UNIT 3 : Algebra

Expansions

4.1 INTRODUCTION

Expansion is the process in which the contents of brackets are evaluated.

Recall of concepts of expansions learned in earlier classes:

 $a^2 + 2ab + b^2$ is the expansion of $(a + b)^2$

Similarly,

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$
II

3.
$$(a+b)^2 + (a-b)^2 = 2(a^2 + b^2)$$
 [On adding I and II]

$$(a+b)^2 - (a-b)^2 = 4ab$$
 [On subtracting II from I]

If $a \neq 0$, then:

5.
$$(a + \frac{1}{a})^2 = a^2 + \frac{1}{a^2} + 2 \implies a^2 + \frac{1}{a^2} = (a + \frac{1}{a})^2 - 2$$

6.
$$\left(a - \frac{1}{a}\right)^2 = a^2 + \frac{1}{a^2} - 2 \implies a^2 + \frac{1}{a^2} = \left(a - \frac{1}{a}\right)^2 + 2$$

7.
$$(a + \frac{1}{a})^2 + (a - \frac{1}{a})^2 = 2(a^2 + \frac{1}{a^2})$$

8.
$$(a + \frac{1}{a})^2 - (a - \frac{1}{a})^2 = 4$$

4.2 IDENTITIES

Consider the expansion : $(a + b)^2 = a^2 + 2ab + b^2$

1. If
$$a = 5$$
 and $b = 3$

$$(a + b)^2 = (5 + 3)^2 = 8^2 = 64 \text{ and}$$

$$a^2 + 2ab + b^2 = 5^2 + 2 \times 5 \times 3 + 3^2 = 25 + 30 + 9 = 64.$$

i.e.
$$(a + b)^2 = a^2 + 2ab + b^2$$

2. If $a = -8$ and $b = 5$
 $(a + b)^2 = (-8 + 5)^2 = (-3)^2 = 9$ and $a^2 + 2ab + b^2 = (-8)^2 + 2 \times -8 \times 5 + 5^2 = 64 - 80 + 25 = 9$
i.e. $(a + b)^2 = a^2 + 2ab + b^2$

In the same way, if we give any number of values to a and b; every time $(a + b)^2$ and $a^2 + 2ab + b^2$ will come same (equal).

An equation, which is true for all values of its variables, is called an **identity**. Each equation (expansion) given above in article 4.1 is an identity.

1 Evaluate: (i)
$$(a + 2b)^2$$
 (ii) $(2a - 3b)^2$.

Solution:

(i)
$$(a + 2b)^2 = (a)^2 + 2 \times a \times 2b + (2b)^2$$
$$= a^2 + 4ab + 4b^2$$

Ans.

(ii)
$$(2a - 3b)^2 = (2a)^2 - 2 \times 2a \times 3b + (3b)^2$$
$$= 4a^2 - 12ab + 9b^2$$

Ans.

2 If
$$a + b = 9$$
 and $ab = -22$, find: (i) $a - b$ (ii) $a^2 - b^2$.

Solution:

..

(i)
$$(a + b)^2 - (a - b)^2 = 4ab$$

 $\Rightarrow (a - b)^2 = (a + b)^2 - 4ab$
 $= (9)^2 - 4 \times -22$
 $= 81 + 88 = 169$
 $\therefore a - b = + \sqrt{169} = + 13$ Ans.

$$|\Rightarrow a^{2} + b^{2} + 2 \times -22 = 81$$

$$|\Rightarrow a^{2} + b^{2} = 125$$

$$|\text{Now, } (a - b)^{2} = a^{2} + b^{2} - 2ab$$

$$= 125 - 2 \times -22$$

$$= 169$$

$$|\Rightarrow a - b = \pm 13$$
Ans.

 $(a+b)^2 = 9^2$

 $a^2 + b^2 + 2ab = 81$

(ii)
$$a^2 - b^2 = (a + b) (a - b) = 9 \times \pm 13 = \pm 117$$

Ans.

(ii) $x^4 + \frac{1}{x^4}$. If $x \neq 0$ and $x + \frac{1}{x} = 2$, find: (i) $x^2 + \frac{1}{x^2}$

Solution:

(i)
$$x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2$$

= $(2)^2 - 2$
= $4 - 2 = 2$

OR,

$$= 4 - 2 = 2$$
Ans.

(ii) $x^4 + \frac{1}{x^4} = (x^2 + \frac{1}{x^2})^2 - 2$

$$= (2^2) - 2$$

$$= 4 - 2 = 2$$
Ans.

ns.
$$\begin{vmatrix} (i) & x + & = 2 \\ \Rightarrow & (x + \frac{1}{x})^2 = (2)^2 \\ \Rightarrow & x^2 + \frac{1}{x^2} + 2 \times x \times \frac{1}{x} = 4 \\ \Rightarrow & x^2 + \frac{1}{x^2} = 4 - 2 = 2 \text{ Ans.} \end{vmatrix}$$

(ii)
$$(x^2 + \frac{1}{x^2})^2 = (2)^2$$

 $\Rightarrow x^4 + x^4 + 2 = 4$
 $\Rightarrow x^4 + \frac{1}{x^4} = 2$

4 Given:
$$a^2 + \frac{1}{a^2} = 7$$
 and $a \ne 0$, find:

(i)
$$a + \frac{1}{a}$$

(ii)
$$a - \frac{1}{a}$$

(iii)
$$a^2 - \frac{1}{a^2}$$
.

Solution:

(i) :
$$\left(a + \frac{1}{a}\right)^2 = a^2 + \frac{1}{a^2} + 2 = 7 + 2 = 9$$
 \Rightarrow $a + \frac{1}{a} = \pm \sqrt{9} = \pm 3$ Ans.

(ii)
$$\therefore \left(a - \frac{1}{a}\right)^2 = a^2 + \frac{1}{a^2} - 2 = 7 - 2 = 5 \implies a - \frac{1}{a} = \pm \sqrt{5}$$
 Ans.

(iii)
$$a^2 - \frac{1}{a^2} = (a + \frac{1}{a})(a - \frac{1}{a}) = (\pm 3) \times (\pm \sqrt{5}) = \pm 3\sqrt{5}$$
 Ans.

Remember:

$$(\pm a) \times (\pm b) = (+ a) \times (+ b)$$
 or $(-a) \times (+ b)$ or $(+ a) \times (-b)$ or $(-a) \times (-b)$
= $+ ab$ or $-ab$ or $-ab$ or $+ ab$
= $+ ab$

$$\therefore \quad (\pm a) \times (\pm b) = \pm ab$$

Ans

5 If
$$a^2 - 5a + 1 = 0$$
 and $a \ne 0$, find: (i) $a + \frac{1}{a}$ (ii) $a^2 + \frac{1}{a^2}$.

Solution:

(i)
$$a^2 - 5a + 1 = 0$$

$$\Rightarrow \quad \frac{a^2}{a} - \frac{5a}{a} + \frac{1}{a} = 0$$

[Dividing each term by a]

$$\Rightarrow \qquad a-5+\frac{1}{a}=0 \qquad \Rightarrow \quad a+\frac{1}{a}=5$$

Ans.

Ans.

(ii)
$$a^2 + \frac{1}{a^2} = \left(a + \frac{1}{a}\right)^2 - 2 = 5^2 - 2 = 25 - 2 = 23$$

EXERCISE 4 (A)

(i)
$$2a + b$$

(ii)
$$3a + 7b$$

(iv)
$$\frac{3a}{2b} - \frac{2b}{3a}$$

(i)
$$(101)^2$$

(ii)
$$(502)^2$$

(iii)
$$(97)^2$$

(iv)
$$(998)^2$$

(iii)
$$(97)^2 = (100 - 3)^2$$

= $(100)^2 - 2(100)(3) + (3)^2$
= $10000 - 600 + 9 = 9409$

(i)
$$\left(\frac{7}{8}x + \frac{4}{5}y\right)^2$$
 (ii) $\left(\frac{2x}{7} - \frac{7y}{4}\right)^2$

(ii)
$$\left(\frac{2x}{7} - \frac{7y}{4}\right)^2$$

4. Evaluate:

(i)
$$\left(\frac{a}{2b} + \frac{2b}{a}\right)^2 - \left(\frac{a}{2b} - \frac{2b}{a}\right)^2 - 4$$

(ii) $(4a + 3b)^2 - (4a - 3b)^2 + 48 ab$.

5. If a + b = 7 and ab = 10; find a - b.

6. If a - b = 7 and ab = 18; find a + b.

7. If $x + y = \frac{7}{2}$ and $xy = \frac{5}{2}$; find:

(i) x - y

(ii) $x^2 - y^2$.

8. If a - b = 0.9 and ab = 0.36; find:

(i) a+b

(ii) $a^2 - b^2$.

9. If a - b = 4 and a + b = 6; find:

(i) $a^2 + b^2$

10. If $a + \frac{1}{a} = 6$ and $a \ne 0$; find :

(i) $a - \frac{1}{a}$ (ii) $a^2 - \frac{1}{a^2}$

11. If $a - \frac{1}{a} = 8$ and $a \ne 0$; find :

(i) $a + \frac{1}{a^2}$ (ii) $a^2 - \frac{1}{a^2}$

12. If $a^2 - 3a + 1 = 0$ and $a \neq 0$; find :

(i) $a + \frac{1}{a}$ (ii) $a^2 + \frac{1}{a^2}$

13. If $a^2 - 5a - 1 = 0$ and $a \ne 0$; find :

(i) $a - \frac{1}{a}$ (ii) $a + \frac{1}{a}$

(iii) $a^2 - \frac{1}{2}$

14. If 3x + 4y = 16 and xy = 4; find the value of $9x^2 + 16y^2$

15. The number x is 2 more than the number y. If the sum of the squares of x and y is 34; find the product of x and y.

Given: x - y = 2 and $x^2 + y^2 = 34$

To find the value of xy.

16. The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.

EXPANSIONS OF $(a + b)^3$

 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ 1.

 $= a^3 + b^3 + 3ab (a + b)$ $\Rightarrow a^3 + b^3 = (a + b)^3 - 3ab (a + b)$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ 2.

 $= a^3 - b^3 - 3ab (a - b)$ $\Rightarrow a^3 - b^3 = (a - b)^3 + 3ab (a - b)$

On combining result 1 and result 2, we get:

(a) $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

(b) $a^3 \pm b^3 = (a \pm b)^3 \pm 3ab (a \pm b)$

 $(a+\frac{1}{a})^3 = a^3 + \frac{1}{a^3} + 3(a+\frac{1}{a})$ 3.

 $\Rightarrow a^3 + \frac{1}{a^3} = (a + \frac{1}{a})^3 - 3(a + \frac{1}{a})$

 $(a-\frac{1}{a})^3 = a^3 - \frac{1}{a^3} - 3(a-\frac{1}{a})$

 $\Rightarrow a^3 - \frac{1}{a^3} = (a - \frac{1}{a})^3 + 3(a - \frac{1}{a}).$

6

Evaluate : (i) $(2a + 3b)^3$

(ii) $(4a - 5b)^3$.

Solution:

(i)
$$(2a + 3b)^3 = (2a)^3 + 3(2a)^2(3b) + 3(2a)(3b)^2 + (3b)^3$$

$$= 8a^3 + 36 a^2 b + 54 ab^2 + 27b^3$$
 Ans.

(ii)
$$(4a - 5b)^3 = (4a)^3 - 3 (4a)^2 (5b) + 3 (4a) (5b)^2 - (5b)^3$$

$$= 64a^3 - 240a^2b + 300 ab^2 - 125 b^3$$
Ans.

If
$$a^2 + \frac{1}{a^2} = 23$$
 and $a \neq 0$, find the value of $a^3 + \frac{1}{a^3}$.

Solution:

$$a^{2} + \frac{1}{a^{2}} = 23 \Rightarrow a^{2} + \frac{1}{a^{2}} + 2 = 23 + 2$$

$$\Rightarrow (a + \frac{1}{a})^{2} = 25 \qquad \Rightarrow a + \frac{1}{a} = \pm 5$$
When $a + \frac{1}{a} = 5$:
$$\begin{vmatrix} a^{3} + \frac{1}{a^{3}} &= (a + \frac{1}{a})^{3} - 3(a + \frac{1}{a}) \\ &= (5)^{3} - 3 \times 5 \end{vmatrix}$$

$$\begin{vmatrix} a^{3} + \frac{1}{a^{3}} &= (a + \frac{1}{a})^{3} - 3(a + \frac{1}{a}) \\ &= (-5)^{3} - 3 \times -5 \end{vmatrix}$$

= -125 + 15 = -110

8 If a + b + c = 0, show that : $a^3 + b^3 + c^3 = 3abc$.

Solution:

Given:
$$a + b + c = 0 \implies a + b = -c \implies (a + b)^3 = (-c)^3$$

 $\Rightarrow a^3 + b^3 + 3ab (a + b) = -c^3$
 $\Rightarrow a^3 + b^3 + 3ab (-c) = -c^3$ [Since, $a + b = -c$]
 $\Rightarrow a^3 + b^3 - 3abc = -c^3 \therefore a^3 + b^3 + c^3 = 3abc$ Ans.

9 Use property to evaluate:

= 110

(i)
$$8^3 + (-5)^3 + (-3)^3$$
 (ii) $2^3 + 4^3 + (-6)^3$.

Solution:

Property required to be used is the result of example 8, given above. That is, if a + b + c = 0, then $a^3 + b^3 + c^3 = 3abc$.

(i) Let
$$8 = a, -5 = b$$
 and $-3 = c$

$$\therefore a + b + c = 8 - 5 - 3 = 0$$

$$\Rightarrow a^3 + b^3 + c^3 = 3abc$$

$$\Rightarrow 8^3 + (-5)^3 + (-3)^3 = 3 \times 8 \times (-5) \times (-3)$$

$$= 360$$

Ans.

Ans.

Let 2 = a, 4 = b and -6 = c(ii)

$$a+b+c=2+4-6=0$$

$$\Rightarrow \qquad a^3 + b^3 + c^3 = 3abc$$

$$\Rightarrow$$
 2³ + 4³ + (-6)³ = 3 × 2 × 4 × (-6) = -144

Ans.

10 Expand:

(i)
$$(3x-2y+4)(3x-2y-4)$$

(ii)
$$(5x - 3y + 2)(5x + 3y + 2)$$
.

Solution:

(i)
$$(3x - 2y + 4) (3x - 2y - 4)$$

= $[(3x - 2y) + 4] [(3x - 2y) - 4]$
= $(a + 4) (a - 4)$ [Taking $3x - 2y = a$]
= $a^2 - 16$ [: $(a + 4) (a - 4) = a^2 - 4^2$]
= $(3x - 2y)^2 - 16$
= $(3x)^2 - 2 \times 3x \times 2y + (2y)^2 - 16 = 9x^2 - 12xy + 4y^2 - 16$

(ii)
$$(5x - 3y + 2) (5x + 3y + 2)$$

= $[(5x + 2)^2 - 3y] [(5x + 2) + 3y]$
= $(a - 3y) (a + 3y)$ [Taking $5x + 2 = a$]
= $a^2 - (3y)^2$
= $(5x + 2)^2 - 9y^2 = 25x^2 + 20x + 4 - 9y^2$

Ans.

Ans.

EXERCISE 4 (B)

1. Find the cube of:

(i)
$$3a - 2b$$

(ii)
$$5a + 3b$$

(iii)
$$2a + \frac{1}{2a} (a \neq 0)$$
 (iv) $3a - \frac{1}{a} (a \neq 0)$

2. If $a^2 + \frac{1}{a^2} = 47$ and $a \neq 0$; find :

(i)
$$a + \frac{1}{a}$$

(i)
$$a + \frac{1}{a}$$
 (ii) $a^3 + \frac{1}{a^3}$

3. If $a^2 + \frac{1}{a^2} = 18$ and $a \ne 0$; find :

(i)
$$a-\frac{1}{a}$$

(i)
$$a - \frac{1}{a}$$
 (ii) $a^3 - \frac{1}{a^3}$

4. If $a + \frac{1}{a} = p$ and $a \neq 0$; then show that : $a^3 + \frac{1}{a^3} = p (p^2 - 3)$

5. If a + 2b = 5; then show that : $a^3 + 8b^3 + 30ab = 125$.

6. If
$$\left(a + \frac{1}{a}\right)^2 = 3$$
 and $a \neq 0$; then show that:
 $a^3 + \frac{1}{a^3} = 0$.

7. If a + 2b + c = 0; then show that : $a^3 + 8b^3 + c^3 = 6abc$.

8. Use property to evaluate:

(i)
$$13^3 + (-8)^3 + (-5)^3$$

(ii)
$$7^3 + 3^3 + (-10)^3$$

(iii)
$$9^3 - 5^3 - 4^3$$

(iv)
$$38^3 + (-26)^3 + (-12)^3$$

9. If $a \ne 0$ and $a - \frac{1}{a} = 3$; find :

(i)
$$a^2 + \frac{1}{a^2}$$
 (ii) $a^3 - \frac{1}{a^3}$

10. If $a \neq 0$ and $a - \frac{1}{a} = 4$; find :

(i)
$$a^2 + \frac{1}{a^2}$$
 (ii) $a^4 + \frac{1}{a^4}$ (iii) $a^3 - \frac{1}{a^3}$

11. If $x \neq 0$ and $x + \frac{1}{x} = 2$; then show that :

$$x^2 + \frac{1}{x^2} = x^3 + \frac{1}{x^3} = x^4 + \frac{1}{x^4}$$

- 12. If 2x 3y = 10 and xy = 16; find the value of $8x^3 - 27y^3$.
- 13. Expand:
 - (i) (3x + 5y + 2z)(3x 5y + 2z)
 - (ii) (3x 5y 2z)(3x 5y + 2z)

- 14. The sum of two numbers is 9 and their product is 20. Find the sum of their:
 - (i) squares (ii) cubes.
- 15. Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
 - (i) sum of these numbers.
 - (ii) difference of their cubes.
 - (iii) sum of their cubes.

EXPANSION OF $(x \pm a)$ $(x \pm b)$

1.
$$(x + a) (x + b) = x^2 + ax + bx + ab$$

= $x^2 + (a + b) x + ab$

2.
$$(x + a) (x - b) = x^2 + ax - bx - ab$$

= $x^2 + (a - b) x - ab$

3.
$$(x-a)(x+b) = x^2 - ax + bx - ab$$

= $x^2 - (a-b)x - ab$

4.
$$(x-a)(x-b) = x^2 - ax - bx + ab$$

= $x^2 - (a+b)x + ab$

1. $(x + 3) (x + 5) = x^2 + (3 + 5)x + 3 \times 5$ $= x^2 + 8x + 15$

2.
$$(x + 3) (x - 5) = x^2 + (3 - 5)x + 3 \times -5$$

= $x^2 - 2x - 15$

3.
$$(x-3)(x+5) = x^2 - (3-5)x - 3 \times 5$$

= $x^2 + 2x - 15$

4.
$$(x-3)(x-5) = x^2 - (3+5) + 3 \times 5$$

= $x^2 - 8x + 15$

EXPANSION OF $(a \pm b \pm c)^2$

$$(a \pm b \pm c)^2 = a^2 + b^2 + c^2 \pm 2ab \pm 2bc \pm 2ca$$

1.
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

= $a^2 + b^2 + c^2 + 2(ab + bc + ca)$

2.
$$(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab - 2bc - 2ca$$

= $a^2 + b^2 + c^2 + 2(ab - bc - ca)$

3.
$$(a-b+c)^2 = a^2 + b^2 + c^2 - 2ab - 2bc + 2ca$$

= $a^2 + b^2 + c^2 - 2(ab + bc - ca)$

4.
$$(a-b-c)^2 = a^2 + b^2 + c^2 - 2ab + 2bc - 2ca$$

= $a^2 + b^2 + c^2 - 2(ab - bc + ca)^2$

Œ Expand:

(i)
$$(2x + 3y - 4z)^2$$

(ii)
$$(3x - 2y + 5z)^2$$

(iii)
$$(4a - 5b - 2c)^2$$

Solution:

(i)
$$(a + b - c)^2 = a^2 + b^2 + c^2 + 2ab - 2bc - 2ca$$

$$\Rightarrow (2x + 3y - 4z)^2 = (2x)^2 + (3y)^2 + (4z)^2 + 2 \times 2x \times 3y - 2 \times 3y \times 4z - 2 \times 4z \times 2x$$

$$= 4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16zx$$

$$= 4x^2 + 9y^2 + 16z^2 + 4(3xy - 6yz - 4zx)$$
Ans.

(ii)
$$(a - b + c)^2 = a^2 + b^2 + c^2 - 2ab - 2bc + 2ca$$

$$\Rightarrow (3x - 2y + 5z)^2 = (3x)^2 + (2y)^2 + (5z)^2 + 2 \times 3x \times 2y - 2 \times 2y \times 5z + 2 \times 5z \times 3x$$

$$= 9x^2 + 4y^2 + 25z^2 - 12xy - 20yz + 30zx$$

$$= 9x^2 + 4y^2 + 25z^2 - 2(6xy + 10yz - 15zx)$$
Ans.

(iii)
$$(a - b - c)^2 = a^2 + b^2 + c^2 - 2ab + 2bc - 2ca$$

$$\Rightarrow (4a - 5b - 2c)^2 = (4a)^2 + (5b)^2 + (2c)^2 - 2 \times 4a \times 5b + 2 \times 5b \times 2c - 2 \times 2c \times 4a$$

$$= 16a^2 + 25b^2 + 4c^2 - 40ab + 20bc - 16ca$$

$$= 16a^2 + 25b^2 + 4c^2 - 4(10ab - 5bc + 4ca)$$
Ans.

(i) If
$$a^2 + b^2 + c^2 = 29$$
 and $a + b + c = 9$, find: $ab + bc + ca$.

(ii) If
$$a + b - c = 4$$
 and $a^2 + b^2 + c^2 = 38$; find: $ab - bc - ca$.

(iii) If
$$a - b - c = 3$$
 and $a^2 + b^2 + c^2 = 77$; find: $ab - bc + ca$.

Solution:

:.

(i) Since,
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$$

$$\therefore (9)^2 = 29 + 2(ab + bc + ca)$$

$$\Rightarrow 81 - 29 = 2(ab + bc + ca)$$

$$\therefore \qquad ab + bc + ca = \frac{52}{2} = 26$$
 Ans.

(ii)
$$(a+b-c)^2 = a^2 + b^2 + (-c^2) + 2 [a \times b + b \times (-c) + (-c) \times a]$$
$$= a^2 + b^2 + c^2 + 2(ab - bc - ca)$$

$$\Rightarrow \qquad 4^2 = 38 + 2 (ab - bc - ca)$$

$$\Rightarrow$$
 16 - 38 = 2 (ab - bc - ca) i.e. -22 = 2(ab - bc - ca)

(iii)
$$(a-b-c)^2 = a^2 + (-b)^2 + (-c^2) + 2 [a \times (-b) + (-b) \times (-c) + (-c) \times a]$$

$$= a^2 + b^2 + c^2 + 2(-ab + bc - ca)$$

$$\Rightarrow \qquad \qquad 3^2 = 77 - 2(ab - bc + ca)$$

ab - bc - ca = -11

$$\Rightarrow 2(ab - bc + ca) = 77 - 9 = 68$$

$$\therefore \qquad ab - bc + ca = \frac{68}{2} = 34$$

Ans.

Ans.

EXERCISE 4 (C)

(i)
$$(x + 8) (x + 10)$$
 (ii) $(x + 8) (x - 10)$

(iii)
$$(x-8)(x+10)$$
 (iv) $(x-8)(x-10)$

2. Expand:

(i)
$$\left(2x-\frac{1}{x}\right)\left(3x+\frac{2}{x}\right)$$

(ii)
$$\left(3a+\frac{2}{b}\right)\left(2a-\frac{3}{b}\right)$$

3. Expand:

(i)
$$(x + y - z)^2$$
 (ii) $(x - 2y + 2)^2$

(iii)
$$(5a - 3b + c)^2$$
 (iv) $(5x - 3y - 2)^2$
(v) $\left(x - \frac{1}{x} + 5\right)^2$

4. If a + b + c = 12 and $a^2 + b^2 + c^2 = 50$; find ab + bc + ca.

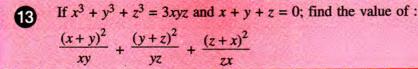
5. If $a^2 + b^2 + c^2 = 35$ and ab + bc + ca = 23; find a + b + c.

6. If a + b + c = p and ab + bc + ca = q; find $a^2 + b^2 + c^2$.

7. If $a^2 + b^2 + c^2 = 50$ and ab + bc + ca = 47, find a + b + c.

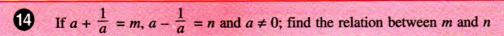
8. If x + y - z = 4 and $x^2 + y^2 + z^2 = 30$, then find the value of xy - yz - zx.

4.6 USING EXPANSIONS



Solution :

(i) $x + y + z = 0 \Rightarrow x + y = -z, y + z = -x \text{ and } z + x = -y$ $\therefore \frac{(x+y)^2}{xy} + \frac{(y+z)^2}{yz} + \frac{(z+x)^2}{zx} = \frac{(-z)^2}{xy} + \frac{(-x)^2}{yz} + \frac{(-y)^2}{zx}$ $= \frac{z^2}{xy} + \frac{x^2}{yz} + \frac{y^2}{zx}$ $= \frac{z^3 + x^3 + y^3}{yyz} = \frac{3xyz}{xyz} = 3$ Ans.



Solution:

$$\left(a + \frac{1}{a}\right)^2 - \left(a - \frac{1}{a}\right)^2 = 4$$

$$m^2 - n^2 = 4; \text{ which is the required relation.}$$
 Ans.

In the expansion of $(5x-3)(x+2)^2$; find: (i) coefficients of x^2 and x (ii) constant term.

Solution:

$$(5x-3) (x + 2)^2 = (5x - 3) (x^2 + 4x + 4)$$

= $5x^3 + 20x^2 + 20x - 3x^2 - 12x - 12 = 5x^3 + 17x^2 + 8x - 12$

(i) Coefficient of $x^2 = 17$ and coefficient of x = 8 Ans.

(ii) Constant term = -12 Ans.

If each of a, b and c is a non-zero number and $\frac{a}{b} = \frac{b}{c}$, show that : $(a+b+c)(a-b+c) = a^2 + b^2 + c^2$

Solution :

$$\frac{a}{b} = \frac{b}{c} \implies ac = b^2$$

Now,
$$(a + b + c) (a - b + c) = (a + c + b) (a + c - b)$$

$$= (a + c)^{2} - b^{2}$$

$$= a^{2} + 2ac + c^{2} - b^{2}$$

$$= a^{2} + 2b^{2} + c^{2} - b^{2}$$

$$= a^{2} + b^{2} + c^{2}$$
[:: $ac = b^{2}$]

Hence the required result

If the sum of two numbers is 5 and the sum of their cubes is 35; find the sum of their squares.

Solution:

Let the numbers be x and y.

Given: x + y = 5 and $x^3 + y^3 = 35$

Required:
$$x^2 + y^2$$

$$x^{3} + y^{3} = 35 \qquad \Rightarrow (x + y)^{3} - 3xy(x + y) = 35$$

$$\Rightarrow 5^{3} - 3xy \times 5 = 35$$

$$\Rightarrow 15xy = 90 \text{ and } xy = 6$$

$$x^2 + y^2 = (x + y)^2 - 2xy$$
$$= 5^2 - 2 \times 6 = 13$$

Ans.

EXERCISE 4 (D)

1. If
$$x + 2y + 3z = 0$$
 and
 $x^3 + 4y^3 + 9z^3 = 18xyz$; evaluate:

$$\frac{(x+2y)^2}{yz} + \frac{(2y+3z)^2}{yz} + \frac{(3z+x)^2}{zx}$$

- 2. If $a + \frac{1}{a} = m$ and $a \neq 0$; find in terms of 'm'; the value of:
 - (i) $a \frac{1}{a}$
- (ii) $a^2 \frac{1}{a^2}$
- 3. In the expansion of $(2x^2 8)(x 4)^2$; find the value of:
 - (i) coefficient of x^3
- (ii) coefficient of x^2
 - (iii) constant term.
- 4. If x > 0 and $x^2 + \frac{1}{9x^2} = \frac{25}{36}$, find: $x^3 + \frac{1}{27x^3}$.
- 5. If $2(x^2 + 1) = 5x$, find :

 - (i) $x \frac{1}{x}$ (ii) $x^3 \frac{1}{x^3}$
- 6. If $a^2 + b^2 = 34$ and ab = 12; find:
 - (i) $3(a+b)^2 + 5(a-b)^2$
 - (ii) $7(a-b)^2 2(a+b)^2$

- 7. If $3x \frac{4}{x} = 4$ and $x \neq 0$; find : $27x^3 \frac{64}{x^3}$.
- 8. If $x^2 + \frac{1}{x^2} = 7$ and $x \ne 0$; find the value of: $7x^3 + 8x - \frac{7}{r^3} - \frac{8}{r}$.
- 9. If $x = \frac{1}{x-5}$ and $x \neq 5$, find : $x^2 \frac{1}{x^2}$.
- 10. If $x = \frac{1}{5-r}$ and $x \ne 5$, find: $x^3 + \frac{1}{r^3}$.
- 11. If 3a + 5b + 4c = 0, show that : $27a^3 + 125b^3 + 64c^3 = 180 abc.$
- 12. The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their squares.
- 13. In each of the following, find the value of 'a':
 - (i) $4x^2 + ax + 9 = (2x + 3)^2$
 - (ii) $4x^2 + ax + 9 = (2x 3)^2$
 - (iii) $9x^2 + (7a 5)x + 25 = (3x + 5)^2$

14. If
$$\frac{x^2+1}{x} = 3\frac{1}{3}$$
 and $x > 1$; find

(i)
$$x - \frac{1}{r}$$

(ii)
$$x^3 - \frac{1}{x^3}$$

- 15. The difference between two positive numbers is 4 and the difference between their cubes is 316. Find:
 - (i) their product.
 - (ii) the sum of their squares.

4.7 SPECIAL PRODUCTS

1.
$$(x + a) (x + b) (x + c) = [x^2 + (a + b) x + ab] (x + c)$$

$$= x^3 + (a + b) \times x^2 + abx + cx^2 + (a + b) \times cx + abc$$

$$= x^3 + (a + b + c) x^2 + (ab + bc + ca) x + abc$$

2.
$$(a+b)(a^2-ab+b^2)=a^3+b^3$$

3.
$$(a-b)(a^2+ab+b^2)=a^3-b^3$$

4.
$$(a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$$

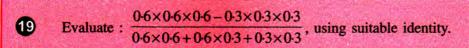
= $a^3 + b^3 + c^3 - 3abc$

If
$$a = 2$$
, $b = 3$ and $c = 4$, find the value of :
$$\frac{ab+bc+ca-a^2-b^2-c^2}{3abc-a^3-b^3-c^3}$$
, using suitable identity.

Solution:

$$= \frac{a^2 + b^2 + c^2 - ab - bc - c}{a^3 + b^3 + c^3 - 3abc}$$
 [Changing the sign of each term in numerator and denominator]
$$= \frac{a^2 + b^2 + c^2 - ab - bc - ca}{(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)}$$

$$= \frac{1}{a + b + c} = \frac{1}{2 + 3 + 4} = \frac{1}{9}$$
Ans.



Solution:

On taking 0.6 = a and 0.3 = b, the given expression becomes

$$= \frac{a^3 - b^3}{a^2 + ab + b^2} = \frac{(a - b)(a^2 + ab + b^2)}{a^2 + ab + b^2}$$
$$= a - b = 0.6 - 0.3 = 0.3$$

Ans.

EXERCISE 4 (E)

1. Simplify:

(i)
$$(x+6)(x+4)(x-2)$$

(ii)
$$(x-6)(x-4)(x+2)$$

(iii)
$$(x-6)(x-4)(x-2)$$

(iv)
$$(x+6)(x-4)(x-2)$$

2. Simplify using following identity:

$$(a \pm b) (a^2 \mp ab + b^2) = a^3 b^3$$

(i)
$$(2x + 3y) (4x^2 - 6xy + 9y^2)$$

(ii)
$$\left(3x - \frac{5}{x}\right) \left(9x^2 + 15 + \frac{25}{x^2}\right)$$

(iii)
$$\left(\frac{a}{3}-3b\right)\left(\frac{a^2}{9}+ab+9b^2\right)$$

3. Using suitable identity, evaluate:

(i)
$$(104)^3$$

(ii)
$$(97)^3$$

4. Simplify:
$$\frac{(x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3}{(x - y)^3 + (y - z)^3 + (z - x)^3}$$

If a + b + c = 0; we have :

$$a^3 + b^3 + c^3 = 3abc$$

Since,
$$(x^2 - y^2) + (y^2 - z^2) + (z^2 - x^2) = 0$$

$$\Rightarrow (x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3$$

$$= 3(x^2 - y^2) (y^2 - z^2) (z^2 - x^2) \dots$$

Also,
$$(x - y) + (y - z) + (z - x) = 0$$

$$\Rightarrow (x - y)^3 + (y - z)^3 + (z - x)^3$$

= 3(x - y) (y - z) (z - x)II

Dividing result I by result II, we get the required answer.

5. Evaluate:

$$0.8 \times 0.8 \times 0.8 + 0.5 \times 0.5 \times 0.5$$

(i)
$$\frac{0.8 \times 0.8 - 0.8 \times 0.5 + 0.5 \times 0.5}{0.8 \times 0.8 - 0.8 \times 0.5 + 0.5 \times 0.5}$$

(ii)
$$\frac{1.2 \times 1.2 + 1.2 \times 0.3 + 0.3 \times 0.3}{1.2 \times 1.2 \times 1.2 \times 0.3 + 0.3 \times 0.3}$$

(ii)
$$\frac{1.2 \times 1.2 \times 1.2 - 0.3 \times 0.3 \times 0.3}{1.2 \times 1.2 \times 1.2 - 0.3 \times 0.3 \times 0.3}$$

6. If
$$a - 2b + 3c = 0$$
; state the value of $a^3 - 8b^3 + 27c^3$.

7. If
$$x + 5y = 10$$
; find the value of $x^3 + 125y^3 + 150xy - 1000$.

8. If $x = 3 + 2\sqrt{2}$, find:

(i)
$$\frac{1}{r}$$

(ii)
$$x-\frac{1}{x}$$

(iii)
$$\left(x - \frac{1}{x}\right)^3$$
 (iv) $x^3 - \frac{1}{x^3}$

(iv)
$$x^3 - \frac{1}{x^3}$$

(iv)
$$\left(x - \frac{1}{x}\right)^3 = x^3 - \frac{1}{x^3} - 3\left(x - \frac{1}{x}\right)$$

9. If
$$a + b = 11$$
 and $a^2 + b^2 = 65$; find $a^3 + b^3$.

Using $(a + b)^2 = a^2 + b^2 + 2ab$, find ab, then apply:

$$(a + b)^3 = a^3 + b^3 + 3ab(a + b)$$
 to get $a^3 + b^3$.