## Polygons

## IMPORTANT POINTS

1. Polygon : A closed plane geometrical figure, bounded by at least three line segments, is called a polygon.
The adjoining figure is a polygon as it is :

(i) Closed
(ii) bounded by five line segments $A B, B C, C D, D E$ and $A E$.

Also, it is clear from the given polygon that:
(i) the line segments $A B, B C, C D, D E$ and $A E$ intersect at their end points.
(ii) two line segments, with a common vertex, are not collinear i.e. the angle at any vertex is not $180^{\circ}$.

A polygon is named according to the number of sides (line-segments) in it:

| Note : No. of sides: | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| Name of polygon : | Triangle | Quadrilateral | Pentagon | Hexagon |

2. Sum of Interior Angles of a Polygon
3. Triangle : Students already know that the sum of interior angles of a triangle is always $180^{\circ}$.
i.e. for $\triangle \mathrm{ABC}, \angle \mathrm{BAC}+\angle \mathrm{ABC}+\angle \mathrm{ACB}=180^{\circ}$
$\Rightarrow Z A+Z B+Z C=180^{\circ}$

4. Quadrilateral : Consider a quadrilateral $A B C D$ as shown alongside.

If diagonal $A C$ of the quadrilaterals drawn, the quadrilateral will be divided into two triangles ABC and ADC.
Since, the sum of interior angles of a triangle is $180^{\circ}$.

$\therefore$ In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}+\angle \mathrm{BAC}+\angle \mathrm{ACB}=180^{\circ}$
And, in $\triangle A D C \angle D A C+\angle A D C+\angle A C D=180^{\circ}$
Adding we get:
$\angle \mathrm{ABC}+\angle \mathrm{BAC}+\angle \mathrm{ACB}+\angle \mathrm{DAC}+\angle \mathrm{ADC}+\angle \mathrm{ACD}=180^{\circ}+180^{\circ}$
$\Rightarrow(\angle B A C+\angle D A C)+\angle A B C+(\angle A C B+\angle A C D)+\angle A D C=360^{\circ}$
$\Rightarrow \angle B A D+\angle A B C+\angle B C D+\angle A D C=360^{\circ}$
$\Rightarrow \angle A+\angle B+\angle C+\angle D=360^{\circ}$
Alternative method: On drawing the diagonal AC, the given quadrilateral is divided into two triangles. And, we know the sum of the interior angles of a triangle is $180^{\circ}$.
$\therefore$ Sum of interior angles of the quadrilateral ABCD
$=$ Sum of interior angles of $\triangle A B C+$ sum of interior angles of $\triangle A D C=180^{\circ}+180^{\circ}=$ $360^{\circ}$
3. Pentagon : Consider a pentagon $A B C D E$ as shown alongside. On joining CA and CE, the given pentagon is divided into three triangles ABC, CDE and ACE.


Since, the sum of the interior angles of a triangle is $180^{\circ}$
Sum of the interior angles of the pentagon $A B C D E=$ Sum of interior angles of ( $\triangle A B C+$ $\Delta \mathrm{CDE}+\triangle \mathrm{ACE})$ $=180^{\circ}+180^{\circ}+180^{\circ}=540^{\circ}$

## 4. Hexagon:

It is clear from the given figure that the sum of the interior angles of the hexagon ABCDEF.

= Sum of inteior angles of
$(\Delta \mathrm{ABC}+\Delta \mathrm{ACF}+\Delta \mathrm{FCE}+\Delta \mathrm{ECD})$
$=180^{\circ}+180^{\circ}+180^{\circ}+180^{\circ}=720^{\circ}$
3. Using Formula : The sum of interior angles of a polygon can also be obtained by using the following formula:
Note : Sum of interior angles of a polygon $=(n-2) \times 180^{\circ}$
where, $\mathrm{n}=$ number of sides of the polygon.
$\therefore$ (i) For a trianlge :

$$
n=3 \text { (a triangle has } 3 \text { sides) }
$$

and, sum of interior angles $=(2 n-4) \times 90^{\circ}$

$$
=(6-4) \times 90^{\circ}=180^{\circ}
$$

(ii) For a quadrilateral :
$n=4$
and, sum of interior angles $=(2 n-4) \times 90^{\circ}$

$$
=(8-4) \times 90^{\circ}=360^{\circ}
$$

(iii) For a pentagon :
$n=5$
and, sum of interior angles $=(2 n-4) \times 90^{\circ}$

$$
=(10-4) \times 90^{\circ}=6 \times 90^{\circ}=540^{\circ}
$$

(iv) For a hexagon :
$n=6$
and, sum of interior angles $=(2 n-4) \times 90^{\circ}$

$$
=(12-4) \times 90^{\circ}=8 \times 90^{\circ}=720^{\circ}
$$

EXERCISE 28 (A)

Question 1.
State, which of the following are polygons :
(i) (i)

(ii)

(iii)

(iv)

(v)


## Solution:

Only figure (ii) and (iii) are polygons.

Question 2.
Find the sum of interior angles of a polygon with :
(i) 9 sides
(ii) 13 sides
(iii) 16 sides

Solution:
(i) 9 sides

No. of sides $\mathrm{n}=9$
$\therefore$ Sum of interior angles of polygon $=(2 n-4) \times 90^{\circ}$
$=(2 \times 9-4) \times 90^{\circ}$
$=14 \times 90^{\circ}=1260^{\circ}$
(ii) 13 sides

No. of sides $\mathrm{n}=13$
$\therefore$ Sum of interior angles of polygon $=(2 n-4) \times 90^{\circ}=(2 \times 13-4) \times 90^{\circ}=1980^{\circ}$
(iii) 16 sides

No. of sides $\mathrm{n}=16$
$\therefore$ Sum of interior angles of polygon $=(2 n-4) \times 90^{\circ}$
$=(2 \times 16-4) \times 90^{\circ}$
$=(32-4) \times 90^{\circ}=28 \times 90^{\circ}$
$=2520^{\circ}$

Question 3.
Find the number of sides of a polygon, if the sum of its interior angles is :
(i) $1440^{\circ}$
(ii) $1620^{\circ}$

Solution:
(i) $1440^{\circ}$

Let no. of sides $=n$
$\therefore$ Sum of interior angles of polygon $=1440^{\circ}$
$\therefore(2 n-4) \times 90^{\circ}=1440^{\circ}$
$\Rightarrow 2 n-4=\frac{1440^{\circ}}{90^{\circ}}$
$\Rightarrow 2(n-2)=\frac{1440^{\circ}}{90^{\circ}}$
$\Rightarrow n-2=\frac{1440^{\circ}}{2 \times 90^{\circ}}$
$\Rightarrow n-2=8$
$\Rightarrow n=8+2$
$\Rightarrow n=10$
(ii) $1620^{\circ}$

Let no. of sides $=n$
$\therefore$ Sum of interior angles of polygon $=$ $1620^{\circ}$
$\therefore(2 n-4) \times 90^{\circ}=1620^{\circ}$
$\Rightarrow 2(n-2)=\frac{1620^{\circ}}{90^{\circ}}$
$\Rightarrow n-2=\frac{1620^{\circ}}{2 \times 90^{\circ}}$
$\Rightarrow n-2=9$.
$\Rightarrow n=9+2 \Rightarrow n=11$

Question 4.
Is it possible to have a polygon, whose sum of interior angles is $1030^{\circ}$. Solution:

Let no. of sides be $=n$
Sum of interior angles of polygon $=$ $1030^{\circ}$
$\therefore(2 n-4) \times 90^{\circ}=1030^{\circ}$
$\Rightarrow 2(n-2)=\frac{1030^{\circ}}{90^{\circ}}$
$\Rightarrow(n-2)=\frac{1030^{\circ}}{2 \times 90^{\circ}}$
$\Rightarrow(n-2)=\frac{103}{18}$
$\Rightarrow n=\frac{103}{18}+2$
$\Rightarrow n=\frac{139}{18}$
Which is not a whole number. Hence it is not possible to have a polygon, the sum of whose interior angles is $1030^{\circ}$.

Question 5.
(i) If all the angles of a hexagon arc equal, find the measure of each angle. (ii) If all the angles of an octagon are equal, find the measure of each angle,

## Solution:

(i) No. of sides of hexagon, $n=6$

Let each angle be $=x^{\circ}$
$\therefore$ Sum of angles $=6 x^{\circ}$
$\therefore(2 n-4) \times 90^{\circ}=$ Sum of angles
$(2 \times 6-4) \times 90^{\circ}=6 x^{\circ}$
$(12-4) \times 90^{\circ}=6 x^{\circ}$
$\Rightarrow \frac{8 \times 90^{\circ}}{6}=x^{\circ}$
$\Rightarrow x=120^{\circ}$
$\therefore$ Each angle of hexagon $=120^{\circ}$
(ii) No. of sides of octagon $n=8$

Let each angle be $=x^{\circ}$
$\therefore$ Sum of angles $=8 x^{\circ}$
$\therefore(2 n-4) \times 90^{\circ}=$ Sum of angles $(2 \times 8-4) \times 90^{\circ}=8 x^{\circ}$
$12 \times 90^{\circ}=8 x^{\circ}$
$\Rightarrow x^{\circ}=\frac{90^{\circ} \times 12^{\circ}}{8} \quad \Rightarrow x^{\circ}=135^{\circ}$
$\therefore$ Each angle of octagon $=135^{\circ}$

## Question 6.

One angle of a quadrilateral is $90^{\circ}$ and all other angles are equal ; find each equal angle.
Solution:
Let the angles of a quadrilateral be $x^{\circ}$,
$x^{\circ}, x^{\circ}$, and $90^{\circ}$
$\therefore$ Sum of interior angles of quadrilateral $=$ $360^{\circ}$
$\Rightarrow x^{\circ}+x^{\circ}+x^{\circ}+90^{\circ}=360^{\circ}$
$\Rightarrow 3 x^{\circ}=360^{\circ}-90^{\circ}$
$\Rightarrow x=\frac{270^{\circ}}{3}$
$\Rightarrow x=90^{\circ}$

Question 7.
If angles of quadrilateral are in the ratio 4:5:3:6; find each angle of the quadrilateral.

## Solution:

Let the angies of the quadrilateral be $4 x$, $5 x, 3 x$ and $6 x$
$\therefore 4 x+5 x+3 x+6 x=360^{\circ}$
$18 x=360^{\circ}$
$x=\frac{360^{\circ}}{18}=20^{\circ}$
$\therefore$ First angle $=4 x=4 \times 20^{\circ}=180^{\circ}$
Second angle $=5 x=5 \times 20^{\circ}=100^{\circ}$
Third angle $=3 x=3 \times 20^{\circ}=60^{\circ}$
Fourth angle $=6 x=6 \times 20^{\circ}=120^{\circ}$

## Question 8.

If one angle of a pentagon is $120^{\circ}$ and each of the remaining four angles is $\mathbf{x}^{\circ}$, find the magnitude of $x$.
Solution:
One angle of a pentagon $=120^{\circ}$
Let remaining four angles be $x, x, x$ and $x$
Their sum $=4 x+120^{\circ}$
But sum of all the interior angles of a pentagon $=(2 n-4) \times 90^{\circ}$
$=(2 \times 5-4) \times 90^{\circ}=540^{\circ}$
$=3 \times 180^{\circ}=540^{\circ}$
$\therefore 4 \mathrm{x}+1200^{\circ}=540^{\circ}$
$4 x=540^{\circ}-120^{\circ}$
$4 x=420$
$x=\frac{420}{4} \Rightarrow x=105^{\circ}$
$\therefore$ Equal angles are $105^{\circ}$ (Each)
Question 9.
The angles of a pentagon are in the ratio $5: 4: 5: 7: 6$; find each angle of the pentagon.

## Solution:

Let the angles of the pentagon be $5 x, 4 x$,
$5 x, 7 x, 6 x$
Their sum $=5 x+4 x+5 x+7 x+6 x=$ $27 x$

Sum of interior angles of a polygon

$$
\begin{aligned}
& =(2 n-4) \times 90^{\circ} \\
& =(2 \times 5-4) \times 90^{\circ}=540^{\circ} \\
\therefore & 27 x=540 \Rightarrow \frac{540}{27} \Rightarrow x=20^{\circ}
\end{aligned}
$$

$\therefore$ Angles are $5 \times 20^{\circ}=100^{\circ}$

$$
\begin{aligned}
& 4 \times 20^{\circ}=80 \\
& 5 \times 20^{\circ}=100^{\circ} \\
& 7 \times 20^{\circ}=140^{\circ} \\
& 6 \times 20^{\circ}=120^{\circ}
\end{aligned}
$$

Question 10.
Two angles of a hexagon are $90^{\circ}$ and $110^{\circ}$. If the remaining four angles arc equal, find each equal angle.
Solution:
Two angles of a hexagon are $90^{\circ}, 110^{\circ}$
Let remaining four angles be $x, x, x$ and
$x$
Their sum $=4 x+200^{\circ}$
But sum of all the interior angles of a hexagon

$$
\begin{aligned}
& =(2 n-4) \times 90^{\circ} \\
& =(2 \times \dot{6}-4) \times 90^{\circ}=8 \times 90^{\circ}=720^{\circ}
\end{aligned}
$$

$\therefore 4 x+200^{\circ}=720^{\circ}$
$\Rightarrow 4 x=720^{\circ}-200^{\circ}=520^{\circ}$
$\Rightarrow x=\frac{520^{\circ}}{4}=130^{\circ}$
$\therefore$ Equal angles are $130^{\circ}$ (each)

## EXERCISE 28 (B)

Question 1.
Fill in the blanks :
In case of regular polygon, with

| Number of sides | Each exterior angle | Each interior angle |
| :---: | :---: | :---: |
| (i) 6 | $\ldots \ldots \ldots \ldots$ | $\ldots \ldots \ldots \ldots$. |
| (ii) 8 | $\ldots \ldots \ldots \ldots$. | $\ldots \ldots \ldots .$. |
| (iii) $\ldots \ldots \ldots \ldots$ | $36^{\circ}$ | $\ldots \ldots \ldots \ldots$ |
| (iv) $\ldots \ldots \ldots .$. | $20^{\circ}$ | $\ldots \ldots \ldots .$. |
| (v) $\ldots \ldots \ldots \ldots$ | $\ldots \ldots \ldots$. | $135^{\circ}$ |
| (vi) $\ldots \ldots \ldots .$. | $\ldots \ldots \ldots$. | $165^{\circ}$ |

Solution:

| Number of sides | Each exterior angle | Each interior angle |
| :---: | :---: | :---: |
| (i) 6 | $60^{\circ}$ | $12 \mathbf{0}^{\circ}$ |
| (ii) 8 | $\mathbf{4 5}^{\circ}$ | $135^{\circ}$ |
| (iii) 10 | $36^{\circ}$ | $144^{\circ}$ |
| (iv) 18 | $20^{\circ}$ | $160^{\circ}$ |
| (v) 8 | $\mathbf{4 5}^{\circ}$ | $135^{\circ}$ |
| (vi) 24 | $15^{\circ}$ | $165^{\circ}$ |

(i) Each exterior angle $=\frac{360^{\circ}}{6}=60^{\circ}$

Each interior angle $=180^{\circ}-60^{\circ}=120^{\circ}$
(ii) Each exterior angle $=\frac{360^{\circ}}{8}=45^{\circ}$

Each interior angle $=180^{\circ}-45^{\circ}=135^{\circ}$
(iii) Since each exterior angles $=36^{\circ}$
$\therefore$ Number of sides $=\frac{360^{\circ}}{36^{\circ}}=10$
Also, interior angle $=180^{\circ}-20^{\circ}=160^{\circ}$
(iv) Since each exterior angles $=20^{\circ}$
$\therefore$ Number of sides $=\frac{360^{\circ}}{20^{\circ}}=18$
Also, interior angle $180^{\circ}-20^{\circ}=160^{\circ}$
(v) Since interior angle $=135^{\circ}$
$\therefore$ Exterior angle $=180^{\circ}-135^{\circ}$
$\therefore$ Number of sides $=\frac{360^{\circ}}{45^{\circ}}=8$
(vi) Since interior angle $=165^{\circ}$
$\therefore$ Exterior angle $=180^{\circ}-165^{\circ}=15^{\circ}$
$\therefore$ Number of sides $=\frac{360^{\circ}}{15^{\circ}}=24$

Question 2.
Find the number of sides in a regular polygon, if its each interior angle is :
(i) $160^{\circ}$
(ii) $150^{\circ}$

## Solution:

(i) $160^{\circ}$

Let no. of sides of regular polygon be $n$
Each interior angle $=160^{\circ}$

$$
\therefore \quad \begin{aligned}
& (2 n-4) \times 90^{\circ} \\
n & =160^{\circ} \\
180 n-360^{\circ} & =160 n \\
180 n-160 n & =360^{\circ}
\end{aligned}
$$

$$
n=\frac{360^{\circ}}{20}
$$

$$
n=18
$$

(ii) $150^{\circ}$

Let no. of sides of regular polygon be $n$
Each interior angle $=150^{\circ}$

$$
\begin{aligned}
& \therefore \quad \frac{(2 n-4) \times 90^{\circ}}{n}=150^{\circ} \\
& 180 n-360^{\circ}=150 n \\
& 180 n-150 n=360^{\circ} \\
& 30 n=360^{\circ} \\
& n=\frac{360^{\circ}}{30} \\
& n=12
\end{aligned}
$$

Question 3.
Find number of sides in a regular polygon, if its each exterior angle is :
(i) $30^{\circ}$
(ii) $36^{\circ}$

Solution:
(i) $30^{\circ}$

Let number of sides $=n$

$$
\begin{aligned}
& \therefore \quad \frac{360^{\circ}}{n}=30^{\circ} \\
& \\
& n=\frac{360^{\circ}}{30^{\circ}} \\
& \\
& n=12 \\
& \text { (ii) } 36^{\circ} \\
& \\
& \quad \text { Let number of sides }=n \\
& \therefore \quad \\
& \quad \frac{360^{\circ}}{n}=36^{\circ} \\
& \\
& \\
& n=\frac{360^{\circ}}{36^{\circ}} \\
& \\
& n=10
\end{aligned}
$$

Question 4.
Is it possible to have a regular polygon whose each interior angle is :
(i) $135^{\circ}$
(ii) $155^{\circ}$

Solution:
(i) $135^{\circ}$

No. of sides $=n$
Each interior angle $=135^{\circ}$
$\therefore \frac{(2 n-4) \times 90^{\circ}}{n}=135^{\circ}$
$180 n-360^{\circ}=135 n$
$180 n-135 n=360^{\circ}$
$n=\frac{360^{\circ}}{45^{\circ}}$
$n=8$
Which is a whole number.
Hence, it is possible to have a regular polygon whose interior angle is $135^{\circ}$.
(ii) $155^{\circ}$

No. of sides $=n$
Each interior angle $=155^{\circ}$
$\therefore \quad \frac{(2 n-4) \times 90^{\circ}}{n}=155^{\circ}$
$180 n-360^{\circ}=155 n$
$180 n-155 n=360^{\circ}$
$25 n=360^{\circ}$
$n=\frac{360^{\circ}}{25^{\circ}}$
$n=\frac{72^{\circ}}{5}$
Which is not a whole number.
Hence, it is not possible to have a regular polygon having interior angle is of $138^{\circ}$.

## Question 5.

Is it possible to have a regular polygon whose each exterior angle is :
(i) $100^{\circ}$
(ii) $36^{\circ}$

Solution:
(i) $100^{\circ}$

Let no. of sides $=n$
Each exterior angle $=100^{\circ}$

$$
=\frac{360^{\circ}}{n}=100^{\circ}
$$

$\therefore n=\frac{360^{\circ}}{100^{\circ}}$
$n=\frac{18}{5}$
Which is not a whole number.
Hence, it is not possible to have a regular polygon whose each exterior angle is $100^{\circ}$.
(ii) $36^{\circ}$

Let number of sides $=n$
Each exterior angle $=36^{\circ}$

$$
=\frac{360^{\circ}}{n}=36^{\circ}
$$

$\therefore n=\frac{360^{\circ}}{36^{\circ}}$
$n=10$
Which is a whole number.
Hence, it is possible to have a regular polygon whose each exterior angle is of $36^{\circ}$.

Question 6.
The ratio between the interior angle and the exterior angle of a regular polygon is 2:1. Find:
(i) each exterior angle of this polygon.
(ii) number of sides in the polygon.

Solution:
(i) Interior angle : exterior angle $=2: 1$
$\therefore$ Let interior angle $=2 x^{\circ}$ and exterior angle $=x^{\circ}$


$$
\therefore 2 x^{\circ}+x^{\circ}=180^{\circ}
$$

$$
3 x^{\circ}=180^{\circ}=x=\frac{180^{\circ}}{3}=60^{\circ}
$$

(ii) $x=60$
$\therefore$ Each exterior angle $=60^{\circ}$

$$
\therefore \quad \frac{360^{\circ}}{n}=60^{\circ}
$$

$$
n=\frac{360^{\circ}}{60^{\circ}}=6 \text { sides }
$$

