Reference Воок

SIMPLIFIED ICSE PRACTICAL CHEMISTRY
 LABORATORY MANUAL

\(\begin{array}{ll}for \& by
STD. IX \& Dr. Virar J. Dalal\end{array}\)

LATEST SYLLABUS

NOW IN NEW - FOUR COLOUR ON GLOSS PAPER AND IN HARD-BOUND JOURNAL FORMAT

LATEST SYLLABUS FOR STD, IX - PRACTICAL CHEMISTRY

INTERNAL ASSESSMENT OF PRACTICAL WORK

Candidates will be asked to observe to the effect of reagents and/or of heat on substances supplied to them. The exercises will be simple and may include the recognition and identification of certain gases listed below.
Gases: Hydrogen, Oxygen, Carbon dioxide, Chlorine, Hydrogen chloride, Sulphur dioxide, Hydrogen sulphide, Ammonia, Water vapour, Nitrogen dioxide.
Candidates are expected to have completed the following minimum practical work.
SIMPLE EXPERIMENTS ON:

1. Heat the given (unknown) substance, make observations -

Identify any products and make deductions where possible.
(a) copper carbonate, zinc carbonate
(b) washing soda, copper sulphate crystals
(c) zinc nitrate, copper nitrate, lead nitrate
(d) ammonium chloride, iodine, ammonium dichromate
2. Add dilute sulphuric acid to the unknown substance -

Warm if necessary, make observation, identify the product and make deductions.
(a) a sulphide
(b) a carbonate
(c) a metal
3. Apply the flame test - to identify the metal in the unknown substance.
(a) a sodium salt
(b) a potassium salt
(c) a calcium compound
4. The percentage composition - of a mixture of powdered salt and water-washed sand.

The experiment would test techniques in dissolving, filtering or decanting, washing and weighing. It may be counted out as taking too much time. The weakness could be met by supplying a given weight of the mixture; also by choosing sand of such grain size that filtering or decanting will not be slow and yet not so large that separation of salt and sand cannot be done simply by sorting out mechanically the sand from the salt. The experiment should take about 20 minutes using 10 g mixture (4 g sand, 6 g salt).
5. Simple experiments - based on hard water and soft water - identification of hardness simple softening - by heating the temporary hard water, using washing soda and advantage of using detergents over soap in hard water.
6. Find out the sources of pollution of water bodies in the locality and determine the quality of water.

PRACTICAL CHEMISTRY CHART

I. IDENTIFICATION OF GASES

NEUTRAL GASES

1. WATER VAPOUR

Colour: Colourless Odour: Odourless
2. HYDROGEN [H_{2}]

Colour: Colourless Odour: Odourless
3. OXYGEN $\left[\mathrm{O}_{2}\right]$

Colour: Colourless
Odour: Odourless

LITMUS TEST: Neutral to litmus. TESTS FOR THE GAS:

- Turns white anhydrous copper sulphate - blue.
CuSO_{4} [white] $+5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ [blue]
- Turns blue cobalt chloride paper - pink.
CoCl_{2} [blue] $+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CoCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [pink]
LITMUS TEST: Neutral to litmus.
TESTS FOR THE GAS:
- Burning wooden splinter is- extinguished in hydrogen.
- Hydrogen burns with a - pale blue flame producing a 'pop' sound. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}$ [on kindling]
LITMUS TEST: Neutral to litmus.
TESTS FOR THE GAS:
- Rekindles - a glowing wooden splinter.
- Absorbed in colourless alkaline pyrogallol solution which turns - brown.

ACIDIC GASES

4. CARBON DIOXIDE $\left[\mathrm{CO}_{2}\right]$

Colour: Colourless Odour: Odourless

LITMUS TEST: Moist blue litmus turns faint red.
TESTS FOR THE GAS:

- Burning wooden splinter is - extinguished in carbon dioxide.
- On passage through lime water, it turns lime water - milky.
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3} \downarrow$ [white ppt. - insoluble] $+\mathrm{H}_{2} \mathrm{O}$
The milkiness disappears - on passage of excess carbon dioxide.
$\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ [soluble]
- The gas has no effect on acidified KMnO_{4} or $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution.

5. SULPHUR DIOXIDE $\left[\mathrm{SO}_{2}\right]$ LITMUS TEST: Moist blue litmus turns red.

TESTS FOR THE GAS:

Colour: Colourless Odour: Suffocating

- On passage through lime water, it turns lime water - milky.
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{SO}_{2} \rightarrow \mathrm{CaSO}_{3} \downarrow$ [white ppt. - insoluble] $+\mathrm{H}_{2} \mathrm{O}$
The milkiness disappears - on passage of excess sulphur dioxide.
$\mathrm{CaSO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \rightarrow \mathrm{Ca}\left(\mathrm{HSO}_{3}\right)_{2}$ [soluble]
- Turns acidified potassium permanganate from - pink to clear colourless. $2 \mathrm{KMnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+2 \mathrm{H}_{2} \mathrm{SO}_{4}$
- Turns acidified potassium dichromate from - orange to clear green. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$

ACIDIC GASES [Contd.]

6. CHLORINE $\left[\mathrm{Cl}_{2}\right]$

Colour: Greenish yellow - Turns moist blue litmus red and then - bleaches it. Odour: Pungent
$\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCl}+\mathrm{HOCl} ; \quad \mathrm{HOCl} \rightarrow \mathrm{HCl}+[\mathrm{O}]$ [nascent]
Colouring matter [litmus] $+[\mathrm{O}] \rightarrow$ Colourless or bleached product

- Turns moist starch iodide paper [KI + starch solution] - blue black.
$\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
Starch $+\mathrm{I}_{2} \rightarrow$ Blue black colour

7. HYDROGEN CHLORIDE [HCl] LITMUS TEST: Moist blue litmus turns red.

TESTS FOR THE GAS:

Colour: Colourless Odour: Pungent
8. HYDROGEN SULPHIDE $\left[\mathrm{H}_{2} \mathrm{~S}\right]$ LITMUS TEST: Moist blue litmus turns red.

TESTS FOR THE GAS:
Colour: Colourless Odour: Rotten egg
9. NITROGEN DIOXIDE $\left[\mathrm{NO}_{2}\right]$

- Turns acidified potassium permanganate from - pink to colourless.
$2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{~S}$
- Turns acidified potassium dichromate from - orange to green.
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}$
The above tests are answered also by sulphur dioxide $\left[\mathrm{SO}_{2}\right]$, but in case of $\mathrm{H}_{2} \mathrm{~S}$, yellow particles of sulphur are seen and the solution is hence not clear colourless or clear green respectively.
- Turns moist lead acetate paper - silvery black.
$\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ [colourless] $+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{PbS} \downarrow$ [black] $+2 \mathrm{CH}_{3} \mathrm{COOH}$
LITMUS TEST: Moist blue litmus turns red.
TESTS FOR THE GAS:
Colour: Reddish brown - It liberates iodine [violet vapours] from potassium iodide [KI] solution. Odour: Irritating $2 \mathrm{KI}+2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{I}_{2}$ [Turns potassium iodide paper brown]
- It dissolves in cold water to give a mixture of nitrous and nitric acid in solution which acts on - blue litmus and turns it red.
$2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3}$ [hence NO_{2} is called a mixed acid anhydride]

BASIC GAS
 10. AMMONIA $\left[\mathrm{NH}_{3}\right]$

Colour: Colourless Odour: Pungent

LITMUS TEST: Moist red litmus turns blue.
TESTS FOR THE GAS:

- Gives dense white fumes when a glass rod dipped in conc. HCl acid is brought near ammonia gas.
$\mathrm{NH}_{3}+\mathrm{HCl}$ [conc.] $\rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ [dense white fumes]
- On passage through copper [II] sulphate solution $\left[\mathrm{CuSO}_{4}\right]$ it gives a pale blue precipitate. [NH_{3} dissolved in $\mathrm{H}_{2} \mathrm{O}$ gives $\mathrm{NH}_{4} \mathrm{OH}$] $\mathrm{CuSO}_{4}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{Cu}(\mathrm{OH})_{2} \downarrow$ [pale blue ppt.]
On passage of excess ammonia [or excess $\mathrm{NH}_{4} \mathrm{OH}$ solution] the pale blue precipitate dissolves to give a deep blue or inky blue solution of the complex salt - tetramine copper [II] sulphate.
$\mathrm{Cu}(\mathrm{OH})_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}+4 \mathrm{H}_{2} \mathrm{O}\right.$ [pale blue ppt.]
[tetramine copper (II) sulphate]
- Turns Nessler's reagent from - colourless to pale brown or gives a reddish brown ppt. [iodide of Millon's base] on passage of NH_{3} in excess. Nessler's reagent is an alkaline soln. of potassium mercuric iodide $\left[\mathrm{K}_{2} \mathrm{Hg}_{4}\right]$

II ACTION OF HEAT - On the given [unknown] substance		
substance	Products	OBSERVATION AND DEDUCTION
1. Copper carbonate		
	$\underset{$$[\text { Copper oxide }]$ $[\text { black }]$ [Carbon $\text { dioxide }]$ $}{\mathrm{CO}_{2}[\mathrm{~g}]}$	- Colour change- Turns black on strong heating - Gas evolved - Carbon dioxide a] Colour \& odour - Colourless, odourless b]Nature - Slightly acidic to litmus c] Test - Lime water turns milky $\left[\mathrm{KMnO}_{4}\right.$-no effect]. - Residue - Black copper oxide formed. Deductions: The light green powder is copper carbonate.
2. Zinc carbonate		- Original colo
	ZnO $+\mathrm{CO}_{2}[\mathrm{~g}]$ $[$ Zinc oxide] [Carbon [yellow - hot] dioxide] [white - cold] $]$	- Colour change - Turns yellow on heating. - Gas evolved - Carbon dioxide a]Colour \& odour - Colourless, odourless b]Nature - Slightly acidic to litmus c] Test - Lime water turns milky [KMnO_{4}-no effect]. - Residue - Zinc oxide formed. [yellow-hot, white-cold] Deductions: The white powder is zinc carbonate.

Downloaded from https:// www.studiestodav.com

SUBSTANCE	PRODUCTS	OBSERVATION AND DEDUCTION
$\begin{array}{\|c\|} \hline \text { 3. Washing soda } \\ \hline \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O} \\ \text { [Washing soda] } \\ \text { [white] } \end{array} \rightarrow$	$\begin{array}{cc} \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}+ & 9 \mathrm{H}_{2} \mathrm{O} \\ \text { [Sodium } & \text { [water } \\ \text { carbonate] } & \text { vapour] } \\ \text { [white] } & \end{array}$	- Original colour - White - Colour change - Remains white on heating. - Gas evolved - Water vapour [water of crystallization] a]Colour - Colourless liquid b]Nature - Neutral to litmus c] Test - Turns cobalt chloride blue to pink. - Residue-White sodium carbonate is formed. Deductions: The white powder is washing soda.
4. Copper sulphate $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ [Copper sulphate] [hydrous - blue] $\quad \rightarrow$		- Original colour - Blue [hydrous] - Colour change - Turns white [anhydrous] on heating. On strong heating a black residue is formed. - Gas evolved- [Water vapour [initial]] - $\mathrm{SO}_{2} \& \mathrm{O}_{2}$ Sulphur dioxide - colourless, acidic to litmus, turns KMnO_{4} soln. pink to colourless. Oxygen - colourless, odourless, neutral to litmus, relits glowing splint. - Residue-Initial-anhydrous copper sulphate, On strong heating - copper oxide. Deductions: The blue powder is copper sulphate.
5. Zinc nitrate On strong heating $2 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ [white]	$\underset{\substack{\text { [yellow-hot] } \\ \text { [white-cold] }}}{\mathbf{2 Z n O}}+\underset{\text { ditrogen }}{\mathbf{4 N o x}}{ }^{\mathbf{4} \mathrm{NO}_{2}}+\mathrm{O}_{2}$	- Original colour - White - Colour change - Turns yellow on strong heating. - Gas evolved- [Water vapour [initial]] $\mathrm{NO}_{2} \& \mathrm{O}_{2}$ Nitrogen dioxide - reddish brown, acidic to litmus, turns acidified ferrous sulphate solution brown. Oxygen - colourless, neutral, relits glowing splint. - Residue - Zinc oxide - formed [Yellow-hot, white-cold] Deductions: The white powder is hydrated zinc nitrate.
6. Copper nitrate	$2 \mathrm{CuO}+4 \mathrm{NO}_{2}+\quad \mathrm{O}_{2}$ [Copper [Nitrogen [Oxygen] oxide] dioxide] [black]	- Original colour - Blue - Colour change - Turns black on heating. - Gas evolved - [Water vapour [initial]] $\mathrm{NO}_{2} \& \mathrm{O}_{2}$ Nitrogen dioxide - reddish brown, acidic to litmus, turns acidified ferrous sulphate soln. brown. Oxygen - colourless, neutral, relits glowing splint. - Residue - Black copper oxide is formed. Deductions: The blue powder is copper nitrate.

SUBSTANCE	PRODUCTS	OBSERVATION AND DEDUCTION
7. Lead nitrate	$\left\{\begin{array}{l} 2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2} \\ \text { [litharge] [nitrogen [Oxygen] } \\ \text { [yellow] dioxide] } \end{array}\right.$	- Original colour - White crystalline solid
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$ [lead nitrate] [white]		- Colour change - Turns yellow on heating, decrepitates and melts. - Gas evolved-[Water vapour [initial]] $\mathrm{NO}_{2} \& \mathrm{O}_{2}$ Nitrogen dioxide - reddish brown, acidic to litmus, turns acidified ferrous sulphate solution brown. Oxygen - colourless, neutral, relits glowing splint. - Residue - Litharge is formed on strong heating which fuses with the glass. Deductions : The white powder is lead nitrate.
8. Ammonium chloride	$\mathbf{N H}_{3}$ $\mathbf{H C l}$ [Ammonia] [Hydrogen chloride] [colourless]	riginal colour - White crysta
$\underset{\substack{\text { Ammonium chloride] } \\ \text { [white] }}}{\mathrm{NH}_{4} \mathrm{Cl} \xlongequal{\text { cool }}} \stackrel{\text { heat }}{2}$		- On heat - Sublimes on heating, evolving a basic $\left[\mathrm{NH}_{3}\right]$ and an acidic $[\mathrm{HCl}]$ gas which on cooling combines to form ammonium chloride sublimate which condenses on the cooler parts of the test tube. - Residue - No residue is left in the test tube. Deductions: The white powder is ammonium chloride.
9. Iodine	2 I [vapours] [Iodine - vapours] [violet vapours]	riginal colour - Violet cry
$\begin{gathered} \mathbf{I}_{2}[\mathrm{~s}] \\ \text { [Iodine - solid] } \\ \text { [violet] } \end{gathered}$		- Colour change - Sublimes on heating evolving violet vapours. - Gas evolved - Iodine vapours a]Colour - Violet vapours b]Test-Fumes turns silver nitrate paper yellow - Residue - No residue is left in the test tube. Deductions: The violet crystals are of iodine.
10.Ammonium dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$ [Chromic oxide] [green]	- Original colour - Orange
$\underbrace{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}_{\text {[Ammonium dichromate] }}$		- On strong heating - decomposes violently with flashes of light leaving a voluminous green residue. - Gases evolved - [Water vapour [initial]], \mathbf{N}_{2} - Residue - Green chromic oxide on strong heating. Deductions: The orange powder is ammonium dichromate.

V DETERMINATION OF \% COMPOSITION OF - MIXTURE

METHOD

- Given mixture of powdered salt \& water wash sand is taken in a beaker and weighed.
- Add water to the mixture to dissolve the salt and filter.
Collect the filtrate \& the residue [sand] separately.
- Weigh the washed and dried sand.

CALCULATIONS

Mass of beaker	$=\mathrm{Xg}$.
	$=\mathrm{Y}$.
\therefore Mass of beaker + mixture	$=[\mathrm{Y}-\mathrm{X}] \mathrm{g}$
Mass of washed \& dried sand	$=\mathrm{Zg}$.
$\therefore[\mathrm{Y}-\mathrm{X}] \mathrm{g}$ of mixture contains Zg . of sand	
$\therefore 100 \mathrm{~g}$ of mixture contains	$\frac{\mathrm{Z} \times 100}{[\mathrm{Y}-\mathrm{X}]}={ }^{\prime} \mathrm{A}^{\prime}$

$\therefore \mathrm{A}=$ Percentage of sand in mixture.

VI EXPERIMENTS BASED ON - Hard \& Soft water

Hard water - is water which does not lather with ordinary soap \& contains dissolved Ca \& $M g$ [bicarbonates, sulphates, chlorides]. Soft water - is water which lathers readily with ordinary soap \& does not contain dissolved calcium and magnesium salts.
Hard water is further subdivided into - a] Temporary b] Permanent hard water

- Temporary hard water - contains Ca and Mg - bicarbonates in water.
- Permanent hard water contains Ca \& Mg-chlorides \& sulphates in water.

Experiment - Method
 Observation - Result

EXPERIMENT - I

Differentiating hard water from soft water

- Two unknown samples ' X ' and ' Y ' containing hard water and soft water are taken separately in a trough or beaker.
- Ordinary soap is rubbed by the hands inside each sample.

EXPERIMENT - II

Differentiating temporary \& permanent hard water

- Two unknown samples ' A ' and ' B ' containing temporary \& permanent hard water are takenseparately in a trough or beaker.
- The water is boiled slowly, gases allowed to escape out, and then the water is filtered.
- Ordinary soap is rubbed by the hands inside each filtered sample.

EXPERIMENT - III

Temporary hard water softened by heating

- Temporary hard water is taken in a beaker and heated slowly.
- After the gases escape out, the water is filtered through a filter paper.
- Ordinary soap is rubbed -
inside the filtered solution.

EXPERIMENT - IV

Temporary and permanent hard water softened by addition of washing soda

- Temporary \& permanent hard water are taken separately in beakers \& washing soda is added to each sample of water. The above solutions are filtered - to remove the precipitate formed.
- Ordinary soap is rubbed - inside the filtered solution.

EXPERIMENT - V

Advantage of using detergents over soap

- A sample of hard water ' X ' is taken and ordinary soap is rubbed inside the water.
- Another sample of hard water ' Y ' is taken and detergent is rubbed inside the water.
[Detergents are sodium salts of sulphonic acid and do not form scum.]

Observation

- One sample of water ' X ' lathers with soap.
- The sample of water ' Y ' does not lather with soap. Result
- Sample ' X ' which lathers is - soft water.
- Sample ' Y ' which does not lather is - hard water.

Observation

- One sample of water ' A ' - lathers with soap.
- The sample of water ' B ' - does not lather with soap.
- The boiled \& filtered sample ' A ' which lathers is temporary hard water - whose hardness is removed by boiling. Sample 'B' is permanent hard water whose hardness cannot be removed by boiling.

Observation

- The boiled and filtered sample of temporary hard water lathers readily with soap.
Result
- Temporary hard water can be - softened by heating. $\underset{\substack{\text { [in temporary } \\ \text { hard water] }}}{\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}} \rightarrow \underset{\substack{\text { [ppt. filtered } \\ \text { out] }}}{\mathrm{CaCO}_{3} \downarrow}+\underset{\substack{\text { [filtered water } \\ \text { is soft] }}}{\mathrm{CO}_{2}}+\mathrm{H}_{2} \mathrm{O}$

Observation

- The filtered sample of temporary \& permanent hard water lathers - readily with ordinary soap.
- Temporary hard water \& Permanent hard water can be - softened by using washing soda.

Observation

- Lather forms in ' Y^{\prime} but not in ' X '.

Result

- Detergents form lather even with hard water, while ordinary soap is wasted due to formation of scum. $\underset{\text { [in hard water] }}{\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}}+\underset{\text { [snap] }}{2 \mathrm{NaSt}} \rightarrow \underset{\text { [scum] }}{\mathrm{Ca}(\mathrm{St})_{2} \downarrow}+2 \mathrm{NaHCO}_{3}$

WATER VAPOUR

COBALT CHLORIDE PAPER TURNS FROM BLUE TO PINK

Water droplets

ANHYDROUS SALT
2.

BURNING SPLINTER GETS EXTINGUISHED

OXYGEN
BURNING SPLINTER REKINDLED

Jumtification of ©ases

GAS TURNS LIME WATER MILKY
5.

TURNS KMnO 4 PAPER PINK TO COLOURLESS

6.

CHLORINE

TURNS
MOIST BLUE LITMUS PAPER
RED \& THEN BLEACHES IT

TURNS

MOIST STARCH IODIDE PAPER BLUE BLACK
$\mathrm{MnO}_{2}+$
Conc. HCl

Jocntification of Coases

7.

HYDROGEN CHLORIDE

GIVES DENSE WHITE FUMES WITH
GLASS ROD DIPPED IN AMMONIA SOLN.
$\mathrm{NaCl}+$
Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
8.

HYDROGEN SULPHIDE

TURNS MOIST LEAD ACETATE PAPER SILVERY BLACK

METALLIC

 SULPHIDE + DILUTE ACID9.

NITROGEN DIOXIDE

REDDISH BROWN
FUMES EVOLVED
TURNS KI PAPER BROWN

COPPER +
Conc. HNO_{3}
10.

TURNS MOIST
RED LITMUS PAPER BLUE

AMMONIA

GIVES DENSE WHITE FUMES WITH GLASS ROD DIPPED IN CONC. HCl

COPPER CARBONATE

MOIST BLUE LITMUS TURNS FAINT RED

ORIGINAL COLOUR Light Green
5.

ZINC CARBONATE
MOIST BLUE LITMUS TURNS FAINT RED

RESIDUE

AFTER HEAT - Black

ORIGINAL COLOUR White

RESIDUE

 WHEN HOT - Yellow
RESIDUE

Getion of beat on the giben substance

COPPER SULPHATE

MOIST BLUE LITMUS REMAINS BLUE

Water droplets

RESIDUE
Anhydrous - White

RESIDUE -
On strong heating Black

ORIGINAL COLOUR
Hydrous - Blue

ZINC NITRATE

REDDISH BROWN FUMES EVOLVED TURNS KI PAPER BROWN

ORIGINAL COLOUR White WHEN HOT - Yellow
9.

COPPER NITRATE

REDDISH BROWN FUMES EVOLVED TURNS
KI PAPER BROWN

RESIDUE
Black
10.

LEAD NITRATE

REDDISH BROWN FUMES EVOLVED TURNS
KI PAPER BROWN

Getion of beat on the giben substance

11. AMMONIUM CHLORIDE $12 . \quad$ (IODINE)

ON HEATING
White sublimate formed

Violet vapours evolved
13. (AMMONIUM DICHROMATE

ORIGINAL COLOUR Orange

RESIDUE
Green

JFlame Uest

GOLDEN YELLOW Sodium - Na^{1+}

LILAC
Potassium - $\mathbf{K}^{\mathbf{1 +}}$

VII DETERMINATION OF - The Quality of Water

Experiment - Find the sources of pollution of water bodies in the locality \& determine the quality of water - Sources of polluted water may include - run off water from streets, garden lawns, septic tank discharges or waste water from sewage waste \& other samples of fresh water \& marine water.

- The Water Quality Indicators include -

Water quality indicators	Test performed for - determining quality of water
- Physical	Turbidity, temperature, specific conductance, dissolved solids -clarity, colour, odour, salinity etc.
- Chemical	pH of water, dissolved oxygen in water, dissolved nutrients in water. - Biological
Presence of algae, bacteria, viruses etc.	

Simple Tests - for determining the quality of a sample of water

- Turbidity
- Temperature
- Specific conductance
- Dissolved solids
- pH of water
- Dissolved oxygen
- Dissolved nutrients
- Bacteria

Turbidity - refers to the particulate matter suspended in water bodies. Measurement - By use of a handheld - turbidity meter which measures the scattering of light by matter, when a beam of light is passed into water. Conclusion - Measurement helps to calculate inputs from nutrients \& soil erosion.
Measurement - By use of an accurate thermometer.
Conclusion - Hot water from industrial plants, affects the -
temperature of water bodies it enters.
Warm water holds less oxygen and hence affects survival of living species.
Measurement - Simple electrolytic cell -
to determine the degree to which water can conduct electricity.
Conclusion - Low specific conductance indicates - less polluted water.
Measurement - The sample of water is filtered \& then evaporated.
The solids left behind are then - chemically tested.
Conclusion - Dissolved inorganic matter such as - bicarbonate, chlorides may cause hardness in water. Dissolved solids make water look \& taste unpleasant.
Measurement - By use of pH paper or electronic pH -meter.
Conclusion - Changes in pH of water affects dissolution of chemicals in water and survival of certain organisms which cannot exist in highly acidic water. [unpolluted water generally has a pH range around 6.5 to 8]
Measurement - The sample of water is tested by using special field kits. Conclusion - Unpolluted water have high amount of dissolved oxygen [DO] whose presence \& amount is responsible for survival of aquatic organisms. [Temperature \& speed of water affect the amount of dissolved oxygen]
Measurement - Residual water after evaporation is subjected to - chemical tests. Conclusion - Increase in nutrients affects - pH value, clarity \& temperature of water. Increase in 'nitrogen \& phosphorous' will result in eutrophication.
Measurement-Test for coliform bacteria in the water sample using various methods including a medium called m-endroth.
Conclusion - Presence of bacteria along with viruses are detrimental to human health.

Additional Questions

1. Give a chemical test to distinguish between the following gases :
a] Hydrogen and oxygen
b] Carbon dioxide and sulphur dioxide
c] Hydrogen chloride and hydrogen sulphide
d] Chlorine and nitrogen dioxide
e] Ammonia and hydrogen chloride
f] Sulphur dioxide and chlorine.
2. On heating which of the following substances i.e. copper carbonate, zinc carbonate, washing soda, copper sulphate, zinc nitrate, copper nitrate, lead nitrate, ammonium chloride and ammonium dichromate - relate to the reactions given below.
a] A white substance which leaves an amphoteric oxide as a residue [whose colour varies in the heated and in the cold state] and evolves a gas which turns lime water milky.
b] An efflorescent substance which leaves a residue having the same colour as the substance and evolves a gas which changes the colour of cobalt chloride paper.
c] A white solid which evolves two colourless gases which on cooling combine and condense on the cooler parts of the test tube.
d] A coloured substance which decomposes violently leaving a coloured residue and evolving two neutral gases one of which is unreactive or inert in nature.
e] A coloured substance which leaves a black residue and evolves two gases one of which is acidic and coloured and the other neutral and colourless.
f] A coloured substance which leaves on strong heating a black residue and evolves two colourless gases one of which is acidic and the other neutral.
g] A white crystalline solid which decrepitates on heating leaving a residue which fuses with the glass and evolves two gases one of which is coloured and acidic.
h] An amorphous substance which turns from pale green to black on strong heating evolving a colourless, acidic gas as the only gaseous product.
3. Give balanced equations for the following conversions affected by heat alone on the substances :
a] Copper carbonate to copper oxide; b] Hydrated copper sulphate to sulphur dioxide;
c] Copper nitrate to nitrogen dioxide;
d] Ammonium dichromate to nitrogen;
e] Zinc carbonate to zinc oxide;
f] Zinc nitrate to nitrogen dioxide
4. Using dilute sulphuric acid how would you differentiate between :
a] Sodium sulphide and sodium carbonate.
b] Copper and magnesium.

How would you identify the gaseous products evolved.
5. Using a platinum wire, conc. hydrochloric acid and a bunsen burner how would you distinguish between the three salts ie. sodium chloride, potassium chloride and calcium chloride. Explain in brief the method used for the same.
6. A mixture consists of 20% sodium chloride and 80% sand. Explain practically in brief a simple method involved to ascertain the correct percentages in the mixture.
7. Using given samples of temporary and permanent hard water, soft water, ordinary soap, detergent and washing soda how would you - a] distinguish between hard and soft water b] distinguish between temporary hard water and permanent hard water c] remove temporary hardness from water without using a chemical compound d] remove temporary hardness and permanent hardness from water using a chemical compound e] prove the advantage of detergent over soap.
8. To determine the quality of water in different water samples collected from water sources, specific tests are performed. State four physical tests \& three chemical tests performed to determine the quality of water. For each test explain how the test is conducted \& the conclusion drawn about the quality of water.

Unit Test Paper - Practical Chemistry

Q. 1 Select the correct gas from A to F which matches with the descriptions 1 to 5.
A: CO_{2}
B: SO_{2}
C: NH_{3}
D: Water vapour
E: Cl_{2}
F: $\mathrm{H}_{2} \mathrm{~S}$

1. Turns moist blue litmus red and then bleaches it.
2. Turns moist red litmus paper blue.
3. Turns lime water milky and blue litmus paper slightly pink.
4. Turns cobalt chloride paper from blue to pink.
5. Turns lead acetate paper from white to silvery black.
Q. 2 Select the correct salt from list II which on thermal decomposition exhibits the change in colour from list $\mathrm{I} \mathbf{- 1}$ to 5.

List-I

1. Light green to black
2. White to yellow [heated state]
3. Blue to black
4. Orange to green
5. Blue to white

List-II

A: Copper carbonate
B: Hydrated Copper sulphate
C: Copper nitrate
D: Ammonium dichromate
E: Zinc nitrate
Q. 3 State which of the substances given below evolves oxygen gas on thermal decomposition.

1. Zinc carbonate
2. Washing soda
3. Lead nitrate
4. Trilead tetroxide
5. Zinc nitrate
6. Mercury [II] oxide
7. Ammonium dichromate
8. Anhydrous copper sulphate
Q. 4 Complete the table given below.
9. Heat on copper nitrate
10. Heat on iodine crystals
11. Heat on ammonium dichromate
12. Heat on copper carbonate
13. Heat on zinc nitrate
14. Addition of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to FeS
15. Addition of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to KHCO_{3}. Name of residue obtained
16. Addition of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to zinc
17. Heat on sodium chloride
18. Flame test for calcium chloride

- Colour of acidic gas evolved
- Colour of vapours evolved
- Name of neutral gas evolved
- Test for gas evolved
- Colour of residue
- Odour of gas evolved
- Test for gas evolved
- Colour imparted to flame during flame test \qquad
- Acid used for flame test
Q. 5 Select the correct answer from the words in bracket.

1. Hard and soft water can be distinguished using \qquad [dil. acid / ordinary soap / detergent].
2. Low specific conductance of water indicates \qquad [less / more] pollution in water.
3. The type of water softened by addition of washing soda is \qquad [permanent / temporary / both types].
4. Unpolluted water has \qquad [high / low] amount of dissolved oxygen.
5. The sample of hard water which lathers with soap after boiling \& filtration contains \qquad [calcium chloride / calcium bicarbonate].
