5.6		
4.	6)	2; 20	(ii)	53;44	(iii)	1:57	(iv)	41;28	(v)	31; 63		
5.	(i)	4:23	(ii)	14; 42	(iii)	4;16	(iv)	24; 43	(v)	149; 81		
6.	211	m		7.	(a) l	0 cm	1	b) 12 cm				
8.	241	ਪੈਂਦੇ		9.	16 ਬੱਚੇ	t.						
	1	-	ਅਭਿ	PMTH 7.1	L							
1.	(ii)	ਅਤੇ (iv)									
2.	(i)	3	(ii)	2	(11)	3	(iv)	5	(v)	10		
3.	6)	3	(ii)	2	(iii)	5	(iv)	3	(v)	11		
4.	20	ਘਣਾਵ						1.0				
			সাহি	ਆਸ 7. :	2							
1.	(i)	4	(ii)	8	(iii)	22	(iv)	30	(v)	25	(vi)	24
	(vii)	48	(viii)	36	(ix)	56						
2.	(i)	ਗਲਤ	(ii)	ਠੀਕ	(iii)	ਗਲਤ	(iv)	ਗਲਤ	(v)	ਗਲਤ	(vi)	ਗਲਤ
	(vii)	ਠੀਕ										

3. 11, 17, 23, 32

Down	loodod	from h	ttpc://	MANAAA C	tudiestoda [:]	voom
	Uaueu		$\mathfrak{m}\mathfrak{p}\mathfrak{s}\mathfrak{m}$		ludiesloda	y.com

28	0 🔳 ਗਣਿ	3									
1	(m. 1)	শ্ৰ পাৰি	ਸਾਮਾਸ	8.1							
1.	(a) 1:	2 (b)	1:2	000	(c)	1:10					
2.	(a) 759	% (b)	$66\frac{2}{3}$	‰	3.	28% दि	ਦਿ	ਆਰਥੀ	4.	25 ਮੈਂਤ	ਰ 5. ₹ 2400
6.	10%, ब्रि	$az \rightarrow 2$	30 ਲੱਖ	, ਫੁਟਬਾਲ	5→	15 ਲੱਖ; ਹੋ	ਰ ਹੋ	। बेड†→ 5 1	ਲੱਖ		
dani.		> সাহি	ਸਾਮਾਸ	8.2							
1.	₹ 1,40,0	00	2.	80%		3	1	₹ 34.80		4.	₹ 18342.50
5.	2% ਲਾਭ		6.	₹ 2835	5	7		₹ 1269.8	4 ਦੀ ਹ	ਨੀ	
8.	₹ 14560		9.	₹ 2000)	10	•	₹ 5000			
		🛦 ਅਭি	ਸਾਮਾ	8.3							
1.	(a) fHE	ਰਧਨ =	₹ 153	77.34 ;	ਮਿਸ਼ਕ	ਰਤ ਵਿਆਜ	T =	₹ 4577.	34		
	(b) fня	ਰਧਨ =	₹ 228	69 ;		ਵਿਆਜ	r =	₹ 4869			
	(c) fHE	ਰਧਨ =	₹ 70,3	04;		ਵਿਆਜ	r =	₹ 7804			
	(d) fHE	ਰਧਨ =	₹ 8734	5.20 ;		ਵਿਆਜ	=	₹ 736.20	D		
	(e) fire	वपठ =	₹ 10,8	16;		ਵਿਆਜ	T =	₹816			
2.	₹ 36659	.70	3.	ਫੈਬਿਨਾ	₹ 36	2.50 far	re	ਾ ਦਿੰਦੀ ਹੈ	1	4.	₹ 43.20
5.	(ii) ₹63	600		(ii) ₹ (741	6 6	. 3	(i) ₹924	00		(ii) ₹92610
	(i) ₹88			(ii) ₹4				ARTICLE CONTRACTOR			CARGE AND AND
8.	ਜਿਸ਼ਰਧਨ	= ₹ 115	76.25	; ਵਿਆ	न =	₹ 1576.2	5.	ਹਾਂ			
									5	11.	531616 (ਲਗਭਗ)
	₹ 38640										
No.			-	0.1				C	Gul	_	2

	10.00		Sec. 1	-	-		
	2141	- 61	241	1.11		1.00	
	1/11		***	ਾਸ		1.1	
_					-		

	ਪਦ	ਗੁਣਾਂਕ
6)	5xyz² -3zy	5 -3
(ii)	$\frac{1}{x}$ x^2	1 1 1
(iii)	$ \begin{array}{r} 4x^2y^2 \\ - 4x^2y^2z^2 \\ z^2 \end{array} $	4 -4

(iv)	3 - pq qr - rp	3 -1 1 -1
(v)	$\frac{\frac{x}{2}}{\frac{y}{2}}$ -xy	$\frac{\frac{1}{2}}{\frac{1}{2}}$
(vi)	0.3a - 0.6ab 0.5b	0.3 - 0.6 0.5

ਉੱਤਰਮਾਲਾ 🔳 281

- ਇੱਕ ਪਦੀ 1000, pqr ਦੋ ਪਦੀ: x + y, 2y - 3y², 4z - 15z², p²q + pq², 2p + 2q ਤਿੰਨ ਪਦੀ: 7 + y + 5x, 2y - 3y² + 4y³, 5x - 4y + 3xy ਉਹ ਬਹੁਪਦ ਜੋ ਉਪਰੋਕਤ ਸ਼੍ਰੇਣੀਆਂ ਵਿੱਚ ਨਹੀਂ ਆਉਂਦੇ ਹਨ: x + x² + x³ + x⁴, ab + bc + cd + da
- **3.** (i) 0 (ii) ab + bc + ac (iii) $-p^2q^2 + 4pq + 9$ (iv) $2(l^2 + m^2 + n^2 + lm + mn + nl)$
- 4. (a) 8a 2ab + 2b 15 (b) 2xy 7yz + 5zx + 10xyz(c) $p^2q - 7pq^2 + 8pq - 18q + 5p + 28$

ਅਭਿਆਸ 9.2

1. (i) 28p (ii) $-28p^2$ (iii) $-28p^2q$ (iv) $-12p^4$ (v) 0 **2.** pq; 50 mn; 100 x^2y^2 ; $12x^3$; $12mn^2p$ **3.**

ਪਹਿਲਾ ਇੱਕ ਪਦੀ : → ਦੂਸਰਾ ਇੱਕ ਪਦੀ :↓	2 <i>x</i>	-5y	3x ²	-4xy	7 <i>x</i> ² <i>y</i>	-9x ² y ²
2 <i>x</i>	4 <i>x</i> ²	-10.xy	6x ³	-8x ² y	14x ³ y	$-18x^3y^2$
-5y	-10xy	25y ²	$-15x^{2}y$	20xy ²	$-35x^2y^2$	$45x^2y^3$
3 <i>x</i> ²	6x ³	$-15x^2y$	9x*	$-12x^3y$	21x4y	$-27x^4y^2$
- 4xy	$-8x^2y$	20xy2	-12x ³ y	$16x^{2}y^{2}$	$-28x^3y^2$	36x ³ y ³
$7x^2y$	14x ³ y	$-35x^2y^2$	21 <i>x</i> ⁴ y	$-28x^3y$	$49x^4y^2$	$-63x^4y^3$
$-9x^2y^2$	$-18x^3y^2$	$45x^2y^3$	$-27x^4y^2$	36x ³ y ²	$-63x^4y^3$	81x4y4

4.	(i)	$105a^{2}$	(ii)	64pqr	(iii)	$4x^4y^4$	(iv)	6abc		
5.	(i)	$x^2y^2z^2$	(ïi)	- a ⁶	(iii)	1024y ⁴	(iv)	$36a^{2}b^{2}c^{2}$	(v)	$-m^3n^2p$

ਅਭਿਆਸ 9.3

1.	(i)	4pq + 4pr	(ii)	$a^2b - ab^2$ (iii) $7a^3b^2 + 7a^2b^3$
	(iv)	4a ³ - 36a ((v)	0
2.	ŵ	ab + ac + ad	(ii)	$5x^2y + 5xy^2 - 25xy$
	(iii)	$6p^1 - 7p^2 + 5p$		- 1200 - 1200 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000
	(iv)	$4p^4q^2 - 4p^2q^4$ (V)	$a^{2}bc + ab^{2}c + abc^{2}$
3.	(i)	$8a^{50}$ (ii) $-\frac{3}{5}x^3y^3$ (i	iii)	$-4p^4q^4$ (iv) x^{10}
4.	(a)	$12x^2 - 15x + 3;$	(i)	66 (ii) $\frac{-3}{2}$
	(b)	$a^{4} + a^{2} + a + 5;$	6)	1.5.1 260 HTTL
5.	(a)	$p^2 + q^2 + r^2 - pq - qr - pr$		(b) $-2x^2 - 2y^2 - 4xy + 2yz + 2zx$
	(c)	$5l^2 + 25ln$		(d) $-3a^2 - 2b^2 + 4c^2 - ab + 6bc - 7ac$

282 🔳 ਗਣਿਤ

a la seconda de la		-	~	
সার	M .4			100
621154	121			

1. (i)	$8x^2 + 14x - 15$	(ii)	$3y^2 - 28y + 32$	1.00.000	$6.25l^2 - 0.25m^2$
	ax + 5a + 3bx + 15b	(v)	$6p^2q^2 + 5pq^3 - 6q^4$	1.10.10	$3a^4 + 10a^2b^2 - 8b^4$
	$15 - x - 2x^2$	(ii)	$7x^2 + 48xy - 7y^2$	(iii)	$a^3 + a^2b^2 + ab + b^3$
(iv)	$2p^3 + p^2q - 2pq^2 - q^3$				A TAKEN A
	$x^3 + 5x^2 - 5x$	(ii)	$a^{2}b^{3} + 3a^{2} + 5b^{3} + 20$	(iii)	$t^3 - st + s^2 t^2 - s^3$
	4ac	(v)	$3x^2 + 4xy - y^2$	(vi)	$x^3 + y^3$
(vii)	$2.25x^2 - 16y^2$	(viii)	$a^2 + b^2 - c^2 + 2ab$		
10.0	62				

1. (i)	$x^2 + 6x + 9$	(ii) $4y^2 + 20y + 25$	(iii) $4a^2 - 28a + 49$
(iv)	$9a^2 - 3a + \frac{1}{4}$	(v) $1.21m^2 - 0.16$	(vi) $b^4 - a^4$

(vii) $36x^2 - 49$ (viii) $a^2 - 2ac + c^2$ (ix) $\frac{x^2}{4} + \frac{3xy}{4} + \frac{9y^2}{16}$

(iv) $\frac{4}{9}m^2 + 2mn + \frac{9}{4}n^2$ (vi) $4x^2y^2 + 20xy^2 + 25y^2$ (v) $0.16p^2 + 0.04pq + 0.25q^2$ (iii) $98m^2 + 128n^2$ 4. (i) $a^4 - 2a^2b^2 + b^4$ (ii) 40x (vi) $a^2b^2 + b^2c^2$ (vii) $m^4 + n^4m^2$ (iv) $41m^2 + 80mn + 41n^2$ (v) $4p^2 - 4q^2$ (ii) 9801 (iii) 10404 (iv) 996004 5041 6. (i) (vi) 89991 (vii) 6396 (viii) 79.21 27.04 (v)

 (ix)
 9.975

 7.
 (i)
 200

 (ii)
 0.08
 (iii)
 1800
 (iv)
 84

 8.
 (i)
 10712
 (ii)
 26.52
 (iii)
 10094
 (iv)
 95.06

ਅਭਿਆਸ 10.1

1. (a) \rightarrow (iii) \rightarrow (iv) (b) \rightarrow (i) \rightarrow (v) (c) \rightarrow (iv) \rightarrow (ii) (d) \rightarrow (v) \rightarrow (iii) (e) \rightarrow (ii) \rightarrow (i)

(i) → ਸਾਹਮਣੇ, (ii) → ਇੱਕ ਪਾਸੇ ਤੋਂ (iii) → ਉਪਰੋਂ (b) (i) → ਇੱਕ ਪਾਸੇ ਤੋਂ, (ii) → ਸਾਹਮਣੇ, (iii) → ਉਪਰੋਂ
 (c) (i) → ਸਾਹਮਣੇ, (ii) → ਇੱਕ ਪਾਸੇ ਤੋਂ (iii) → ਉਪਰੋਂ (d) (i) → ਸਾਹਮਣੇ, (ii) → ਇੱਕ ਪਾਸੇ ਤੋਂ (iii) → ਉਪਰੋਂ

3. (a) (i) $\rightarrow \oplus u\bar{d}$ (ii) $\rightarrow \pi u \lambda \bar{c}$ (iii) $\rightarrow \forall \bar{d} u \bar{r} \bar{h} \bar{s}$ (b) (i) $\rightarrow \forall \bar{d} u \bar{r} \bar{h} \bar{s}$, (ii) $\rightarrow \pi u \lambda \bar{c}$, (iii) $\rightarrow \oplus u\bar{d} \bar{d}$

(c) (i) → $\mathfrak{G}\mathfrak{u}\mathfrak{d}(ii)$ → $\mathfrak{k}\mathfrak{d}\mathfrak{u}\mathfrak{n}\mathfrak{d}(iii)$ → $\mathfrak{k}\mathfrak{n}\mathfrak{u}\mathfrak{n}\mathfrak{d}\mathfrak{d}(iii)$ → $\mathfrak{k}\mathfrak{n}\mathfrak{u}\mathfrak{n}\mathfrak{d}\mathfrak{d}(ii)$ → $\mathfrak{k}\mathfrak{n}\mathfrak{u}\mathfrak{n}\mathfrak{d}\mathfrak{d}(iii)$ → $\mathfrak{g}\mathfrak{u}\mathfrak{d}\mathfrak{d}(iii)$ → $\mathfrak{g}\mathfrak{u}\mathfrak{d}(iii)$ → $\mathfrak{g}\mathfrak{u}\mathfrak{d}(iii)$

(c) (i) → ਸਾਹਮਣੇ (ii) → ਉਪਰੋਂ (iii) → ਇੱਕ ਪਾਸੇ ਤੋਂ

Downlo	baded from h	ttps:	//	w.studiestoday.com
				ਉੱਤਰਮਾਲਾ 🖩 283
সারি	জ্ঞান 10.3			
1. (i) ਨਹੀਂ (ii) ਹਾਂ	a factoria (an			
2. ਤਦ ਸੰਭਵ ਹੈ ਜਦ	' ਫਲਕਾਂ ਦੀ ਸੰਖਿਆ 4 ਜਾਂ	ਉਸ ਤੋਂ 1	ਜ਼ਿਆਦਾ ਹੋਕ	e i
 ਕੋਵਲ (ii) ਅਤੇ (iv 4. (i) ਇੱਕ ਪਿਜ਼ਮ ਵੱ 		ਜਦ ਅਹ	ਸ਼ੁਰ ਦੀਆਂ ਕ	ਭੁਜਾਵਾਂ ਦੀ ਗਿਣਤੀ ਵੱਡੀ ਅਤੇ ਹੋਰ ਵੱਡੀ ਹੁੰਦੀ
ਜਾਂਦਾ ਹੈ।				
(II) ਇਕ ਪਿਰਾਸਤ ਜਾਂਦੀ ਹੈ।	ਅਕੂਦਾਰੂਪ ਲ ਲਦਾਹ,	, ਜਦ ਅਪ	ਸਰ ਦੀਆਂ ਹ	ਭੁਜਾਵਾਂ ਦੀ ਗਿਣਤੀ ਵੱਡੀ ਅਤੇ ਹੋਰ ਵੱਡੀ ਹੁੰਦੀ
5. ਨਹੀਂ। ਇਹ ਘਣਾ 8. ਨਹੀਂ	ਵ ਵੀ ਹੋ ਸਕਦਾ ਹੈ।	7.	ਫਲਕ → 8	, ਸਿਖਰ → 6, ਕਿਨਾਰੇ → 30
ਅਭਿ	ਆਸ 11.1	10		The server server a
1. (a)	2. ₹ 17,875	3,	ਖੇਤਰਫਲ =	129.5 m²; ਪਰਿਮਾਪ = 48 m
4. 45000 ਟਾਈਲਾਂ	5. (b)			
🔪 พโอ	ਆਸ 11.2			1
1. 0.88 m ²	2. 7 cm	3.	660 m²	4. 252 m ²
5. 45 cm ²	6. 24 cm ² , 6 cm	7.	₹ 810	8. 140 m
9. 119 m ²	10. ਜੋਤੀ ਦੀ ਵਿਧੀ ਨ	ਾਲ ਖੇਤਰ	ਫਲ = 2×	$\frac{1}{2} \times \frac{15}{2} \times (30 + 15) \text{ m}^2 = 337.5 \text{ m}^2$,
	ਕਵਿਤਾ ਦੀ ਵਿਧੀ	ਨਾਲ ਖੇਤ	ਤਰਫਲ = -	$\times 15 \times 15 + 15 \times 15 \text{ m}^2 = 337.5 \text{ m}^2$
1. 80 cm ² , 96 cm ² ,			2	
ਅਰਿ	ਆਸ 11.3			
1. (a)	2. 144 m	3.	10 cm	4. 11 m ²
5. 5 ਕੈਨ	(765-5750),876)	100.0		
 ਸਮਾਨਤਾ → ਦੋਨਾਂ ਦਾ ਖੇਤਰਫਲ ਜ਼ਿਆ 	ਦੀਆਂ ਬਰਾਬਰ ਉੱਚਾਈਆਂ ਾਦਾ ਹੈ।	ਹਨ; ਅੰ	ਤਰ → ਇੱਕ	ਵਿਲਣ ਹੈ ਅਤੇ ਦੂਸਰਾ ਘਣ ਹੈ। ਘਣ ਦੀ ਸਤ੍ਹਾ
7. 440 m ²	8. 322 cm	9. 1	1980 m ²	10. 704 cm ²
ਅਭਿ	ਆਸ 11.4			
an include the second second	(b) ਸਤ੍ਹਾ ਦਾ ਖੇਤਰਫਲ		1	(c) ਆਇਤਨ
	ਤਨ ਜ਼ਿਆਦਾ ਹੈ। ਵੇਲਣ ।	B ਦੀ ਸਤ	ਾ ਦਾ ਖੇਤਰ	
3. 5 cm	4. 450	5. 1		6. 49500 L
7. (i) ਚਾਰ ਗੁਣਾ (ii) ਅੱਠ ਗੁਣਾ	8. 3	30 mJS	
ਅਭਿ	ਆਸ 12.1			
$1 - 0 = \frac{1}{2} - 0$	$\frac{1}{12}$ (iii) 32			
1. (i) $\frac{1}{9}$ (ii)	16 (11) 52			

284 🖩 ਗਣਿਤ (ii) $\frac{1}{2^6}$ (iii) $(5)^4$ (iv) $\frac{1}{(3)^2}$ (v) $\frac{1}{(-14)^3}$ 2. (i) $\frac{1}{(-4)^3}$

 3. (i) 5
 (ii) $\frac{1}{2}$ (iii) 29
 (iv) 1
 (v) $\frac{81}{16}$

 4. (i) 250
 (ii) $\frac{1}{60}$ 5. m = 2 6. (i) -1
 (ii) $\frac{512}{125}$
7. (i) $\frac{625t^4}{2}$ (ii) 5⁵ ਅਭਿਆਸ 12.2

 1. (i) 8.5×10^{-12} (ii) 9.42×10^{-12}

 (iv) 8.37×10^{-9} (v) 3.186×10^{10}

 2. (i) 0.00000302 (ii) 45000

 (iv) 1000100000 (v) 5800000000000

 3. (i) 1×10^{-9} (ii) 1.6×10^{-19}

 (iv) 1.275×10^{-5} (v) 7×10^{-2}
(iii) 6.02 × 10¹⁵ (iii) 0.00000003 (vi) 3614920 (iii) 5×10^{-7} 4. 1.0008×10^{2} 🚬 ਅਭਿਆਸ 13.1 2. ਲਾਲ ਰੰਗ ਦੇ ਭਾਗ ਮੂਲ ਮਿਸ਼ਰਨ ਦੇ ਭਾਗ 7 12 1. **ਨਹੀਂ** 1 4 208 32 56 96 160 4. 700 ਬੇਤਲਾਂ 5. 10⁻¹ cm; 2 cm 6. 21 m 24 ਭਾਗ 7. (i) 2.25 × 10⁷ (ангек (ii) 5.4 × 10⁶ (ангек 8. 4 cm 9. (i) 6m (ii) 8m75cm 10. 168km ਅਭਿਆਸ 13.2 **1.** (i), (iv), (v) **2.** $4 \rightarrow 25,000; 5 \rightarrow 20,000; 8 \rightarrow 12,500; 10 \rightarrow 10,000; 20 \rightarrow 5,000$ ਇੱਕ ਜੇਤੂ ਨੂੰ ਦਿੱਤੀ ਗਈ ਧਨ ਰਾਸ਼ੀ ਜੇਤੂਆਂ ਦੀ ਗਿਣਤੀ ਦੇ ਉਲਟ ਸਮਾਨ ਅਨੁਪਾਤ ਵਿੱਚ ਹੈ।

 3. 8 → 45°, 10 → 36°, 12 → 30°
 (i) ਹ⁺
 (ii) 24°

 4. 6
 5. 4
 6. 3 ਦਿਨ
 7. 15 ਬਕਸੇ

 (11) 9 4. 6 8. 49 ਮਸ਼ੀਨਾਂ 9. 1 ¹/₂ ਘੰਟੇ 10. (i) 6 ਦਿਨ (ii) 6 ਵਿਅਕਤੀ 11. 40 ਮਿੰਟ ਅਭਿਆਸ 14.1 (iii) 14pq (iv) 1 (v) 6ab (vi) 4x1. (i) 12 (ii) 2y (vii) 10 (viii) x^2y^2

ਉੱਤਰਮਾਲਾ 🔳 285

2. (i)	7(x-6)	(ii)	6(p - 2q)	(iii)	7a(a + 2)	(iv)	$4z(-4+5z^2)$	
(v)	10 lm(2l + 3a)	(vi)	5xy(x - 3y)				$5(2a^2 - 3b^2 + 4a)$	(2)
(viii)	4a(-a+b-c)	(ix)	xyz(x + y +	- 2)			xy(ax + by + cz	CO 10
	(x+8)(x+y)	(ii)	(3x+1)(5)	y - 2)	χ		(a+b)(x-y)	8
(iv)	(5p+3)(3q+5)		(z - 7) (1 -		°	200.04		
	🔜 ਅਭਿਆਸ 14	.2						
1. (i)	$(a+4)^2$	(ii)	$(p-5)^2$	(iii)	$(5m + 3)^2$	(iv)	$(7y+6z)^2$	
	$4(x-1)^2$	(vi)	$(11b - 4c)^2$	(vii)	$(l-m)^{2}$	(viii)	$(a^2 + b^2)^2$	
2. (i)	$(2p-3q)\left(2p+3q\right)$	(ii)	7(3a - 4b)	(3a+	46)	(iii)	(7x-6)(7x+6))
(iv)	$16x^3(x-3)(x+3)$	(v)	4Im	(vi)	(3xy - 4)(3xy +	4)	¢.
(vii)	(x-y-z)(x-y+z)	(viii)	(5a - 2b +	7c) (5	ba + 2b - 7c)	~	
3. (i)	x(ax+b)	(ii)	$7(p^2 + 3q^2)$	(iii)	$2x(x^2 + y^2)$			
(īv)	$(m^2 + n^2) (a + b)$	(v)	(l+1)(m+1)	-1)			(y+9)(y+z)	
(vii)	(5y+2z)(y-4)	(viii)	(2a + 1)(5a)	(b + 2)	0		(3x-2)(2y-3)	8
4. (i)	$(a-b)(a+b)(a^2+b^2)$	(ii) (¹	(p-3)(p+	3) (p	(2 + 9)	20	1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 -	8
(iii)	(x - y - z) (x + y + z)					$2x^2 - 2$	$2xz + z^2$	
(v)	$(a-b)^2 (a+b)^2$	000	1009603	(Sandy)	0718-3-18-34763-87	84 (* C.1) 82	1	
5. (i)	(p+2)(p+4)	(ii)	(q-3)(q-	7)		(iii)	(p+8)(p-2)	
No. of Concession, Name	শ্রিস্পান 14	.3						
1. (i)	$\frac{x^3}{2}$ (ii) $-4y$	(iii)	брqr	(iv)	$\frac{2}{3}x^2y$	(v)	$-2a^{2}b^{4}$	
2. (i)	$\frac{1}{3}(5x-6)$	(ii)	$3y^4 - 4y^2 +$	5		(iii)	2(x+y+z)	
(iv)	$\frac{1}{2}(x^2+2x+3)$	(v)	$q^3 - p^3$				3.11	
3. (i)	2x - 5 (ii) 5	(iii)	6y	(iv)	xy	(v)	10abc	
4. (i)	5(3x + 5)	(ii)	2y(x + 5)	(iii)	$\frac{1}{2}r(p+q)$	(iv)	$4(y^2 + 5y + 3)$	
(v)	(x+2)(x+3)	16			264			
5. (i)	y + 2 (ii) <i>m</i> - 16	(iii)	5(p-4)	(iv)	2z(z-2)	(v)	$\frac{5}{2}q(p-q)$	
(vi)	3(3x - 4y)	(vii)	3y(5y - 7)		1 -			
-	ਅਭਿਆਸ 14	.4						
1. 4(x	(-5) = 4x - 20	2. r	(3x + 2) = 3	$x^{2} + 2$	x 3.	2x+3	y = 2x + 3y	
1011 Harrison	2x + 3x = 6x		y + 2y + y =			C-1 - 21	x = 5x	in t
	Photo 1011 (1991) 100 (1990) 111		and her watch have been	Carlor 1		and design		**

from https:// www.studiestoday.com

286 🔳 ਗਣਿਤ

7. $(2x)^2 + 4(2x) + 7 = 4x^2 + 8x + 7$ 9. $(3x+2)^2 = 9x^2 + 12x + 4$ **10.** (a) $(-3)^2 + 5(-3) + 4 = 9 - 15 + 4 = -2$ (c) $(-3)^2 + 5(-3) = 9 - 15 = -6$ 11. $(y-3)^2 = y^2 - 6y + 9$ 13. $(2a+3b)(a-b) = 2a^2 + ab - 3b^2$ 15. $(a-4)(a-2) = a^2 - 6a + 8$ 17. $\frac{3x^2+1}{3x^2} = \frac{3x^2}{3x^2} + \frac{1}{3x^2} = 1 + \frac{1}{3x^2}$ 19. $\frac{3}{4x+3} = \frac{3}{4x+3}$ 21. $\frac{7x+5}{5} = \frac{7x}{5} + \frac{5}{5} = \frac{7x}{5} + 1$ ਅਭਿਆਸ 15.1 (b) ਦੁਪਹਿਰ 12 ਵਜੇ 1. (a) 36.5° C (c) ਦੁਪਹਿਰ 1 ਵਜੇ, ਦੁਪਹਿਰ 2 ਵਜੇ 3 ਵਜੇ ਤੱਕ 2. (a) (i) ₹4 ਕਰੋੜ (ii) ₹8 वरोड (ii) ₹ 8.5 ਕਰੋੜ (ਲਗਭਗ) (b) (i) ₹7 ਕਰੋੜ (c) ₹4 a da (d) 2005 3. (a) (i) 7 cm (ii) 9 cm (b) (i) 7 cm (ii) 10 cm (c) 2 cm (d) 3 cm (c) ਦੁਸਰਾ ਹਫਤਾ (g) ਦੂਸਰੇ ਹਫਤੇ ਦੇ ਅੰਤ ਵਿੱਚ 4. (a) ਮੰਗਲ, ਸ਼ੁੱਕਰ, ਐਤ (b) 35° C (c) 15° C (d) ਵੀਰਵਾਰ (b) 3¹/₂ ਘੱਟੋ (c) 22 km 6. (a) 4 ਇਕਾਈ = 1 ਘੰਟਾ (d) ਹਾਂ, ਇਹ ਗਰਾਫ਼ ਦੇ ਲੇਟਵੇਂ ਭਾਗ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। (ਸਵੇਰ 10 ਵਜੇ ਤੋਂ ਸਵੇਰ 10:30 ਵਜੇ ਤੱਕ) (e) ਸਵੇਰ 8 ਵਜੇ ਅਤੇ ਸਵੇਰ 9 ਵਜੇ ਦੇ ਵਿੱਚ

7. (iii) ਸੰਭਵ ਨਹੀਂ ਹੈ।

Downloaded from https:// www.studiestoday.com

8. $(2x)^2 + 5x = 4x^2 + 5x$

(b) $(-3)^2 - 5(-3) + 4 = 9 + 15 + 4 = 28$

12. $(z+5)^2 = z^2 + 10z + 25$ 14. $(a+4)(a+2) = a^2 + 6a + 8$ 16. $\frac{3x^2}{3x^2} = 1$ 18. $\frac{3x}{3x+2} = \frac{3x}{3x+2}$ 20. $\frac{4x+5}{4x} = \frac{4x}{4x} + \frac{5}{4x} = 1 + \frac{5}{4x}$

(1) ਪਹਿਲਾ ਹਫਤਾ

- (d) 36.5° C; ਦੁਪਹਿਰ 1 ਵਜੇ ਤੋਂ 2 ਵਜੇ ਦੇ ਵਿੱਚ x- ਧੁਰੇ 'ਤੇ ਸਥਿਤ ਬਿੰਦੂ ਦੁਪਹਿਰ 1 ਵਜੇ ਅਤੇ ਦੁਪਹਿਰ 2 ਵਜੇ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੋ ਬਿੰਦੂਆਂ ਤੋਂ ਬਰਾਬਰ ਦੂਰੀ `ਤੇ ਹੈ, ਇਸ ਲਈ ਇਹ ਦੁਪਹਿਰ 1 ਵੱਜ ਕੇ 30 ਮਿੰਟ ਦਾ ਸਮਾਂ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ y – ਧੁਰੇ 'ਤੇ 36° C ਅਤੇ 37° C ਦੇ ਵਿੱਚ ਦਾ ਬਿੰਦੂ 36.5° C ਨੂੰ ਦਰਸਾਏਗਾ।
- (e) ਸਵੇਰ 9 ਵਜੇ ਤੋਂ ਸਵੇਰ 10 ਵਜੇ ਤੱਕ, ਸਵੇਰ 10 ਵਜੇ ਤੋਂ ਸਵੇਰ 11 ਵਜੇ ਤੱਕ, ਦੁਪਹਿਰ 2 ਵਜੇ ਤੋਂ ਦੁਪਹਿਰ

							0
							ਉੱਤਰਮਾਲਾ 🔳 287
	भ	ਭਿਆਸ 1	5.2				
1.	(a) ਅਤੇ (b) ਦੇ (ਬੇਂਦੂ ਇੱਕ ਰੇਖ	'ਤੇ ਸਥਿਤ ਹਨ।				
2.	(c) ਦੇ ਬਿੰਦੂ ਇੱਕ ਇਹ ਰੇਮਾ - ਸਾਹ			× 12.30	ംമ		
3	ਇਹ ਰੇਖਾ x - ਧੁਰੇ 0(0_0) A/2_0	1 <u>G</u> (3, 0) 4 1 B(2, 3) 6	Sy - yo & (0,	5) ਤੱਕਟ	ाति	5. D/1 7. 1610	
4.	(i) ਠੀਕ (ii), D(2, 3), () ਗਲਤ	(iii) ਠੀਕ	Q(0, 1), t	<(0,	5), 5(4, 7), K(10,	5), L(7, 7), M(10, 8)
	() 0.4 (u	,	(iii) Ora				
	- স	์ฮพาห 18	5.3				
L	(b) (i) 20 km	(ii) ਸਵੇਰ	7.20 7	1.1.10	+	01 3 300 0	
2.	200 TH 100 TH 100 TH 100 TH	। (II) ਸਵਰ) ਨਹੀਂ	7-30 EH	(c) (i)	J,	(ii) ₹ 200 (i	ii) ₹3500
22	(4) 3 (6)	/ 1/01					
	ਅ	ਭਿਆਸ 16	5.1				
	A = 7, B = 6	2	A = 5, B = 4.	C = 1	1	A=6	
	A = 2, B = 5		A = 5, B = 0, A = 5, B = 0,		0.75.0	A = 5, B = 0, C =	- 2
	A = 7, B = 4		A = 7, B = 9			A = 4, B = 7	
).	A = 8, B = 1		. 299-10 0 909-5-851		100	117 - 111 (FE - 11)	
_							
	শাৰ্গ	ਭਅਾਸ 16	5.2				
	y = 1	2.	z = 0 = 9		3.	z=0, 3, 6 स ⁺ 9	
	0.3.6 ਜਾਂ 9					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

1. ਪਾਈਥਾਗੋਰੀਅਨ ਤਿੱਕੜੀਆਂ ਦੇ ਬਾਰੇ ਵਿੱਚ ਕੁੱਝ ਹੋਰ

ਅਸੀਂ ਪਾਈਬਾਗੋਰੀਅਨ ਤਿੱਕੜੀਆਂ (Pythagorean triplets) ਨੂੰ ਇੱਕ ਤਰ੍ਹਾਂ 2m, m² – 1, m² + 1 ਨਾਲ ਲਿਖਣਾ ਦੇਖ ਚੁੱਕੇ ਹਾਂ। ਇੱਕ ਪਾਈਬਾਗੋਰੀਅਨ ਤਿੱਕੜੀ a, b, c ਦਾ ਅਰਬ a² + b² = c² ਹੈ। ਜੇ ਅਸੀਂ ਦੇ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ m ਅਤੇ n ਦਾ ਪ੍ਰਯੋਗ ਕਰਦੇ ਹਾਂ (m > n) ਅਤੇ a = m² – n², b = 2mn ਅਤੇ c = m² + n² ਲਈਏ, ਤਾਂ ਅਸੀਂ ਦੇਖ ਸਕਦੇ ਹਾਂ ਕਿ c² = a² + b² ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, m > n ਦੇ ਨਾਲ, ਅਸੀਂ m ਅਤੇ n ਦੇ ਵੱਖ-ਵੱਖ ਮੁੱਲਾਂ ਦੇ ਲਈ ਪ੍ਰਾਕ੍ਰਿਤਕ ਸੰਖਿਆਵਾਂ a, b, c ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਬਣਾ ਸਕਦੇ ਹਾਂ ਕਿ ਉਹ ਪਾਈਬਾਗੋਰੀਅਨ ਤਿੱਕੜੀਆਂ ਬਣਾਉਣ।

ਉਦਾਹਰਣ ਦੇ ਲਈ m = 2, n = 1 ਲਵੇ।

ਰਦ, $a = m^2 - n^2 = 3$, b = 2mn = 4, $c = m^2 + n^2 = 5$, ਇੱਕ ਪਾਈਬਾਗੋਰੀਅਨ ਤਿੱਕੜੀ ਹੈ। (ਇਸਦੀ ਪੜਤਾਲ ਕਰੋ।) m = 3, n = 2, ਦੇ ਲਈ ਸਾਨੂੰ ਮਿਲਦਾ ਹੈ।

a = 5, b = 12, c = 13 ਜੋ ਕਿ ਫਿਰ ਇੱਕ ਪਾਈਥਾਗੋਰੀਅਨ ਤਿੱਕੜੀ ਹੈ।

៣ ਅਤੇ n ਦੇ ਕੁੱਝ ਹੋਰ ਮੁੱਲ ਲਵੇਂ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਦੀਆਂ ਹੋਰ ਜ਼ਿਆਦਾ ਤਿੱਕੜੀਆਂ ਬਣਾਓ।

- ਜਦ ਪਾਣੀ ਜੰਮਦਾ ਹੈ, ਤਾਂ ਉਸਦੇ ਆਇਤਨ ਵਿੱਚ 4% ਦਾ ਵਾਧਾ ਹੋ ਜਾਂਦਾ ਹੈ। 221 cm³ ਬਰਫ ਬਣਾਉਣ ਦੇ ਲਈ ਕਿੰਨੇ ਪਾਣੀ ਦੀ ਜ਼ਰੂਰਤ ਹੋਵੇਗੀ ?
- 3. ਜੇ ਚਾਹ ਦਾ ਮੁੱਲ 20% ਵੱਧ ਜਾਵੇ ਤਾਂ ਉਸਦੀ ਖਪਤ ਵਿੱਚ ਕਿੰਨੇ ਪ੍ਰਤੀਸ਼ਤ ਦੀ ਕਮੀ ਕੀਤੀ ਜਾਵੇ ਕਿ ਉਸ ਤੇ ਹੋਣ ਵਾਲੇ ਖ਼ਰਚੇ ਵਿੱਚ ਕੋਈ ਵਾਧਾ ਨਾ ਹੋਵੇ ?

288 🔳 ਗਣਿਤ

- ਇਨਾਮ ਸਮਾਰੋਹ (Awards Ceremony) 1958 ਤੋਂ ਸ਼ੁਰੂ ਹੋਏ।ਉਸ ਵੇਲੇ ਇਨਾਮ ਜਿੱਤਣ ਦੇ ਲਈ 28 ਸ਼੍ਰੇਣੀਆਂ ਸਨ। 1993 ਵਿੱਚ 81 ਸ਼੍ਰੇਣੀਆਂ ਸੀ।
 - (i) 1958 ਵਿੱਚ ਦਿੱਤੇ ਇਨਾਮਾਂ ਦੀ ਸੰਖਿਆ 1993 ਦੇ ਇਨਾਮਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਕਿੰਨੇ ਪ੍ਰਤੀਸ਼ਤ ਹੈ ?
 - (ii) 1993 ਵਿੱਚ ਦਿੱਤੇ ਇਨਾਮਾਂ ਦੀ ਸੰਖਿਆ 1958 ਦੇ ਇਨਾਮਾਂ ਦੀ ਸੰਖਿਆ ਦਾ ਕਿੰਨੇ ਪ੍ਰਤੀਸ਼ਤ ਹੈ ?
- 5. ਭੌਰਿਆਂ ਦੇ ਝੁੰਡ ਵਿੱਚੋਂ ¹/₁₅ ਭਾਗ ਕਦੰਬ ਦੇ ਫੁੱਲ 'ਤੇ ਜਾ ਬੈਠਾ, ¹/₃ ਸਿੰਲੀਘਿਰੀ ਦੇ ਫੁੱਲ 'ਤੇ ਅਤੇ ਇਹਨਾਂ ਦੋਨਾਂ ਸੰਖਿਆਵਾਂ ਦੇ ਔਤਰ ਦਾ ਤਿਗੁਣਾ ਉੱਡ ਕੇ ਕੁਟਜ ਦੇ ਫੁੱਲ 'ਤੇ ਜਾ ਬੈਠਾ। ਤਦ ਝੁੰਡ ਵਿੱਚ ਕੇਵਲ 10 ਭੌਰੇ ਹੀ ਰਹਿ ਗਏ। ਝੁੰਡ ਵਿੱਚ ਸ਼ੁਰੂ ਵਿੱਚ ਕਿੰਨੇ ਭੌਰੇ ਸੀ ? [ਧਿਆਨ ਦਿਓ ਕਿ ਕਦੰਬ, ਸਿੰਲੀਘਿਰੀ ਅਤੇ ਕੁਟਜ ਫੁਲਾਂ ਦੇ ਦਰੱਖਤ ਹਨ। ਇਹ ਸੱਮਸਿਆ ਬੀਜਗਣਿਤਿਕ ਦੇ ਇੱਕ ਪੁਰਾਣੇ ਭਾਰਤੀ ਗ੍ਰੰਥ ਵਿੱਚੋਂ ਲਈ ਗਈ ਹੈ।]
- 6. ਕਿਸੇ ਵਰਗ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰਨ ਦੇ ਲਈ, ਸ਼ੋਖਰ ਨੇ ਵਰਗ ਦੇ ਖੇਤਰਫਲ ਦਾ ਸੂਤਰ ਪ੍ਰਯੋਗ ਕੀਤਾ, ਜਦ ਕਿ ਉਸਦੇ ਮਿੱਤਰ ਨੇ ਮਰੂਫ ਨੇ ਵਰਗ ਦੇ ਪਰਿਮਾਪ ਦਾ ਸੂਤਰ ਪ੍ਰਯੋਗ ਕੀਤਾ। ਹੈਰਾਨੀ ਦੀ ਗੱਲ ਹੈ ਕਿ ਦੋਨਾਂ ਦੇ ਉੱਤਰ ਸੰਖਿਆਤਮਕ ਰੂਪ ਵਿੱਚ ਇੱਕ ਹੀ ਸਨ। ਮੈਨੂੰ ਦੱਸੋ ਕਿ ਜਿਸ ਵਰਗ 'ਤੇ ਉਹ ਕੰਮ ਕਰ ਰਹੇ ਸੀ। ਉਸਦੀ ਭੂਜਾ ਦੀਆਂ ਇਕਾਈਆਂ ਦੀ ਸੰਖਿਆ ਕੀ ਹੈ ?
- ਇੱਕ ਵਰਗ ਦਾ ਖੇਤਰਫਲ ਸੰਖਿਆਤਮਕ ਰੂਪ ਵਿੱਚ ਆਪਣੀ ਭੂਜਾ ਦੇ 6 ਗੁਣਾ ਤੋਂ ਘੱਟ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਕੁਝ ਵਰਗਾਂ ਦੀ ਸੂਚੀ ਬਣਾਉ। ਜਿਸ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦਾ ਹੈ।
- ਕੀ ਇਹ ਸੰਭਵ ਹੈ ਕਿ ਇੱਕ ਲੰਬ ਚੱਕਰੀ ਬੇਲਣ ਦਾ ਆਇਤਨ ਸੰਖਿਆਤਮਕ ਰੂਪ ਵਿੱਚ ਉਸਦੇ ਟੇਢੀ ਸਤ੍ਹਾ ਦੇ ਖੇਤਰਫਲ ਦੇ ਬਰਾਬਰ ਹੋਵੇਗਾ ? ਜੇ ਹਾਂ, ਤਾਂ ਦੱਸੋ ਕਦੋਂ।
- 9. ਲੀਲਾ ਨੇ ਆਪਣੇ ਜਨਮ ਦਿਨ ਤੇ ਕੁਝ ਮਿੱਤਰਾਂ ਨੂੰ ਚਾਹ 'ਤੇ ਬੁਲਾਇਆ। ਉਸਦੀ ਮਾਂ ਨੇ ਖਾਣ ਦੇ ਲਈ ਇੱਕ ਮੋਜ਼ 'ਤੇ ਕੁਝ ਪਲੇਟਾਂ ਅਤੇ ਕੁਝ ਪੂੜੀਆਂ ਰੱਖ ਦਿੱਤੀਆਂ। ਜੇਕਰ ਲੀਲਾ ਹਰੇਕ ਪਲੇਟ ਵਿੱਚ 4 ਪੂੜੀਆਂ ਰੱਖਦੀ ਹੈ, ਤਾਂ ਇੱਕ ਪਲੇਟ ਖਾਲੀ ਰਹਿ ਜਾਂਦੀ ਹੈ। ਜੇ ਉਹ ਹਰੇਕ ਪਲੇਟ ਵਿੱਚ 3 ਪੂੜੀਆਂ ਰੱਖਦੀ ਹੈ, ਤਾਂ 1 ਪੂੜੀ ਬੱਚ ਜਾਂਦੀ ਹੈ। ਮੋਜ਼ 'ਤੇ ਰੱਖੀਆਂ ਹੋਈਆਂ ਪਲੇਟਾਂ ਅਤੇ ਪੁੜੀਆਂ ਦੀ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।
- ਕੀ ਇਸ ਤਰ੍ਹਾਂ ਦੀ ਕੋਈ ਸੰਖਿਆ ਹੈ, ਜੋ ਆਪਣੇ ਘਣ ਦੇ ਬਰਾਬਰ ਹੈ, ਪਰ ਆਪਣੇ ਵਰਗ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੈ ? ਜੋ ਹਾਂ, ਤਾਂ ਉਹ ਸੰਖਿਆ ਪਤਾ ਕਰੋ।
- ਸੰਖਿਆਵਾਂ 1 ਤੋਂ 20 ਤੱਕ ਨੂੰ ਇੱਕ ਲਾਈਨ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਤਰਤੀਬਵਾਰ ਕਰੋ ਕਿ ਕੋਈ ਦੋ ਲਗਾਤਾਰ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ ਇੱਕ ਪੂਰਨ ਵਰਗ ਹੋਵੇ।

ਉੱਤਰਮਾਲਾ

- 2. $212\frac{1}{2}$ cm³
- 3. $16\frac{2}{3}\%$

4. (i) 34.5% (ii) 289%

- 5. 150
- 4 ਇਕਾਈਆਂ
- 7. ਭੁਜਾ = 1, 2, 3, 4, 5 ਇਕਾਈਆਂ
- 8. ਹਾਂ ਜਦ ਅਰਧ ਵਿਆਸ = 2 ਇਕਾਈਆਂ
- 9. ਪੁੜੀਆਂ ਦੀ ਸੰਖਿਆ = 16, ਪਲੇਟਾਂ ਦੀ ਸੰਖਿਆ = 5
- 10. -1
- 11. ਇੱਕ ਤਰੀਕਾ ਇਹ ਹੈ ਕਿ 1, 3, 6, 19, 17, 8 (1 + 3 = 4, 3 + 6 = 9 ਆਦਿ) ਕੁੱਝ ਹੋਰ ਤਰੀਕਿਆਂ ਨਾਲ ਕੋਸ਼ਿਸ਼ ਕਰੋ।