

Mid-Point and Its Converse

[Including Intercept Theorem]

12.1 MID-POINT THEOREM (Proof and simple applications and its converse)

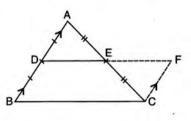
Theorem 6

The line segment joining the mid-points of any two sides of a triangle is parallel to the third side, and is equal to half of it.

Given : D and E are the mid-points of sides AB and AC respectively of Δ ABC.

To Prove : DE // BC and DE = $\frac{1}{2}$ BC.

Construction: Draw CF parallel to BA which meets DE produced at F.



Proof :

Statement :

Reason :

1. In \triangle ADE and \triangle CEF :		
	(i) $AE = EC$	Given, E is the mid-point of AC
	(ii) $\angle AED = \angle CEF$	Vertically opposite angles
	(iii) $\angle EAD = \angle ECF$	Alternate angles
	$\therefore \Delta ADE \cong \Delta CFE$	A.S.A.
	2. \therefore AD = CF	Corresponding parts of congruent Δs .
	3. But, $AD = BD$	Given, D is mid-point of AB
	4. \therefore CF = BD	From 2 and 3.
	5: BCFD is a parallelogram	Opp. sides CF and BD are equal and parallel.
	\Rightarrow DF // BC and so, DE // BC.	Opp. sides of a // gm are parallel

(First part proved)

Now, DE = EF $= \frac{1}{2} DF$ $= \frac{1}{2} BC$ $\therefore DE // BC \text{ and } DE = \frac{1}{2} BC.$ $\Delta ADE \cong \Delta CFE$

In parallelogram BCFD; DF = BC.

2 Hence Proved

Downloaded from https:// www.studiestoday.com

Theorem 7

(Converse of Mid-point Theorem)

The straight line drawn through the mid-point of one side of a triangle parallel to another, bisects the third side.

Given : D is mid-point of side AB of a \triangle ABC and DE is drawn parallel to the side BC.

To Prove : DE bisects AC, i.e. AE = EC.

Construction : Draw CF parallel to BA which meets DE produced at F.

Proof :

Statement :

Reason:

Statement :	Reason :	
1. BCFD is a parallelogram	DF // BC and CF // BD	
2. CF = BD	Opposite sides of a // gm are equal.	
3. CF = DA	Since, $BD = DA$ (given)	
4. In \triangle ADE and \triangle CFE :		
(i) $AD = CF$	From (3)	
(ii) $\angle DAE = \angle ECF$	Alternate angles	
(iii) $\angle ADE = \angle EFC$	Alternate angles	
$\therefore \Delta ADE \cong \Delta CFE$	A.S.A.	
\Rightarrow AE = EC	Corresponding parts of congruent Δs are equal.	
	Hence Proved	

In the figure, given above, D is given to be the mid-point of AB and E is proved to be the mid-point of AC, therefore, DE will be half of the 3rd side *i.e.*, $DE = \frac{1}{2}BC$.

Prove that the figure obtained by joining the mid-points of the adjacent sides of a quadrilateral is a parallelogram.

Solution :

Given : P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively of quadrilateral ABCD.

To Prove : PQRS is a parallelogram.

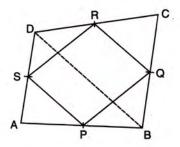
Construction : Join B and D.

Proof :

1. In \triangle ABD :

PS // BD and PS = $\frac{1}{2}$ BD

[Line joining the midpoints of two sides of a Δ is parallel and half of third side]



Downloaded from https:// www.studiestoday.com

2. In \triangle BCD :

3

QR // BD and QR = $\frac{1}{2}$ BD

 \therefore PS // QR and PS = QR

[Line joining the mid-points of two sides of a Δ is parallel and half of third side] [From (1) and (2)]

 \Rightarrow PQRS is a parallelogram [O

[One pair of opp. sides are equal and parallel]

Hence Proved

2 In parallelogram PQRS, L is mid-point of side SR and SN is drawn parallel to LQ which meets RQ produced at N and cuts side PQ at M.

Prove that :

(i) $SP = \frac{1}{2} RN$ (ii) SN = 2 LQ

Solution :

(i) In Δ SRN :

L is mid-point of SR and LQ // SN ∴ LQ bisects RN

i.e. $RQ = QN = \frac{1}{2} RN$ But, SP = RQ

 $\therefore SP = \frac{1}{2} RN$

[Given] [Given]

[Line through mid-point of one side of a Δ and parallel to another side bisects the third side]

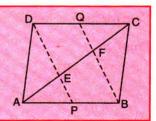
[Opposite sides of // gm PQRS]

Hence Proved

(ii) In \triangle SRN : L is mid-point of SR and Q is mid-point of RN \therefore LQ = $\frac{1}{2}$ SN or, SN = 2 LO

[Given]
[Proved in part (i)]
[Line joining the mid-points of two sides of a Δ is half of the third side]
Hence Proved

The adjoining figure shows a parallelogram ABCD in which P is mid-point of AB and Q is mid-point of CD. Prove that : AE = EF = FC.



Solution :

3

Since, PB = $\frac{1}{2}$ AB

[Given, P is mid-point of AB]

Downloaded from https:// www.studiestoday.com

 $DQ = \frac{1}{2} DC$ $\therefore PB = DQ$ Also, PB // DQ $\therefore DPBQ \text{ is a parallelogram}$ $\Rightarrow DP // QB$ Now in $\triangle ABF$: P is mid-point of AB PE // BF $\therefore PE \text{ bisects AF}$

i.e. AE = EF I Similarly, in Δ CDE : QF bisects CE \therefore EF = FC II \therefore AE = EF = FC [Given, Q is mid-point of DC] [Since, AB = DC; the opp. sides of // gm ABCD] [As AB // DC] [Opp. sides PB and DQ are parallel and equal] [Opp. sides of the // gm DPBQ]

[Given] [As DP // QB] [Line passing through the mid-point of one side and parallel to another bisects the third side]

[Q is mid-point of CD and QF // DE]

[From I and II]

Hence Proved

In a right-angled triangle ABC, $\angle ABC = 90^{\circ}$ and D is mid-point of AC.

Prove that : BD = $\frac{1}{2}$ AC.

Solution :

4

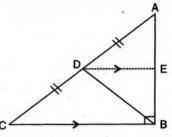
According to the given statement, the figure will be as shown alongside :

Draw the line segment DE parallel to CB, which meets AB at point E.

Since, DE//CB and AB is transversal,

$$\angle AED = \angle ABC$$

 $= 90^{\circ} = \angle DEB.$



[Corresponding angles]

Also, as D is mid-point of AC and DE is parallel to CB; DE bisects side AB. *i.e.* AE = BE. In \triangle AED and \triangle BED,

	$\angle AED = \angle BED$	[Each 90°]
	AE = BE	[Proved above]
and,	DE = DE	[Common]
<i>.</i>	$\Delta \text{ AED } \cong \Delta \text{ BED}$	[By S.A.S.]
⇒	$\mathbf{BD} = \mathbf{AD}$	[C.P.C.T.C.]
	$=\frac{1}{2}$ AC	

Hence Proved.

Downloaded from https:// www.studiestoday.com

In triangle ABC, BE and CF are medians. M is a point on BE produced such that BE = EM and N is a point on CF produced such that CF = FN. Prove that :
 (i) NAM is a straight line (ii) A is the mid-point of MN

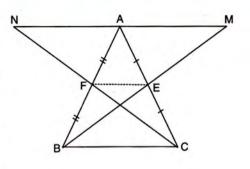
Solution :

According to the given statement, the figure will be as shown alongside.

It is clear from the given statement that E is mid-point of AC and BM whereas F is mid-point of AB and CN.

Since, the line joining the mid-points of any two sides of a triangle is parallel and half of the third side

:. In \triangle ACN, EF // AN and EF = $\frac{1}{2}$ AN I In \triangle ABM, EF // AM and EF = $\frac{1}{2}$ AM II



(i) From I and II, we get AN // AM (both are parallel to EF)
 As, AN and AM are parallel and have a common point (point A), this is possible only if NAM is a straight line.

Hence Proved.

(ii) From equations I and II, we have : $EF = \frac{1}{2}$ AN and

$$EF = \frac{1}{2}AM \Rightarrow AN = AM \Rightarrow A$$
 is mid-point of MN

Hence Proved.

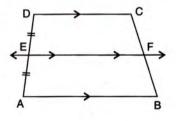
In a trapezium ABCD, AB//DC, E is mid-point of AD. A line through E and parallel to AB intersects BC at point F. Show that :

(i) F is mid-point of BC. (ii) 2EF = AB + DC.

Solution :

6

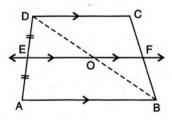
(i) According to the given statement, the figure, will be as shown alongside :



Draw diagonal BD which intersects EF at point O.

In triangle ABD, E is mid-point of AD and EO//AB (as EF//AB).

:. O is mid-point of BD [By the converse of mid-point theorem]



Downloaded from https:// www.studiestoday.com

In \triangle BCD, O is mid-point of BD and OF//DC

: F is mid-point of BC

[By the converse of mid-point theorem]

D

Е

Hence Proved.

E is mid-point of AD and O is mid-point of BD

 $\therefore \text{ EO} = \frac{1}{2}\text{AB}$I [By mid-point theorem]

Also, O is mid-point of BD and F is mid-point of BC

$$\therefore \text{ OF} = \frac{1}{2}\text{DC}$$

$$\implies \text{EO} + \text{OF} = \frac{1}{2}\text{AB} + \frac{1}{2}\text{DC}$$

$$\implies \text{EF} = \frac{1}{2}(\text{AB} + \text{DC})$$
i.e. 2EF = AB + DC
$$= \frac{1}{2}(\text{AB} + \text{DC})$$
Hence Proved.

Hence Proved.

equations I and II]

[Proved above]

(as EF//AB//DC)

In every trapezium, the length of the line segment joining the mid-points of the non-parallel sides is equal to half of the sum of lengths of the parallel sides.

According to the result of example 7 (Proved above).

$$2EF = AB + DC \implies EF = \frac{1}{2} (AB + DC).$$

The line segment joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium and is equal to half the difference between the parallel sides. Prove it.

Solution :

7

According to the given statement, the figure will be as shown alongside :

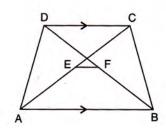
In the figure, AB//DC, E is the mid-point of diagonal AC and F is mid-point of diagonal BD.

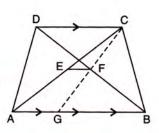
Required to prove : (i) EF//AB//DC.

(ii)
$$EF = \frac{1}{2}(AB - DC)$$

Join CF and produce to meet AB at point G. Consider the triangles DFC and BFG

DF = FB $\angle DFC = \angle BFG$ and, $\angle CDF = \angle GBF$ [F is mid-poind of BD] [Vertically opposite angles] [Alternate angles]





Downloaded from https:// www.studiestoday.com

⁽ii) In \triangle ABD,

 $\Rightarrow DC = GB \text{ and } CF = GF [By C.P.C.T.C.]$

In Δ ACG, E is mid-point of AC and F is mid-point of CG

 $\Rightarrow EF//AG \text{ and } EF = \frac{1}{2}AG$ $EF//AG \Rightarrow EF//AB//DC$

[By mid-point theorem]

Hence Proved.

Now, **EF** = $\frac{1}{2}$ AG

1

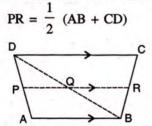
$$=\frac{1}{2}(AB-GB)$$

 $=\frac{1}{2}(AB - DC)$

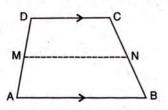
Hence Proved.

EXERCISE 12(A)

- 1. In triangle ABC, M is mid-point of AB and a straight line through M and parallel to BC cuts AC at N. Find the lengths of AN and MN, if BC = 7 cm and AC = 5 cm.
- 2. Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.
- 3. D, E and F are the mid-points of the sides AB, BC and CA of an isosceles \triangle ABC in which AB = BC. Prove that \triangle DEF is also isosceles.
- 4. The following figure shows a trapezium ABCD in which AB // DC. P is the mid-point of AD and PR // AB. Prove that :

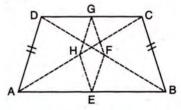


5. The figure, given below, shows a trapezium ABCD. M and N are the mid-points of the nonparallel sides AD and BC respectively. Find :



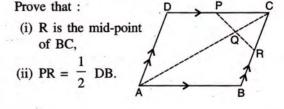
(i) MN, if AB = 11 cm and DC = 8 cm.

- (ii) AB, if DC = 20 cm and MN = 27 cm.
- (iii) DC, if MN = 15 cm and AB = 23 cm.
- 6. The diagonals of a quadrilateral intersect at right angles. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is a rectangle.
- 7. L and M are the mid-points of sides AB and DC respectively of parallelogram ABCD. Prove that segments DL and BM trisect diagonal AC.
- ABCD is a quadrilateral in which AD = BC.
 E, F, G and H are the mid-points of AB, BD, CD and AC respectively. Prove that EFGH is a rhombus.



9. A parallelogram ABCD has P the mid-point of DC and Q a point of AC such that

 $CQ = \frac{1}{4}$ AC. PQ produced meets BC at R.



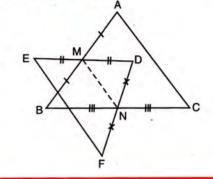
150

Downloaded from https:// www.studiestoday.com

- 10. D, E and F are the mid-points of the sides AB, BC and CA respectively of Δ ABC. AE meets DF at O. P and Q are the mid-points of OB and OC respectively. Prove that DPQF is a parallelogram.
- In triangle ABC, P is the mid-point of side BC. A line through P and parallel to CA meets AB at point Q; and a line through Q and parallel to BC meets median AP at point R. Prove that: (i) AP = 2AR (ii) BC = 4QR
- 12. In trapezium ABCD, AB is parallel to DC; P and Q are the mid-points of AD and BC respectively. BP produced meets CD produced at point E. Prove that :
 - (i) point P bisects BE,
 - (ii) PQ is parallel to AB.
- 13. In a triangle ABC, AD is a median and E is mid-point of median AD. A line through B and E meets AC at point F. Prove that : AC = 3AF

Draw DG parallel to BF, which meets AC at point G.

- 14. D and F are mid-points of sides AB and AC of a triangle ABC. A line through F and parallel to AB meets BC at point E.
 - (i) Prove that BDFE is a parallelogram.
 - (ii) Find AB, if EF = 4.8 cm.
- 15. In triangle ABC, AD is the median and DE, drawn parallel to side BA, meets AC at point E. Show that BE is also a median.
- 16. In \triangle ABC, E is mid-point of the median AD and BE produced meets side AC at point Q. Show that BE : EQ = 3 : 1.
- 17. In the given figure, M is mid-point of AB and DE, whereas N is mid-point of BC and DF. Show that : $\mathbf{EF} = \mathbf{AC}$.



12.2 EQUAL INTERCEPT THEOREM (Proof and simple application)

Theorem 8

If a transversal makes equal intercepts on three or more parallel lines, then any other line cutting them will also make equal intercepts.

Given : Transversal AB makes equal intercepts on three parallel lines l, m and n.

i.e. l // m // n and PQ = QR

CD is another transversal which makes intercepts

LM and MN.

To Prove : LM = MN

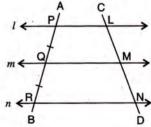
Construction : Draw PS and QT parallel to CD. **Proof :**

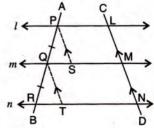
Statement :

Reason:

- 1. In \triangle PQS and \triangle QRT :
 - (i) PQ = QR
 - (ii) $\angle PQS = \angle QRT$
 - (iii) $\angle QPS = \angle RQT$ $\therefore \Delta PQS \cong \Delta QRT$

Given $n < \frac{n}{2}$ Corresponding angles Corresponding angles as PS // CD // QT. A.S.A.





Downloaded from https:// www.studiestoday.com

PS = OT2. ...

3. PSML is a parallelogram

> PS = LM·.

- QTNM is a parallelogram 4.
- OT = MN... 5.
 - ÷. LM = MN

Corresponding parts of congruent Δs are equal. Both the pairs of opp. sides are parallel. Opp. sides of a // gm are equal. Both the pairs of opp. sides are // . Opposite sides of a // gm are equal. From (2), (3) and (4). **Hence Proved**

E

G

Use the Intercept Theorem to prove the converse of the Mid-point Theorem 8

Solution :

Converse of Mid-point Theorem is :

The straight line drawn through the mid-point of one side of a triangle and parallel to another side bisects the third side.

Given :

In triangle ABC, D is mid-point of side AB and DE is parallel to BC

To Prove :

DE bisects AC *i.e.* AE = CE

Construction :

Through vertex A, draw FG parallel to BC so that FG // BC // DE.

Proof :

Since, FG // DE // BC and the transversal AB makes equal intercepts on these three parallel lines *i.e.* AD = DB.

Also, AC is an another transversal. According to Intercept Theorem, if a transversal makes equal intercepts on three or more parallel lines, then any other transversal, for the same parallel lines, will also make equal intercepts.

AE = CE...

Hence Proved

ABCD is a parallelogram. E is the mid-point 9 of AB and F is the mid-point of CD. GH is any line that intersects AD, EF and BC at G, P and H respectively. Prove that : GP = PH.

E B F

Solution :

 $AE = \frac{1}{2}AB$

[E is mid-point of AB]

152 Downloaded from https:// www.studiestoday.com

$DF = \frac{1}{2} DC$	[F is mid-point of DC]
\therefore AE = DF	[Since, AB = DC; opp. sides of a // gm]
Also, AE // DF	[As, AB // DC; opp. sides of // gm]
: AEFD is a parallelogram	[Opposite sides AE and DF are equal and parallel]
\Rightarrow AD // EF // BC	[Opposite sides of parallelograms]

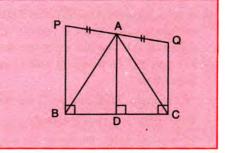
Now applying intercept theorem, we find that the transversal AB makes equal intercepts AE = EB on three parallel lines AD // EF // BC; therefore another transversal GH will also make equal intercepts on these parallel lines *i.e.* GP = PH.

Hence Proved

Use the information, given in the adjoining figure, to show that :
$$AB = AC$$
.

Solution :

Since PB, AD and QC are perpendiculars to the same line BC, they are parallel to each other *i.e.* PB // AD // QC.



Since, PB // AD // QC and PQ is a transversal making equal intercepts *i.e.* PA = AQ; therefore the other transversal BC will also make equal intercepts *i.e.* BD = CD.

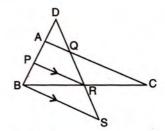
Now in \triangle ABD and \triangle ACD,

(i)	BD = CD	[Proved above]
(ii)	AD = AD	[Common]
(iii)	$\angle ADB = \angle ADC = 90^{\circ}$	[As, AD \perp BC]
:.	$\Delta \text{ ABD} \equiv \Delta \text{ ACD}$	[By SAS]
⇒	AB = AC	[By C.P.C.T.C]

Hence Proved.

EXERCISE 12(B)

- 1. Use the following figure to find :
 - (i) BC, if AB = 7.2 cm. (ii) GE, if FE = 4 cm.
 - (iii) AE, if BD = 4.1 cm. (iv) DF, if CG = 11 cm.
- In the figure, given below, 2AD = AB, P is mid-point of AB, Q is mid-point of DR and PR // BS. Prove that :
 - (i) AQ // BS,
 - (ii) DS = 3 RS.



3. The side AC of a triangle ABC is produced to point E so that $CE = \frac{1}{2}$ AC. D is the midpoint of BC and ED produced meets AB at

Downloaded from https:// www.studiestoday.com

F. Lines through D and C are drawn parallel to AB which meet AC at point P and EF at point R respectively. Prove that :

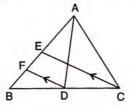
(i) 3DF = EF (ii) 4CR = AB.

- 4. In triangle ABC, the medians BP and CQ are produced upto points M and N respectively such that BP = PM and CQ = QN. Prove that :
 - (i) M, A and N are collinear.
 - (ii) A is the mid-point of MN.
- 5. In triangle ABC, angle B is obtuse. D and E are mid-points of sides AB and BC respectively and F is a point on side AC such that EF is parallel to AB. Show that BEFD is a parallelogram.
- 6. In parallelogram ABCD, E and F are mid-points of the sides AB and CD respectively. The line segments AF and BF meet the line segments ED and EC at points G and H respectively. Prove that:
 - (i) triangles HEB and FHC are congruent;
 - (ii) GEHF is a parallelogram.
- 7. In triangle ABC, D and E are points on side AB such that AD = DE = EB. Through D and E, lines are drawn parallel to BC which meet side AC at points F and G respectively. Through F and G, lines are drawn parallel to AB which meet side BC at points M and N respectively. Prove that : BM = MN = NC.
- In triangle ABC; M is mid-point of AB, N is mid-point of AC and D is any point in base BC. Use Intercept Theorem to show that MN bisects AD.
- 9. If the quadrilateral formed by joining the midpoints of the adjacent sides of quadrilateral ABCD is a rectangle, show that the diagonals AC and BD intersect at right angle.
- 10. In triangle ABC; D and E are mid-points of the sides AB and AC respectively. Through E, a

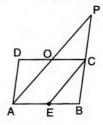
straight line is drawn parallel to AB to meet BC at F. Prove that BDEF is a parallelogram. If AB = 16 cm, AC = 12 cm and BC = 18 cm, find the perimeter of the parallelogram BDEF.

11. In the given figure, AD and CE are medians

and DF//CE. Prove that : $FB = \frac{1}{4}AB$.



12. In parallelogram ABCD, E is the mid-point of AB and AP is parallel to EC which meets DC at point O and BC produced at P. Prove that:



(ii) O is mid-point of AP.

(i) BP = 2AD

13. In trapezium ABCD, sides AB and DC are parallel to each other. E is mid-point of AD and F is mid-point of BC.

Prove that : AB + DC = 2EF

Join BE and produce to meet CD produced at point P. Δ PDE $\cong \Delta$ BAE by ASA which gives BE = EP and AB = PD. Now apply mid-point theorem for Δ BPC.

14. In \triangle ABC, AD is the median and DE is parallel to BA, where E is a point in AC. Prove that BE is also a median.

Downloaded from https:// www.studiestoday.com