Chapter 14. Rectilinear Figures [Quadrilaterals: Parallelogram, Rectangle, Rhombus, Square and Trapezium]

Exercise 14(A)

Solution 1:

The sum of the interior angle=4 times the sum of the exterior angles.
Therefore the sum of the interior angles $=4 \times 360^{\circ}=1440^{\circ}$.
Now we have

$$
\begin{aligned}
(2 n-4) \times 90^{\circ} & =1440^{0} \\
2 n-4 & =16 \\
2 n & =20 \\
n & =10
\end{aligned}
$$

Thus the number of sides in the polygon is 10.

Solution 2:

Let the angles of the pentagon are $4 x, 8 x, 6 x, 4 x$ and $5 x$.
Thus we can write

$$
\begin{aligned}
4 x+8 x+6 x+4 x+5 x & =540^{\circ} \\
27 x & =540^{\circ} \\
x & =20^{\circ}
\end{aligned}
$$

Hence the angles of the pentagon are:
$4 \times 20^{\circ}=80^{\circ}, 8 \times 20^{\circ}=160^{\circ}, 6 \times 20^{\circ}=120^{\circ}, 4 \times 20^{\circ}=80^{\circ}, 5 \times 20^{\circ}=100^{\circ}$

Solution 3:

Let the measure of each equal angles are x.
Then we can write

$$
\begin{aligned}
140^{\circ}+5 x & =(2 \times 6-4) \times 90^{0} \\
140^{\circ}+5 x & =720^{\circ} \\
5 x & =580^{0} \\
x & =116^{0}
\end{aligned}
$$

Therefore the measure of each equal angles are 116°

Solution 4:

Let the number of sides of the polygon is n and there are k angles with measure 195°.
Therefore we can write:

$$
\begin{aligned}
5 \times 90^{\circ}+k \times 195^{0} & =(2 n-4) 90^{\circ} \\
180^{\circ} n-195^{\circ} k & =450^{\circ}-360^{\circ} \\
180^{\circ} n-195^{\circ} k & =90^{\circ} \\
12 n-13 k & =6
\end{aligned}
$$

In this linear equation n and k must be integer. Therefore to satisfy this equation the minimum value of
k must be 6 to get n as integer.
Hence the number of sides are: $5+6=11$.

Solution 5:

Let the measure of each equal angles are x.
Then we can write:

$$
\begin{aligned}
3 \times 132^{0}+4 x & =(2 \times 7-4) 90^{0} \\
4 x & =900^{\circ}-396 \\
4 x & =504 \\
x & =126^{0}
\end{aligned}
$$

Thus the measure of each equal angles are 126°.

Solution 6:

Let the measure of each equal sides of the polygon is x.
Then we can write:

$$
\begin{aligned}
142^{0}+176^{0}+6 x & =(2 \times 8-4) 90^{0} \\
6 x & =1080^{0}-318^{0} \\
6 x & =762^{\circ} \\
x & =127^{0}
\end{aligned}
$$

Thus the measure of each equal angles are 127°.

Solution 7:

Let the measure of the angles are $3 \mathrm{x}, 4 \mathrm{x}$ and 5 x .
Thus

$$
\begin{aligned}
\angle A+\angle B+\angle C+\angle D+\angle E & =540^{\circ} \\
3 x+(\angle B+\angle C)+4 x+5 x & =540^{\circ} \\
12 x+180^{\circ} & =540^{\circ} \\
12 x & =360^{\circ} \\
x & =30^{\circ}
\end{aligned}
$$

Thus the measure of angle E will be $4 \times 30^{\circ}=120^{\circ}$

Solution 8:

(i)

Let each angle of measure x degree.
Therefore measure of each angle will be:

$$
x=180^{\circ}-2 \times 15^{0}=150^{\circ}
$$

(ii)

Let each angle of measure x degree.
Therefore measure of each exterior angle will be:

$$
\begin{aligned}
x & =180^{\circ}-150^{\circ} \\
& =30^{\circ}
\end{aligned}
$$

(iii)

Let the number of each sides is n.
Now we can write

$$
\begin{aligned}
n \cdot 150^{\circ} & =(2 n-4) \times 90^{\circ} \\
180^{\circ} n-150^{\circ} n & =360^{\circ} \\
30^{\circ} n & =360^{0} \\
n & =12
\end{aligned}
$$

Thus the number of sides are 12.

Solution 9:

Let measure of each interior and exterior angles are 3 k and 2 k .
Let number of sides of the polygon is n.
Now we can write:

$$
\begin{align*}
n \cdot 3 k & =(2 n-4) \times 90^{\circ} \\
3 n k & =(2 n-4) 90^{\circ} \tag{1}
\end{align*}
$$

Again

$$
\begin{aligned}
n \cdot 2 k & =360^{\circ} \\
n k & =180^{\circ}
\end{aligned}
$$

From (1)

$$
\begin{aligned}
3 \cdot 180^{\circ} & =(2 n-4) 90^{\circ} \\
3 & =n-2 \\
n & =5
\end{aligned}
$$

Thus the number of sides of the polygon is 5 .

Solution 10:

For ($n-1$) sided regular polygon:
Let measure of each angle is x.
Therefore

$$
\begin{aligned}
(n-1) x & =(2(n-1)-4) 90^{\circ} \\
x & =\frac{n-3}{n-1} 180^{\circ}
\end{aligned}
$$

For $(n+1)$ sided regular polygon:
Let measure of each angle is y.
Therefore

$$
\begin{aligned}
(n+2) y & =(2(n+2)-4) 90^{\circ} \\
y & =\frac{n}{n+2} 180^{\circ}
\end{aligned}
$$

Now we have

$$
\begin{aligned}
y-x & =6^{0} \\
\frac{n}{n+2} 180^{\circ}-\frac{n-3}{n-1} 180^{0} & =6^{0} \\
\frac{n}{n+2}-\frac{n-3}{n-1} & =\frac{1}{30} \\
30 n(n-1)-30(n-3)(n+2) & =(n+2)(n-1) \\
-30 n+30 n+180 & =n^{2}+n-2 \\
n^{2}+n-182 & =0 \\
(n-13)(n+14) & =0 \\
n & =13,-14
\end{aligned}
$$

Thus the value of n is 13 .

Solution 11:

(i)

Let the measure of each exterior angle is x and the number of sides is n.
Therefore we can write:
$n=\frac{360^{\circ}}{x}$
Now we have

$$
\begin{aligned}
x+x+90^{\circ} & =180^{\circ} \\
2 x & =90^{\circ} \\
x & =45^{\circ}
\end{aligned}
$$

(ii)

Thus the number of sides in the polygon is:

$$
\begin{aligned}
n & =\frac{360^{0}}{45^{0}} \\
& =8
\end{aligned}
$$

Exercise 14(B)

Solution 1:

(i)True.

This is true, because we know that a rectangle is a parallelogram. So, all the properties of a parallelogram are true for a rectangle. Since the diagonals of a parallelogram bisect each other, the same holds true for a rectangle.
(ii)False

This is not true for any random quadrilateral. Observe the quadrilateral shown below.

Clearly the diagonals of the given quadrilateral do not bisect each other. However, if the quadrilateral was a special quadrilateral like a parallelogram, this would hold true.
(iii)False

Consider a rectangle as shown below.

It is a parallelogram. However, the diagonals of a rectangle do not intersect at right angles, even though they bisect each other.
(iv)True

Since a rhombus is a parallelogram, and we know that the diagonals of a parallelogram bisect each other, hence the diagonals of a rhombus too, bisect other.
(v)False

This need not be true, since if the angles of the quadrilateral are not right angles, the quadrilateral would be a rhombus rather than a square.
(vi)True

A parallelogram is a quadrilateral with opposite sides parallel and equal.
Since opposite sides of a rhombus are parallel, and all the sides of the rhombus are equal, a rhombus is a parallelogram.
(vii)False

This is false, since a parallelogram in general does not have all its sides equal. Only opposite sides of a parallelogram are equal. However, a rhombus has all its sides equal. So, every parallelogram cannot be a rhombus, except those parallelograms that have all equal sides.
(viii)False

This is a property of a rhombus. The diagonals of a rhombus need not be equal.
(ix)True

A parallelogram is a quadrilateral with opposite sides parallel and equal.
A rhombus is a quadrilateral with opposite sides parallel, and all sides equal.
If in a parallelogram the adjacent sides are equal, it means all the sides of the parallelogram are equal, thus forming a rhombus.
(x)False

Observe the above figure. The diagonals of the quadrilateral shown above bisect each other at right angles, however the quadrilateral need not be a square, since the angles of the quadrilateral are clearly not right angles.

Solution 2:

From the given figure we conclude that
$\angle A+\angle D=180^{\circ}$ [since consecutive angles are supplementary]
$\frac{\angle A}{2}+\frac{\angle D}{2}=90^{\circ}$
Again from the $\triangle \mathrm{ADM}$
$\frac{\angle A}{2}+\frac{\angle D}{2}+\angle M=180^{\circ}$
$\Rightarrow 90^{\circ}+\angle M=180^{\circ} \quad\left[\sin \operatorname{ce} \frac{\angle A}{2}+\frac{\angle D}{2}=90^{\circ}\right]$
$\Rightarrow \angle M=90^{\circ}$

Hence

$$
\angle A M D=90^{\circ}
$$

Solution 3:

In the given figure

Given that $\quad A E=B C$
We have to find $\angle A E C \angle B C D$
Let us join $E C$ and $B D$.
In the quadrilateral $A E C B$
$A E=B C$ and $A B=E C$
also $A E \| B C$
$\Rightarrow A B \| E C$
So quadrilateral is a parallelogram.
In parallelogram consecutive angles are supplementary
$\Rightarrow \angle A+\angle B=180^{\circ}$
$\Rightarrow 102^{\circ}+\angle B=180^{\circ}$
$\Rightarrow \angle B=78^{\circ}$
In parallelogram opposite angles are equal
$\Rightarrow \angle A=\angle B E C$ and $\angle B=\angle A E C$
$\Rightarrow \angle \mathrm{BEC}=102^{\circ}$ and $\angle \mathrm{AEC}=78^{\circ}$
Now consider $\triangle E C D$
$E C=E D=C D \quad[$ Since $A B=E C]$
Therefore $\triangle E C D$ is an equilateral triangle.
$\Rightarrow \angle E C D=60^{\circ}$
$\angle B C D=\angle B E C+\angle E C D$
$\Rightarrow \angle \mathrm{BCD}=102^{\circ}+60^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=162^{\circ}$
Therefore $\angle \mathrm{AEC}=78^{\circ}$ and $\angle \mathrm{BCD}=162^{\circ}$

Solution 4:

Given $A B C D$ is a square and diagonals meet at $O \cdot P$ is a point on $B C$ such that $O B=B P$

In the
$\triangle B O C$ and $\triangle D O C$
$\Rightarrow \mathrm{BD}=\mathrm{BD}$ [common side]
$\Rightarrow \mathrm{BO}=\mathrm{CO}$
$\mathrm{POD}=\mathrm{OC}$ [since diagonals cuts at O]
$\triangle \mathrm{BOC} \tilde{=} \triangle \mathrm{DOC}[$ by SSS]
Therefore
$\angle B O C=90^{\circ}$
NOW
$\angle P O C=22.5$
$\angle B O P=67.5\left[\right.$ since $\left.\angle \mathrm{BOC}=67.5^{\circ}+22.5^{\circ}\right]$
Again
$\triangle \mathrm{BDC}$
$\angle B D C=45^{\circ}\left[\right.$ since $\left.\angle B=45^{\circ}, \angle C=90^{\circ}\right]$
Therefore
$\angle B D C=2 \angle P O C$
AGAIN
$\angle B O P=67.5^{\circ}$
$\Rightarrow \angle B O P=2 \angle P O C$
Hence proved that
i) $\angle \mathrm{PC}=\left(22 \frac{1}{2}^{\circ}\right)$
(ii) $\angle \mathrm{BDC}=2 \angle \mathrm{POC}$
(iii) $\angle \mathrm{BOP}=3 \angle \mathrm{CPO}$

Solution 5:

In the given figure $\triangle \mathrm{APB}$ is an equilateral triangle
Therefore all its angles are 60°
Again in the
$\triangle A D B$
$\angle A B D=45^{\circ}$
$\angle A O B=180^{\circ}-60^{\circ}-45^{\circ}$

$$
=75^{\circ}
$$

Again
$\triangle B P C$
$\Rightarrow \angle B P C=75^{\circ}$ [Since $\mathrm{BP}=\mathrm{CB}$]
Now
$\angle C=\angle B C P+\angle P C D$
$\Rightarrow \angle P C D=90^{\circ}-75^{\circ}$
$\Rightarrow \angle P C D=15^{\circ}$
Therefore
$\angle A P C=60^{\circ}+75^{\circ}$
$\Rightarrow \angle A P C=135^{\circ}$
\Rightarrow Reflex $\angle A P D=360^{\circ}-135^{\circ}=225^{\circ}$
(i) $\angle A O B=75^{\circ}$
(ii) $\angle B P C=75^{\circ}$
(iii) $\angle P C D=15^{\circ}$
(iv)Reflex $\angle A P D=225^{\circ}$

Solution 6:

Given that the figure ABCD is a rhombus with angle $\mathrm{A}=67^{\circ}$

In the rhombus We have
$\angle A=67^{\circ}=\angle C$ [Opposite angles]
$\angle A+\angle D=180^{\circ}$ [Consecutive angles are supplementary]
$\Rightarrow \angle D=113^{\circ}$
$\Rightarrow \angle A B C=113^{\circ}$

Consider $\triangle D B C$,
$D C=C B$ [Sides of rhombous]
So $\triangle D B C$ is an isoscales triangle
$\Rightarrow \angle C D B=\angle C B D$
Also,
$\angle C D B+\angle C D B+\angle B C D=180^{\circ}$
$\Rightarrow 2 \angle C B D=113^{\circ}$
$\Rightarrow \angle C D B=\angle C B D=56.5^{\circ}$

Consider $\triangle D C E$,
$E C=C B$
So $\triangle D C E$ is an isoscales triangle
$\Rightarrow \angle C B E=\angle C E B$
Also,
$\angle C B E+\angle C E B+\angle B C E=180^{\circ}$
$\Rightarrow 2 \angle C B E=53^{\circ}$
$\Rightarrow \angle C D E=26.5^{\circ}$

From (i)
$\angle C B D=56.5^{\circ}$
$\Rightarrow \angle C B E+\angle D B E=56.5^{\circ}$
$\Rightarrow 26.5^{\circ}+\angle D B E=56.5^{\circ}$
$\Rightarrow \angle D B E=30.5^{\circ}$

Solution 7:

(i) $A B C D$ is a parallelogram

Therefore
$A D=B C$
$\mathrm{AB}=\mathrm{DC}$
Thus
$4 y=3 x-3[$ since $\mathrm{AD}=\mathrm{BC}]$
$\Rightarrow 3 x-4 y=3(i)$
$6 y+2=4 x \quad[$ since $\mathrm{AB}=\mathrm{DC}]$
$4 x-6 y=2(i i)$
Solving equations (i) and (ii) we have
$x=5$
$y=3$
(ii)

In the figure ABCD is a parallelogram
$\angle A=\angle C$
$\angle B=\angle D$ [since opposite angles are equal]

Therefore
$7 y=6 y+3 y-8^{\circ}$
(i) [Since $\angle A=\angle C$]
$4 x+20^{\circ}=0$

Solving (i), (ii) we have
$X=12^{\circ}$
$Y=16^{\circ}$

Solution 8:

Given that the angles of a quadrilateral are in the ratio $3: 4: 5: 6$ Let the angles be $3 x, 4 x, 5 x, 6 x$
$3 x+4 x+5 x+6 x=360^{\circ}$
$\Rightarrow x=\frac{360^{\circ}}{18}$
$\Rightarrow x=20^{\circ}$
Therefore the angles are
$3 \times 20=60^{\circ}$,
$4 \times 20=80^{\circ}$,
$5 \times 20=100^{\circ}$,
$6 \times 20=120^{\circ}$
Since all the angles are of different degrees thus forms a trapezium

Solution 9:

Given $\mathrm{AB}=20 \mathrm{~cm}$ and $\mathrm{AD}=12 \mathrm{~cm}$.
From the above figure, it's evident that $A B F$ is an isosceles triangle with angle $B A F=$ angle $B F A=x$
So $A B=B F=20$
$B F=20$
$B C+C F=20$
$C F=20-12=8 \mathrm{~cm}$

Solution 10:
We know that AQCP is a quadrilateral. So sum of all angles must be 360 .
$\therefore x+y+90+90=360$
$x+y=180$
Given $x: y=2: 1$
So substitute $x=2 y$
$3 y=180$
$y=60$
$x=120$
We know that angle $C=$ angle $A=x=120$
Angle $D=$ Angle $B=180-x=180-120=60$
Hence, angles of parallelogram are $120,60,120$ and 60.

Exercise 14(C)

Solution 1:

Let us draw a parallelogram ABCD Where F is the midpoint
Of side DC of parallelogram ABCD
To prove: AEFD is a parallelogram

Proof:
Therefore ABCD
$A B \| D C$
$B C \| A D$
$A B=D C$
$\frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{DC}$
$A E=D F$
Also AD|| EF
therefore AEFC is a parallelogram.

Solution 2:

GIVEN: ABCD is a parallelogram where the diagonal BD bisects
parallelogram ABCD at angle B and D
TO PROVE: ABCD is a rhombus

Proof: Let us draw a parallelogram ABCD where the diagonal BD bisects the parallelogram at angle B and D
Consruction :Let us join AC as a diagonal of the parallelogram
ABCD

Since $A B C D$ is a parallelogram

Therefore
$\mathrm{AB}=\mathrm{DC}$
$\mathrm{AD}=\mathrm{BC}$
Diagonal BD bisects angle B and D

So $\angle C O D=\angle D O A$
Again AC also bisects at A and C
Therefore $\angle A O B=\angle B O C$
Thus ABCD is a rhombus.

Solution 3:

Given $A B C D$ is a parallelogram and $A E=E F=F C$.
We have to prove at first that DEBF is a parallelogram.
Proof:From $\triangle A D E$ and $\triangle B C F$
$A E=F C$
$\mathrm{AD}=\mathrm{BC}$
$\angle D=\angle B$
$\triangle \mathrm{ADE} \cong \triangle \mathrm{BCF} \quad[\mathrm{SAS}]$

Therefore $\mathrm{DE}=\mathrm{FB}$
$\mathrm{DC}=\mathrm{EF}[$ since $\mathrm{AE}+\mathrm{EF}+\mathrm{FC}=\mathrm{AC}$ and $\mathrm{AE}=\mathrm{EF}=\mathrm{FC}]$
Therefore DEBF is a parallelogram.

So $\mathrm{DE} \| \mathrm{FB}$

Hence proved

Solution 4:

Let us join PQ.

Consider the $\triangle A O Q$ and $\triangle B O P$
$\angle A O Q=\angle B O P$ [opposite angles]
$\angle O A Q=\angle B P O$ [alternate angles]
$\Rightarrow \triangle \mathrm{AOQ} \cong \triangle B O P$ [AA test]
Hence $A Q=B P$
Consider the $\triangle Q O P$ and $\triangle A O B$
$\angle A O B=\angle Q O P$ [opposite angles]
$\angle O A B=\angle A P Q$ [alternate angles]
$\Rightarrow \triangle Q O P \cong \triangle A O B$ [AA test]
Hence $P Q=A B=C D$
Consider the quadrilateral $Q P C D$
$D Q=C P$ and $D Q \| C P[$ Since $A D=B C$ and $A D \| B C$]
Also $Q P=D C$ and $A B\|Q P\| D C$
Hence quadrilateral QPCD is a parallelogram.

Solution 5:

Given ABCD is a parallelogram
To prove: $\mathrm{AB}=2 \mathrm{BC}$

Proof: ABCD is a parallelogram
$\angle A+\angle D=\angle B+\angle C=180^{\circ}$
From the $\triangle A E B$ we have
$\Rightarrow \frac{\angle A}{2}+\frac{\angle B}{2}+\angle E=180^{\circ}$
$\Rightarrow \angle A-\frac{\angle A}{2}+\angle D+\angle E 1=180^{\circ} \quad[$ taking E 1 as new angle $]$
$\Rightarrow \angle A+\angle D+\angle E 1=180^{\circ}+\frac{\angle A}{2}$
$\Rightarrow \angle E 1=\frac{\angle A}{2} \quad\left[\right.$ Since $\left.\angle A+\angle D=180^{\circ}\right]$
Again,
similarly,
$\angle E 2=\frac{\angle B}{2}$
NOW
$A B=D E+E C$
$=\mathrm{AD}+\mathrm{BC}$
$=2 \mathrm{BC} \quad[$ since $\mathrm{AD}=\mathrm{BC}]$
Hence proved

Solution 6:

Given ABCD is a parallelogram. The bisectors of $\angle A D C$ and $\angle B C D$ meet at E . The bisectors of $\angle A B C$ and $\angle B C D$ meet at F

$\angle A D C+\angle B C D=180^{\circ}$ [sum of adjacent angles of a parallelogram]
$\Rightarrow \frac{\angle A D C}{2}+\frac{\angle B C D}{2}=90^{\circ}$
$\Rightarrow \angle E D C+\angle E C D=90^{\circ}$
In triangle ECD sum of angles $=180^{\circ}$
$\Rightarrow \angle E D C+\angle E C D+\angle C E D=180^{\circ}$
$\Rightarrow \angle C E D=90^{\circ}$
Similarly taking triangle $B C F$ it can be prove that $\angle B F C=90^{\circ}$

Now since
$\angle B F C=\angle C E D=90^{\circ}$

Therefore the lines
DE and BF are parallel

Hence proved

Solution 7:

Given: ABCD is a parallelogram
AE bisects $\angle \mathrm{BAD}$
BF bisects $\angle \mathrm{ABC}$
CG bisects $\angle \mathrm{BCD}$
DH bisecsts $\angle \mathrm{ADC}$
TO PROVE: LKJI is a rectangle

Proof:
$\angle \mathrm{BAD}+\angle \mathrm{ABC}=180^{\circ}$ [adjacent angles of a parallelogram are supplementary]
$\angle \mathrm{BAJ}=\frac{1}{2} \angle \mathrm{BAD}[\mathrm{AE}$ bisects $\mp \mathrm{BAD}]$
$\angle \mathrm{ABJ}=\frac{1}{2} \angle \mathrm{ABC}[\mathrm{DH}$ bisect $\mp \mathrm{ABC}]$
$\angle \mathrm{BAJ}+\angle \mathrm{ABJ}=90^{\circ}$ [halves of supplementary angles are complementary]
$\triangle \mathrm{ABJ}$ is a right triangle because its acute interior angles are complementary.
Similarly
$\angle D L C=90^{\circ}$
$\angle A I D=90^{\circ}$
Then $\angle J I L=90^{\circ}$ because $\angle \mathrm{AD}$ and $\angle J L$ are vertical angles
since 3 angles of quadrilateral LKJI are right angles,si is the $4^{\text {th }}$ one and so LKJI is a rectangle, since its interior angles are all right angles

Hence proved

Solution 8:

Given: A parallelogram ABCD in which $\mathrm{AR}, \mathrm{BR}, \mathrm{CP}, \mathrm{DP}$

Are the bisects of $\angle A, \angle B, \angle C, \angle D$ respectively forming quadrilaterals PQRS .
To prove: PQRS is a rectangle

Proof:
$\angle D C B+\angle A B C=180^{\circ}$ [co-interior angles of parallelogram are supplementary]
$\Rightarrow \frac{1}{2} \angle D C B+\frac{1}{2} \angle A B C=90^{\circ}$
$\Rightarrow \angle 1+\angle 2=90^{\circ}$
$\triangle C Q B, \angle 1+\angle 2+\angle C Q B=180^{\circ}$
From the above equation we get
$\angle C Q B=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle R Q P=90^{\circ}[\angle C Q B=\angle R Q P$, vertically opposite angles $]$
$\angle Q R P=\angle R S P=\angle S P Q=90^{\circ}$
Hence PQRS is a rectangle

Solution 9:

(i)Let $\mathrm{AD}=x$
$A B=2 A D=2 x$
Also AP is the bisector $\angle A$
$\angle 1=\angle 2$

Now,
$\angle 2=\angle 5$ [alternate angles]
Therefore $\angle 1=\angle 5$

Now
$A P=D P=x$ [sides opposite to equal angles are also equal]

Therefore
$\mathrm{AB}=\mathrm{CD}$ [opposite sides of parallelogram are equal]
$\mathrm{CD}=2 x$
$\Rightarrow \mathrm{DP}+\mathrm{PC}=2 \mathrm{x}$
$\Rightarrow \mathrm{x}+\mathrm{PC}=2 \mathrm{x}$
$\Rightarrow \mathrm{PC}=x$

Also, $\mathrm{BC}=\mathrm{x}$
$\triangle \mathrm{BPC}$
In $\Rightarrow \angle 6=\angle 4$ [angles opposite to equal sides are equal $]$

$$
\Rightarrow \angle 6=\angle 3
$$

Therefore $\angle 3=\angle 4$
Hence BP bisect $\angle B$
(ii)

Opposite angles are supplementary
Therefore
$\angle 1+\angle 2+\angle 3+\angle 4=180^{\circ}$
$\Rightarrow 2 \angle 2+2 \angle 3=180^{\circ}\left[\begin{array}{l}\angle 1=\angle 2 \\ \angle 3=\angle 4\end{array}\right]$
$\Rightarrow \angle 2+\angle 3=90^{\circ}$
$\triangle \mathrm{APB}$
$\angle 2+\angle 3 \angle \mathrm{APB}=180^{\circ}$
$\Rightarrow \angle A P B=180^{\circ}-90^{\circ}$ [by angle sum property]
$\Rightarrow \angle A P B=90^{\circ}$
Hence proved

Solution 10:

Points M and N are taken on the diagonal AC of a parallelogram ABCD such that $\mathrm{AM}=\mathrm{CN}$.
Prove that BMDN is a parallelogram

CONSTRUCTION: Join B to $D^{\text {to meet }} \mathrm{AC}$ in O .
PROOF: We know that the diagonals of parallelogram bisect each other.
Now, AC and BD bisect each other at O .
$\mathrm{OC}=\mathrm{OA}$
$\mathrm{AM}=\mathrm{CN}$
$\Rightarrow \mathrm{OA}-\mathrm{AM}=\mathrm{OC}-\mathrm{CN}$
$\Rightarrow \mathrm{OM}=\mathrm{ON}$
Thus in a quadrilateral BMDN , diagonal BD and MN are such that $\mathrm{OM}=\mathrm{ON}^{\text {and }} \mathrm{OD}=\mathrm{OB}$
Therefore the diagonals AC and PQ bisect each other.

Hence BMDN is a parallelogram

Solution 11:

Consider $\triangle \mathrm{ADP}$ and $\triangle \mathrm{BCP}$
$\mathrm{AD}=\mathrm{BC}[$ since ABCD is a parallelogram $]$
$D C=A B$ [since $A B C D$ is a parallelogram]
$\angle A=\angle C$ [opposite angles]
$\triangle A D P \cong \triangle B C P[S A S]$
Therefore $\mathrm{AP}=\mathrm{BP}$
AP bisects $\angle \mathrm{A}$
BP bisects $\angle B$
In $\triangle \mathrm{APB}$
$A P=P B$
$\angle \mathrm{APB}=\angle \mathrm{DAP}+\angle \mathrm{BCP}$
Hence proved

Solution 12:

$A B C D$ is a square and $A P=P Q$
Consider $\triangle D A Q$ and $\triangle A B P$
$\angle D A Q=\angle A B P=90^{\circ}$
$D Q=A P$
$A D=A B$
$\triangle D A Q \cong \triangle A B P$
$\Rightarrow \angle P A B=\angle Q D A$

Now,
$\angle P A B+\angle A P B=90^{\circ}$
also $\angle Q D A+\angle A P B=90^{\circ}[\angle P A B=\angle Q D A]$

Consider $\triangle A O Q B y$ ASP
$\angle Q D A+\angle A P B+\angle A O D=180^{\circ}$
$\Rightarrow 90^{\circ}+\angle A O D=180^{\circ}$
$\Rightarrow \angle A O D=90^{\circ}$

Hence $A P$ and $D Q$ are perpendicular.

Solution 13:

Given: ABCD is quadrilateral,
$A B=A D$
$C B=C D$
To prove: (i) AC bisects angle BAD.
(ii) AC is perpendicular bisector of BD .

Proof:

In $\triangle A B C$ and $\triangle A D C$
$\mathrm{AB}=\mathrm{AD}$ [given]
$\mathrm{CB}=\mathrm{CD}$ [given]
$\mathrm{AC}=\mathrm{AC}$ [common side]
$\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}[\mathrm{SSS}]$
Therefore AC bisects $\angle B A D$
$\mathrm{OD}=\mathrm{OB}$
$O A=O A[$ diagonals bisect each other at O]
Thus AC is perpendicular bisector of BD
Hence proved

Solution 14:

Given ABCD is a trapezium, $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC}$

To prove(i) $\angle \mathrm{DAB}=\angle \mathrm{CBA}$
(ii) $\angle \mathrm{ADC}=\angle \mathrm{BCD}$
(iii) $\mathrm{AC}=\mathrm{BD}$
(iv) $O A=O B$ and $O C=O D$

Proof:(i) Since $\mathrm{AD} \| \mathrm{CE}$ and transversal AE cuts them at A and $\mathrm{E}^{\text {respectively. }}$

Therefore,

$$
\angle A+\angle B=180^{\circ}
$$

Since $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{AD} \| B C$
Therefore ABCD is a parallelogram
$\angle A=\angle C$
$\angle B=\angle D$ [since ABCD is a parallelogram $]$

Therefore $\angle D A B=\angle C B A$
$\angle A D C=\angle B C D$
In $\triangle A B C$ and $\triangle B A D$, we have
$\mathrm{BC}=\mathrm{AD}$ [given]
$\mathrm{AB}=\mathrm{BA}$ [common]
$\angle A=\angle B$ [proved]
$\triangle A B C \cong \triangle B A D[\mathrm{SAS}]$
Since $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
Therefore $\mathrm{AC}=\mathrm{BD}$ [corresponding parts of congruent triangles are equal]
Again $\mathrm{OA}=\mathrm{OB}$
$\mathrm{OC}=\mathrm{OD}[$ since diagonals bisect each other at O]
Hence proved

Solution 15:

Join $\mathrm{AC}^{\text {to meet }} \mathrm{BD}^{\text {in }} \mathrm{O}$
We know that the diagonals of a parallelogram bisect each other. Therefore AC and BD bisect each other at O .
Therefore
$\mathrm{OB}=\mathrm{OD}$
But
$B Q=D P$
$\mathrm{OB}-\mathrm{PQ}=\mathrm{OD}-\mathrm{DP}$
$\Rightarrow O Q=O P$
Thus in a quadrilateral APCQ diagonals AC and PQ such that $\mathrm{OQ}=\mathrm{OP}$ and $\mathrm{OA}=\mathrm{OC}$. Since diagonals AC and PQ bisect each other.
Hence APCQ is a parallelogram

Solution 16:

ABCD is a parallelogram, the bisectors of $\angle A D C$ and
$\angle B C D$ meet at a point E and the bisectors of $\angle B C D$ AND $\angle A B C$ meet at F .
We have to prove that the $\angle C E D=90^{\circ}$ and $\angle C F G=90^{\circ}$
Proof: In the parallelogram ABCD
$\angle A D C+\angle B C D=180^{\circ}$ [sum of adjacent angles of a parallelogram]
$\Rightarrow \frac{\angle A D C}{2}+\frac{\angle B C D}{2}=90^{\circ}$
$\Rightarrow \angle E D C+\angle E C D+\angle C E D=180^{\circ}$
$\Rightarrow \angle C E D=90^{\circ}$

Similarly taking triangle BCF it can be proved that $\angle B F C=90^{\circ}$
Also $\angle B F C+\angle C F G=180^{\circ}$ [adjacent angles on a line]

$$
\Rightarrow \angle C F G=90^{\circ}
$$

Now since $\angle C F G=\angle C E D=90^{\circ}$ [it means that the lines DE and BG are parallel]

Solution 17:

To prove: $A B C D$ is a square,
that is, to prove that sides of the quadrilateral are equal
and each angle of the quadrilateral is 90°.
ABCD is a rectangle,
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$ and diagonals bisect eachother
thatis, $\mathrm{MD}=\mathrm{BM}$...(i)
Consider $\triangle A M D$ and $\triangle A M B$,
$\mathrm{MD}=\mathrm{BM}$ (from (i))
$\angle \mathrm{AMD}=\angle \mathrm{AMB}=90^{\circ}$ (given)
$\mathrm{AM}=\mathrm{AM}$ ((ommon side)
$\triangle A M D \cong \triangle A M B$ (SAS congruence criterion)
$\Rightarrow \mathrm{AD}=\mathrm{AB}$ (cpctc)
Since $A B C D$ is arectangle, $A D=B C$ and $A B=C D$
Thus, $A B=B C=C D=A D$ and $\angle A=\angle B=\angle C=\angle D=90^{\circ}$
$\Rightarrow A B C D$ is a square.

Solution 18:

$A B C D$ is a parallelogram
\Rightarrow opposite angles of a parallelogram are congruent
$\Rightarrow \angle \mathrm{DAB}=\angle \mathrm{BCD}$ and $\angle \mathrm{ABC}=\angle \mathrm{ADC}=120^{\circ}$
In $A B C D$,
$\angle D A B+\angle B C D+\angle A B C+\angle A D C=360^{\circ}$
.......(sum of the measures of angles of a quadrilateral)
$\Rightarrow \angle \mathrm{BCD}+\angle \mathrm{BCD}+120^{\circ}+120^{\circ}=360^{\circ}$
$\Rightarrow \angle \angle \mathrm{BCD}=360^{\circ}-240^{\circ}$
$\Rightarrow 2 \angle \mathrm{BCD}=120^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=60^{\circ}$
PQRS is a parallelogram
$\Rightarrow \angle \mathrm{PQR}=\angle \mathrm{PSR}=70^{\circ}$
In $\triangle \mathrm{CMS}$,
$\angle \mathrm{CMS}+\angle \mathrm{CSM}+\angle \mathrm{MCS}=180^{\circ} \ldots$ (angle sum property)
$\Rightarrow x+70^{\circ}+60^{\circ}=180^{\circ}$
$\Rightarrow x=50^{\circ}$

Solution 19:

$A B C D$ is arhombus $\Rightarrow A D=C D$ and $\angle A D C=\angle A B C=56^{\circ}$
DCFE is a square $\Rightarrow \mathrm{ED}=\mathrm{CD}$ and $\angle \mathrm{FED}=\angle \mathrm{EDC}=\angle \mathrm{DCF}=\angle \mathrm{CFE}=90^{\circ}$
$\Rightarrow A D=C D=E D$
In $\triangle A D E$,
$\mathrm{AD}=\mathrm{ED} \Rightarrow \angle \mathrm{DAE}=\angle \mathrm{AED} . . .(\mathrm{i})$
$\angle \mathrm{DAE}+\angle \mathrm{AED}+\angle \mathrm{ADE}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{DAE}+146^{\circ}=180^{\circ} \quad \ldots\left(\operatorname{Sin} \wp \angle \mathrm{ADE}=\angle \mathrm{EDC}+\angle \mathrm{ADC}=90^{\circ}+56^{\circ}=146^{\circ}\right)$
$\Rightarrow 2 \angle \mathrm{DAE}=34^{\circ}$
$\Rightarrow \angle \mathrm{DAE}=17^{\circ}$
$\Rightarrow \angle \mathrm{DEA}=17^{\circ} \ldots$ (ii)
In $A B C D$,
$\angle \mathrm{ABC}+\angle \mathrm{BCD}+\angle \mathrm{ADC}+\angle \mathrm{DAB}=360^{\circ}$
$\Rightarrow 56^{\circ}+56^{\circ}+2 \angle \mathrm{DAB}=360^{\circ}(\because$ opposite angles of arhombus are equal)
$\Rightarrow 2 \angle \mathrm{DAB}=248^{\circ}$
$\Rightarrow \angle \mathrm{DAB}=124^{\circ}$
We know that diagonals of arhombus, bi sect its angles.
$\Rightarrow \angle \mathrm{DAC}=\frac{124^{\circ}}{2}=62^{\circ}$
$\Rightarrow \angle \mathrm{EAC}=\angle \mathrm{DAC}-\angle \mathrm{DAE}=62^{\circ}-17^{\circ}=45^{\circ}$
Now, $\angle \mathrm{FEA}=\angle \mathrm{FED}-\angle \mathrm{DEA}$
$=90^{\circ}-17^{\circ} \ldots\left(\right.$ from (ii) and each angle of a square is $\left.90^{\circ}\right)$
$=73^{\circ}$
We know that diagonals of a square bisectits angles.
$\Rightarrow \angle \mathrm{CED}=\frac{90^{\circ}}{2}=45^{\circ}$
$\mathrm{So}, \angle \mathrm{AEC}=\angle \mathrm{CED}-\angle \mathrm{DEA}$
$=45^{\circ}-17^{\circ}$
$=28^{\circ}$
Hence, $\angle \mathrm{DAE}=17^{\circ}, \angle \mathrm{FEA}=73^{\circ}, \angle \mathrm{EAC}=45^{\circ}$ and $\angle \mathrm{AEC}=28^{\circ}$.

