Constructions of Quadrilaterals

Ex No: 20.1
Solution 1:
(i) $\mathrm{AB}=4.6 \mathrm{~cm}, \mathrm{BD}=5 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}, \mathrm{CD}=4.2 \mathrm{~cm}$ and $\angle \mathrm{A}=90^{\circ}$

Steps of Construction:

1) Draw a line segment $A B=4.6 \mathrm{~cm}$
2) With A as centre, draw a ray making an angle of 90° with $A B$.
3) With B as centre and radius equal to 5 cm cut an arc on the ray from A and mark it as D.
4) With D as centre and radius 4.2 cm cut an arc on right side of $A D$.
5) With A as centre and radius 6 cm cut an arc which meets the arc from D at point C .
6) Join BC.
7) $A B C D$ is the required quadrilateral.
(ii) $\mathrm{AB}=7.2 \mathrm{~cm}, \mathrm{BC}=5.8 \mathrm{~cm}, \mathrm{CD}=6.3 \mathrm{~cm}, \mathrm{AD}=4.3 \mathrm{~cm}$ and $\angle \mathrm{A}=75^{\circ}$

Steps of Construction:

1) Draw a line segment $A B=7.2 \mathrm{~cm}$
2) With A as centre draw rays X and Y to make angles 90° and 60° with $A B$. Then bisect the angle between them to make an angle of 75° with $A B$.
3) With A as centre and radius 4.3 cm cut an arc on line segment making 75° angles with $A B$ and mark it as D.
4) With D and B as centres and radii of 6.3 and 5.8 cm respectively, draw arcs cutting each other at C .
5) Join DC and BC.
6) $A B C D$ is the required quadrilateral.
(iii) $\mathrm{AB}=4.8 \mathrm{~cm}, \mathrm{AC}=5.8 \mathrm{~cm}, \mathrm{AD}=3.6 \mathrm{~cm}, \angle \mathrm{~A}=105^{\circ}$ and $\angle \mathrm{B}=60^{\circ}$

Steps of Construction:

1) Draw a line segment $A B=4.8 \mathrm{~cm}$.
2) With A as centre draw rays X and Y to make angles 60° and 90° with $A B$ produced. Then bisect the angle between them to make an angle of 105° with AB .
3) With A as centre and radius 3.6 cm cut an arc on line segment making 105° angles with $A B$ and mark it as D.
4) With B as centre draw a ray making and angle of 60° with $A B$.
5) With A as centre and radius 5.8 cm cut an arc on the ray from B and mark the point as C
6) Join BC and DC.
7) $A B C D$ is the required quadrilateral.
(iv) $\mathrm{AD}=\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=3.8 \mathrm{~cm}, \mathrm{CD}=3.5 \mathrm{~cm}$, and $\angle \mathrm{BAD}=45^{\circ}$

Steps of Construction:

1) Draw a line segment $A B=5 \mathrm{~cm}$.
2) With A as centre draw an angle of 90° and bisect it to form $\angle B A D=45^{\circ}$
3) With A as centre and radius 5 cm cut an arc on the ray making an angle of 45° with $A B$ and mark it ad D.
4) With D and B as centre and radii as 3.5 cm and 3.8 cm respectively draw arcs intersecting each other at C .
5) Join DC and BC.
6) $A B C D$ is the required quadrilateral.

Solution 2:

(i) $\mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, \mathrm{CD}=3.5 \mathrm{~cm}, \mathrm{AD}=4.4 \mathrm{~cm}$ and $\mathrm{AD} \| \mathrm{BC}$.

Steps of construction:

1) Draw $\mathrm{BC}=6 \mathrm{~cm}$
2) From $B C$, cut $B E=A D=4.4 \mathrm{~cm}$
3) Draw a triangle $D E C$, such that $D E=A B=3.5 \mathrm{~cm}$ and $C D=3.5 \mathrm{~cm}$
4) Taking B and D as centres and radii 3.5 cm and 4.4 cm respectively, draw arcs cutting each other at A.
5) Join $A B$ and $A D$.
6) $A B C D$ is the required trapezium.
(ii) $\mathrm{AB}=4.6 \mathrm{~cm}, \mathrm{BC}=6.4 \mathrm{~cm}, \mathrm{CD}=5.6 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$ and $\mathrm{AD} \| \mathrm{BC}$.

Steps of construction:

1) Draw $B C=6.4 \mathrm{~cm}$
2) With B as centre, draw an angle of 60° and cut an arc with radius 4.6 cm . Mark the point as A.
3) From point A, draw a line segment parallel to $B C$.
4) With C as centre and radius 5.6 cm cut an arc on the line segment parallel to $B C$. Mark the point as D.
5) Join CD.
6) $A B C D$ is the required trapezium.

Solution 3:
(i) $\mathrm{AB}=5.5 \mathrm{~cm}, \mathrm{BC}=3.5 \mathrm{~cm}, \angle \mathrm{~B}=75^{\circ}$

Since opposite sides of a parallelogram are equal;
$\mathrm{AB}=\mathrm{DC}=5.5 \mathrm{~cm}$ and $\mathrm{BC}=\mathrm{AD}=3.5 \mathrm{~cm}$
Steps of Construction:

1) Taking $\mathrm{AB}=5.5 \mathrm{~cm}, \mathrm{BC}=3.5 \mathrm{~cm}$ and $\angle \mathrm{B}=75^{\circ}$, construct triangle ABC .
2) Now, construct triangle $A D C$.
3) $A B C D$ is the required parallelogram.
(ii) $\mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}$ and $\mathrm{BD}=5.2 \mathrm{~cm}$

Steps of construction:

1) Since diagonals of a parallelogram bisect each other; construct triangle OBC, such that:

$$
\begin{aligned}
& \mathrm{OB}=\frac{1}{2} \mathrm{BD}=\frac{1}{2} \times 5.2 \mathrm{~cm}=2.6 \mathrm{~cm} \\
& \mathrm{OC}=\frac{1}{2} \mathrm{AC}=\frac{1}{2} \times 4 \mathrm{~cm}=2 \mathrm{~cm}
\end{aligned}
$$

And $A B=3.5 \mathrm{~cm}$.
2) Produce $A O$ up to C, such that $A O=O C=2 \mathrm{~cm}$

And produce $O B$ up to D, such that $O B=O D=2.6 \mathrm{~cm}$.
3) Join $B C, A D$ and $C D$.
4) $A B C D$ is the required parallelogram.

Solution 4:

Steps of Construction:

1) Draw $P Q=6.4 \mathrm{~cm}$.
2) At Q, draw $Q X$ perpendicular to $P Q$.
3) From $Q X$, cut $Q T=3 \mathrm{~cm}=$ distance between $P Q$ and $S R$.
4) Through T, draw a perpendicular to $Q X$ to get $Z Y$ parallel to $P Q$.
5) With P as centre and radius $=Q R=4 \mathrm{~cm}$, draw an arc which cuts $Z Y$ at S.
6) With Q as centre and radius $=4 \mathrm{~cm}$, draw an arc which cuts $Z Y$ at R.
7) $A B C D$ is the required parallelogram.

Solution 5:

Steps of construction:

1) Draw line $A B=4.5 \mathrm{~cm}$.
2) At B, draw $B X$ perpendicular to $A B$.
3) From $B X$, cut $B R=3.2 \mathrm{~cm}=$ distance between $A B$ and $C D$.
4) Through R, draw a line perpendicular to $B X$ to get $Q R$ parallel to $A B$.
5) With A as centre, draw a ray $A P$ making an angle of 105° with $A B$ and meeting QR at D.
6) With B as centre, draw an arc with radius $=A D$ on $Q R$ and mark it as C.
7) Join BC.
8) $A B C D$ is the required parallelogram.

Solution 6:

In rhombus length of all the sides is equal.
Steps of Construction:

1) Draw a line segment $A B=3.8 \mathrm{~cm}$
2) At A, draw a ray making an angle of 60° with $A B$.
3) With A as centre and radius 3.8 cm cut an arc on the ray making an angle of 60° with AB . Mark the point as D .
4) With B and D as centres and radii 3.8 cm mark two arcs cutting each other at point C.
5) Join DC and BC.
6) $A B C D$ is the required rhombus.
7) On measuring $\mathrm{AC}=6.5 \mathrm{~cm}$

Solution 7:

The length of all the sides of rhombus is equal.
Hence, perimeter $=$ side $\times 4$

$$
\Rightarrow \text { Side }=\text { perimeter } / 4=16 / 4=4 \mathrm{~cm}
$$

Steps of construction:

1) Draw $\mathrm{BD}=6.2 \mathrm{~cm}$.
2) With B as centre and radius 4 cm , draw two arcs one above $B D$ and the other below BD.
3) With D as centre and radius 4 cm draw two arcs one above $B D$ and the other below BD intersecting the arcs of Step 2 in A and C respectively.
4) Join $A B, B C, C D$ and $A D$.
5) $A B C D$ is the required rhombus.

Solution 8:

The diagonals of a rhombus bisect each other.
Steps of Construction:

1) Draw $\mathrm{AC}=7.4 \mathrm{~cm}$
2) Draw perpendicular bisector to $A C$ which cuts $A C$ at O.
3) From this perpendicular cut $O D$ and $O B$ such that

$$
\mathrm{OD}=\mathrm{OB}=\frac{1}{2} \mathrm{BD}=\frac{1}{2} \times 6 \mathrm{~cm}=3 \mathrm{~cm}
$$

4) Join $A B, B C, C D$ and $A D$
5) $A B C D$ is the required rhombus.

Solution 9:

In rhombus all sides are equal.

1) Draw $A C=6 \mathrm{~cm}$.
2) With A as centre and radius 5 cm , draw two arcs one above $A C$ and the other below AC.
3) With C as centre and radius 5 cm draw two arcs one above AC and the other below $A C$ intersecting the arcs of Step 2 in B and D respectively.
4) Join $A B, B C, C D$ and $A D$.
5) $A B C D$ is the required rhombus.
6) On measuring, $\mathrm{AD}=5 \mathrm{~cm}$ and $\mathrm{DB}=8 \mathrm{~cm}$.

Solution 10:

Sides of square are equal.
Steps of construction:

1) Draw $P Q=4.3 \mathrm{~cm}$.
2) Construct $\angle \mathrm{PQT}=90^{\circ}$ at Q .
3) From $Q T$ cut off $Q R=4.3 \mathrm{~cm}$.
4) From P and R, draw two arcs of radii 4.3 cm each to cut each other at S.
5) Join PS and RS.
6) $P Q R S$ is the required square.

Solution 11:

The diagonals of a square are equal and bisect each other.
Steps of Construction:

1) Draw $\mathrm{AC}=6.5 \mathrm{~cm}$
2) Draw perpendicular bisector to $A C$ which cuts $A C$ at O.
3) From this perpendicular cut $O D$ and $O B$ such that

$$
\mathrm{OD}=\mathrm{OB}=\frac{1}{2} \mathrm{BD}=\frac{1}{2} \times 6.5 \mathrm{~cm}=3.25 \mathrm{~cm}
$$

4) Join $A B, B C, C D$ and $A D$
5) $A B C D$ is the required square.

Solution 12:

Sides of square are equal.

$$
\begin{aligned}
& \Rightarrow \text { Perimeter }=4 \times \text { side } \\
& \Rightarrow \text { Side }=\text { perimeter } / 4=18 / 4=4.5 \mathrm{~cm}
\end{aligned}
$$

Steps of construction:

1) Draw $P Q=4.5 \mathrm{~cm}$.
2) Construct $\angle \mathrm{PQT}=90^{\circ}$ at Q .
3) From $Q T$ cut off $Q R=4.5 \mathrm{~cm}$.
4) From P and R, draw two arcs of radii 4.5 cm each to cut each other at S.
5) Join PS and RS.
6) $P Q R S$ is the required square.

Solution 13:

Steps of construction:

1) Draw $P Q=5 \mathrm{~cm}$.
2) Construct $\angle \mathrm{PQT}=90^{\circ}$ at Q .
3) From $Q T$ cut off $Q R=5 \mathrm{~cm}$.
4) From P and R, draw two arcs of radii 5 cm each to cut each other at S.
5) Join PS and RS.
6) $P Q R S$ is the required square.

Solution 14(a):
Steps of construction:
Draw AD $=3.2 \mathrm{~cm}$
Draw $\angle X A D=90^{\circ}$.
With D as centre and radius $B D=5.5 \mathrm{~cm}$, draw an arc to cut $A X$ at point B. Join BD.
With B as centre and radius 3.2 cm draw an arc and with D as centre and radius $=A B$, draw another arc to cut the previous arc at C.
Join $B C$ and $C D$.
Thus, $A B C D$ is the required rectangle.

Solution 14(b):
Steps of construction:
Draw BC = 6.2 cm
Through B, draw $B P$ such that $\angle B=90^{\circ}$
From BP, cut BA = 5 cm
With A and C as centres and radii 6.2 cm and 5 cm respectively, draw arcs cutting each other at D.
Join AD and CD.
Thus, $A B C D$ is the required triangle.

Solution 15:

Steps of Construction:

1) Draw $\mathrm{AC}=5.8 \mathrm{~cm}$ and locate its mid-point O .
2) Draw line $B O D$ such that $\angle D O C=45^{\circ}$ and $O B=O D=\frac{1}{2} B D=\frac{1}{2} \times 5.8 \mathrm{~cm}=$ 2.9 cm.
3) Join $A B, B C, C D$ and $D A$.
4) $A B C D$ is the required rectangle.

Solution 16:
Opposite sides of a rectangle are equal.
$\Rightarrow A B=C D$ and $B C=D A$

Perimeter of rectangle $=A B+B C+C D+D A$
$18 \mathrm{~cm}=A B+B C+A B+B C$
$18 \mathrm{~cm}=(6+B C+6+B C) \mathrm{cm}$
$(18-12) \mathrm{cm}=2 \mathrm{BC}$
$\mathrm{BC}=3 \mathrm{~cm}$
Therefore, $\mathrm{AB}=\mathrm{CD}=6 \mathrm{~cm}$ and $\mathrm{BC}=\mathrm{DA}=3 \mathrm{~cm}$

Steps of construction:

1) Draw a line segment $A B=6 \mathrm{~cm}$
2) On A and B draw perpendiculars $A X$ and $B Y$ to $A B$.
3) With A and B as centres and radii 3 cm draw arcs on $A X$ and BY. Mark them as D and C respectively.
4) Join CD.
5) $A B C D$ is the required rectangle.

Solution 17:

Steps of construction:

1) Draw a line segment $A B=6 \mathrm{~cm}$
2) On A and B draw perpendiculars $A X$ and $B Y$ to $A B$.
3) With A as centre, draw a line making an angle of 30° with $A B$ and intersecting BY at C.
4) With A as centre and radius $=B C$ cut an arc on $A X$. Mark it as D.
5) Join CD.
6) $A B C D$ is the required rectangle.

Solution 18(a):
Since area of rectangle $=21 \mathrm{~cm}^{2}$
And, length $=4.2 \mathrm{~cm}$
Breadth $=$ Area \div Length $=21 \div 4.2=5 \mathrm{~cm}$
Steps of construction:
Draw BC = 5 cm
Through B, draw $B P$ such that $\angle B=90^{\circ}$
From BP, cut BA = 4.2 cm
With A and C as centres and radii 5 cm and 4.2 cm respectively, draw arcs cutting each other at D.
Join AD and CD.

Thus, $A B C D$ is the required triangle.

Solution 18(b):
Since area of rectangle $=33.8 \mathrm{~cm}^{2}$
And, breadth $=6.5 \mathrm{~cm}$
Length $=$ Area \div Breadth $=33.8 \div 6.5=5.2 \mathrm{~cm}$
Steps of construction:
Draw BC $=6.5 \mathrm{~cm}$
Through B, draw $B P$ such that $\angle B=90^{\circ}$
From BP, cut BA $=5.2 \mathrm{~cm}$
With A and C as centres and radii 6.5 cm and 5.2 cm respectively, draw arcs cutting each other at D.
Join $A D$ and $C D$.
Thus, $A B C D$ is the required triangle.

Solution 19:

Steps of Construction:

1) Draw a circle with radius $=3.5 \mathrm{~cm}$.
2) Take a point A on the circle. With A as centre and radius 3.5 cm cut the circle at B and from B with radius 3.5 cm cut the circle at C and so on.
3) Join $A B, B C, C D, D E, E F, A F$
4) $A B C D E F$ is the required regular hexagon.

Solution 20:

Steps of Construction:

1) Draw $A B=4 \mathrm{~cm}$.
2) With centres A and B and radius 4 cm draw arcs to cut each other at O.
3) With centre O and the radius 4 cm cut the arcs in step 2 at C and F. Join $A F$, BC.
4) With centres C and F and radius 4 cm cut the arc drawn in step 3 at D and E. Join CD, DE and EF.
5) $A B C D E F$ is the required regular hexagon.
