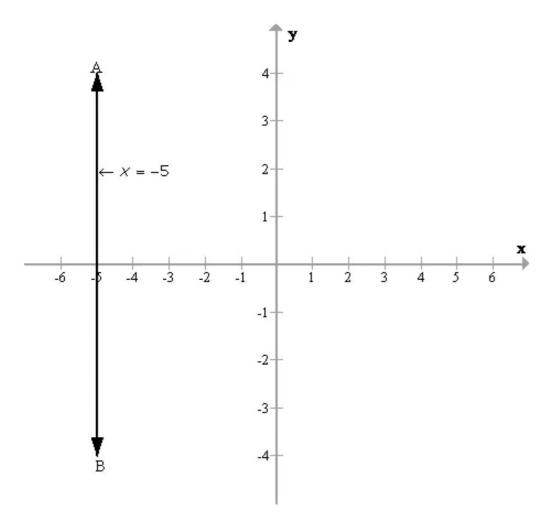
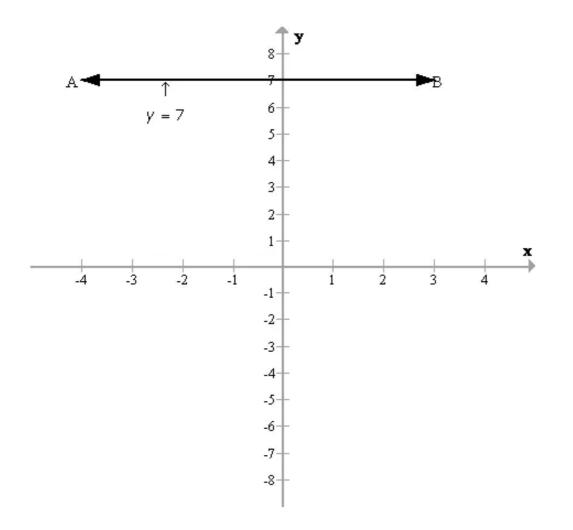

Chapter 27. Graphical Solution (Solution of Simultaneous Linear Equations, Graphically)

Exercise 27(A)

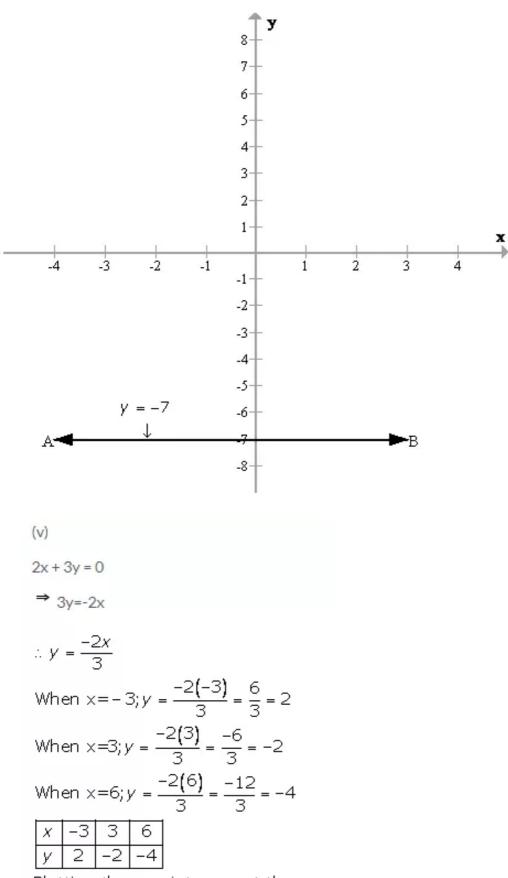
Solution 1:

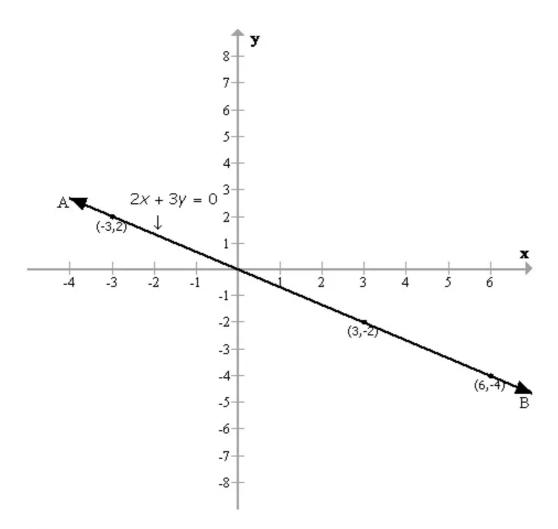

(i)

The graph x = 5 in the following figure is a straight line AB which is parallel to y axis at a distance of 5 units from it.

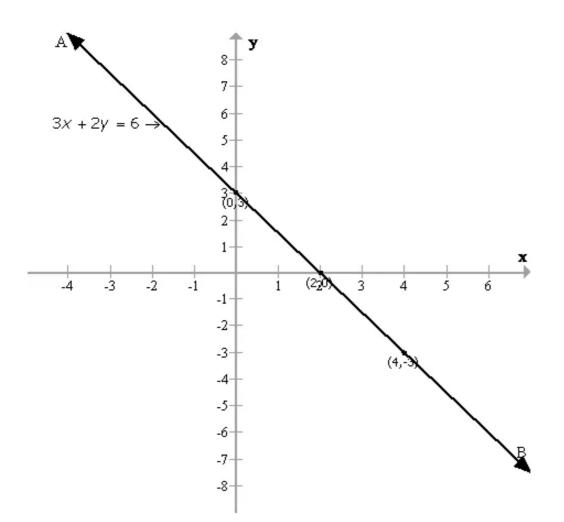


The graph x = -5 in the following figure is a straight line AB which is parallel to y axis at a distance of 5 units from it in the negative x direction.

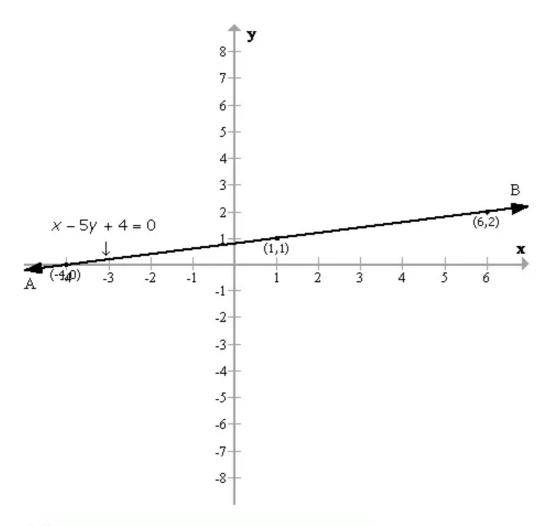



The graph y = 7 in the following figure is a straight line AB which is parallel to x axis at a distance of 7 units from it.

(iv) y + 7 = 0 y = -7


The graph y = -7 in the following figure is a straight line AB which is parallel to x axis at a distance of 7 units from it in the negative y direction.

(vi)

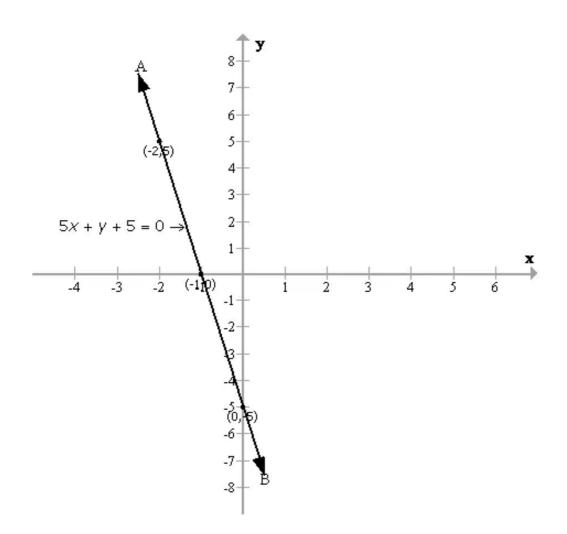

3x + 2y = 6 $\Rightarrow 2y = 6 - 3x$ $\therefore y = \frac{6 - 3x}{2}$ When x=0; $y = \frac{6 - 3 \times 0}{2} = \frac{6 - 0}{2} = 3$ When x=2; $y = \frac{6 - 3 \times 2}{2} = \frac{6 - 6}{2} = 0$ When x=4; $y = \frac{6 - 3 \times 4}{2} = \frac{6 - 12}{2} = -3$ $\frac{x \ 0 \ 2 \ 4}{y \ 3 \ 0 \ -3}$

x-5y+4=0

⇒ 5y=4+x

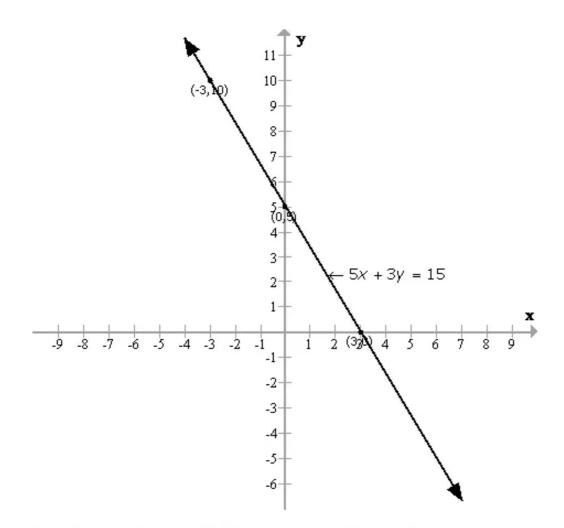
$$\therefore y = \frac{x+4}{5}$$

When x=1; y = $\frac{1+4}{5} = \frac{5}{5} = 1$
When x=6; y = $\frac{6+4}{5} = \frac{10}{5} = 2$
When x=-4; y = $\frac{-4+4}{5} = \frac{0}{5} = 0$
 $\boxed{x \ 1 \ 6 \ -4}$
y 1 2 0

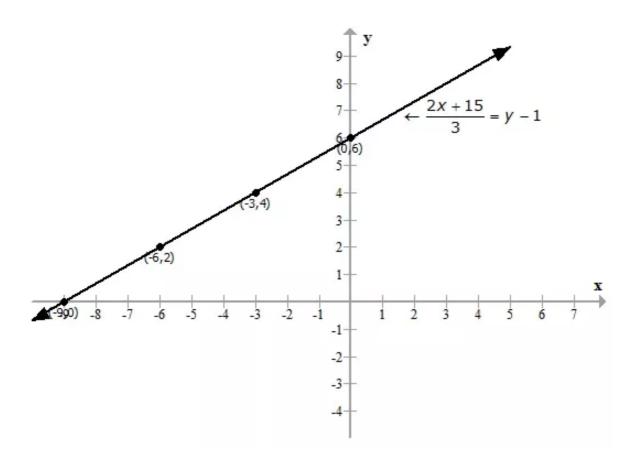


(viii)

5x + y + 5 = 0

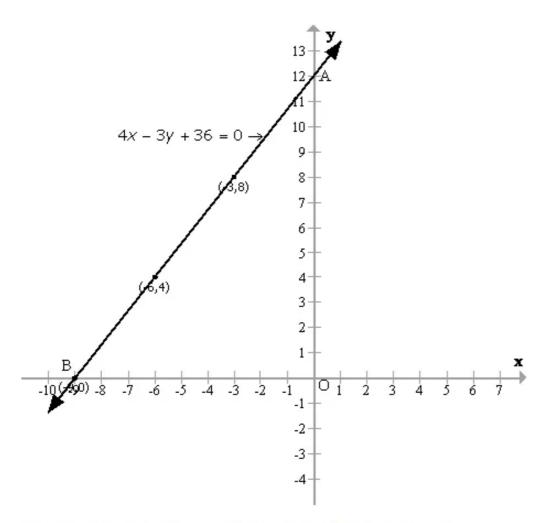

When $x=0; y = -5 \times x - 5 = -0 - 5 = -5$ When $x=-1; y = -5 \times (-1) - 5 = 5 - 5 = 0$ When $x=-2; y = -5 \times (-2) - 5 = 10 - 5 = 5$

X	0	-1	-2
У	-5	0	5


Solution 2:

(i) $\frac{1}{3}x + \frac{1}{5}y = 1$ $\Rightarrow \frac{5x + 3y}{15} = 1$ $\Rightarrow 5x + 3y = 15$ $\Rightarrow 3y = 15 - 5x$ $\Rightarrow y = \frac{15 - 5x}{3}$ When $x = 0; y = \frac{15 - 5 \times 0}{3} = \frac{15 - 0}{3} = 5$ When $x = 3; y = \frac{15 - 5 \times 3}{3} = \frac{15 - 15}{3} = 0$ When $x = -3; y = \frac{15 - 5 \times (-3)}{3} = \frac{15 + 15}{3} = 10$ $\boxed{x \ 0 \ 3 \ -3}}{y \ 5 \ 0 \ 10}$

From the figure it is clear that, the graph meets the coordinate axes at (3, 0) and (0, 5)


$(ii)\frac{2x+15}{3} = y - 1$
$\Rightarrow 2 \times +15 = 3(y-1)$
$\Rightarrow 2x+15=3y-3$
$\Rightarrow 2x - 3y = -15 - 3$
$\Rightarrow 2x - 3y = -18$
\Rightarrow -3y = -18-2x
\Rightarrow y = $\frac{-18-2x}{-3}$
When x = 0, y = $\frac{-18 - [2 \times 0]}{-3} = \frac{-18 - 0}{-3} = 6$
When x = -3, y = $\frac{-18 - [2 \times (-3)]}{-3} = \frac{-18 + 6}{-3} = 4$
When x = -6, y = $\frac{-18 - [2 \times (-6)]}{-3} = \frac{-18 + 12}{-3} = 2$
x 0 -3 -6 y 6 4 2
Diatting these points we get the

From the figure it is clear that, the graph meets the coordinate axes at (-9, 0) and (0, 6)

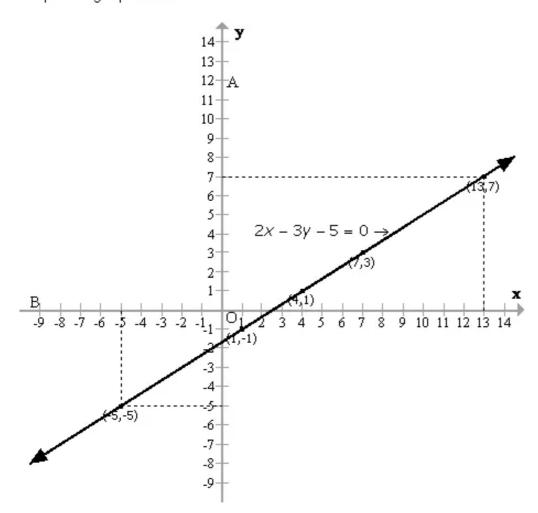
Solution 3:

4x - 3y + 36 = 0
$\Rightarrow 4x - 3y = -36$
$\Rightarrow -3y = -36 - 4x$
$\Rightarrow 3y = 36 + 4x$
$\Rightarrow y = \frac{36 + 4x}{3}$
When $x = -6$, $y = \frac{36 + 4 \times (-6)}{3} = \frac{36 - 24}{3} = 4$
When $x = -3$, $y = \frac{36 + 4 \times (-3)}{3} = \frac{36 - 12}{3} = 8$
When $x = -9$, $y = \frac{36 + 4 \times (-9)}{3} = \frac{36 - 36}{3} = 0$
× -9 -3 -6 y 0 8 4

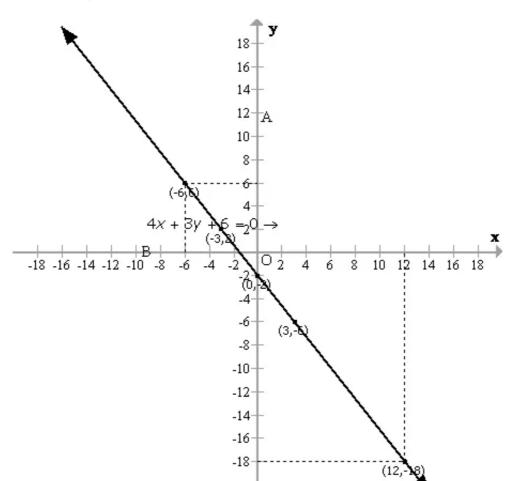
The straight line cuts the co-ordinate axis at A(0, 12) and B(-9, 0).

: The triangle ΔAOB is formed.

Area of the triangle $AOB = \frac{1}{2} \times AO \times OB$ = $\frac{1}{2} \times 12 \times 9$ = 54 sq. units


 \therefore Area of the triangle is 54 sq. units

Solution 4:

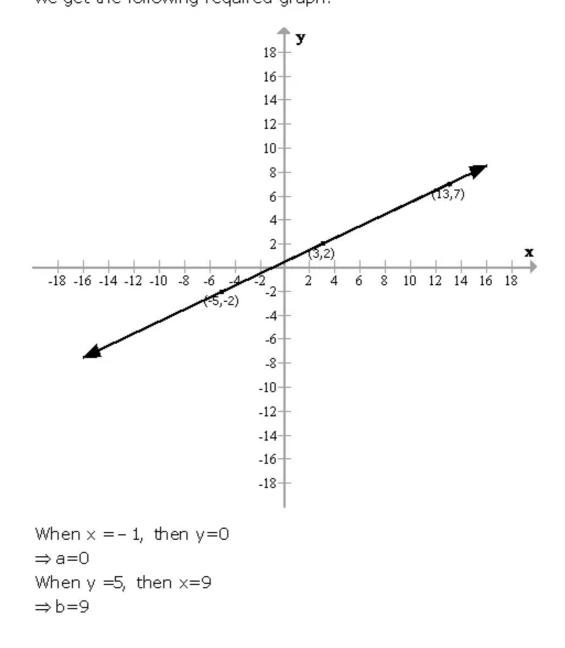

$$2x - 3y - 5 = 0$$

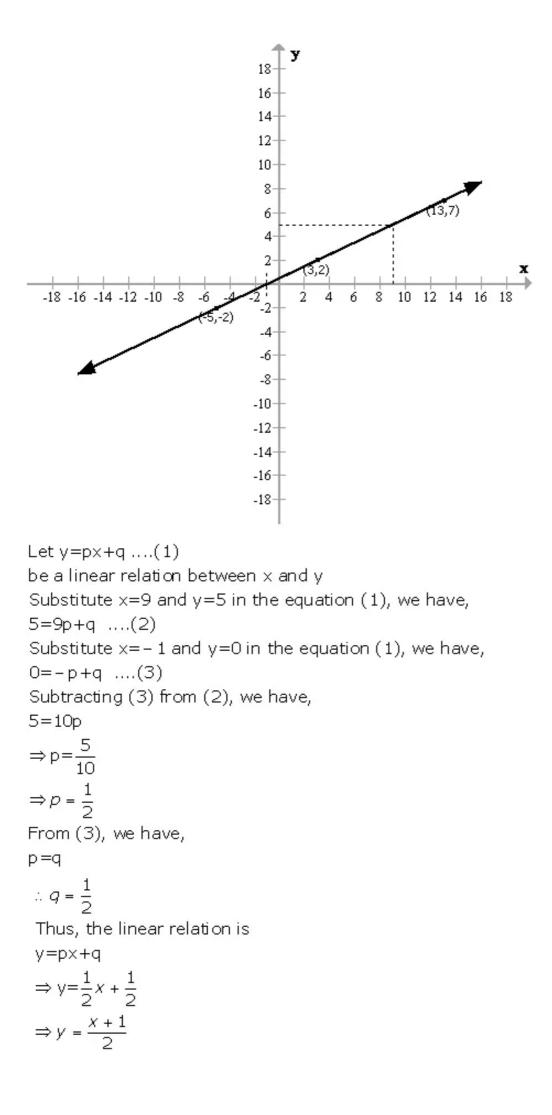
$$\Rightarrow 2x = 3y + 5$$

$$\Rightarrow x = \frac{3y + 5}{2}$$

When $y = 1$, $x = \frac{3(1) + 5}{2} = \frac{8}{2} = 4$
When $y = 3$, $x = \frac{3(3) + 5}{2} = \frac{9 + 5}{2} = 7$
When $y = -1$, $x = \frac{3(-1) + 5}{2} = \frac{5 - 3}{2} = 1$
 $\boxed{x + 4 + 7 + 1}$
 $y = 1 + 3 - 1$

The value of x, when y=7: We have the equation of the line as $x = \frac{3y + 5}{2}$ Now substitute y=7 and $x=x_1$: $x_1 = \frac{3(7) + 5}{2} = \frac{21 + 5}{2} = \frac{26}{2} = 13$ The value of x, when y = -5: Now substitute y=-5 and $x=x_2$: $x_2 = \frac{3(-5)+5}{2} = \frac{-15+5}{2} = \frac{-10}{2} = -5$ Solution 5: 4x + 3y + 6 = 0 $\Rightarrow 3y = -4x - 6$ $\Rightarrow y = \frac{-4x-6}{2}$ When x = 0, $y = \frac{-4(0)-6}{3} = \frac{-6}{3} = -2$ When x = 3, $y = \frac{-4(3)-6}{3} = \frac{-12-6}{3} = -6$ When x = -3, $y = \frac{-4(-3)-6}{3} = \frac{12-6}{2} = 2$ -3 × 0 3 -2 -6 2 V

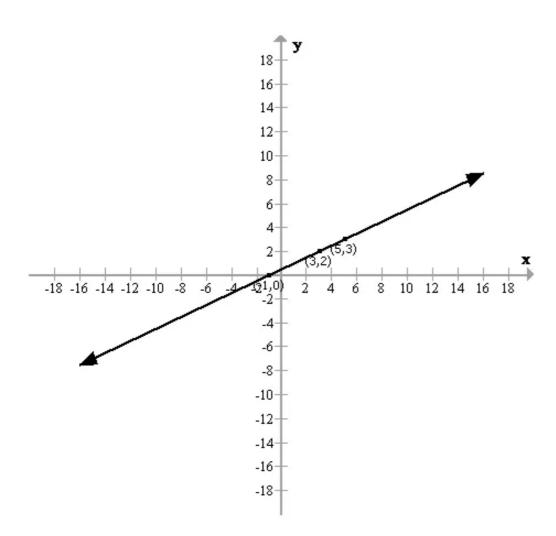

The value of y, when x=12: We have the equation of the line as $y = \frac{-4x - 6}{3}$ Now substitute x=12 and y=y₁: $y_1 = \frac{-4(12) - 6}{3} = \frac{-48 - 6}{3} = \frac{-54}{3} = -18$ The value of y, when x=-6: Now substitute x=-6 and y=y₂: $y_2 = \frac{-4(-6) - 6}{3} = \frac{24 - 6}{3} = \frac{18}{3} = 6$


Solution 6:

The table is:

	<	-5	-1	3	b	13
5	(-2	а	2	5	7

Plotting the points as shown in the above table, we get the following required graph:

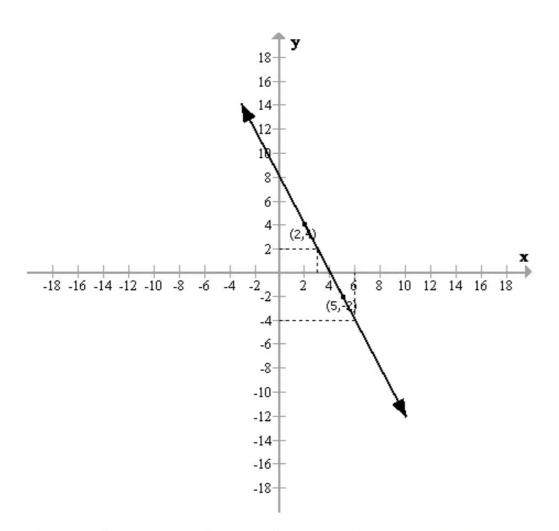


Solution 7:

The table is:

X	а	3	-5	5	С	-1
У	-1	2	Ь	3	4	0

Plotting the points as shown in the above table, we get the following required graph:


When y = -1, then x = -3⇒a=-3 When x = -5, then y = -2⇒b=-2 When y =4, then \times =7 $\Rightarrow c = 7$ Let y = px + q(1)be a linear relation between x and y Substitute x = -3 and y = -1 in the equation (1), we have, -1=-3p+q(2) Substitute x = -5 and y = -2 in the equation (1), we have, -2=-5p+q(3) Subtracting (3) from (2), we have, 1=2p $\Rightarrow p = \frac{1}{2}$ From (3), we have, -2 = -5p + q $\Rightarrow -2 = -5\left(\frac{1}{2}\right) + q$ ⇒-4=-5+2g $\Rightarrow 2q = 5 - 4$ $\Rightarrow 2g = 1$ $\therefore q = \frac{1}{2}$ Thus, the linear relation is y=px+q \Rightarrow y= $\frac{1}{2}x + \frac{1}{2}$ $\Rightarrow y = \frac{x+1}{2}$

Solution 8:

The table is:

X	2	3	5	m
У	4	n	-2	-4

Plotting the points as shown in the above table, we get the following required graph:

Plotting the points in the graph we get the

above required graph.

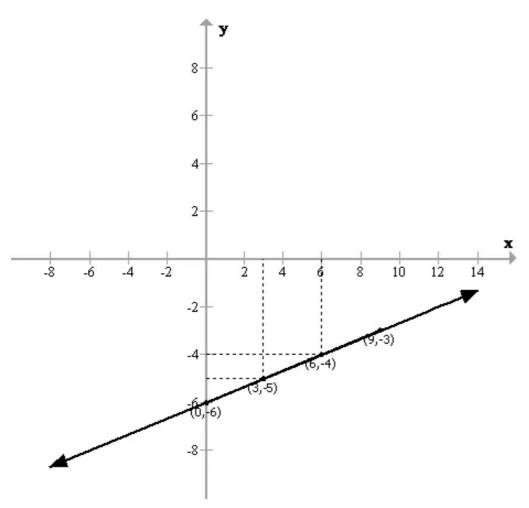
Now draw a line x=3, parallel to y-axis to meet the line It meets the line at y=2 and therefore, n=2

Now draw a line y = -4, parallel to x-axis to meet the line

It meets the line at x=6 and therefore, m=6

Thus the values of m and n are 6 and 2 respectively.

Solution 9:


Consider the equation

 $\begin{array}{l} x - 3y = 18 \\ \Rightarrow -3y = 18 - x \\ \Rightarrow 3y = x - 18 \\ \Rightarrow y = \frac{x - 18}{3} \end{array}$

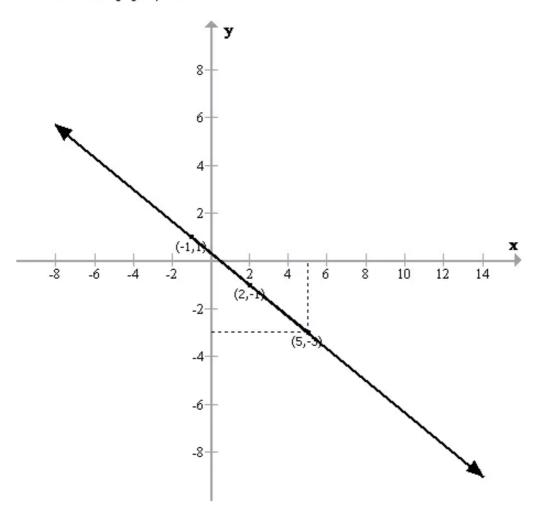
The table for x - 3y = 18 is

X	9	0	6	3
ÿ	-3	-6	-4	-5

Plotting the above points, we get the following required graph:

From the above figure, we have m=3 and n=-4

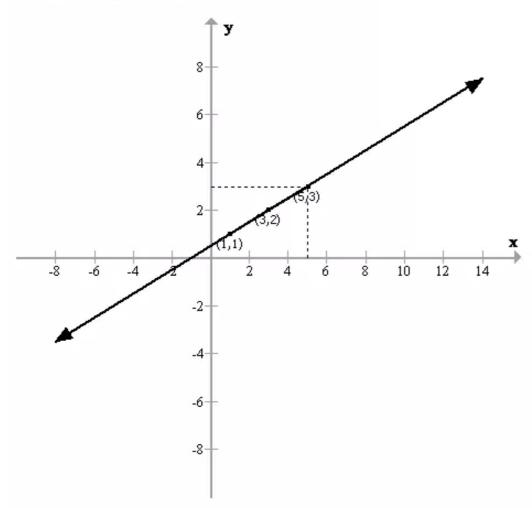
Solution 10:


(i)

2x + 3y = 1 $\Rightarrow 3y = 1 - 2x$ $\Rightarrow y = \frac{1 - 2x}{3}$

The table for 2x + 3y = 1 is

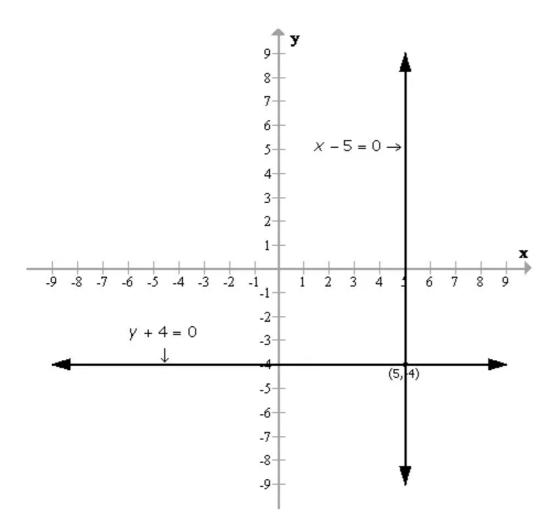
X	-1	2	5
y	1	-1	-3


Plotting the above points in a graph, we get the following graph:

From the above graph, it is clear that k=5

x - 2y + 1 = 0 $\Rightarrow 2y = x + 1$ $\Rightarrow y = \frac{x + 1}{2}$ The table for x - 2y + 1 = 0 is

Plotting the above points in a graph, we get the following graph:


From the above graph, it is clear that k - 2=3 $\Rightarrow k=5$

Exercise 27(B)

(ii)

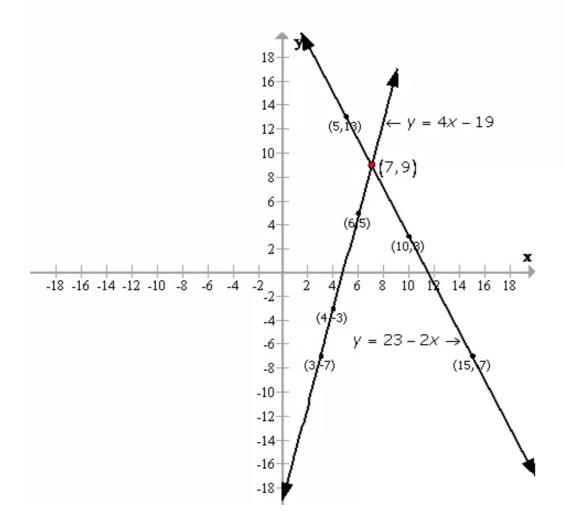
Solution 1:

(i) $x - 5 = 0 \Rightarrow x = 5$ $y + 4 = 0 \Rightarrow y = -4$ Following is the graph of the two equations x = 5 and y = -4:

 $2x + y = 23 \Rightarrow y = 23 - 2x$ The table for y = 23 - 2x is

×	5	10	15
У	13	3	-7

Also, we have


4x - y = 19

 $\Rightarrow y = 4x - 19$

The table for y = 4x - 19 is

×	3	4	6
Ÿ.	-7	-3	5

Plotting the points we get the following required graph:

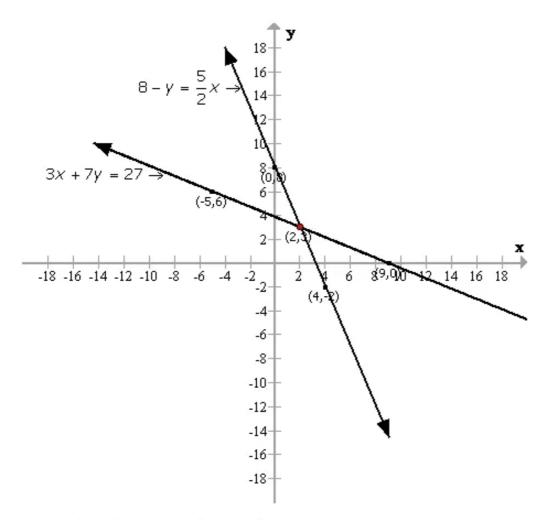
From the above graph, it is dear that the two lines y=23-2x and y=4x-19 intersect at the point (7,9)

(iii)

$$3x + 7y = 27 \Rightarrow 3x = 27 - 7y$$

$$\Rightarrow x = \frac{27 - 7y}{3}$$
The table for $3x + 7y = 27$ is

$$x = 9 = 2 - 5$$


$$y = 0 = 3 = 6$$
Also, we have

$$8 - y = \frac{5}{2}x$$

$$\Rightarrow x = (8 - y) \times \frac{2}{5}$$
The table for $5x + 2y = 16$ is

Х	2	4	0
ÿ.	3	-2	8

Plotting the points we get the following required graph:

From the above graph, it is dear

that the two lines 3x + 7y = 27 and $8 - y = \frac{5}{2}x$ intersect at the point (2,3)

(iv)

$$\frac{x+1}{4} = \frac{2}{3}(1-2y)$$

$$\Rightarrow \frac{x+1}{4} = \frac{2}{3} - \frac{4y}{3}$$

$$\Rightarrow 12 \times \frac{x+1}{4} = 12 \times \frac{2}{3} - 12 \times \frac{4y}{3}$$

$$\Rightarrow 3(x+1) = 8 - 16y$$

$$\Rightarrow 3x + 3 = 8 - 16y$$

$$\Rightarrow 3x + 3 - 8 = -16y$$

$$\Rightarrow 3x - 5 = -16y$$

$$\Rightarrow x = \frac{5 - 16y}{3}$$

2	The table for $\frac{x+1}{4} = \frac{2}{3}(1-2y)$ is								
	×	7	-9	23					
	ÿ.	-1	2	-4					

Also, we have

$$\frac{2+5y}{3} = \frac{x}{7} - 2$$

$$\Rightarrow 21 \times \frac{2+5y}{3} = 21 \times \frac{x}{7} - 21 \times 2$$

$$\Rightarrow 7(2+5y) = 3x - 42$$

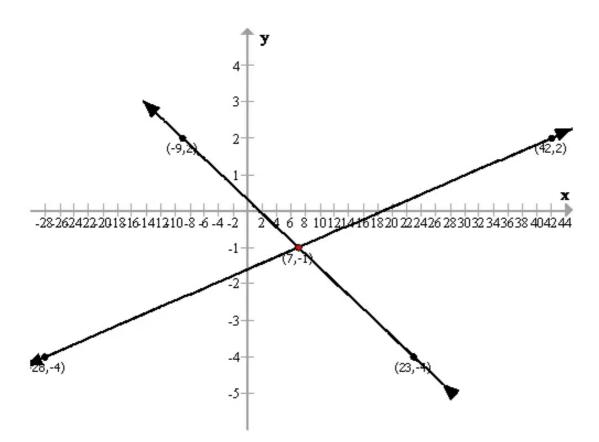
$$\Rightarrow 14+35y = 3x - 42$$

$$\Rightarrow 3x = 14+35y + 42$$

$$\Rightarrow 3x = 56 + 35y$$

$$\Rightarrow x = \frac{56+35y}{3}$$

The table for $\frac{2+5y}{3} = \frac{x}{7} - 2$ is | x | 7 | -28 | 42 |


2

Plotting the points we get the following required graph:

-1

Y

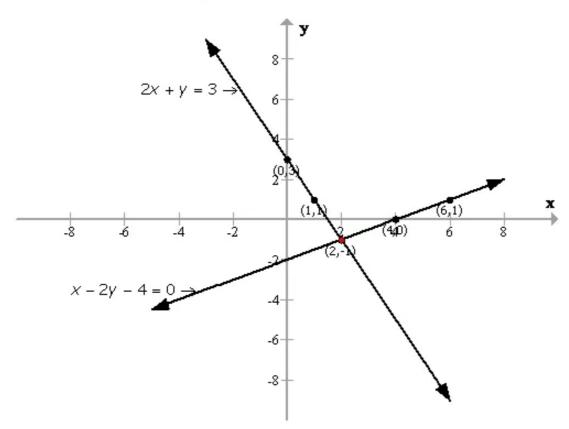
-4

From the above graph, it is dear that the two lines $\frac{x+1}{4} = \frac{2}{3}(1-2y)$ and $\frac{2+5y}{3} = \frac{x}{7} - 2$ intersect at the point (7, -1)

Solution 2:

x - 2y - 4 = 0 $\Rightarrow x = 2y + 4$ The table for x - 2y - 4 = 0 is

×	4	6	2
Y	0	1	-1


Also we have

$$\Rightarrow x = \frac{3-y}{2}$$

The table for 2x+y=3 is

Х	1	0	2
Y	1	3	-1

Plotting the above points we get the following required graph:

From the above graph, it is dear that the two lines x - 2y - 4 = 0 and 2x+y=3intersect at the point (2, -1)

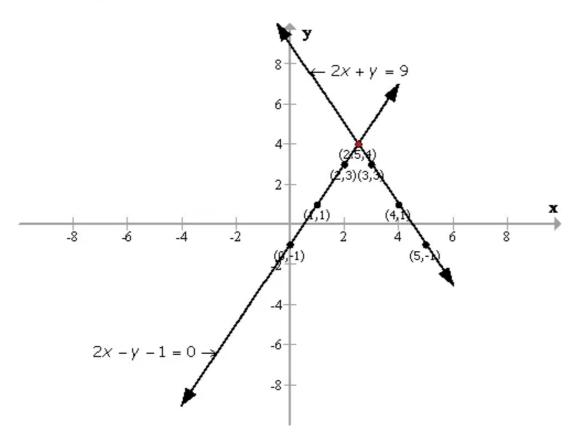
Solution 3:

2x - y - 1 = 0 $\Rightarrow 2x = y + 1$ $\Rightarrow x = \frac{y + 1}{2}$

The table for 2x - y - 1 = 0 is

X	2	1	0
ÿ	3	1	-1

Also we have


 $2x+y=9 \Rightarrow 2x=9-y$

$$\Rightarrow x = \frac{9-y}{2}$$

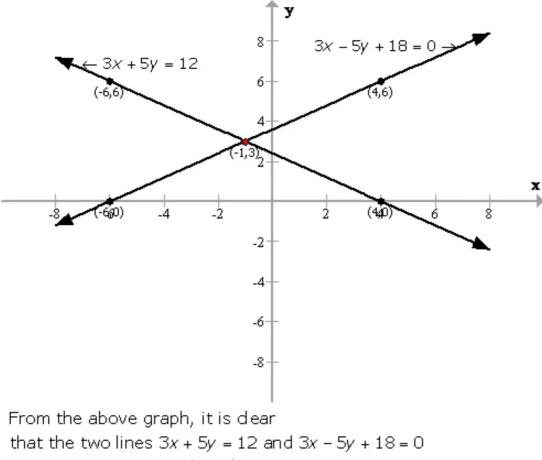
The table for 2x+y=9 is

Х	4	3	5
ÿ	1	3	-1

Plotting the above points we get the following required graph:

From the above graph, it is dear that the two lines 2x - y - 1 = 0 and 2x+y=9intersect at the point (2.5,4)

Solution 4:


3x + 5y = 12 $\Rightarrow 3x = 12 - 5y$ $\Rightarrow x = \frac{12 - 5y}{3}$ The table for 3x + 5y = 12 is $\boxed{x \ 4 \ -1 \ -6}$ $\boxed{y \ 0 \ 3 \ -1}$

Also we have 3x - 5y + 18 = 0 $\Rightarrow 3x = 5y - 18$ $\Rightarrow x = \frac{5y - 18}{3}$

The table for 3x - 5y + 18 = 0 is

Х	-6	4	-1
У	0	6	3

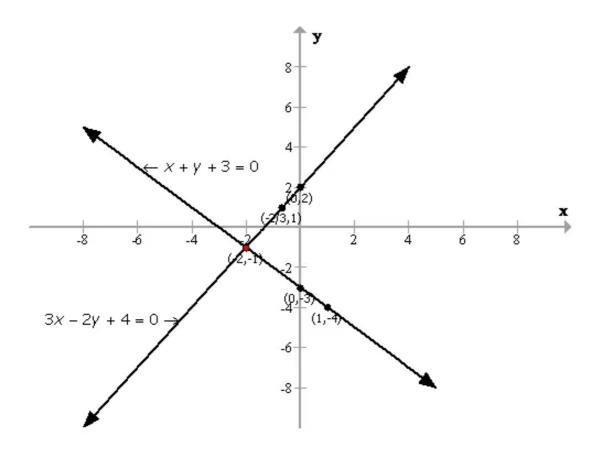
Plotting the above points we get the following required graph:

intersect at the point (-1,3)

Solution 5:

(i)

x + y + 3 = 0 $\Rightarrow x = -3 - y$ The table for x + y + 3 = 0 is


Х	1	0	-2	
У	-4	-3	-1	
Als	o we	e hav	/e	

3x - 2y + 4 = 0 $\Rightarrow 3x = 2y - 4$ $\Rightarrow x = \frac{2y - 4}{3}$

The table for 3x - 2y + 4 = 0 is

×	0	-2	-2 -3
Y.	2	-1	1

Plotting the above points we get the following required graph:

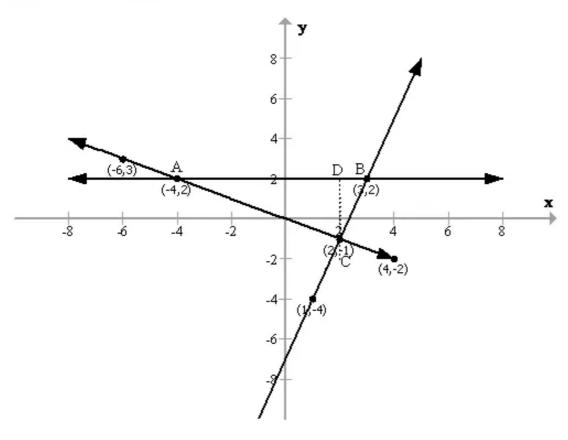
(ii)

From the above graph, it is clear that the two lines x + y + 3 = 0 and 3x - 2y + 4 = 0intersect at the point (-2, -1)(iii)

Applying Pythagoras Theorem,

the distance from the origin = $\sqrt{(-2-0)^2 + (-1-0)^2}$ = $\sqrt{2^2 + 1^2}$ = $\sqrt{4+1}$ = $\sqrt{5}$ = 2.2 cm (approx)

Solution 6:

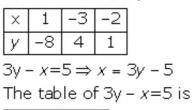

y - 2 = 0 $\Rightarrow y = 2$ y + 1 = 3(x - 2) $\Rightarrow y + 1 = 3x - 6$ $\Rightarrow y = 3x - 6 - 1$ $\Rightarrow y = 3x - 7$ The table for y + 1 = 3(x - 2) is $\boxed{x \ 1 \ 2 \ 3}$ $y - 4 - 1 \ 2}$ Also we have

- x+2y=0
- $\Rightarrow x = -2y$

The table for x + 2y = 0 is

×	-4	4	-6
Ÿ.	2	-2	3

Plotting the above points we get the following required graph:

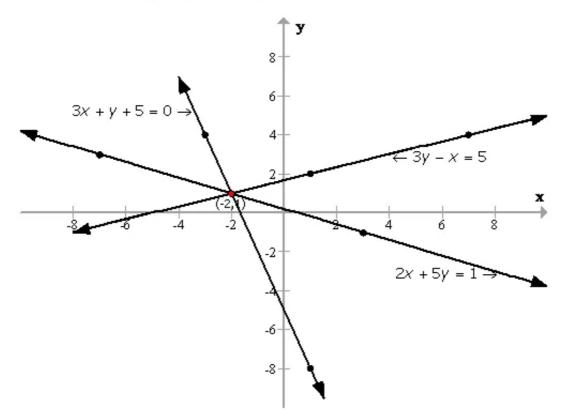

The area of the triangle ABC = $\frac{1}{2} \times AB \times CD$ = $\frac{1}{2} \times 7 \times 3$ = $\frac{21}{2}$ = 10.5 sq.units

(ii)

The coordinates of the vertices of the triangle are (-4, 2), (3, 2) and (2, -1)

Solution 7:

 $3x+y+5=0 \Rightarrow y=-3x-5$ The table of 3x+y+5=0 is


	X	-2	1	7
5	1	1	2	4
2	x ·	+ 5y	= 1	

$$\Rightarrow 2x = 1 - 5y \Rightarrow x = \frac{1 - 5y}{2}$$

The table of 2x + 5y = 1 is

×	3	-7	-2
У	-1	З	1

Plotting the above points, we get the following required graph:

The graph shows that the lines of these equations are concurrent.

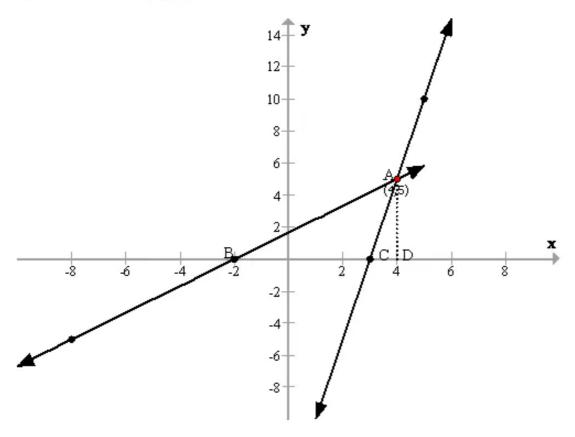
Solution 8:

$$6y = 5x + 10$$

$$\Rightarrow y = \frac{5x + 10}{6}$$

The table of $6y = 5x + 10$ is

×	4	-2	-8
Y.	5	0	-5


Also, we have

y=5x - 15

The table of y = 5x - 15 is

×	ω	4	5
Y	0	5	10

Plotting the points in a graph, we get the following graph.

(i)

The two lines intersect at (4,5)

 $\therefore AD \perp BC$

AD = 5 units and BC=5 units

(ii)

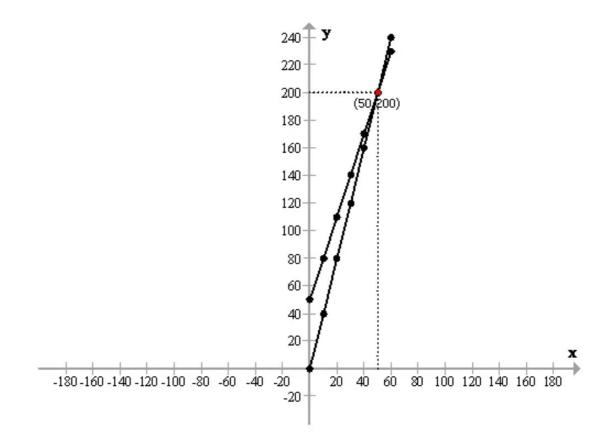
The area of the triangle =
$$\frac{1}{2} \times BC \times AD$$

= $\frac{1}{2} \times 5 \times 5$
= $\frac{25}{2}$ sq.units
= 12.5 sq.units

Solution 9:

Given that C.P. is 50+3x

Table of C.P


X	0	10	20	30	40	50	60
C.P	50	80	110	140	170	200	230

and S.P. =4x

: Table of S.P.

×	0	10	20	30	40	50	60
S.P	0	40	80	120	160	200	240

Now plotting the points on a graph and we get the following required graph:

(i)

No. of articles to be manufactured and sold are 50 when there is no loss and no profit.

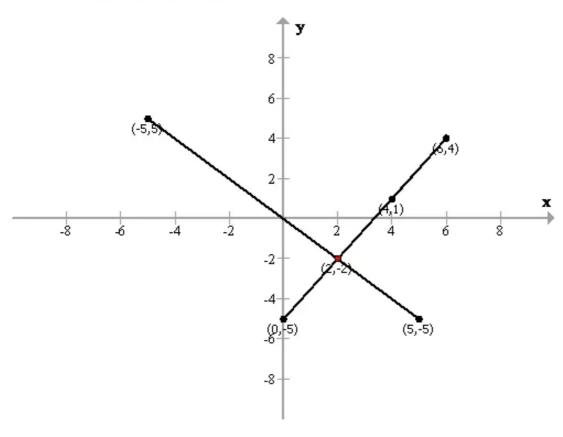
C.P = S.P = Rs.200 (ii) (a) On article 30, C.P = Rs.140 and S.P. = 120 Therefore Loss = 140 - 120 = Rs.20 (b) On article 60, C.P.=Rs.230 and S.P.= Rs.240 Therefore Profit = 240 - 230 = Rs.10

Solution 10:

```
2y - x = 8;
y = \frac{8+x}{2};
The table of 2y - x = 8 is
    -6
         -2
 X
              0
           3
               4
      1
 У
5y - x = 14 \Rightarrow x = 5y - 14
The table of x = 5y - 14 is
     -9
          -4
               1
 ×
           2
              3
      1
 У
y - 2x = 1 \Rightarrow y = 1 + 2x
The table of y - 2x = 1 is
    2
        -2
             0
 Х
```

× 2 -2 0 y 5 -3 1

Now plotting the points on a graph and we get the following required graph:

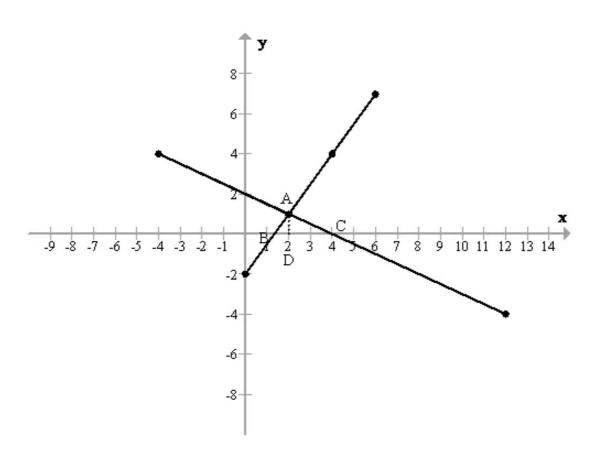


Thus, the vertices of the triangle \triangle ABC are: A(-4,2), B(1,3) and C(2,5)

Solution 11:

x + y = 0y = -x;The table of x + y = 0 is 5 2 -5 × -5 5 -2 У $3x - 2y = 10 \Rightarrow x = \frac{10 + 2y}{3}$ The table of 3x - 2y = 10 is 2 6 4 Х 4 -2 1 У

Now plotting the points on a graph and we get the following required graph:

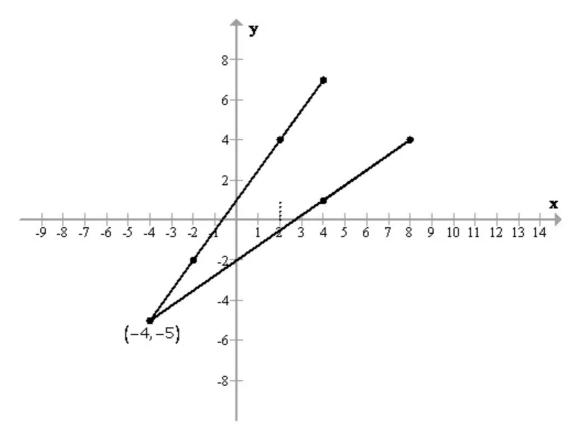


The two lines intersect at (2, -2) $\therefore x = 2$ and y = -2

Solution 12:

x+2y=4⇒×=4-2y The table of x + 2y = 4 is -4 12 2 \times 1 Ŷ 4 -4 $3x - 2y = 4 \Rightarrow x = \frac{4 + 2y}{3}$ The table of 3x - 2y = 4 is 4 6 2 Х 1 4 7 y

Now plotting the points on a graph and we get the following required graph:


Therefore the solution of the given system of equations is (2,1).

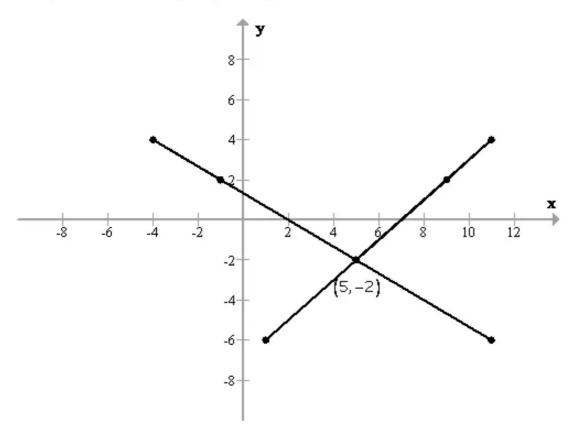
Thus the vertices of the triangle are:
A (2,1), B
$$\left(\frac{4}{3}, 0\right)$$
 and C (4,0)
AD \perp BC and D = (2,0)
 \therefore AD = 1 and BC=2 $\frac{2}{3}$ units= $\frac{8}{3}$ units
Area of the triangle ABC= $\frac{1}{2} \times AD \times BC$
 $= \frac{1}{2} \times 1 \times \frac{8}{3}$
 $= \frac{4}{3}$ sq.units
 $= 1\frac{1}{3}$ sq.units

Solution 13:

$y = \frac{3x+2}{2}$
The table for $y = \frac{3x+2}{2}$ is
× 2 4 -2 y 4 7 -2
$y = \frac{3}{4}x - 2$
The table for $y = \frac{3}{4}x - 2$ is
× 4 -4 8 y 1 -5 4

Now plotting the points on a graph and we get the following required graph:

Thus the value of 'x' is -4.


Solution 14:

2x + 3y = 4 $\Rightarrow x = \frac{4 - 3y}{2}$ The table for 2x + 3y = 4 is $\boxed{x - 1 - 4 5}$ $\boxed{y 2 4 - 2}$

 $x - y = 7 \Rightarrow x = y + 7$ The table for x - y = 7 is

Х	5	11	9
У	-2	4	2

Now plotting the points on a graph and we get the following required graph:

The point at which the paths of the submarine and the destroyer intersect are (5, -2)