

Factorisation

5.1 INTRODUCTION

When a polynomial (an algebraic expression) is expressed as the product of two or more expressions, each of these expressions is called a **factor** of the polynomial.

The polynomial $x^2 + 5x + 6$ can be expressed as the product of the expressions (x + 3) and (x + 2).

That is $x^2 + 5x + 6 = (x + 3)(x + 2) \implies (x + 3)$ and (x + 2) are factors of $x^2 + 5x + 6$.

The process of writing an expression in the form of terms or brackets multiplied together, is called **factorisation**. Each term and each bracket is called a factor of the expression.

e.g. (i)
$$5x^2 + 15 = 5(x^2 + 3)$$

$$\Rightarrow$$
 5 and x^2 + 3 are factors of $5x^2$ + 15.

- (ii) $ax^2 + 5ax + 6a = a(x + 3)(x + 2)$
- \Rightarrow a, (x + 3) and (x + 2) are factors of $ax^2 + 5ax + 6a$.

Factorisation is the reverse of multiplication.

5.2 METHODS OF FACTORISATION

Type 1 : Taking out the common factors

When each term of a given expression contains a common factor, divide each term by this factor and enclose the quotient within brackets, keeping the common factor outside the bracket.

Procedure :

Find the H.C.F. of all the terms of the given expression.

For expression $6a^2 - 3ax$, its terms are $6a^2$ and -3ax. And, the H.C.F. of these terms is 3a.

Therefore,
$$6a^2 - 3ax = 3a\left(\frac{6a^2}{3a} - \frac{3ax}{3a}\right) = 3a(2a - x).$$

1 Factorise :
(i)
$$8ab^2 + 12a^2b$$
 (ii) $4(x + y)^2 - 3(x + y)$ (iii) $x(a - 5) + y(5 - a)$

Solution :

(i)
$$8ab^{2} + 12a^{2}b = 4ab \left[\frac{8ab^{2}}{4ab} + \frac{12a^{2}b}{4ab} \right]$$

= $4ab(2b + 3a)$

[H.C.F. of $8ab^2$ and $12a^2b$ is 4ab]

Ans.

Direct method :

It can easily be seen that 4ab is the largest expression which divides both the terms $8ab^2$ and $12a^2b$ of the given expression $8ab^2 + 12a^2b$ completely.

(ii)
$$4(x + y)^2 - 3(x + y) = (x + y) [4(x + y) - 3]$$

 $= (x + y) (4x + 4y - 3)$ Ans.
(iii) $x(a -5) + y(5 - a) = x(a - 5) - y(a - 5)$
 $= (a - 5) (x - y)$ Ans.

Type 2 : Grouping

An expression of an even number of terms, may be resolved into factors, if the terms are arranged in groups such that each group has a common factor.

Procedure :

- 1. Group the terms of the given expression in such a way that each group has a common factor.
- 2. Factorise each group formed.
- 3. From each group, obtained in step 2, take out the common factor.

2 Factorise : (i)
$$ab + bc + ax + cx$$
 (ii) $ab^2 - (a - 1)b - 1$

Solution :

(i)
$$ab + bc + ax + cx = (ab + bc) + (ax + cx)$$

= $b (a + c) + x (a + c)$
= $(a + c) (b + x)$ A

Rah2 , 12-21

[Forming groups][Taking out common factors from each group]ns. [Taking (a + c) common]

Ans.

(ii)
$$ab^2 - (a - 1)b - 1 = ab^2 - ab + b - 1$$

= $ab(b - 1) + 1(b - 1)$
= $(b - 1)(ab + 1)$

3 Factorise :
$$a^2 + \frac{1}{a^2} + 2 - 5a - \frac{5}{a}$$

Solution :

$$a^{2} + \frac{1}{a^{2}} + 2 - 5a - \frac{5}{a} = (a^{2} + \frac{1}{a^{2}} + 2) - 5(a + \frac{1}{a})$$
$$= (a + \frac{1}{a})^{2} - 5(a + \frac{1}{a}) = (a + \frac{1}{a})(a + \frac{1}{a} - 5)$$
Ans.

EXERCISE 5 (A)

Factorise by taking out the common factors : 1. $3a^2 - 9ab$ 2. $2(x + y)^3 - 6(x + y)$ 3. $x^3 (2x - 3y) - x^2 (2x - 3y)^2$ 4. 2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)

Factorise by grouping method :	13. $(2a-b)^2 - 10a + 5b$
5. $a^3 + a - 3a^2 - 3$	14. $a(a-4) - a + 4$
6. 16 $(a + b)^2 - 4a - 4b$	15. $y^2 - (a + b) y + ab$
7. $a^4 - 2a^3 - 4a + 8$	
8. $ab - 2b + a^2 - 2a$	16. $a^2 + \frac{1}{a^2} - 2 - 3a + \frac{3}{a}$
9. $ab(x^2 + 1) + x(a^2 + b^2)$	17. $x^2 + y^2 + x + y + 2xy$
10. $a^2 + b - ab - a$	17. $x^2 + y^2 + x + y + 2xy$ 18. $a^2 + 4b^2 - 3a + 6b - 4ab$
11. $(ax + by)^2 + (bx - ay)^2$	19. $m(x-3y)^2 + n(3y-x) + 5x - 15y$
12. $a^2x^2 + (ax^2 + 1)x + a$	20. $x (6x - 5y) - 4 (6x - 5y)^2$

Type 3 : Trinomial of the form $ax^2 \pm bx \pm c$ (By splitting the middle term)

When a trinomial is of the form $ax^2 + bx + c$ (or $a + bx + cx^2$), split b (the coefficient of x in the middle term) into two parts such that the sum of these two parts is equal to b and the product of these two parts is equal to the product of a and c. Then factorize by the grouping method.

4 Factorise : (i) $x^2 + 5x + 6$ (ii) $x^2 - 5x + 6$ (iii) $x^2 - 5x - 6$ (iv) $x^2 + 5x - 6$.

Solution :

(iv) $x^2 + 5x - 6$	= x (x-6) + 1 (x-6) = (x-6) (x + 1) = x ² + 6x - x - 6	and, $(-6) \times 1 = -6$ Since, $6 - 1 = 5$	Ans.
	= x + 6x + 6 = 0 = x (x + 6) - 1 (x + 6) = (x + 6) (x - 1)	and, $6 \times (-1) = -6$	Ans.
5 Factoris	e: (i) $2x^2 - 7x + 6$	(ii) $3x^2 - 11x - 4$	1. N. N.
	(iii) $6 + 11x + 3x^2$	(iv) $7 - 12x - 4x^2$.	

Solution :

(i) $2x^2 - 7x + 6 = 2x^2 - 4x - 3x + 6$ Since, -4 - 3 = -7 and, $(-4) \times (-3) = 12$ = 2x (x - 2) -3(x - 2) = (x - 2) (2x - 3) Ans. (ii) $3x^2 - 11x - 4 = 3x^2 - 12x + x - 4$ = 3x (x - 4) + 1 (x - 4) = (x - 4) (3x + 1) Ans.

Downloaded from https:// www.studiestoday.com

69

Downloaded from https:// www.studiestoday.com (iii) $6 + 11x + 3x^2 = 6 + 9x + 2x + 3x^2$ = 3(2 + 3x) + x (2 + 3x) = (2 + 3x) (3 + x)Ans. (iv) $7 - 12x - 4x^2 = 7 - 14x + 2x - 4x^2$ = 7(1-2x) + 2x (1-2x) = (1-2x) (7+2x)Ans. 6 Factorise : (i) $x^2 + 7x + 6 + px + 6p$ (ii) $12 - (x + x^2) (8 - x - x^2)$. Solution : (i) $x^2 + 7x + 6 + px + 6p$ $= x^{2} + 6x + x + 6 + px + 6p$ [Factorising $x^2 + 7x + 6$] = x (x + 6) + 1 (x + 6) + p (x + 6)= (x + 6) (x + 1 + p)Ans. (ii) $12 - (x + x^2) (8 - x - x^2) = 12 - (x + x^2) [8 - (x + x^2)]$ = 12 - a(8 - a)[Taking $x + x^2 = a$] $= 12 - 8a + a^2$ $= 12 - 6a - 2a + a^2$ = 6(2-a) - a(2-a)= (2-a)(6-a) $= [2 - (x + x^2)] [6 - (x + x^2)]$ $[:: a = x + x^2]$

= (1 - x) (2 + x) (2 - x) (3 + x)Ans. $ax^2 + bx + c$, where a, b and c are real numbers, is known as a trinomial or a quadratic expression in which $a = \text{coefficient of } x^2$, b = coefficient of x and c = a constant. If we find the value of $b^2 - 4ac$ and this value is a perfect square, the trinomial $ax^2 + bx + c$ is factorisable, otherwise, not.

 $= (2 - x - x^2) (6 - x - x^2)$

 $= (2 - 2x + x - x^2) (6 - 3x + 2x - x^2)$

= [2(1-x) + x(1-x)] [3(2-x) + x(2-x)]

(i) Is 5x² + 17x + 6 factorisable? If yes, factorise it.
(ii) Is 3x² - 8x - 15 factorisable? If yes, factorise it.

Solution :

(i) Comparing
$$5x^2 + 17x + 6$$
 with $ax^2 + bx + c$, we get :
 $a = 5, b = 17$ and $c = 6$
 $\therefore \qquad b^2 - 4ac = (17)^2 - 4 \times 5 \times 6$
 $= 289 - 120 = 169$, which is a perfect square.
 $\therefore 5x^2 + 17x + 6$ is factorisable.
Now, $5x^2 + 17x + 6 = 5x^2 + 15x + 2x + 6$
 $= 5x(x + 3) + 2(x + 3) = (x + 3) (5x + 2)$
Ans.

(ii) Comparing
$$3x^2 - 8x - 15$$
 with $ax^2 + bx + c$, we get :

$$a = 3, b = -8$$
 and $c = -15$

1

$$b^2 - 4ac = (-8)^2 - 4 \times 3 \times -15$$

$$b^2 - 4ac$$

= 64 + 180 = 244, which is not a perfect square.

 $3x^2 - 8x - 15$ is not factorisable. *.*..

Ans.

EXERCISE 5 (B)

Factorise : 1. $a^2 + 10 a + 24$ 2. $a^2 - 3a - 40$ 3. $1 - 2a - 3a^2$ 4. $x^2 - 3ax - 88a^2$ 5. $6a^2 - a - 15$ 6. $24a^3 + 37a^2 - 5a$ 7. $a (3a - 2) - 1$ 8. $a^2b^2 + 8ab - 9$	11. $1 - 2a - 2b - 3 (a + b)^2$ 12. $3a^2 - 1 - 2a$ 13. $x^2 + 3x + 2 + ax + 2a$ 14. $(3x - 2y)^2 + 3 (3x - 2y) - 10$ 15. $5 - (3a^2 - 2a) (6 - 3a^2 + 2a)$ 16. For each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible. (i) $x^2 - 3x - 54$ (ii) $2x^2 - 7x - 15$
8. $a^2b^2 + 8ab - 9$	
9. $3 - a (4 + 7a)$	(iii) $2x^2 + 2x - 75$ (iv) $3x^2 + 4x - 10$
10. $(2a + b)^2 - 6a - 3b - 4$	(v) $x(2x-1) - 1$

Type 4 : Difference of two squares

Since, the product of (x + y) and $(x - y) = (x + y)(x - y) = x^2 - y^2$,

:. Factors of
$$x^2 - y^2$$
 are $(x + y)$ and $(x - y)$

i.e. $x^2 - y^2 = (x + y) (x - y)$.

8 Factorise :	(i) $x^2 - 25$	(ii) $9(x-y)^2 - (x+2y)^2$	
	(iii) $48x^3 - 27x$	(iv) $16a^4 - b^4$.	

Solution :

(i)	$x^2 - 25$	$= x^2 - 5^2 = (x + 5) (x - 5)$	Ans.
(ii) 9(x -	$(-y)^2 - (x + 2y)^2$	$= [3(x-y)]^2 - (x+2y)^2$	
		$= (3x - 3y)^2 - (x + 2y)^2$	
		$= (\overline{3x - 3y} + \overline{x + 2y}) (\overline{3x - 3y} - \overline{x + 2y})$	
		= (3x - 3y + x + 2y) (3x - 3y - x - 2y)	
		= (4x - y) (2x - 5y)	Ans.
(iii)	$48x^3 - 27x$	$= 3x (16x^2 - 9)$	
		$= 3x \left[(4x)^2 - (3)^2 \right] = 3x (4x + 3) (4x - 3)$	Ans.
(iv)	$16a^4 - b^4$	$= (4a^2)^2 - (b^2)^2$	

 $= (4a^2 + b^2) (4a^2 - b^2) = (4a^2 + b^2) (2a + b) (2a - b)$

Ans.

.7	Downloaded from https:// www.studiestoday.com	m
	9 Factorise : (i) $16x^2 - y^2 + 4yz - 4z^2$ (ii) $(1 - x^2)(1 - y^2) + 4xy$ (iii) $x^4 + x^2y^2 + y^4$ (iv) $(p^2 + q^2 - r^2)^2 - 4p^2q^2$.	
Solut	ion :	
(i)	$16x^{2} - y^{2} + 4yz - 4z^{2} = (4x)^{2} - (y^{2} - 4yz + 4z^{2})$ = $(4x)^{2} - (y - 2z)^{2}$ = $(4x + \overline{y - 2z})(4x - \overline{y - 2z})$ = $(4x + y - 2z)(4x - y + 2z)$	Ans.
(ii)	$(1 - x^{2}) (1 - y^{2}) + 4xy = 1 - x^{2} - y^{2} + x^{2}y^{2} + 4xy$ = 1 + x ² y ² + 2xy - x ² - y ² + 2xy = (1 + x ² y ² + 2xy) - (x ² + y ² - 2xy) = (1 + xy) ² - (x - y) ² = (1 + xy + x - y) (1 + xy - x - y) = (1 + xy + x - y) (1 + xy - x + y)	Åns
(iii)	$= (1 + xy + x - y) (1 + xy - x + y)$ $x^{4} + x^{2}y^{2} + y^{4} = x^{4} + y^{4} + 2x^{2}y^{2} - x^{2}y^{2}$ $= (x^{2} + y^{2})^{2} - (xy)^{2}$ $= (x^{2} + y^{2} + xy) (x^{2} + y^{2} - xy)$	Ans. Ans.
(iv)	$(n^2 + a^2 - r^2)^2 - 4n^2a^2 - (n^2 + a^2 - r^2)^2 - (2na)^2$	

(iv)
$$(p^2 + q^2 - r^2)^2 - 4p^2q^2 = (p^2 + q^2 - r^2)^2 - (2pq)^2$$

 $= (p^2 + q^2 - r^2 + 2pq) (p^2 + q^2 - r^2 - 2pq)$
 $= (p^2 + q^2 + 2pq - r^2) (p^2 + q^2 - 2pq - r^2)$
 $= [(p + q)^2 - r^2] [(p - q)^2 - r^2]$
 $= (p + q + r) (p + q - r) (p - q + r) (p - q - r)$

EXERCISE 5 (C)

Ans.

Factorise :	10. $a^3 + 2a^2 - a - 2$
1. $25a^2 - 9b^2$	11. $(a+b)^3 - a - b$
2. $a^2 - (2a + 3b)^2$	12. a $(a - 1) - b (b - 1)$
3. $a^2 - 81 (b - c)^2$	13. $4a^2 - (4b^2 + 4bc + c^2)$
4. $25(2a - b)^2 - 81b^2$	14. $4a^2 - 49b^2 + 2a - 7b$
5. $50a^3 - 2a$	15. $9a^2 + 3a - 8b - 64b^2$
6. $4a^2b - 9b^3$	16. $4a^2 - 12a + 9 - 49b^2$
7. $3a^5 - 108a^3$	17. $4xy - x^2 - 4y^2 + z^2$
8. $9(a-2)^2 - 16(a+2)^2$	18. $a^2 + b^2 - c^2 - d^2 + 2ab - 2cd$
9. $a^4 - 1$	19. $4x^2 - 12ax - y^2 - z^2 - 2yz + 9a^2$

20. $(a^2 - 1)(b^2 - 1) + 4ab$	26. $9a^2 - (a^2 - 4)^2$
21. $x^4 + x^2 + 1$	
22. $(a^2 + b^2 - 4c^2)^2 - 4a^2b^2$	27. $x^2 + \frac{1}{x^2} - 11$
23. $(x^2 + 4y^2 - 9z^2)^2 - 16x^2y^2$	28. $4x^2 + \frac{1}{4x^2} + 1$ 29. $4x^4 - x^2 - 12x - 36$
24. $(a + b)^2 - a^2 + b^2$	$4x^2$ $4x^2$
25. $a^2 - b^2 - (a + b)^2$	$29. \ 4x^4 - x^2 - 12x - 36$
	30. $a^2 (b + c) - (b + c)^3$

Type 5 : The sum or difference of two cubes

We know,	$a^3 + b^3 = (a + b)^3 - 3ab (a + b)$	[Expansion of $a^3 + b^3$]
and,	$a^3 - b^3 = (a - b)^3 + 3ab (a - b)$	[Expansion of $a^3 - b^3$]
Further	$a^3 + b^3 = (a + b)^3 - 3ab (a + b)$	
	$= (a + b) [(a + b)^2 - 3ab]$	
	$= (a + b) (a^2 + 2ab + b^2 - 3ab) = (a + b)$	$b) (a^2 - ab + b^2)$
Similarly,	$a^3 - b^3 = (a - b) (a^2 + ab + b^2)$	
Clearly, fac	ctors of $a^{3} + b^{3}$ are $(a + b)$ and $(a^{2} - ab + b^{2})$	
and, factor	s of $a^3 - b^3$ are $(a - b)$ and $(a^2 + ab + b^2)$	-
Section and the section of the		The second s

10 Factorise :	(i)	$a^3 + 27b^3$	(ii) $16a^4 + 54a$
	(iii)	$125a^3 + \frac{1}{8}$	(iv) $a^3 + b^3 + a + b$.

Solution :

(i)
$$a^3 + 27b^3 = (a)^3 + (3b)^3$$

 $= (a + 3b) [(a)^2 - a \times 3b + (3b)^2]$
 $= (a + 3b) (a^2 - 3ab + 9b^2)$ Ans.
(ii) $16a^4 + 54a = 2a (8a^3 + 27)$
 $= 2a [(2a)^3 + (3)^3]$
 $= 2a (2a + 3) (4a^2 - 6a + 9)$ Ans.
(iii) $125a^3 + \frac{1}{8} = (5a)^3 + (\frac{1}{2})^3$
 $= (5a + \frac{1}{2}) [(5a)^2 - 5a \times \frac{1}{2} + (\frac{1}{2})^2]$
 $= (5a + \frac{1}{2}) (25a^2 - \frac{5}{2}a + \frac{1}{4})$ Ans.
(iv) $a^3 + b^3 + a + b = (a + b) (a^2 - ab + b^2) + (a + b)$
 $= (a + b) (a^2 - ab + b^2) + (a + b)$
 $= (a + b) (a^2 - ab + b^2 + 1)$ Ans.

1 Factorise : (i) $8a^3 - 27b^3$ (ii) $2a^7 - 128a$

Downloaded from https:// www.studiestoday.com

73

12 Downloaded from https:// www.studiestoday.com Solution : $8a^3 - 27b^3 = (2a)^3 - (3b)^3$ (i) $= (2a - 3b) (4a^2 + 6ab + 9b^2)$ Ans. $2a^7 - 128a = 2a(a^6 - 64)$ (ii) $= 2a [(a^3)^2 - (8)^2]$ $= 2a (a^3 + 8) (a^3 - 8)$ $= 2a (a^3 + 2^3) (a^3 - 2^3)$ $= 2a (a + 2) (a^2 - 2a + 4) (a - 2) (a^2 + 2a + 4)$ $= 2a (a + 2) (a - 2) (a^2 - 2a + 4) (a^2 + 2a + 4)$ Ans. 12 Show that : (i) $15^3 - 8^3$ is divisible by 7 (ii) $15^3 + 8^3$ is divisible by 23. Solution : :: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ (i) $15^{3} - 8^{3} = (15 - 8) (15^{2} + 15 \times 8 + 8^{2})$ = 7 (225 + 120 + 64) = 7 × 40

$$= 7 (225 + 120 + 64) = 7 \times 409$$

Which is divisible by 7.

(ii)
$$\therefore a^3 + b^3 = (a + b) (a^2 - ab + b^2)$$

 $\therefore 15^3 + 8^3 = (15 + 8) (15^2 - 15 \times 8 + 8^2)$
 $= 23 (225 - 120 + 64) = 23 \times 169$

Which is divisible by 23.

EXERCISE 5 (D)

Factorise :	7. $a^3 + 0.064$	13. $a^3 - 27b^3 + 2a^2b - 6ab^2$	
1. $a^3 - 27$	8. $a^4 - 343a$	14. $8a^3 - b^3 - 4ax + 2bx$	
2. $1 - 8a^3$	9. $(x - y)^3 - 8x^3$	15. $a - b - a^3 + b^3$	
3. $64 - a^3b^3$	$8a^3 b^3$	16. $2x^3 + 54y^3 - 4x - 12y$	
4. $a^6 + 27b^3$	10. $\frac{8a^3}{27} - \frac{b^3}{8}$	17. Show that :	
5. $3x^7y - 81x^4y^4$	11. $a^6 - b^6$	(i) $13^3 - 5^3$ is divisible by 8.	
6. $a^3 - \frac{27}{a^3}$	12. $a^6 - 7a^3 - 8$	(ii) $35^3 + 27^3$ is divisible by 62.	

13 Factorise : (i) $x^2 + \frac{a^2 - 1}{a}x - 1$

(ii) $x^4 + y^4 - 23x^2y^2$.

(i)
$$x^{2} + \frac{a^{2} - 1}{a}x - 1 = x^{2} + \left(\frac{a^{2}}{a} - \frac{1}{a}\right)x - 1$$

 $= x^{2} + ax - \frac{x}{a} - 1$
 $= (x^{2} - \frac{x}{a}) + (ax - 1) = \left(x^{2} - \frac{x}{a}\right) + \left(ax - \frac{a}{a}\right)$
 $= x (x - \frac{1}{a}) + a (x - \frac{1}{a}) = (x - \frac{1}{a}) (x + a)$ Ans.
(ii) $x^{4} + y^{4} - 23x^{2}y^{2} = x^{4} + y^{4} + 2x^{2}y^{2} - 2x^{2}y^{2} - 23x^{2}y^{2}$
 $= (x^{2} + y^{2})^{2} - 25x^{2}y^{2}$
 $= (x^{2} + y^{2})^{2} - (5xy)^{2}$
 $= (x^{2} + y^{2} + 5xy) (x^{2} + y^{2} - 5xy)$ Ans.

14 Factorise : (i) $a^2 + \frac{1}{a^2} - 18$ (ii) $a^4 - 7a^2 + 1$ (iii) $a^3 + 3a^2b + 3ab^2 + 2b^3$.

Solution :

(i)
$$a^{2} + \frac{1}{a^{2}} - 18 = (a^{2} + \frac{1}{a^{2}} - 2) - 16$$

 $= (a - \frac{1}{a})^{2} - (4)^{2}$
 $= (a - \frac{1}{a} + 4) (a - \frac{1}{a} - 4)$ Ans.
(ii) $a^{4} - 7a^{2} + 1 = a^{4} - 7a^{2} + 1 + 2a^{2} - 2a^{2}$
 $= (a^{4} + 1 + 2a^{2}) - 9a^{2}$
 $= (a^{2} + 1)^{2} - (3a)^{2}$
 $= (a^{2} + 1 + 3a) (a^{2} + 1 - 3a)$ Ans.
(iii) $a^{3} + 3a^{2}b + 3ab^{2} + 2b^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} + b^{3}$
 $= (a + b)^{3} + b^{3}$
 $= x^{3} + b^{3}$ [Taking $a + b = x$]
 $= (x + b) (x^{2} - bx + b^{2})$
 $= (a + 2b) (a^{2} + 2ab + b^{2} - ab - b^{2} + b^{2})$
 $= (a + 2b) (a^{2} + ab + b^{2})$ Ans.

75

Solution : Downloaded from https:// www.studiestoday.com

Let
$$a^3 = x \implies a^6 = x^2$$

 $a^6 - 26a^3 - 27 = x^2 - 26x - 27$
 $= x^2 - 27x + x - 27$
 $= x(x - 27) + 1 (x - 27)$
 $= (x - 27) (x + 1)$
 $= (a^3 - 27) (a^3 + 1)$
 $= (a^3 - 3^3) (a^3 + 1^3)$
 $= (a - 3) (a^2 + 3a + 9) (a + 1) (a^2 - a + 1)$ Ans.

EXERCISE 5 (E)

14.

16.

Factorise :

..

1.
$$x^{2} + \frac{1}{4x^{2}} + 1 - 7x - \frac{7}{2x}$$

2. $9a^{2} + \frac{1}{9a^{2}} - 2 - 12a + \frac{4}{3a}$
3. $x^{2} + \frac{a^{2} + 1}{a}x + 1$
4. $x^{4} + y^{4} - 27x^{2}y^{2}$
5. $4x^{4} + 9y^{4} + 11x^{2}y^{2}$
6. $x^{2} + \frac{1}{x^{2}} - 3$
7. $a - b - 4a^{2} + 4b^{2}$
8. $(2a - 3)^{2} - 2(2a - 3)(a - 1) + (a - 1)^{2}$
9. $(a^{2} - 3a)(a^{2} - 3a + 7) + 10$
10. $(a^{2} - a)(4a^{2} - 4a - 5) - 6$
11. $x^{4} + y^{4} - 3x^{2}y^{2}$
 $x^{4} + y^{4} - 3x^{2}y^{2} = x^{4} + y^{4} - 2x^{2}y^{2} - x^{2}y^{2}$
 $= (x^{2} - y^{2})^{2} - (xy)^{2}$ and so on
12. $5a^{2} - b^{2} - 4ab + 7a - 7b$
 $= 4a^{2} + a^{2} - b^{2} - 4ab + 7a - 7b$
 $= (a^{2} - b^{2}) + (4a^{2} - 4ab) + (7a - 7b)$

= (a - b) (a + b) + 4a(a - b) + 7(a - b)= (a - b) [a + b + 4a + 7]= (a - b) (5a + b + 7)**Alternative method :** $5a^2 - 4ab - b^2 + 7a - 7b$ $= 5a^2 - 5ab + ab - b^2 + 7a - 7b$ = 5a(a - b) + b(a - b) + 7(a - b)= (a - b) (5a + b + 7)

13.
$$12(3x - 2y)^2 - 3x + 2y - 1$$

Let $3x - 2y = a$
∴ Given expression

$$= 12(3x - 2y)^{2} - (3x - 2y) - 1$$

= $12a^{2} - a - 1$ and so on.
14. $4(2x - 3y)^{2} - 8x + 12y - 3$
15. $3 - 5x + 5y - 12(x - y)^{2}$
16. $9x^{2} + 3x - 8y - 64y^{2}$

17.
$$2\sqrt{3} x^2 + x - 5\sqrt{3}$$

18. $\frac{1}{4} (a+b)^2 - \frac{9}{16} (2a-b)^2$
19. $2(ab+cd) - a^2 - b^2 + c^2 + d^2$

6.7 - 3.3

20. Find the value of :
(i)
$$(987)^2 - (13)^2$$
 (ii) $(67 \cdot 8)^2 - (32 \cdot 2)^2$
(iii) $\frac{(6 \cdot 7)^2 - (3 \cdot 3)^2}{(7 - 3)^2}$ (iv) $\frac{(18 \cdot 5)^2 - (6 \cdot 5)^2}{(18 \cdot 5)^2 - (6 \cdot 5)^2}$

(IV) 18.5 + 6.5