11. Algebraic Expressions

EXERCISE 11(A)

Question 1.
Separate the constants and variables from the following :

$$
\begin{aligned}
& -7,7+x, 7 x+y z, \sqrt{5}, \sqrt{x y}, \frac{3 y z}{8}, 4.5 y-3 x \\
& 8-5,8-5 x, 8 x-5 y \times p \text { and } 3 y^{2} z \div 4 x
\end{aligned}
$$

Solution:
Clearly constants are : $-7, \sqrt{5}, 8-5$
Variable are : $7+x, 7 x+y z, \sqrt{x y}, \frac{3 y z}{8}, 4.5 y$
$-3 x$
$8-5 x, 8 x-5 y \times p$ and $3 y^{2} z \div 4 x$

Question 2.

Write the number of terms in each of the following polynomials.
(i) $5 x^{2}+3 x a x$
(ii) $a x \div 4-7$
(iii) $a x-b y+y x z$
(iv) $23+a \times b \div 2$.

Solution:
(i) $5 x^{2}+3 \times a x=5 x^{2}+3 a x$
\therefore The number of terms in this polynomial $=2$
(ii) $a x \div 4-7=\frac{a x}{4}-7$
\therefore The number of terms in this polynomial $=2$
(iii) $a x-b y+y \times z=a x-b y+y z$
\therefore The number of terms in this polynomial $=3$
(iv) $23+a \times b \div 2=23+\frac{a b}{2}$
\therefore The number of terms in this Polynomial $=2$

Question 3.

Separate monomials, binomials, trinomials and polynomials from the following algebraic expressions:

$$
\begin{aligned}
& 8-3 x, x y^{2}, 3 y^{2}-5 y+8,9 x-3 x^{2}+15 x^{3}-7 \\
& 3 x \times 5 y, 3 x \div 5 y, 2 y \div 7+3 x-7 \text { and } 4-a x^{2}+ \\
& b x+y
\end{aligned}
$$

Solution:

Monomials are : $x y^{2}, 3 x \times 5 y, 3 x \div 5 y ;$
Bionomials are : 8-3x
Trinomials are : $3 y^{2}-5 y+8,2 y \div 7+3 x-7$
Polynomials are : $8-3 x, 3 y^{2}-5 y+8,9 x-3 x^{2}+$ $15 x^{3}-7,2 y \div 7+3 x-7,4-a x^{2}+b x+y$

Question 4.

Write the degree of each polynomial given below :
(i) $x y+7 z$
(ii) $x^{2}-6 x^{3}+8$
(iii) $y-6 y^{2}+5 y^{8}$
(iv) $x y z-3$
(v) $x y+y z^{2}-z x^{3}$
(vi) $x^{5} y^{7}-8 x^{3} y^{8}+10 x^{4} y^{4} z^{4}$

Solution:

(i) degree $=2$ (Polynomial is $x y+7 z)$
(ii) degree $=3$ (Polynomial is $\left.x^{2}-6 x^{3}+8 y\right)$
(iii) degree $=8$ (Polynomial is $\left.y-6 y^{2}+5 y^{8}\right)$
(iv) degree $=3$ (Polynomial is $x y z-3$)
(v) degree $=4$ (Polynomial is $\left.x y+y z^{2}-x z^{3}\right)$
(vi) degree $=12\left(\right.$ Polynomial is $\left.x^{5} y^{7}-8 x^{3} y^{8}+10 x^{4}, y^{4} z^{4}\right)$

Question 5.

Write the coefficient of :
(i) ab in 7 abx ,
(ii) 7 a in 7 abx ;
(iii) $5 x^{2}$ in $5 x^{2}-5 x$;
(iv) 8 in $\mathrm{a}^{2}-8 \mathrm{ax}+\mathrm{a}$;
(v) $4 x y$ in $x^{2}-4 x y+y^{2}$.

Solution:

(i) The coefficient of $a b$ in $7 a b x=7 x$
(ii) The coefficient of $7 a$ in $7 a b x=b x$
(iii) The coefficient of $5 x^{2}$ in $5 x^{2}-5 x=1$
(iv) The coefficient of 8 in $a^{2}-8 a x+a=-a x$
(v) The coefficient of $4 x y$ in $x^{2}-4 x y+y^{2}=-1$

Question 6.
$\ln \frac{5}{7} x y^{2} Z^{3}$, write the coefficient of
(i) 5
(ii) $\frac{5}{7}$
(iii) $5 x$
(iv) $x y^{2}$
(v) z^{3}
(vi) $x z^{3}$
(vii) $5 x y^{2}$
(viii) $\frac{1}{7} y z$
(ix) z
(x) $y z^{2}$
(xi) $5 x y z$

Solution:

$$
\text { In } \frac{5}{7} x y^{2} z^{3}, \text { Co-efficient of }
$$

$\begin{array}{ll}\text { (i) } 5 \text { is } \frac{1}{7} x y^{2} z^{3} & \text { (ii) } \frac{5}{7} \text { is } x y^{2} z^{3}\end{array}$
(iii) $5 x$ is $\frac{1}{7} y^{2} z^{3}$
(iv) $x y^{2}$ is $\frac{5}{7} z^{3}$
(v) z^{3} is $\frac{5}{7} x y^{2}$
(vi) $x z^{3}$ is $\frac{5}{7} y^{2}$
(vii) $5 x y^{2}$ is $\frac{1}{7} z^{3}$
(viii) $\frac{1}{7} y z$ is $5 x y z^{2}$
(ix) z is $\frac{5}{7} x y^{2} z^{2}$
(x) $y z^{2}$ is $\frac{5}{7} x y-z$
(xi) $5 x y z$ is $\frac{1}{7} y z^{2}$

Question 7.

In each polynomial, given below, separate the like terms :
(i) $3 x y,-4 y x^{2}, 2 x y^{2}, 2.5 x^{2} y,-8 y x,-3.2 y^{2} x$ and $x^{2} y$
(ii) $y^{2} z^{3}, x y^{2} z^{3},-5 x^{2} y z,-4 y^{2} z^{3},-8 x z^{3} y^{2}, 3 x^{2} y z$ and $2 z^{3} y^{2}$

Solution:

(i) Like terms are
$3 x y,-8 y x \cdot-4 y x^{2}, 2.5 x^{2} y$ and $x^{2} y ; 2 x y^{2}$ and $-3.2 y^{2} x$
(ii) $y^{2} z^{3}, \cdots, z^{2} z^{3}$ and $2 z^{3} y^{2} ; x y^{2} z^{3}$ and $-8 x z^{3} y^{2}$;
$-5 x^{2} y z$ and $\Sigma x^{2} y z$

EXERCISE 11(B)

Question 1.
Evaluate :
(i) $-7 x^{2}+18 x^{2}+3 x^{2}-5 x^{2}$
(ii) $b^{2} y-9 b^{2} y+2 b^{2} y-5 b^{2} y$
(iii) $a b x-15 a b x-10 a b x+32 a b x$.
(iv) $7 x-9 y+3-3 x-5 y+8$
(v) $3 x^{2}+5 x y-4 y^{2}+x^{2}-8 x y-5 y^{2}$

Solution:

(ii) $b^{2} y-9 b^{2} y+2 b^{2} y-5 b^{2} y$

$$
\begin{aligned}
& =3 b^{2} y-14 b^{2} y \\
& =-11 b^{2} y
\end{aligned}
$$

(iii) $a b x-15 a b x-10 a b x+32 a b x$

$$
\begin{aligned}
& =33 a b x-25 a b x \\
& =8 a b x
\end{aligned}
$$

(iv) $7 x-9 y+3-3 x-5 y+8$

$$
=7 x-3 x-9 y-5 y+3+8
$$

$$
=4 x-14 y+11
$$

(v) $3 x^{2}+5 x y-4 y^{2}-8 x y-5 y^{2}$
$=3 x^{2}+5 x y-8 x y-4 y^{2}-5 y^{2}$
$=3 x^{2}-3 x y-9 y^{2}$

$$
\begin{aligned}
& \text { (i) }-7 x^{2}+18 x^{2}+3 x^{2}-5 x^{2} \\
& =21 x^{2}-12 x^{2} \\
& =9 x^{2}
\end{aligned}
$$

Question 2.

Add :
(i) $5 a+3 b, a-2 b, 3 a+5 b$
(ii) $8 x-3 y+7 z,-4 x+5 y-4 z,-x-y-2 z$
(iii) $3 b-7 c+10,5 c-2 b-15,15+12 c$ $+b$
(iv) $a-3 b+3$; $2 a+5-3 c ; 6 c-15+6 b$
(v) $13 a b-9 c d-x y ; 5 x y ; 15 c d-7 a b$; $6 x y-3 c d$
(vi) $x^{3}-x^{2} y+5 x y^{2}+y^{3} ;-x^{3}-9 x y^{2}+y^{3} ; 3 x^{2} y+9 x y^{2}$
(vii) $a^{6}-4 a^{4}+6 a ; 5 a^{6}+5 a^{4}+6 a$; $12 a^{6}-10 a$
(viii) $2 a x-6 b y+4 c z, 4 b y-14 a x, 9 c z-4 a x-6 b y$

Solution:
(i)

$$
\begin{array}{r}
5 a+3 b \\
a-2 b \\
3 a+5 b \\
\hline 9 a+6 b \\
\hline
\end{array}
$$

(ii)
(iii)

$$
8 x-3 y+7 z
$$

$$
-4 x+5 y-4 z
$$

$$
-x-y-2 z
$$

(ii)

$$
-2 b+5 c-15
$$

$$
+b+12 c+15
$$

$$
\frac{+b+12 c+15}{2 b+10 c+10}
$$

(iv)
(v)
$\frac{3 x+y+z}{3 b-7 c+10}$

$$
3
$$

$$
\begin{array}{r}
2 a-3 c+5 \\
+6 b+6 c-15 \\
\hline 3 a+3 b+3 c-7 \\
\hline 13 a b-9 c d+x y \\
+5 x y
\end{array}
$$

$$
-7 a b+15 c d
$$

$$
-3 c d+6 x y
$$

Question 4.

(i) $4 x y^{2}$ from $3 x y^{2}$;
(ii) $-2 x^{2} y+3 x y^{2}$ from $8 x^{2} y$;
(iii) $3 a-5 b+c+2 d$ from $7 a-3 b+c-2 d$
(iv) $x^{3}-4 x-1$ from $3 x^{3}-x^{2}+6$
(v) $6 a+3$ from $a^{3}-3 a^{2}+4 a+1$
(vi) $c a b-4 c a d-c b d$ from $3 a b c+5 b c d-c d a$
(vii) $a^{2}+a b+b^{2}$ from $4 a^{2}-3 a b+2 b^{2}$.

Solution:
(i) $3 x y^{2}-4 x y^{2}=-x y^{2}$
(ii)
$8 x^{2} y$

$$
-2 x^{2} y+3 x y^{2}
$$

(iii) $\frac{+-}{\frac{10 x^{2} y-3 x y^{2}}{7 a-3 b+c}-2 d}$
(iv)
(v)

$3 a-5 b+c+2 d$
$-+2 b-$
$4 a+2 b$
$3 x^{3}-x^{2}$

x^{3}	$-4 x-1$
$-\quad+\quad+$	
$2 x^{3}-x^{2}+4 x+7$	
$a^{3}-3 a^{2}+4 a+1$	

$$
+6 a+3
$$

$$
-\quad-
$$

(vi)
(vii)

$a^{3}-3 a^{2}-2 a-2$
$3 a b c+5 b c d-c d a$
$+c a b-c b d-4 c a d$
$-\quad+\quad+$
$2 a b c+6 b c d+3 c a d$
$4 a^{2}-3 a b+2 b^{2}$
$+a^{2}+a b+$
-
$3 a^{2}-4 a b+$

Question 5.
(i) Take away $-3 x^{3}+4 x^{2}-5 x+6$ from $3 x^{3}-4 x^{2}+5 x-6$
(ii) Take $m^{2}+m+4$ from $-m^{2}+3 m+6$ and the result from $m^{2}+m+1$.

Solution:

(ii)
(i) $3 x^{3}-4 x^{2}+5 x-6$

$-3 x^{3}+4 x^{2}-5 x+6$
$+\quad-\quad+\quad-$
$6 x^{3}-8 x^{2}+10 x-12$
$-m^{2}+3 m+6$

A.T.Q. \begin{tabular}{r}
$\pm m^{2} \pm m \pm 4$

\cline { 2 - 2 }$+2 m^{2}+2 m+2$

m^{2}
$-2 m^{2}+2 m$

$+3 m^{2}-m-1$
\end{tabular}

Question 6.

Subtract the sum of $5 y^{2}+y-3$ and $y^{2}-3 y+7$ from $6 y^{2}+y-2$.
Solution:

$$
\begin{array}{r}
\begin{array}{r}
5 y^{2}+y-3 \\
\frac{y^{2}-3 y+7}{6 y^{2}-2 y+4} \\
\\
6 y^{2}+y-2 \\
6 y^{2}-2 y+4 \\
\frac{-3 y-6}{} \\
\hline
\end{array} \\
\hline
\end{array}
$$

Question 7.

What must be added to $x^{4}-x^{3}+x^{2}+x+3$ to obtain $x^{4}+x^{2}-1$? Solution:

Question 8.
(i) How much more than $2 x^{2}+4 x y+2 y^{2}$ is $5 x^{2}+10 x y-y^{2}$?
(ii) How much less $2 a^{2}+1$ is than $3 a^{2}-6$?

Solution:
(ii)

$$
\begin{array}{r}
5 x^{2}+10 x y-y^{2} \tag{i}\\
+2 x^{2}+4 x y+2 y^{2} \\
-\quad-\quad- \\
\hline 3 x^{2}+6 x y-3 y^{2} \\
\hline 3 a^{2}-6 \\
+2 a^{2}+1 \\
-\quad- \\
\hline
\end{array}
$$

Question 9.
If $x=6 a+86+9 c ; y=2 b-3 a-6 c$ and $z=c-b+3 a$; find
(i) $x+y+z$
(ii) $x-y+z$
(iii) $2 x-y-3 z$
(iv) $3 y-2 z-5 x$

Solution:

$$
\begin{aligned}
& \text { (i) } \quad x=6 a+8 b+9 c \\
& y=-3 a+2 b-6 c \\
& \text { Adding } \begin{aligned}
z+y+z & =+3 a-b+c \\
& =6 a+9 b+4 c
\end{aligned} \\
& \text { (ii) } x-y+z=\overline{(6 a+8 b+9 c)-(2 b-3 a}-6 c) \\
& +(c-b+3 a) \\
& =6 a+8 b+9 c-2 b+3 a+6 c+c-b+3 a \\
& =6 a+3 a+3 a+8 b-2 b-b+9 c+6 c+c \\
& =12 a+5 b+16 c \\
& \text { (iii) } 2 x-y-3 z=2(6 a+8 b+9 c)-(2 b-3 a-6 c) \\
& -3(c-b+3 a) \\
& =12 a+16 b+18 c-2 b+3 a+6 c-3 c+3 b-9 a \\
& =12 a+3 a-9 a+16 b+3 b-2 b+18 c+6 c-3 c \\
& =6 a+17 b+21 c \\
& \text { (iv) } 3 y-2 z-5 x=3(2 b-3 a-6 c)-2(c-b+3 a)- \\
& 5(6 a+8 b+9 c) \\
& =6 b-9 a-18 c-2 c+2 b-6 a-30 a-40 b-45 c \\
& =-9 a-6 a-30 a+6 b+2 b-40 b-18 c-2 c-45 c \\
& =-45 a-32 b-65 c
\end{aligned}
$$

Question 10.

The sides of a triangle are $x^{2}-3 x y+8,4 x^{2}+5 x y-3$ and $6-3 x^{2}+4 x y$. Find its perimeter.
Solution:

$$
\begin{aligned}
& \quad \text { Required perimeter }=\text { Sum of three sides } \\
&= x^{2}-3 x y+8+4 x^{2}+5 x y-3+6-3 x^{2} \\
&+4 x y \\
&= x^{2}+4 x^{2}-3 x^{2}-3 x y+5 x y+4 x y+8 \\
&=-3+6
\end{aligned}
$$

Question 11.

The perimeter of a triangle is $8 y^{2}-9 y+4$ and its two sides are $3 y^{2}-5 y$ and $4 y^{2}+12$. Find its third side.
Solution:
Perimeter of the triangle $=$ Sum of three sides

$$
=8 y^{2}-9 y+4
$$

Sum of two sides $=3 y^{2}-5 y+4 y^{2}+12$

$$
=7 y^{2}-5 y+12
$$

$\therefore\left(8 y^{2}-9 y+4\right)-\left(7 y^{2}-5 y+12\right)$
$=8 y^{2}-9 y+4-7 y^{2}+5 y-12$
$=y^{2}-4 y-8$
Hence third side $=y^{2}-4 y-8$

Question 12.

The two adjacent sides of a rectangle are $2 x^{2}-5 x y+3 z^{2}$ and $4 x y-x^{2}-z^{2}$. Find its perimeter.
Solution:
Adjacent sides of a rectangle are

$$
\begin{aligned}
& 2 x^{2}-5 x y+3 z^{2} \text { and } 4 x y-x^{2}-z^{2} \\
& \therefore \text { Perimeter }=2\left(2 x^{2}-5 x y+3 z^{2}+4 x y-x^{2}-z^{2}\right) \\
& =4 x^{2}-10 x y+6 z^{2}+8 x y-2 x^{2}-2 z^{2} \\
& =2 x^{2}-2 x y+4 z^{2}
\end{aligned}
$$

Question 13.
What must be subtracted from $19 x^{4}+2 x^{3}+30 x-37$ to get $8 x^{4}+22 x^{3}-7 x-60 ?$ Solution:

The required result will be
$\left(19 x^{4}+2 x^{3}+30 x-37\right)-\left(8 x^{4}+22 x^{3}-7 x-60\right)$
$=19 x^{4}+2 x^{3}+30 x-37-8 x^{4}-22 x^{3}+7 x+60$
$=11 x^{4}-20 x^{3}+37 x+23$

Question 14.
How much smaller is $15 x-18 y+19 z$ than $22 x-20 y-13 z+26 ?$
Solution:
The required result is
$(22 x-20 y-13 z+26)-(15 x-18 y+19 z)$
$=22 x-20 y-13 z+26-15 x+18 y-19 z$
$=7 x-2 y-32 z+26$

Question 15.

How much bigger is $15 x^{2} y^{2}-18 x y^{2}-10 x^{2} y$ than $-5 x^{2}+6 x^{2} y-7 x y ?$
Solution:
The required result,

$$
\begin{aligned}
& \left(5 x^{2} y^{2}-18 x y^{2}-10 x^{2} y\right)-\left(-5 x^{2}+6 x^{2} y-7 x y\right) \\
& =5 x^{2} y^{2}-18 x y^{2}-10 x^{2} y+5 x^{2}-6 x^{2} y+7 x y \\
& =5 x^{2} y^{2}-18 x y^{2}-16 x^{2} y+5 x^{2}+7 x y
\end{aligned}
$$

EXERCISE 11(C)

Question 1.
Multiply :
(i) $8 a b^{2}$ by $-4 a^{3} b^{4}$
(ii) $\frac{2}{3} a b$ by $-\frac{1}{4} a^{2} b$
(iii) $-5 c d^{2}$ by $-5 c d^{2}$.
(iv) $4 a$ and $(6 a+7)$
(v) $-8 x$ and $\left(4-2 x-x^{2}\right)$
(vi) $2 a^{2}-5 a-4$ and $-3 a$.
(vii) $x+4$ by $x-5$
(viii) $5 a-1$ by $7 a-3$
(ix) $12 a+5 b$ by $7 a-b$
(x) $\quad x^{2}+x+1$ by $1-x$
(xi) $2 m^{2}-3 m-1$ and $4 m^{2}-m-1$
(xii) $a^{2}, a b$ and b^{2}
(xiii) $a b x,-3 a^{2} x$ and $7 b^{2} x^{3}$
(xiv) $-3 b x,-5 x y$ and $-7 b^{3} y^{2}$
(xv) $\quad\left(-\frac{3}{2} x^{5} y^{3}\right)$ and $\left(\frac{4}{9} a^{2} x^{3} y\right)$
(xvi) $\left(-\frac{2}{3} a^{7} b^{2}\right)$ and $\left(-\frac{9}{4} a b^{5}\right)$
(xvii) $\left(2 a^{3}-3 a^{2} b\right)$ and $\left(-\frac{1}{2} a b^{2}\right)$
(xviil) $\left(2 x+\frac{1}{2} y\right)$ and $\left(2 x-\frac{1}{2} y\right)$

Solution:
(i) $8 a b^{2} \times-4 a^{3} b^{4}=(8 \times-4)\left(a b^{2} \times a^{3} b^{4}\right)$

$$
\begin{aligned}
& =-32 a^{1+3} \cdot b^{2+4} \\
& =-32 a^{4} b^{6}
\end{aligned}
$$

(ii) $\frac{2}{3} a b \times-\frac{1}{4} a^{2} b=\left(\frac{2}{3} \times \frac{-1}{4}\right)\left(a b \times a^{2} b\right)$

$$
=-\frac{1}{6} a^{1+2} \cdot b^{1+1}
$$

$$
=-\frac{1}{6} a^{3} b^{2}
$$

(iii) $-5 c d^{2} \times-5 c d^{2}=(-5 \times-5)\left(c d^{2} \times c d^{2}\right)$

$$
\begin{aligned}
& =25 c^{1+1} d^{2+2} \\
& =25 c^{2} d^{4}
\end{aligned}
$$

(iv) $4 a(6 a+7)$

$$
\begin{aligned}
& =4 a \times 6 a+4 a \times 7 \\
& =24 a^{2}+28 a
\end{aligned}
$$

(v) $-8 x\left(4-2 x-x^{2}\right)$

$$
\begin{aligned}
& =-8 x \times 4-8 x \times-2 x-8 x \times-x^{2} \\
& =-32 x+16 x^{2}+8 x^{3}
\end{aligned}
$$

(vi) $-3 a\left(2 a^{2}-5 a-4\right)$

$$
=-3 a \times 2 a^{2}-5 a \times-3 a-4
$$

$$
\times-3 a
$$

$$
=-6 a^{3}+15 a^{2}+12 a
$$

(vii) $(x+4)(x-5)=x(x-5)+4(x-5)$

$$
=x^{2}-5 x+4 x-20
$$

$$
=x^{2}-x-20
$$

$$
(v i i i)(5 a-1)(7 a-3)
$$

$$
\begin{aligned}
& =5 a(7 a-3)-1(7 a-3) \\
& =35 a^{2}-15 a-7 a+3 \\
& =35 a^{2}-22 a+3
\end{aligned}
$$

(ix) $(12 a+5 b)(7 a-b)=12 a(7 a-b)+5 b$

$$
(7 a-b)
$$

$$
=84 a^{2}-12 a b+35 a b-5 b^{2}
$$

$$
=84 a^{2}+23 a b-5 b^{2}
$$

(x) $\left(x^{2}+x+1\right)(1-x)=1\left(x^{2}+x+1\right)-x\left(x^{2}+x+1\right)$

$$
\begin{aligned}
& =x^{2}+x+1-x^{3}-x^{2}-x \\
& =1-x^{3}
\end{aligned}
$$

(xi) $\left(2 m^{2}-3 m-1\right)\left(4 m^{2}-m-1\right)$
$=2 m^{2}\left(4 m^{2}-m-1\right)-3 m\left(4 m^{2}-m-1\right)-1\left(4 m^{2}-m-1\right)$
$=8 m^{4}-\mathrm{mm}^{3}-2 m^{2}-12 m^{3}+3 m^{2}+3 m-4 m^{2}+m+1$
$=8 m^{4}-14 m^{3}-6 m^{2}+3 m^{2}+4 m+1$
$=8 m^{4}-14 m^{3}-3 m^{2}+4 m+1$
(xii) $a^{2} \times a b \times b^{2} \quad=a^{2+1} \cdot b^{1+2}$
$=a^{3} b^{3}$
(xiii) $a b x \times-3 a^{2} x \times 7 b^{2} x^{3}$

$$
\begin{aligned}
& =(-3 \times 7)\left(a \times a^{2}\right)\left(b \times b^{2}\right)\left(x \times x \times x^{3}\right) \\
& =-21 a^{3} b^{3} x^{5}
\end{aligned}
$$

(xiv) $-3 b x \times-5 x y \times-7 b^{3} y^{2}$
$=(-3 \times-5 \times-7)\left(b \times b^{3}\right)(x \times x)\left(y \times y^{2}\right)$
$=-105 b^{4} x^{2} y^{3}$
(xv) $\left(-\frac{3}{2} x^{5} y^{3}\right)\left(\frac{4}{9} a^{2} x^{3} y\right)$

$$
=\left(-\frac{3}{2} \times \frac{4}{9}\right)\left(a^{2}\right)\left(x^{5} \times x^{3}\right)\left(y^{3} \times y\right)
$$

(xvi) $\left(-\frac{2}{3} a^{7} b^{2}\right)\left(-\frac{9}{4} a b^{5}\right)$

$$
\begin{aligned}
& =\left(-\frac{2}{3} \times \frac{-9}{4}\right)\left(a^{7} \times a\right)\left(b^{2} \times b^{5}\right) \\
& =\frac{3}{2} a^{8} b^{7}
\end{aligned}
$$

$$
\text { (xvii) }\left(2 a^{3}-3 a^{2} b\right)\left(-\frac{1}{2} a b^{2}\right)
$$

$$
=-\frac{1}{2} a b^{2}\left(2 a^{3}-3 a^{2} b\right)
$$

$$
=2 a^{3} \times-\frac{1}{2} a b^{2}-3 a^{2} b \times-\frac{1}{2} a b^{2}
$$

$$
=-a^{4} b^{2}+\frac{3}{2} a^{3} b^{3}
$$

(xviii) $\left(2 x+\frac{1}{2} y\right)\left(2 x-\frac{1}{2} y\right)$

$$
=2 x\left(2 x-\frac{1}{2} y\right)+\frac{1}{2} y\left(2 x-\frac{1}{2} y\right)
$$

$=4 x^{2}-x y+x y-\frac{1}{4} y^{2}$
$=4 x^{2}-\frac{1}{4} y^{2}$

Question 2.
Multiply :
(i) $5 x^{2}-8 x y+6 y^{2}-3$ by $-3 x y$
(ii) $3-\frac{2}{3} x y+\frac{5}{7} x y^{2}-\frac{16}{21} x^{2} y$ by $-21 x^{2} y^{2}$
(iii) $6 x^{3}-5 x+10$ by $4-3 x^{2}$
(iv) $2 y-4 y^{3}+6 y^{5}$ by $y^{2}+y-3$
(v) $5 p^{2}+25 p q+4 q^{2}$ by $2 p^{2}-2 p q+3 q^{2}$

Solution:

$$
\begin{aligned}
& \text { (i) } 5 x^{2}-8 x y+6 y^{2}-3 x-3 x y \\
& =15 x^{3} y^{3}+24 x^{2} y^{2}-18 x y^{3}+9 x y
\end{aligned}
$$

(ii) $3-\frac{2}{3} x y+\frac{5}{7} x y^{2}-\frac{16}{21} x^{2} y$

$$
\times \quad-21 x^{2} y^{2}
$$

$$
-63 x^{2} y^{2}+14 x^{3} y^{3}-15 x^{3} y^{4}+16 x^{4} y^{3}
$$

(iii) $6 x^{3}-5 x+10$

$$
\begin{aligned}
& \times 4-3 x^{2} \\
& \hline 24 x^{3}-20 x+40 \\
& -18 x^{5}+15 x^{3}-30 x^{2} \\
& \hline-18 x^{5}+39 x^{3}-30 x^{2}-20 x+40 \\
& \hline
\end{aligned}
$$

(iv) $2 y-4 y^{3}+6 y^{5}$

$$
\frac{\times y^{2}+y-3}{2 y^{3}-4 y^{5}+6 y^{7}}
$$

$$
\begin{array}{r}
+2 y^{2}-4 y^{4}+6 y^{6} \\
-6 y+12 y^{3}-18 y^{5} \\
\hline
\end{array}
$$

$$
6 y^{7}+6 y^{6}-(4+18) y^{5}-4 y^{4}+(2+12) y^{3}+2 y^{2}-6 y
$$

$$
=6 y^{7}+6 y^{6}-22 y^{5}-4 y^{4}+14 y^{3}+2 y^{2}-6 y
$$

$$
\text { (v) } 5 p^{2}+25 p q+4 q^{2}
$$

$$
\frac{\times 2 p^{2}-2 p q+3 q^{2}}{10 p^{4}+50 p^{3} q+8 p^{2} q^{2}}
$$

$$
-10 p^{3} q-50 p^{2} q^{2}-8 p q^{3}
$$

$$
+15 p^{2} q^{2}+75 p q^{3}+12 q^{4}
$$

$$
10 p^{4}+40 p^{3} q-27 p^{2} q^{2}+67 p q^{3}+12 q^{4}
$$

Question 3.

Simplify :
(i) $(7 x-8)(3 x+2)$
(ii) $(p x-q)(p x+q)$
(iii) $(5 a+5 b-c)(2 b-3 c)$
(iv) $(4 x-5 y)(5 x-4 y)$
(v) $(3 y+4 z)(3 y-4 z)+(2 y+7 z)(y+z)$

Solution:

$$
\begin{aligned}
&(\text { i) }(7 x-8)(3 x+2)=7 x(3 x+2)-8(3 x+2) \\
&= 21 x^{2}+14 x-24 x-16=21 x^{2}-10 x-16 \\
& \text { (ii) }(p x-q)(p x+q)=p x(p x+q)-q(p x+q) \\
&= p^{2} x^{2}+p x q-p q x-q^{2}=p^{2} x^{2}-q^{2} \\
& \text { (iii) }(5 a+5 b-c)(2 b-3 c) \\
&= 5 a(2 b-3 c)+5 b(2 b-3 c)-c(2 b-3 c) \\
&= 10 a b-15 a c+10 b^{2}-15 b c-2 b c+3 c^{2} \\
&= 10 a b+10 b^{2}-17 b c-15 a c+3 c^{2} \\
&(\text { (iv) }(4 x-5 y)(5 x-4 y) \\
&= 4 x(5 x-4 y)-5 y(5 x-4 y) \\
&= 20 x^{2}+16 x y-25 x y+20 y^{2} \\
&= 20 x^{2}-41 x y+20 y^{2} \\
&(v)(3 y+4 z)(3 y-4 z)+(2 y+7 z)(y+z) \\
&= 3 y(3 y-4 z)+4 z(3 y-4 z)+2 y(y+z)+7 z(y+z) \\
&= 9 y^{2}-12 y z+12 y z-16 z^{2}+2 y^{2}+2 y z+7 y z+ \\
& 7 z^{2} \\
&=(9+2) y^{2}+(-12+12+2+7) y z+(-16+7) z^{2} \\
&= 11 y^{2}+9 y z-9 z^{2}
\end{aligned}
$$

Question 4.

The adjacent sides of a rectangle are $x^{2}-4 x y+7 y^{2}$ and $x^{3}-5 x y^{2}$. Find its area.
Solution:

$$
\begin{aligned}
& \quad \text { Reqd. area }=\left(x^{2}-4 x y+7 y^{2}\right)\left(x^{3}-5 x y^{2}\right) \\
= & x^{2}\left(x^{3}-5 x y^{2}\right)-4 x y\left(x^{3}-5 x y^{2}\right)+7 y^{2}\left(x^{3}-5 x y^{2}\right) \\
= & x^{5}-5 x^{3} y^{2}-4 x^{4} y+20 x^{2} y^{3}+7 x^{3} y^{2}-35 x y^{4} \\
= & x^{5}+(7-5) x^{3} y^{2}-4 x^{4} y+20 x^{2} y^{3}-35 x y^{4} \\
= & x^{5}+2 x^{3} y^{2}-4 x^{4} y+20 x^{2} y^{3}-35 x y^{4} \\
= & \left(x^{5}-4 x^{4} y+2 x^{3} y^{2}+20 x^{2} y^{3}-35 x y^{4}\right) \text { sq. unit. }
\end{aligned}
$$

Question 5.

The base and the altitude of a triangle are $(3 x-4 y)$ and $(6 x+5 y)$ respectively. Find its area.
Solution:

$$
\begin{aligned}
& \text { Reqd. Area }=\frac{1}{2} \text { (base) } \times \text { (altitude) } \\
& =\frac{1}{2}(3 x-4 y)(6 x+5 y) \\
& =\frac{1}{2}\left(18 x^{2}+15 x y-24 x y-20 y^{2}\right) \\
& =\frac{1}{2}\left(18 x^{2}-9 x y-20 y^{2}\right) \text { sq. unit. }
\end{aligned}
$$

Question 6.
Multiply $-4 x y^{3}$ and $6 x^{2} y$ and verify your result for $x=2$ and $y=1$.
Solution:

$$
\begin{aligned}
& \left(-4 x y^{3}\right) \times\left(6 x^{2} y\right)=(-4 \times 6)\left(x \times x^{2}\right)\left(y^{3} \times y\right) \\
& \quad=-24 x^{3} y^{4}
\end{aligned}
$$

For $x=2$ and $y=1$
$\left(-4 x y^{3}\right) \times\left(6 x^{2} y\right)=\left(-4 \times 2 \times 1^{3}\right) \times\left(6 \times 2^{2} \times\right.$
1)

$$
=(-8) \times 24=-192
$$

And, $-24 x^{3} y^{4}=-24 \times 2^{3} \times 1^{4}$

$$
=-24 \times 8 \times 1=-192
$$

\therefore For $x=2$ and $y=1$, it is verified that $\left(-4 x y^{3}\right) \times\left(6 x^{2} y\right)=-24 x^{3} y^{4}$

Question 7.

Find the value of $\left(3 x^{3}\right) \times\left(-5 x y^{2}\right) \times\left(2 x^{2} y z^{3}\right)$ for $x=1, y=2$ and $z=3$.
Solution:
For $x=1, y=2$ and $z=3$
$\left(3 x^{3}\right) \times\left(-5 x y^{2}\right) \times\left(2 x^{2} y z^{3}\right)$
$\left(3 \times 1^{3}\right) \times\left(-5 \times 1 \times 2^{2}\right) \times\left(2 \times 1^{2} \times 2 \times 3^{3}\right)$
$3 \times(-5 \times 4) \times(2 \times 1 \times 2 \times 27)$
$3 \times(-20) \times 108=-6480$

Question 8.

Evaluate $\left(3 x^{4} y^{2}\right)\left(2 x^{2} y^{3}\right)$ for $x=1$ and $y=2$.

Solution:

$$
\begin{aligned}
& \left(3 x^{4} y^{2}\right)\left(2 x^{2} y^{3}\right) \\
& \left(3 \times 1^{4} \times 2^{2}\right) \times\left(2 \times 1^{2} \times 2^{3}\right) \\
& (3 \times 1 \times 4) \times(2 \times 1 \times 8) \\
& =12 \times 16=192
\end{aligned}
$$

Question 9.

Evaluate $\left(x^{5}\right) \times\left(3 x^{2}\right) \times(-2 x)$ for $x=1$.
Solution:

For $x=1$

$\left(x^{5}\right) \times\left(3 x^{2}\right) \times(-2 x)$
$\left(1^{5}\right) \times\left(3 \times 1^{2}\right) \times(-2 \times 1)$
$1 \times 3 \times(-2)=-6$

Question 10.
If $x=2$ and $y=1$; find the value of $\left(-4 x^{2} y^{3}\right) x\left(-5 x^{2} y^{5}\right)$.
Solution:
For $x=2$ and $y=1$
$\left(-4 x^{2} y^{3}\right) \times\left(-5 x^{2} y^{5}\right)$
$\left(-4 \times 2^{2} \times 1^{3}\right) \times\left(-5 \times 2^{2} \times 1^{5}\right)$
$(-4 \times 4 \times 1) \times(-5 \times 4 \times 1)$
$-16 \times-20=320$

Question 11.
Evaluate:
(i) $(3 x-2)(x+5)$ for $x=2$.
(ii) $(2 x-5 y)(2 x+3 y)$ for $x=2$ and $y=3$.
(iii) $x z\left(x^{2}+y^{2}\right)$ for $x=2, y=1$ and $z=1$.

Solution:

(i) For $x=2$
$(3 x-2)(x+5)$
$(3 \times 2-2)(2+5)$
$(6-2) \times 7$
$4 \times 7=28$
(ii) For $x=2$ and $y=1$

$$
\begin{aligned}
& x y^{2}(x-5 y)+1 \\
& 2 \times 1^{2}(2-5 \times 1)+1 \\
& 2 \times(2-5)+1 \\
& 2 \times(-3)+1 \\
& -6+1=-5
\end{aligned}
$$

(iii) For $x=2, y=1$ and $z=1$

$$
\begin{aligned}
& x z\left(x^{2}+y^{2}\right) \\
& 2 \times 1\left(2^{2}+1^{2}\right) \\
& 2(2+1) \\
& =2 \times 3=6
\end{aligned}
$$

Question 12.
Evaluate:
(i) $x(x-5)+2$ for $x=1$.
(ii) $x y^{2}(x-5 y)+1$ for $x=2$ and $y=1$.
(iii) $2 x(3 x-5)-5(x-2)-18$ for $x=2$.

Solution:
(i) For $x=1$
$x(x-5)+2$
$1(1-5)+2$
$-4+2=-2$
(ii) For $x=2$ and $y=1$
$x y^{2}(x-5 y)$
$2 \times 1^{2}(2-5 \times 1)$
$2 \times(2-5)$
$2 \times(-3)=-6$
(iii) For $x=2$
$2 x(3 x-5)-5(x-2)-18$
$2 \times 2(3 \times 2-5)-5(2-2)-18$
$4(6-5)-5 \times 0-18$
$4-18=-14$

Question 13.

Multiply and then verify :
$-3 x^{2} y^{2}$ and $(x-2 y)$ for $x=1$ and $y=2$.
Solution:

$$
\begin{aligned}
& \left(-3 x^{2} y^{2}\right) \times(x-2 y) \\
& =\left(-3 x^{2} y^{2}\right) \times(x)-\left(-3 x^{2} y^{2}\right)(2 y) \\
& =-3 x^{3} y^{2}+6 x^{2} y^{3} \\
& =6 x^{2} y^{3}-3 x^{3} y^{2}
\end{aligned}
$$

For $x=1$ and $y=2$

$$
\begin{aligned}
& \left(-3 x^{2} y^{2}\right) \times(x-2 y) \\
& =\left(-3 \times 1^{2} \times 2^{2}\right) \times(1-2 \times 2) \\
& =(6 \times 1 \times 8)-(3 \times 1 \times 4) \\
& =48-12=36
\end{aligned}
$$

\therefore For $x=1$ and $y=2$, it is verified that,

$$
\left(-3 x^{2} y^{2}\right) \times(x-2 y)=6 x^{2} y^{3}-3 x^{3} y^{2}
$$

Question 14.

Multiply:
(i) $2 x^{2}-4 x+5$ by $x^{2}+3 x-7$
(ii) $(a b-1)(3-2 a b)$

$$
\begin{aligned}
& \text { (i) } 2 x^{2}-4 x+5 \text { by } x^{2}+3 x-7 \\
& \left(2 x^{2}-4 x+5\right) \times\left(x^{2}+3 x-7\right) \\
& 2 x^{2}\left(x^{2}+3 x-7\right)-4 x\left(x^{2}+3 x-7\right)+5\left(x^{2}+\right. \\
& 3 x-7) \\
& 2 x^{4}+6 x^{3}-14 x^{2}-4 x^{3}-12 x^{2}+28 x+5 x^{2}+ \\
& 15 x-35 \\
& 2 x^{4}+6 x^{3}-4 x^{3}-14 x^{2}-12 x^{2}+5 x^{2}+28 x+ \\
& 15 x-35 \\
& 2 x^{4}+2 x^{3}-21 x^{2}+43 x-35 \\
& \text { (ii) }(a b-1)(3-2 a b) \\
& a b(3-2 a b)-1(3-2 a b) \\
& 3 a b-2 a^{2} b^{2}-3+2 a b \\
& -2 a^{2} b^{2}+5 a b-3 \\
& 2 a^{2} b^{2}-5 a b+3
\end{aligned}
$$

Question 15.
Simplify: $(5-x)(6-5 x)(2-x)$.
Solution:
$(5-x)(6-5 x)(2-x)$
$[(5-x)(6-5 x)](2-x)$
$[5(6-5 x)-x(6-5 x)](2-x)$
$\left[30-25 x-6 x+5 x^{2}\right](2-x)$
$\left(5 x^{2}-31 x+30\right)(2-x)$
$2\left(5 x^{2}-31 x+30\right)-x\left(5 x^{2}-31 x+30\right)$
$10 x^{2}-62 x+60-5 x^{3}+31 x^{2}-30 x$
$-5 x^{3}+10 x^{2}+31 x^{2}-62 x-30 x+60$
$-5 x^{3}+41 x^{2}-92 x+60$

EXERCISE 11(D)

Question 1.

Divide :
(i) $-70 a^{3}$ by $14 a^{2}$
(ii) $24 x^{3} y^{3}$ by $-8 y^{2}$
(iii) $15 a^{4} b$ by $-5 a^{3} b$
(iv) $-24 x^{4} d^{3}$ by $-2 x^{2} d^{5}$
(v) $63 a^{4} b^{5} c^{6}$ by $-9 a^{2} b^{4} c^{3}$
(vi) $8 x-10 y+6 c$ by 2 .
(vii) $15 a^{3} b^{4}-10 a^{4} b^{3}-25 a^{3} b^{6}$ by $-5 a^{3} b^{2}$
(viii) $-14 x^{6} y^{3}-21 x^{4} y^{5}+7 x^{5} y^{4}$ by $7 x^{2} y^{2}$
(ix) $a^{2}+7 a+12$ by $a+4$
(x) $x^{2}+3 x-54$ by $x-6$
(xi) $12 x^{2}+7 x y-12 y^{2}$ by $3 x+4 y$
(xii) $x^{6}-8$ by $x^{2}-2$
(xiii) $6 x^{3}-13 x^{2}-13 x+30$ by $2 x^{2}-x-6$
(xiv) $4 a^{2}+12 a b+9 b^{2}-25 c^{2}$ by $2 a+3 b+5 c$.
(xv) $16+8 x+x^{6}-8 x^{3}-2 x^{4}+x^{2}$ by $x+4-x^{3}$

Solution:

$$
\text { (i) } \begin{aligned}
\frac{-70 a^{3}}{14 a^{2}} & =\left(\frac{-70}{14}\right)\left(\frac{a^{3}}{a^{2}}\right) \\
& =-5 a^{3-2} \\
& =-5 a
\end{aligned}
$$

$$
\text { (vi) } \frac{8 x-10 y+6 c}{2}
$$

$$
\begin{aligned}
& =\frac{8 x}{2}-\frac{10 y}{2}+\frac{6 c}{2} \\
& =4 x-5 y+3 c
\end{aligned}
$$

$$
\text { (vii) } \frac{15 a^{3} b^{4}-10 a^{4} b^{3}-25 a^{3} b^{6}}{-5 a^{3} b^{2}}
$$

$$
\begin{aligned}
& \text { (ii) } \frac{24 x^{3} y^{3}}{-8 y^{2}}=\left(\frac{24}{-8}\right)\left(x^{3}\right)\left(\frac{y^{3}}{y^{2}}\right) \\
& =-3 x^{3} y^{3-2} \\
& =-3 x^{3} y \\
& \text { (iii) } \frac{15 a^{4} b}{-5 a^{3} b}=\left(\frac{15}{-5}\right)\left(\frac{a^{4}}{a^{3}}\right)\left(\frac{b}{b}\right) \\
& =-3 a^{4-3} b^{1-1} \\
& =-3 a b^{0} \\
& =-3 a \times 1 \quad\left(\because b^{0}=1\right) \\
& =-3 a \\
& \text { (iv) } \frac{-24 x^{4} d^{3}}{-2 x^{2} d^{5}}=\left(\frac{-24}{-2}\right)\left(\frac{x^{4}}{x^{2}}\right)\left(\frac{d^{3}}{d^{5}}\right) \\
& =12 x^{4-2} d^{3-5}=12 x^{2} d^{-2} \\
& =\frac{12 x^{2}}{d^{2}} \\
& \text { (v) } \frac{63 a^{4} b^{5} c^{6}}{-9 a^{2} b^{4} c^{3}}=\left(\frac{63}{-9}\right)\left(\frac{a^{4}}{a^{2}}\right)\left(\frac{b^{5}}{b^{4}}\right)\left(\frac{c^{6}}{c^{3}}\right) \\
& =-7 a^{4-2} \cdot b^{5-4} \cdot c^{6-3} \\
& =-7 a^{2} b c^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{15 a^{3} b^{4}}{-5 a^{3} b^{2}}-\frac{10 a^{4} b^{3}}{-5 a^{3} b^{2}}-\frac{25 a^{3} b^{6}}{-5 a^{3} b^{2}} \\
& =-3 b^{4-2}+2 a^{4-3} b^{3-2}+5 b^{6-2} \\
& =-3 b^{2}+2 a b+5 b^{4} \\
& \text { (viii) } \frac{-14 x^{6} y^{3}-21 x^{4} y^{5}+7 x^{5} y^{4}}{7 x^{2} y^{2}} \\
& =\frac{-14 x^{6} y^{3}}{7 x^{2} y^{2}}-\frac{21 x^{4} y^{5}}{7 x^{2} y^{2}}+\frac{7 x^{5} y^{4}}{7 x^{2} y^{2}} \\
& =-2 x^{6-2} y^{3-2}-3 x^{4-2} y^{5-2}+x^{5-2} y^{4-2} \\
& =-2 x^{4} y-3 x^{2} y^{3}+x^{3} y^{2} \\
& \text { (ix) } a + 4 \longdiv { a ^ { 2 } + 7 a + 1 2 } (a + 3 \\
& a^{2}+4 a \\
& \frac{--}{3 a+12} \\
& 3 a+12 \\
& \text { - - } \\
& \times \\
& \therefore \text { Answer }=a+3 \\
& \text { (x) } \quad x-6) \overline{x^{2}+3 x-54}(x+9 \\
& +9 x-54 \\
& \frac{+}{\times} \\
& \therefore \text { Answer }=x+9
\end{aligned}
$$

\therefore Answer $=4 x-3 y$
(xii)

$$
\begin{aligned}
& \left.x^{2}-2\right) \quad\left(x^{4}+2 x^{2}+4\right. \\
& x^{6}-8 x^{6} \\
& \frac{2 x^{4}-8}{2 x^{4}-4 x^{2}} \\
& -\quad+ \\
& 4 x^{2}-8 \\
& 4 x^{2}-8 \\
& -
\end{aligned}
$$

$$
\therefore \text { Answer }=x^{4}+2 x^{2}+4
$$

$$
\text { (xiii) } \left.\quad 2 x^{2}-x-6\right) 6 x^{3}-13 x^{2}-13 x+30(3 x-5
$$

$$
6 x^{3}-3 x^{2}-18 x
$$

$$
-\quad+\quad+
$$

$$
-10 x^{2}+5 x+30
$$

$$
-10 x^{2}+5 x+30
$$

$$
\frac{+\quad-\quad-}{\times}
$$

$$
\therefore \text { Answer }=3 x-5
$$

$$
\begin{aligned}
& \text { (xi) } 3 x+4 y \overline{12 x^{2}+7 x y-12 y^{2}}(4 x-3 y \\
& 12 x^{2}+16 x y \\
& \frac{-\quad-}{-9 x y-12 y^{2}} \\
& -9 x y-12 y^{2} \\
& \frac{+\quad+}{\times}
\end{aligned}
$$

(xiv)

$$
\begin{array}{r}
2 a+3 b+5 c)+10 c a \\
\begin{array}{r}
4 a^{2}+12 a b+9 b^{2}-25 c^{2}(2 a+3 b-5 c \\
-6 a b+9 b^{2}-25 c^{2}-10 c a \\
6 a b+9 b^{2} \\
-\quad-\quad-15 b c
\end{array} \\
\frac{-10 c a-25 c^{2}-15 b c}{} \\
\frac{-10 c a-25 c^{2}-15 b c}{+\quad+}+ \\
\hline
\end{array}
$$

\therefore Answer $=2 a+3 b-5 c$
(xv)

$$
\begin{aligned}
& \left.-x^{3}+x+4\right)+x^{6}-2 x^{4}-8 x^{3}+x^{2}+8 x+16\left(-x^{3}+x+4\right. \\
& +x^{6}-x^{4}-4 x^{3} \\
& \frac{-++}{-x^{4}-4 x^{3}+x^{2}+8 x+16} \\
& \frac{-x^{4}+x^{2}+4 x}{} \\
& \frac{+-4 x^{3}+4 x+16}{} \\
& \quad \frac{-4 x^{3}+4 x+16}{} \\
& \begin{array}{l}
\quad-\quad- \\
\therefore \text { Answer }
\end{array}=-x^{3}+x+4
\end{aligned}
$$

Question 2.

Find the quotient and the remainder (if any) when :
(i) $a^{3}-5 a^{2}+8 a+15$ is divided by $a+1$.
(ii) $3 x^{4}+6 x^{3}-6 x^{2}+2 x-7$ is divided by $x-3$.
(iii) $6 x^{2}+x-15$ is divided by $3 x+5$. In each case, verify your answer.
(iv) $6 y^{5}+30 y^{4}+18 y^{3}+6 y^{2}+15 y+3$ is divided by $2 y^{3}+1$.

Solution:
(i) $a + 1 \longdiv { a ^ { 3 } - 5 a ^ { 2 } + 8 a + 1 5 } (a ^ { 2 } - 6 a + 1 4$

$a^{3}+a^{2}$
--
$-6 a^{2}+8 a+15$
$-6 a^{2}-6 a$
$+\quad+$
$14 a+15$
$14 a+14$

\therefore Quotient $=a^{2}-6 a+14$ and remainder $=1$
(ii)

$$
\begin{aligned}
& x-3) 3 x^{4}+6 x^{3}-6 x^{2}+2 x-7\left(3 x^{3}+15 x^{2}+39 x+119\right. \\
& 3 x^{4}-9 x^{3} \\
& -\quad+ \\
& \hline 15 x^{3}-6 x^{2}+2 x-7 \\
& 15 x^{3}-45 x^{2} \\
& -+\quad \\
& \begin{array}{l}
39 x^{2}+2 x-7 \\
39 x^{2}-117 x \\
-\quad+ \\
\hline 119 x-7 \\
119 x-357
\end{array}
\end{aligned}
$$

$$
-\quad+
$$

$$
350
$$

\therefore Quotient $=3 x^{3}+15 x^{2}+39 x+119$ and remainder $=350$
(iii) $3 x+5 \overline{6 x^{2}+x-15(2 x-3}$
$6 x^{2}+10 x$
$-9 x-15$
$-9 x-15$
$+\quad+$
\times
\therefore Quotient $=2 x-3$ and remainder $=0$
(iv)

$$
\begin{aligned}
& 2 y^{3}+1 \begin{array}{l}
6 y^{5}+30 y^{4}+18 y^{3}+6 y^{2}+15 y+3\left(3 y^{2}+15 y+9\right. \\
6 y^{5}+3 y^{2} \\
-\quad-\quad- \\
\begin{array}{l}
30 y^{4}+18 y^{3}+3 y^{2}+15 y+3 \\
30 y^{4} \\
-
\end{array} \\
\hline \begin{array}{l}
18 y^{3}+3 y^{2}+3 \\
18 y^{3}+9
\end{array}
\end{array}
\end{aligned}
$$

\qquad
$3 y^{2}-6$
\therefore Quotient $=3 y^{2}+15 y+9$ and remainder $=3 y^{2}-6$
(i) Verification.

Dividend $=$ Quotient \times Divisor + Remainder
$=\left(a^{2}-6 a+14\right) \times(a+1)+1$
$=a^{3}-6 a^{2}+14 a+a^{2}-6 a+14+1$
$=a^{3}-5 a^{2}+8 a+15$ which is given
(ii) Verification:

Dividend $=$ Quotient \times Divisor + Remainder
$=\left(3 x^{3}+15 x^{2}+39 x+119\right)(x-3)+350$
$=3 x^{4}+15 x^{3}+39 x^{2}+119 x-9 x^{3}-45 x^{2}-$
$117 x-357+350$
$=3 x^{4}+6 x^{3}-6 x^{2}+2 x-7$ which is given
(iii) Verification:

Dividend $=$ Quotient \times Divisor + Remainder
$=(2 x-3)(3 x+5)+0$
$=6 x^{2}+10 x-9 x-15+0$
$=6 x^{2}-x-15$ which is given

(iv) Verification:

Dividend $=$ Quotient \times Divisor + Remainder
$=\left(3 y^{2}+15 y+9\right)\left(2 y^{3}+1\right)+3 y^{2}-6$
$=6 y^{5}+30 y^{4}+18 y^{3}+3 y^{2}+15 y+9+3 y^{2}-6$
$=6 y^{5}+30 y^{4}+18 y^{3}+6 y^{2}+15 y+3$ which is given

Question 3.

The area of a rectangle is $x^{3}-8 x^{2}+7$ and one of its sides is $x-1$. Find the length of the adjacent side.
Solution:

$$
\begin{aligned}
& \text { Area }=x^{3}-8 x^{2}+7 \\
& \text { One side }=x-1 \\
& \therefore \text { Adjacent side }=\left(x^{3}-8 x^{2}+7\right) \div(x-1) \\
& x-1) \frac{x^{3}-8 x^{2}+7\left(x^{2}-7 x-7\right.}{x^{3}-x^{2}} \\
& \frac{-\quad+}{-7 x^{2}+7} \\
& -7 x^{2}+7 x \\
& +\quad- \\
& \frac{-7 x+7}{-7 x+7} \\
& \frac{+}{\times}
\end{aligned}
$$

\therefore Other side $=x^{2}-7 x-7$

Question 4.
The product of two numbers-is $16 x^{4}-1$. If one number is $2 x-1$, find the other.

Solution:

Product of two numbers $=16 x^{4}-1$

One number $=2 x-1$
Then second number $=\frac{16 x^{4}-1}{2 x-1}$
$=8 x^{3}+4 x^{2}+2 x+1$

$$
\begin{array}{r}
\frac{8 x^{3}+4 x^{2}+2 x+1}{2 x-1) 16 x^{4}} \\
\begin{array}{l}
16 x^{4}-8 x^{3} \\
\frac{-1(}{8 x^{3}} \\
8 x^{3}-4 x^{2} \\
-+ \\
4 x^{2} \\
4 x^{2}-2 x \\
-+ \\
\frac{2 x-1}{x}
\end{array}
\end{array}
$$

Question 5.

Divide $x^{6}-y^{6}$ by the product of $x^{2}+x y+y^{2}$ and $x-y$.

$$
\begin{aligned}
& \text { Solution: } \\
& \text { Product of }\left(x^{2}+x y+y^{2}\right) \text { and }(x-y) \\
& =(x-y)\left(x^{2}+x y+y^{2}\right) \\
& =x\left(x^{2}+x y+y^{2}\right)-y\left(x^{2}+x y+y^{2}\right) \\
& =x^{3}+x^{2} y+x y^{2}-x^{2} y-x y^{2}-y^{3} \\
& =x^{3}-y^{3} \\
& \text { Now, }\left(x^{6}-y^{6}\right) \div\left(x^{3}-y^{3}\right) \\
& =x^{3}+y^{3} \\
& \left.x^{3}-y^{3}\right) x^{6}-y^{6}\left(x^{3}+y^{3}\right. \\
& x^{6}-x^{3} y^{3} \\
& \frac{-+}{x^{3} y^{3}-y^{6}} \\
& x^{3} y^{3}-y^{6} \\
& \frac{-+}{x}
\end{aligned}
$$

Simplification

(Using removal of brackets)
The signs for different types of brackets are :

1. \qquad ; Vinculum or bar brackets,
2. (); Parenthesis or small brackets,
3. \{ \}; Curly brackets or middle brackets,
4. []; Square brackets or big brackets.

In a combined operation, the brackets must be removed in the same order as written above:

EXERCISE 11(E)

Simplify :
Question 1.
$a^{2}-2 a+\left\{5 a^{2}-\left(3 a-4 a^{2}\right)\right\}$
Solution:

$$
\begin{aligned}
& =a^{2}-2 a+\left\{5 a^{2}-3 a+4 a^{2}\right\} \\
& =a^{2}-2 a+\{9 a-3 a\} \\
& =a^{2}-2 a+9 a^{2}-3 a=10 a^{2}-5 a
\end{aligned}
$$

Question 2.

$$
x-y-\{x-y-(x+y)-\overline{x-y}\}
$$

Solution:

$$
\begin{aligned}
x- & y-\{x-y-(x+y)-\overline{x-y}\} \\
& =x-y-\{x-y-(x+y)-x+y\} \\
& =x-y-\{x-y-x-y-x+y\} \\
& =x-y-x+y+x+y+x-y=2 x
\end{aligned}
$$

Question 3.

$-3\left(1-x^{2}\right)-2\left\{x^{2}-\left(3-2 x^{2}\right)\right\}$
Solution:

$$
\begin{aligned}
-3 & \left(1-x^{2}\right)-2\left\{x^{2}-\left(3-2 x^{2}\right)\right\} \\
& =-3+3 x^{2}-2\left\{x^{2}-3+2 x^{2}\right\} \\
& =-3+3 x^{2}-2\left\{3 x^{2}-3\right\} \\
& =-3+3 x^{2}-6 x^{2}+6=3-3 x^{2}
\end{aligned}
$$

Question 4.

$$
2\{m-3(n+\overline{m-2 n})\}
$$

Solution:

$$
\begin{aligned}
& 2\{m-3(n+\overline{m-2 n})\} \\
= & 2\{m-3(n+m-2 n)\}=2\{m-3(m-n)\} \\
= & 2\{m-3 m+3 n\}=2\{3 n-2 m\}=6 n-4 m
\end{aligned}
$$

Question 5.

$$
3 x-[3 x-\{3 x-(3 x-\overline{3 x-y})\}]
$$

Solution:

$$
\begin{aligned}
& 3 x-[3 x-\{3 x-(3 x-\overline{3 x-y})\}] \\
& =3 x-[3 x-\{3 x-(3 x-3 x+y)\}] \\
& =3 x-[3 x-\{3 x-y\}]=3 x-[3 x-3 x+y] \\
& =3 x-y
\end{aligned}
$$

Question 6.

$$
p^{2} x-2\left\{p x-3 x\left(x^{2}-\overline{3 a-x^{2}}\right)\right\}
$$

Solution:

$$
\begin{aligned}
p^{2} x & -2\left\{p x-3 x\left(x^{2}-\overline{3 a-x^{2}}\right)\right\} \\
& =p^{2} x-2\left\{p x-3 x\left(x^{2}-3 a+x^{2}\right)\right\} \\
& =p^{2} x-2\left\{p x-3 x\left(2 x^{2}-3 a\right)\right\} \\
& =p^{2} x-2\left\{p x-6 x^{3}+9 a x\right\} \\
& =p^{2} x-2 p x+12 x^{3}-18 a x
\end{aligned}
$$

Question 7.

$$
2[6+4\{m-6(7-\overline{n+p})+q\}]
$$

Solution:

$$
\begin{aligned}
2[6 & +4\{m-6(7-\overline{n+p})+q\}] \\
& =2[6+4\{m-6(7-n-p)+q\}] \\
& =2[6+4\{m-42+6 n+6 p+q\}] \\
& =2[6+4 m-168+24 n+24 p+4 q] \\
& =2[4 m+24 n+24 p+4 q-162] \\
& =8 m+48 n+48 p+8 q-324
\end{aligned}
$$

Question 8.

$a-[a-\overline{b+a}-\{a-(a-\overline{b-a})\}]$
Solution:

$$
\begin{aligned}
a- & {[a-\overline{b+a}-\{a-(a-\overline{b-a})\}] } \\
& =a-[a-b-a-\{a-(a-b+a)\}] \\
& =a-[-b-\{a-a+b-a\}] \\
& =a-[-b-b+a] \\
& =a+b+b-a=2 b
\end{aligned}
$$

Question 9.

$$
3 x-[4 x-\overline{3 x-5 y}-3\{2 x-(3 x-\overline{2 x-3 y})\}]
$$

Solution:

$$
\begin{aligned}
& 3 x-[4 x-\overline{3 x-5 y}-3\{2 x-(3 x- \\
& \overline{2 x-3 y})\}] \\
= & 3 x-[4 x-3 x+5 y-3\{2 x-(3 x-2 x+3 y)\}] \\
= & 3 x-[4 x-3 x+5 y-3\{2 x-(x+3 y)\}] \\
= & 3 x-[4 x-3 x+5 y-3\{2 x-x-3 y\}] \\
= & 3 x-[x+5 y-6 x+3 x+9 y] \\
= & 3 x-[-2 x+14 y] \\
= & 3 x+2 x-14 y \\
= & 5 x-14 y
\end{aligned}
$$

Question 10.

$$
a^{5} \div a^{3}+3 a \times 2 a
$$

Solution:
$a^{5} \div a^{3}+3 a \times 2 a=a^{5-3}+3 a \times 2 a=a^{2}+6 a^{2}=7 a^{2}$
Question 11.
$x^{5} \div\left(x^{2} \times y^{2}\right) \times y^{3}$

Solution:

$$
x^{5} \div\left(x^{2} \times y^{2}\right) \times y^{3}=\frac{x^{5}}{x^{2} y^{2}} \times y^{3}=x^{5-2}-y^{3-2}=x^{3} y
$$

Question 12.
$\left(x^{5} \div x^{2}\right) \times y^{2} \times y^{3}$
Solution:
$\left(x^{5} \div x^{2}\right) \times y^{2} \times y^{3}=x^{5-2} \times y^{2+3}=x^{3} y^{5}$
Question 13.
$\left(y^{3}-5 y^{2}\right) \div y \times(y-1)$

Solution:

$$
\begin{aligned}
\left(y^{3}-5 y^{2}\right) \div y \times(y-1) & =\frac{y^{3}-5 y^{2}}{y} \times y-1 \\
=\left(y^{2}-5 y\right) \times(y-1) & =y^{2}(y-1)-5 y(y-1)=y^{3}-y^{2}-5 y^{2}+5 y=y^{3}-6 y^{2}+5 y
\end{aligned}
$$

Question 14.

$$
3 a \times[8 b \div 4-6\{a-(5 a-\overline{3 b-2 a})\}]
$$

Solution:

$$
\begin{aligned}
3 a & \times[8 b \div 4-6\{a-(5 a-\overline{3 b-2 a})\}] \\
& =3 a \times\left[\frac{8 b}{4}-6\{a-(5 a-3 b+2 a)\}\right]=3 a \times[2 b-6\{a-7 a+3 b\}]=3 a \times[2 b-6\{-6 a+3 b\}] \\
& =3 a \times[2 b+36 a-18 b]=3 a \times[36 a-16 b]=108 a^{2}-48 a b
\end{aligned}
$$

Question 15.

$$
7 x+4\left\{x^{2} \div(5 x \div 10)\right\}-3\left\{2-x^{3} \div\left(3 x^{2} \div x\right)\right\}
$$

Solution:

$$
\begin{aligned}
7 x & +4\left\{x^{2} \div(5 x \div 10)\right\}-3\left\{2-x^{3} \div\left(3 x^{2} \div x\right)\right\} \\
& =7 x+4\left\{x^{2} \div\left(\frac{5 x}{10}\right)\right\}-3\left\{2-x^{3} \div\left(\frac{3 x^{2}}{x}\right)\right\} \\
& =7 x+4\left\{x^{2} \div \frac{x}{2}\right\}-3\left\{2-x^{3} \div 3 x\right\}=7 x+4\left\{x^{2} \times \frac{2}{x}\right\}-3\left\{2-\frac{x^{3}}{3 x}\right\} \\
& =7 x+8 x-6+x^{2}=x^{2}+15 x-6
\end{aligned}
$$

