

Trigonometrical Ratios of Standard Angles

[Including Evaluation of an Expression Involving Trigonometric Ratios]

23.1 TRIGONOMETRICAL RATIOS OF ANGLES 30° AND 60°

Let ABC be an equilateral triangle with side '2a' and AD is perpendicular to BC.

Clearly, BD =
$$\frac{BC}{2} = a$$

In \triangle ABD, $AD^2 = AB^2 - BD^2$ [Using Pythagoras Theorem]
= $(2a)^2 - a^2 = 3a^2$
 $\therefore AD = \sqrt{3}, a$

Since, each angle of an equilateral triangle is 60°

$$\angle B = 60^{\circ} \text{ and}$$

 $\angle BAD = 180^{\circ} - (60^{\circ} + 90^{\circ}) = 30^{\circ}$

$$\therefore$$
 In \triangle ABD,

...

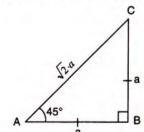
$$\sin 60^{\circ} = \frac{\text{perp.}}{\text{hyp.}} = \frac{\text{AD}}{\text{AB}} = \frac{\sqrt{3} \cdot a}{2a} = \frac{\sqrt{3}}{2}; \sin 30^{\circ} = \frac{\text{perp.}}{\text{hyp.}} = \frac{\text{BD}}{\text{AB}} = \frac{a}{2a} = \frac{1}{2}$$
$$\cos 60^{\circ} = \frac{\text{base}}{\text{hyp.}} = \frac{\text{BD}}{\text{AB}} = \frac{a}{2a} = \frac{1}{2}; \quad \cos 30^{\circ} = \frac{\text{base}}{\text{hyp.}} = \frac{\text{AD}}{\text{AB}} = \frac{\sqrt{3} \cdot a}{2a} = \frac{\sqrt{3}}{2}$$
$$\tan 60^{\circ} = \frac{\text{perp.}}{\text{base}} = \frac{\text{AD}}{\text{BD}} = \frac{\sqrt{3} \cdot a}{a} = \sqrt{3}; \quad \tan 30^{\circ} = \frac{\text{perp.}}{\text{base}} = \frac{\text{BD}}{\text{AD}} = \frac{a}{\sqrt{3} \cdot a} = \frac{1}{\sqrt{3}}$$
and so on.

23.2 TRIGONOMETRICAL RATIOS OF ANGLE 45°

The adjoining figure shows a right-angled isosceles triangle in which $\angle B = 90^{\circ}$ and AB = BC = a.

Clearly,
$$\angle A = 45^{\circ}$$

and, $AC = \sqrt{2}.a$ [Since, $AC^2 = AB^2 + BC^2$]
 $\therefore \sin 45^{\circ} = \frac{\text{perp.}}{\text{hyp.}} = \frac{BC}{AC} = \frac{a}{\sqrt{2} \cdot a} = \frac{1}{\sqrt{2}}$;
 $\cos 45^{\circ} = \frac{\text{base}}{\text{hyp.}} = \frac{AB}{AC} = \frac{a}{\sqrt{2} \cdot a} = \frac{1}{\sqrt{2}}$
 $\tan 45^{\circ} = \frac{\text{perp.}}{\text{base}} = \frac{BC}{AB} = \frac{a}{a} = 1$ and so on.
Also, remember that :
 $\sin 0^{\circ} = 0$; $\cos 0^{\circ} = 1$
 $\sin 90^{\circ} = 1$; $\cos 90^{\circ} = 0$



3.a

2a

Downloaded from https:// www.studiestoday.com

Therefore, for standard	t angles	of 0°,	30°, 45°,	60°	and 90°,	we have :
-------------------------	----------	--------	-----------	-----	----------	-----------

Angle→	0°	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
COS	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	√3	∞ (not defined)
cot	∞ (not defined)	√3		$\frac{1}{\sqrt{3}}$	0
sec	1	$\frac{2}{\sqrt{3}}$	√2	2	∞ (not defined)
cosec	∞ (not defined)	2	√2	$\frac{2}{\sqrt{3}}$	1

It can be seen from the table, given above, that as the angle increases from 0° to 90°;
 (i) value of sin increases from 0 to 1

(ii) value of cos decreases from 1 to 0

(iii) value of tan increases from 0 to ∞ and so on.

2. If $x = y = 45^{\circ}$ or, $x + y = 90^{\circ}$ then, sin $x = \cos y$; tan $x = \cot y$ and sec $x = \operatorname{cosec} y$.

For example : $\sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}$ $[x = y = 45^\circ]$ and also $\sin 30^\circ = \cos 60^\circ = \frac{1}{2}$ $[x + y = 90^\circ]$

- 3. Whatever be the measure of angle A;
 - (i) $\sin^2 A + \cos^2 A = 1$
 - (ii) $\sec^2 A \tan^2 A = 1$
 - (iii) $\operatorname{cosec}^2 A \cot^2 A = 1$

For example : If $A = 30^\circ$; $\sin^2 A + \cos^2 A = \sin^2 30^\circ + \cos^2 30^\circ$

$$= \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}$$
$$= \frac{1}{4} + \frac{3}{4} = 1$$
Similarly, $\sec^{2} A - \tan^{2} A = \sec^{2} 30^{\circ} - \tan^{2} 30^{\circ}$

 $(1)^2 (\sqrt{3})^2$

289

Downloaded from https:// www.studiestoday.com

$$= \left(\frac{2}{\sqrt{3}}\right)^2 - \left(\frac{1}{\sqrt{3}}\right)^2$$
$$= \frac{4}{3} - \frac{1}{3} = 1$$

1. $sin (A + B) \neq sin A + sin B$ 2. $cos (A + B) \neq cos A + cos B$ 3. $tan (A + B) \neq tan A + tan B$ 4. $sin (A - B) \neq sin A - sin B$ and so on.

1 Evaluate :

- (i) $\sin^2 30^\circ 2 \cos^3 60^\circ + 3 \tan^4 45^\circ$
- (ii) $(\cos 0^\circ + \sin 45^\circ + \sin 30^\circ) (\sin 90^\circ \cos 45^\circ + \cos 60^\circ)$

Solution :

1

(i) $\sin^2 30^\circ - 2 \cos^3 60^\circ + 3 \tan^4 45^\circ$

$$= \left(\frac{1}{2}\right)^2 - 2\left(\frac{1}{2}\right)^3 + 3 (1)^4$$
$$= \frac{1}{4} - 2 \times \frac{1}{8} + 3 \times 1 = \frac{1}{4} - \frac{1}{4} + 3 = 3$$

(ii) $(\cos 0^\circ + \sin 45^\circ + \sin 30^\circ)$ $(\sin 90^\circ - \cos 45^\circ + \cos 60^\circ)$

$$= \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{2}\right) \left(1 - \frac{1}{\sqrt{2}} + \frac{1}{2}\right)$$
$$= \left(\frac{3}{2} + \frac{1}{\sqrt{2}}\right) \left(\frac{3}{2} - \frac{1}{\sqrt{2}}\right)$$
$$= \left(\frac{3}{2}\right)^{2} - \left(\frac{1}{\sqrt{2}}\right)^{2} = \frac{9}{4} - \frac{1}{2} = 1\frac{3}{4}$$

2 Find the value of :

$\sin 30^{\circ} - \sin 90^{\circ} + 2 \cos 0^{\circ}$
tan 30° × tan 60°

Solution :

$$\frac{\sin 30^{\circ} - \sin 90^{\circ} + 2 \cos 0^{\circ}}{\tan 30^{\circ} \times \tan 60^{\circ}} = \frac{\frac{1}{2} - 1 + 2 \times 1}{\frac{1}{\sqrt{3}} \times \sqrt{3}}$$
$$= \frac{\frac{1}{2} - 1 + 2}{1}$$
$$= \frac{\frac{1}{2} - 1 + 2}{1}$$
$$= \frac{3}{2} = 1\frac{1}{2}$$

Ans.

Ans.

Ans.

Downloaded from https:// www.studiestoday.com

If $A = 60^\circ$, verify that : 3 (ii) $\sec^2 A - \tan^2 A = 1$ (i) $\sin^2 A + \cos^2 A = 1$ Solution : (i) $\sin^2 A + \cos^2 A = \sin^2 60^\circ + \cos^2 60^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{4} = 1$ (ii) $\sec^2 A - \tan^2 A = \sec^2 60^\circ - \tan^2 60^\circ = (2)^2 - (\sqrt{3})^2 = 4 - 3 = 1$ If $x = 15^\circ$, evaluate : 8 sin $2x \cos 4x \sin 6x$ 4 Solution : $8 \sin 2x \cos 4x \sin 6x$ = $8 \sin(2 \times 15^\circ) \cos(4 \times 15^\circ) \sin(6 \times 15^\circ)$ $= 8 \sin 30^{\circ} \cos 60^{\circ} \sin 90^{\circ}$ $= 8 \times \frac{1}{2} \times \frac{1}{2} \times 1 = 2$ Ans. EXERCISE 23(A) 1. Find the value of : (ii) $\cos (2 \times 30^\circ) = \frac{1 - \tan^2 30^\circ}{1 + \tan^2 30^\circ}$ (i) $\sin 30^\circ \cos 30^\circ$ (ii) tan 30° tan 60° (iii) $\tan (2 \times 30^\circ) = \frac{2 \tan 30^\circ}{1 - \tan^2 30^\circ}$ (iii) $\cos^2 60^\circ + \sin^2 30^\circ$ (iv) $\operatorname{cosec}^2 60^\circ - \tan^2 30^\circ$ 5. ABC is an isosceles right-angled triangle. (v) $\sin^2 30^\circ + \cos^2 30^\circ + \cot^2 45^\circ$ Assuming AB = BC = x, find the value of each of the following trigonometric ratios : (vi) $\cos^2 60^\circ + \sec^2 30^\circ + \tan^2 45^\circ$ (i) sin 45° 2. Find the value of : (ii) cos 45° (i) $\tan^2 30^\circ + \tan^2 45^\circ + \tan^2 60^\circ$ (iii) tan 45° (ii) $\frac{\tan 45^{\circ}}{\csc 30^{\circ}} + \frac{\sec 60^{\circ}}{\cot 45^{\circ}} - \frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}$ в 6. Prove that : (iii) $3 \sin^2 30^\circ + 2 \tan^2 60^\circ - 5 \cos^2 45^\circ$ (i) $\sin 60^\circ = 2 \sin 30^\circ \cos 30^\circ$. 3. Prove that : (ii) 4 $(\sin^4 30^\circ + \cos^4 60^\circ)$ $-3(\cos^2 45^\circ - \sin^2 90^\circ) = 2$ (i) $\sin 60^{\circ} \cos 30^{\circ} + \cos 60^{\circ}$. $\sin 30^{\circ} = 1$ (ii) $\cos 30^\circ$. $\cos 60^\circ - \sin 30^\circ$. $\sin 60^\circ = 0$ (i) If sin $x = \cos x$ and x is acute, state the 7. value of x. (iii) $\csc^2 45^\circ - \cot^2 45^\circ = 1$ (ii) If sec A = cosec A and $0^{\circ} \le A \le 90^{\circ}$, (iv) $\cos^2 30^\circ - \sin^2 30^\circ = \cos 60^\circ$ state the value of A. (v) $\left(\frac{\tan 60^\circ + 1}{\tan 60^\circ - 1}\right)^2 = \frac{1 + \cos 30^\circ}{1 - \cos 30^\circ}$ (iii) If $\tan \theta = \cot \theta$ and $0^{\circ} \le \theta \le 90^{\circ}$, state the value of θ . (iv) If $\sin x = \cos y$; write the relation (vi) $3 \operatorname{cosec}^2 60^\circ - 2 \cot^2 30^\circ + \sec^2 45^\circ = 0$. between x and y, if both the angles x and y are acute. 4. Prove that : (i) $\sin (2 \times 30^\circ) = \frac{2 \tan 30^\circ}{1 + \tan^2 200^\circ}$ (i) If sin $x = \cos y$, then $x + y = 45^{\circ}$; write 8. true or false. 291

Downloaded from https:// www.studiestoday.com

3

Downloaded from https:// www.studiestoday.com

- (ii) sec θ . cot θ = cosec θ ; write true or false.
- (iii) For any angle θ , state the value of : $\sin^2 \theta + \cos^2 \theta$.
- 9. State for any acute angle θ whether :
 - (i) $\sin \theta$ increases or decreases as θ increases.
 - (ii) $\cos \theta$ increases or decreases as θ increases.
 - (iii) $\tan \theta$ increases or decreases as θ decreases.
- 10. If $\sqrt{3} = 1.732$, find (correct to two decimal places) the value of each of the following :

(ii)

11. Evaluate :

(i)
$$\frac{\cos 3A - 2\cos 4A}{\sin 3A + 2\sin 4A}$$
, when $A = 15^{\circ}$.

(ii)
$$\frac{3\sin 3B + 2\cos (2B + 5^{\circ})}{2\cos 3B - \sin (2B - 10^{\circ})};$$

when $B = 20^{\circ}$.

5 If A = 60° and B = 30°; prove that : sin (A - B) = sin A cos B - cos A sin B

Solution :

L.H.S. =
$$\sin (60^\circ - 30^\circ)$$

$$-\sin 30^{\circ} - \frac{1}{2}$$

R.H.S. = $\sin 60^{\circ} \cos 30^{\circ} - \cos 60^{\circ} \sin 30^{\circ}$

$$= \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$$

: L.H.S. = R.H.S.

Hence Proved.

6 If A = 30°, then prove that : $\cos 3 A = 4 \cos^3 A - 3 \cos A$

Solution :

L.H.S. = cos 3 A
= cos (3 × 30°) = cos 90° = 0
R.H.S. = 4 cos³ A - 3 cos 30°
= 4 cos³ 30° - 3 cos 30°
= 4
$$\left(\frac{\sqrt{3}}{2}\right)^3 - 3\left(\frac{\sqrt{3}}{2}\right)$$

= 4 × $\frac{3.\sqrt{3}}{8} - \frac{3.\sqrt{3}}{2} = 0$
L.H.S. = R.H.S.

Hence Proved.

Downloaded from https://www.studiestoday.com

[L.H.S. = Left hand side]

[R.H.S. = Right hand side]

EXERCISE 23(B)

1. Given A = 60° and B = 30°, prove that : (i) sin (A + B) = sin A cos B + cos A sin B (ii) cos (A + B) = cos A cos B - sin A sin B (iii) cos (A - B) = cos A cos B + sin A sin B (iv) tan (A - B) = $\frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}$ 2. If A = 30°, then prove that : (i) sin 2A = 2 sin A cos A = $\frac{2 \tan A}{1 + \tan^2 A}$ (ii) cos 2A = cos² A - sin² A $= \frac{1 - \tan^2 A}{1 + \tan^2 A}$ (iii) 2 cos² A - 1 = 1 - 2 sin² A (iv) sin 3A = 3 sin A - 4 sin³ A 3. If A = B = 45°, show that : (i) sin (A - B) = sin A cos B - cos A sin B

(ii) $\cos (A + B) = \cos A \cos B - \sin A \sin B$

- 4. If $A = 30^\circ$; show that :
 - (i) $\sin 3 A$ = 4 $\sin A \sin (60^\circ - A) \sin (60^\circ + A)$
 - (ii) $(\sin A \cos A)^2 = 1 \sin 2 A$
 - (iii) $\cos 2A = \cos^4 A \sin^4 A$

(iv)
$$\frac{1-\cos 2A}{\sin 2A} = \tan A$$

- (v) $\frac{1+\sin 2A + \cos 2A}{\sin A + \cos A} = 2 \cos A.$
- (vi) 4 cos A cos (60° A) \cdot cos (60° + A) = cos 3A

(vii)
$$\frac{\cos^3 A - \cos 3A}{\cos A} + \frac{\sin^3 A + \sin 3A}{\sin A} = 3$$

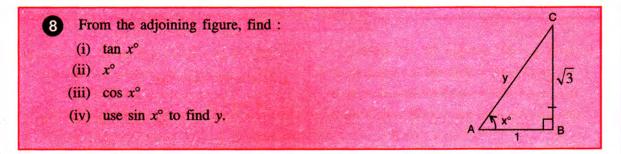
3.3 SOLVING A TRIGONOMETRIC EQUATION

To solve a trigonometric equation means, to find the value of the unknown angle that satisfies the given equation.

7 Find A, if: (i) $\sin 2A = 1$ (ii) $2 \cos 3A = 1$ (iii) (sec A - 2) (tan 3A - 1) = 0

Solution :

(i) $\sin 2A = 1 \Rightarrow \sin 2A = \sin 90^{\circ}$	[Since, $\sin 90^\circ = 1$]
$\therefore 2A = 90^{\circ} \text{ and } A = 45^{\circ}$	Ans.
(ii) $2 \cos 3 A = 1 \implies \cos 3A = \frac{1}{2}$	[Since, $\cos 60^\circ = \frac{1}{2}$]
$\Rightarrow \cos 3A = \cos 60^{\circ}$	
\therefore 3A = 60° and A	= 20° Ans.
(iii) (sec A – 2) (tan 3A – 1) = 0	
\Rightarrow sec A - 2 = 0 or tan 3A	-1 = 0
\Rightarrow sec A = 2 and tan	$3A = 1 = \tan 45^{\circ}$
\Rightarrow sec A = sec 60° and	$3A = 45^{\circ}$
$\therefore \qquad \mathbf{A} = 60^\circ \qquad \text{and} \qquad$	$A = 15^{\circ} \qquad Ans.$



Solution :

2

(i) $\tan x^{\circ} = \frac{\text{perp.}}{\text{base}} = \frac{\sqrt{3}}{1} = \sqrt{3}$	Ans.
(ii) Since, $\tan x^\circ = \sqrt{3}$	
and $\tan 60^{\circ} = \sqrt{3} :: x^{\circ} = 60^{\circ}$	Ans.
(iii) $\cos x^\circ = \cos 60^\circ = \frac{1}{2}$	Ans.
(iv) $\sin x^\circ = \sin 60^\circ$	[Since, $x^{\circ} = 60^{\circ}$]
$\Rightarrow \frac{\sqrt{3}}{y} = \frac{\sqrt{3}}{2}$	[since, sin $x^\circ = \frac{\text{perp.}}{\text{hyp.}} = \frac{\sqrt{3}}{y}$ and sin $60^\circ = \frac{\sqrt{3}}{2}$]
\Rightarrow y = 2	Ans.

9 If $4 \sin^2 x^\circ - 3 = 0$ and x° is an acute angle; find : (i) $\sin x^\circ$ (ii) x°

Solution :

(i)
$$4 \sin^2 x^\circ - 3 = 0 \Rightarrow \sin^2 x^\circ = \frac{3}{4}$$

 $\Rightarrow \sin x^\circ = \frac{\sqrt{3}}{2}$ Ans.
(ii) $\sin x^\circ = \frac{\sqrt{3}}{2} \Rightarrow \sin x^\circ = \sin 60^\circ$
 $\Rightarrow x = 60^\circ$ Ans.

10 Find the magnitude of angle A, if :
(i)
$$4 \sin A \sin 2A + 1 - 2 \sin 2A = 2 \sin A$$

(ii) $2 \sin^2 A - 3 \sin A + 1 = 0$
(iii) $3 \cot^2 (x - 5^\circ) = 1$
(iv) $\sin^2 2x + \sin^2 60^\circ = 1$

Downloaded from https:// www.studiestoday.com

Solution :
(i) 4 sin A sin 2A + 1 - 2 sin 2A = 2 sin A

$$\Rightarrow$$
 4 sin A sin 2A - 2 sin 2A - 2 sin A + 1 = 0
 \Rightarrow 2 sin A - 1) (2 sin 2A - 1) = 0
 \Rightarrow (2 sin A - 1) (2 sin 2A - 1) = 0
 \Rightarrow 2 sin A - 1 = 0 \Rightarrow sin A = $\frac{1}{2}$ 2 sin 2A - 1 = 0 \Rightarrow sin 2A = $\frac{1}{2}$
 \Rightarrow sin A = sin 30° \Rightarrow sin 2A = sin 30°
 \Rightarrow A = 30° \Rightarrow 2A = 30°
 \Rightarrow A = 15°
 \therefore Angle A = 30° or 15° Ans.
(ii) 2 sin² A - 3 sin A + 1 = 0
 \Rightarrow 2 sin A (sin A - 1) - (sin A - 1) = 0
 \Rightarrow (sin A - 1) (2 sin A - 1) = 0
 \Rightarrow sin A = sin 90° \Rightarrow sin A = $\frac{1}{2}$
 \Rightarrow sin A = sin 90° \Rightarrow sin A = sin 30°
 \Rightarrow A = 30°
 \therefore Angle A = 90° or 30° Ans.
(iii) 3 cot²(x - 5°) = 1 \Rightarrow cot² (x - 5°) = $\frac{1}{3}$
 \Rightarrow cot(x - 5°) = $\frac{1}{\sqrt{3}}$ = cot 60°
 \Rightarrow x - 5° = 60° *i.e.* x = 65° Ans.
(iv) sin² 2x + sin² 60° = 1 \Rightarrow sin² 2x + $\left(\frac{\sqrt{3}}{2}\right)^2$ = 1
 \Rightarrow sin² 2x = 1 - $\frac{3}{4} = \frac{1}{4}$
 \Rightarrow sin 2x = $\frac{1}{2} =$ sin 30°
 \Rightarrow 2x = 30° *i.e.* x = 15° Ans.
(iv) sin² 2x + sin² 60° = 1 \Rightarrow sin (A + B) = cos (A - B) = $\frac{\sqrt{3}}{2}$
Solution :
sin (A + B) = $\frac{\sqrt{3}}{2} \Rightarrow$ cos (A - B) = cos 30° \Rightarrow A - B = 30° I

On solving equations I and II, we get $A = 45^{\circ}$ and $B = 15^{\circ}$

295

Downloaded from https:// www.studiestoday.com

Ans.

12 If tan $(A + B) = \sqrt{3}$ and $\sqrt{3}$ tan (A - B) = 1; find the angles A and B.

Solution :

3

 $\tan (A + B) = \sqrt{3} = \tan 60^{\circ} \implies A + B = 60^{\circ}$ $\sqrt{3} \tan (A - B) = 1 \implies \tan (A - B) = \frac{1}{\sqrt{3}} = \tan 30^{\circ}$ $\implies A - B = 30^{\circ}$ On solving equation A + B = 60° and A - B = 30°

We get $A = 45^{\circ}$ and $B = 15^{\circ}$

13 If $\sqrt{3} \tan 2 \theta = 3$ and $0^\circ < \theta \le 90^\circ$; find the value of $3\sqrt{3} \cos \theta + 2\sin \theta - 6 \tan^2 \theta$.

Solution :

- $\sqrt{3} \tan 2 \theta = 3$ *i.e.* $\tan 2 \theta = \frac{3}{\sqrt{3}} = \sqrt{3} = \tan 60^{\circ}$ $\Rightarrow 2 \theta = 60^{\circ}$ and $\theta = 30^{\circ}$
- $\therefore 3\sqrt{3} \cos \theta + 2 \sin \theta 6 \tan^2 \theta$

 $= 3\sqrt{3} \cos 30^\circ + 2 \sin 30^\circ - 6 \tan^2 30^\circ$

$$= 3\sqrt{3} \times \frac{\sqrt{3}}{2} + 2 \times \frac{1}{2} - 6 \times \left(\frac{1}{\sqrt{3}}\right)^2$$
$$= \frac{9}{2} + 1 - 2 = \frac{9 + 2 - 4}{2} = \frac{7}{2} = 3\frac{1}{2}$$

14 Solve for θ (0° < θ < 90°): (i) $\sin^2 \theta - \frac{1}{2} \sin \theta = 0$ (ii) $2\sin^2 \theta - 2 \cos \theta = \frac{1}{2}$ (iii) $\tan^2 \theta + 3 = 3 \sec \theta$.

Solution :

(i)
$$\sin^2 \theta - \frac{1}{2} \sin \theta = 0$$

 $\Rightarrow \quad \sin \theta (\sin \theta - \frac{1}{2}) = 0$
 $\Rightarrow \quad \sin \theta = 0 \quad \text{or} \quad \sin \theta - \frac{1}{2} = 0 \quad i.e. \quad \sin \theta = \frac{1}{2}$
 $\Rightarrow \quad \sin \theta = \sin 0^\circ \quad \text{or} \quad \sin \theta = \sin 30^\circ$
 $\Rightarrow \quad \theta = 0^\circ \quad \text{or} \quad \theta = 30^\circ$ Ans.

Downloaded from https:// www.studiestoday.com

296

Ans.

Ans.

	at $\cos \theta = -\frac{3}{2}$ is not possible for $0^\circ < \theta < 90^\circ$	
i.e.	$\cos \theta = -\frac{3}{2}$	or $\cos \theta = \frac{1}{2} = \cos 60^{\circ}$
i.e.	$2\cos\theta+3=0$	or $2\cos\theta - 1 = 0$
⇒	$(2 \cos \theta + 3) (2 \cos \theta - 1) = 0$	
i.e.	$2 \cos \theta (2 \cos \theta + 3) - 1 (2 \cos \theta + 3) = 0$	
\Rightarrow	$4\cos^2\theta + 6\cos\theta - 2\cos\theta - 3 = 0$	
i.e.	$4\cos^2\theta+4\cos\theta-3=0$	$\Rightarrow \qquad \sin^2 \theta = 1 - \cos^2 \theta$
⇒	$4-4\cos^2\theta-4\cos\theta=1$	$\sin^2 \theta + \cos^2 \theta = 1$
\Rightarrow	$4(1-\cos^2\theta)-4\cos\theta=1$	For every value of angle θ ;
⇒	$4\sin^2\theta-4\cos\theta=1$	
(ii)	$2\sin^2\theta-2\cos\theta=\frac{1}{2}$	

For each value of angle θ , between 0° and 90°, the values of sin θ and cos θ are always between 0 and 1.

(iii) $\tan^2 \theta + 3 = 3 \sec \theta$

 $\sec^2 \theta - 1 + 3 = 3 \sec \theta$ For every value of angle θ ; \Rightarrow $1 + \tan^2 \theta = \sec^2 \theta$ $\sec^2 \theta - 3 \sec \theta + 2 = 0$ \Rightarrow $\tan^2 \theta = \sec^2 \theta - 1$ $\sec^2 \theta - 2 \sec \theta - \sec \theta + 2 = 0$ = ⇒ $\sec \theta (\sec \theta - 2) - 1(\sec \theta - 2) = 0$ ⇒ $(\sec \theta - 2)$ $(\sec \theta - 1) = 0$ \Rightarrow $\sec \theta - 2 = 0$ $\sec \theta - 1 = 0$ or \Rightarrow $\sec \theta = 2$ $\sec \theta = 1$ or \Rightarrow $\sec \theta = \sec 0^\circ$ or sec $\theta = \sec 60^\circ$ i.e. $\theta = 60^{\circ}$ [As θ lies between 0° and 90°] ⇒

EXERCISE 23(C)

Ans.

2. Calculate the value of A, if : 1. Solve the following equations for A, if : (i) $(\sin A - 1) (2 \cos A - 1) = 0$ (i) $2 \sin A = 1$ (ii) $2 \cos 2 A = 1$ (ii) $(\tan A - 1) (\operatorname{cosec} 3A - 1) = 0$ (iii) $\sin 3 A = \frac{\sqrt{3}}{2}$ (iv) sec 2 A = 2(iii) (sec 2A - 1) (cosec 3A - 1) = 0 (iv) $\cos 3A$. $(2 \sin 2A - 1) = 0$ (v) $\sqrt{3} \tan A = 1$ (vi) $\tan 3 A = 1$ (v) (cosec 2A - 2) (cot 3A - 1) = 0 3. If $2 \sin x^{\circ} - 1 = 0$ and x° is an acute angle; find: (vii) $2 \sin 3 A = 1$ (viii) $\sqrt{3} \cot 2 A = 1$ (i) $\sin x^{\circ}$ (ii) x° (iii) $\cos x^{\circ}$ and $\tan x^{\circ}$.

Downloaded from https:// www.studiestoday.com

- 4. If $4 \cos^2 x^\circ 1 = 0$ and $0 \le x^\circ \le 90^\circ$, find: (i) x° (ii) $\sin^2 x^\circ + \cos^2 x^\circ$ (iii) $\frac{1}{\cos^2 x^\circ} - \tan^2 x^\circ$
- 5. If $4 \sin^2 \theta 1 = 0$ and angle θ is less than 90°, find the value of θ and hence the value of $\cos^2 \theta + \tan^2 \theta$.
- 6. If $\sin 3A = 1$ and $0 \le A \le 90^{\circ}$, find : (i) $\sin A$ (ii) $\cos 2 A$

(iii)
$$\tan^2 A - \frac{1}{\cos^2 A}$$

1

- 7. If 2 cos 2A = $\sqrt{3}$ and A is acute, find : (i) A (ii) sin 3A
 - (iii) $\sin^2 (75^\circ A) + \cos^2 (45^\circ + A)$
- 8. (i) If $\sin x + \cos y = 1$ and $x = 30^{\circ}$, find the value of y.
 - (ii) If 3 tan A 5 cos B = $\sqrt{3}$ and B = 90°, find the value of A.
- 9. From the given figure, find :

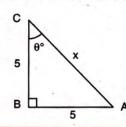
(i)
$$\cos x^{\circ}$$
 (ii) x°

- (iii) $\frac{1}{\tan^2 x^\circ} \frac{1}{\sin^2 x^\circ}$
- (iv) Use tan x° , to find the value of y. y cm

10. Use the given figure to find :

(i) $\tan \theta^{\circ}$ (ii) θ° (iii) $\sin^2 \theta^{\circ} - \cos^2 \theta^{\circ}$ (iv) Use $\sin \theta^{\circ}$ to find the value of x.

10 cm



- 11. Find the magnitude of angle A, if:
 (i) 2 sin A cos A cos A 2 sin A + 1 = 0
 (ii) tan A-2 cos A tan A + 2 cos A 1 = 0
 (iii) 2 cos² A 3 cos A + 1 = 0
 (iv) 2 tan 3A cos 3A tan 3A + 1 = 2 cos 3A
 12. Solve for x :
 - (i) $2\cos 3x 1 = 0$ (ii) $\cos \frac{x}{3} 1 = 0$ (iii) $\sin (x + 10^\circ) = \frac{1}{2}$ (iv) $\cos (2x - 30^\circ) = 0$ (v) $2\cos (3x - 15^\circ) = 1$ (vi) $\tan^2 (x - 5^\circ) = 3$ (vii) $3\tan^2 (2x - 20^\circ) = 1$ (viii) $\cos \left(\frac{x}{2} + 10^\circ\right) = \frac{\sqrt{3}}{2}$ (ix) $\sin^2 x + \sin^2 30^\circ = 1$ (x) $\cos^2 30^\circ + \cos^2 x = 1$ (xi) $\cos^2 30^\circ + \sin^2 2x = 1$ (xii) $\sin^2 60^\circ + \cos^2 (3x - 9^\circ) = 1$
- 13. If $4 \cos^2 x = 3$ and x is an acute angle; find the value of :
 - (i) x (ii) $\cos^2 x + \cot^2 x$ (iii) $\cos 3x$ (iv) $\sin 2x$
- 14. In \triangle ABC, \angle B = 90°, AB = y units, BC = $\sqrt{3}$ units, AC = 2 units and angle A = x°, find :

(i) $\sin x^{\circ}$ (ii) x° (iii) $\tan x^{\circ}$

- (iv) use $\cos x^\circ$ to find the value of y.
- 15. If $2 \cos (A + B) = 2 \sin (A B) = 1$; find the values of A and B.

Downloaded from https:// www.studiestoday.com