Coordinate Geometry

EXERCISE 19.1

Question 1.

Find the co-ordinates of points whose
(i) abscissa is 3 and ordinate -4.
(ii) abscissa is $-\frac{3}{2}$ and ordinate 5 .
(iii) whose abscissa is $-1^{\frac{2}{3}}$ and ordinate $-2 \frac{1}{4}$.
(iv) whose ordinate is 5 and abscissa is $\mathbf{- 2}$
(v) whose abscissa is -2 and lies on x-axis.
(vi) whose ordinate is $\frac{3}{2}$ and lies on y-axis.

Solution:
(i) The co-ordinates of point whose abscissa is 3 and ordinate $-4=(3,-4)$
(ii) The co-ordinates of point whose abscissa is $\frac{-3}{2}$ and ordinate $5=\left(\frac{-3}{2}, 5\right)$
(iii) The co-ordinates of point whose abscissa is $-1 \frac{2}{3}$ and ordinate $-2 \frac{1}{4}=\left(-1 \frac{2}{3},-2 \frac{1}{4}\right)$
(iv) The co-ordinates of point whose ordinate is 5 and abscissa is $-2=(-2,5)$
(v) The co-ordinates of points whose abscissa is -2 and lies on x-axis $=(-2,0)$
(vi) The co-ordinates of points whose ordinate is $\frac{3}{2}$ and lie on y-axis $=\left(0, \frac{3}{2}\right)$

Question 2.

In which quadrant or on which axis each of the following points lie? $(-3,5),(4,-1)(2,0),(2,2),(-3,-6)$
Solution:
Points $(-3,5)$ lies in 11 quadrant
$(4,-1)$ in IV quadrant
$(2,0)$ on x-axis
$(2,2)$ in I quadrant
$(3,-6)$ in III quadrant

Question 3.

Which of the following points lie on
(i) x-axis? (ii) y-axis?

A $(0,2), B(5,6), C(23,0), D(0,23), E(0,-4), F(-6,0), G(\sqrt{ } 3,0)$

Solution:

On x-axis $\mathrm{C}(23,0), \mathrm{F}(-6,0), \mathrm{G}(\sqrt{3}, 0)$
On y-axis : A $(0,2), \mathrm{D}(0,23), \mathrm{E}(0,-4)$

Question 4.

Plot the following points on the same graph paper:
A (3, 4), B (-3, 1), C (1, -2), D (-2, -3), E (0,5), F (5, 0), G (0, -3), H (-3, 0).
Solution:

Question 5.
Write the co-ordinates of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H shown in the adjacent figure.

Solution:

. Co-ordinates of the points
$\mathrm{A}(2,2), \mathrm{B}(-3,0), \mathrm{C}(-2,-4), \mathrm{D}(3,-1), \mathrm{E}(-4,4) \mathrm{F}(0$, $-2), \mathrm{G}(2,-3), \mathrm{H}(0,3)$

Question 6.

In which quadrants are the points A, B, C and D of problem 3 located ? Solution:
A Lies in the first quadrant, B lies on x-axis C lies in the third quadrant and D lies in the fourth quadrant.

Question 7.

Plot the following points on the same graph paper:

$$
\mathrm{A}\left(2, \frac{5}{2}\right), \mathrm{B}\left(-\frac{3}{2}, 3\right), \mathrm{C}\left(\frac{1}{2},-\frac{3}{2}\right) \text { and } \mathrm{D}\left(-\frac{5}{2},-\frac{1}{2}\right) .
$$

Solution:

Question 8.

Plot the following points on the same graph paper.

$$
\mathrm{A}\left(\frac{4}{3}-1\right), \mathrm{B}\left(\frac{7}{2}, \frac{5}{3}\right), \mathrm{C}\left(\frac{13}{6}, 0\right), \mathrm{D}\left(-\frac{5}{3},-\frac{5}{2}\right) .
$$

Question 9.
Plot the following points and check whether they are collinear or not:
(i) $(1,3),(-1,-1)$ and $(-2,-3)$
(ii) $(1,2),(2,-1)$ and $(-1,4)$
(iii) $(0,1),(2,-2)$ and $\left(\frac{2}{3}, 0\right)$

Solution:
(i) $(1,3),(-1,-1)$ and $(-2,-3)$

These points are collinear.
(ii) $(1,2)(2,-1)$ and $(-1,4)$

These points are not collinear.
(iii) $(0,1),(2,-2)$ and $\left(\frac{2}{3}, 0\right)$

These points are collinear

Question 10.
Plot the point $\mathrm{P}(-3,4)$. Draw PM and PN perpendiculars to x -axis and y -axis respectively. State the co-ordinates of the points \mathbf{M} and N . Solution:

Co-ordinates of point $\mathrm{M} \rightarrow(-3,0)$
Co-ordinates of point $\mathrm{N} \rightarrow(0,4)$

Question 11.

Plot the points $A(1,2), B(-4,2), C(-4,-1)$ and $D(1,-1)$. What kind of quadrilateral is $A B C D$? Also find the area of the quadrilateral $A B C D$.
Solution:
. Given points $\mathrm{A}(1,2), \mathrm{B}(-4,2), \mathrm{C}(-4,-1)$ and
$(1,-1)$

quadrilateral ABCD is rectangle.
Area of rectangle $\mathrm{ABCD}=\mathrm{AB} \times \mathrm{BC}$
$=[1-(-4)] \times[2-(-1)]$ sq. units
$=5 \times 3$ sq. units $=15$ sq. units.

Question 12.

Plot the points $(0,2),(3,0),(0,-2)$ and $(-3,0)$ on a graph paper. Join these points (in order). Name the figure so obtained and find the area of the figure obtained.

Solution:
The given points $\mathrm{A}(0,2), \mathrm{B}(3,0)$,
$C(0,-2)$ and $D(-3,0)$ have been plotted ot the graph and these points are joined in orde: we get a quadrilateral which is a rhombus a: shown in the graph

AC and BD are its diagonals $\mathrm{AC}=4$ units and $\mathrm{BD}=6$ units
\therefore Its area $=\frac{d_{1} \times d_{2}}{2}$
$=\frac{4 \times 6}{2}$ sq. units
$=12$ sq. units

Question 13.
Three vertices of a square are $\mathrm{A}(2,3), \mathrm{B}(-3,3)$ and $\mathrm{C}(-3,-2)$. Plot these points on a graph paper and hence use it to find the co-ordinates of the fourth vertex. Also find the area of the square.

Solution:

Given three vertices of a square are $\mathrm{A}(2,3), \mathrm{B}(-3,3)$ and $\mathrm{C}(-3,-2)$

From graph fourth vertices of square is $\mathrm{D}(2,-2)$
Area of square $A B C D=A B \times A B$

$$
[\because \text { area of square }=\text { side } \times \text { side }]
$$

$=5 \times 5$ sq. units $=25$ sq. units.

Question 14.
Write the co-ordinates of the vertices of a rectangle which is 6 units long and 4 units wide if the rectangle is in the first quadrant, its longer side lies on the x -axis and one vertex is at the origin.

Solution:

A rectangle which is 6 units long and 4 units wide and this rectangle is in the first quadrant.

Co-ordinates of rectangle are $(0,0),(6,0),(6,4),(0,4)$.

Question 15.

Repeat problem 12 assuming that the rectangle is in the third quadrant with all other conditions remaining the same.
Solution:
A rectangle which is 6 unit long and 4 units wide and this rectangle is in the third
quadrant.

Co-ordinates of rectangle are $(0,0),(-6,0)$, $(-6,-4),(0,-4)$.

Question 16.
The adjoining figure shows an equilateral triangle $O A B$ with each side $=2 a$ units.
Find the coordinates of the vertices.
Solution:

In the figure given,
OAB is an equilateral triangle and its each side is $2 a$ units

Draw $\mathrm{AD} \perp \mathrm{OB}$
$\mathrm{DA}=\sqrt{\mathrm{OA}^{2}-\mathrm{OD}^{2}}=\sqrt{(2 a)^{2}-a^{2}}$
$=\sqrt{4 a^{2}-a^{2}}=\sqrt{3} a$
Co-ordinates of $\mathrm{O}(0,0)$, of $\mathrm{A}(a, \sqrt{3} a)$ and of B $(2 a, 0)$.

Question 17.
In the given figure, APQR is equilateral. If the coordinates of the points \mathbf{Q} and \mathbf{R} are $(0,2)$ and $(0,-2)$ respectively, find the coordinates of the point P.

Solution:

In the figure, PQR is an equilateral triangle in which $\mathrm{Q}(0,2)$ and $\mathrm{R}(0,-2)$. Let coordinates of P be $(x, 0)$ as it lies on x-axis.
$\because \mathrm{PQ}=\mathrm{PR}=\mathrm{QR}=2+2=4$
In right $\triangle P Q O$
$\mathrm{OP}^{2}=\mathrm{PQ}^{2}-\mathrm{QO}^{2}$
$=4^{2}-2^{2}=16-4=12$
$\therefore \mathrm{OP}=\sqrt{12}=\sqrt{4 \times 3}=2 \sqrt{3}$
\therefore Co-ordinates of P will be $(2 \sqrt{3}, 0)$

EXERCISE 19.2

Question 1.

Draw the graphs of the following linear equations:
(i) $2 x++3=0$
(ii) $x-5 y-4=0$

Solution:
(i) $2 x+y+3=0 \Rightarrow y=-2 x-3$

x	0	1	-1
y	-3	-5	-1

(ii) $x-5 y-4=0 \Rightarrow x=5 y+4$

x	4	-1	-6
y	0	-1	-2

Question 2.
Draw the graph of $3 \mathrm{y}=12 \mathbf{- 2 x}$. Take $2 \mathrm{~cm}=1$ unit on both axes.

Solution:

$$
3 y=12-2 x \quad \Rightarrow \quad y=\frac{12-2 x}{3}
$$

x	0	3	6
y	4	2	0

Question 3.
Draw the graph of $5 x+6 y-30=0$ and use it to find the area of the triangle formed by the line and the co-ordinate axes.

Solution:

$$
\begin{aligned}
& 5 x+6 y-30=0 \quad \\
& \Rightarrow \quad 5 x=5 x+6 y=30 \\
& 5 x=30-6 y \quad \Rightarrow \quad x=\frac{30-6 y}{5}
\end{aligned}
$$

x	6	1.2	0
y	0	4	5

Area of triangle formed by the line and coordinate axes
$=\frac{1}{2} \times \mathrm{OA} \times \mathrm{OB}=\frac{1}{2} \times 6 \times 5=3 \times 5=15$ square units.

Question 4.
Draw the graph of $4 x-3 y+12=0$ and use it to find the area of the triangle formd by the line and the co-ordinate axes. Take $2 \mathrm{~cm}=1$ unit on both axes.
Solution:

$$
\begin{aligned}
& 4 x-3 y+12=0 \\
\Rightarrow & 4 x=3 y-12 \quad \Rightarrow \quad x=\frac{3 y-12}{4}
\end{aligned}
$$

When $y=0, x=\frac{3 \times 0-12}{4}=\frac{0-12}{4}=\frac{-12}{4}=-3$

$$
\begin{aligned}
& y=2, x=\frac{3 \times 2-12}{4}=\frac{6-12}{4}=\frac{-6}{4}=-1.5 \\
& y=4, x=\frac{3 \times 4-12}{4}=\frac{12-12}{4}=\frac{0}{4}=0
\end{aligned}
$$

Table of values

x	-3	-1.5	0
y	0	2	4

Area of the triangle formed by the line and the co-ordinate axes $=\frac{1}{2} \times|\mathrm{OA}| \times|\mathrm{OB}|$ $=\frac{1}{2} \times 3 \times 4=\frac{1}{2} \times 4 \times 3=2 \times 3=6$ Sq. units.

Question 5.
Draw the graph of the equation $y=3 x-4$. Find graphically.
(i) the value of y when $x=-1$
(ii) the value of x when $y=5$.

Solution:

$$
\begin{aligned}
& \quad y=3 x-4, \text { when } x=0, y=3 \times 0-4=0- \\
& 4=-4 \\
& x=1, y=3 \times 1-4=3-4=-1 \\
& x=2, y=3 \times 2-=6-4=2
\end{aligned}
$$

Table of values

x	0	1	2
y	-4	-1	2

(i) The value of $y=-7$, when $x=-1$
(ii) The value of $x=3$, when $y=5$.

Question 6.
The graph of a linear equation in x and y passes through $(4,0)$ and $(0,3)$. Find the value of k if the graph passes through (A, 1.5).

Solution:

Plot the points $A(4,0)$ and $B(0,3)$ on the graph paper. From graph it is clear that $k=2$

Question 7.
Use the table given alongside to draw the graph of a straight line. Find, graphically the values of a and b.

x	1	2	3	a
y	-2	b	4	-5

Solution:
Given table

x	1	2	3	a
y	-2	b	4	-5

Draw the graph on graph paper and it is clear that from graph, $b=1, a=0$

Hence, $a=0, b=1$

EXERCISE 19.3

Question 1.
Solve the following equations graphically: $3 x-2 y=4,5 x-2 y=0$
Solution:

Given equations are

$$
\begin{aligned}
& 3 x-2 y=4 \text { and } 5 x-2 y=0 \\
& \Rightarrow 3 x-2 y=4 \Rightarrow-2 y=4-3 x \\
& \Rightarrow y=\frac{4-3 x}{-2}=\frac{-4+3 x}{2} \Rightarrow y=\frac{3 x-4}{2} \\
& \begin{array}{|c|c|c|c|}
\hline x & 0 & 2 & 4 \\
\hline y & -2 & 1 & 4 \\
\hline
\end{array} \\
& \text { and } 5 x-2 y=0 \Rightarrow 5 x=2 y \Rightarrow 2 y=5 x \\
& \Rightarrow y=\frac{5 x}{2} \\
& \begin{array}{|l|l|l|l|}
\hline x & 0 & 2 & -2 \\
\hline y & 0 & 5 & -5 \\
\hline
\end{array}
\end{aligned}
$$

From graph, $y=-2, y=-5$.

Question 2.
Solve the following pair of equations graphically. Plot at least 3 points for each straight line $2 x-7 y=6,5 x-8 y=-4$
Solution:

Given equations are
$2 x-7 y=6$ and $5 x-8 y=-4$
$2 x=6+7 y \Rightarrow x=\frac{6+7 y}{2}$

x	3	-0.5	-4
y	0	-1	-2

Also, $5 x-8 y=-4 \Rightarrow 5 x=-4+8 y$
$\Rightarrow \quad x=\frac{-4+8 y}{5}$

x	-0.8	4	-4
y	0	3	-2

From graph, $x=-4, y=-2$

Question 3.

Using the same axes of co-ordinates and the same unit, solve graphically. $x+y=0,3 x-2 y=10$
Solution:
Given equations are $x+y=0$ and $3 x-2 y=$
10
$\Rightarrow x+y=0 \Rightarrow x=-y$

x	-1	-2	-3
y	1	2	3

$3 x-2 y=10 \Rightarrow x=\frac{10+2 y}{3}$

x	4	4	6
y	1	-2	4

From graph $x=2, y=-2$

Question 4.

Take 1 cm to represent 1 unit on each axis to draw the graphs of the equations $4 x-5 y=-4$ and $3 x=2 y-3$ on the same graph sheet (same axes). Use your graph to find the solution of the above simultaneous equations.
Solution:

Given equations are,
$4 x-5 y=-4$ and $3 x=2 y-3$
$\Rightarrow 4 x-5 y=-4 \Rightarrow 4 x=-4+5 y$
$\Rightarrow x=\frac{-4+5 y}{4} \Rightarrow x=\frac{5 y-4}{4}$

x	1.5	-1	-3.5
y	2	0	-2

$\Rightarrow 3 x=2 y-3 \quad \Rightarrow \quad x=\frac{2 y-3}{3}$

x	-1	1	-3
y	0	3	-3

From graph, $x=-1, y=0$

Question 5.
Solve the following simultaneous equations graphically, $x+3 y=8,3 x=2+2 y$

Solution:

Given simultaneous equations are
$x+3 y=8$ and $3 x=2+2 y, x+3 y=8, x=8-3 y$

x	8	5	2
y	0	1	2

and $3 x=2+2 y \quad \Rightarrow \quad x=\frac{2+2 y}{3}$

x	2	4	-2
y	2	5	-4

From graph, $x=2, y=2$

Question 6.
Solve graphically the simultaneous equations $3 y=5-x, 2 x=y+3$ (Take $2 \mathrm{~cm}=1$ unit on both axes).
Solution:

Given simultaneous equations are

$$
\begin{aligned}
& 3 y=5-x, 2 x=y+3 \\
& \Rightarrow \quad 3 y=5-x \\
& \Rightarrow \quad x=5-3 y
\end{aligned}
$$

x	5	2	-1
y	0	1	2

$$
\begin{aligned}
& \text { and } 2 x=y+3 \Rightarrow 2 x-3=y \\
& \Rightarrow \quad y=2 x-3
\end{aligned}
$$

x	0	1	2
y	-3	-1	1

From graph, $x=2, y=1$.

Question 7.
Use graph paper for this question.
Take $2 \mathrm{~cm}=1$ unit on both axes.
(i) Draw the graphs of $x+y+3=0$ and $3 x-2 y+4=0$. Plot only three points per line.
(ii) Write down the co-ordinates of the point of intersection of the lines.
(iii) Measure and record the distance of the point of intersection of the lines from the origin in $\mathbf{c m}$.
(i) Given equations are,
$x+y+3=0$, and $3 x-2 y+4=0$
Now $x+y+3=0$

$$
\Rightarrow \quad x=-y-3
$$

x	-3	-2	-1
y	0	-1	-2

and $3 x-2 y+4=0$

$$
\Rightarrow \quad 3 x=2 y-4
$$

$$
\Rightarrow \quad x=\frac{2 y-4}{3}
$$

Solution:

x	-2	-4	2
y	-1	-4	5

(ii)
\$!

From graph the co-ordinates of point of the intersection of the lines $=(-2,-1)$
(iii) Distance of the point of intersection of the lines from the origin $=4.5 \mathrm{~cm}$.

Question 8.
Solve the following simultaneous equations, graphically :
$2 x-3 y+2=4 x+1=3 x-y+2$

Solution:

Given equations are
$2 x-3 y+2=4 x+1=3 x-y+2$.
Taking First and Second terms

$$
\begin{aligned}
& 2 x-3 y+2=4 x+1 \Rightarrow 2 x-4 x-3 y+2=1 \\
& \Rightarrow-2 x-3 y+2=1 \Rightarrow-2 x=1-2+3 y \\
& \Rightarrow-2 x=-1+3 y \\
& \Rightarrow x=\frac{-1+3 y}{-2} \Rightarrow x=-\frac{(3 y-1)}{2} \\
& \Rightarrow x=\frac{1-3 y}{2}
\end{aligned}
$$

x	0.5	-1	2
y	0	1	-1

$$
\text { And } 4 x+1=3 x-y+2 \Rightarrow 4 x-3 x+y=2-1
$$

$$
\Rightarrow x+y=1 \Rightarrow x=1-y
$$

x	1	0	2
y	0	1	-1

From graph, $x=2, \quad y=-1$

Question 9.

Use graph paper for this question.
(i) Draw the graphs of $3 x-y-2=0$ and $2 x+y-8=0$. Take $1 \mathrm{~cm}=1$ unit on both axes and plot three points per line.
(ii) Write down the co-ordinates of the point of intersection and the area of the traingle formed by the lines and the x-axis.

Solution:

(i) Given equations are, $3 x-y-2=0$ and,

$$
\begin{aligned}
& 2 x+y-8=0 \\
& 3 x-y-2=0 \Rightarrow 3 x-2=y \Rightarrow y=3 x-2
\end{aligned}
$$

x	0	1	2
y	-2	1	4

$$
\text { Also } 2 x+y-8=0 \Rightarrow y=-2 x+8
$$

x	1	2	3
y	6	4	2

(ii) The co-ordinates of the point of intersection $=(2,4)$
And area of the triangle formed by lines and the
x-axis $=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times\left(4-\frac{2}{3}\right) \times 4$
$=\frac{1}{2} \times \frac{10}{3} \times 4=\frac{10}{3} \times 2=\frac{20}{3}=6 \frac{2}{3}$ sq. units

Question 10.
Solve the following system of linear equations graphically: $2 x-y-4=0, x+y+1$ $=0$. Hence, find the area of the triangle formed by these lines and the y-axis. Solution:

$$
2 x-y-4=0 \Rightarrow 2 x=y+4 \Rightarrow x=\frac{y+4}{2}
$$

Substituting some different values of y, we get the corresponding values of x as shown below:

x	2	3	1
y	0	2	-2

Plot the points $(2,0),(3,2)$ and $(1,-2)$ on the graph and join them to get a line.
Similarly in the equation, $x+y+1=0$

$$
\Rightarrow \quad x=-(y+1)
$$

Substituting the different values to y, we get the corresponding values of x, as

x	-1	-2	0
y	0	1	-1

Now plot the points $(-1,0),(-2,1)$ and $(0,-1)$ on the graph and join them to get another line which intersects the first line at $(1,-2)$

$$
\therefore \quad x=1, y=-2
$$

Question 11.
Solve graphically the following equations: $x+2 y=4,3 x-2 y=4$ Take $2 \mathrm{~cm}=1$ unit on each axis. Write down the area of the triangle formed by the lines and the x-axis.
Solution:
Given equations are,
$x+2 y=4$, and $3 x-2 y=4$
$\therefore \quad x+2 y=4$
$\Rightarrow \quad x=4-2 y$

x	4	2	0
y	0	1	2

And $3 x-2 y=4$
$\Rightarrow \quad 3 x=4+2 y$
$\Rightarrow \quad x=\frac{4+2 y}{3}$

x	2	4	0
y	1	4	-2

From graph, $x=2, \quad y=1$
Now, Area of the triangle formed by the lines and

$$
\begin{aligned}
& \text { the } x \text {-axis }=\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times\left(4-\frac{4}{3}\right) \times 1 \text { sq. units } \\
& =\frac{1}{2} \times\left(\frac{12-4}{3}\right) \times 1 \text { sq. units } \\
& =\frac{1}{2} \times \frac{8}{3} \times 1 \text { sq. units } \\
& =\frac{4}{3} \text { sq. units. }
\end{aligned}
$$

Question 12.
On graph paper, take 2 cm to represent one unit on both the axes, draw the lines : $x+3=0, y-2=0,2 x+3 y=12$.
Write down the co-ordinates of the vertices of the triangle formed by these lines. Solution:

Given equations of lines are,

$$
\begin{align*}
& x+3=0, y-2=0,2 x+3 y=12 \\
& x+3=0 \Rightarrow x=-3 \tag{1}\\
& \text { And } y-2=0 \Rightarrow y=2 \tag{2}\\
& \text { And } 2 x+3 y=12 \tag{3}\\
& 2 x=12-3 y \\
& \Rightarrow x=\frac{12-3 y}{2}
\end{align*}
$$

x	6	3	0
y	0	2	4

From graph vertices of the triangle formed by these lines are $(-3,2),(-3,6)$ and $(3,2)$ Ans.

Question 13.
Find graphically the co-ordinates of the vertices of the triangle formed by the
lines $y=0, y-x$ and $2 x+3 y=10$. Hence find the area of the triangle formed by these lines.
Solution:

Given equations of lines are

$$
\begin{gather*}
y=0, y=x, 2 x+3 y=10 \\
y=0 \tag{1}
\end{gather*}
$$

$$
\begin{equation*}
\text { and } \quad y=x \tag{2}
\end{equation*}
$$

Putting the different values of x

x	1	2	3
y	1	2	3

and $2 x+3 y=10$
$\Rightarrow \quad 2 x=10-3 y$
$\Rightarrow \quad x=\frac{10-3 y}{2}$

x	5	2	0.5
y	0	2	3

From graph, vertices of the triangle formed by these lines are $(0,0,(5,0),(2,2)$

Hence Area of triangle $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 5 \times 2$ sq. units, $=5$ sq. units.

EXERCISE 19.4

Question 1.
Find the distance between the following pairs of points :
(i) $(2,3),(4,1)$
(ii) $(0,0),(36,15)$
(iii) (a, b), (-a, -b)

Solution:

(i) Distance between $(2,3)$ and $(4,1)$

$$
\begin{aligned}
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(4-2)^{2}+(1-3)^{2}}=\sqrt{2^{2}+(-2)^{2}} \\
& =\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}
\end{aligned}
$$

(ii) Distance $(0,0)$ and $(36,15)$

$$
\begin{aligned}
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(36-0)^{2}+(15-0)^{2}}=\sqrt{36^{2}+15^{2}} \\
& =\sqrt{1296+225}=\sqrt{1521}=39 \mathrm{~cm}
\end{aligned}
$$

(iii) Distance between (a, b) and $(-a,-b)$

$$
\begin{aligned}
& =\sqrt{(-a-a)^{2}+(-b-b)^{2}} \\
& =\sqrt{(-a)^{2}+(-b)^{2}} \\
& =\sqrt{(2 a)^{2}+(2 b)^{2}}=\sqrt{4 a^{2}+4 b^{2}} \\
& =\sqrt{4\left(a^{2}+b^{2}\right)}=2 \sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Question 2.

A is a point on y-axis whose ordinate is 4 and B is a point on x-axis whose abscissa is -3 . Find the length of the line segment $A B$.

Solution:

\because A lies on y-axis,
\therefore Abscissa $=0$, and ordinate $=4$

$$
\text { i.e., } \mathrm{A}(0,4)
$$

\because B lies on x-axis
\therefore Ordinate $=0$, and abscissa $=-3$

$$
\text { i.e., } \mathrm{B}(-3,0)
$$

$\therefore \mathrm{AB}=\sqrt{(-3-0)^{2}+(0-4)^{2}}$

$$
=\sqrt{(-3)^{2}+(-4)^{2}}
$$

$$
=\sqrt{9+16}=\sqrt{25}=5 \text { units. }
$$

Question 3.

Find the value of a, if the distance between the points $A(-3,-14)$ and $B(a,-5)$ is 9 units.
Solution:
, Distance A $(-3,-14)$ and B $(a,-5)$

$$
\begin{aligned}
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(a+3)^{2}+(-5+14)^{2}} \\
& =\sqrt{(a+3)^{2}+(9)^{2}} \\
& =\sqrt{a^{2}+9+6 a+81} \\
& \therefore \sqrt{\left(a^{2}+6 a+90\right)}=9
\end{aligned}
$$

Squaring both sides,

$$
\begin{aligned}
& a^{2}+6 a+90=81 \Rightarrow a^{2}+6 a+90-81=0 \\
\Rightarrow & a^{2}+6 a+9=0 \\
& =(a+3)^{2}=0 \\
\therefore & a+3=0 \Rightarrow a=-3
\end{aligned}
$$

Question 4.

(i) Find points on the x-axis which are at a distance of 5 units from the point (5, 4).
(ii) Find points on the y-axis are at a distance of 10 units from the point $(8,8)$?
(iii) Find points (or points) which are at a distance of $\sqrt{ } 10$ from the point $(4,3)$
given that the ordinate of the point or points is twice the abscissa. Solution:
(i) Let the points on x-axis be $(x, 0)$, then

Distance between $(x, 0)$ and $(5,-4)=5$ units

$$
\begin{aligned}
\Rightarrow & \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=5 \\
\Rightarrow & \sqrt{(5-x)^{2}+(-4-0)^{2}}=5 \\
& \sqrt{(5-x)^{2}+(-4)^{2}}=5
\end{aligned}
$$

Squaring both sides,
$(5-x)^{2}+16=25$
$\Rightarrow 25-10 x+x^{2}+16-25=0$
$\Rightarrow x^{2}-10 x+16=0$
$\Rightarrow x^{2}-2 x-8 x+16=0$
$\Rightarrow x(x-2)-8(x-2)=0 \Rightarrow(x-2)(x-8)=0$
Either $x-2=0$, then $x=2$
or $x-8=0$, then $x=8$
\therefore The points are $(2,0)$ and $(8,0)$
(ii) Let the co-ordinates of points or points be (x, y), which are at a distanct of 10 units from the points $(8,8)$

$$
\therefore \sqrt{(8-x)^{2}+(8-y)^{2}}=10
$$

Squaring both sides,

$$
(8-x)^{2}+(8-y)^{2}=100
$$

$$
\Rightarrow 64+x^{2}-16 x+64+y^{2}-16 y=100
$$

$$
x^{2}+y^{2}-16 x-16 y+128=100
$$

\because Points are on y-axis
$\therefore x=0$
Hence $(0)^{2}+y^{2}-16 \times 0-16 y+128=100$
$\Rightarrow y^{2}-16 y+128-100=0$
$\Rightarrow y^{2}-16 y+28=0$
$\Rightarrow y^{2}-14 y-2 y+28=0$
$\Rightarrow y(y-14)-2(y-14)=0$
$\Rightarrow(y-14)(y-2)=0$
Either $y-14=0$, then $y=14$
or $y-2=0$, then $y=2$
\therefore Points will be $(0,14)$ and $(0,2)$
(iii) Let the abscissa of point $=x$
the ordinate $=2 x$
\because point $(x, 2 x)$ is at a distance of $\sqrt{10}$ from the point $(4,3)$, then
$\sqrt{(x-4)^{2}+(2 x-3)^{2}}=\sqrt{10}$
Squaring both sides,
$(x-4)^{2}+(2 x-3)^{2}=10$
$\Rightarrow x^{2}-8 x+16+4 x^{2}-12 x+9=10$
$\Rightarrow 5 x^{2}-20 x+25-10=0$
$\Rightarrow 5 x^{2}-20 x+15=0$
$\Rightarrow x^{2}-4 x+3=0$ (Dividing by 5)
$\Rightarrow x^{2}-x-3 x+3=0$
$\Rightarrow x(x-1)-3(x-1)=0$
$\Rightarrow(x-1)(x-3)=0$
Either $x-1=0$, then $x=1$
or $x-3=0$, then $x=3$
\therefore Points will be $(1,2)$ and $(3,6)$

Question 5.

Find the point on the x-axis which, is equidistant from the points $(2,-5)$ and $(-2,9)$. Solution:

Using distance formula,
Let the required point on x-axis be $(x, 0)$
Then distance between $(x, 0)$ and $(2,-5)$ is equal to the distance between $(x, 0)$ and $(-2,9)$
$\therefore \sqrt{(2-x)^{2}+(-5-0)^{2}}$
$=\sqrt{(-2-x)^{2}+(9-0)^{2}}$
Squaring both sides,

$$
\begin{aligned}
& (2-x)^{2}+(-5)^{2}=(-2-x)^{2}+9^{2} \\
& 4-4 x+x^{2}+25=4+4 x+x^{2}+81 \\
& -4 x+29=85+4 x \Rightarrow 4 x+4 x=-85+29
\end{aligned}
$$

$\Rightarrow 8 x=-56 \Rightarrow x=\frac{-56}{5}=-7$
$\therefore x=-7$
\therefore Point $=(-7,0)$

Question 6.

Find the value of x such that $P Q=Q R$ where the coordinates of P, Q and R are (6, -1), $(1,3)$ and ($x, 8$) respectively.
Solution:
Using distance formula,
Points are $\mathrm{P}(6,-1) \mathrm{Q}(1,3)$ and $\mathrm{R}(x, 8)$
and $\mathrm{PQ}=\mathrm{QR}$
$\therefore(1-6)^{2}+(3+1)^{2}=(x-1)^{2}+(8-3)^{2}$
$(-5)^{2}+(4)^{2}=(x-1)^{2}+(5)^{2}$
$25+16=(x-1)^{2}+25$
$(x-1)^{2}=16 \Rightarrow x^{2}-2 x+1=16$
$\Rightarrow x^{2}-2 x+1-16=0$
$\Rightarrow x^{2}-2 x-15=0$
$\Rightarrow x^{2}-5 x+3 x-15=0$
$\Rightarrow x(x-5)+3(x-5)=0$
$\Rightarrow(x-5)(x+3)=0$
Either $x-5=0$, then $x=5$
or $x+3=0$, then $x=-3$
$\therefore x=5,-3$

Question 7.
If $Q(0,1)$ is equidistant from $P(5,-3)$ and $R(x, 6)$ find the values of x.
Solution:
$\because \mathrm{Q}(0,1)$ is equidistant from $\mathrm{P}(5,-3)$ and
$\mathrm{R}(x, 6)$ find the value of x
$\therefore \mathrm{QP}=\mathrm{QR}$
$\Rightarrow(5-0)^{2}+(-3-1)^{2}=(x-0)^{2}+(6-1)^{2}$
$\Rightarrow(5)^{2}+(-4)^{2}=x^{2}+5^{2}$
$25+16=x^{2}+25 \Rightarrow x^{2}=16=(\pm 4)^{2}$
$\therefore x= \pm 4$
$\therefore x=4,-4$

Question 8.

Find a relation between x and y such that the point (x, y) is equidistant from the points $(7,1)$ and $(3,5)$.
Solution:
\because Points (x, y) is equidistant from the points
$(7,1)$ and $(3,5)$

$$
\begin{aligned}
= & (x-7)^{2}+(y-1)^{2}=(x-3)^{2}+(y-5)^{2} \\
& =x^{2}-14 x+49+y^{2}-2 y+1=x^{2}-6 x+9+ \\
& y^{2}-10 y+25 \\
& 49+1-9-25=-6 x-10 y+14 x+2 y \\
& 50-34=8 x-8 y \\
\Rightarrow & 8 x-8 y=16 \\
\Rightarrow & x-y=2 \quad \text { (Dividing by } 8 \text {) }
\end{aligned}
$$

Question 9.
The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from the points $Q(2,-5)$ and $U(-3,6)$, then find the coordinates of P.

Solution:
$\because x$-coordinates of a point $\mathrm{P}=$ twice its y coordinate
Let coordinates of point P be $(2 x, x)$
$\because \mathrm{P}$ is equidistant from points $\mathrm{Q}(2,-5)$ and R

$$
(-3,6)
$$

$\therefore P Q=P R$
Now,

$$
\begin{aligned}
& (2 x-2)^{2}+(x+5)^{2}=(2 x+3)^{2}+(x-6)^{2} \\
\Rightarrow & 4 x^{2}-8 x+4+x^{2}+10 x+25 \\
& =4 x^{2}+12 x+9+x^{2}-12 x+36 \\
& 2 x+29=45 \\
& 2 x=45-29=16
\end{aligned}
$$

$$
x=\frac{16}{2}=8
$$

\therefore Coordinates of points P will be $(2 \times 8,8)$

$$
\text { i.e., }(16,8)
$$

Question 10.

If the points $A(4,3)$ and $B(x, 5)$ are on a circle with centre $C(2,3)$, find the value of x.
Solution:
Points A $(4,3)$ and B $(x, 5)$ are on the circle
whose centre $\mathrm{C}(2,3)$
$\therefore \mathrm{AC}=\mathrm{BC} \quad$ (radii of the same circle)
$\Rightarrow(4-2)^{2}+(3-3)^{2}=(x-2)^{2}+(5-3)^{2}$
$\Rightarrow(2)^{2}+0=(x-2)^{2}+2^{2}$

$$
4=(x-2)^{2}+4
$$

$\Rightarrow(x-2)^{2}=4-4=0$
$\therefore x-2=0 \Rightarrow x=2$
$\therefore x=2$

Question 11.
If a point $A(0,2)$ is equidistant from the points $B(3, p)$ and $C(p, 5)$, then find the value of p.

Solution:

Points $\mathrm{A}(0,2)$ is equidistant from $\mathrm{B}(3, p)$
and $C(p, 5)$
$\therefore \mathrm{AB}=\mathrm{AC}$
$(3-0)^{2}+(p-2)^{2}=(p-0)^{2}+(5-2)^{2}$
$\Rightarrow 3^{2}+(p-2)^{2}=p^{2}+3^{2}$
$9+p^{2}-4 p+4=p^{2}+9$
$-4 p+4=0 \Rightarrow 4 p=4 \Rightarrow p=\frac{4}{4}=1$

Question 12.

Using distance formula, show that $(3,3)$ is the centre of the circle passing through the points $(6,2),(0,4)$ and $(4,6)$.
Solution:
To show $O(3,3)$ is the centre of a circle passing through the points $\mathrm{A}(6,2), \mathrm{B}(0,4)$ and $C(4,6)$
$\therefore \mathrm{OA}=\mathrm{OB}=\mathrm{OC}$
Now $\mathrm{OA}=\sqrt{(6-3)^{2}+(2-3)^{2}}$
$=\sqrt{3^{2}+(-1)^{2}}=\sqrt{9+1}=\sqrt{10}$
$\mathrm{OB}=\sqrt{(0-3)^{2}+(4-3)^{2}}=\sqrt{(-3)^{2}+(1)^{2}}$
$=\sqrt{9+1}+\sqrt{10}$
and $\mathrm{OC}=\sqrt{(4-3)^{2}+(6-3)^{2}}=\sqrt{1^{2}+3^{2}}$
$=1+9=\sqrt{10}$
$\because \mathrm{OA}=\mathrm{OB}=\mathrm{OC}$
$\therefore \mathrm{O}$ is the centre of the circle passing through the points A, B and C .

Question 13.

The centre of a circle is $C(2 \alpha-1,3 \alpha+1)$ and it passes through the point $\mathbf{A}(-3,-$ 1). If a diameter of the circle is of length 20 units, find the value(s) of α.

Solution:

Centre of a circle is C $[(2 a-1),(3 a+1)]$
and it passes through the points A $(-3,-1)$
and length of diameter $=20$ units
i.e., length of radius $=\frac{20}{2}=10$ units
$\Rightarrow \mathrm{AC}=10$
Now AC $=\sqrt{(2 a-1+3)^{2}}$
$+\sqrt{(2 a-1+3)^{2}+(3 a+1+1)^{2}}$
$=\sqrt{(2 a+2)^{2}+(3 a+2)^{2}}$
$\therefore \sqrt{(2 a+2)^{2}+(3 a+2)^{2}}=10$
Squaring,
$(2 a+2)^{2}+(3 a+2)^{2}=10^{2}$
$4 a^{2}+8 a+4+9 a^{2}+12 a+4=100$
$13 a^{2}+20 a+8-100=0$
$\Rightarrow 13 a^{2}+20 a-92=0$
$\Rightarrow 13 a^{2}-26 a+46 a-92=0$
$\Rightarrow 13 a(a-2)+46(a-2)=0$
$\Rightarrow(a-2)(13 a+46)=0$
Either $a-2=0$, then $a=2$
or $13 a+46=0$, then $13=-46 \Rightarrow a=\frac{-46}{13}$
Hence $a=2, \frac{-46}{13}$

Question 14.
Using distance formula, show that the points A $(3,1), B(6,4)$ and $C(8,6)$ are coliinear.

Solution:

To show that the points $A(3,1), B(6,4)$ and $C(8,6)$ are collinear, if sum of any two lines is equal to the third line

$$
\begin{aligned}
& \text { Now, } \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(6-3)^{2}+(4-1)^{2}}=\sqrt{3^{2}+3^{2}} \\
& =\sqrt{9+9}=\sqrt{18}=3 \sqrt{2} \text { units } \\
& \mathrm{BC}=\sqrt{(8-6)^{2}+(6-4)^{2}}=\sqrt{2^{2}+2^{2}} \\
& =\sqrt{4+4}=\sqrt{8}=2 \sqrt{2} \\
& \mathrm{AC}=\sqrt{(8-3)^{2}+(6-1)^{2}}=\sqrt{5^{2}+5^{2}} \\
& =\sqrt{25+25}=\sqrt{25 \times 2}=5 \sqrt{2}
\end{aligned}
$$

$$
\therefore \mathrm{AB}+\mathrm{BC}=3 \sqrt{2}+2 \sqrt{2}=5 \sqrt{2}=\mathrm{AC}
$$

\therefore Points A, B and C are collinear.

Question 15.

Check whether the points $(5,-2),(6,4)$ and $(7,-2)$ are the vertices of an isosceles triangle.

Solution:
To check that points A $(5,-2), \mathrm{B}(6,4), \mathrm{C}$ $(7,-2)$ are the vertices of an isosceles triangle ABC
Now, $\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(6-5)^{2}+(4+2)^{2}}=\sqrt{1^{2}+6^{2}}$
$=\sqrt{1+36}=\sqrt{37}$
$\mathrm{BC}=\sqrt{(7-6)^{2}+(-2-4)^{2}}$
$=\sqrt{1^{2}+(-6)^{2}}=\sqrt{1+36}=\sqrt{37}$
$\mathrm{AC}=\sqrt{(7-5)^{2}+(-2+2)^{2}}$
$=\sqrt{(2)^{2}+0^{2}}=\sqrt{4}=2$
\therefore Two sides $\mathrm{AB}=\mathrm{BC}$
$\therefore \triangle \mathrm{ABC}$ is an isosceles triangle
\therefore Whose vertices are A, B and C

Question 16.
Name the type of triangle formed by the points $A(-5,6), B(-4,-2)$ and $(7,5)$.

Solution:
Three points of a triangle are

$$
\mathrm{A}(-5,6), \mathrm{B}(-4,-2) \text { and }(7,5)
$$

Now, $\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(-4+5)^{2}+(-2-6)^{2}}=\sqrt{(1)^{2}+(-8)^{2}}$
$=\sqrt{1+64}=\sqrt{65}$
$\mathrm{BC}=\sqrt{(7+4)^{2}+(5+2)^{2}}=\sqrt{11^{2}+7^{2}}$
$=\sqrt{121+49}=\sqrt{170}$
$C A=\sqrt{(7+5)^{2}+(5-6)^{2}}$
$=\sqrt{12^{2}+(-1)^{2}}=\sqrt{144+1}=\sqrt{145}$
\because All the sides are different
$\therefore \triangle \mathrm{ABC}$ is a scalene.

Question 17.
Show that the points $(1,1),(-1,-1)$ and $(-\sqrt{ } 3, \sqrt{ } 3)$ form an equilateral triangle.

Solution:
Let the vertices of a $\triangle \mathrm{ABC}$ be $\mathrm{A}(1,1)$
$\mathrm{B}(-1,-1)$ and $\mathrm{C}(-\sqrt{3}, \sqrt{3})$
then $\mathrm{AB}=\sqrt{\left[1-(-1)^{2}\right]+[1-(-1)]^{2}}$
$=\sqrt{(1+1)^{2}+(1+1)^{2}}=\sqrt{(2)^{2}+(2)^{2}}$
$=\sqrt{4+4}=\sqrt{8}=\sqrt{4 \times 2}=2 \sqrt{2}$ units
$\mathrm{BC}=\sqrt{[-\sqrt{3}-(-1)]^{2}+(\sqrt{3}-(-1))^{2}}$
$=\sqrt{(-\sqrt{3}+1)^{2}+(\sqrt{3}+1)^{2}}$
$=\sqrt{3+1-2 \sqrt{3}+3+1+2 \sqrt{3}}=\sqrt{8}$
$=\sqrt{4 \times 2}=2 \sqrt{2}$ units.
$\mathrm{AC}=\sqrt{[-\sqrt{3}-1]^{2}+(\sqrt{3}-1)^{2}}$
$=\sqrt{3+1+2 \sqrt{3}+3+1-2 \sqrt{3}}$
$=\sqrt{8}=\sqrt{4 \times 2}=2 \sqrt{2}$ units
$\because A B=B C=A C=2 \sqrt{2}$ units
$\therefore \triangle \mathrm{ABC}$ is an equilateral triangle.

Question 18.
Show that the points $(7,10),(-2,5)$ and $(3,-4)$ are the vertices of an isosceles right triangle.
Solution:

Let points are $\mathrm{A}(7,10), \mathrm{B}(-2,5)$

$$
\text { and } C(3,-4)
$$

Now $\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(-2-7)^{2}+(5-10)^{2}}=\sqrt{(-9)^{2}+(-5)^{2}}$
$=\sqrt{81+25}=\sqrt{106}$
Similarly, $\mathrm{BC}=\sqrt{(3+2)^{2}+(-4-5)^{2}}$
$=(5)^{2}+(-9)^{2}$
$=\sqrt{25+81}=\sqrt{106}$
and $\mathrm{AC}=\sqrt{(3-7)^{2}+(-4-10)^{2}}$
$=\sqrt{(-4)^{2}+(-14)^{2}}=\sqrt{16+196}=\sqrt{212}$
We see that $\mathrm{AB}=\mathrm{BC}=\sqrt{106}$
\therefore It is an isosceles triangle
and $\mathrm{AB}^{2}+\mathrm{BC}^{2}=(\sqrt{106})^{2}+(\sqrt{106})^{2}$
$=106+106=212$
and $\mathrm{AC}^{2}=(\sqrt{212})^{2}=212$
$\therefore \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
\therefore It is an isosceles right triangle

Question 19.
The points $A(0,3), B(-2, a)$ and $C(-1,4)$ are the vertices of a right angled triangle at A , find the value of a .

Solution:
$\because \mathrm{A}, \mathrm{B}$ and C are the vertices of a right angled
$\triangle \mathrm{ABC}$, right angle at A .
$\therefore \mathrm{AB}^{2}=(-2-0)^{2}+(a-3)^{2}$
$=(-2)^{2}+(a-3)^{2}=4+(a-3)^{2}$

$$
\mathrm{AC}^{2}=(-1-0)^{2}+(4-3)^{2}=(-1)^{2}+(1)^{2}
$$

$$
=1+1=2
$$

$$
\mathrm{BC}^{2}=(-1+2)^{2}+(4-a)^{2}
$$

$$
=(1)^{2}+(4-a)^{2}
$$

$$
\therefore \mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}
$$

(By pythagorus theorem)
$\Rightarrow 4+(a-3)^{2}+2=1+(4-a)^{2}$
$=4+a^{2}-6 a+9+2=1+16-8 a+a^{2}$
$\Rightarrow a^{2}-6 a+15=a^{2}-8 a+17$
$\Rightarrow 8 a-6 a=17-15$
$\Rightarrow 2 a=2 \Rightarrow a=1$

Question 20.
Show that the points $(0,-1),(-2,3),(6,7)$ and $(8,3)$, taken in order, are the vertices of a rectangle. Also find its area.
Solution:

Let A $(0,-1), \mathrm{B}(-2,3), \mathrm{C}(6,7)$ and D $(8,3)$ are the vertices of a quadrilateral ABCD.

Now $A B=\sqrt{(-2-0)^{2}+[3-(-1)]^{2}}$

$$
\begin{aligned}
& =\sqrt{(-2)^{2}+(3+1)^{2}}=\sqrt{4+16} \\
= & \sqrt{20}=\sqrt{4 \times 5}=2 \sqrt{5} \text { units } \\
\mathrm{BC}= & \sqrt{[6-(-2)]^{2}+(7-3)^{2}} \\
& =\sqrt{(6+2)^{2}+(4)^{2}} \\
& =\sqrt{(8)^{2}+(4)^{2}}=\sqrt{64+16} \\
= & \sqrt{80}=\sqrt{16 \times 5}=4 \sqrt{5} \text { units } \\
\mathrm{CD} & =\sqrt{(8-6)^{2}+(3-7)^{2}} \\
& =\sqrt{(2)^{2}+(-4)^{2}}=\sqrt{4+16} \\
& =\sqrt{20}=\sqrt{4 \times 5}=2 \sqrt{5} \text { units. } \\
\mathrm{AD} & =\sqrt{(8-0)^{2}+[3-(-1)]^{2}} \\
= & \sqrt{(8)^{2}+(3+1)^{2}}=\sqrt{64+16}=\sqrt{80} \\
= & \sqrt{16 \times 5}=4 \sqrt{5} \text { units }
\end{aligned}
$$

$\because A B=C D$ and $B C=A D$
$\therefore \mathrm{ABCD}$ is a rectangle.

Question 21.

If $\mathbf{P}(2,-1), \mathbf{Q}(3,4), R(-2,3)$ and $S(-3,-2)$ be four points in a plane, show that PQRS is a rhombus but not a square. Find the area of the rhombus.
Solution:

Four pionts are $\mathrm{P}(2,-1), \mathrm{Q}(3,4), \mathrm{R}(-2,3)$ and $\mathrm{S},(-3,-2)$ are the vertices of a quad.
Now, $\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(3-2)^{2}+(4+1)^{2}}=\sqrt{1^{2}+5^{2}}$
$=\sqrt{1+25}=\sqrt{26}$
$\mathrm{QR}=\sqrt{(-2-3)^{2}+(3-4)^{2}}$
$=\sqrt{(-5)^{2}+(1)^{2}}=\sqrt{25+1}=\sqrt{26}$
$\mathrm{RS}=\sqrt{(-3+2)^{2}+(-2-3)^{2}}$
$=\sqrt{(-1)^{2}+(-5)^{2}}=\sqrt{1+25}=\sqrt{26}$
and $\mathrm{SP}=\sqrt{(-3-2)^{2}+(-2+1)^{2}}$
$=\sqrt{(-5)^{2}+(-1)^{2}}=\sqrt{25+1}=\sqrt{26}$
$\because \mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SP}$
\therefore PQRS is a square or a rhombus
Now, diagonal $P R=\sqrt{(-2-2)^{2}+(3+1)^{2}}$
$=\sqrt{(-4)^{2}+(4)^{2}}=\sqrt{16+16}$
$=\sqrt{32}=4 \sqrt{2} \mathrm{~cm}$

$$
\begin{aligned}
& \text { and } Q S=\sqrt{(-3-3)^{2}+(-2-4)^{2}} \\
& =\sqrt{(-6)^{2}+(-6)^{2}}=\sqrt{36+36} \\
& =\sqrt{72}=6 \sqrt{2}
\end{aligned}
$$

$\therefore \mathrm{PQ}=\mathrm{QS}$
$\therefore \mathrm{PQRS}$ is a rhombus not a square
Now, area of rhombus PQRS

$$
=\frac{1}{2} \times \mathrm{PR} \times \mathrm{QS}
$$

$$
=\frac{1}{2} \times 4 \sqrt{2} \times 6 \sqrt{2}
$$

$$
=\frac{1}{2} \times 4 \times 6 \times 2=24 \text { sq. units }
$$

Question 22.
Prove that the points $A(2,3), B\{-2,2), C(-1,-2)$ aqd $D(3,-1)$ are the vertices of a square ABCD.
Solution:

Points A $(2,3), \mathrm{B}(-2,2), \mathrm{C}(-1,-2)$ and D $(3,-1)$

$$
\begin{aligned}
\therefore & \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-2-2)^{2}+(2-3)^{2}} \\
& =\sqrt{(-4)^{2}+(-1)^{2}} \\
& =\sqrt{16+1}=\sqrt{17}
\end{aligned}
$$

Similarly,
$\mathrm{BC}=\sqrt{(-1+2)^{2}+(-2-2)^{2}}$

$$
\begin{aligned}
& =\sqrt{(1)^{2}+(-4)^{2}} \\
& =\sqrt{1+16}=\sqrt{17} \\
& \mathrm{CD}=\sqrt{(3+1)^{2}+(-1+2)^{2}} \\
& =\sqrt{(4)^{2}+(1)^{2}} \\
& =\sqrt{16+1}=\sqrt{17} \\
& \text { and } \mathrm{DA}=\sqrt{(2-3)^{2}+(3+1)^{2}} \\
& =\sqrt{(-1)^{2}+(4)^{2}} \\
& =\sqrt{1+16}=\sqrt{17} \\
& \mathrm{AC}=\sqrt{(-1-2)^{2}+(-2-3)^{2}} \\
& =\sqrt{(-3)^{2}+(-5)^{2}} \\
& =\sqrt{9+25}=\sqrt{34} \\
& \mathrm{BD}=\sqrt{(3+2)^{2}+(-1-2)^{2}} \\
& =\sqrt{(5)^{2}+(-3)^{2}} \\
& =\sqrt{25+9}=\sqrt{34} \\
& =
\end{aligned}
$$

\because Sides $A B, B C, C D$ and $D A$ are equal and diagonals AC and BD are also equal
$\therefore \mathrm{ABCD}$ is a square

Question 23.
Name the type of quadrilateral formedby the following points and give reasons for your answer :
(i) $(-1,-2),(1,0),(-1,2),(-3,0)$
(ii) $(4,5),(7,6),(4,3),(1,2)$

Solution:
(i) A $(-1,-2), \mathrm{B}(1,0), \mathrm{C}(-1,2)$,

$$
\text { and } D(-3,0)
$$

Now $\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& \mathrm{AB}^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& =(1+1)^{2}+(0+2)^{2}=(2)^{2}+(2)^{2}
\end{aligned}
$$

$$
=4+4=8
$$

Similarly,

$$
\begin{aligned}
& \mathrm{BC}^{2}=(-1-1)^{2}+(2-0)^{2}=(-2)^{2}+(2)^{2} \\
& =4+4=8 \\
& \mathrm{CD}^{2}=(-3+1)^{2}+(0-2)^{2}=(-2)^{2}+(-2)^{2} \\
& =4+4=8 \\
& \mathrm{DA}^{2}=(-1+3)^{2}+(-2+0)^{2}=(2)^{2}+(-2)^{2} \\
& =4+4=8 \\
& \text { Diagonal AC } \\
& =(0)^{2}+(-1+1)^{2}=0+16=16 \\
& \text { and } \mathrm{BD}^{2}=(-3-1)^{2}+(0+0)^{2}=(-4)^{2}+0=16
\end{aligned}
$$

\because The sides are equal and diagonal are also equal
\therefore The quadrilateral $A B C D$ is a square
(ii) Points are $\mathrm{A}(4,5), \mathrm{B}(7,6), \mathrm{C}(4,3), \mathrm{D}(1,2)$

Now $\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\mathrm{AB}^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
$=(7-4)^{2}+(6-5)^{2}$
$=(3)^{2}+(1)^{2}$
$=9+1=10$
Similarly $\mathrm{BC}^{2}=(4-7)^{2}+(3-6)^{2}$
$=(3)^{2}+(-3)^{2}=9+9=18$
$\mathrm{CD}^{2}=(1-4)^{2}+(2-3)^{2}$
$=(-3)^{2}+(-1)^{2}$
$=9+1=10$
$\mathrm{DA}^{2}=(4-1)^{2}+(5-2)^{2}$
$=(3)^{2}+(3)^{2}$
$=9+.9=18$
\therefore Here $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{DA}$
Diagonal $\mathrm{AC}^{2}=(4-4)^{2}+(3-5)^{2}$
$=(0)^{2}+(-2)^{2}$
$=0+4=4$
and $\mathrm{BD}^{2}=(1-7)^{2}+(2-6)^{2}$
$=(-6)^{2}+(-4)^{2}$
$=36+16=52$
\because Opposite sides are equal and diagonals are not equal
\therefore It is a parallelogram

Question 24.
Find the coordinates of the circumcentre of the triangle whose vertices are $(8,6)$, (8, -2) and (2, -2). Also, find its circumradius.

Solution:
O is the circumference of $\triangle A B C$
Whose vertices are A $(8,6), \mathrm{B}(8,-2)$,
C $(2,-2)$

- Let coordinates of centre $\mathrm{O}(x, y)$
$\because \mathrm{OA}=\mathrm{OB}=\mathrm{OC} \Rightarrow \mathrm{OA}^{2}=\mathrm{OB}^{2}=\mathrm{OC}^{2}$
$\therefore \mathrm{OA}^{2}=\mathrm{OB}^{2}$
$\Rightarrow(x-8)^{2}+(y-6)^{2}=(x-8)^{2}+(y+2)^{2}$
$x^{2}-16 x+64+y^{2}-12 y+36$
$=x^{2}-16 x+64+y^{2}+4 y+4$
$36-4=4 y+12 y \Rightarrow 16 y=32$
$\Rightarrow y=\frac{32}{16}=2$
Similarly $\mathrm{OB}^{2}=\mathrm{OC}^{2}$

$$
\begin{aligned}
& (x-8)^{2}+(y+2)^{2}=(x-2)^{2}+(y+2)^{2} \\
& x^{2}-16 x+64=x^{2}-4 x+4 \\
& 16 x-4 x=64-4
\end{aligned}
$$

$\Rightarrow 12 x=60 \Rightarrow x=\frac{60}{12}=5$
\therefore Coordinates of O are $(5,2)$
$\therefore \mathrm{OA}=\sqrt{(x-8)^{2}+(y-6)^{2}}$
$=\sqrt{(5-8)^{2}+(2--6)^{2}}=\sqrt{(-3)^{2}+(-4)^{2}}$
$=\sqrt{9+16}=\sqrt{25}=5$ units

Question 25.
If two opposite vertices of a square are $(3,4)$ and $(1,-1)$, find the coordinates of the other two vertices.
Solution:
iol. Length of hypotenuse of square $=\sqrt{2} \times$
side of the square

$\therefore \mathrm{AC}=\sqrt{2} \mathrm{AB}$
$\Rightarrow \mathrm{AC}^{2}=2 \mathrm{AB}^{2} \quad$ (squaring both sides)
$\Rightarrow(3-1)^{2}+[4-(-1)]^{2}=2\left[(x-3)^{2}+(y-4)^{2}\right]$
$\Rightarrow 29=2\left[(x-3)^{2}+\left(\frac{23-4 x}{10}-4\right)^{2}\right]$
[From (i)]
$\Rightarrow 29=2\left[(x-3)^{2}+\frac{(-4 x-17)^{2}}{100}\right]$
$\Rightarrow 2900=2\left[100\left(x^{2}-6 x+9\right)+\left(16 x^{2}+289+\right.\right.$ 136x)]
$\Rightarrow 2900=2\left[116 x^{2}-464 x+1189\right]$
$\Rightarrow 116 x^{2}-464 x+1189=1450$
$\Rightarrow 116 x^{2}-464 x-261=0$
$\Rightarrow x=\frac{464 \pm \sqrt{(-464)^{2}-4 \times 116 \times(-261)}}{2 \times 116}$

$$
\left(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)
$$

$$
\begin{aligned}
& \Rightarrow x=\frac{464 \pm \sqrt{336400}}{2 \times 116} \Rightarrow x=\frac{464 \pm 580}{232} \\
& \Rightarrow x=\frac{464+580}{232} \text { or } x=\frac{464-580}{232} \\
& x=\frac{1044}{232}=\frac{9}{2} \text { or } x=\frac{-116}{232}=\frac{-1}{2} \\
& \text { When } x=\frac{9}{2} \\
& \qquad y=\frac{23-4 \times \frac{9}{2}}{10}=\frac{46-36}{20}=\frac{10}{20}=\frac{1}{2} \\
& \text { When } x=\frac{-1}{2} \\
& y=\frac{23-4 \times\left(\frac{-1}{2}\right)}{10}=\frac{25}{10}=\frac{5}{2}
\end{aligned}
$$

Thus, the coordinates of the remaining vertices of square are $\left(\frac{9}{2}, \frac{1}{2}\right)$ and $\left(\frac{-1}{2}, \frac{5}{2}\right)$

Multiple Choice Questions

Choose the correct answer from the given four options (1 to 16): Question 1.
Point $(-3,5)$ lies in the
(a) first quadrant
(b) second quadrant
(c) third quadrant
(d) fourth quadrant

Solution:
Point $(-3,5)$ lies in second quadrant, (b)

Question 2.
Point (0, -7) lies
(a) on the x-axis
(b) in the second quadrant
(c) on the y-axis
(d) the fourth quadrant

Solution:
Point $(0,-7)$ lies on y-axis $(a s x=0)(c)$

Question 3.

Abscissa of a point is positive in I and II quadrants
I and IV quadrants
I quadrant only
II quadrant only
Solution:
Abscissa of a point is positive in first and fourth quadrants. (b)

Question 4.

The point which lies ony-axis at a distance of 5 units in the negative direction of y-axis is
(a) $(0,5)$
(b) $(5,0)$
(c) $(0,-5)$
(d) $(-5,0)$

Solution:
$(0,-5)$ is the required point. (c)

Question 5.

If the perpendicular distance of a point P from the x-axis is 5 units and the foot of perpendicular lies on the negative direction of x-axis, then the point P has
(a) x-coordinate $=-5$
(b) y-coordinate $=5$ only
(c) y-coordinate $=-5$ only
(d) y-coordinate $=5$ or -5

Solution:
Perpendicular distance for a point P on x - axis in negative direction.

It will has $\mathrm{y}=5$ and $\mathrm{x}=-5$ (d)

Question 6.
The points whose abscissa and ordinate have different signs will lie in
(a) I and II quadrants
(b) II and III quadrants
(c) I and III quadrants
(d) II and IV quadrants

Solution:
Point which has abscissa and ordinate having different signs will lie in second and fourth quadrants. (d)

Question 7.

The points $(-5,2)$ and $(2,-5)$ lie in
(a) same quadrant
(b) II and III quadrants respectively
(c) II and IV quadrants respectively
(d) IV and II quadrants respectively

Solution:
Points $(-5,2)$ and $(2,-5)$ lie in second and fourth quadrants respectively. (b)

Question 8.
If $P(-1,1), Q(3,-4), R(1,-1), S(-2,-3)$ and $T(-4,4)$ are plotted on the graph paper, then point(s) in the fourth quadrant are
(a) P and T
(b) Q and R
(c) S only
(d) P and R

Solution:
Points $P(-1,1), Q(3,-4), R(1,-1), S(-2,-3)$ and $T(-4,4)$ are plotted on graph The points in 4th quadrant are Q and $R(b)$

Question 9.

On plotting the points $O(0,0), A(3,0), B(3,4), C(0,4)$ and joining $O A, A B, B C$ and CO which of the following figure is obtained?
(a) Square
(b) Rectangle
(c) Trapezium
(d) Rhombus

Solution:
On plotting the points $O(0,0), A(3,0), B(3,4), C(0,4)$
$\mathrm{OA}, \mathrm{AB}, \mathrm{BC}$ and CO are joined
The figure so formed will a rectangle (b)

Question 10.

Which of the following points lie on the graph of the equation :
$3 x-5 y+7=0$?
(a) $(1,-2)$
(b) $(2,1)$
(c) $(-1,2)$
(d) $(1,2)$

Solution:
$3 x-5 y+7=0$
Let $(1,-2)$, subtracting the value of $x=1, y$
$=-2$, then
$3 \times 1-5(-2)+7=3+10+7=17 \neq 0$
Similarly subsituting the value of $x=2, y=1$
then $3 \times 2-5 \times 1+7=6-5+7 \neq 0$
$(-1,2)$
$3 \times(-1)-(5 \times 2)+7$
$\Rightarrow-3-10+7 \neq 0$
and (1, 2)
$3 \times 1-5 \times 2+7=0$
$3-10+7=10-10=0$
$\therefore(1,2)$ lies on $3 x-5 y+7=0$

Question 11.

The pair of equation $x-a$ and $y=b$ graphically represents lines which are
(a) parallel
(b) intersecting at (b, a)
(c) coincident
(d) intersecting at (a, b)

Solution:
$x=a, y=6$
Which are intersecting at (a, b) (d)

Question 12.
The distance of the point $P(2,3)$ from the $x>a x i s$ is
(a) 2 units
(b) 3 units
(c) 1 unit
(d) 5 units

Solution:
The distance of the point $P(2,3)$ from x - axis is 3 units (as $y=3$). (b)

Question 13.
The distance of the point $P(-4,3)$ from the y-axis is
(a) 5 units
(b) -4 units
(c) 4 units
(d) 3 units

Solution:
The distance of the point $P(-4,3)$ from y - axis will be 4 units. (c)

Question 14.

The distance of the point $P(-6,8)$ from the origin is
(a) 8 units
(b) $2 \sqrt{7}$ units
(c) 10 units
(d) 6 units

Solution:
The distance of point $P(-6,8)$ from origin

$$
\begin{align*}
& \text { is } \sqrt{(6)^{2}+(8)^{2}}=\sqrt{36+64} \\
& =\sqrt{100}=10 \text { units } \tag{c}
\end{align*}
$$

Question 15.
The distance between the points $A(0,6)$ and $B(0,-2)$ is
(a) 6 units
(b) 8 units
(c) 4 units
(d) 2 units

Solution:

$$
\begin{align*}
& \mathrm{AB}=\sqrt{(0-0)^{2}+(6+2)^{2}}=\sqrt{0^{2}+8^{2}} \\
& =\sqrt{8^{2}}=8 \text { units } \tag{b}
\end{align*}
$$

Question 16.

The distance between the points $(0,5)$ and $(-5,0)$ is
(a) 5 units
(b) $5 \sqrt{2}$ units
(c) $2 \sqrt{7}$ units
(d) 10 units

Solution:
The distance between the points $(0,5)$ and $(-5,0)$ is

$$
\begin{align*}
& =\sqrt{(-5-0)^{2}+(0-5)^{2}}=\sqrt{(-5)^{2}+(-5)^{2}} \\
& =\sqrt{25+25}=\sqrt{50}=\sqrt{25 \times 2}=5 \sqrt{2} \tag{b}
\end{align*}
$$

Question 17.
$A O B C$ is a rectangle whose three vertices are $A(0,3), O(0,0)$ and $B(5,0)$. The length of its diagonal is
(a) 5 units
(b) 3 units
(c) $\sqrt{34}$ units
(d) 4 units

Solution:
Length of its diagonal

$\mathrm{AB}=\sqrt{(5-0)^{2}+(0-3)^{2}}=\sqrt{(5)^{2}+(-3)^{2}}$
$=\sqrt{25+9}=\sqrt{34}$ units

Question 18.
If the distance between the points $(2,-2)$ and $(-1, x)$ is S units, then one of the value of x is
(a) -2
(b) 2
(c) -1
(d) 1

Solution:
Distance between $(2,-2)$ and $(-1, x)=5$ units
$\therefore \sqrt{(2+1)^{2}+(-2-x)^{2}}=5$
$\Rightarrow \sqrt{3^{2}+(-2-x)^{2}}=5$
Squaring,
$\Rightarrow 3^{2}+4+x^{2}+4 x=25$
$\Rightarrow x^{2}+4 x+13-25=0$
$\Rightarrow x^{2}+4 x-12=0$
$\Rightarrow x^{2}+6 x-2 x-12=0$
$\Rightarrow x(x+6)-2(x+6)=0$
$\Rightarrow(x+6)(x-2)=0$
\therefore Either $x+6=0$, then $x=-6$
or $x-2=0$, then $x=2$
One value of $x=2$
(b)

Question 19.

The distance between the points $(4, p)$ and $(1,0)$ is 5 units, then the value of p is
(a) 4 only
(b) -4 only
(c) ± 4
(d) 0

Solution:
Distance between $(4, p)$ and $(1,0)$ is 5 units

$$
\begin{align*}
\therefore & \sqrt{(4-1)^{2}+(p-0)^{2}}=5 \\
& \sqrt{3^{2}+p^{2}}=5 \Rightarrow 9+p^{2}=25 \\
& p^{2}=25-9=16 \\
\therefore & p= \pm 4 \tag{c}
\end{align*}
$$

Question 20.
The points $(-4,0),(4,0)$ and $(0,3)$ are the vertices of a
(a) right triangle
(b) isosceles triangle
(c) equilateral triangle
(d) scalene triangle

Solution:
Points A $(-4,0), \mathrm{B}(4,0), \mathrm{C}(0,3)$ are the vertices of a triangle

$$
\begin{aligned}
& \text { Now, } \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(4+4)^{2}+(0)^{2}}=\sqrt{(8)^{2}}=8 \text { units } \\
& \mathrm{BC}=\sqrt{(0-4)^{2}+(3-0)^{2}} \\
& =\sqrt{(-4)^{2}+(3)^{2}}=\sqrt{16+9}=\sqrt{25}=5 \text { units } \\
& \mathrm{CA}=\sqrt{0+4)^{2}+(3-0)^{2}} \\
& =\sqrt{4^{2}+3^{2}}=\sqrt{16+9}=\sqrt{25}=5 \text { units }
\end{aligned}
$$

\because Two sides are equal in length $(\because B C=C A)$
\therefore It is an isosceles triangle.
(b)

Question 21.
The area of a square whose vertices are $A(0,-2), B(3,1), C(0,4)$ and $D(-3,1)$ is
(a) 18 sq. units
(b) 15 sq. units
(c) $\sqrt{18}$ sq. units
(d) $\sqrt{15}$ sq. units

Solution:

Vertices of a square are
A $(0,-2), \mathrm{B}(3,1), \mathrm{C}(0,4)$ and $\mathrm{D}(-3,1)$
$\therefore \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}^{\prime}-y_{1}\right)^{2}}$
$=\sqrt{(3-0)^{2}+(1+2)^{2}}=\sqrt{3^{2}+3^{2}}$
$=\sqrt{9+9}=\sqrt{18}$
\therefore Area of square $=(\text { side })^{2}$
$=(\sqrt{18})^{2}=18$ sq. units

Question 22.
In the given figure, the area of the triangle $A B C$ is
(a) 15 sq. units
(b) 10 sq. units
(c) 7.5 sq . units
(d) 2.5 sq. units

Solution:

Vertices of a $\triangle \mathrm{ABC}$ are $\mathrm{A}(1,3), \mathrm{B}(-1,0)$, C $(4,0)$
$\therefore \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(-1-1)^{2}+(0-3)^{2}}$
$=\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{4+9}=\sqrt{13}$
$\mathrm{BC}=\sqrt{(4+1)^{2}+(0+0)^{2}}=\sqrt{5^{2}+\overline{0}}$
$=\sqrt{5^{2}}=5$ units
\because Coordinates of A are $(1,3)$
\therefore Distance from A is x-axis $=3$ units
\therefore Area $=\frac{1}{2} B C \times 3=\frac{1}{2} \times 5 \times 3$

$$
\begin{equation*}
=\frac{15}{2}=7.5 \text { sq. units } \tag{c}
\end{equation*}
$$

Question 23.
The perimeter of a triangle with vertices $(0,4),(0,0)$ and $(3,0)$ is
(a) 5 units
(b) 12 units
(c) 11 units
(d) $7+\sqrt{5}$ units

Solution:
Vertices of a $\triangle \mathrm{ABC}$ are $\mathrm{A}(0,4), \mathrm{B}(0,0), \mathrm{C}$
$(3,0)$
$\therefore \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(0-0)^{2}+(0-4)^{2}}$
$=\sqrt{0^{2}+(-4)^{2}}$
$=\sqrt{0+16}=\sqrt{16}=4$ units
$B C=\sqrt{(3-0)^{2}+(0-0)^{2}}$
$=\sqrt{3^{2}+0^{2}}$
$=\sqrt{9+0}=\sqrt{9}=3$ units
and $\mathrm{CA}=\sqrt{(3-0)^{2}+(0-4)^{2}}$
$=\sqrt{3^{2}+(-4)^{2}}=\sqrt{9+16}$
$=\sqrt{25}=5$ units
\therefore Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
$=4+3+5=12$ units

Question 24.

If A is a point on the.y-axis whose ordinate is 5 and B is the point $(-3,1)$, then the length of $A B$ is
(a) 8 units
(b) 5 units
(c) 3 units
(d) 25 units

Solution:
A is a point an y-axis whose ordinate is 4 and B is a point $(-3,1)$, then length of coordinates of A will be $(0,5)$

$$
\begin{align*}
& \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-3-0)^{2}+(1-5)^{2}} \\
& =\sqrt{(-3)^{2}+(-4)^{2}} \\
& =\sqrt{9+16}=\sqrt{25}=5 \text { units } \tag{b}
\end{align*}
$$

Question 25.
The point A $(9,0), \mathrm{B}(9,6), \mathrm{C}(-9,6)$ and $\mathrm{D}(-9,0)$ are the vertices of a
(a) rectangle
(b) square
(c) rhombus
(d) trapezium

Solution:
A $(9,0), \mathrm{B}(9,6), \mathrm{C}(-9,6)$ and $\mathrm{D}(-9,0)$

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(9-9)^{2}+(6-0)^{2}} \\
& =\sqrt{0^{2}+6^{2}}=\sqrt{0+36}=\sqrt{36}=6 \text { units } \\
& \mathrm{BC}=\sqrt{(-9-9)^{2}+(6-6)^{2}} \\
& =\sqrt{(-18)^{2}+0^{2}}=\sqrt{18^{2}+0^{2}} \\
& =\sqrt{324}=18 \text { units } \\
& \mathrm{CD}=\sqrt{[-9-(-9)]^{2}+(0-6)^{2}} \\
& =\sqrt{(9-9)^{2}+(-6)^{2}} \\
& =\sqrt{(0)^{2}+6^{2}}=\sqrt{36}=\sqrt{36} \\
& =6 \text { units }
\end{aligned}
$$

$$
\mathrm{DA}=\sqrt{(-9-9)^{2}+(0-0)^{2}}
$$

$$
=\sqrt{(-18)^{2}+(0)^{2}}
$$

$$
=\sqrt{324+0}=\sqrt{324}=18 \text { units }
$$

$\because \mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{DA}$
and these are opposite sides
$\therefore \mathrm{ABCD}$ is a rectangle.

Chapter Test

Question 1.
Three vertices of a rectangle are $A(2,-1), B(2,7)$ and $C(4,7)$. Plot these points on a graph and hence use it to find the co-ordinates of the fourth vertex D Also find the co-ordinates of
(i) the mid-point of BC
(ii) the mid point of CD
(iii) the point of intersection of the diagonals. What is the area of the rectangle? Solution:

Given three vertices of a rectangle are
A $(2,-1), \mathrm{B}(2,7)$ and $\mathrm{C}(4,7)$
From graph the co-ordinates of the fourth
vertex $D(4,-1)$
(i) mid-point of BC is $(3,7)$
(ii) mid-point of CD is $(4,3)$
(iii) The point of intersection of the diagonals $(3,3)$. Area of rectangle $A B C D=A B \times B C$
$=8 \times 2$ sq. units $=16$ sq. units.

Question 2.
Three vertices of a parallelogram are $A(3,5), B(3,-1)$ and $C(-1,-3)$. Plot these points on a graph paper and hence use it to find the coordinates of the fourth vertex D . Also find the coordinates of the mid-point of the side CD. What is the area of the parallelogram?
Solution:

The vertices A, B and C of parallelogram are $\mathrm{A}(3,5), \mathrm{B}(3,-1)$ and $\mathrm{C}(-1,-3)$
D is the fourth vertex of the parallelogram which is $(-1,3)$
E is the mid-piont of CD whose coordinates are $(-1,0)$
Now area of the parallelogram ABCD
$=$ Base \times Height $=\mathrm{AB} \times \mathrm{EF}=6 \times 4=24 \mathrm{sq}$.
units

Question 3.
Draw the graphs of the following linear equations.
(i) $y=2 x-1$
(ii) $2 x+3 y=6$
(iii) $2 x-3 y=4$.

Also find slope and y-intercept of these lines.
Solution:
(i) $y=2 x-1$

x	1	2	3
y	1	3	5

$$
m=2 \quad \text { and } \quad c=-1
$$

$$
\text { (ii) } 2 x+3 y=6 \text { or } 3 y=6-2 x
$$

$$
\begin{aligned}
& \text { or } \begin{aligned}
& y=\frac{6-2 x}{3} \\
&=\frac{-2 x}{3}+2 \\
& \begin{array}{|c|c|c|c|}
\hline x & 0 & 3 & 6 \\
\hline y & 2 & 0 & -2 \\
\hline
\end{array}
\end{aligned} . \begin{array}{l}
\\
\hline
\end{array}
\end{aligned}
$$

$m=\frac{-2}{3} \quad$ and $\quad c=2$.
(iii) $2 x-3 y=4$
or $-3 y=4-2 x$
or $\quad 3 y=2 x-4$
or $\quad y=\frac{2 x-4}{3}$
$=\frac{2}{3} x-\frac{4}{3}$

x	2	5	-1
y	0	2	-2

$m=\frac{2}{3} \quad$ and $\quad c=\frac{-4}{3}$

Question 4.
Draw the graph of the equation $3 x-4 y=12$. From the graph, find :
(i) the value of y when $x=-4$
(ii) the value of x when $y=3$.

Solution:
Given equation is $3 x-4 y=12$

$$
\begin{gathered}
\text { or } 3 x=12+4 y \quad \text { or } \quad x=\frac{12+4 y}{3} \text { or } x \\
=\frac{4 y+12}{3} \quad \text { or } x=\frac{4}{3} y+\frac{12}{3} \\
\text { or } x=\frac{4}{3} y+4
\end{gathered}
$$

x	4	8	0
y	0	3	-3

(i) when $x=-4$ then value of $y=-6$
(ii) when $y=3$ then value of $x=8$.

Question 5.
Solve graphically, the simultaneous equations: $2 x-3 y=7 ; x+6 y=11$. Solution:

$$
\begin{aligned}
& 2 x-3 y=7, x+6 y=11 \\
& 2 x-3 y=7 \Rightarrow 2 x=3 y+7 \\
\Rightarrow & x=\frac{3 y+7}{2}
\end{aligned}
$$

Giving some different value to y, we get corresponding value of x.

x	5	2	-1
y	1	-1	-3

Plot the points $(5,1),(2,-1)$ and $(-1,-3)$ on the graph and join them to get a line.
Similarly in
$x+6 y=11 \Rightarrow x=11-6 y$

x	5	-1	11
y	1	2	0

Now plot the points $(5,1),(-1,2)$ and $(11,0)$ and join them to get another line.

We see that there two lines intersect at $(5,1)$
Hence $x=5, y=1$

Question 6.
Solve the following system of equations graphically: $x-2 y-4=0,2 x+. y-3=0$.
Solution:
$x-2 y-4=0$ and $2 x+y-3=0$
$x-2 y-4=0 \Rightarrow x=2 y+4$
Giving some different value to y, we get corresponding values of x

x	4	2	0
y	0	-1	-2

Plot the points $(4,0),(2,-1)$ and $(0,-2)$ on the graph and join them to get a line.
Similarly in $2 x+y-3=0 \Rightarrow y=3-2 x$

x	0	1	2
y	3	1	-1

Plot the points $(0,3),(1,1)$ and $(2,-1)$ and join them to get another line.
We see that these lines intersect each other at $x=2, y=-1$

Question 7.

Using a scale of I cm to 1 unit for both the axes, draw the graphs of the following equations: $6 y=5 x:+10, y=5 ; c-15$. From the graph, find
(i) the coordinates of the point where the two lines intersect.
(ii) the area of the triangle between the lines and the \mathbf{x}-axis.

Solution:

$$
\begin{aligned}
& 6 y=5 x+10, y=5 x-15 \\
& 6 y=5 x+10 \Rightarrow y=\frac{5 x+10}{6}
\end{aligned}
$$

Giving some different values to x, we get corresponding values of y

x	1	-2	4
y	2.5	0	5

Plot the points $(1,2.5),(-2,0)$ and $(4,5)$ on the graph and join them to get a line.
Similarly in $y=5 x-15$

x	2	3	4
y	-5	0	5

Plot the points $(2,-5),(3,0)$ and $(4,5)$ on the graph and join them to get a line.
We see that three two lines intersect each other at

Question 8.
Find, graphically, the coordinates of the vertices of the triangle formed by the lines : $8 y-3 x+7=0,2 x-y+4=0$ and $5 x+4 y=29$.
Solution:
$8 y-3 x+7=0 \Rightarrow 8 y=3 x-7$
$\Rightarrow y=\frac{3 x-7}{8}$
Giving some different values to x, we get corresponding values of y *

x	1	5	-3
y	$\frac{-1}{2}$	1	-2

Plot the points $\left(1, \frac{-1}{2}\right),(5,1),(-3,-2)$ on the graph and join them to get a line
$2 x-y+4=0 \Rightarrow 2 x=y-4$
$\Rightarrow x=\frac{y-4}{2}$
Giving some different values to y, we get corresponding value of x

x	-2	-1	0
y	0	2	4

Plot the point on the graph and join them to get a line
and $5 x+4 y=29 \Rightarrow 5 x=29-4 y$
$\Rightarrow x=\frac{29-4 y}{5}$

x	5	1	-4
y	1	6	9

Plot the points on the graph and join them to get another line.
We see that there three lines intersect each other at ($-3,-2$), (1,5) and (1,6) respectively Therefore vertices of $(-3,-2,(1,5),(1,6)$.

Question 9.
Find graphically the coordinates of the vertices of the triangle formed by the lines $y-2=0,2 y+x=0$ and $y+1=3(x-2)$. Hence, find the area of the triangle formed by these lines.
Solution:
$y-2=0$
$y=2$, which is parallel to x-axis

x	0	1	3
y	2	2	2

$2 y+x=0 \Rightarrow x=-2 y$

x	0	-2	-4
y	0	1	2

Plot the points $(0,0),(-2,1)$ and $(-4,2)$ on the graph and join them to get a line.

$$
y+1=3(x-2)=3 x-6
$$

Giving some different values to x, we get corresponding the value of y

x	1	2	3
y	-4	-1	2

Plot the points $(1,-4),(2,-1)$ and $(3,2)$ on the graph and join them to get another line. Now we see that three lines intersect each other.

Coordinates of the vertices of the triangle are $(2,-1),(3,2),(-4,2)$ and
\therefore Area of triangle $=\frac{\mathrm{BC} \times \mathrm{AB}}{2}$

$$
=\frac{7 \times 3}{2}=\frac{21}{2}=10.5 \mathrm{~cm}^{2}
$$

Question 10.

A line segment is of length 10 units and one of its end is $(-2,3)$. If the ordinate of the other end is 9 , find the abscissa of the other end.
Solution:
Ordinates of the point on the other end $(y)=9$
Let abscissa $(x)=x$
Then distance between the two ends $(-2,3)$

$$
\begin{aligned}
& \text { and }(x, 9)=\sqrt{(x+2)^{2}+(9-3)^{2}} \\
\therefore & \sqrt{(x+2)^{2}+(6)^{2}}=10
\end{aligned}
$$

$\Rightarrow x^{2}+4 x+4+36=100$
$\Rightarrow x^{2}+4 x=100-36-4=60$
$\Rightarrow x^{2}+4 x-60=0$
$\Rightarrow x^{2}+10 x-6 x-60=0$
$\Rightarrow x(x+10)-6(x+10)=0$
$\Rightarrow(x+10)(x-6)=0$
Either $x+10=0$, then $x=-10$
or $x-6=0$, then $x=6$
\therefore Abscissa will be -10 or 6

Question 11.

A ($-4,-1$), $B(-1,2)$ and $C(a, 5)$ are the vertices of an isosceles triangle. Find the value of a, given that $A B$ is the unequal side.
Solution:
$\mathrm{A}(-4,-1), \mathrm{B}(-1,2)$ and $\mathrm{C}(\alpha, 5)$ are vertices of an isosceles triangle. AB is the unequal side.
$\therefore \mathrm{AC}=\mathrm{BC}$
$\mathrm{AC}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(\alpha+4)^{2}+(5+1)^{2}}=\sqrt{(\alpha+4)^{2}+6^{2}}$
and $\mathrm{BC}=\sqrt{(\alpha+1)^{2}+(5-2)^{2}}$
$=\sqrt{(\alpha+1)^{2}+3^{2}}$
$\therefore \sqrt{(\alpha+4)^{2}+6^{2}}=\sqrt{(\alpha+1)^{2}+3^{2}}$
Squaring both sides,

$$
\begin{aligned}
&(\alpha+4)^{2}+36=(\alpha+1)^{2}+9 \\
& \alpha^{2}+8 \alpha+16+36=\alpha^{2}+2 \alpha+1+9 \\
& 8 \alpha-2 \alpha=1+9-16-36 \\
& 6 \alpha=-42 \Rightarrow \alpha=\frac{-42}{6}=-7 \\
& \therefore \alpha=-7
\end{aligned}
$$

Question 12.

If $A(-3,2), B(a, p)$ and $C(-1,4)$ are the vertices of an isosceles triangle, prove that $\alpha+\beta=1$, given $A B=B C$.
Solution:

A $(-3,2), \mathrm{B}(\alpha, \beta)$ and $\mathrm{C}(-1,4)$ are the value of an isosceles triangle $\mathrm{AB}=\mathrm{BC}$
Now, $\mathrm{AB}=\sqrt{(\alpha+3)^{2}+(\beta-2)^{2}}$
and $B C=\sqrt{(\alpha+1)^{2}+(\beta-4)^{2}}$
$\because A B=B C$
$\therefore \sqrt{(\alpha+3)^{2}+(\beta-2)^{2}}=\sqrt{(\alpha+1)^{2}+(\beta-4)^{2}}$
Squaring both sides,
$(\alpha+3)^{2}+(\beta-2)^{2}=(\alpha+1)+(\beta-4)^{2}$
$\Rightarrow \alpha^{2}+6 \alpha+9+\beta^{2}-4 \beta+4=\alpha^{2}+2 \alpha+1+$
$\beta^{2}-8 \beta+16$
$6 \alpha-2 \alpha-4 \beta+8 \beta=16-9-4+1$
$4 \alpha+4 \beta=4 \Rightarrow \alpha+\beta=1 \quad$ (dividing by 4)
Hence $\alpha+\beta=1$
A $(-3,2), B(\alpha, \beta)$ and $C(-1,4)$ are the value of an isosceles triangle $A B=B C$
Now, $\mathrm{AB}=\sqrt{(\alpha+3)^{2}+(\beta-2)^{2}}$
and $B C=\sqrt{(\alpha+1)^{2}+(\beta-4)^{2}}$
$\because \mathrm{AB}=\mathrm{BC}$
$\therefore \sqrt{(\alpha+3)^{2}+(\beta-2)^{2}}=\sqrt{(\alpha+1)^{2}+(\beta-4)^{2}}$
Squaring both sides,

$$
\begin{aligned}
&(\alpha+3)^{2}+(\beta-2)^{2}=(\alpha+1)+(\beta-4)^{2} \\
& \Rightarrow \alpha^{2}+6 \alpha+9+\beta^{2}-4 \beta+4=\alpha^{2}+2 \alpha+1+ \\
& \beta^{2}-8 \beta+16 \\
& 6 \alpha-2 \alpha-4 \beta+8 \beta=16-9-4+1 \\
&4 \alpha+4 \beta=4 \Rightarrow \alpha+\beta=1 \quad \text { (dividing by } 4) \\
& \text { Hence } \alpha+\beta=1
\end{aligned}
$$

Question 13.

Prove that the points $(3,0),(6,4)$ and $(-1,3)$ are the vertices of a right angled isosceles triangle.
Solution:

Let points A $(3,0), \mathrm{B}(6,4)$ and $(-1,3)$ are the vertices of a right angled.

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(6-3)^{2}+(4-0)^{2}}=\sqrt{3^{2}+4^{2}} \\
& =\sqrt{9+16}=\sqrt{25}=5 \\
& \mathrm{BC}=\sqrt{(-1-6)^{2}+(3-4)^{2}} \\
& =\sqrt{(-7)^{2}+(-1)^{2}}=\sqrt{49+1}=\sqrt{50} \\
& =\sqrt{25 \times 2}=5 \sqrt{2} \\
& \mathrm{AC}=\sqrt{(-1-3)^{2}+(3-0)^{2}}=\sqrt{(-4)^{2}+3^{2}} \\
& =\sqrt{16+9}=\sqrt{25}=5 \\
& \therefore \mathrm{AB}^{2}+\mathrm{AC}=5^{2}+5^{2} \\
& =25+25=50 \\
& =\mathrm{BC}^{2}
\end{aligned}
$$

$\therefore \triangle \mathrm{ABC}$ is a right angled triangle.

Question 14.

(i) Show that the points $(2,1),(0,3),(-2,1)$ and $(0,-1)$, taken in order, are the vertices of a square. Also find the area of the square.
(ii) Show that the points $(-3,2),(-5,-5),(2,-3)$ and $(4,4)$, taken in order, are the vertices of rhombus. Also find its area. Do the given points form a square?
Solution:
(i) Let points $\mathrm{A}(2,1), \mathrm{B}(0,3), \mathrm{C}(-2,1)$ and D $(0,-1)$ taking in order, are the vertices of the square

$$
\begin{aligned}
& \text { Now, } \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(0-2)^{2}+(3-1)^{2}}=\sqrt{2^{2}+2^{2}} \\
& =\sqrt{4+4}=\sqrt{8} \\
& \mathrm{BC}=\sqrt{(-2-0)^{2}+(1-3)^{2}} \\
& =\sqrt{(-2)^{2}+(-2)^{2}}=\sqrt{4+4}=\sqrt{8} \\
& \mathrm{CD}=\sqrt{(0-2)^{2}+(-1-1)^{2}} \\
& =\sqrt{2^{2}+2^{2}}=\sqrt{4+4}=\sqrt{8} \\
& \mathrm{CA}=\sqrt{(2-0)^{2}+(1+1)^{2}}=\sqrt{2^{2}+2^{2}} \\
& =\sqrt{4+4}=\sqrt{8}
\end{aligned}
$$

$$
\mathrm{DA}=\sqrt{(2-0)^{2}+(1+1)^{2}}=\sqrt{2^{2}+2^{2}}
$$

$$
=\sqrt{4+4}=\sqrt{8}
$$

$\because \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
$\therefore \mathrm{ABCD}$ is a square with side $\sqrt{8}$
Area $=(\text { side })^{2}=(\sqrt{8})^{2}=8$ sq. units
(ii) Let the given points are $\mathrm{A}(-3,2), \mathrm{B}(-5$,
$-5), C(2,-3)$ and $D(4,4)$
$\mathrm{AB}=\sqrt{(-5+3)^{2}+(-5-2)^{2}}$
$=\sqrt{(-2)^{2}+(-7)^{2}}=\sqrt{4+49}=\sqrt{53}$
$\mathrm{BC}=\sqrt{(2+5)^{2}+(-3+5)^{2}}=\sqrt{7^{2}+2^{2}}$
$=\sqrt{49+4}=\sqrt{53}$
$\mathrm{BC}=\sqrt{(2+5)^{2}+(-3+5)^{2}}$
$=\sqrt{7^{2}+2^{2}}=\sqrt{49+4}=\sqrt{53}$
$\mathrm{CD}=\sqrt{(4-2)^{2}+(4+3)^{2}}=\sqrt{2^{2}+7^{2}}$
$=\sqrt{4+49}=\sqrt{53}$
$\mathrm{DA}=\sqrt{(-3-4)^{2}+(2-4)^{2}}$
$=\sqrt{(-7)^{2}+(-2)^{2}}=\sqrt{4+49}=\sqrt{53}$
$\because \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
ABCD is a square or rhombus

Now diagonal $\mathrm{AC}=\sqrt{(2+3)^{2}+(-3-2)^{2}}$
$=\sqrt{5^{2}+5^{2}}=\sqrt{25+25}=\sqrt{50}$
and $\mathrm{BD}=\sqrt{(4+5)^{2}+(4+5)^{2}}$
$=\sqrt{9^{2}+9^{2}}=\sqrt{81+81}=\sqrt{162}$
$\because \mathrm{AC} \neq \mathrm{BD}$
$\therefore \mathrm{ABCD}$ is a rhombus not a square
\therefore Area $=\frac{\text { Product of diagonal }}{2}$
$=\frac{\sqrt{50} \times \sqrt{162}}{2}=\sqrt{\frac{8100}{2}}$
$=\frac{90}{2}=45$ sq. units

Question 15.
The ends of a diagonal of a square have co-ordinates (-2, p) and ($p, 2$). Find p if the area of the square is 40 sq. units.

Solution:
Ends of a diagonal of a square are $(-2, p)$ and $(p, 2)$
Area of square $=40$ sq. units
\therefore Side $=\sqrt{40}$ units $=2 \sqrt{10}$ units
and diagonal $=\sqrt{2} \times$ side
$=\sqrt{2} \times \sqrt{40}=\sqrt{80}=4 \sqrt{5}$ unit
Diagonal $=\mathrm{AC}=\sqrt{\left(x_{2}-x_{1}\right)^{2} \times\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(p+2)^{2}+(2-p)^{2}}=4 \sqrt{5}$
Squaring both side,
$(p+2)^{2}+(2-p)^{2}=16 \times 5=80$
$\Rightarrow p^{2}+4 p+4+4-4 p+p^{2}=80$
$\Rightarrow 2 p^{2}+8=80 \Rightarrow 2 p^{2}=80-8=72$
$\Rightarrow p^{2}=\frac{72}{2}=36=(\pm 6)^{2}$
$\therefore p= \pm 6$
$\therefore p=6,-6$

Question 16.
What type of quadrilateral do the points $A(2,-2), B(7,3), C(11,-1)$ and $D(6,-6)$, taken in the order, form?
Solution:

Vertices of a quadrilateral ABCD are $\mathrm{A}(2$, $-2)$, $\mathrm{B}(7,3), \mathrm{C}(11,-1), \mathrm{D}(6,-6)$ taken on order.

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2} \times\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(7-2)^{2}+(3+2)^{2}} \\
& =\sqrt{5^{2}+5^{2}} \\
& =\sqrt{25+25}=\sqrt{50} \\
& \mathrm{BC}=\sqrt{(11-7)^{2}+(-1-3)^{2}} \\
& =\sqrt{4^{2}+(-4)^{2}} \\
& =\sqrt{16+16}=\sqrt{32} \\
& \mathrm{CD}=\sqrt{(6-11)^{2}+(-6+1)^{2}} \\
& =\sqrt{(-5)^{2}+(-5)^{2}} \\
& =\sqrt{25+25}=\sqrt{50} \\
& \mathrm{DA}=\sqrt{(6-2)^{2}+(-6+2)^{2}} \\
& =\sqrt{4^{2}+(-4)^{2}} \\
& =\sqrt{16+16}=\sqrt{32} \\
& \therefore \mathrm{AB}=\mathrm{CD} \text { and } \mathrm{BC}=\mathrm{DA}
\end{aligned}
$$

$\therefore \mathrm{ABCD}$ is a rectangle
(\because Opposite sides are equal)

Question 17.
Find the coordinates of the centre of the circle passing through the three given points A $(5,1), \mathrm{B}(-3,-7)$ and $\mathrm{C}(7,-1)$.
Solution:

Let coordinates of the centre of the circle be (x, y)
Points A $(5,1)$, B $(-3,-7)$ and $C(7,-1)$ are on the circle

$$
\begin{align*}
\therefore & \mathrm{OA}=\mathrm{OB}=\mathrm{OC} \\
& \mathrm{Now}, \mathrm{OA}=\sqrt{\left(x_{2}-x_{1}\right)^{2} \times\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(x-5)^{2}+(y-1)^{2}} \\
& \mathrm{OB}=\sqrt{(x+3)^{2}+(y+7)^{2}} \\
& \mathrm{OC}=\sqrt{(x-7)^{2}+(y+1)^{2}} \\
& \mathrm{OA}^{2}=\mathrm{OB}^{2} \text { and } \mathrm{OA}^{2}=\mathrm{OC}^{2} \\
\therefore & (x-5)^{2}+(y-1)^{2}=(x+3)^{2}+(y+7)^{2} \\
\Rightarrow & x^{2}-10 x+25+y^{2}-2 y+1=x^{2}+6 x+9+y^{2} \\
& +14 y+49 \\
\Rightarrow & 6 x+14 y+10 x+2 y=-9-49+25+1 \\
\Rightarrow & 16 x+16 y=-32 \\
\Rightarrow & x+y=-2 \\
\Rightarrow & x=-2-y \tag{i}
\end{align*}
$$

Now $\mathrm{OA}^{2}=\mathrm{OC}^{2}$
$(x-5)^{2}+(y-1)^{2}=(x-7)^{2}+(y+1)^{2}$
$\Rightarrow x^{2}-10 x+25+y^{2}-2 y+1=x^{2}-14 x+49+$ $y^{2}+1+2 y$
$\Rightarrow-10 x+14 x-2 y-2 y=49+1-25-1$
$\Rightarrow 4 x-4 y=24$
$\Rightarrow x-y=6$
(Taking 4 common)
Now substitute the value of (i) in $(i i)$, we get
$\Rightarrow(-2-y)-y=6$
$\Rightarrow-2-y-y=6$
$\Rightarrow-2 y=6+2 \Rightarrow y=\frac{-8}{2} \Rightarrow y=-4$
Now put the value of $y=-4$ in equation (i)
$x=-2-y=-2-(-4)$
$=-2+4=2$
\therefore The coordinates of the centre of the circle are $(2,-4)$

