Chapter 16. Area Theorems [Proof and Use]

Exercise 16(A)

Solution 1:

(i) $\triangle A D E$ and parallelogram $A B E D$ are on the same base AB and between the same parallels $D E / / \mathrm{AB}$, so area of the triangle $\triangle A D E$ is half the area of parallelogram $A B E D$.

Area of $\mathrm{ABED}=2($ Area of ADE$)=120 \mathrm{~cm}^{2}$
(ii)Area of parallelogram is equal to the area of rectangle on the same base and of the same altitude i.e, between the same parallels

Area of $\mathrm{ABCF}=$ Area of $\mathrm{ABED}=120 \mathrm{~cm}^{2}$
(iii) We know that area of triangles on the same base and between same parallel lines are equal

Area of $\mathrm{ABE}=$ Area of $\mathrm{ADE}=60 \mathrm{~cm}^{2}$

Solution 2:

After drawing the opposite sides of $A B$, we get

Since from the figure, we get $C D / / F E$ therefore $F C$ must parallel to $D E$. Therefore it is proved that the quadrilateral CDEF is a parallelogram.
Area of parallelogram on same base and between same parallel lines is always equal and area of parallelogram is equal to the area of rectangle on the same base and of the same altitude i.e, between same parallel lines.
So Area of CDEF= Area of ABDC + Area of ABEF
Hence Proved

Solution 3:

(i)

Since POS and parallelogram PMLS are on the same base PS and between the same parallels i.e. SP//LM.
As O is the center of LM and Ratio of area of triangles with same vertex and bases along the same line is equal to ratio of their respective bases.
The area of the parallelogram is twice the area of the triangle if they lie on the same base and in between the same parallels.
So 2(Area of PSO)=Area of PMLS
Hence Proved.
(ii)

Consider the expression $\operatorname{Area}(\triangle P O S)+\operatorname{Area}(Q O R)$:
$L M$ is parallel to PS and PS is parallel to $R Q$, therefore, $L M$ is
Since triangle POS lie on the base PS and in between the parallels PS and LM, we have, $\operatorname{Area}(\triangle P O S)=\frac{1}{2} \operatorname{Area}(\square P S L M)$,

Since triangle QOR lie on the base QR and in between the parallels LM and RQ , we have,
$\operatorname{Area}(\triangle Q O R)=\frac{1}{2} \operatorname{Area}(\square L M Q R)$
$\operatorname{Area}(\triangle P O S)+\operatorname{Area}(\triangle Q O R)=\frac{1}{2} \operatorname{Area}(\square P S L M)+\frac{1}{2} \operatorname{Area}(\square L M Q R)$
$=\frac{1}{2}[\operatorname{Area}(\square P S L M)+\operatorname{Area}(\square L M Q R)]$
$=\frac{1}{2}[\operatorname{Area}(\square P Q R S)]$
(iii)

In a parallelogram, the diagonals bisect each other.
Therefore, $\mathrm{OS}=\mathrm{OQ}$
Consider the triangle PQS , since $\mathrm{OS}=\mathrm{OQ}$, OP is the median of the triangle PQS .
We know that median of a triangle divides it into two triangles of equal area.
Therefore,
$\operatorname{Area}(\triangle P O S)=\operatorname{Area}(\triangle P O Q)$.
Similarly, since $O R$ is the median of the triangle $Q R S$, we have, $\operatorname{Area}(\triangle Q O R)=\operatorname{Area}(\triangle S O R) \ldots$ (2)
Adding equations (1) and (2), we have, $\operatorname{Area}(\triangle P O S)+\operatorname{Area}(\triangle Q O R)=\operatorname{Area}(\triangle P O Q)+\operatorname{Area}(\triangle S O R)$

Hence Proved.

Solution 4:

(i)

Given $A B C D$ is a parallelogram. P and Q are any points on the sides $A B$ and $B C$ respectively, join diagonals $A C$ and $B D$. proof:
since triangles with same base and between same set of parallel lines have equal areas
area (CPD) $=$ area(BCD)...... (1)
again, diagonals of the parallelogram bisects area in two equal parts area $(B C D)=(1 / 2)$ area of parallelogram $A B C D$...... (2)
from (1) and (2)
area(CPD) $=1 / 2$ area(ABCD)...... (3)
similarly area $(A Q D)=$ area $(A B D)=1 / 2$ area $(A B C D)$
from (3) and (4)
area(CPD)=area(AQD),
hence proved.
(ii)

We know that area of triangles on the same base and between same parallel lines are equal
So Area of AQD = Area of $A C D=$ Area of PDC = Area of $B D C=$ Area of ABC=Area of APD + Area of BPC Hence Proved

Solution 5:

(i)

Since triangle BEC and parallelogram ABCD are on the same base BC and between the same parallels i.e. $\mathrm{BC} / / \mathrm{AD}$.
So Area $(\triangle B E C)=\frac{1}{2} \times \operatorname{Area}(\square A B C D)=\frac{1}{2} \times 48=24 \mathrm{~cm}^{2}$
(ii)

$$
\begin{aligned}
\operatorname{Area}(\square A N M D) & =\operatorname{Area}(\square B N M C) \\
& =\frac{1}{2} \operatorname{Area}(\square A B C D) \\
& =\frac{1}{2} \times 2 \times \operatorname{Area}(\triangle B E C) \\
& =\operatorname{Area}(\triangle B E C)
\end{aligned}
$$

Therefore, Parallelograms ANMD and NBCM have areas equal to triangle BEC

Solution 6:

Since $\triangle D C B$ and $\triangle D E B$ are on the same base $D B$ and between the same parallels i.e. $D B / / C E$, therefore we get

$$
\begin{aligned}
\operatorname{Ar}(\triangle D C B) & =\operatorname{Ar}(\triangle D E B) \\
\operatorname{Ar}(\triangle D C B+\triangle A D B) & =\operatorname{Ar}(\triangle D E B+\triangle A D B) \\
\operatorname{Ar}(A B C D) & =\operatorname{Ar}(\triangle A D E)
\end{aligned}
$$

Hence proved

Solution 7:

$\triangle A P B$ and parallelogram $A B C D$ are on the same base $A B$ and between the same parallel lines $A B$ and $C D$.
$\therefore \operatorname{Ar}(\triangle A P B)=\frac{1}{2} \mathrm{Ar}($ parallelogram ABCD$)$
$\triangle A D Q$ and parallelogram $A B C D$ are on the same base $A D$ and between the same parallel lines $A D$ and $B Q$.
$\therefore \mathrm{Ar}(\triangle A D Q)=\frac{1}{2} \mathrm{Ar}($ parallelogram ABCD$)$
Adding equation (i) and (ii), we get

$$
\begin{gathered}
\therefore \mathrm{Ar}(\triangle A P B)+\mathrm{Ar} \cdot(\triangle A D Q)=\mathrm{Ar}(\text { parallelogram } \mathrm{ABCD}) \\
\mathrm{Ar}(\text { quad } A D Q B)-\mathrm{Ar}(\triangle B P Q)=\mathrm{Ar}(\text { parallelogram } A B C D) \\
\mathrm{Ar}(\text { quad } A D Q B)-\mathrm{Ar}(\triangle B P Q)=\mathrm{Ar}(\text { quad } A D Q B)-\mathrm{Ar} \cdot(\triangle D C Q) \\
\mathrm{Ar}(\triangle B P Q)=\mathrm{Ar}(\triangle D C Q)
\end{gathered}
$$

Subtracting Ar. $\triangle \mathrm{PCQ}$ from both sides, we get

$$
\begin{aligned}
\operatorname{Ar}(\triangle B P Q)-\operatorname{Ar}(\triangle P C Q) & =\operatorname{Ar}(\triangle D C Q)-\operatorname{Ar}(\triangle P C Q) \\
\operatorname{Ar}(\triangle B C P) & =\operatorname{Ar}(\triangle D P Q)
\end{aligned}
$$

Hence proved.

Solution 8:

Since triangle EDG and EGA are on the same base EG and between the same parallel lines EG and DA, therefore
$A r(\triangle E D G)=A r \cdot(\triangle E G A)$
Subtracting $\triangle E O G$ from both sides, we have
$\operatorname{Ar}(\triangle E O D)=A r \cdot(\triangle G O A)(\mathrm{i})$
Similarly
$\operatorname{Ar} \cdot(\triangle D P C)=\operatorname{Ar} \cdot(\triangle B P F)($ ii $)$

Now

$$
\begin{aligned}
\operatorname{Ar} \cdot(\triangle G D F) & =\operatorname{Ar} \cdot(\triangle G O A)+A r \cdot(\triangle B P F)+\operatorname{Ar} \cdot(\text { pen } A B P D O) \\
& =A r \cdot(\triangle E O D)+A r \cdot(\triangle D P C)+A r \cdot(\text { pen } A B P D O) \\
& =A r \cdot(\text { pen } A B C D E)
\end{aligned}
$$

Hence proved

Solution 9:

Joining PC we get

$\triangle A B C$ and $\triangle B P C$ are on the same base $B C$ and between the same parallel lines $A P$ and $B C$.
$\therefore \operatorname{Ar}(\triangle A B C)=\operatorname{Ar}(\triangle B P C)$
$\triangle B P C$ and $\triangle B Q P$ are on the same base $B P$ and between the same parallel lines $B P$ and $C Q$.
$\therefore \operatorname{Ar}(\triangle B P C)=\operatorname{Ar}(\triangle B Q P) \ldots \ldots(i i)$
From (i) and (ii), we get
$\therefore \operatorname{Ar}(\triangle A B C)=\operatorname{Ar}(\triangle B Q P)$
Hence proved.

Solution 10:

(i)

$$
\begin{align*}
& \angle E A C=\angle E A B+\angle B A C \\
& \angle E A C=90^{\circ}+\angle B A C \tag{i}\\
& \angle B A F=\angle F A C+\angle B A C \\
& \angle B A F=90^{\circ}+\angle B A C \tag{ii}
\end{align*}
$$

From (i) and (ii), we get
$\angle E A C=\angle B A F$
In $\triangle \mathrm{EAC}$ and $\triangle \mathrm{BAF}$, we have, $\mathrm{EA}=\mathrm{AB}$
$\angle E A C=\angle B A F$ and $\mathrm{AC}=\mathrm{AF}$
$\therefore \triangle E A C \cong \triangle B A F$ (SAS axiom of congruency)
(ii)

Since $\triangle A B C$ is a right triangle, we have,
$A C^{2}=A B^{2}+B C^{2}$ [Using Pythagoras Theorem in $\triangle A B C$]
$\Rightarrow A B^{2}=A C^{2}-B C^{2}$
$\Rightarrow A B^{2}=(A R+R C)^{2}-\left(B R^{2}+R C^{2}\right) \quad$ [Since $A C=A R+R C$ and Using Pythagoras Theorem in $\triangle B R C$]
$\Rightarrow A B^{2}=A R^{2}+2 A R \times R C+R C^{2}-\left(B R^{2}+R C^{2}\right)$ [Using the identity]
$\Rightarrow A B^{2}=A R^{2}+2 A R \times R C+R C^{2}-\left(A B^{2}-A R^{2}+R C^{2}\right)$ [Using Pythagoras Theorem in $\triangle A B R$]
$\Rightarrow 2 A B^{2}=2 A R^{2}+2 A R \times R C$
$\Rightarrow A B^{2}=A R(A R+R C)$
$\Rightarrow A B^{2}=A R \times A C$
$\Rightarrow A B^{2}=A R \times A F$
$\Rightarrow \operatorname{Area}(\square A B D E)=\operatorname{Area}($ rectangle $A R H F)$

Solution 11:

(i)

In $\triangle A B C, D$ is midpoint of $A B$ and E is the midpoint of $A C$.
$\frac{A D}{A B}=\frac{A E}{A C}$
$D E$ is parallel to $B C$.

$$
\operatorname{Ar} \cdot(\triangle A D C)=\operatorname{Ar} \cdot(\triangle B D C)=\frac{1}{2} \operatorname{Ar} \cdot(\triangle A B C)
$$

Again

$$
\operatorname{Ar}(\triangle A E B)=\operatorname{Ar} \cdot(\triangle B E C)=\frac{1}{2} \operatorname{Ar} \cdot(\triangle A B C)
$$

From the above two equations, we have
Area $(\triangle \mathrm{ADC})=\operatorname{Area}(\triangle \mathrm{AEB})$.
Hence Proved
(ii)

We know that area of triangles on the same base and between same parallel lines are equal
Area(triangle DBC) $=$ Area(triangle BCE)
Area $($ triangle DOB$)+$ Area $($ triangle BOC$)=$ Area(triangle BOC$)+$ Area(triangle COE$)$
So Area(triangle DOB) $=$ Area(triangle COE)

Solution 12:

(i)

Since $\triangle E B C$ and parallelogram $A B C D$ are on the same base $B C$ and between the same parallels i.e. $B C / / A D$.
$\therefore A r(\triangle E B C)=\frac{1}{2} \times A r($ parall elogram $A B C D)$
$($ parallelogram $A B C D)=2 \times A r \cdot(\Delta E B C)$

$$
\begin{aligned}
& =2 \times 480 \mathrm{~cm}^{2} \\
& =960 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii)

Parallelograms on same base and between same parallels are equal in area

Area of BCFE $=$ Area of $A B C D=960 \mathrm{~cm}^{2}$
(iii)

Area of triangle $A C D=480=(1 / 2) \times 30 \times$ Altitude

Altitude $=32 \mathrm{~cm}$
(iv)

The area of a triangle is half that of a parallelogram on the same base and between the same parallels.
Therefore,
$\operatorname{Area}(\triangle E C F)=\frac{1}{2} \operatorname{Area}($

Similarly, $\operatorname{Area}(\triangle B C E)=\frac{1}{2} \operatorname{Area}(\square C B E F)$
$\Rightarrow \operatorname{Area}(\triangle E C F)=\operatorname{Area}(\triangle B C E)=480 \mathrm{~cm}^{2}$

Solution 13:

Here $A D=D B$ and $E C=D B$, therefore $E C=A D$
Again, $\angle E F C=\angle A F D$ (opposite angles)
Since $E D$ and $C B$ are parallel lines and $A C$ cut this line, therefore
$\angle E C F=\angle F A D$
From the above conditions, we have
$\triangle E F C=\triangle A F D$
Adding quadrilateral CBDF in both sides, we have
Area of $/ / \mathrm{gm} B D E C=$ Area of $\triangle \mathrm{ABC}$

Solution 14:

In Parallelogram PQRS, AC // PS //QR and PQ //DB //SR.
Similarly, AQRC and APSC are also parallelograms.
Since $\triangle A B C$ and parallelogram $A Q R C$ are on the same base $A C$ and between the same parallels, then
$\operatorname{Ar} \cdot(\Delta \mathrm{ABC})=\frac{1}{2} \operatorname{Ar} \cdot(\mathrm{AQRC}) \ldots$
Similarly,
$\operatorname{Ar} \cdot(\triangle \mathrm{ADC})=\frac{1}{2} \operatorname{Ar} \cdot(\mathrm{APSC})$
Adding (i) and (ii), we get
Area of quadrilateral $P Q R S=2 \times$ Area of quad. $A B C D$

$A B\|C D, M N\| A C$

Join C and M
We know that area of triangles on the same base and between same parallel lines are equal.
So Area of $\triangle \mathrm{AMD}=$ Area of $\triangle \mathrm{AMC}$
Similarly, consider AMNC quadrilateral where MN || AC.
$\triangle \mathrm{ACM}$ and $\triangle \mathrm{ACN}$ are on the same base and between the same parallel lines. So areas are equal.
So, Area of $\triangle \mathrm{ACM}=$ Area of $\triangle \mathrm{CAN}$

From the above two equations, we can say
Area of $\triangle \mathrm{ADM}=$ Area of $\triangle \mathrm{CAN}$
Hence Proved.

Solution 16:
We know that area of triangles on the same base and between same parallel lines are equal.
Consider $A B E D$ quadrilateral; $A D \| B E$
With common base, $B E$ and between $A D$ and $B E$ parallel lines, we have
Area of $\triangle A B E=$ Area of $\triangle B D E$
Similarly, in BEFC quadrilateral, $B E \| C F$
With common base $B C$ and between $B E$ and CF parallel lines, we have
Area of $\triangle B E C=$ Area of $\triangle B E F$
Adding both equations, we have
Area of $\triangle A B E+$ Area of $\triangle B E C=$ Area of $\triangle B E F+$ Area of $\triangle B D E$
$=>$ Area of AEC $=$ Area of DBF
Hence Proved
Solution 17:
Given: ABCD is a parallelogram.
We know that
Area of $\triangle A B C=$ Area of $\triangle A C D$
Consider $\triangle A B X$,
Area of $\triangle A B X=$ Area of $\triangle A B C+$ Area of $\triangle A C X$
We also know that area of triangles on the same base and between same parallel lines are equal.
Area of $\triangle A C X=$ Area of $\triangle C X D$
From above equations, we can conclude that
Area of $\triangle A B X=$ Area of $\triangle A B C+$ Area of $\triangle A C X=$ Area of $\triangle A C D+$ Area of $\triangle C X D=$ Area of ACXD Quadrilateral
Hence Proved

Solution 18:

Join B and R and P and R.
We know that the area of the parallelogram is equal to twice the area of the triangle, if the triangle and the parallelogram
are on the same base and between the parallels
Consider ABCD parallelogram:
Since the parallelogram $A B C D$ and the triangle $A B R$ lie on $A B$ and between the parallels $A B$ and $D C$, we have $\operatorname{Area}(\square A B C D)=2 \times \operatorname{Area}(\triangle A B R)$.

We know that the area of triangles with same base and between the same parallel lines are equal.
Since the triangles ABR and APR lie on the same base AR and between the parallels AR and QP, we have,
$\operatorname{Area}(\triangle A B R)=\operatorname{Area}(\triangle A P R)$

From equations (1) and (2), we have,
$\operatorname{Area}(\square A B C D)=2 \times \operatorname{Area}(\triangle A P R)$
Also, the triangle $A P R$ and the parallelogram $A R Q P$
lie on the same base $A R$ band between the parallels, $A R$ and $Q P$,
$\operatorname{Area}(\triangle A P R)=\frac{1}{2} \times \operatorname{Area}(\square A R Q P)$
Using (4) in equation (3), we have,
$\operatorname{Area}(\square A B C D)=2 \times \frac{1}{2} \times \operatorname{Area}(\square A R Q P)$
$\operatorname{Area}(\square \mathrm{ABCD})=\operatorname{Area}(\square \mathrm{ARQP})$
Hence proved.

Exercise 16(B)

Solution 1:
(i) Suppose $A B C D$ is a parallelogram (given)

Consider the triangles $A B C$ and $A D C$:
$A B=C D \quad[A B C D$ is a parallelogram]
$A D=B C \quad[A B C D$ is a parallelogram]
$A D=A D$ [common]
By Side - Side - Side criterion of congruence, we have,
$\triangle A B C \cong \triangle A D C$
Area of congruent triangles are equal.
Therefore, Area of $\mathrm{ABC}=$ Area of ADC
(ii) Consider the following figure:

Here $A P \perp B C$

Since $\operatorname{Ar} \cdot(\triangle A B D)=\frac{1}{2} B D \times A P$
And, $\operatorname{Ar} .(\triangle A D C)=\frac{1}{2} D C \times A P$
$\frac{\text { Area }(\triangle A B D)}{\text { Area }(\triangle A D C)}=\frac{\frac{1}{2} B D \times A P}{\frac{1}{2} D C \times A P}=\frac{B D}{D C}$,
hence proved
(iii) Consider the following figure:

Here
$\operatorname{Ar}(\triangle A B C)=\frac{1}{2} B M \times A C$
And, $\operatorname{Ar}(\triangle A D C)=\frac{1}{2} D N \times A C$

$$
\frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle A D C)}=\frac{\frac{1}{2} B M \times A C}{\frac{1}{2} D N \times A C}=\frac{B M}{D N}
$$

hence proved

Solution 2:

$A D$ is the median of $\triangle A B C$. Therefore it will divide $\triangle A B C$ into two triangles of equal areas.
$\therefore \operatorname{Area}(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{ACD})$ (i)
$E D$ is the median of $\triangle E B C$
$\therefore \operatorname{Area}(\triangle E B D)=\operatorname{Area}(\triangle E C D)$ (ii)
Subtracting equation (ii) from (i), we obtain
$\operatorname{Area}(\triangle A B D)-\operatorname{Area}(\triangle E B D)=\operatorname{Area}(\triangle A C D)-\operatorname{Area}(\triangle E C D)$
$\operatorname{Area}(\triangle A B E)=\operatorname{Area}(\triangle A C E)$. Hence proved

Solution 3:

$A D$ is the median of $\triangle A B C$. Therefore it will divide $\triangle A B C$ into two triangles of equal areas.
$\therefore \operatorname{Area}(\triangle A B D)=\operatorname{Area}(\triangle A C D)$
$\operatorname{Area}(\triangle \mathrm{ABD})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{ABC})(\mathrm{i})$
In $\triangle A B D, E$ is the mid-point of $A D$. Therefore $B E$ is the median.

$$
\therefore \operatorname{Area}(\triangle \mathrm{BED})=\operatorname{Area}(\triangle \mathrm{ABE})
$$

$\operatorname{Area}(\triangle \mathrm{BED})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{ABD})$
$\operatorname{Area}(\triangle \mathrm{BED})=\frac{1}{2} \times \frac{1}{2} \operatorname{Area}(\triangle \mathrm{ABC})[$ from equation $(\mathrm{i})]$
$\operatorname{Area}(\triangle \mathrm{BED})=\frac{1}{4} \operatorname{Area}(\triangle \mathrm{ABC})$

Solution 4:

We have to join PD and BD.

$B D$ is the diagonal of the parallelogram $A B C D$. Therefore it divides the parallelogram into two equal parts.
$\therefore \operatorname{Area}(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{DBC})$
$=\frac{1}{2}$ Area (parallelogram ABCD) (i)
DP is the median of $\triangle A B D$. Therefore it will divide $\triangle A B D$ into two triangles of equal areas.
$\therefore \operatorname{Area}(\triangle \mathrm{APD})=\operatorname{Area}(\triangle \mathrm{DPB})$
$=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{ABD})$
$=\frac{1}{2} \times \frac{1}{2}$ Area(parallelogram ABCD$)$ [from equation (i)]
$=\frac{1}{4}$ Area (parallelogram ABCD) (ii)
In $\triangle \mathrm{APD}, \mathrm{Q}$ is the mid-point of AD . Therefore PQ is the median.
$\therefore \operatorname{Area}(\triangle \mathrm{APQ})=\operatorname{Area}(\triangle \mathrm{DPQ})$
$=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{APD})$
$=\frac{1}{2} \times \frac{1}{4}$ Area (parallelogram ABCD) [from equation (ii)]
Area $(\triangle \mathrm{APQ})=\frac{1}{8}$ Area (parallelogram ABCD), hence proved

Solution 5:

In $\triangle \mathrm{ABC}, \because \mathrm{BD}=\frac{1}{2} \mathrm{DC} \Rightarrow \frac{B D}{D C}=\frac{1}{2}$
$\therefore \operatorname{Ar}(\triangle \mathrm{ABD}): \operatorname{Ar} \cdot(\triangle \mathrm{ADC})=1: 2$
But $\operatorname{Ar} \cdot(\triangle \mathrm{ABD})+\operatorname{Ar} \cdot(\triangle \mathrm{ADC})=\operatorname{Ar} \cdot(\triangle \mathrm{ABC})$
$\operatorname{Ar} \cdot(\triangle \mathrm{ABD})+2 \operatorname{Ar} \cdot(\triangle \mathrm{ABD})=\operatorname{Ar} \cdot(\triangle \mathrm{ABC})$
$3 \operatorname{Ar} \cdot(\triangle \mathrm{ABD})=\operatorname{Ar} \cdot(\triangle \mathrm{ABC})$
$\operatorname{Ar} \cdot(\triangle \mathrm{ABD})=\frac{1}{3} \operatorname{Ar} \cdot(\triangle \mathrm{ABC})$

Solution 6:

Ratio of area of triangles with same vertex and bases along the same line is equal to ratio of their respective bases. So, we
have
$\frac{\text { Area of } D P B}{\text { Area of } P C B}=\frac{D P}{P C}=\frac{3}{2}$

Given: Area of $\triangle D P B=30 \mathrm{sq} . \mathrm{cm}$
Let ' x ' bet the area of the triangle $P C B$
Therefore, we have,
$\frac{30}{x}=\frac{3}{2}$
$\Rightarrow x=\frac{30}{3} \times 2=20 \mathrm{sq} . \mathrm{cm}$.
So area of $\triangle P C B=20 \mathrm{sq} . \mathrm{cm}$
Consider the following figure.

From the diagram, it is clear that,
$\operatorname{Area}(\triangle C D B)=\operatorname{Area}(\triangle D P B)+\operatorname{Area}(\triangle C P B)$

$$
\begin{aligned}
& =30+20 \\
& =50 \mathrm{sq} . \mathrm{cm}
\end{aligned}
$$

Diagonal of the parallelogram divides it into two triangles $\triangle A D B$ and $\triangle C D B$ of equal area.
Therefore,
Area $(\| \mathrm{gm} A B C D)=2 \times \triangle C D B$
$=2 \times 50=100 \mathrm{sq} . \mathrm{cm}$

Solution 7:

$\mathrm{BC}=\mathrm{CE}$ (given)
Also, in parallelogram $A B C D, B C=A D$
$\Rightarrow \mathrm{AD}=\mathrm{CE}$
Now, in $\triangle A D F$ and $\triangle E C F$, we have
$\mathrm{AD}=\mathrm{CE}$
$\angle A D F=\angle E C F$ (Alternate angles)
$\angle \mathrm{DAF}=\angle \mathrm{CEF}$ (Alternate angles)
$\therefore \triangle A D F \cong \triangle E C F$ (ASA Criterion)
$\Rightarrow \operatorname{Area}(\triangle A D F)=\operatorname{Area}(\triangle F C F)$
Also, in $\triangle F B E, F C$ is the median \quad (Since $B C=C E$)
$\Rightarrow \operatorname{Area}(\triangle B C F)=\operatorname{Area}(\triangle E C F)$
From(1) and(2),
$\operatorname{Area}(\triangle A D F)=\operatorname{Area}(\triangle B C F)$
Again, $\triangle A D F$ and $\triangle B D F$ are on the base $D F$ and between parallels $D F$ and $A B$.
$\Rightarrow \operatorname{Area}(\triangle B D F)=\operatorname{Area}(\triangle A D F)$
From (3) and (4)
$\operatorname{Area}(\triangle B D F)=\operatorname{Area}(\triangle B C F)=30 \mathrm{~cm}^{2}$
DArea $(\triangle B C D)=\operatorname{Area}(\triangle B D F)+\operatorname{Area}(\triangle B C F)=30+30=60 \mathrm{~cm}^{2}$
Hence, Area of parallelogram $A B C D=2 \times$ Area $(\triangle B C D)=2 \times 60=120 \mathrm{~cm}^{2}$

Solution 8:

In $\triangle A B C$,
R and Q are the mid - points of $A C$ and $B C$ respectively.
$\Rightarrow R Q \| A B$
thatis $R Q \| P B$
So, area($\triangle P B Q)=\operatorname{area}(\triangle A P R) . . .(i) . .($ Since $A P=P B$ and triangles on the same base and
between the same parallels are equal in area)
Since P and R are the mid - points of $A B$ and $A C$ respectivel y.
$\Rightarrow P R \| B C$
that is $P R \| B Q$
So, quadrilateral $P M Q R$ is a parallelogram.
Also, area $(\triangle P B Q)=\operatorname{area}(\triangle P Q R) . . .(i i) . . .($ diagonal of a parallel ogram divide the parallelogram in two triangles with equal area)
from(i) and (ii),
$\operatorname{area}(\triangle P Q R)=\operatorname{area}(\triangle P B Q)=\operatorname{area}(\triangle A P R) \ldots($ iii $)$
Similarly, P and Q are the mid - points of $A B$ and $B C$ respectively.
$\Rightarrow P Q \| A C$
that is $P Q \| R C$
So, quadrilateral $P Q C R$ is a parall elogram.
Also, area($\triangle R Q C)=\operatorname{area}(\triangle P Q R) \ldots(i v) \ldots$ (diagonal of a parallelogram divide the parallelogram in two triangles with equal area)
From (iii) and(iv),
$\operatorname{area}(\triangle P Q R)=\operatorname{area}(\triangle P B Q)=\operatorname{area}(\triangle R Q C)=\operatorname{area}(\triangle A P R)$
So, area $(\triangle P B Q)=\frac{1}{4} \operatorname{area}(\triangle A B C)$.
Also, since S is the mid-point of $P Q$,
$B S$ is the median of $\triangle P B Q$
So, area $(\triangle \mathrm{QSB})=\frac{1}{2} \operatorname{area}(\triangle \mathrm{PBQ})$
from(v),
$\operatorname{area}(\triangle Q S B)=\frac{1}{2} \times \frac{1}{4} \operatorname{area}(\triangle A B C)$
$\Rightarrow \operatorname{area}(\triangle A B C)=8$ area $(\triangle Q S B)$

Exercise 16(C)

Solution 1:

(i)

Ratio of area of triangles with same vertex and bases along the same line is equal to the ratio of their respective bases. So, we have:
$\frac{\text { Area of } \triangle D O C}{\text { Area of } \triangle B O C}=\frac{D O}{B O}=1^{---1}$
Similarly
$\frac{\text { Area of } \triangle \mathrm{DOA}}{\text { Area of } \triangle \mathrm{BOA}}=\frac{\mathrm{DO}}{\mathrm{BO}}=1^{-\cdots---2}$

We know that area of triangles on the same base and between same parallel lines are equal.
Area of $\triangle \mathrm{ACD}=$ Area of $\triangle \mathrm{BCD}$
Area of $\triangle A O D+$ Area of $\triangle D O C=$ Area of $\triangle D O C+$ Area of $\triangle B O C$
$=>$ Area of $\triangle A O D=$ Area of $\triangle B O C \cdots---3$
From 1, 2 and 3 we have

Area $(\triangle \mathrm{DOC})=\operatorname{Area}(\triangle \mathrm{AOB})$

Hence Proved.
(ii)

Similarly, from 1, 2 and 3, we also have
Area of $\triangle \mathrm{DCB}=$ Area of $\triangle \mathrm{DOC}+$ Area of $\triangle \mathrm{BOC}=$ Area of $\triangle \mathrm{AOB}+$ Area of $\triangle \mathrm{BOC}=$ Area of $\triangle \mathrm{ABC}$
So Area of $\triangle D C B=$ Area of $\triangle A B C$
Hence Proved.
(iii)

We know that area of triangles on the same base and between same parallel lines are equal.
Given: triangles are equal in area on the common base, so it indicates $A D \| B C$.
So, $A B C D$ is a parallelogram.
Hence Proved

Solution 2:

Ratio of area of triangles with the same vertex and bases along the same line is equal to the ratio of their respective bases.
So, we have
$\frac{\text { Area of } \triangle A P D}{\text { Area of } \triangle B P D}=\frac{A P}{B P}=\frac{1}{2}$

Area of parallelogram $A B C D=324$ sq.cm
Area of the triangles with the same base and between the same parallels are equal.
We know that area of the triangle is half the area of the parallelogram if they lie on the same base and between the parallels.

Therefore, we have,

$$
\begin{aligned}
\operatorname{Area}(\triangle A B D) & =\frac{1}{2} \times \operatorname{Area}(\| g m \operatorname{ABCD}) \\
& =\frac{324}{2} \\
& =162 \mathrm{sq} . \mathrm{cm}
\end{aligned}
$$

From the diagram it is clear that,
$\operatorname{Area}(\triangle A B D)=\operatorname{Area}(\triangle A P D)+\operatorname{Area}(\triangle B P D)$
$\Rightarrow 162=\operatorname{Area}(\triangle A P D)+2 \operatorname{Area}(\triangle A P D)$
$\Rightarrow 162=3 \operatorname{Area}(\triangle A P D)$
$\Rightarrow \operatorname{Area}(\triangle A P D)=\frac{162}{3}$
$\Rightarrow \operatorname{Area}(\triangle \mathrm{APD})=54 \mathrm{sq} . \mathrm{cm}$
(ii)

Consider the triangles $\triangle A O P$ and $\triangle C O D$
$\angle A O P=\angle C O D$ [vertically opposite angles]
$\angle C D O=\angle A P D \quad[A B$ and $D C$ are parallel and DP is the transversal, alternate interior angles are equal]
Thus, by Angle - Angle similarity, $\triangle A O P \sim \triangle C O D$.
Hence the corresponding sides are proportional.

$$
\begin{aligned}
\frac{A P}{C D}=\frac{O P}{O D} & =\frac{A P}{A B} \\
& =\frac{A P}{A P+P B} \\
& =\frac{A P}{3 A P} \\
& =\frac{1}{3}
\end{aligned}
$$

Solution 3:

E and F are the midpoints of the sides $A B$ and $A C$.
Consider the following figure

Therefore, by midpoint theorem, we have, EF || BC

Triangles BEF and CEF lie on the common base EF and between the parallels, EF and BC

Therefore, $\operatorname{Ar} .(\triangle B E F)=A r .(\triangle C E F)$
$\Rightarrow \operatorname{Ar} .(\triangle B O E)+\operatorname{Ar} .(\triangle E O F)=\operatorname{Ar} .(\triangle E O F)+\operatorname{Ar} .(\triangle C O F)$
$\Rightarrow \operatorname{Ar} \cdot(\triangle B O E)=\operatorname{Ar} \cdot(\triangle C O F)$
Now BF and CE are the medians of the triangle $A B C$
Medians of the triangle divides it into two equal areas of triangles.
Thus, we have, Ar. $\triangle \mathrm{ABF}=\mathrm{Ar} . \triangle \mathrm{CBF}$
Subtracting Ar. $\triangle \mathrm{BOE}$ on the both the sides, we have
Ar. $\triangle \mathrm{ABF}-\operatorname{Ar} . \triangle \mathrm{BOE}=\mathrm{Ar} \cdot \triangle \mathrm{CBF}-\mathrm{Ar} \cdot \triangle \mathrm{BOE}$
Since, $\operatorname{Ar}(\triangle \mathrm{BOE})=\operatorname{Ar}(\triangle \mathrm{COF})$,
Ar. $\triangle \mathrm{ABF}-\mathrm{Ar} . \triangle \mathrm{BOE}=\mathrm{Ar} . \triangle \mathrm{CBF}-\mathrm{Ar} . \triangle \mathrm{COF}$
Ar. (quad. $A E O F)=\operatorname{Ar} \cdot(\triangle O B C)$, hence proved

Solution 4:

(i) Joining $A C$ we have the following figure

Consider the triangles $\triangle P O B$ and $\triangle C O D$
$\angle P O B=\angle D O C$ [vertically opposite angles]
$\angle O P B=\angle O D C \quad[A B$ and $D C$ are parallel, $C P$ and $B D$ are the transversals, alternate interior angles are equal]
Therefore, by Angle - Angle similarity criterion of congruence, $\triangle P O B \sim \triangle C O D$

Since P is the midpoint $A P=B P$, and $A B=C D$, we have $C D=2 B P$
Therefore, we have,
$\frac{B P}{C D}=\frac{O P}{O C}=\frac{O B}{O D}=\frac{1}{2}$
$\Rightarrow O P: O C=1: 2$
(ii)

Since from part (i), we have
$\frac{B P}{C D}=\frac{O P}{O C}=\frac{O B}{O D}=\frac{1}{2}$,
Ratio between the areas of two similar triangles is equal to the ratio between the squares of the corresponding sides.
Here, $\triangle D O C$ and $\triangle P O B$ are similar triangles.
Thus, we have,

$$
\begin{aligned}
& \frac{\operatorname{Ar} \cdot(\triangle D O C)}{\operatorname{Ar} \cdot(\triangle P O B)}=\frac{D C^{2}}{P B^{2}} \\
& \Rightarrow \frac{\operatorname{Ar} \cdot(\triangle D O C)}{\operatorname{Ar} \cdot(\triangle P O B)}=\frac{(2 P B)^{2}}{P B^{2}} \\
& \Rightarrow \frac{\operatorname{Ar} \cdot(\triangle D O C)}{\operatorname{Ar} \cdot(\triangle P O B)}=\frac{4 P B^{2}}{P B^{2}} \\
& \begin{aligned}
\Rightarrow \frac{\operatorname{Ar} \cdot(\triangle D O C)}{\operatorname{Ar} \cdot(\triangle P O B)} & =4 \\
\Rightarrow \operatorname{Ar} \cdot(\triangle D O C) & =4 A r \cdot(\triangle P O B) \\
& =4 \times 40 \\
& =160 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

Now consider $\operatorname{Ar} .(\triangle D B C)=\operatorname{Ar} .(\triangle D O C)+\operatorname{Ar} .(\triangle B O C)$

$$
\begin{aligned}
& =160+80 \\
& =240 \mathrm{~cm}^{2}
\end{aligned}
$$

Two triangles are equal in area if they are on the equal bases and between the same parallels.
Therefore, $\operatorname{Ar} .(\triangle D B C)=\operatorname{Ar} .(\triangle A B C)=240 \mathrm{~cm}^{2}$
Median divides the triangle into areas of two equal triangles.
Thus, $C P$ is the median of the triangle $A B C$.
Hence, $\operatorname{Ar} .(\triangle A B C)=2 A r .(\triangle P B C)$
$\Rightarrow \operatorname{Ar} \cdot(\triangle P B C)=\frac{\operatorname{Ar} \cdot(\triangle A B C)}{2}$
$\Rightarrow \operatorname{Ar} .(\triangle P B C)=120 \mathrm{~cm}^{2}$
(iii)

From part(ii) we have,
$\operatorname{Ar} .(\triangle A B C)=2 A r .(P B C)=240 \mathrm{~cm}^{2}$
Area of a triangle is half the area of the Parallelogram
if both are on equal bases and between the same parallels.
Thus, $\operatorname{Ar} .(\triangle A B C)=\frac{1}{2} \operatorname{Ar} .(\| g m ~ A B C D)$
$\Rightarrow \operatorname{Ar} .(\| g m A B C D)=2 \operatorname{Ar} .(\triangle A B C)$
$\Rightarrow \operatorname{Ar} .(\| g m \quad A B C D)=2 \times 240$
$\Rightarrow A r .(\| g m ~ A B C D)=480 \mathrm{~cm}^{2}$

Solution 5:

(i) The figure is shown below

Medians intersect at centroid.
Given that G is the point of intersection of medians and hence G is the centroid of the triangle $A B C$.
Centroid divides the medians in the ratio 2:1
That is $A G: G D=2: 1$
Since $B G$ divides $A D$ in the ratio $2: 1$, we have,
$\frac{\operatorname{Area}(\triangle A G B)}{\operatorname{Area}(\triangle B G D)}=\frac{2}{1}$
$\Rightarrow \operatorname{Area}(\triangle A G B)=2 \operatorname{Area}(\triangle B G D)$
From the figure, it is clear that,
$\operatorname{Area}(\triangle A B D)=\operatorname{Area}(\triangle A G B)+\operatorname{Area}(\triangle B G D)$
$\Rightarrow \operatorname{Area}(\triangle A B D)=2 \operatorname{Area}(\triangle B G D)+\operatorname{Area}(\triangle B G D)$
$\Rightarrow \operatorname{Area}(\triangle A B D)=3 \operatorname{Area}(\triangle B G D) \ldots(1)$
(ii)

Medians intersect at centroid.
Given that G is the point of intersection of medians and hence G is the centroid of the triangle $A B C$.
Centroid divides the medians in the ratio 2:1
That is $A G: G D=2: 1$
Similarly CG divides $A D$ in the ratio 2:1, we have,
$\frac{\operatorname{Area}(\triangle A G C)}{\operatorname{Area}(\triangle C G D)}=\frac{2}{1}$
$\Rightarrow \operatorname{Area}(\triangle A G C)=2 \operatorname{Area}(\triangle C G D)$
From the figure, it is clear that,
$\operatorname{Area}(\triangle A C D)=\operatorname{Area}(\triangle A C C)+\operatorname{Area}(\triangle C G D)$
$\Rightarrow \operatorname{Area}(\triangle A C D)=2 \operatorname{Area}(\triangle C G D)+\operatorname{Area}(\triangle C G D)$
$\Rightarrow \operatorname{Area}(\triangle A C D)=3 \operatorname{Area}(\triangle C G D) \ldots(2)$
(iii)

Adding equations (1) and (2), we have,
$\operatorname{Area}(\triangle \mathrm{ABD})+\operatorname{Area}(\triangle \mathrm{ACD})=3 \operatorname{Area}(\triangle B G D)+3 \operatorname{Area}(\triangle C G D)$
$\Rightarrow \operatorname{Area}(\triangle A B C)=3[\operatorname{Area}(\triangle B G D)+\operatorname{Area}(\triangle C G D)]$
$\Rightarrow \operatorname{Area}(\triangle A B C)=3[\operatorname{Area}(\triangle B C C)]$
$\Rightarrow \frac{\operatorname{Area}(\triangle A B C)}{3}=[\operatorname{Area}(\triangle B C C)]$
$\Rightarrow \operatorname{Area}(\triangle B C C)=\frac{1}{3} \operatorname{Area}(\triangle A B C)$

Solution 6:

Consider that the sides be $x \mathrm{~cm}, \mathrm{ycm}$ and $(37-\mathrm{x}-\mathrm{y}) \mathrm{cm}$. also, consider that the lengths of altitudes be $6 \mathrm{acm}, 5 \mathrm{acm}$ and 4 acm .
Area of a triangle $=\frac{1}{2} \times$ base \times altitude
$\frac{1}{2} \times x \times 6 a=\frac{1}{2} \times y \times 5 a=\frac{1}{2} \times(37-x-y) \times 4 a$
$6 x=5 y=148-4 x-4 y$
$6 x=5 y$ and $6 x=148-4 x-4 y$
$6 x-5 y=0$ and $10 x+4 y=148$
Solving both the equations, we have
$X=10 \mathrm{~cm}, y=12 \mathrm{~cm}$ and $(37-x-y) \mathrm{cm}=15 \mathrm{~cm}$

Solution 7:

(i)

Consider the triangles $\triangle A F E$ and $\triangle D F C$.
$\angle A F E=\angle D E C$ [Vertically opposite angles]
$\angle F A E=\angle D C F \quad[A B$ and $D C$ are parallel lines, $A C$ is a transversal, alternate interior angles are equal]
Thus, by Angle - Angle similarity, we have,
$\triangle A F E \sim \triangle D F C$
Therefore, we have,
$\frac{D F}{F E}=\frac{D C}{A E}=\frac{C F}{A F}=\frac{2}{1}$
$\Rightarrow D F: F E=2: 1$

Since from part(i) we have DF:FE=2:1, therefore,
$\operatorname{Area}(\triangle D C F)=4 \operatorname{Area}(\triangle A F E) \ldots(1)$
Also we know that,
$\operatorname{Area}(\triangle A D F)+\operatorname{Area}(\triangle A F E)=\operatorname{Area}(\triangle A D E)$
$\Rightarrow 60+\operatorname{Area}(\triangle A F E)=\operatorname{Area}(\triangle A D E) \quad\left[\operatorname{Area}(\triangle A D F)=60 \mathrm{~cm}^{2}\right]$
$\Rightarrow 2 \operatorname{Area}(\triangle A D E)=2[60+\operatorname{Area}(\triangle A F E)]$
Median divides the triangle into two equal areas of triangle.
Therefore, $2 \operatorname{Area}(\triangle A D E)=\operatorname{Area}(\triangle A B D)$
$\Rightarrow \operatorname{Area}(\triangle A B D)=2[60+\operatorname{Area}(\triangle A F E)]$
$\Rightarrow \operatorname{Area}(\triangle A B D)=120+2 \operatorname{Area}(\triangle A F E) \ldots(2)$
Triangles with equal bases and between the parallels are of equal area.
$\operatorname{Area}(\triangle A B D)=\operatorname{Area}(\triangle A C D)$
Thus, Equation (2), becomes,
$\operatorname{Area}(\triangle A C D)=120+2 \operatorname{Area}(\triangle A F E) \ldots(3)$
From the figure, it is clear that,
$\operatorname{Area}(\triangle \mathrm{ACD})=\operatorname{Area}(\triangle D C F)+\operatorname{Area}(\triangle \mathrm{ADF})$
$\Rightarrow \operatorname{Area}(\triangle A C D)=\operatorname{Area}(\triangle D C F)+60$
$\Rightarrow \operatorname{Area}(\triangle A C D)=4 \operatorname{Area}(\triangle A E F)+60 \ldots$ (4)
Equating equations (3) and (4), we have,
$120+2 \operatorname{Area}(\triangle A F E)=4 \operatorname{Area}(\triangle A E F)+60$
$\Rightarrow 2 \operatorname{Area}(\triangle \mathrm{AFE})=60$
$\Rightarrow \operatorname{Area}(\triangle A F E)=\frac{60}{2}$
$\Rightarrow \operatorname{Area}(\triangle A F E)=30$
$\Rightarrow \operatorname{Arear}(\triangle A D E)=\operatorname{Area}(\triangle A D F)+\operatorname{Area}(\triangle A F E)$
$\Rightarrow \operatorname{Arear}(\triangle A D E)=60+30$
$\Rightarrow \operatorname{Arear}(\triangle A D E)=90 \mathrm{~cm}^{2}$
(iii)

Median of a trianlge divides it intot two equal areas of triangle.
$\operatorname{Arear}(\triangle A D B)=2 \operatorname{Arear}(\triangle A D E)$
$\Rightarrow \operatorname{Arear}(\triangle A D B)=2 \operatorname{Arear}(\triangle A D E)$
$\Rightarrow \operatorname{Arear}(\triangle A D B)=2 \times 90 \mathrm{~cm}^{2}$
$\Rightarrow \operatorname{Arear}(\triangle A D B)=180 \mathrm{~cm}^{2}$
(ix)

Since DB divides the parallelogram $A B C D$ into two equal triangle, therefore Area of $\Delta_{D B C=}$ Area of $\Delta_{A D B}$
$=180 \mathrm{~cm}^{2}$

Thus the area of the parallelogram $\mathrm{ABCD}=$ Area of $\Delta_{\mathrm{ADB}}+$ Area
of $\Delta_{\text {DBC }}$
$=180 \mathrm{~cm}^{2}+180 \mathrm{~cm}^{2}$
$=360 \mathrm{~cm}^{2}$

Solution 8:

Here $B C E D$ is a parallelogram, sinœ $B D=C E$ and $B D \| C E$.
ar. $(\triangle \mathrm{DBC})=\mathrm{ar} .(\triangle \mathrm{EBC}) \ldots($ Since they have the same base and are between the same parallels)
In $\triangle A B C$,
$B E$ is the median,
So, ar. $(\triangle \mathrm{ABC})=\frac{1}{2} \operatorname{ar} \cdot(\triangle \mathrm{ABC})$
Now, ar. $(\triangle A B C)=a r \cdot(\triangle E B C)+\operatorname{ar} \cdot(\triangle A B E)$
Also, ar. $(\triangle A B C)=2 \mathrm{ar} .(\triangle E B C)$
$\Rightarrow \operatorname{ar} \cdot(\triangle A B C)=2 a r .(\triangle D B C)$

Solution 9:

Given:
$\triangle C A D=140 \mathrm{~cm}^{2}$
$\triangle O D C=172 \mathrm{~cm}^{2}$
$A B \| C D$
$A s$ Triangle $D B C$ and $\triangle C A D$ have same base $C D$ and between the same parallel lines Hence,
Area of $\triangle D B C=$ Area of $\triangle C A D=140 \mathrm{~cm}^{2}$
Area of $\triangle O A C=$ Area of $\triangle C A D+$ Area of $\triangle O D C=140 \mathrm{~cm}^{2}+172 \mathrm{~cm}^{2}=312 \mathrm{~cm}^{2}$
Area of $\triangle O D B=$ Area of $\triangle D B C+$ Area of $\triangle O D C=140 \mathrm{~cm}^{2}+172 \mathrm{~cm}^{2}=312 \mathrm{~cm}^{2}$

