Chapter 15. Similarity

Ex 15.1

Answer 1.

Answer 2.

Sol: In
$$\triangle PQR$$
, $MN | | QR$,
 \therefore By BPT $\frac{PM}{MQ} = \frac{PN}{NR}$
 $\frac{x}{x-2} = \frac{x+2}{x-2}$
 $\Rightarrow x^2 - x = x^2 - 4$
 $\Rightarrow x = 4$

Answer 3.

Given:- ΔABC ~ ΔPQR To find: - AC and QR Sol: AABC ~ APQR

$$\therefore \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$$
 (Similar sides of similar triangles)

$$\frac{6}{9} = \frac{9}{y} = \frac{x}{10.5}$$

$$\frac{6}{9} = \frac{9}{y}$$

$$\frac{6}{9} = \frac{\times}{10.5}$$

$$\Rightarrow 63 = 9x$$
$$\Rightarrow x = 7$$

$$\Rightarrow y = \frac{81}{6}$$

$$\Rightarrow x = 7$$

$$\Rightarrow$$
y = $\frac{27}{2}$

$$\Rightarrow$$
AC = 7cm

Answer 4.

Given: quadrilateral ABCD~quadrilateral PORS

To find: x, m and n

Sol: quadrilateral ABCD~quadrilateral PORS

x = 7.5 cm, m = 10 cm, n = 6.67 cm

Answer 5.

To find: AO, BO, CO,DO In ΔAOB and ΔCOD

 $\angle OAB = \angle ODC (90^{\circ}each)$

 $\angle AOB = \angle DOC$ (vertically opposite angles)

.: ΔAOB ~ΔDOC (AA corollary)

$$\therefore \frac{AO}{DO} = \frac{OB}{OC} = \frac{AB}{DC}$$

$$\frac{x}{20-x} = \frac{y}{25-y} = \frac{6}{9}$$

$$\frac{x}{20-x} = \frac{2}{3}, \frac{y}{25-y} = \frac{2}{3}$$

$$3x = 40 - 2x$$
, $3y = 50 - 2y$

$$5x = 40, 5y = 50$$

$$x = 8, y = 10$$

$$AO = 8cm, OB = 10cm$$

Answer 6.

Given: DE=6cm, AE=3.6cm, $\frac{AD}{DB} = \frac{2}{3}$, DE||BC

To find: BC and AC Sol: In ΔABC, DE||BC

∴By BPT
$$\frac{AD}{DB} = \frac{AE}{EC}$$

 $\frac{2}{3} = \frac{3.6}{\times}$
 $x = \frac{3.6 \times 3}{2}$
 $= 1.8 \times 3$
 $x = 5.4 = EC$
∴AC = 3.6 + 5.4 = 9cm
AC = 9cm

In $\triangle ADE$ and $\triangle ABC$ $\angle ADE = \angle ABC$ Similarly $\angle AED = \angle ACB$ (corresponding angles) $\therefore \triangle ADE \sim \triangle ABC$ (AA corollary)

$$\frac{AE}{AC} = \frac{DE}{BC}$$
 (Similar sides of angles)
$$\frac{3.6}{9} = \frac{6}{y}$$
$$y = \frac{9 \times 6}{3.6}$$
$$y = 15$$
$$BC = 15cm$$

Answer 7.

$$\frac{AD}{DB} = \frac{1.4}{4.2} = \frac{1}{3}$$
 --- (1)

$$\frac{AE}{EC} = \frac{1.8}{5.4} = \frac{1}{3}$$
 ----(2)

$$\frac{AD}{DB} = \frac{AE}{EC}$$

:.DE||BC (By converse of BPT)

Answer 8.

Sol:
$$\frac{AD}{DB} = \frac{4}{4.5} = \frac{8}{9}$$
 ---- (1)
 $\frac{AE}{EC} = \frac{6.4}{7.2} = \frac{8}{9}$ ---- (2)
From (1) and (2)

$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\therefore DE | |BC (By converse of BPT)$$

Answer 9.

To find:
$$\frac{Ar\Delta ABC}{Ar\Delta PQR} = \frac{AB^2}{PQ^2}$$
 The ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides
$$= \left(\frac{1.8}{2.1}\right)^2$$

$$= \left(\frac{6}{7}\right)^2$$

$$= \frac{36}{49}$$

Required ratio = 36:49

Answer 10.

Given: AD:PS=4:9 and ΔABC ~ ΔPQR

To find: $\frac{Ar.\Delta ABC}{Ar.\Delta PQR}$

Sol: $\frac{Ar.\Delta ABC}{Ar.\Delta PQR} = \frac{AB^2}{PQ^2}$ ----(1)

The ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides

In ΔBAD and ΔQPS

 $\angle B = \angle Q (\triangle ABC \sim \triangle PQR)$ $\angle AOB = \angle PSQ (90^{\circ} each)$

ΔBAD ~ ΔQPS (AA corollary)

 $\therefore \frac{AB}{PQ} = \frac{AD}{PS} ----(2) \text{ (Similar sides of similar triangles)}$

Using (1) and (2)

 $\frac{\text{Ar.}\Delta\text{ABC}}{\text{Ar.}\Delta\text{PQR}} = \frac{\text{AD}^2}{\text{PS}^2} = \left(\frac{4}{9}\right)^2 = \frac{16}{81}$

Required ratio is 16:81

Answer 11.

Given: ΔABC ~ΔDEF To find: Ar. of ΔDEF

Sol:
$$\frac{Ar.\Delta ABC}{Ar.\Delta DEF} = \frac{BC^2}{EF^2}$$

The ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides

$$\frac{54}{\text{Ar.}\Delta\text{DEF}} = \left(\frac{3}{4}\right)^{2}$$
$$\frac{54}{\text{Ar.}\Delta\text{DEF}} = \frac{9}{16}$$
$$\text{Ar.}\Delta\text{DEF} = \frac{54 \times 16}{9}$$
$$= 96\text{cm}^{2}$$

Answer 12.

Given: ΔABC ~ ΔXYZ

To find: YZ

Sol:
$$\frac{Ar.\Delta ABC}{Ar.\Delta XYZ} = \frac{BC^2}{YZ^2}$$
 the ra

(The ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides

$$\frac{9}{16} = \frac{(2.1)^2}{YZ^2}$$

Taking square root both sides,

$$\frac{3}{4} = \frac{2.1}{YZ}$$

$$YZ = \frac{2.1 \times 4}{3}$$

$$YZ = 2.8cm$$

Answer 13.

In right triangle ABC,

By Pythagoras Theorem, $AB^2 + BC^2 = AC^2$ $2 BC^2 = AC^2 ---(1) (::AB=BC)$

$$2 BC^2 = AC^2 --- (1) (::AB=BC$$

Given, ΔBCE ~ ΔACF

$$\frac{\text{Ar.}\Delta BCE}{\text{Ar.}\Delta ACF} = \frac{BC^2}{AC^2}$$

$$\left(\begin{array}{c} \text{The ratio of areas of two similar triangles is equal to} \\ \text{the ratio of square of their corresponding sides} \end{array}\right)$$

$$= \frac{BC^2}{AC^2}$$

$$= \frac{1}{2}$$

Required ratio is 1:2

Answer 14.

(a) If AN : AC = 5 : 8, find $ar(\Delta AMN)$: $ar(\Delta ABC)$

Given: $\frac{AN}{AC} = \frac{5}{8}$

To Find: Ar.AARC

In AAMN and AABC

∠AMN = ∠ ACB (corresponding angles))

ZABC =ZACB

∴ △AMIN ~ △ABC (AA corollary)

 $\frac{Ar.\Delta AMN}{Ar.\Delta ABC} = \frac{AN^2}{AC^2} \left(\begin{array}{c} \text{The ratio of areas of two similar triangles is equal to} \\ \text{the ratio of square of their corresponding sides.} \end{array} \right)$

$$=\left(\frac{5}{8}\right)^2$$

$$\frac{Ar.\Delta AMN}{Ar.\Delta ABC} = \frac{25}{64}$$

Required ratio is 25:64

(b) If
$$\frac{AB}{AM} = \frac{9}{4}$$
, find $\frac{Ar.(\text{trapeziumMBCN})}{Ar.(\Delta ABC)}$

ΔΑΜΝ ~ ΔΑΒC (proved above)

$$\therefore \frac{Ar.\Delta AMN}{Ar.\Delta ABC} = \frac{AM^2}{AB^2} = \left(\frac{4}{9}\right)^2 = \frac{16}{81}$$

Answer 15.

Given: $\frac{DE}{BC} = \frac{2}{7}$

To find: (Similar sides of similar triangles)

In $\triangle FDE$ and $\triangle FCB$ $\angle FDE = \angle FCB$

 \angle FED = \angle FBC (Alternate interior angles)

ΔFDE ~ ΔFCB (AA corollary)

 $\frac{\text{Ar.}\Delta\text{FDE}}{\text{Ar.}\Delta\text{FBC}} = \frac{\text{DE}^2}{\text{BC}^2} = \left(\frac{2}{7}\right)^2 = \frac{4}{49} \left(\frac{\text{The ratio of areas of two similar triangles is equal to}}{\text{the ratio of square of their corresponding sides}} \right)$

Answer 16.

Given: $\frac{PT}{TR} = \frac{5}{3}$,

To find : $\frac{Ar.(\Delta MTS)}{Ar.(\Delta MQR)}$

Sol: In ΔPST and ΔPRQ

 $\angle PST = \angle PQR$

 $\angle PTS = \angle PRQ$ (Corresponding angles)

: ΔPST ~ ΔPQR (AA corollary)

 $\therefore \frac{PT}{PR} = \frac{ST}{QR} = \frac{5}{8}$ (Similar sides of similar triangles)

Now, In Δ MTS and Δ MQR

 \angle MTS = \angle MQR (Alternate interior angles)

 \angle MST = \angle MRQ

.: ΔMTS ~ ΔMQR (AA corollary)

 $\therefore \quad \frac{\text{Ar.}(\Delta \text{MTS})}{\text{Ar.}(\Delta \text{MQR})} = \frac{\text{TS}^2}{\text{QR}^2} = \left(\frac{5}{8}\right)^2 = \frac{25}{64}$

(The ratio of areas of two similar triangles is equal to i.e. 25: 64 the ratio of square of their corresponding sides

Answer 17.

Given:
$$\frac{KL}{KT} = \frac{9}{5}$$

To find:
$$\frac{Ar.\Delta KLM}{Ar.\Delta KTP}$$

Sol: In
$$\triangle$$
KLM and \triangle KTP \angle KLM = \angle KTP (Given)

$$\angle$$
LKM = \angle TKP(Common)

$$\therefore \frac{\text{Ar.}\Delta\text{KLM}}{\text{Ar.}\Delta\text{KTP}} = \left(\frac{\text{KL}}{\text{KT}}\right)^2 = \left(\frac{9}{5}\right)^2 = \frac{81}{25}$$

i.e.,
$$81:25$$
 (The ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides

Answer 18.

In
$$\triangle$$
DEF and \triangle GHF,

$$\angle DEF = \angle GHF (90^{\circ} each)$$

$$\angle DFE = \angle GFH$$
 (Common)

ΔDEF ~ ΔGHF (AA corollary)

$$\therefore \frac{Ar.(VDEF)}{Ar.(VGHF)} = \frac{EF^2}{HF^2} ----(1)$$

(The ratio of areas of two similar triangles is equal to) the ratio of square of their corresponding sides

In right $\triangle DEF$, (By Pythagoras theorem)

$$DE^2 + EF^2 = DF^2$$

$$DE^{2} + EF^{2} = DF^{2}$$

 $EF^{2} = 10^{2} - 8^{2}$

$$EF^2 = 36$$

$$EF = 6$$

$$\frac{Ar.(VDEF)}{Ar.(VGHF)} = \left(\frac{6}{4}\right)^2 = \frac{9}{4}$$

Ex 15.2

Answer 1.

Scale= 1:500 1cm represents 500cm 500

$$\frac{500}{100} = 5m$$

1cm represents 5m

Length of model = $\frac{50}{5}$ = 10cm

Breadth of model = $\frac{40}{5}$ = 8cm

Height of model = $\frac{70}{5}$ = 14cm

Answer 2.

20cm represents 400m

1cm represesnts $\frac{400}{20}$ = 20cm

Width of model = $\frac{100}{20}$ = 5cm

Length of model = 20cm

Surface area of the deck of the model= 5cm imes 20cm

 $= 100 \, \text{cm}^2$

Answer 3.

Scale: - 1:500

1cm represents 500cm

$$=\frac{500}{100} = 5m$$

1cm represents 5m

(i) Actual length of ship = 60 × 5m

= 300 m

(ii) $1 \text{ cm}^2 \text{ represents } 5\text{m} \times 5\text{m} = 25\text{m}^2$

Deck area of the ship = 1500000m²

Deck area of the model = $\frac{1500000}{25}$ cm² = 60000cm²

(iii) $1 \text{ cm}^3 \text{ represents } 5\text{m} \times 5\text{m} \times 5\text{m} = 125 \text{ m}^3$

Volume of the model = $200 \, \text{cm}^3$

Volume of the ship = $200 \times 125 \,\text{m}^3$

 $= 25000 \,\mathrm{m}^3$

Answer 4.

15cm represents = 30m

1cm represents
$$\frac{30}{15} = 2m$$

 1 cm^2 represents $2 \text{m} \times 2 \text{m} = 4 \text{ m}^2$

Surface area of the model = 150 cm²

Actual surface area of aeroplane = $150 \times 2 \times 2 \, \text{m}^2$

$$= 600 \, \text{m}^2$$

50 m² is left out for windows

Area to be painted = 600 - 50

$$=50 \text{ m}^2$$

Cost of painting per $m^2 = Rs. 120$

Cost of painting $550 \text{ m}^2 = 120 \times 550$ = Rs. 66000

Answer 5.

1cm on map represents 12500m on land

1 cm represents 12.5km on land

Length of river on map = 54cm

Actual length of the river = 54×12.5

= 675.000km

=675km

Answer 6.

(i) Scale: - 1: 200000

:: 1cm represents 200000cm

$$=\frac{200000}{1000\times100}$$
 = $2km$

1cm represents 2km

(ii) 1cm represents 2 km

$$112^2 + 16^2$$
 represents $2 \times 2 = 4 \text{km}^2$

(iii)4km² is represented by km²

$$1 \text{km}^2$$
 is represented by $\frac{1}{4} \text{cm}^2$

$$20 \text{km}^2$$
 is represented by $\frac{1}{4} \times 20 \text{cm}^2 = 5 \text{cm}^2$

Area on map that represents the plot of land= 5cm²

Answer 7.

Actual area= 1872km²

Area on map represents 117 cm²

Let 1cm represents x km

 $\therefore 1 \text{cm}^2 \text{ represents } \times \times \times \text{ km}^2$

Actual area = $\times \times \times \times 117 \text{ km}^2$

$$1872 = \times^2 \times 117$$

$$x^2 = \frac{1872}{117}$$

$$x^2 = 16$$

:: 1cm represents 4 km

Length of coastline on map = 44cm

Actual length of coastline = $44 \times 4 \text{ km}$

 $= 176 \, \text{km}$

Answer 8.

Scale:- 1: 25000

:.1 cm represents 25000cm

$$= \frac{25000}{1000 \times 100} = 2.5 \text{km}$$

:.1cm represents 0.25km

Actual length of AB = 6×0.25

 $= 1.50 \, \text{km}$

Area of $\triangle ABC = \frac{1}{2} \times BC \times AB$

$$= \frac{1}{2} \times 8 \times 6 = 24 \text{cm}^2$$

1cm represents 0.25 km

 $1\,\text{cm}^2\,\text{represents}\,0.25\times\,0.25\text{km}^2$

The area of plot = $0.25 \times 0.25 \times 24 \text{km}^2$

 $= .0625 \times 24$

 $= 1.5 km^2$

Answer 9.

Scale: - 1: 25000

1 cm represents 25000cm

$$= \frac{25000}{1000 \times 100} = 0.25 \text{km}$$

1 cm represents 0.25km

$$AC^2 = AB^2 + BC^2$$

= $12^2 + 16^2$
= $144 + 256$

$$AC^2 = 400$$

$$AC = 20 cm$$

Actual length of diagonal = 20×0.25

$$= 5.00$$

1cm represents 0.25km

 $1\text{cm}^2 \text{ represents } 0.25 \times 0.25 \text{km}^2$

The area of the rectangle $ABCD = AB \times BC$

$$= 16 \times 12 = 192 \,\mathrm{cm}^2$$

The area of the plot = $0.25 \times 0.25 \times 192 \text{km}^2$

$$= 12 km^{2}$$