

Rectilinear Figures

[Quadrilaterals : Parallelogram, Rectangle, Rhombus, Square and Trapezium]

14.1 INTRODUCTION

- 1. Rectilinear means along a straight line or in a straight line or forming a straight line.
- 2. A plane figure bounded by straight lines is called a rectilinear figure.
- 3. A closed plane figure, bounded by at least three line segments, is called a polygon.

14.2 NAMES OF POLYGONS

A polygon is named by the number of sides in it, as given below :

No. of sides	3	4	5	6	7	8	
Name	Triangle	Quadrilateral	Pentagon	Hexagon	Heptagon	Octagon	,etc.

1. Convex Polygon :

If each angle of a polygon is less than 180°; the polygon is called a convex polygon.

2. Concave Polygon :

If at least one angle of a polygon is greater than 180°; it is called a concave polygon.

Unless otherwise stated, a polygon means a convex polygon.

- 1. In a polygon of n sides, the sum of the interior angles is equal to (2n 4) right angles.
- 2. If the sides of a polygon are produced in order (*i.e.* all the sides are produced either in clockwise direction or in anti-clockwise direction); the sum of exterior angles so formed is 4 right angles. *i.e.*

 $\angle a + \angle b + \angle c + \angle d + \dots = 4$ rt. angles = 360°.

The sum of the interior angles of a polygon is five times the sum of its exterior angles. Find the number of sides in the polygon.

la

Ans.

Solution :

1

Let the number of sides be *n*. Given : The sum of the interior angles of the polygon $= 5 \times$ the sum of its exterior angles. $\therefore (2n-4) \times 90^\circ = 5 \times 360^\circ$ On solving, we get : 2n = 24 and n = 12 \therefore The required no. of sides in the polygon = 12 165

7

One angle of an eight-sided polygon is 100° and the other angles are equal. Find the measure of each equal angle.

Solution :

2

1

The sum of the interior angles of an eight-sided polygon

$$= (2n-4) \times 90^{\circ} = (2 \times 8 - 4) \times 90^{\circ} = 1080^{\circ}$$

Since, one angle of the polygon = 100°

... The sum of the remaining seven angles

 $= 1080^{\circ} - 100^{\circ} = 980^{\circ}$

Since, these angles are equal

 \therefore The measure of each equal angle = $\frac{980^{\circ}}{7} = 140^{\circ}$

Alternative method :

Let each of the remaining seven equal angles = x° .

 \therefore The sum of these seven angles = $7x^{\circ}$

And, $7x^{\circ} + 100^{\circ} = (2 \times 8 - 4) \times 90^{\circ} \implies 7x^{\circ} = 1080^{\circ} - 100^{\circ} = 980^{\circ}$

⇒

$$x^{\circ} = \frac{980^{\circ}}{7} = 140^{\circ}$$

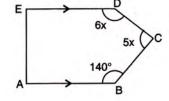
3

In a pentagon ABCDE, AB is parallel to ED and angle $B = 140^{\circ}$. Find the angles C and D, if $\angle C : \angle D = 5 : 6$.

Solution :

The rough sketch of the given pentagon will be as shown alongside.

Since, AB//ED $\Rightarrow \angle A + \angle E = 180^\circ$. Given : $\angle C$: $\angle D = 5 : 6 \Rightarrow \text{ if } \angle C = 5x, \angle D = 6x$. Now, $\angle A + \angle B + \angle C + \angle D + \angle E = (2 \times 5 - 4) \times 90^\circ$ $\Rightarrow (\angle A + \angle E) + 140^\circ + 5x + 6x = 540^\circ$ $\Rightarrow 180^\circ + 140^\circ + 5x + 6x = 540^\circ$ is 11 a 540° 220° $\Rightarrow 11a - 220^\circ = 20^\circ$



Ans.

Ans.

Ans.

i.e.
$$11x = 540^{\circ} - 320^{\circ} \implies 11x = 220^{\circ} \text{ and } x = \frac{220^{\circ}}{11} = 20^{\circ}$$

 $\therefore \ \angle \mathbf{C} = 5x = 5 \times 20^{\circ} = 100^{\circ} \text{ and } \ \angle \mathbf{D} = 6x = 6 \times 20^{\circ} = 120^{\circ}$

4 In the pentagon ABCDE, angle A = 110°, angle B = 140° and angle D = angle E. The sides AB and DC, when produced, meet at right angle. Calculate angles BCD and E.

Solution :

According to the given statement, the figure will be as shown below. In the figure, AB and DC produced meet at point P, therefore $\angle P = 90^{\circ}$ $\angle B = 140^{\circ} \Rightarrow \angle PBC = 180^{\circ} - 140^{\circ} = 40^{\circ}$ and $\angle BCP = 90^{\circ} - 40^{\circ} = 50^{\circ}$ $\therefore \angle BCD = 180^{\circ} - 50^{\circ} = 130^{\circ}$ Ans.

Let angle D = angle E = x

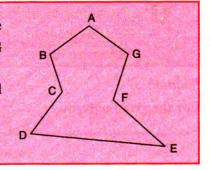
Since, $\angle A + \angle B + \angle BCD + \angle D + \angle E = (2 \times 5 - 4) \times 90^{\circ}$

 $\Rightarrow 110^{\circ} + 140^{\circ} + 130^{\circ} + x + x = 540^{\circ}$

i.e. $2x = 540^{\circ} - 380^{\circ} = 160^{\circ} \implies x = 80^{\circ}$

 $\therefore \text{ Angle } \mathbf{E} = x = 80^{\circ}$

By dividing into triangles, find the sum of the angles of the doubly re-entrant heptagon ABCDEFG as shown alongside. Does the general value of (2n - 4) right-angles hold for re-entrant polygon?



Solution :

5

On dividing the given figure into triangles, we get 5 triangles.

Sum of the angles of given heptagon

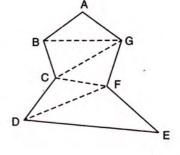
= Sum of the angles of 5 triangles

 $= 5 \times 180^{\circ} = 900^{\circ}$

 $\therefore n = 7$

 $\therefore (2n - 4) \text{ right angles} = (2 \times 7 - 4) \times 90^{\circ}$

 $= 10 \times 90^{\circ} = 900^{\circ}$



Ans. Ans.

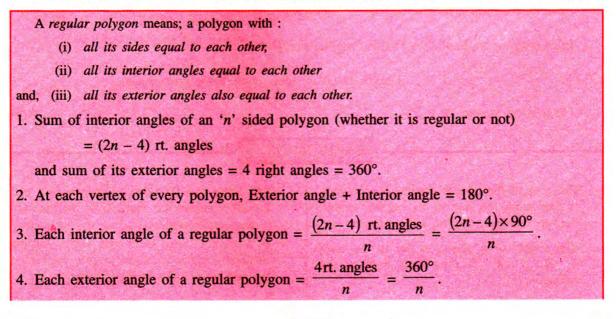
Ans.

:. General value (2n - 4) right angles holds for re-entrant polygons.

4.3 REGULAR POLYGON

If all the sides and all the angles of a polygon are equal, it is called a regular polygon.

Ans.



- 5. If each exterior angle of a regular polygon is x° , the number of sides in it = $\frac{360}{x}$.
- 6. Greater the number of sides in a regular polygon; greater is the value of its each interior angle and smaller is the value of its each exterior angle.

Each interior angle of a regular polygon is 160°. Find the interior angle of another regular polygon whose number of sides is two-thirds the number of sides of the given polygon.

Solution :

6

For the given polygon :

	Each interior angle = 160°
⇒	each exterior angle = $(180 - 160)^\circ = 20^\circ$
л. [.]	No. of sides in it = $\frac{360^{\circ}}{20^{\circ}} = 18$
For the other	r polygon :
	No. of sides $=\frac{2}{3} \times 18 = 12$
⇒	Each exterior angle = $\frac{360^{\circ}}{12} = 30^{\circ}$

and, each interior angle = $180^\circ - 30^\circ$

= **150**°

If the difference between an exterior angle of a regular polygon of 'n' sides and an exterior angle of another regular polygon of '(n + 1)' sides is equal to 5°; find the value of 'n'.

Solution :

7

Each exterior angle of n-sided regular polygon = $\frac{360^{\circ}}{n}$. Each exterior angle of (n + 1) sided regular polygon = $\frac{360^{\circ}}{n+1}$.

Given: $\frac{360^\circ}{n} - \frac{360^\circ}{n+1} = 5$ [Greater the

[Greater the no. of sides, smaller is the exterior angle]

On solving, we get : n = 8

EXERCISE 14(A)

- 1. The sum of the interior angles of a polygon is four times the sum of its exterior angles. Find the number of sides in the polygon.
- 2. The angles of a pentagon are in the ratio 4:8:6:4:5. Find each angle of the pentagon.
- 3. One angle of a six-sided polygon is 140° and the other angles are equal. Find the measure of each equal angle.

Ans.

Ans.

4. In a polygon, there are 5 right angles and the remaining angles are equal to 195° each. Find the number of sides in the polygon.

168

- 5. Three angles of a seven sided polygon are 132° each and the remaining four angles are equal. Find the value of each equal angle.
- 6. Two angles of an eight sided polygon are 142° and 176°. If the remaining angles are equal to each other; find the magnitude of each of the equal angles.
- 7. In a pentagon ABCDE, AB is parallel to DC and $\angle A : \angle E : \angle D = 3 : 4 : 5$. Find angle E.
- AB, BC and CD are the three consecutive sides of a regular polygon. If ∠BAC = 15°; find,
 - (i) each interior angle of the polygon.

- (ii) each exterior angle of the polygon.
- (iii) number of sides of the polygon.
- The ratio between an exterior angle and an interior angle of a regular polygon is 2 : 3. Find the number of sides in the polygon.
- 10. The difference between an exterior angle of (n 1) sided regular polygon and an exterior angle of (n + 2) sided regular polygon is 6°. Find the value of n.
- 11. Two alternate sides of a regular polygon, when produced, meet at right angle. Find :(i) the value of each exterior angle of the polygon;
 - (ii) the number of sides in the polygon.

14.4 QUADRILATERALS

A closed plane figure bounded by four line segments is called a quadrilateral.

The adjoining figure shows a *quadrilateral*. It is bounded by four line segments AB, BC, CD and DA, called the *sides* of the quadrilateral.

The points A, B, C and D are its four vertices.

The line segments joining the opposite vertices of a quadrilateral are called its *diagonals*. Thus, a quadrilateral ABCD has two diagonals; namely, AC and BD.

Sum of the angles of a quadrilateral is 360°.

14.5 SPECIAL KINDS OF QUADRILATERALS

1. Trapezium :

A trapezium is a quadrilateral in which one pair of opposite sides is parallel but the other pair of opposite sides is non-parallel.

The given figure shows a quadrilateral in which the sides AB and

DC are parallel whereas the sides AD and BC are non-parallel.

Therefore, quadrilateral ABCD is a trapezium.

If the *non-parallel* sides **AD** and **BC** of the trapezium ABCD are **equal**, it is called an *isosceles trapezium*. In this case:

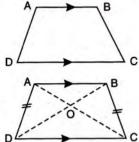
(i) $\angle D = \angle C$ and $\angle A = \angle B$. (ii) AC = BD

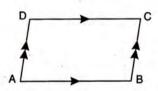
(iii) If diagonals intersect at point O, OA = OB and OC = OD.

2. Parallelogram :

A parallelogram is a quadrilateral in which opposite sides are parallel. It is denoted by 4.

The adjoining figure shows a **parallelogram** ABCD, since, AB // DC and AD // BC.





Downloaded from https:// www.studiestoday.com

In a parallelogram ABCD :

1

- (i) opposite sides are parallel i.e. AB // DC and AD // BC,
- (ii) opposite sides are equal *i.e.* AB = DC and AD = BC,
- (iii) opposite angles are equal *i.e.* $\angle A = \angle C$ and $\angle B = \angle D$,
- (iv) consecutive angles (conjoined angles) are supplementary,

i.e.
$$\angle A + \angle B = 180^\circ$$
, $\angle B + \angle C = 180^\circ$

$$\angle C + \angle D = 180^\circ$$
 and $\angle D + \angle A = 180^\circ$,

(v) diagonals bisect each other,

i.e.
$$OA = OC = \frac{1}{2}AC$$
 and $OB = OD = \frac{1}{2}BD$,

(vi) each diagonal divides the parallelogram into two congruent triangles,

i.e.
$$\triangle$$
 ABC $\cong \triangle$ CDA and \triangle ABD $\cong \triangle$ CDB

(vii) diagonals divide the parallelogram into four triangles of equal area,

i.e.
$$\triangle AOB = \triangle BOC = \triangle COD = \triangle DOA = \frac{1}{4}$$
 (parallelogram ABCD)

3. Rectangle :

A rectangle is a parallelogram in which :

- (i) diagonals are equal, *i.e.* AC = BD;
- (ii) diagonals bisect each other,

i.e. OA = OC and OB = OD;

(iii) each angle is a right angle,

i.e. $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$.

4. Rhombus :

A rhombus is a parallelogram in which :

- (i) all the sides are equal, *i.e.* AB = BC = CD = DA,
- (ii) diagonals bisect each other at 90°, i.e.

OA = OC; OB = OD and

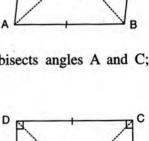
 $\angle AOB = \angle BOC = \angle COD = \angle DOA = 90^{\circ}.$

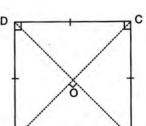
(iii) each diagonal bisects angles at the vertices *i.e.* diagonal AC bisects angles A and C; and diagonal BD bisects angles B and D.

5. Square :

A square is a parallelogram in which :

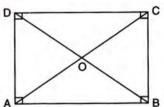
- (i) all the sides are equal;
- (ii) each angle is 90°;
- (iii) diagonals are equal;
- (iv) diagonals bisect each other at right angle and
- (v) each diagonal bisects angles at the vertices.

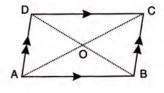


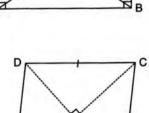


A

в







onals divide the parallel

DIAGONAL PROPERTIES OF DIFFERENT KINDS OF PARALLELOGRAMS

Properties	Parallelogram	Rectangle	Rhombus	Square
Diagonals bisect each other	\checkmark	\checkmark	√	1
Diagonals are equal		\checkmark	20 - 14	V
Diagonals bisect vertex angles	a start and the second s		\checkmark	V
Diagonals are perpendicular to each other	a start and the start of the st	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	\checkmark	V
Each diagonal forms 2 congruent triangles	\checkmark	\checkmark	\checkmark	1
Diagonals form 4 equal triangles	\checkmark	\checkmark	\checkmark	\checkmark
[Equal triangles means, triangles equal in area]	1. 1. 2. 2. 3			
Diagonals form 4 congruent triangles	-	-	\checkmark	√

Theorem 11

In a parallelogram, both the pairs of opposite sides are equal.

Given : A parallelogram ABCD.

To Prove : AB = DC and AD = BC

Construction : Join A and C.

Proof :

Statement :

In triang	les ABC and CDA :
1.	$\angle 1 = \angle 2$
2.	$\angle 3 = \angle 4$
3.	AC = AC
⇒	$\Delta ABC \cong \Delta CDA$
⇒AB	$= \mathbf{D}\mathbf{C} \text{ and } \mathbf{A}\mathbf{D} = \mathbf{B}\mathbf{C}$

Reason :

[Alternate angles as AC cuts parallel sides AB and DC]
[Alternate angles as AC cuts parallel sides AD and BC].
[Common].
[A.S.A.]
[Corresponding parts of congruent triangles are congruent].

Hence Proved.

Theorem 12

Reason :

[By A.S.A.]

[By A.S.A.]

.....I [By CPCTC]

....II [By CPCTC]

In a parallelogram, both the pairs of opposite angles are equal. Given : A parallelogram ABCD in which AB // DC and AD // BC. To Prove : $\angle A = \angle C$ and $\angle B = \angle D$ Construction : Draw diagonal BD. Proof :

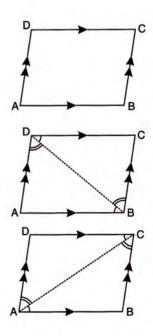
Statement :

Since,	$\triangle ABD \cong \triangle CDB$
⇒	$\angle A = \angle C$
Now, draw	v diagonal AC and
show that	$\Delta ABC \cong \Delta CDA$
⇒	$\angle B = \angle D$
Equations	I and II give :

 $\angle A = \angle C$ and $\angle B = \angle D$

Hence Proved.

171



С

2

Theorem 13

If one pair of opposite sides of a quadrilateral are equal and parallel, it is a parallelogram. Given : A quadrilateral ABCD in which AB = DC and AB // DC.

To Prove : ABCD is a parallelogram.

In triangles ABC and CDA :

Construction : Join A and C.

Proof :

1.

2.

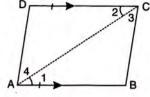
3.

=

 \Rightarrow

Statement :

Reason :



[Alternate angles, since AC cuts parallel sides AB and DC] [Given] [Common] [S.A.S.] [Corresponding parts of congruent Δs are congruent.]

But, $\angle 3$ and $\angle 4$ are alternate angles

 $\angle 1 = \angle 2$

AB = DC

AC = AC

 $\Delta ABC \cong \Delta CDA$

23 = 24

 \Rightarrow AD // BC

: ABCD is a parallelogram

[If alternate angles are equal, lines are parallel.] [Opposite sides are parallel]

Hence Proved.

Theorem 14

Each diagonal of a parallelogram bisects the parallelogram. Given : A parallelogram ABCD To Prove : Diagonal AC bisects the parallelogram ABCD. Proof : Proceed as in theorem 11 to prove that \triangle ABC \cong \triangle CDA.

 $\therefore \Delta ABC = \Delta CDA = \frac{1}{2}$ (parallelogram ABCD)

. AC bisects the parallelogram ABCD.

Similarly, prove that diagonal BD also bisects the parallelogram ABCD.

Hence Proved.

Theorem 15

The diagonals of a parallelogram bisect each other. Given : A parallelogram ABCD whose diagonals AC and BD intersect at O.

AB = DC

 $\angle 1 = \angle 2$

 $\angle 3 = \angle 4$

To Prove : OA = OC and OB = OD

In triangles AOB and COD :

Proof :

1.

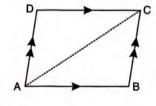
2.

3.

Statement :

Reason:

[Opposite sides of a parallelogram are equal]. [Alternate angles] [Alternate angles]



$$\Delta AOB \cong \Delta COD$$

...

=>

[A.S.A.] OA = OC and OB = OD

[Corresponding parts of congruent triangles are congruent].

Hence Proved.

Theorem 16

Rhombus is a special parallelogram whose diagonals meet at right angles. Given : A rhombus ABCD whose diagonals AC and BD meet at point O. To Prove : Diagonals AC and BD meet at right angle. **Proof** :

Since, ABCD is a rhombus and sides of a rhombus are equal.

 \Rightarrow AB = BC.....I

Since, rhombus ABCD is a parallelogram also and diagonals of a parallelogram bisect each other

\Rightarrow OA = OC		П	
Also	OB = OB		[Common]
and the second s	and the second		

From equations I, II and III, we get :

	$\Delta AOB \cong \Delta COB$	[By S.S.S.]
⇒	$\angle AOB = \angle BOC$	[By CPCTC]
But	$\angle AOB + \angle BOC = 180^{\circ}$	[AOC is a straight line]

$$\Rightarrow \qquad \angle AOB = \angle BOC = \frac{180^{\circ}}{2} = 90^{\circ}$$

⇒ Diagonals meet at right angles.

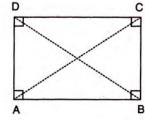
Hence Proved.

Theorem 17

In a rectangle, diagonals are equal. Given : Rectangle ABCD with diagonals AC and BD. To Prove : Diagonals are equal i.e. AC = BD **Proof** :

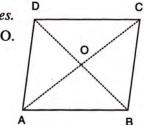
In \triangle DAB and \triangle CBA

1.	AD = BC	[Opp. sides of a rectangle]
2.	AB = AB	[Common]
3.	∠DAB = ∠CBA	[Each 90°]
	Δ DAB $\cong \Delta$ CBA	[By SAS]
⇒	AC = BD	



Downloaded from https:// www.studiestoday.com

Hence Proved.



Theorem 18

In a square, diagonals are equal and meet at right angles. Given : A square ABCD with diagonals AC and BD intersecting each other at point O.

To Prove : AC = BD and $\angle AOB = 90^{\circ}$.

Proof :

С 0 A в

In \triangle DAB and \triangle CBA AD = BC[Sides of a square] 1. 2. $\angle DAB = \angle CBA$ [Each 90°] 3. AB = AB[Common] \Rightarrow Δ DAB $\cong \Delta$ CBA [By S.A.S.] AC = BD[By CPCTC] \Rightarrow [By S.S.S.] Now, prove that $\triangle AOB \cong \triangle BOC$ $\angle AOB = \angle BOC$ \Rightarrow $\angle AOB + \angle BOC = 180^{\circ}$ But, $\angle AOB = \angle BOC = \frac{180^{\circ}}{2} = 90^{\circ}$... $AC = BD \implies$ diagonals are equal ... $\angle AOB = 90^{\circ} \implies$ diagonals meet at right angles and, **Hence Proved.**

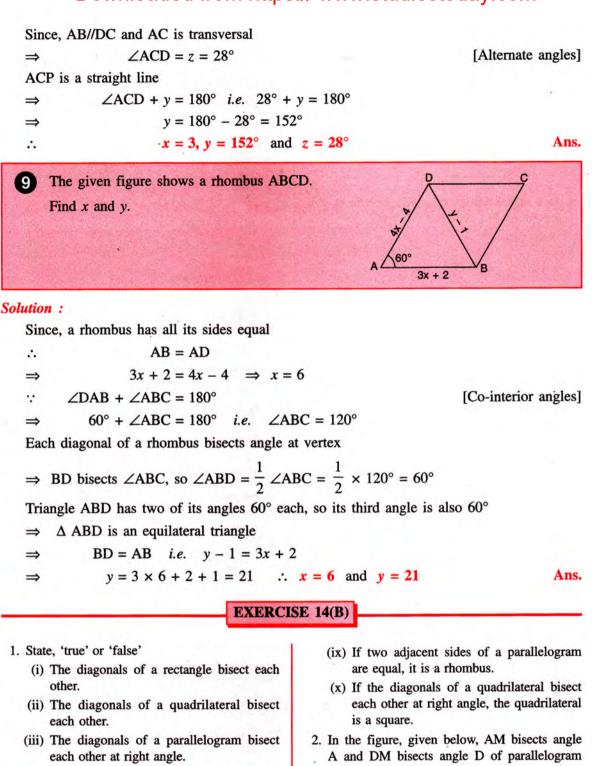
8 In the given figure, ABCD is a parallelogram. 2(x + 1) cm Find the values of x, y and z. 50 102 (3x - 1) cm

Solution :

Since, opposite sides of a parallelogram are equal, therefore AB = DC3x - 1 = 2(x + 1) *i.e.* 3x - 1 = 2x + 2 \Rightarrow x = 3 \Rightarrow Since, AD//BC and AC is transversal [Alternate angles] $\angle BCA = \angle DAC$ \Rightarrow $= 50^{\circ}$ In \triangle ABC, $z + \angle ABC + \angle BCA = 180^{\circ}$ $z + 102^{\circ} + 50^{\circ} = 180^{\circ} \implies z = 180^{\circ} - 152^{\circ} = 28^{\circ}$ \Rightarrow Alternative method : $\angle DAB + \angle ABC = 180^{\circ}$

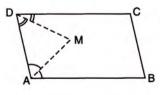
 $(50^{\circ} + z) + 102^{\circ} = 180^{\circ}$ *i.e.* $z = 180^{\circ} - 152^{\circ} = 28^{\circ}$

[Co-interior angles]



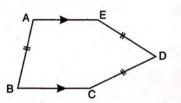
- (iv) Each diagonal of a rhombus bisects it.
- (v) The quadrilateral, whose four sides are equal, is a square.
- (vi) Every rhombus is a parallelogram.
- (vii) Every parallelogram is a rhombus.
- (viii) Diagonals of a rhombus are equal.

ABCD. Prove that : $\angle AMD = 90^{\circ}$.



C

3. In the following figure, AE and BC are equal and parallel and the three sides AB, CD and DE are equal to one another. If angle A is 102°. Find angles AEC and BCD.



 In a square ABCD, diagonals meet at O. P is a point on BC, such that OB = BP.
 Show that :

(i)
$$\angle POC = \left(22\frac{1}{2}\right)^2$$

(ii)
$$\angle BDC = 2 \angle POC$$

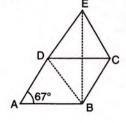
- (iii) ∠BOP = 3 ∠COP
- 5. The given figure shows a square ABCD and an equilateral triangle ABP.

D

P

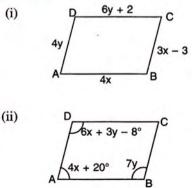
Calculate :

- (i) ∠AOB
- (ii) ∠BPC
- (iii) ∠PCD
- (iv) reflex ∠APC
- 6. In the given figure; ABCD is a rhombus with angle $A = 67^{\circ}$.



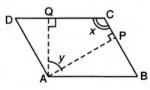
If DEC is an equilateral triangle, calculate :

- (i) ∠CBE (ii) ∠DBE
- 7. In each of the following figures, ABCD is a parallelogram.



In each case, given above, find the values of x and y.

- 8. The angles of a quadrilateral are in the ratio 3:4:5:6. Show that the quadrilateral is a trapezium.
- 9. In a parallelogram ABCD, AB = 20 cm and AD = 12 cm. The bisector of angle A meets DC at E and BC produced at F. Find the length of CF.
- 10. In parallelogram ABCD, AP and AQ are perpendiculars from vertex of obtuse angle A as shown. If $\angle x : \angle y = 2 : 1$; find the angles of the parallelogram.



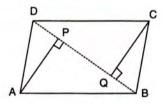
ABCD is a parallelogram in which AP and CQ are perpendiculars from vertices A and C respectively on diagonal BD. Prove that :

(i) $\triangle APB \cong \triangle CQD$ (ii) AP = CQ

Solution :

According to the given statement, the figure will be as shown alongside.

- (i) In \triangle APB and \triangle CQD :
 - 1. $\angle APB = \angle CQD$ [Each 90°]

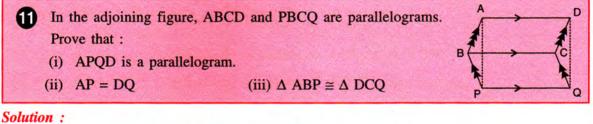


Downloaded from https:// www.studiestoday.com

	2. $\angle ABP = \angle CDQ$	[Alternate angles a
	3. $\angle PAB = \angle QCD$	[When two angles of the other triang
	4. $AB = CD$	[Opp. sides of the
	$\therefore \Delta \text{ APB} \cong \Delta \text{ CQI}$	D [By A.S.A.] Hence Proved.
(ii)	$\therefore \Delta APB \cong \Delta CQD$:
	\Rightarrow AP = CQ	[By CPCTC]

as AB // CD] s of a triangle are equal to two angles gle, their third angles are also equal] parallelogram]

Hence Proved.



(i) Since, opposite sides of a parallelogram are parallel and equal, therefore in parallelogram ABCD, AD // BC and AD = BCI and, in parallelogram PBCQ, PQ // BC and PQ = BCII

Combining I and II, we get : AD // PQ and AD = PQ

APQD is a parallelogram \Rightarrow

[If a pair of opposite sides of a quadrilateral are parallel and equal; the quadrilateral is parallelogram.] **Hence Proved.**

(ii) Since, opposite sides of a parallelogram are equal.

 \therefore In parallelogram APQD, AP = DQ

(iii) In \triangle ABP and \triangle DCQ,

 \Rightarrow

	AB = DC
	BP = CQ
and,	AP = DQ

 $\Delta ABP \cong \Delta DCQ$

[Opp. sides of //gm. ABCD] [Opp. sides of //gm PBCQ] [Proved above] [By S.S.S.]

Hence Proved.

Hence Proved.

- 12 A transversal cuts two parallel lines PQ and RS at points A and B respectively. The two interior angles at A are bisected and so are the two interior angles at B; the four bisectors form a quadrilateral ACBD. Prove that :
 - (i) ACBD is a rectangle.
 - (ii) CD is parallel to given parallel lines PQ and RS.

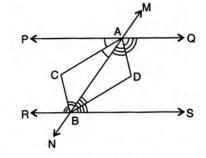
Solution :

1

According to the given statement, the figure will be as shown alongside.

In the figure, the transversal MN cuts parallel lines PQ and RS at points A and B respectively.

Bisectors of interior angles at A and bisectors of interior angles at B meet at points C and D to form a quadrilateral ACBD.

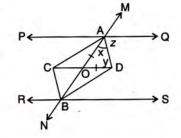


(i) To prove : ACBD is a rectangle *i.e.* each angle of the quadrilateral ACBD is 90°.

/			
	Proof :	AC bisects $\angle PAB \Rightarrow \angle CAB = \frac{1}{2} \angle PAB$	I
		AD bisects $\angle QAB \Rightarrow \angle DAB = \frac{1}{2} \angle QAB$	П
		BC bisects $\angle RBA \Rightarrow \angle CBA = \frac{1}{2} \angle RBA$	Ш
		and, BD bisects $\angle SBA \Rightarrow \angle DBA = \frac{1}{2} \angle SBA$	IV
		$\angle PAB + \angle RBA = 180^{\circ}$	[Co-interior angles]
	⇒	$\frac{1}{2} \angle PAB + \frac{1}{2} \angle RBA = 90^{\circ}$	
	⇒	$\angle CAB + \angle CBA = 90^{\circ}$	[From I and III]
	In \triangle ACB,	, $\angle ACB + \angle CAB + \angle CBA = 180^{\circ}$	
	⇒	$\angle ACB + 90^\circ = 180^\circ$ and $\angle ACB = 9$	0°
	Similarly,	$\angle BDA = 90^{\circ}$	
		$\angle PAB + \angle QAB = 180^{\circ}$	[Straight line angle]
	⇒	$\frac{1}{2} \angle PAB + \frac{1}{2} \angle QAB = 90^{\circ}$	
	⇒	$\angle CAB + \angle DAB = 90^{\circ} \implies \angle CAD =$	90°
	Similarly,	$\angle CBD = 90^{\circ}$	
	Since, each	h angle of quadrilateral ACBD is 90°, ACBD is a re	ctangle.

Hence Proved.

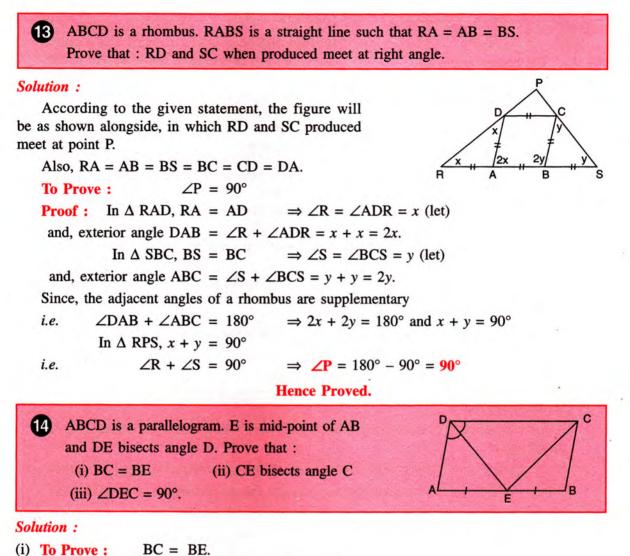
- (ii) To Prove : CD is parallel to given parallel lines *i.e.* CD // PQ // RS.
 - **Proof :** Since, diagonals of a rectangle are equal and bisect each other, therefore AB = CD and let AB and CD bisect each other at point O.



Clearly, OA = OD $\Rightarrow \angle x = \angle y$ Given, AD bisects QAB $\Rightarrow \angle x = \angle z$ $\therefore \angle y = \angle z$

But these are alternate angles and whenever alternate angles are equal, the lines are parallel.

∴ PQ // CD i.e. CD // PQ // RS Hence Proved.



		20		DL.
	5	Statemen	t:	
1.		∠CDE	=	∠DEA
2.		∠CDE	=	∠EDA
	<i>.</i> .	∠DEA	=	∠EDA
3.		AD	=	AE
4.		AD	=	BC
5.		AE	=	BE
	<i>.</i> .	BC	=	BE

Reason :

[Alternate angles]
[Given DE bisects ∠D]
[From 1 and 2].
[In a Δ , sides opposite to equal angles are equal].
[Opposite sides of parallelogram ABCD]
[Given E is mid-point of AB]
[From 3, 4 and 5]

(ii) To Prove : CE bisects angle C. Proof :

1.

7

Statement : BC = BE $\angle BEC = \angle BCE$ Hence Proved.

Reason :

[From (i)] [In a Δ , angles opposite to equal sides are equal].

179

 $\angle BEC = \angle ECD$...

2.

1.

2.

 $\angle BCE = \angle ECD$

: CE bisects angle C.

Statement :

[Alternate angles] [From 1 and 2]

Hence Proved.

(iii) **To Prove :** $\angle DEC = 90^{\circ}$ **Proof** :

Reason:

 $\angle DCE = \frac{1}{2} \angle C$ [CE bisects angle C]. $\angle CDE = \frac{1}{2} \angle D$ [DE bisects angle D] $\therefore \ \angle \text{DCE} + \angle \text{CDE} = \frac{1}{2} \ (\angle \text{C} + \angle \text{D})$ [Adding 1 and 2] $=\frac{1}{2} \times 180^{\circ}$ $[\angle C + \angle D = 180^{\circ}]$ $= 90^{\circ}$ \therefore In \triangle DEC, \angle DEC = 180° - 90° $= 90^{\circ}$

[Sum of the angles of a Δ is 180°].

B

C

Hence Proved.

Prove the following :

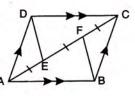
- 1. If the diagonals of a quadrilateral bisect each other, the quadrilateral is a parallelogram.
- 2. If the opposite sides of a quadrilateral are equal, the quadrilateral is a parallelogram.
- 3. If the opposite angles of a quadrilateral are equal, the quadrilateral is a parallelogram.
- 4. If the diagonals of a parallelogram are equal, the parallelogram is a rectangle.
- 5. If the diagonals of a parallelogram are equal and intersect each other at right angle, the parallelogram is a square.
- 6. If the diagonals of a rectangle intersect each other at right angles, the rectangle is a square.
- 7. A diagonal of a square makes an angle of 45° with the sides of the square.
- 8. A diagonal of a rhombus bisects the angles at the vertices.
- 9. The diagonals of a rhombus intersect each other at right angles.
- 10. If the diagonals of a parallelogram intersect each other at right angles, the parallelogram is a rhombus.
- 11. If the diagonals of a rhombus are equal, the rhombus is a square.

15 The figure, given alongside, shows a trapezium ABCD in which AB // DC and AD = BC. Prove that : (ii) $\angle C = \angle D$ (i) $\angle A = \angle B$ (iii) \triangle ABC $\cong \triangle$ BAD (iv) Diagonal AC = diagonal BD

Downloaded from https:// www.studiestoday.com

Е Solution : Draw a line through C and parallel to DA which intersects AB produced at point E (i) Since, AE // DC and CE // DA : AECD is a parallelogram. [Opp. sides of the parallelogram] AD = CE= [Given] AD = BCBut, CE = BC... $\angle CBE = \angle E$ [Angles opp. to equal sides of $\triangle BCE$] \Rightarrow Since, ABE is a straight line, $\angle ABC + \angle CBE = 180^{\circ}$ $\angle ABC + \angle E = 180^{\circ}$I $[\because \angle CBE = \angle E]$ ⇒ Since, AD // EC and AE is transversal $\angle A + \angle E = 180^{\circ}$II [Co-interior angles] $\angle ABC + \angle E = \angle A + \angle E$ [From I and II] ... $\angle ABC = \angle A$ i.e. $\angle B = \angle A$ = **Hence Proved.** (ii) AB is parallel to DC $\angle A + \angle D = 180^\circ$ and [Co-interior angles] $\angle B + \angle C = 180^{\circ}$ ⇒ $\angle A + \angle D = \angle B + \angle C$ ⇒ $\angle D = \angle C$ $[As, \angle A = \angle B]$ \Rightarrow **Hence Proved.** (iii) In \triangle ABC and \triangle BAD B AB = AB[Common] 1. AD = BC2. [Given] $\angle BAD = \angle ABC$ [Proved above $\angle A = \angle B$] 3. $\triangle ABC \cong \triangle BAD$ [By S.A.S.] *.*.. D **Hence Proved.** (iv) Since, \triangle ABC $\cong \triangle$ BAD [Proved above] AC = BD= diagonal AC = diagonal BD i.e. **Hence Proved. EXERCISE 14(C)**

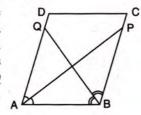
- 1. E is the mid-point of side AB and F is the mid point of side DC of parallelogram ABCD. Prove that AEFD is a parallelogram.
- 2. The diagonal BD of a parallelogram ABCD bisects angles B and D. Prove that ABCD is a rhombus.
- 3. The alongside figure shows a parallelogram ABCD in which AE = EF = FC. A



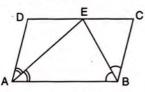
Downloaded from https:// www.studiestoday.com

Prove that :

- (i) DE is parallel to FB (ii) DE = FB
- (iii) DEBF is a parallelogram.
- 4. In the alongside figure, ABCD is a parallelogram in which AP bisects angle A and BQ bisects angle B. Prove that :



- (i) AQ = BP
- (ii) PQ = CD.
- (iii) ABPQ is a parallelogram
- 5. In the given figure, ABCD is a parallelogram. Prove that : AB = 2 BC.

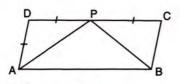


- Prove that the bisectors of opposite angles of a parallelogram are parallel.
- 7. Prove that the bisectors of interior angles of a parallelogram form a rectangle.
- 8. Prove that the bisectors of the interior angles of a rectangle form a square.
- 9. In parallelogram ABCD, the bisector of angle A meets DC at P and AB = 2AD.

Prove that :

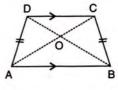
(i) BP bisects angle B. (ii) Angle APB = 90° .

- Points M and N are taken on the diagonal AC of a parallelogram ABCD such that AM = CN. Prove that BMDN is a parallelogram.
- 11. In the following figure, ABCD is a parallelogram. Prove that :



- (i) AP bisects angle A
- (ii) BP bisects angle B
- (iii) $\angle DAP + \angle CBP = \angle APB$
- 12. ABCD is a square. A is joined to a point P on BC and D is joined to a point Q on AB. If AP = DQ; prove that AP and DQ are perpendicular to each other.

- 13. In a quadrilateral ABCD, AB = AD and CB = CD. Prove that :
 - (i) AC bisects angle BAD.
 - (ii) AC is perpendicular bisector of BD.
- 14. The following figure shows a trapezium ABCD in which AB is parallel to DC and AD = BC.



Prove that :

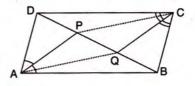
(i) $\angle DAB = \angle CBA$

- (ii) $\angle ADC = \angle BCD$
- (iii) AC = BD
- (iv) OA = OB and OC = OD

Draw DM \perp AB and CN \perp AB. Δ DAM $\equiv \Delta$ CBN by R.H.S. $\therefore \angle$ DAB $= \angle$ CBA D $\Rightarrow \angle$ ADC $= \angle$ BCD

(Supplements of equal angles DAB and CBA). Now by SAS, \triangle ADB = \triangle BCA \Rightarrow AC = BD and \angle ACB = \angle ADB Further, \triangle OAD = \triangle OBC by ASA \Rightarrow OA = OB and OC = OD

 In the given figure, AP is bisector of ∠A and CQ is bisector of ∠C of parallelogram ABCD.
 Prove that APCQ is a parallelogram

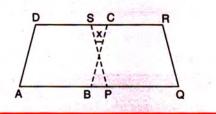


Join AC and show that diagonals AC and PQ bisect each other.

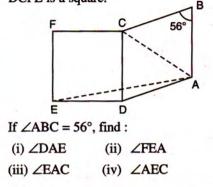
- 16. In case of a parallelogram prove that :
 - (i) the bisectors of any two adjacent angles intersect at 90°.
 - (ii) the bisectors of opposite angles are parallel to each other.

Downloaded from https:// www.studiestoday.com

- 17. The diagonals of a rectangle intersect each other at right angles. prove that the rectangle is a square.
- 18. In the following figure, ABCD and PQRS are two parallelograms such that $\angle D = 120^{\circ}$ and $\angle Q = 70^{\circ}$. Find the value of x.



19. In the following figure, ABCD is a rhombus and DCFE is a square.



Downloaded from https:// www.studiestoday.com