Fundamental Concepts

IMPORTANT POINTS

1. Algebra : Algebra is a generalized form of Arithmetic. In Arithmetic, we use numbers, such as : 3, $-8,0.63$, etc., each of which has one definite value ; whereas in Algebra, we use letters along with numbers.
For Example : $5 x, 3 x-4,7 a+b, 3 y-5 x, x+3 y-9 z$, etc.
The letters used in Algebra are called variables or literal numbers or simply literals.
2. Signs and Symbols: In Algebra, the signs,,$+- x$ and \div are used with the same meaning as in Arithmetic.
Following sign and symbols are frequently used in algebra and have the same meanings as they have in any other branch of Mathematics.
= means, "is equal to"
\# means, "is not equal to"
< means, "is less than" > means, "is greater than"
\nless means, "is not less than"
\ngtr means, "is not greater than"
\therefore means, "therefore"
\because means, "because" or "since"
~ means, "difference between"
\Rightarrow means, "implies that".
3. To Write a Given Statement in Algebraic Form

Statement

(i) x subracted from 6 is less than y
(ii) y divided by 4 equals 3
(iii) z increased by $3 x$ is 26

Conversely,

Algebraic Form
(i) $x+y=6$
(ii) $b-5=x$
(iii) $6 x>7$
(iv) $\frac{6}{y}<3$

Algebraic Form

$6-x<y$
$\frac{y}{4}=3$
$z+3 x=26$

Statement

x plus y is equal to 6 or, sum of x and y is equal to 6
b minus 5 is equal to x or, b decreased by 5 is equal to x or, b exceeds 5 by x
6 multiplied by x is greater than 7 or, product of 6 and x is greater than 7

6 divided by y is less than 3 .

EXERCISE 18(A)

Question 1.

Express each of the following statements in algebraic form :
(i) The sum of 8 and x is equal to y.
(ii) x decreased by 5 is equal to y.
(iii) The sum of 2 and x is greater than y.
(iv) The sum of x and y is less than 24 .
(v) 15 multiplied by m gives $3 n$.
(vi) Product of 8 and y is equal to $3 x$.
(vii) 30 divided by b is equal to p.
(viii) z decreased by $3 x$ is equal to y.
(ix) 12 times of x is equal to $5 z$.
(x) 12 times of x is greater than $5 z$.
(xi) 12 times of x is less than $5 z$.
(xii) $3 z$ subtracted from 45 is equal to y.
(xiii) $8 x$ divided by y is equal to $2 z$.
(xiv) $7 y$ subtracted from $5 x$ gives $8 z$.
(xv) $7 y$ decreased by $5 x$ gives $8 z$.

Solution:

	(i) $8+x=y$
(iii) $2+x>y$	(ii) $x-5=y$
(v) $15 \times m=3 n$	(iv) $x+y<24$
(vii) $30 \div b=p$	(viii) $z-3 x y=3 x$
(ix) $12 \times x=5 z$	(x) $12 \times x>5 z$
(xi) $12 \times x<5 z$	(xii) $45-3 z=y$
(xiii) $8 x \div y=2 z$	(xiv) $5 x-7 y=8 z$
(xv) $7 y-5 x=8 z$	

Question 2.

For each of the following algebraic expressions, write a suitable statement in words:
(i) $3 x+8=15$
(ii) $7-y>x$
(iii) $2 y-x<12$
(iv) $5 \div z=5$
(v) $a+2 b>18$
(vi) $2 x-3 y=16$
(vii) $3 a-4 b>14$
(viii) $b+7 a<21$
(ix) $(16+2 a)-x>25$
(x) $(3 x+12)-y<3 a$

Solution:

(i) $3 x$ plus 8 is equal to 15
(ii) 1 decreased by y is greater than x
(iii) 2 y decreased by x is less than 12
(iv) 5 divided by z is equal to 5
(v) a increased by $2 b$ is greater than 18
(vi) $2 x$ decreased by $3 y$ is equal to 16
(vii) 3 a decreased by $4 b$ is greater than 14
(viii) b increased la is less than 21
(ix) The sum of 16 and 2 a decreased by x is greater than 25
(x) The sum of $3 x$ and 12 decreased by y is less than 3a.

EXERCISE 18(B)

Question 1.
Separate the constants and the variables from each of the following:
$6,4 y,-3 x, \frac{5}{4}, \frac{4}{5} x y$,
$a z, 7 p, 0, \frac{9 x}{y}, \frac{3}{4 x},-\frac{x z}{3 y}$

Solution:

Constants $6, \frac{5}{4}, 0$
Variables $4 y,-3 x, \frac{4}{5} x y, a z, 7 p$,

$$
\frac{9 x}{4}, \frac{3}{4 x},-\frac{x z}{3 y}
$$

Question 2.

Group the like terms together :
(i) $4 x,-3 y,-x, \frac{2}{3} x, \frac{4}{5} y$ and y.
(ii) $\frac{2}{3} x y,-4 y x, 2 y z, \frac{-2}{3} y z, \frac{z y}{3}$ and $y x$.
(iii) $-a b^{2}, b^{2} a^{2}, 7 b^{2} a,-3 a^{2} b^{2}$ and $2 a b^{2}$
(iv) $5 a x,-5 b y, \frac{b y}{7}, 7 x a$ and $\frac{2 a x}{3}$.

Solution:

(i) $4 x,-x, \frac{2}{3} x$

$$
\text { and }-3 y, \frac{4}{5} y, y
$$

(ii) $\frac{2}{3} x y,-4 y \mathrm{x}, y x$
and $2 y z, \frac{-2}{3} y z, \frac{z y}{3}$
(iii) $-a b^{2}, 7 b^{2} a, 2 a b^{2}$
and $b^{2} a^{2},-3 a^{2} b^{2}$
(iv) $5 a x, 7 x a$ and $\frac{2 a x}{3}$
and $-5 b y, \frac{b y}{7}$

Question 3.
State whether true or false :
(i) 16 is a constant and y is a variable but 16y is variable.
(ii) $5 x$ has two terms 5 and x.
(iii) The expression $5+x$ has two terms 5 and x
(iv) The expression $2 x^{2}+x$ is a trinomial.
(v) $a x^{2}+b x+c$ is a trinomial.
(vi) $8 x a b$ is a binomial.
(vii) $8+a b$ is a binomial.
(viii) $x^{3}-5 x y+6 x+7$ is a polynomial.
(ix) $x^{3}-5 x y+6 x+7$ is a multinomial.
(x) The coefficient of x in $5 x$ is $5 x$.
(xi) The coefficient of $a b$ in $-a b$ is -1 .
(xii) The coefficient of y in $-3 x y$ is -3

Solution:
(i) True
(ii) False
(iii) True
(iv) False
(v) True
(vi) False
(vii) True
(viii) True
(ix) True
(x) False
(xi) True
(xii) False

Question 4.

State the number of terms in each of the following expressions:
(i) $2 a-b$
(ii) $3 \times x+\frac{a}{2}$
(iii) $3 x-\frac{x}{p}$
(iv) $a \div x \times b+c$
(v) $3 x \div 2+y+4$
(vi) $x y \div 2$
(vii) $x+y \div a$
(viii) $2 x+y+8 \div y$
(ix) $2 \times a+3 \div b+4$

Solution:
(i) 2 terms
(ii) 2 terms
(iii) 2 terms
(iv) 2 terms
(v) 3 terms
(vi) 2 term
(vii) 2 terms
(viii) 3 terms
(ix) 3 terms

Question 5.
State whether true or false:
(i) $x y$ and $-y x$ are like terms.
(ii) $x^{2} y$ and $-y^{2} x$ are like terms.
(iii) a and $-a$ are like terms.
(iv) - ba and 2ab are unlike terms.
(v) 5 and $5 x$ are like terms.
(vi) $3 x y$ and $4 x y z$ are unlike terms.

Solution:
(i) True
(ii) False
(iii) True
(iv) False
(v) False
(vi) True

Question 6.

For each expression, given below, state whether it is a monomial, or a binomial or a trinomial.
(i) $x y$
(ii) $x y+x$
(iii) $2 x \div y$
(iv) $-a$
(v) $a x^{2}-x+5$ (vi) $-3 b c+d$
(vii) $1+x+y$ (viii) $1+x \div y$ (ix) $x+x y-y^{2}$

Solution:

(i) Monomial
(ii) Binomial
(iii) Monomial
(iv) Monomial
(v) Trinomial
(vi) Binomial
(vii) Trinomial
(viii) Binomial
(ix) Trinomial

Question 7.

Write down the coefficient of x in the following monomial :
(i) x
(ii) $-x$
(iii) $-3 x$
(iv) $-5 a x$
(v) $\frac{3}{2} x y$
(vi) $\frac{a x}{y}$

Solution:
(i) 1
(ii) -1
(iii) - 3
(iv) $-5 a$
(v) $\frac{3}{2} y$
(vi) $\frac{a}{y}$

Question 8.
Write the coefficient of :
(i) x in $-3 x y^{2}$
(ii) x in $-a x$
(iii) y in $-y$
(iv) y in $\frac{2}{a} y$
(v) $x y$ in $-2 x y z$
(vi) $a x$ in $-a x y^{2}$
(vii) $x^{2} y$ in $-3 a x^{2} y$ (viii) $x y^{2}$ in $5 a x y^{2}$

Solution:
(i) $-3 y^{2}$
(ii) $-a \quad$ (iii) -1
(iv) $\frac{2}{a}$
$\begin{array}{ll}\text { (v) }-2 z & (v i)-y^{2}\end{array}$
(vii) $-3 a$
(viii) $5 a$

Question 9.
State the numeral coefficient of the following monomials :
(i) $5 x y$
(ii) $a b c$
(iii) $5 p q r$
(iv) $\frac{-2 x}{y}$
(v) $\frac{2}{3} x y^{2}$ (vi) $\frac{-15 x y}{2 z}$
(vii) $-7 x \div y$
(viii) $-3 x \div(2 y)$

Solution:
(i) 5
(ii) 1
(iii) 5
(iv) -2
(v) $\frac{2}{3}$
(vi) $-\frac{15}{2}$
(vii) $-7 \div 1=-7($ viii $)-3 \div 2=-\frac{3}{2}$

Question 10.

Write the degree of each of the following polynomials :
(i) $x+x^{2}$
(ii) $5 x^{2}-7 x+2$
(iii) $x^{3}-x^{8}+x^{10}$
(iv) $1-100 x^{20}$
(v) $4+4 x-4 x^{3}$
(vi) $8 x^{2} y-3 y^{2}+x^{2} y^{5}$
(vii) $8 z^{3}-8 y^{2} z^{3}+7 y z^{5}$
(viii) $4 y^{2}-3 x^{3}+y^{2} x^{7}$

Solution:
(i) 2
(ii) 2
(iii) 10
(iv) 20
(v) 3
(vi) $8 x^{2} y-3 y^{2}+x^{2} y^{5}$

Sum of the powers of the term $8 x^{2} y=2+1=3$
Sum of the powers of the term $3 y^{2}=2$
Sum of the powers of the term $x^{2} y^{5}=2+5=7$
\therefore The degree of given polynomial $=7$
(vii) $8 z^{3}-8 y^{2} z^{3}+7 y z^{5}$

Sum of the powers of the term $8 z^{3}=3$
Sum of the powers of the term $8 y^{2} z^{3}=2+3=5$
Sum of the powers of the term $7 y z^{5}=1+5=6$
\therefore The degree of given polynomial $=6$
(viii) $4 y^{2}-3 x^{3}+y^{2} x^{7}$

Sum of the powers of the term $4 y^{2}=2$
Sum of the powers of the term $3 x^{3}=3$
Sum of the powers of the term $y^{2} x^{7}=2+7=9$
\therefore The degree of given polynomial $=9$

Question 1.

Express each of the following statements in algebraic form :
(i) The sum of $3 x$ and $4 y$ is 8 .
(ii) $5 x$ decreased by 7 gives y.
(iii) 31 added to $4 x$ gives $6 x$.
(iv) $3 x$ subtracted from 89 gives 44 .

Solution:
(i) $3 x+4 y=8$
(ii) $5 x-7=y$
(iii) $4 x+37=6 x$
(iv) $89-3 x=44$

Question 2.

Group the like terms :
(i) $7 y, 3 x,-8 y,-x$ and $\frac{x}{5}$
(ii) $3 x^{2},-5 x^{3},-x^{2}, 5 x^{2}$ and $8 x^{3}$
(iii) $x^{2} y^{3},-5 x^{3} y^{2}, 8 x^{3} y^{2},-4 x^{2} y^{3}$ and $-x^{2} y^{3}$

Solution:

(i) $3 x,-x, \frac{x}{5}$
and $7 y,-8 y$
(ii) $3 x^{2},-x^{2}, 5 x^{2}$
and $-5 x^{3}, 8 x^{3}$
(iii) $x^{2} y^{3},-4 x^{2} y^{3},-x^{2} y^{3}$
and $-5 x^{3} y^{2}, 8 x^{3} y^{2}$

Question 3.

Write the number of terms in each of the following polynomials :
(i) $5+4 x \div 2$
(ii) $5+4 x+2 y$
(iii) $8 x^{2}-4 x+7$
(iv) $\frac{x}{5}+\frac{x^{2}}{7}-\frac{x^{3}}{8}-\frac{1}{4}$
(v) $6 x^{2} \div x-18 \div 9+x^{2}$

Solution:

(i) 2 terms
(ii) 3 terms
(iii) 3 terms
(iv) 4 terms
(v) 3 terms

Question 4.
For each expression, given below, state whether it is a monomial, or a binomial or a trinomial:
(i) $x+y$
(ii) $5 x-4 y$
(iii) $7 x^{2}+5 x+8$
(iv) $64+3 \div 6$
(v) $9 \div a \times b$
(vi) $8 a \div b$

Solution:
(i) binomial
(ii) binomial
(iii) trinomial
(iv) $6 \mathrm{a}+3 \div \mathrm{b}=6 \mathrm{a}+\frac{3}{b}$

It has two terms
It is binomial
(v) $9 \div \mathrm{a} \times \mathrm{b}=\frac{9 b}{a}$

It has one term
It is monomial.
(vi) monomial

Question 5.
Write the coefficient of $x 2 y$ in :
(i) $-7 x^{2} y z$
(ii) $8 a b x^{2} y$
(iii) $-x^{2} y$

Solution:
(i) $-7 z$
(ii) $8 a b$
(iii) -1

Question 6.
Write the coefficient of :
(i) x^{2} in $-8 x^{2} y$
(ii) y in $-4 y$
(iii) x in $-x y^{2}$

Solution:
(i) $-8 y$
(ii) -4
(iii) $-y^{2}$

Question 7.
Write the numeral coefficient in :
(i) $7 x^{2} y$
(ii) $\frac{2 x}{3}$
(iii) $-\frac{5}{4} x y^{2} z$

Solution:

(i) 7
(ii) $\frac{2}{3}$
(iii) $-\frac{5}{4}$

Question 8.

Write the degree of each of the following polynomials :
(i) $x^{5}-6 x^{8}+x$ (ii) $4 x^{3}-x^{4}$
(iii) $4-x^{2}$
(iv) $x-1$
(v) $x^{2}+x-x^{3}$
(vi) $x^{3}-8 x y^{2}+x^{3} y^{3}$
(vii) $x^{7}-6 y^{4}$
(viii) $3 y^{3}-2 y^{2} z^{4}$
(ix) $100 x^{8}-8 x^{100}$

Solution:

(i) 8
(ii) 4
(iii) 2
(iv) 1
(v) 3
(vi) $x^{3}-8 x y^{2}+x^{3} y^{3}$
s of p if t term $x^{3}=3$
sum of the power of term $8 x y^{2}=1+2=3$
sum of the power of term $x^{3} y^{3}=3+3=6$

$$
x^{3} y^{3}=3+3=6
$$

\therefore The degree of the given polynomial $=6$.
(vii) $x^{7}-6 y^{4}$
sum of the power of term $x^{7}=7$
sum of the power of term $6 y^{4}=4$
\therefore Degree of the given polynomial $=7$.
(viii) $3 y^{3}-2 y^{2} z^{4}$
sum of the power of term $3 y^{3}=3$
sum of the power of term $2 y^{2} z^{4}=2+4=6$
\therefore Degree of the given polynomial $=6$.
(ix) $100 x^{8}-8 x^{100}$
sum of the power of term $x^{8}=8$
sum of the power of term $8 x^{100}=100$
\therefore The degree of the given polynomial $=100$.

Question 9.

Write each statement, given below in algebraic form :
(i) 28 more than twice of x is equal to 45 .
(ii) $3 y$ reduced by $5 z$ is greater than $8 x$.
(iii) $6 x$ divided by $13 y$ is less than 17 .
(iv) 9 multiplied by $5 x$ is equal to $2 y$.

Solution:
(i) 28 more than twice of x is equal to 45
i.e. $2 x+28=45$
(ii) $3 y$ reduced by $5 z$ is greater than $8 x$

$$
3 y-5 z>8 x
$$

(iii) $6 x$ divided by $13 y$ is less than $17=\frac{6 x}{13 y}<17$
(iv) 9 multiplied with $5 x$ is equal to $2 y$

$$
9 \times 5 x=2 y
$$

Question 10.

State whether true or false :
(i) If 23 is a constant and x is a variable, $23+x$ is constant.
(ii) If 23 is a constant and x is a variable, $23 x$ is a variable.
(iii) If y is a variable and 57 is a constant, $y-57$ is a variable.
(iv) If $3 x$ and $2 y$ are variable; each of $3 x+2 y, 3 x-2 y, 3 x \div 2 y$ and $3 x x 2 y$ is a variable. Solution:
(i) False

Sum of a constant and a variable is also variable.
(ii) True

Product of a constant and a variable is variable.
(iii) True

Constant subtracted from a variable is also variable.
(iv) True

Sum, difference product or quotient of two variables is also variable.

