Chapter 12. Mid-point and Its Converse [Including Intercept Theorem]

Exercise 12(A)

Solution 1:

The triangle is shown below,

Since M is the midpoint of $A B$ and $M N|\mid B C$ hence N is the midpoint of $A C$.Therefore
$M N=\frac{1}{2} B C=\frac{1}{2} \times 7=3.5 \mathrm{~cm}$
And $A N=\frac{1}{2} A C=\frac{1}{2} \times 5=2.5 \mathrm{~cm}$

Solution 2:

The figure is shown below,

Let $A B C D$ be a rectangle where P, Q, R, S are the midpoint of $A B, B C, C D, D A . W e$ need to show that $P Q R S$ is a rhombus For help we draw two diagonal $B D$ and $A C$ as shown in figure
Where $\mathrm{BD}=\mathrm{AC}$ (Since diagonal of rectangle are equal)
Proof:
From $\triangle A B D$ and $\triangle B C D$
$P S=\frac{1}{2} B D=Q R$ and $\mathrm{PS}\|\mathrm{BD}\| \mathrm{QR}$
$2 P S=2 Q R=\mathrm{BD}$ and $\mathrm{PS} \| \mathrm{QR}$
Similarly $2 \mathrm{PQ}=2 \mathrm{SR}=\mathrm{AC}$ and $\mathrm{PQ}|\mid \mathrm{SR}-----(2)$
From (1) and (2) we get
$P Q=Q R=R S=P S$
Therefore PQRS is a rhombus.
Hence proved

Solution 3:

The figure is shown below

Given that $A B C$ is an isosceles triangle where $A B=A C$.
Since D,E,F are midpoint of AB,BC,CA therefore
$2 \mathrm{DE}=\mathrm{AC}$ and $2 \mathrm{EF}=\mathrm{AB}$ this means $\mathrm{DE}=\mathrm{EF}$
Therefore DEF is an isosceles triangle an DE=EF.
Hence proved

Solution 4:

Here from triangle $A B D P$ is the midpoint of $A D$ and $P R \| A B$, therefore Q is the midpoint of $B D$ Similarly R is the midpoint of $B C$ as $P R\|C D\| A B$
From triangle $\mathrm{ABD} 2 \mathrm{PQ}=\mathrm{AB}$
From triangle $\mathrm{BCD} 2 \mathrm{QR}=\mathrm{CD}$......(2)
Now (1) $+(2)=>$
$2(P Q+Q R)=A B+C D$
$P R=\frac{1}{2}(A B+C D)$
Hence proved

Solution 5:

Let we draw a diagonal AC as shown in the figure below,

(i) Given that $A B=11 \mathrm{~cm}, C D=8 \mathrm{~cm}$

From triangle ABC
$O N=\frac{1}{2} A B=\frac{1}{2} \times 11=5.5 \mathrm{~cm}$
From triangle ACD
$O M=\frac{1}{2} C D=\frac{1}{2} \times 8=4 \mathrm{~cm}$
Hence $\mathrm{MN}=\mathrm{OM}+\mathrm{ON}=(4+5.5)=9.5 \mathrm{~cm}$
(ii) Given that $\mathrm{CD}=20 \mathrm{~cm}, \mathrm{MN}=27 \mathrm{~cm}$

From triangle ACD
$O M=\frac{1}{2} C D=\frac{1}{2} \times 20=10 \mathrm{~cm}$
Therefore $\mathrm{ON}=27-10=17 \mathrm{~cm}$
From triangle ABC
$A B=2 O N=2 \times 17=34 \mathrm{~cm}$
(iii) Given that $A B=23 \mathrm{~cm}, M N=15 \mathrm{~cm}$

From triangle ABC
$O N=\frac{1}{2} A B=\frac{1}{2} \times 23=11.5 \mathrm{~cm}$
Therefore $\mathrm{OM}=15-11.5=3.5 \mathrm{~cm}$
From triangle ACD
$C D=2 O M=2 \times 3.5=7 \mathrm{~cm}$

Solution 6:

The figure is shown below

Let $A B C D$ be a quadrilateral where P, Q, R, S are the midpoint of $A B, B C, C D, D A$. Diagonal $A C$ and $B D$ intersects at right angle at point O. We need to show that PQRS is a rectangle
Proof:
From $\triangle A B C$ and $\triangle A D C$
$2 \mathrm{PQ}=\mathrm{AC}$ and $\mathrm{PQ} \| \mathrm{AC}$.....(1)
$2 R S=A C$ and $R S|\mid A C$.....(2)
From (1) and (2) we get,
$P Q=R S$ and $P Q \| R S$
Similarly we can show that $P S=R Q$ and $P S \| R Q$
Therefore PQRS is a parallelogram.
Now PQ\|AC, therefore $\angle A O D=\angle P X O=90^{\circ}$
[Corresponding angle]
Again $\mathrm{BD} \| \mathrm{RQ}$, therefore $\angle P X O=\angle R Q X=90^{\circ}$
[Corresponding angle]
Similarly $\angle Q R S=\angle R S P=\angle S P Q=90^{\circ}$
Therefore $P Q R S$ is a rectangle.
Hence proved

Solution 7:

The required figure is shown below

From figure,
$\mathrm{BL}=\mathrm{DM}$ and $\mathrm{BL}|\mid \mathrm{DM}$ and BLMD is a parallelogram, therefore BM$| \mid \mathrm{DL}$
From triangle ABY
L is the midpoint of $A B$ and $X L|\mid B Y$, therefore x is the midpoint of $A Y$.ie $A X=X Y$.
Similarly for triangle CDX
$\mathrm{CY}=\mathrm{XY}$
....(2)
From (1) and (2)
$A X=X Y=C Y$ and $A C=A X+X Y+C Y$
Hence proved

Solution 8:

Given that $\mathrm{AD}=\mathrm{BC}$.....(1)
From the figure,
For triangle ADC and triangle ABD
$2 \mathrm{GH}=\mathrm{AD}$ and $2 \mathrm{EF}=\mathrm{AD}$, therefore $2 \mathrm{GH}=2 \mathrm{EF}=\mathrm{AD}$
For triangle BCD and triangle ABC
$2 \mathrm{GF}=\mathrm{BC}$ and $2 \mathrm{EH}=\mathrm{BC}$, therefore $2 \mathrm{GF}=2 \mathrm{EH}=\mathrm{BC}$.
From (1),(2),(3) we get,
$2 \mathrm{GH}=2 \mathrm{EF}=2 \mathrm{GF}=2 \mathrm{EH}$
$\mathrm{GH}=\mathrm{EF}=\mathrm{GF}=\mathrm{EH}$
Therefore EFGH is a rhombus.
Hence proved

Solution 9:

For help we draw the diagonal BD as shown below

The diagonal AC and BD cuts at point X .
We know that the diagonal of a parallelogram intersects equally each other. Therefore
$A X=C X$ and $B X=D X$
Given,
$C Q=\frac{1}{4} A C$
$C Q=\frac{1}{4} \times 2 C X$
$C Q=\frac{1}{2} C X$
Therefore Q is the midpoint of CX .
(i)For triangle CDX PQ||DX or PR||BD

Since for triangle CBX
Q is the midpoint of $C X$ and $Q R \| B X$. Therefore R is the midpoint of $B C$
(ii)For triangle BCD

As P and R are the midpoint of CD and BC , therefore $P R=\frac{1}{2} D B$

Solution 10:

The required figure is shown below

For triangle ABC and OBC
$2 \mathrm{DE}=\mathrm{BC}$ and $2 \mathrm{PQ}=\mathrm{BC}$, therefore $\mathrm{DE}=\mathrm{PQ}(1)$
For triangle ABO and ACO
$2 \mathrm{PD}=\mathrm{AO}$ and $2 \mathrm{FQ}=\mathrm{AO}$, therefore $\mathrm{PD}=\mathrm{FQ} . . .$. (2)
From (1),(2) we get that PQFD is a parallelogram.
Hence proved

Solution 11:

The required figure is shown below

From the figure it is seen that P is the midpoint of $B C$ and $P Q \| A C$ and $Q R \| B C$
Therefore Q is the midpoint of $A B$ and R is the midpoint of $A P$
(i) Therefore $\mathrm{AP}=2 \mathrm{AR}$
(ii) Here we increase $Q R$ so that it cuts $A C$ at S as shown in the figure.
(iii) From triangle $P Q R$ and triangle ARS
$\angle P Q R=\angle A R S \quad$ (Opposite angle)
$P R=A R$
$P Q=A S \quad\left[P Q=A S=\frac{1}{2} A C\right]$
$\triangle P Q R \cong \triangle A R S$
(SAS Postulate)
Therefore $\mathrm{QR}=\mathrm{RS}$
Now
$B C=2 Q S$
$B C=2 \times 2 Q R$
$B C=4 Q R$
Hence proved

Solution 12:

The required figure is shown below

(i)

From $\triangle P E D$ and $\triangle A B P$
$P D=A P \quad[\mathrm{P}$ is the midpoint of AD$]$
$\angle D P E=\angle A P B \quad$ [Opposite angle]
$\angle P E D=\angle P B A \quad[A B \| C E]$
$\therefore \quad \triangle P E D \cong \triangle A B P \quad[A S A$ postulate $]$
$\therefore E P=B P$
(ii)For tiangle ECB PQ\|CE

Again CE $\|$ AB
Therefore $\mathrm{PQ} \| \mathrm{AB}$
Hence proved

Solution 13:

The required figure is shown below

For help we draw a line DG||BF
Now from triangle ADG, DG||BF and E is the midpoint of AD
Therefore F is the midpoint of AG ,ie $\mathrm{AF}=\mathrm{GF}$
From triangle $B C F, D G \| B F$ and D is the midpoint of $B C$
Therefore G is the midpoint of CF,ie GF=CF ...(2)
$A C=A F+G F+C F$
$A C=3 A F($ From (1) and (2))
Hence proved

Solution 14:

The required figure is shown below

(i)Since F is the midpoint and $\mathrm{EF} \| \mathrm{AB}$.

Therefore E is the midpoint of BC
So $B E=\frac{1}{2} B C$ and $E F=\frac{1}{2} A B$
Since D and F are the midpoint of $A B$ and $A C$
Therefore DE||BC
SO $D F=\frac{1}{2} B C$ and $D B=\frac{1}{2} A B$
From (1),(2) we get
$\mathrm{BE}=\mathrm{DF}$ and $\mathrm{BD}=\mathrm{EF}$
Hence BDEF is a parallelogram.
(ii) Since
$A B=2 E F$

$$
\begin{aligned}
& =2 \times 4.8 \\
& =9.6 \mathrm{~cm}
\end{aligned}
$$

Solution 15:

In $\triangle A B C$,
$A D$ is the median of $B C$
$\Rightarrow D$ is the mid - point of $B C$.
Given that DE PBA
By the Converse of the Mid -point theorem,
$\Rightarrow D E$ bisects $A C$
$\Rightarrow E$ is the mid - point of $A C$
$\Rightarrow B E$ is the median of $A C$,
that is BE is also a median.

Solution 16:
Construction : DrawDY \| BQ
In $\triangle \mathrm{BCQ}$ and $\triangle D C Y$,
$\angle \mathrm{BCQ}=\angle \mathrm{DCY}$ (Common)
$\angle \mathrm{BQC}=\angle \mathrm{DYC}$ (Corresponding angles)
So, $\triangle \mathrm{BCQ} \sim \triangle D C Y$ (AA Similarity griterion)
$\Rightarrow \frac{\mathrm{BQ}}{\mathrm{DY}}=\frac{\mathrm{BC}}{\mathrm{DC}}=\frac{\mathrm{CQ}}{\mathrm{CY}}$ (Corresponding sides are proportional)
$\Rightarrow \frac{B Q}{D Y}=\frac{2 C D}{C D}$ (D is the mid-point of $B C$)
$\Rightarrow \frac{\mathrm{BQ}}{\mathrm{DY}}=2$.
Similarly, $\triangle A E Q \sim \triangle A D Y$
$\Rightarrow \frac{E Q}{D Y}=\frac{A E}{E D}=\frac{1}{2}(E$ is the mid -point of $A D)$
that is $\frac{E Q}{D Y}=\frac{1}{2}$
Dividing (i)by (ii), we get
$\Rightarrow \frac{\mathrm{BQ}}{\mathrm{EQ}}=4$
$\Rightarrow \mathrm{BE}+\mathrm{EQ}=4 \mathrm{EQ}$
$\Rightarrow \mathrm{BE}=3 \mathrm{EQ}$
$\Rightarrow \frac{\mathrm{BE}}{\mathrm{EQ}}=\frac{3}{1}$

Solution 17:

In $\triangle \mathrm{EDF}$,
Mis the mid-point of $A B$ and Nis the mid-point of $D E$.
$\Rightarrow \mathrm{M} \mathbb{N}=\frac{1}{2} \mathrm{EF}(\mathrm{Mid}-$ point theorem $)$
$\Rightarrow E F=2 \mathbb{M N} \ldots \ldots$ (i)
In $\triangle A B C$,
M is the mid-point of $A B$ and N is the mid -point of $B C$.
$\Rightarrow \mathrm{MN}=\frac{1}{2} \mathrm{AC}(\mathrm{Mid}-$ point theorem $)$
$\Rightarrow A C=2 M N \ldots .$. (ii)
From (i) and(ii), we get
$\Rightarrow E F=A C$

Exercise 12(B)

Solution 1:

According to equal intercept theorem since $C D=D E$
Therefore $\mathrm{AB}=\mathrm{BC}$ and $\mathrm{EF}=\mathrm{GF}$
(i) $\mathrm{BC}=\mathrm{AB}=7.2 \mathrm{~cm}$
(ii) $\mathrm{GE}=\mathrm{EF}+\mathrm{GF}=2 \mathrm{EF}=2 \times 4=8 \mathrm{~cm}$

Since B, D, F are the midpoint and $A E\|B F\| C G$
Therefore $A E=2 B D$ and $C G=2 D F$
(iii) $\mathrm{AE}=2 \mathrm{BD}=2 \times 4.1=8.2$
(iv) $D F=\frac{1}{2} C G=\frac{1}{2} \times 11=5.5 \mathrm{~cm}$

Solution 2:

Given that $A D=A P=P B$ as $2 A D=A B$ and p is the midpoint of $A B$
(i)From triangle DPR, A and Q are the midpoint of DP and DR.

Therefore AQ||PR
Since PR||BS , hence AQ||BS
(ii) From triangle ABC, P is the midpoint and $\mathrm{PR}|\mid \mathrm{BS}$

Therefore R is the midpoint of BC
From $\triangle B R S$ and $\triangle Q R C$
$\angle B R S=\angle Q R C$
$B R=R C$
$\angle R B S=\angle R C Q$
$\therefore \triangle B R S \cong \triangle Q R C$
$\therefore Q R=R S$
$D S=D Q+Q R+R S=Q R+Q R+R S=3 R S$

Solution 3:

Consider the figure:

Here D is the midpoint of $B C$ and $D P$ is parallel to $A B$, therefore P is the midpoint of $A C$ and $P D=\frac{1}{2} A B$
(i)

Again from the triangle $A E F$ we have $A E\|P D\| C R$ and $A P=\frac{1}{3} A E$
Therefore $\mathrm{DF}=\frac{1}{3} \mathrm{EF}$ or we can say that $3 \mathrm{DF}=\mathrm{EF}$.

Hence it is shown.
(ii)

From the triangle $P E D$ we have $P D \| C R$ and C is the midpoint of $P E$ therefore $C R=\frac{1}{2} P D$

Now
$P D=\frac{1}{2} A B$
$\frac{1}{2} P D=\frac{1}{4} A B$
$C R=\frac{1}{4} A B$
$4 C R=A B$
Hence it is shown.

Solution 4:

The figure is shown below

From triangle BPC and triangle APN
$\angle B P C=\angle A P N \quad$ [Opposite angle]
$B P=A P$
$P C=P N$
$\therefore \triangle B P C \cong \triangle A P N$ [SAS postulate]
$\therefore \angle P B C=\angle P A N$

And $\mathrm{BC}=\mathrm{AN}$
Similarly $\angle Q C B=\angle Q A N$
And BC=AM

Now
$\angle A B C+\angle A C B+\angle B A C=180^{\circ}$
$\angle P A N+\angle Q A M+\angle B A C=180^{\circ}$ [(1),(2) we get]

Therefore $\mathrm{M}, \mathrm{A}, \mathrm{N}$ are collinear
(ii) From (3) and (4) MA $=\mathrm{NA}$

Hence A is the midpoint of $M N$

Solution 5:

The figure is shown below

From the figure $\mathrm{EF} \| \mathrm{AB}$ and E is the midpoint of BC .
Therefore F is the midpoint of AC .
Here $E F \| B D, E F=B D$ as D is the midpoint of $A B$
$\mathrm{BE}|\mid \mathrm{DF}, \mathrm{BE}=\mathrm{DF}$ as E is the midpoint of BC .
Therefore BEFD is a parallelogram.

Solution 6:

The figure is shown below

(i)

From $\triangle H E B$ and $\triangle F H C$
$B E=F C$
$\angle E H B=\angle F H C \quad$ [Opposite angle]
$\angle H B E=\angle H F C$
$\therefore \triangle H E B \cong \triangle F H C$
$\therefore E H=C H, B H=F H$
(ii)

Similarly AG=GF and EG=DG .
For triangle ECD, F and H are the midpoint of CD and EC .
Therefore HF\|DE and $H F=\frac{1}{2} D E$
(1),(2) we get, $\mathrm{HF}=\mathrm{EG}$ and $\mathrm{HF}|\mid \mathrm{EG}$

Similarly we can show that $\mathrm{EH}=\mathrm{GF}$ and $\mathrm{EH}|\mid \mathrm{GF}$
Therefore GEHF is a parallelogram.

Solution 7:

The figure is shown below

For triangle AEG

D is the midpoint of $A E$ and $D F\|E G\| B C$
Therefore F is the midpoint of AG.
$\mathrm{AF}=\mathrm{GF}$...(1)

Again $\mathrm{DF}||\mathrm{EG}|| \mathrm{BC} D E=\mathrm{BE}$, therefore $\mathrm{GF}=\mathrm{GC}$
(1),(2) we get $A F=G F=G C$.

Similarly Since $G N\|F M\| A B$ and $A F=G F$,therefore $B M=M N=N C$
Hence proved

Solution 8:

The figure is shown below

Since M and N are the midpoint of $A B$ and $A C, M N| | B C$
According to intercept theorem since $\mathrm{MN} \| \mathrm{BC}$ and $\mathrm{AM}=\mathrm{BM}$,
Therefore $A X=D X$. Hence proved

Solution 9:

The figure is shown below

Let $A B C D$ be a quadrilateral where P, Q, R, S are the midpoint of $A B, B C, C D, D A . P Q R S$ is a rectangle. Diagonal $A C$ and $B D$ intersect at point O. We need to show that $A C$ and $B D$ intersect at right angle.
Proof:
$\mathrm{PQ} \| \mathrm{AC}$, therefore $\angle A O D=\angle P X O \quad[$ Corresponding angle $] ..$.
$\|$ Again $\mathrm{BD} \| \mathrm{RQ}$, therefore $\angle P X O=\angle R Q X=90^{\circ}$ [Corresponding angle and angle of rectangle] ...(2)
From (1) and (2) we get,
$\angle A O D=90^{\circ}$
Similarly $\angle A O B=\angle B O C=\angle D O C=90^{\circ}$
Therefore diagonals $A C$ and $B D$ intersect at right angle
Hence proved

Solution 10:

The figure is shown below

From figure since E is the midpoint of AC and $\mathrm{EF} \| \mathrm{AB}$
Therefore F is the midpoint of BC and $2 \mathrm{DE}=\mathrm{BC}$ or $\mathrm{DE}=\mathrm{BF}$
Again D and E are midpoint, therefore $\mathrm{DE}|\mid \mathrm{BF}$ and $\mathrm{EF}=\mathrm{BD}$
Hence BDEF is a parallelogram.
Now
$B D=E F=\frac{1}{2} A B=\frac{1}{2} \times 16=8 \mathrm{~cm}$
$B F=D E=\frac{1}{2} B C=\frac{1}{2} \times 18=9 \mathrm{~cm}$

Therefore perimeter of $\mathrm{BDEF}=2(\mathrm{BF}+\mathrm{EF})=2(9+8)=34 \mathrm{~cm}$

Solution 11:

Given AD and CE are medians and DF || CE.
We know that from the midpoint theorem, if two lines are parallel and the starting point of segment is at the midpoint on one side, then the other point meets at the midpoint of the other side.
Consider triangle BEC. Given DF || CE and D is midpoint of BC.
So F must be the midpoint of BE.
So $F B=\frac{1}{2} B E$ but $B E=\frac{1}{2} A B$
Substitute value of BE in first equation, we get
$F B=\frac{1}{4} A B$
Hence Prove

Solution 12:

Given $A B C D$ is parallelogram, so $A D=B C, A B=C D$.
Consider triangle APB, given EC is parallel to AP and E is midpoint of side $A B$. So by midpoint theorem, C has to be the midpoint of $B P$.
So $B P=2 B C$, but $B C=A D$ as $A B C D$ is a parallelogram.
Hence BP = 2AD
Consider triangle APB, $A B$ || $O C$ as $A B C D$ is a parallelogram. So by midpoint theorem, O has to be the midpoint of AP.
Hence Proved

Solution 13:

Consider trapezium ABCD.
Given E and F are midpoints on sides AD and BC, respectively.

We know that $\mathrm{AB}=\mathrm{GH}=\mathrm{IJ}$

From midpoint theorem, $\mathrm{EG}=\frac{1}{2} \mathrm{DI}, \mathrm{HF}=\frac{1}{2} \mathrm{JC}$
Consider LHS,
$A B+C D=A B+C J+J I+I D=A B+2 H F+A B+2 E G$
So $A B+C D=2(A B+H F+E G)=2(E G+G H+H F)=2 E F$
$A B+C D=2 E F$
Hence Proved

Solution 14:

Given $\triangle \mathrm{ABC}$
$A D$ is the median. So D is the midpoint of side $B C$.
Given DE || AB. By the midpoint theorem, E has to be midpoint of AC .
So line joining the vertex and midpoint of the opposite side is always known as median. So $B E$ is also median of $\triangle \mathrm{ABC}$.

