

11.1 INTRODUCTION

1. The sign > means, "is greater than" i.e. if 'a' is greater than 'b', we write : a > b.

2. The sign < means, "is less than" i.e. if 'a' is less than 'b', we write : a < b.

Theorem 3

If two sides of a triangle are unequal, the greater side has the greater angle opposite to it. Given : A triangle ABC in which AB > AC. To Prove : $\angle ACB > \angle B$.

Construction : From AB, cut AD = AC. Join C and D.

Proof :

...

Statement : In \triangle ACD : 1. AC = AD 2. \angle ACD = \angle ADC In \triangle BDC : 3. Ext. \angle ADC > \angle B $\therefore \angle$ ACD > \angle B

 $\angle ACB > \angle B$

Reason:

C B

By construction Characteristic Angles opposite to equal sides

Ext. angle of a Δ is always greater than each of its interior opposite angles. From 2 and 3. Since, $\angle ACD$ is a part of $\angle ACB$, $\therefore \angle ACB > \angle ACD > \angle B$.

Hence Proved.

Theorem 4

(Converse of theorem 3)

If two angles of a triangle are unequal, the greater angle has the greater side opposite to it. Given : A triangle ABC in which $\angle CAB > \angle B$. To Prove : BC > AC.

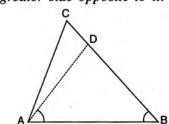
Construction : Draw $\angle BAD = \angle B$. Proof :

Statement :

In \triangle ABD : 1. AD = BDIn \triangle ADC : 2. AD + DC > AC

 $\therefore BD + DC > AC$ $\therefore BC > AC$

Reason:



Sides opposite to equal angles.

Sum of any two sides of a Δ is always greater than the third side. Since, AD = BD

BD + DC = BC

Hence Proved.

136

Downloaded from https:// www.studiestoday.com

Theorem 5

Of all the lines, that can be drawn to a given straight line from a given point outside it, the perpendicular is the shortest.

Given : A point O outside the line AB and OP perpendicular to AB.

To Prove : OP is the shortest of all the lines that can be drawn from O to AB.

Construction : Join O with any point Q in AB.

Proof :

Statement :

Reason :

In right angled $\triangle OPQ$:

1. $\angle OPQ > \angle OQP$

 $2. \quad OO > OP$

Right angle is the greatest angle in a right angled Δ . Side opp. to greater angle is greater.

Similarly, it can be shown that OP is smaller than any other line that can be drawn from O to AB. .: OP is the shortest line drawn from O to AB.

Hence Proved.

Corollary 1 : The sum of the lengths of any two sides of a triangle is always greater than the third side.

For example :

In triangle ABC.

(i) AB + AC > BC,

- (ii) AB + BC > AC and (iii) BC + AC > AB.
- **Corollary 2 :** The difference between the lengths of any two sides of a triangle is always less than the third side.

For example :

In triangle ABC, given for corollary 1, if AB is the largest side and AC is the smallest side; then:

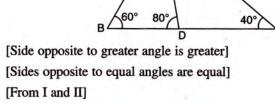
- (i) AB AC < BC
- (ii) AB BC < AC and (iii) BC AC < AB.

 In the adjoining figure, AD bisects ∠A. Arrange AB, BD and DC in the descending order of their lengths.

Solution :

 $\angle BAC = 180^{\circ} - (60^{\circ} + 40^{\circ}) = 80^{\circ}$ Since, AD bisects $\angle A$

 $\therefore \ \angle BAD = \angle CAD = \frac{80^{\circ}}{2} = 40^{\circ}$ $\angle ADB = 180^{\circ} - (60^{\circ} + 40^{\circ}) = 80^{\circ}$ In \triangle ABD, AB > AD > BD I In \triangle ADC, AD = DC II $\therefore \qquad AB > DC > BD \qquad Ans.$



D

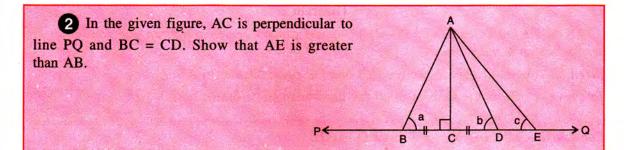
B ∕ 60°

A

в

C

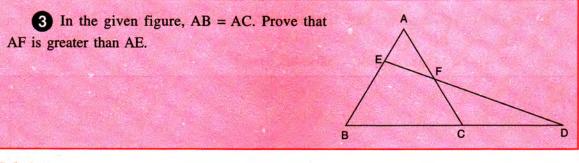
0



Solution :

2

In \triangle ABC and \triangle	ADC		
	BC	= CD	[Given]
	∠ACB	= ∠ACD	[Each 90°]
and,	AC	= AC	[Common]
	Δ ABC	$\cong \Delta ADC$	[By S.A.S.]
\Rightarrow	AB	= AD	[By C.P.C.T.C.]
and so,	La	$= \angle b$	[Angles opp. to equal sides]
In Δ ADE,	ext. ∠b	$= \angle c + \angle DAE$	[Ext. \angle = sum of int. opp. $\angle s$]
\Rightarrow	$\angle b$	> ∠c	
\Rightarrow	La	> <i>∠c</i>	$[\because \ \angle a = \angle b]$
In Δ ABE,	La	> ∠c	
\Rightarrow	AE	> AB	[In a Δ , side opp. to greater angle is greater]
		Hence I	Proved.



Solution :

Since,	$AB = AC \Rightarrow \angle B =$	=∠C [An	gles opp. to equal sides are equal]
In Δ FCD,	ext. $\angle C = \angle D + \angle a$	A	
⇒	$\angle C > \angle a$		
But,	$\angle a = \angle b$	EDF	[Vertically opp. $\angle s$]
	$\angle C > \angle b$		aI
In Δ EBD,	ext. $\angle d = \angle B + \angle D$	Дв	
\Rightarrow	$\angle d > \angle B$	В	С
\Rightarrow	$\angle d > \angle C$		II [$\because \angle B = \angle C$]

Downloaded from https://www.studiestoday.com

 $\angle d > \angle C$ and $\angle C > \angle b \implies \angle d > \angle b$ ·. $\angle d > \angle b \implies \mathbf{AF} > \mathbf{AE}$ In Δ AEF, Hence Proved. 4 In the figure, given alongside, AD bisects angle BAC. Prove that : (i) AB > BD(ii) AC > CD(iii) AB + AC > BCSolution : C Given, AD bisects angle BAC $\Rightarrow \angle BAD = \angle CAD$ D (i) In triangle ADC, ext. $\angle ADB = \angle CAD + \angle C$ [:: $\angle CAD = \angle BAD$] $\angle ADB = \angle BAD + \angle C$ \Rightarrow $\angle ADB > \angle BAD$ \Rightarrow In triangle ABD, $\angle ADB > \angle BAD$ AB > BD[Greater angle has greater side opposite to it.] \Rightarrow Hence Proved. (ii) In \triangle ABD, ext. $\angle ADC = \angle BAD + \angle B$ $\angle ADC = \angle CAD + \angle B$ [$\therefore \angle BAD = \angle CAD$] \Rightarrow ∠ADC > ∠CAD \Rightarrow **Hence Proved.** $\angle ADC > \angle CAD$ In \triangle ADC, \Rightarrow AC > CD (iii) Since, AB > BD and AC > CD $AB + AC > BD + CD \implies AB + AC > BC$... **Hence Proved.** B In quadrilateral ABCD; AB is the shortest side and 5 DC is the longest side. Prove that : (i) $\angle B > \angle D$ (ii) $\angle A > \angle C$ Solution : Join B and D In \triangle ABD, AD > AB [Given, AB is the shortest] ∠a > ∠c I [Angle opposite to the greater side is greater] ... In \triangle BCD, CD > BC [Given, CD is the longest side] $\angle b > \angle d \dots \Pi$... [Angle opposite to greater side is greater]

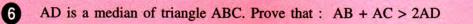
Downloaded from https:// www.studiestoday.com

 $\therefore \quad \angle a + \angle b > \angle c + \angle d \quad \text{[Adding I and II]}$

 $\Rightarrow \angle B > \angle D \qquad \text{Hence Proved.}$

Similarly, by joining A and C, it can be proved that $\angle A > \angle C$.

Hence Proved.



Solution :

2

According to the given statement, the figure will be as drawn alongside in which AD is a median *i.e.* BD = CD.

Produce AD upto a point E such that AD = DE *i.e.* AE = 2AD.

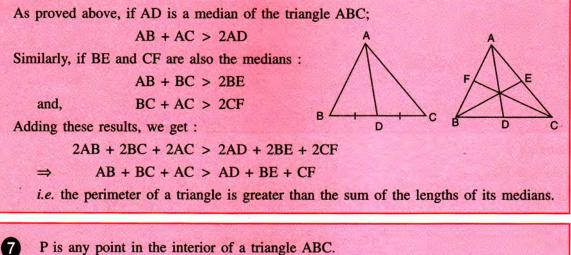
Also join C and E.

Since, the sum of any two sides of a triangle is greater than the third side, therefore in triangle ACE

i.e.	AB + AC >	2AD		Hence Proved.
	AC + AB >	> 2AD		
Substituting	CE =			
⇒	AB =	= CE	[C.P.C.T.C.]	
	Δ ADB \cong	Δ EDC	[By S.A.S.]	Ě
and,	∠ADB =	= ∠CDE	[Vertically opposite angles]	\sim
	AD =	= DE	[By construction]	1/
	BD =	= CD	[Given]	\sum
In Δ ADB and	d Δ CDE		В∕	
i.e.	AC + CE >	> 2AD	I /	
	AC + CE >	> AE	/	¥ /
		-		

в

D



P is any point in the interior of a triangle ABC. Prove that : PA + PB < AC + BC

Downloaded from https:// www.studiestoday.com

Solution :

According to the given statement, the figure will be as shown alongside.

Produce BP to meet AC at point M.

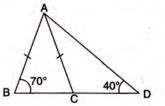
Since, the sum of any two sides of a triangle is greater than its third side.

 $\therefore \text{ In } \Delta \text{ BCM, BC + CM > BM } \dots \text{ I}$ and, in $\Delta \text{ APM, AM + PM > AP } \dots \text{ II}$ Adding I and II, we get : BC + CM + AM + PM > BM + AP $\Rightarrow \text{ BC + (CM + AM) > BM - PM + AP}$ $\Rightarrow \text{ BC + (CM + AM) > BM - PM + AP}$ $\Rightarrow \text{ BC + AC > PB + PA}$ *i.e.* PB + PA < BC + AC

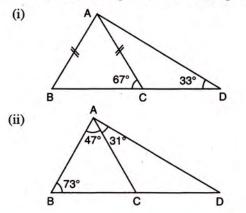
Hence Proved.

EXERCISE 11

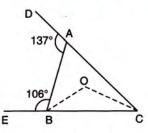
1. From the following figure, prove that : AB > CD.



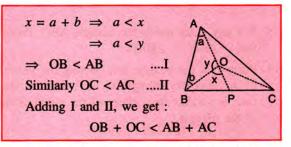
- 2. In a triangle PQR; QR = PR and $\angle P = 36^{\circ}$. Which is the largest side of the triangle?
- 3. If two sides of a triangle are 8 cm and 13 cm, then the length of the third side is between a cm and b cm. Find the values of a and bsuch that a is less than b.
- 4. In each of following figures, write BC, AC and CD in ascending order of their lengths.



5. Arrange the sides of Δ BOC in descending order of their lengths. BO and CO are bisectors of angles ABC and ACB respectively.



- 6. D is a point in side BC of triangle ABC. If AD > AC, show that AB > AC.
- 7. O is a point in the interior of a triangle ABC. Show that : OB + OC < AB + AC.

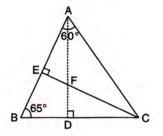


8. In the following figure, ∠BAC = 60° and ∠ABC = 65°.
Prove that :

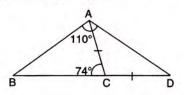
(i) CF > AF (ii) DC > DF

MP

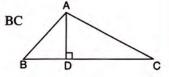
Downloaded from https:// www.studiestoday.com



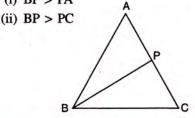
9. In the following figure; AC = CD; \angle BAD = 110° and \angle ACB = 74°. Prove that : BC > CD.



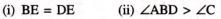
- 10. From the following figure; prove that :
 - (i) AB > BD
 - (ii) AC > CD
 - (iii) AB + AC > BC

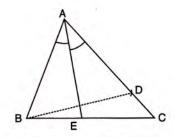


- 11. In a quadrilateral ABCD; prove that :
 - (i) AB + BC + CD > DA
 - (ii) AB + BC + CD + DA > 2AC
 - (iii) AB + BC + CD + DA > 2BD
- 12. In the following figure, ABC is an equilateral triangle and P is any point in AC; prove that :
 - (i) BP > PA

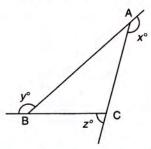


- 13. P is any point inside the triangle ABC. Prove that: $\angle BPC > \angle BAC$.
- 14. Prove that the straight line joining the vertex of an isosceles triangle to any point in the base is smaller than either of the equal sides of the triangle.
- 15. In the following diagram; AD = AB and AEbisects angle A. Prove that :



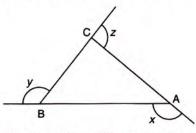


- 16. The sides AB and AC of a triangle ABC are produced; and the bisectors of the external angles at B and C meet at P. Prove that if AB > AC, then PC > PB.
- 17. In the following figure; AB is the largest side and BC is the smallest side of triangle ABC.



Write the angles x° , y° and z° in ascending order of their values.

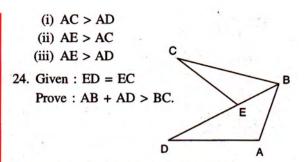
- 18. In quadrilateral ABCD, side AB is the longest and side DC is the shortest. Prove that :
 - (i) $\angle C > \angle A$ (ii) $\angle D > \angle B$
- 19. The following figure shows a triangle ABC with exterior angles as x, y and z.



- (i) If AB > AC > BC; arrange the angles x, y and z in ascending order of their values.
- (ii) In the same figure, if y > x > z; arrange sides AB, BC and AC in descending order of their lengths.
- 20. (i) In a right angled triangle prove that hypotenuse is the greatest.
 - (ii) In a triangle ABC, $\angle ACB = 108^\circ$, show that AB is the largest side of the triangle.

Downloaded from https:// www.studiestoday.com

- 21. In triangle ABC, D is any point in side BC. Show that : AB + BC + AC > 2AD
- 22. In triangle ABC, side AC is greater than side AB. If the internal bisector of angle A meets the opposite side at point D, prove that : $\angle ADC$ is greater than $\angle ADB$.
- 23. In isosceles triangle ABC, sides AB and AC are equal. If point D lies in base BC and point E lies on BC produced (BC being produced through vertex C), prove that :



25. In triangle ABC, AB > AC and D is a point in side BC. Show that : AB > AD.

Downloaded from https:// www.studiestoday.com