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TRIANGLES

12.1 TRIANGLE
A tnangle is a closed figure bounded by three line segments.
The adjoining figure shows a triangle ABC. The line

segments AB, BC and CA are called its sides. The angles

CAB, ABC and BCA are called its interior angles or simply
the angles. The points A, B, and C are called its vertices.

Thus, a triangle has three sides and three angles, and all
‘the six are called elements of the triangle ABC.

o
".

nas AABC.
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1. Types of triangles on the basis of sides.

B Triangle C

m_%ﬁen as LA, /B and £ C respectively.
= A

Exterior

. angle
Interior angle

(i) Scalene triangle. If all the three sides of a triangle are unequal, it is called a

85 STl wm tnaugle.

Isomes mangla

é?jj_from https:// www.studiestoday.com

e

AB = BC =CA
Equ:lateral triangle
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(ii) Isosceles triangle. If any two sides of a triangle are equal, it is called an
isosceles triangle.

(iii) Equilateral triangle. If all the three sides of a triangle are equal, it is called
an equilateral triangle.

~ Every equilateral triangle is an isosceles triangle but the converse is not 'alwafé. |
true. oty

2. Types of triangles on the basis of angles.

(i) Acute-angled triangle. If each angle of a triangle is an acute angle
(less than 90°), it is called an acute-angled triangle.

(i) Right-angled triangle. If one angle of a triangle is a right angle (= 90°), it is
called a right-angled triangle. The side opposite to right angle is called
hypotenuse.

(iii) Obtuse-angled triangle. If one angle of a triangle is obtuse (greater than 90°),
it is called an obtuse-angled triangle.

A
A
B C
B C 4B =90° LB > 90°
Acute-angled triangle Right-angled triangle Obtuse-angled triangle

12.1.2 Some terms connected with a triangle

Altitude. Perpendicular from a vertex of a triangle to the
opposite side is called an altitude of the triangle.

In the adjoining figure, AD L BC, so AD is an altitude
of AABC.

A triangle has three altitudes.

In fact, all the three altitudes of a triangle pass
through the same point and the point of concurrence is
called the orthocentre of the triangle.

Median. The straight line joining a vertex of a
triangle to the mid-point of the opposite side is called a
median of the triangle.

In the adjoining figure, D is mid-point of BC, so AD
is a median of AABC.

A triangle has three medians.

In fact, all the three medians of a triangle pass through the same point and the
point of concurrence is called the centroid of the triangle.

The centroid of a triangle divides every median in the ratio of 2 : 1. Thus, if G is
the centroid of AABC, then - |

AG+EGD =2s:1. BG » GE =2°* 1"and CG | GEi=2 e

S kb B I o o e e e L
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i ~ Line bisecting an (interior) angle of a triangle is called
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ncentre and incircle

‘the (internal) bisector of the angle of the triangle.

In the adjoining figure, ZBAI = £IAC, so Al is the
(internal) bisector of ZA.

A triangle has three internal bisectors of its angles.

In fact, all the three (internal) bisectors of the angles of a triangle pass through the
same point and the point of concurrence is called incentre of the triangle.

In the above figure, IA, IB and IC are the (internal) bisectors
£C respectively. So I is the incentre of AABC.

of ZA ZB and

Moreover, incentre is the centre of a circle which touches all the sides of A ABC and

this circle is called incircle of A ABC.

Circumcentre and circumcircle

Line bisecting a side of a triangle and perpendicular to
it is called the right bisector of the side of the triangle.

In the adjoining figure, D is mid-point of BC and
OD 1 BC, so OD is the right bisector of the side BC.

A triangle has three right bisectors of its sides.

In fact, all the three right bisectors of the sides of a

triangle pass through the same point and the point of T g

concurrence is called the circumcentre of the triangle.

In the above diagram, OD, OE and OF are the right bisectors of the sides BC, CA

and AB respectively of AABC. So O is the circumcentre of A ABC.

Moreover, circumcentre is the centre of a circle which passes through the vertices

of AABC and this circle is called circumcircle of AABC.

12.2 CONGRUENCY OF TRIANGLES

Congruent triangles. Two triangles are called |
~ congruent if and only if they have exactly the same shape A
and same size.
In this diagram, two triangles ABC and PQR are
such that AB =PQ, BC=QR, CA=RP; LA =P,

/B =,Qand £C = LR ie they have exactly the -
same shape and same size, therefore, these triangles
are congruent.

We use the symbol = or = (read as ‘congruent to’) to indicate congruency of

triangles.

Remarks

| APC
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E 12.2.1 Conditions for congruency of triangles

% For any two triangles to be congruent, the six elements of one triangle need not be
= proved equal to the corresponding six elements of the other triangle. The following
O conditions are sufficient to ensure the congruency of two triangles :

L‘f 1. S.S.S. (Side-Side-Side) axiom of congruency.

3; Two triangles are congruent if the three sides of one

% triangle are equal to the three sides of the other triangle.

g In adjoining diagram, /\ /\
> AB = PQ, BC = QR and CA = RP,

: - AABRC = AFCOIR

E 2. S.A.S. (Side-Angle-Side) axiom of congruency.

V Two triangles are congruent if two sides and the included

= angle of one triangle are equal to two sides and the included

- angle of the other triangle.

. In adjoining diagram, AB = PQ, BC = QR and ot ¢

< LB.= £ Qi ANBE =S AHOR. ; i

3. AS.A. (Angle-Side-Angle) axiom of congruency.

l; Two triangles are congruent if two angles and the A

5 included side of one triangle are equal to two angles and the

5 included side of the other triangle. '

In adjoining diagram, ZB = £Q, £C = £R and '

BC = OR, .. AABC = APQR. o B c

= UNDERSTANDING ICSE MATHEMATICS - IX
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Two triangles are congruent if any two angles and a
- (non-included) side of one triangle are equal to two angles
and corresponding side of the other triangle.

In adjoining diagram,

Downloaded from https:// www.studiestoday.com

- Corollary. AAS. (Angle-Angle-Side) axiom of congruency.

\v

\cd " IVYHOIN

1

INIHST 1

AR P, £B = ZQ and
BC = OR, .. A ABC = APQR.

[This result follows immediately from the above axiom, for, if two angles of a
triangle are equal to two angles of another triangle, then the third angles of both the
triangles are also equal because the sum of three angles of a triangle is 180°].

B y Q g R

4. R.H.S. (Right Angle-Hypotenuse-Side) axiom of congruency.

Two right-angled triangles are congruent if the A P
hypotenuse and one side of one triangle are equal to the
hypotenuse and one side of the other triangle.

In adjoining diagram,
ZB = a right angle = ZQ, AC = PR and BC = QR,
~. AABC = APQR. e, @ R

12.2.2 Applications of congruency of triangles
ILLUSTRATIVE EXAMPLES

Mﬂﬁﬁlﬁ HEENET LIE ULejURTER!

Solution. Smce the sum of angles of a triangle is 180°, A P
ZA = 180° - (70° + 50°) = 60°. 60
In As ABC and PQR Qg 70° 1
LA=/LP (each = 60°)

4B =£Q (each = 70°, given) [ 50

and the corresponding sides AC = PR (given) 3 S R

- AABC = APQR . (A.A.S. axiom of congruency)

Example 2. State, givin ns, whether the adjoining triangles are congruent or not.

Solution. Here weﬁnd that :
BC = QR (each = 3 cm)

' A
P
and AC = PR (each = 4 cm) #
but the included angles are not equal. 3 %,
So the given triangles ABC and PQR are % . =
B U A e

not congruent.

-APC TRIANGLES = | 1]9"
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Given. A triangle ABC, AD is bisector of ZA and
Al B,

To prove. AB = AC.
Plan. AABD = AACD.

Downloaded from https:// www.studiestodéy.com

Proof. Statements Reasons

s i

B
Hence ABC is an isosceles triangle

LBAD = 2CAD
ZADB = ZADC
AD = AD
AABD = AACD
AB = AC

AD is bisector of A.

Each angle = 90°, -~ AD 1 BC.
Common.

A.S.A. axion of congruency.
cpct

Ll e

Q.E.D.

ur

[ 5l v ' .. e . i' <} : F it - 'JII a .. ' LY I - - > 1 T a N Fa |~ Fa LT B __'l |- 'I : _I_ :
4, If two altitudes 0] a triangie are equal, prooe trdt i | A
£ J i o ] - "'__,J. | ’ o R e . Wi o

f'_-J‘

!_.,.-_—:’l " _'.qu,’lrlr f' ||II %

L, K3

Given. A tnangle ABC BD 6 AC CH | At

BD = CE.
To prove. AB = AC.

Plan. AABD = A ACE.

Proof. Statements Reasons

S ™

BD = CE
ZADB = £ZAEC
ZBAD = ZCAE
A ABD = A ACE A.A.S. (Axiom of congruency).
AB = AC. cpet

Q.E.D. e

Given.
Each is a right angle.
Common.

A i

i leen.é. ABC, B ACandZBAD . ACAD B

) = UNDERSTANDING ICSE MATHEMATICS -
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ﬁg;%lﬁ prove. (i) BD = DC
(ii) £ ADB = 90°.
ACD.

F— o
it

Plan. A ABD = A

| J, Reasons

Given.

L BAD = 2 CAD

AD = AD

A ABD = A ACD

kD = DC

/£ ADB = £ ADC

Z ADB + £ ADC = 180°

(i1} 2 & ADB = 180°

= / ADB = 90°.

Hence, (i) BD = DC and

(i) 2 ADB =90°. Q.E.D.

Given.

Common.

S.A.S. (Axiom of congruency)
(R CT

(chon i

BDC is a st. line.

From 6 and 7.

G0 N Ov O g DELT e

1
74
9.
4.
0.
6.
Y
8.

Solution. Given BR = QC

— BR + RC = QC + RC (Adding RC to both sides)

& HR  RC—RC +CQ.-, .

==  RBC = OR. |

In As ABC and PQR, we have

1B =720 {(Each angle = 90°, ** AB L BC, PQ 1 RQ)

2. AB = PQ (given)

3. BC = QR (proved above)
AABC = APQR , (S.A.S. axiom of congruency)

= AC=PR (cp.ct)

(TR gl =™} By B Lt
- T P AT
T L } .j_'_.‘i,‘" o ;.r"l.h
s A Ve g A

¥ WL

l - ] "~ i P ] oy 4 1 1IYe I I:' A OC1 'I"'-" R 1 | J|'I
ik | ® 1 | ¥ N i || L q i T EX T L AN & AL | o7
o ’ b . i i

L i
| B

Solution. Since AD L EF, 2 EAD = 90° = £ DAF.
L1+ £2=90°and 43 + £4 =90°

bt ] = /4 (given)

=S v B G R

\ In As ABD and ACD, we have
VAT R (Proved above)

2. LADB = £ ADC [each angle = 90°, - AD L BC]
| 3. AD is common. -
|:5;? | .. AABD = A ACD - (A.S.A. axiom of congruency)

L NG

APC
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P
Solution. For AAQR, £x = 2Q + LARQ | |
(ext. £ = sum of two opp. int. ZS) 4 8 :
: For ABPQ, Zy = £Q + LBPQ
(ext. £ = sum of two opp. int. £s) i
ﬁ But Lx = Ly (given) :-:e
= /Q+ LARQ = £Q + LBPQ = LARQ = /BPQ. :
In ABPQ and AARQ,
_ LARO = LBPQ (proved above)

L0 = £Q (common)
PQ = RQ (given)
3 ABPQ = AARQ (ASA axiom of congruency)
- BP = AR (cpct)
O  Example 9. In a. triangle . :ABC thel mtmi___pggcfars ~0f LB
¥ mtd Z C meet at O Prove that OA s alsc “?m " "“; _5 iﬁf
v GlVEl'l A trlangle ABC, OB and OC bisectors of /.B and
£ C respectively.
f To prove. OA bisects £ A.
B Construction. Draw OD L BC, OE L CA and OF 1 AB.
_ Proof.  Statements Reasons
| In As ODC and OEC
< 157200DC = 20BC 1. Each being a right angle (by construction).
2. £LOCD = £OCE 2. OC bisects £ C.
4 OC =00 | 3. Common.
= 4. AODC = A OEC 4. A.AS. (Axiom of congruency).
5 5. OD = OE 5. ‘cp.ct.
e 6. OD = OF 6. AOBD = AOBF (similarly).
% In As OAE and OAF
i 1'. OE = OF 1'. From 5 and 6.
2'. LOEA = £OFA 2'. Each being a rt. angle.
f 3. OA = OA 3'. Common. -
G 4'. AOAE = A OAF [ 4. RH.S. (Axiom of congruency).

5. LOAE = £ OAF by oGP
= OA bisects ZA. Q.E.D.

AVICHAL. PUBLISHING

_ = UNDERSTANDING ICSE MATHEMATICS - IX APC
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 Solution. In As ABC and DCB,

AB = CD (given) 7
L £ ABC = £BCD (given) E 5
BC = BC (common) .
AABC = ADCB (S.A.S. axiom of congruency) 2 : “
. () AC=BD cpet)
Also ZBAC = £BDC (cpct) -
a' | (ii) In As ABE and DEC, .
LBAE = £ EDC Y BAC = £ BDC, proved above) —
£ AEB = £ CED (vert. opp. £5) ;
AB = CD (given)
A ABE = ADEC (A.A.S. axiom of congruency) “
= BE=CE (b.p.ct) Z
_ S : _
a i
Solution. Given £ BAP = £ QAD
and 2PAC = £LCAQ A o L
PR BAP - ZPAC = LOAD + £CAQ "
== & LBAC = £ CAD | 3 ;
In As ABC and ADC, we have B
1. AB = AD (given)
2. LBAC = LCAD (proved above)
S AL = AC (common)
i AABC =« A ADC (S.A.S. axiom of congruency)
= L ABC=2ADC ([Ep.citl)
~ In As ABP and ADQ, we have
1. AB= AD (given)
By BAP = . DAD (given)
3. ZABC = £ ADC | (proved above)
A ABP = A ADQ (S.A.S. axiom of congruency)
= AP = AQ {gp.ct.)
| | A P
\
Solution. In AABM and APQN,
 But LAMB =/PNQ (each=90°) Lo 4 el

Downloaded from https:// www.studiestoday.com
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AR =0
AM = PN 3 B :
AABM = APQN (RHS axiom of congruency)
% BM = QN ; () (cpct) &
In AAMC and APNR,
LAMC /= LPNR | (each = 90°) '
& = R (given)
AM = PN - (given)
AAMC = APNR (RHS axiom of congruency)
MC = NR | .:\¢1) (E.p-cify
From (i) and (ii), we get
BM + MC = QN + NR = BC = QR (from fig.)
In AABC and APQR,
AB = PQ (given)
AC = PR (given)
BC = QR (proved above)
AABC = APQR (SSS axiom of congruency)

Solution. In As ABD and CBD,
1. ZABD % /2 CHD [ BD bisects £ B]
2. £ ADB = £ CDB [each being = 90°, .+ BD L AC]
3. Side BD is common :
A ABD = ACBD [A.S.A. axiom of congruency]
AD = TI0 el
and AB = BC = 2x = 3y + 8 i
Substituting the value of x from (i) in (ii), we get
dy=3y+B8=y=8 N6 [from (7)]
Hence x = 16, y = 8.

AVICHAL PUBLISHING COMPANY AVICHAL PUBLISHING COMPANY AVICHAL PUBLISHING COMPANY AVICHAL PUBLISHING COMPANY AVICHAL PUBLISHING COMPANY
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12.3 ISOSCELES TRIANGLES

Theorem 1. If two sides of a triangle are equal, then the
angles opposite to them are also equal.

Given. A triangle ABC, AB = AC.
To prove. LB = LC.
Construction. From A, draw AD 1 BC.

L il T
i ” Skt i - ’ L ? Fiigh s b b
s e Rl i RO e TR Tl S

i i S i T B bk

AVICHAL PUBLISHING COMPANY AVICHAL PUBLISHING COMPANY AVICHAL PUBLISHING COMPANY AVICHAL PUBLISHING COMBPANY AVICHAL FPUBLISHING  GUONMIEFAINTY
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Proof.  Statements _ Reasons
In As ABD and ACD
1. AB=AC 1. Given.
2. LADB = £ ADC 2. Each = 90°, since AD L BC.
3. AD = AD 3. Common.
4. AABD = A ACD 4. R.H.S. (Axiom of congruency).
B, LB =" o. . ep.et
Q.E.D.
Corollary. In an equilateral triangle, each angle is 60°. A
Given. A triangle ABC,
AB = BC = CA.
To prove. LA = LB = £C = 60°. 8 . c
Proof.  Statements - Reors vt i K AR e
1 4B =g iC 1. Zs opp. to equal sides, since AB = AC.
2. LG5 LA 2. Ls opp. to equal sides, since AB = BC.
3. LA=£B=LC 3. From 1 and 2. :




Downloaded from https:// www.studiestoday.com

| 4 LA+LB+LC=18° | 4 Angles of a triangle
TS, 3 LK =180° 5. From 3 and 4.

= LA = 60°.

[ Hence LA=/B=,C=60".
#

NaNd IWHOINAY

W
2
= |

4 TIVHOINY ANYJANOD DNIHES

Q.E.D.

Theorem 2. (Converse of theorem 1)

If two angles of a triangle are equal, then the sides opposite to them
~ are also equal.

Given. A triangle ABC, 2B = £C.
To prove. AC = AB.
Construction. From A, draw AD 1 BC. B

oh--------->>

]-f,'.:.f
[ |

JHST

- Proof.  Statements Reasons

In As ABD and ACD
o A
£ ADB = £ ADC
AD = AD
A ABD = A ACD
AC = AB.
Q.E.D.

Given.

Each = 90°, since AD 1 BC.
Common.

A.A.S. (Axiom of congruency).

g ey 0 B o
ol RO PSS

oy B oy o

WIS -4 THTIAY AR SACY Y BN

.

Corollary. Every equiangular triangle is equilateral.

ILLUSTRATIVE EXAMPLES

L )° and AB = BC. Find the value of £ ABC. % B/<?n

Solution. ZBAC = £LBN = 70° il M
[+ MN Il PR, corres. Zs are equal]

- LACB = £LBAC = 70° skl

Wy

i |

L S A L

%1 A

i ¥ ] ] - y /

t | (] 3 ¥ f # I
i et e i =L LT N¥Fsl # il £ g '
) B .',,.'l_-_f i (ALIAE U £ B 1 I )

=Ll

i

AC I =

= v o

N

[+ AB = BC, angles opp. to equal sides are equal] Fsa & .7 © R
A ABC ZABC + LBAC + £ ACB = 180°
"= £ ABC + 70° + 70° = 180° [Using (i) and (i)]
— £ ABC = 180° - 140° = 40°. :

B

- .

Solution. (7) (i) In A ABC,
2B + 90° + 48° = 180°
= JB=180°-138° = 42°.

Downloaded from https:// www.studiestoday:com
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As BE bisects 2B, ZMBD = = /B = -12- APe =09

M=

In ABMD, £BMD + 90° + 21° = 180°

= L BMD = 180° - 111° = 69°.

(ii) As BE bisects £B, £ ABE = ZMBD = 21°.

In A ABE, £ AEB + 90° + 21° = 180°

= £ AEM = 180° - 111° = 69°.

() <L AME = 2BMD (vert. opp. £s)

But ZBMD = 69° (obtained above)
/L AME = £ AEM (each = 69°)
AE = AM (sides opp. to equal Zs are equal)

e e Lrh

R T L

 Example 3. Find the measure of each lettered angle in the adjoining figuressb o 1

Solution. In AACD, £ ACD = £LADC
(angles opp. equal sides are equal)
=, /AU 457 (58 2 A = 759 given)
x + 75° + 75° = 180° (angles of AACD)
= A TR e
In A ADE, 75° = y:1>52¢f
(ext. £ = sum of two opp. int. £5s) FEiB G D
L D T
As BCD is a st. line, p + £ ACD = 180°
= p+ 75° =180° = p = 105°.
In AABC, 120° =z + p (ext. £ = sum of two opp. int. £ s)
o A% = 120° — g 1203 0GR =5

LBAC =x
In AACD, 7/ AEIE=Nt=k
(ext. £ = sum of two opp. int. £5s)
=t AT = 2,
In AACD, AC = AD (given)
£ ADC = 2x
(angles opp. equal sides are equal)
In AABD, LEAD = £ ABD + £ ADB (ext. Z = sum of two opp. int. Zs)
= 98° =x + 2x = 3x = 98°

N (%) o8 32°40).

0) = UNDERSTANDING ICSE MATHEMATICS - IX APC
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Solution. Let 2 BAC = x°.
AN AT = DCE, = LACD = x°.

1 ABIC— x° + X° (sum of two opp. int. £s)
i = 2x°. A
I A BREDC = BC, ~. £DBC = 2x°.
. In AABG, AB = AC, . ZACB = 2x°.
E Also £BAC + £ ABC + £ ACB = 180° *
: (angles of a triangle)
: —  x° 4 20° + 22° = 180° = 5x = 180 = x = 36. ;
L BAC = 36° as required. ; 2
e medians on the eq ual sides of A
Given. A triangle ABC, AB = AC. BE is median t
AC and CF is median to AB. y -
To prove. BE = CF.
B C
Proof.  Statements Reasons
In As BCE and CBF
15CEE — BP 1. Halves of equal sides AB, AC.
2 ZBCE = CBB 2. Angles opp. to equal sides.
3. BC = BC 3. Common.
4. ABCE = A CBF 4. S.A.S. (Axiom of congruency).
5. BE = CF i cpet.
Q.ED.

! | B i . e 5 B f] P, ‘_I"-‘.I . T '1'
i:.fxﬁ:'tfl,lf_?';? 7. In the _,.'f'r‘.'{fr'.}':_’ loen -f;"..'i.?'.*"il‘th“‘-’;', {”1 - _'4"{*' ' A

i -

AR b o "-"““
Solution. Given BE = DC
= BE - DE = DC - DE

X i [ i 1 ¥ = “d 1 Y 7 1 .I- | _1
Diand E are point on BC such that BE = DC. Prove that

| e BD) = EC.

f In As ABD and ACE, we have B D = G

1 1. AB = AC (given)

: 3 B L C (angles opposite to equal sides)

& B BE = EC (proved above)

H A AﬁD = AACE (S.A.S. axiom of congruency)
L an . Ap (epct)

1 *: )&P C I | TRIANGLES 4 m
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Given. A trlangle ABC, AB = AC Dis a pomt on
BC produced. DE 1 BA (produced) and DF 1 AC
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Solution. Given RP = RQ
= (LRQP = £RPQ

(angles opposite to equal sides are equal)

= L NIO= L NROR
In APQM and AQPN,
QM = PN
PQ = QP
LMQP =2 NEC)
APQM = AQPN
ZMPO) =i/ INOF
== S ZOEQ = SO0
e OQ

r I bogl rJ E .I'; |/ :’ | ,H}}lf ';If’ r rl

b ud | .. B R b
o] | ~J': G, i'-_-i'- F | : }: . ': |f !r [} ; [ j [(CE .f.[J i Ir], ‘ 'HJ:J:” 1
A of d r

f )14

(produced).
To prove. £ BDE = £ CDF.

: H ]' 1

L 1 _-.".I_'
ot L

f;f H':l’ﬂ 1 e f"rl H'H'.l'.r frha".n"' IU I! l'l }.fflf:.:”'f ]'H! ‘frJr*rr.a

!Jt"# : HH ru * :H; tl | '.r',

e Tl e L2 - i
AL lj 5§ Pl e

(given)
(common)
(proved above)

(SAS axion of congruency)
(c.pletl

VICHAL PUBLISHING COMPANY AVICHAL. PUBLISHING COMPANY AVIOHAL FublioRiNt GOUIVIEAINT AVRUFAL. FUDLIOFTING A
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Proof. Statements Reasons
(RS e O 1. AAB = AC.
2. LBED= 80° 2. dDE | BA.
3. 2BDE =90" — 2B 3. In ABED, ~BDE + 2B + 90° = 180°.
o RNt 4. DF 1 AC.
G+ 2 TR = 9()F = N 5. In ACFD, £ CDF + £ DCF + 9° = 180°.
6. 2 DUF = 2C 6. Vert. opp. <Ls.
7. LDCF = LB 7. From 1, £C = LB.
8 LCDF=90°- 4B 8. From 5 and 7.
9. .BDE = LCDF 9. From 3 and 8.
Q.E.D.
‘ AEEBROAR Ltan e i D
o ;I r,r-* rfr,"j_;f,n;fcrfw.-r; f{'!jj :,i'i [_, ;_f)
( Q[) r, a ‘f!ﬂr nfrjfw
Solution. 2 ACB = £ ABC ...()
(AB = AC, angles opposite equal sides are equal)
LoAER= L AT - .-ilaD)
(AC = AD, angles opp. equal sides are equal) . .
19) = UNDERSTANDING ICSE MATHEMATICS - IX APC
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o o -,.'# = ZABC + LADC

~ £BCD = £ABC + LADC (i)

~ But £BCD + £ABC + £ADC = 180° __ (sum of angiles of A BCD)
= LBCD + LBCD = 180° | (using (iii))
= 2 £/BCD = 180° = £BCD = 90°.

Hence £ BCD is a right angle.

( y 'I." B -1--I T ] o '-.-rl- '-.J‘. .l'.I: ; i 9 & 1
. If the bisector of an angle of a triangle also bisects A
o y i A
f the trianele is isosceles.

Given. A traingle ABC, AD is bisector of £ A and D is
mid-point of BC.
To prove. AB = AC

Construction. Produce AD to a point E such that
DE = AD. Join C and E. EV

Ty S

S

i

e

Reasons

1
P

e

In As ABD and EDC
1. BD = DC
AD = DE

B . hri i P
: Eir el .-f':_.,,_-lJ

Given.

o
s

By construction.

3. LADB = £EDC 8, Vert. opp. 45

4. AABD = AEDC 4. S.A.S. (axiom of congruency)

5. AB = EC o cpct

6. LBAD = LDEC B ab.p.CL.

7. LBAD = LDAC 7. AD is bisector of £ A (given)

8. LDEC = ZDAC 8. From 6 and 7.

9. AC = EC 9. Side opp. equal angles are equal.
% 10, AB = AC 10. From 5 and 9.

Q.E.D.

'Downloaded from https:// www.studiestoday.com
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\at BC = CD. Prove

T
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Hint

B ————————————————— AR A S B

e
;

AB =

ga

AC, ZBAD = £CAE. Prove that

1

LA ) -:.h-._u.

and BD L BC, CE L BC. Prove that

ot s
it —
'

M RS

By
O

o
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12.4 INEQUALITIES

Theorem 3. If two sides of a triangle are unequal, the
greater side has greater angle opposite to it.

Given. A triangle ABC, AC > AB.
To prove. £ ABC > £ BCA.

Construction. Take a point D on AC such that
AD = AB. Join B and D.

.-'"ri'r-._gi"tft‘l.

AVICHAL PUBLISHING COMPANY A\

Hence £ ABC > 2 BCA. Q.E.D.

Proof.  Statements Reasons | | i
> 1. AD = AB 1. By construction.
; 2. LABD = £BDA 2. Angles opp. to equal sides.
. 3. /BDA > £BCD 3. /BDA is an ext £ of ABCD, and ext.
o £ is greater than each of opp. int. Z.
I 4. £ ABD > £LBCD 4. From 2 and 3.
- 5. £ ABC > £ ABD 5. Since £ ABD is a part of £ ABC.
y 6. £ ABC > £BCD 6. From 4 and 5.

Theorem 4. (Converse of theorem 3)

If two angles of a triangle are unequal, the greater angle
has greater side opposite to it.

Given. A triangle ABC, £B > £C.
To prove. AC > AB.

AVICHAL PUBLISHING COMPANY

_ = UNDERSTANDING ICSE MATHEMATICS - IX
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& . Reasons

Order property of real numbers.

\“If AC is not greater than AB, then
either (i) AC = AB or (i) AC < AB.
Case I. If AC = AB, then 2B = 2C Angles opp. to equal sides.

*~ which is contrary to what is given.
: Case II. If AC < AB, then 2B < £C Greater side has greater angle
which is contrary to what is given. opposite to it.
Hence AC > AB. Q.E.D.
D
Corollary 1. The sum of any two sides of a triangle is ' Gl
greater than the third side. 7.
i
Given. A triangle ABC. ;
To prove. BA + AC > BC. !
Construction. Produce BA to D such that |
AD = AC. Join C and D. | % ©
Proof.  Statements Reasons
1+ ACD—"/. ADC 1. AD = AC by construction, and angles

opp. to equal sides are equal.

L BCD >/ ACD

By B> 2 ADC

4 BD > BC

5. BA + AD > BC

6. BA + AC > BC
QE:D.

Whole is greater than a part.

From 1 and 2.

Greater angle has greater side opposite to it.
BAD is a st. line, BD = BA + AD

AD = AC, by construction.

O Igns S 1D

_Hint

=, 1 ..'

Remarks |

/ Theorem 5. Of all the line segments that can be drawn to R
3 a given straight line from a point outside it, the perpendicular \
4 is the shortest. | %
' Given. A point P outside a striaght line AB and \\\
£ PN L AB. Q is any point on AB. LAY,
I | To prove. PN < PQ. BN O B

Downloaded from https:// www.studiestoday.com

Corollary 2. The difference between any two sides of a triangle is less than the third side.
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L BINE) = AU 1 PN J.AB _ ]
2. Z PON-< 90 2. £PON is acute angle, since sum of three L s
in APNQ = 1P0°
3. £ PON < £ FING) 3. From 1 and 2.
4 PN B0 4 4. Side opp. the smaller angle is smaller. |
Q.E.D.

ILLUSTRATIVE EXAMPLES

Solutmn. LABC + 132° — 180". (linearpair) | E
= 7 ABGC — 180° —132° = 48°.
In AABC, 120° = 2 ABC + 2 ACB 2

HAL. PUBLISHING COMPANY AVICHAL PUBLISHING COMPAINY

i

(ext. £ = sum of two opp. int. £s)
= 120° = 48° + L ACB

= 4. L ACBE = 120%—48% =72°, L
In A ABC, we find that £ ACB > £ ABC B = 8 C
= AB > AC

(side opposite to greater angle is greater)

1 t * '.I- _-. I

Armnge x, y and z 1ascedn odr
Solution. Given AB = 7-5 cm, BC = 5 cm
and CA = 6:2:Cra.
= AB > CA > BC
= T > B

(- angle opposite to greater side is greater)
=  ~/LC<-2B<-LA
= (180° - 2C) < (180° — £ B) < (180° - £ A)
= z2'<YP’<x°=>2<<yY<X

= X | =L,

" 1 I“*%Lm,ugi:: J. !n fn:.' JJ]UHHH jigure, ft Fl = A and D f5i

m point on BC. Prove that AB'=AD; =
Solution. Given AB = AC = /B = £C.
In AADC, £ ADB > /0
(ext. £ is greater than each opp. int. £5s)
= L ADB =25 (1 G =B)
= AB > AD | .
(side opposite greater angle is greater)

- = UNDERSTANDING ICSE MATHEMATICS - IX
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Fif £ i SRS I
ure, 1D 15 0 poine

A
Solution. Given AD = AC
| = /ACD =Y ADC
B | (angles opp. equal sides are equal)
g For AABD, £ADC is an exterior angle,
g LADC > LABD e L
% (ext. £ is greater than each opp. int £s)
s AT it ABD (NG CEAATIC)
g — AB > AC but AC = AD
AB > AD.
Example 5. I the adjoining figure, AD) isects) LA Aviange AB) BD!an
scending oraer. or e | S
Solution. £ A = 180° - 75° — 35° = 70°. 2
Since AD bisects ZA,
LBAD = LDAC = 3 . 70° = 35°
L ARB=r PACH 2L s 35°
[ext. £ = sum of opp. int. £ s] B D <
= 85" + 85" = 70°.
In A ABD, 2BAD < £ ADB < £ ABD
=+ BD < AB < AD [side opp. to smaller angle is smaller]  ...(i)
Also in A ADC, £DAC =35° = £C = AD = DC )
BD < AB < DC | [from (i) and (ii)]
Examy 2 AB ! A
Prove that AE > AE, S i
¢
H Byl LD
" Proof. Statements Reasons
1. B =G 1. AB = AC (given)
20 Z4AEF > LB 2. LAFEF is ext. £ of AEBD, and ext. £ is > each opp. int. £.
BEC s ¥ CFD 3. £Cis ext. £ of ACFD, and ext. £ is > each opp. int. £.
| dhsit B > £:CFD W RS .C
& 5. L AEF > £ CFD | 5. From 2 and 4.
: 6. LEFA = 2 CFD | 6. Vert. opp. Zs.
® 7.,/ AEF>LEFA | 7. From 5 and 6.
,}' 8. AF > AE 8. Greater angle has greater opp. side.
4 Q.E.D.

Downloaded from https:// www.studiestoday.com
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Given. A triangle ABC and AD is a median.
To prove. AB + AC > 2AD.

Construction. Produce AD to E such that
DE = AD. Join B and E.

Proof.  Statements Reasons
In As ACD, EBD
1. BD =DC 1. AD is median, so D is mid-point of BC.
2. AD =DE 2. By construction.
3. £ADC = £BDE 3. Vert. opp. Zs. -
4. AACD = AEBD 4. S.AS. (Axiom of congruency). B
5. BE = AC 5. ‘cp.ct. :
6. AB + BE > AE 6. In A ABE, sum of two sides > third side.
7. AB + AC > 2AD 7. Using 5 and 2.
Q.E.D.
e 7 g2 ._ 3 18 5 -
Solution. (i) Join A and C, and label the angles as shown
in the figure given below. . :-_
In AABC, AB > BC (given AB is longest side) A 2]
- 2820 () i
(angle opposite greater side is greater) D C %
In AACD, AD > DC (given DC is shortest side) pg 3
= ‘L4>21 .(2)
: (angle opposite greater side is greater) : /x’f |
Adding (1) and (2), we get A”E‘ :
' £3+24>42+4L1= LC>LA.
: (ii) Similarly, on joining B and D, we shall obtain £D > £B.

Solution. Given O is any point in the interior of a
triangle ABC.

Produce BO to intersect AC at D.
From A ABD, AB + AD > BD.
(-. sum of two sides of a triangle > third side)

AVILCIAL FURLIOSING LA

- = UNDERSTANDING ICSE MATHEMATICS - IX
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m + 'DC > OC i %
(- sum of two sides of a triangle > third side) T

'HI Ny

AB + AD + OD + DC > OB + OD + OC

= AB+AD +DC>O0B + OC (~- OD is common to both sides) |
& AB + AT > 0B+ OC (- AD+DC=AC) 3
S OB+ 06 < AB + AC.

M @

Solution. Join A and C, also B and D (as shown in the above figure (2)).

i (i) In A ABC, AB + BC > AC ...(1) (sum of two sides of a A > third side)
% In AACD, AC+CD>DA ...(2) (same reason)

Adding (1) and (2), we get
AB + BC + AC + CD > AC + DA

= AB + BC + CD > DA (~- AC is common to both sides)
(i) AACD, CD + DA > AC )
On adding (1) and (3), we get
_é AB + BC + CD + DA > 2AC ...(4)
(iii) In A ABD, DA + AB > BD ...(5)
2 In ABCD, BC + CD > BD ...(6)
5 On adding (5) and (6), we get
AB + BC + CD + DA > 2BD 60 o)

(iv) On adding (4) and (7), we get
2(AB + BC + CD + DA) > 2(AC + BD)
B AB +BC +CD + DA > AC + BD.

Given. A triangle ABC e ATy | BC, BE L AC,

F.FJ.AB

To prove. AD + BE + CF < AB + BC + AC.

~ Proof. We know that of all the line segments that can .
.+ be drawn to a given straight line from a point outside it,
s ular is the shortest.

B D C

Downloaded from https:// www.studiestoday.com
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As AD 1 BC, therefore,

AD < AB and AD < AC
= 2AD < AB + AC )
As BE L AC, therefore,

BE < BC and BE < AB
= PRE<BC T AL ...(ii)
As CF L AB, therefore,

PUBLISHING COMPAINY

;f CF < BC and CF < AC

= ICE<BC+ AC ... (i)
Z On adding (i), (ii) and (iii), we get

S 2(AD + BE + CF) < 2(AB + BC + AC)

= AD + BE + CF < AB + BC + AC.

_% Hence the sum of three altitudes of a triangle is less than the sum of three sides
o of the triangle.

Exercise 12.3

; 1. In AABC, £ A = 52°, £B = 63°. Name the greatest side of the A ABC.

= 2. PQR is a right angle triangle at Q and PQ : QR = 3 : 2. Which is the least

al angle ?

3. In AABC, AB = 8 cm, BC = 56 cm and CA = 6-5 cm. Which is

- (i) the greatest angle? (i) the smallest angle?

i 4.]n_aAPQR,IQ=1(!cm,QR=7—5ﬂn.Findthegreatestandmeleastlengd\.

3 that RP can have.

g 5. Can you construct a triangle with sides 12 cm, 85 cm, 2-7 cm? Give reason.

- 6. Ina AABC, £ A = 50°, 2 B = 60°. Arrange the sides of the triangle in ascending
< order. ik . |
7. In figure given alongside, £ B = 30°, £ C = 40° and A

the bisector of Z A meets BC at D. Show that
(i) BD > AD (if) DC > AD - x\
(iiiy AC > DC (i) AB > BD. : 5 &

8. In AABC, LA =53° and £B = 49°. Thebrsecl:orofLCmeetsABatD
Arrange the sides of A ADC in descending order.

9, (@)Inﬂmﬁgm(l)gwmhelﬂw,ADbiﬁedsLA.ArmgeAB,BDmﬂDC
in the descending order of their lengths.

(b) In the figure (2) given below, £ ABD = 65°, £ DAC = 22° and AD = BD.

-' CahﬂmLACDmﬂm(glmgm)megmm BD or DC?

. R

A

60°

AVICHAL PUBLISHING COMPANY AVICHAL PUBLISHING COMPAINY

159 1
40° 2 g0l |
B D c bty R
1) i f‘:%’ yelt i
| = UNDERSTANDING ICSE MATHEMATICS - IX APC
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e Lt

Ee et AB
CA = 39 om.

Required. To construct A ABC.
Steps of construction.
1. Draw BC = 4-8 cm.

2. With B as centre and radius = 4-3 cm, draw g
an arc.

3. With C as centre and radius = 3-9 cm, draw another arc to cut the previous arc
at A. ;

4. Join AB and AC. Then, ABC is the required triangle. -

- = UNDERSTANDING ICSE MATHEMATICS - IX
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Required. To construct A ABC.
Steps of construction.

1. Draw BC = 4-8 cm.

2. At B, éonstruct el = GU".
3. From BP, cut off BA = 41 cm. B 4-8 cm C
4. Join AC. Then, ABC is the required triangle.

Given. Let BC = 49 cm, £B = 45° and 4 C = 60°. X
Required. To construct A ABC.

Steps of construction.

1. Draw BC = 49 cm.

2. At B, construct £ CBP = 45°.
3. At C, construct Z BCQ = 60°.

4. If BP and CQ intersect at A, then ABC is
the required triangle.

B 4-:9 cm G

l’tshypo*i:enuse and

ot ey 1
"E_'s'_'}_.--*-,-'_r;? £ RE PN RO
A TR Pk 3

Required. To construct A ABC.
Steps of construction.
1. Draw BC = 3 cm.

2. At B, construct £ (e — )

3 Wlth C as centre and radius = 5-1 cm, draw
an arc to meet BP at A.

4. Join CA. Then, ABC is the required
triangle.

Since base angles of an isosceles triangle are equal, therefore, to construct the
required triangle proceed as in construction 3.

Downloaded from https:// www.studiestoday.com
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Gen. Let BC = 45 cm and altitude (from BC)
= 32 cm.

Required. To construct A ABC.

Steps of construction.

1. Draw BC = 4:5 cm.

2. Construct PQ, the perpendicular bisector of BC.
Let PQ meet BC at D.

|
|
I
3. With D as centre and radius = 3-2 cm, draw an B Bl C
| ;

arc to meet DP at A. X
4. Join AB and AC. Then, ABC is the required A

isosceles triangle.

(iii) To construct an isosceles tnmgle when tts eltzmde and the veriie:c ﬂ
Given. Let altitude = 1:5 cm and the vertex

angle = 120°.
Required. To construct A ABC.

e O e SR e 1 R o it bt e e B e

Steps of construction.
1. Draw a st. line PQ.

2. Take a point D on PQ and at D, draw s~ ° "
DR B,

3. With D as centre and radius = 1-5 cm,
draw an arc to meet DR at A.

4. At A, construct Z DAS = £LZDAT = % x 120° = 60° on either side of AD. Lef AS

and AT meet PQ at points B and C respectively. Then, ABC is the required
isosceles triangle.

Alternative method
Steps of construction.

1. Draw any straight line AP.
2. Construct Z QAT — 120
3. Draw bisector AR of £ QAP.

4. With A as centre and radius 1-5 cm, draw an
arc to meet AR at D.

5. At D, construct £ ADS = 90° and extend SD R
to T. Let ST meet AP and AQ at points B and :
C respectively. Then, ABC is the required
isosceles triangle.

i
5
|
!
4

Construction 6. To construct equila

(i) To construct an equilateral triangle when ey

Since all the three sides of an equllateral triangle are equal, therefore, to construct
the required triangle proceed as in construction 1.

T T = T S

i = el s e L A R T ANV AL TS RPN ALV £ N IR i L

N
=

o
<
_.‘_.-l"
<

= UNDERSTANDING ICSE MATHEMATICS - IX ‘ APC
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Given. Let an altitude -8 c. .
Required. To construct A ABC.

Steps of construction.

1. Draw a st. line PQ.

2. Take a point D on PQ and at D, draw
DR L FQ.

3. With D as centre and radius = 3-8 cm,
draw an arc to meet DR at A.

4. At A, construct ZDAS = £ DAT = %

60° = 30° on either side of AD. Let AS and S if
AT meet PQ at points B and C

respectively. Then, ABC is the required

equilateral triangle.

e na';.‘.}., ’*‘::ﬂq h

Pk _.‘:1 . ¥ -" L J B ﬂ:’ r-'. o 5 | e JiC
g : TP 'P'I!r I-‘-G-fi‘! 3 iy -F-F"'%. 1- P f.—.?*}'-: -.:-:_:".1;;. ,t_;f- ',

Given. Let BC 3:6 cm, AB + AC 5 4 cm and £ B = 60°.
Required. To construct A ABC.

Steps of construction. AT
. D A
1: Draw BC = 3:6 cm. s

2 o eanstruct £ CBP = 60°. |
3. From BP, cut off BD = 54 cm.

4. Join CD and draw its perpendicular bisector
to meet BD at A.

5. Join AC. Then, ABC is the required triangle.

[Justification. In As ACE and ADE, CE = ED and
L CEA = 90° = £ AED (by construction) and AE is
common

= AACE = AADE = AC = AD.
Now BD = 54 cm = BA + AD = 54 cm = AB + AC = 54 cm.]

B 3:6cm o

Gwen. BC = 3:2 cm, AB - AC 1. 4 cm and 2B =48>,
equired. To construct A ABC.

Steps of construction.

1. Draw BC = 3:2 cm.

9. At B, construct £ CBP = 45°.
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IWHOINY

DONIHSTENA

0 &

|
i

IWHOINY ANV

7 ANVANOD ONIHSIEN

- ]1.:;.]- i | _:- -} L._ '|,1'-r

DONIHSIENA




Downloaded from https:// www.studiestoday.com

3. From BP, cut off BD = 1:4 cm.

4. Join CD and draw its perpendicular bisector to
meet BP at A.

5. Join AC. Then, ABC is the required triangle.

[Justification. In As ACE and ADE, CE = ED and
/ AEC = 90° = £ AED (by construction) and AE is
common

S AACE « AADE = AD = AC.
Now BD =14 cm = BA - AD =14 cm
=n AB - AC =14 cm.}

(b) Construct a triangle ABC with BC = 48 cm, AC - AB = 21 am and £B = 45°.

Given. BC = 48 cm, AC - AB =21 cm and 4B = 45°.
Required. To construct A ABC.

MPANY

..-.1' "_,.,-"; S

—
f

Steps of construction.
1. Draw BC = 4-8 cm.

2. At B, construct £ PBC = 45°,

3. With B as centre and radius
2.1 cm draw an arc to meet PB
produced at D.

4. Join DC and draw its perpendicular
bisector to meet BP at A.

5. Join CA. Then, ABC is the required
triangle.

[Justification. In As ACE and ADE,
CE = ED and £ AEC = 90° = £AED
(by construction) and AE is common

= AACE = AADE = AC = AD.

Now BD =21 cm = AD - AB =21 cm
= AC - AB = 21 cm/]

e
Construction 9. To canstruct a tnangle when its penmeter and baﬂ‘t ﬁ'té

Given. Let 2B = 60°, £ C = 45° and perimeter = 11-8 cm.
Required. To construct A ABC. .

Steps of construction.
1. Draw DE = 11-8 cm.

2. At D, construct LEDP = -%— of '60° = 30° and at E, construct £ DEQ
Lo = 39
= E Of 45 = 22 B

= UNDERSTANDING ICSE MATHEMATICS - IX APC
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3. Let DP and EQ meet at A.

4. Draw perpendicular bisector of AD to meet DE at B.
5. Draw perpendicular bisector of AE to meet DE at C.
6. Join AB and AC. Then, ABC is the required triangle.

i
g
i..
1
! i
i

ILLUSTRATIVE EXAMPLES

s i ﬁ?"‘ 3 "ﬂ"%’f‘ﬁf'#ﬂ? -;I—’-"-'V--H‘; o f
‘cm and the altitude
o oA

Solution. Steps of construction.
1. Draw a straight line EF.

2. Take a point D on EF and at D, draw
P LER.

3. Cut off DA = 29 cm.
' 4. With A as centre and radius =4-1 cm, draw
" an arc to meet EF at B.

5. With A as centre and radius

= 3-5 cm, draw another arc to meet = ER
EF (on the other side of D) at C.

6. Join AB and AC. Then, ABC is the required triangle.

: o i
= b Rsdal Ln i ag

Remark

P Solution. Steps of construction.
1. Draw a st. line BP.

2. At B, construct £ PBQ = 60°.
3. AtB, draw BR L BP.
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Cut off BN = 3-2 cm from BR.

Through N, draw a st. line parallel to BP to meet BQ at A.

Bisect AB at E.

With E as centre and radius 49 cm, draw an arc to meet BP at C.

Join AC, then ABC is the required triangle with given data. Measure BC.
BC = 5-5 cm approximately.

™
.
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—
p—
e
"™
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=
‘-‘—"
—
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CHAPTER TEST

1. Calculate the size of each lettered angle in the following figures :

o

PUBLISHING COMPANY

(1)

2. (a) In the figure (i) given below, AP and BQ are perpendiculars to the line
segment AB and AP = BQ. Prove that O is the mid-point of the line
segments AB and PQ.

(b) In the figure (i) given below, AD is a median of AABC and BM and CN
are perpendiculars drawn from B and C respectively on AD and AD
produced. Prove that BM = CN.

PUBLISHING COMPANY AVICHAL

Q

E"I.....Jr = (T S = =
CS rigall ,::‘J_t i G401
= -

i B0 &
Prove that

it

AVICHAL PUBLISHING COMPANY AVICHAL PUBLISHING COMPANY AVICHAL. PUBLISHING COMPANY AVICHIAL

_ = UNDERSTANDING ICSE MATHEMATICS - IX
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4. (a) In the figure (i) given below, ABCD is a rectangle and AAOD is an
equilateral triangle. Prove that ACOB is an isosceles triangle.

(b) In the figure (ii) given below, ABC is a right angled triangle at B. ADEC
and BCFG are squares. Prove that AF = BE.

"?ﬁi-i ‘\ﬂ h*-n o
- -:'=‘-.4r..#

AD is pe *Han.

drgy

Y

BAC.
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6. (a) In the figure (1) given below, calculate the size of each lettered angl
(b) In the figure (2) given below, prove that
(i) x + y = 90° (ii) z = 90° (iii) AB = BC.

PUBLISHING COMPANY

A 4

(1) (2)
7. (a) In the figure (1) given below, AABC and ADBC are two isosceles

triangles drawn on the same base BC and on the same side of it. Prove
that the straight line ADE bisects each of ZBAC and £ BDC.

(b) In the figure (2) given below, diagonals AC and BD of a quadrilateral
ABCD intersect each other at O. Prove that

AB + BC + CD + DA < 2 (AC + BD).

PUBLISHING COMPANY AVICHAL

AL

-

3 COMPANY AVIC

FPLUBLISHIPC

AVICHAI

PUBLISHING COMPAINY

i -
T1aANCole A

YL | I [ | i » I
s i el e o P | -.—.—-.--—-.—,.-.J_-...- e B
Nt

- P i [ Py |""-._|l ~ Ao oIT
(1 UL AADN Pdoolll

3 COMPANY AVICHAL.
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AVICHAL PUBLISHIN
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