LATEST SYLLABUS - SCOPE OF SYLLABUS - Study of the First Element -Hydrogen

Position of the non-metal [Hydrogen] in the periodic table and general group characteristics with reference to valency electrons, burning, ion formation applied to the above mentioned element.
i) Hydrogen from water (ii) hydrogen from dilute acids (iii) hydrogen from alkalies.

Hydrogen from water: Cold water and metals; hot water and metals; steam and metals; steam and non-metals. Application of activity series for the above mentioned preparations.
Displacement of hydrogen from dil. sulphuric acid or hydrochloric acid by zinc or iron [no reaction with copper]. Displacement of hydrogen from alkalis $[\mathrm{NaOH}, \mathrm{KOH}]$ by Zn, Al - unique nature of these elements.
ii) The preparation and collection of hydrogen by a standard laboratory method other than electrolysis. In the laboratory preparation, the reason for using zinc, the impurities in the gas, their removal and the precautions in the collection of the gas must be mentioned. Industrial manufacture of hydrogen by Bosch process with main reactions and conditions; separation of CO_{2} and CO from it.

A. POSITION OF THE NON-METAL - Hydrogen in the periodic table

$\xrightarrow{\text { GROUPS }}$	1	2	PERIOD	ELEMENT	ATOMICNUMBER	ELECTRONIC CONFIGURATION	13	14	15	16	17	18
	IA	IIA					IIIA	IVA	VA	VIA	VIIA	0
PERIOD	${ }^{1}$										${ }^{1} \mathrm{H}$	$\stackrel{2}{4 e}^{2}$
	\int_{Li}	4_{Be}	1	HYDROGEN [H]	1	1	5		7	8		
2			2	LITHIUM [Li]	3	2,1	B	C	N	0	F	Ne
PERIOD 3	$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathbf{M g} \end{aligned}$	2	FLUORINE [F]	9	2, 7	$\begin{array}{r} 13 \\ \text { AI } \end{array}$	${ }^{14} \mathrm{Si}$	${ }^{15} \mathbf{P}$	${ }^{16} \mathrm{~S}$	$\left.\right\|^{17} \mathrm{Cl}$	$\begin{array}{\|c} 18 \\ \mathrm{Ar} \end{array}$

ELEMENTS OF GROUP 1 [IA] - alkali metals

- Lithium [Li] - Sodium [Na] - Potassium [K] • Rubidium [Rb]. ELEMENTS OF GROUP 17 [VIIA] - halogens
- Fluorine [F]
- Chlorine [Cl]
- Bromine $[\mathrm{Br}]$
- Iodine [I].

POSITION OF HYDROGEN - IN THE PERIODIC TABLE

- Atomic number of hydrogen = one;

Number of valence electrons $=$ one

- 1st element of the periodic table placed in Group 1 [IA] [period -1] of the periodic table. DUAL NATURE OF HYDROGEN
- Hydrogen has the simplest electronic configuration of 'one' and hence:
- Either loses one electron behaving like electropositive alkali metals [group 1 (IA)] e.g. $\mathrm{H}-1 \mathrm{e}^{-} \rightarrow \mathrm{H}^{1+}, \quad \mathrm{Li}-1 \mathrm{e}^{-} \rightarrow \mathrm{Li}^{1+}, \quad \mathrm{Na}-1 \mathrm{e}^{-} \rightarrow \mathrm{Na}^{1+}$.
- Gains one electron behaving like electronegative halogens [group 17 (VIIA)] e.g. $\mathrm{H}+1 \mathrm{e}^{-} \rightarrow \mathrm{H}^{1-}, \quad \mathrm{F}+1 \mathrm{e} \rightarrow \mathrm{F}^{1-}, \quad \mathrm{Cl}+1 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{1-}$.

RESULTANT POSITION OF HYDROGEN

- Hydrogen thus show similarities with:
- Alkali metals of group 1 [IA] \& Halogens of group 17 [VIIA] $\&$ is placed above Lithium [Li] in group 1 [IA] or above Fluorine [F] in group 17 [VIIA]. [Thompson had assigned a separate position to hydrogen on top of the periodic table which does not disturb the periodic law or the symmetry of the table].
B. GENERAL GROUP CHARACTERISTICS - First element Hydrogen

SIMILARITY OF HYDROGEN WITH - Alkali Metals - [GROUP 1 (IA)]

- ELECTRONIC CONFIGURATION
- CHARACTER [Ion formation]
- VALENCY
- REACTIONS
- REDUCING AGENT

SIMILARITY OF HYDROGEN WITH - Halogens -
One electron less than the nearest noble gas
$\mathbf{H}=1[\mathrm{He}=2] ; \quad \mathbf{F}=2,7[\mathrm{Ne}=2,8] ; \quad \mathbf{C l}=2,8,7[\mathrm{Ar}=2,8,8]$

Valency electrons - One valence electron
$\mathbf{H}=(1) ; \mathbf{L i}=2$, (1) ; $\mathbf{N a}=2,8$, (1) ; $\quad \mathbf{K}=2,8,8$, (1)
Electropositive character exhibited
$\mathrm{H}-1 \mathrm{e}^{-} \rightarrow \mathrm{H}^{1+} ; \mathrm{Li}-1 \mathrm{e}^{-} \rightarrow \mathrm{Li}^{1+} \quad ; \mathrm{Na}-1 \mathrm{e}^{-} \rightarrow \mathrm{Na}^{1+}$
Electrovalency of 'one' exhibited
$\mathrm{H}^{1+}, \quad \mathrm{Li}^{1+}, \quad \mathrm{Na}^{1+}$
K^{1+}
Strong affinity for non-metals - [e.g. O, S, Cl]
Hydrogen - forms $\mathrm{H}_{2} \mathrm{O} ; \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCl}$
Sodium - forms $\mathrm{Na}_{2} \mathrm{O} ; \mathrm{Na}_{2} \mathrm{~S}, \mathrm{NaCl}$
Act as reducing agents
Hydrogen $-\mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
Sodium $-\mathrm{CuO}+2 \mathrm{Na} \rightarrow \mathrm{Cu}+\mathrm{Na}_{2} \mathrm{O}$

- CHARACTER [Ion formation]
- VALENCY
- ATOMICITY
- ELECTRONIC CONFIGURATION

Electronegative character exhibited
$\mathrm{H}+1 \mathrm{e}^{-} \rightarrow \mathrm{H}^{1-} ; \mathrm{F}+1 \mathrm{e}^{-} \rightarrow \mathrm{F}^{1-} ; \mathrm{Cl}+1 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{1-}$
Electrovalency and covalency exhibited
Hydrogen - forms NaH [electrovalent]; CH_{4} [covalent]
Chlorine - forms NaCl [electrovalent]; CCl_{4} [covalent]
Diatomic molecules formed-[two atoms linked by a single bond]

C. DISCOVERY AND OCCURRENCE - Of Hydrogen

DISCOVERY

Hydrogen was initially called 'inflammable gas'.

- Robert Boyle - in 1672 - established the elementary character of hydrogen.
- Henry Cavendish - in 1776 - first prepared hydrogen in the pure state and also described its properties and recognized it as an element.
He found that the gas was inflammable and that it burnt in air to produce water.
- Lavoisier - in 1783 - established its name 'hydrogen' meaning 'water producer' [Greek word Hydro = water, gen $=$ producer].

OCCURRENCE

In the free state

- Hydrogen stands ninth in abundance [by mass] among the elements present in the earth's crust.
It makes up approximately 1% of the earth's crust.
- Hydrogen is seldom found in the free state on the planet earth.
- It exists upto 0.01% in the earth's atmosphere.
- It is also found in minute traces, in volcanic gases and to a higher extent around the sun \& the stars.

In the free state	
Earth's crust	0.98%
Earth's atmosphere	0.01%
Volcanic gases	0.025%
Atmosphere - around the sun and the stars	01.1%

In the combined state

Hydrogen is distributed in combination with other elements in the combined state.
It occurs in the combined state :

- In plant and animal tissues -
which are made of compounds of hydrogen along with carbon, oxygen \& nitrogen.
- In water -
about one ninth by mass of water is hydrogen.
- As a constituent of different substances -
i.e. acids, alkalis, petroleum products \& organic substances.

Combined with carbon, hydrogen is found in -
a] natural gas, b] kerosene, c] gasoline, d] petroleum products
It is a constituent of most organic substances including -
a] proteins, b] carbohydrates, c] fats which are essential for all living matter.
D. PREPARATION OF HYDROGEN - General Methods
I. GENERAL METHODS FROM - Cold water, Boiling water, Steam - with metals

D. PREPARATION OF HYDROGEN - General Methods [Contd.]

II. GENERAL METHODS FROM - Acids - with Magnesium, Aluminium, Zinc, Iron

Nitric acid - [dilute] is not used in the preparation of hydrogen from metals.

- Nitric acid is a powerful oxidizing agent \& the nascent oxygen formed on its decomposition oxidizes the hydrogen to water. Magnesium \& manganese however, react with very dil. HNO_{3} at low temperatures liberating H_{2}, since oxidizing action of the acid is much reduced due to dilution.

Lead - cannot be used in the preparation of hydrogen using dilute acids.

- Lead reacts with dil. HCl \& dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ forming an insoluble coating of -
lead chloride $\left[\mathrm{PbCl}_{2}\right]$ \& lead sulphate $\left[\mathrm{PbSO}_{4}\right]$ respectively \& hence further reaction comes to a stop.
III. GENERAL METHODS FROM - Alkalis - with Zinc, Lead, Aluminium

D. PREPARATION OF HYDROGEN - Laboratory Method

LABORATORY METHOD - By action of dilute acid on zinc

Laboratory preparation of hydrogen by action of dil. HCl on zinc.
REACTION $\mathrm{Zn}+2 \mathrm{HCl}_{\text {[dil.] }} \rightarrow \mathrm{ZnCl}_{2}+\mathbf{H}_{2}[\mathrm{~g}]$

REACTANTS: - Granulated zinc - in flat bottom flask [X].

- Dilute hydrochloric acid - added through thistle funnel $[\mathrm{Y}]$.

PROCEDURE: - Granulated zinc is placed in the flat bottom flask and hydrochloric acid [or dil. sulphuric acid] is added slowly from the thistle or dropping funnel.

- A brisk effervescence is seen with the evolution of - hydrogen gas.

PURIFICATION: - Granulated zinc being impure, on treatment with dilute HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$ evolves in traces- gaseous impurities.
These impurities may be further removed by passage of the impure gas through three washer bottles \& a U-tube.

- Washer bottle 1 - Contains AgNO_{3} solution which absorbs Impurity - Arsine $\left[\mathrm{AsH}_{3}\right]$ and phosphine $\left[\mathrm{PH}_{3}\right]$
- Washer bottle 2 - Contains $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution which absorbs Impurity - Hydrogen sulphide [$\mathrm{H}_{2} \mathrm{~S}$]
- Washer bottle 3 - Contains KOH solution which absorbs Impurity - $\mathrm{NO}_{2}, \mathrm{CO}_{2}, \mathrm{SO}_{2}$
- U-Tube 4 - Contains anhydrous CaCl_{2} which absorbs Impurity - Moisture
PRECAUTIONS: - No leakage of gas should take place \& no flame must be near the apparatus.
- Hydrogen is collected after all the air in the apparatus is allowed to escape [pure hydrogen burns quietly in air, hence its purity can be tested].
- The end of the thistle funnel should dip below the level of the dil. acid in the flask ' X ' or the hydrogen gas may escape out through the thistle funnel ' Y '.

COLLECTION :

- Hydrogen gas is collected by - the downward displacement of water.

APPARATUS

In the above laboratory preparation of hydrogen an airtight apparatus is used.

- Hydrogen forms an explosive mixture with air hence the complete apparatus is airtight preventing any leakage of the gas.
- A naked flame should not be brought near the apparatus since it may be the cause of an explosion which may take place if the gas leaks.
- The lower end of the thistle funnel should dip below the level of the dilute acid in the flask thereby minimizing the chance of any leakage of the hydrogen gas through the thistle funnel.

REACTANTS

Granulated zinc on reaction with dilute acid evolves hydrogen.

- Granulated zinc is commercial zinc obtained from molten zinc. It may contain traces of impurities which has a slight catalyzing effect on the reaction.
- Addition of traces of copper [II] sulphate to the reaction medium also enhances the speed of the reaction.
- The preferred acid is dilute hydrochloric or sulphuric acid.

Nitric acid being a strong oxidizing agent - oxidizes the hydrogen formed to water \& is not used as the acid in the reaction with zinc.

COLLECTION OF HYDROGEN

Hydrogen is collected by the downward displacement of water.

- Hydrogen is almost insoluble in water [100 vols. of water dissolve about 2 vols. of hydrogen at s.t.p.].
- Even though hydrogen is lighter than air - [1 litre of H_{2} weighs 0.09 g . at s.t.p.] it is not collected by downward displacement of air since it forms an explosive mixture with air.
- Pure dry hydrogen is collected over mercury or in a flask previously evacuated thereby having absence of air.

PURIFICATION OF HYDROGEN

Hydrogen is purified by passage through different solutions.

- Granulated zinc on reaction with dilute acids imparts traces of gaseous impurities which are removed by passage through different solutions.
- Arsine $\left[\mathrm{AsH}_{3}\right]$ \& phosphine $\left[\mathrm{PH}_{3}\right]$ - through silver nitrate solution, Hydrogen sulphide $\left[\mathrm{H}_{2} \mathrm{~S}\right]$ - through lead nitrate solution, Nitrogen dioxide, carbon dioxide \& sulphur dioxide - through KOH solution Moisture using a - drying agent i.e. fused calcium chloride.
D. PREPARATION OF HYDROGEN - Industrial Methods

INDUSTRIAL METHOD - Bosch Process

STEP I Reaction : Production of - water gas

Reactants
Temperature
Process
Chamber
STEP II Reaction

Reactants
Temperature
Catalysts
Process
: White hot coke \& steam
: Around $1000^{\circ} \mathrm{C}$
: Passage of steam over white hot coke [carbon]
: Specially designed convertor
: Reduction of steam to hydrogen - by carbon monoxide.

$$
\underbrace{\mathrm{CO}+\mathrm{H}_{2}}_{\text {[water gas] }}+\underset{\text { [excess steam] }}{\mathrm{H}_{2} \mathrm{O}} \xrightarrow[\mathrm{Fe}_{2} \mathrm{O}_{3}]{450^{\circ} \mathrm{C}} \mathrm{CO}_{2}+2 \mathrm{H}_{2}+\Delta
$$

: Water gas \& excess steam
: Around $450^{\circ} \mathrm{C}$
: Iron [III] oxide [$\mathrm{Fe}_{2} \mathrm{O}_{3}$], promoter chromic oxide $\left[\mathrm{Cr}_{2} \mathrm{O}_{3}\right.$]
: Excess steam is mixed with water gas \& passed over a catalyst at elevated temperatures.
[CO is converted to CO_{2} with a further yield of hydrogen].
STEP III Reaction
: Separation of -
Carbon dioxide $\left[\mathrm{CO}_{2}\right]$ \& unreacted Carbon monoxide [CO] from - the above mixture.

Process

Removal of	Method
- CO_{2}	By dissolving mixture in - - water under pressure [30 atmospheres], or - caustic potash solution $\left[2 \mathrm{KOH}+\mathrm{CO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}\right]$
- CO	By dissolving mixture in ammoniacal cuprous chloride solution. $\left[\mathrm{CuCl}+\mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CuCl} . \mathrm{CO} .2 \mathrm{H}_{2} \mathrm{O}\right]$

INDUSTRIAL METHODS - By electrolysis of water or brine \& from natural gas or CaH_{2}

By electrolysis of - Water :
Acidified water on electrolysisliberates hydrogen at the cathode.

$$
\underset{\text { [acidified] }}{2 \mathrm{H}_{2} \mathrm{O}} \xrightarrow[\text { current }]{\text { electric }} \underset{\text { [cathode] }}{2 \mathrm{H}_{2}}+\underset{\text { [anode] }}{\mathrm{O}_{2}}
$$

Electrolysis of brine [NaCl soln.] Very pure hydrogen is obtained as a by-product during electrolysis of brine.

From natural gas \& from calcium hydride - CaH_{2} Methane present in natural gas [obtained from petroleum] - reacts with steam to give hydrogen

$\underset{\text { [calcium hydride] }}{\text { Unreacted } \mathrm{CO} \text {-removedsimilarlyasin-Bosch process }} \mathrm{CaH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{2}$
E. SUMMARY OF PREPARATIONS OF - Hydrogen

SUMMARY OF PREPARATIONS - Of hydrogen - from

1. WATER

- cold water
- boiling water/steam
- Metals reacting with - cold water $-\mathrm{K}, \mathrm{Na}, \mathrm{Ca}$.

$$
\begin{aligned}
& 2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2} \\
& 2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \\
& \mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}
\end{aligned}
$$

- Method not preferred -
reaction is violent and exothermic in case of $\mathrm{K} \& \mathrm{Na}$ slightly vigorous in case of Ca but Ca is more expensive.
Metals reacting with - boiling water/steam $-\mathrm{Mg}, \mathrm{Al}, \mathrm{Zn}, \mathrm{Fe}$
$\mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2}$
$2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2}$
$\mathrm{Zn}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$

2. DILUTE ACIDS

- dil. HCl
- dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$

3. CONC. ALKALIS

- conc. KOH soln.
- conc. NaOH soln.

- LABORATORY

- active metal/dil. acid
- Metals reacting with - conc. alkalis $-\mathrm{Zn}, \mathrm{Pb}$ or Al .

$$
\begin{aligned}
& \mathrm{Zn}+2 \mathrm{KOH} \rightarrow \mathrm{~K}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2} \\
& \mathrm{~Pb}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{PbO}_{2}+\mathrm{H}_{2} \\
& 2 \mathrm{Al}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2} \\
& 2 \mathrm{Al}+2 \mathrm{KOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KAlO}_{2}+3 \mathrm{H}_{2}
\end{aligned}
$$

By action of dil. HCl on - granulated zinc $\mathrm{Zn}+2 \mathrm{HCl}$ [dil.] $\rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ Removal of impurities - impurities obtained are removedby passage through washer bottles containing $\mathrm{AgNO}_{3}, \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \& \mathrm{KOH}$ solns. to remove arsine, $\mathrm{H}_{2} \mathrm{~S} \& \mathrm{NO}_{2}, \mathrm{CO}_{2}, \mathrm{SO}_{2}$ impurities - respectively. Collection of gas - downward displacement of water.

The product - Hydrogen

- Colourless, odourless, tasteless, non-poisonous gas.
- Lightest gas known [14.4 times less dense than air]; Very slightly soluble in water.
- Difficult to liquefy; Combustible [burns in air]; Non-supporter of combustion.
- Neutral to litmus [i.e. neither acidic nor alkaline]

F. TESTS AND USES OF HYDROGEN

TESTS - For Hydrogen

- Colour, odour, density
- Combustibility of
i] Pure hydrogen
ii] Hydrogen-air mixture.

USES - Of Hydrogen

GENERAL USES

- As a fuel - in the form of
- Coal gas
- Water gas
- Liquid hydrogen
- In meteorological balloons
- To study weather conditions.

MANUFACTURE OF -

- Ammonia
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}+\Delta$
- Hydrogen chloride
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$

IN THE CONVERSION OF HYDROGEN TO -

- Water
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\Delta$
- Hydrogen sulphide
$\mathrm{H}_{2}+\mathrm{S} \rightarrow \mathrm{H}_{2} \mathrm{~S}$

Reasons/conditions for use

Combustion of hydrogen is a highly exothermic reaction.

Liquid hydrogen -

is non-polluting and easy to store.

Hydrogen is - lighter than air.
Being inflammable it is now replaced by helium.

Temp.: 450-500${ }^{\circ} \mathrm{C}$ Pressure: 200-900 atmos.
Catalyst: Iron Promoter: Molybdenum

Reaction slow in diffused sunlight and explosive in direct sunlight.

Hydrogen burns quietly in air forming water.

Hydrogen reacts with sulphur vapours forming hydrogen sulphide.

F. TESTS AND USES OF HYDROGEN [Contd.]

USES OF HYDROGEN

Reasons/Conditions for use

IN HYDROGENATION REACTIONS

- Hydrogenation of oil

Addition of hydrogen to organic compounds in presence of catalyst e.g. Pt or Ni under high pressure at about $200^{\circ} \mathrm{C}$ is called - hydrogenation.

Vegetable oils [palm oil] turn to semi solid fats by hydrogenation.

- Hydrogenation of coal

Passage of hydrogen under high pressure over powdered coal in presence of catalyst at a suitable temperature.

IN EXTRACTION OF METALS

- Hydrogen when passed over heated metal oxides of less active metals e.g. zinc, iron, lead \& copper, reduces the oxides of the metals to free metals, a process useful in - metallurgy.

IN WELDING AND CUTTING METALS

- Oxygen burns in an atmosphere of hydrogen to produce an -oxy-hydrogen flame. The flame is used for welding \& cutting.

Hydrogen-oxygen mixture on burning produces an exothermic reaction and the temperature of the flame is around $2800^{\circ} \mathrm{C}$, which makes it useful for welding or cutting.

OXIDATION - REDUCTION REACTIONS.

- Oxidation involves removal of hydrogen from a substance.
- Reduction involves addition of hydrogen to a compound.

Hydrogen acts as a - reducing agent

$$
\begin{aligned}
& \mathrm{ZnO}+\mathrm{H}_{2} \rightarrow \mathrm{Zn}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Certain metals like -
platinum, nickel, gold \& palladium readily adsorb - large volumes of hydrogen on their surface.

The phenomenon is called - occlusion a property useful for hydrogenation.

Hydrogenation of coal leads to conversion of coal to a product similar to petroleum containing -
a higher percentage of hydrogen.

EQUATION WORKSHEET

Complete and balance the equations

HYDROGEN

a. Preparation of hydrogen
[General Methods]
Reactions of active metals - cold water

1. Potassium
2. Sodium
3. Calcium

Reactions of metals with steam
4. Magnesium
5. Aluminium
6. Zinc
7. Iron

Reactions of metals with dilute acids
8. Magnesium
9. Aluminium
10. Zinc
11. Iron

Reactions of metals - alkali [conc. soln.]
12. Zinc
13. Lead
14. Aluminium
b. Preparation of hydrogen [Laboratory method]

By action of dilute acid on zinc
15. Zinc

Preparation of hydrogen
[Industrial method - Bosch process]
16. Step I - Production of water gas
17. Step II - Reduction of steam to hydrogen by carbon monoxide
18. Step III - Removal of unreacted carbon dioxide and carbon monoxide from the above mixture

$\mathrm{Mg}+\mathrm{HCl}$	$\rightarrow-$
$\mathrm{Al}+\mathrm{H}_{2} \mathrm{SO}_{4}$	$\rightarrow-$
$[\mathrm{g}]$	
$\mathrm{Zn}+\mathrm{HCl}$	$\rightarrow-+$
$\mathrm{Fe}+\mathrm{HCl}]$	
$[\mathrm{g}]$	
$[\mathrm{g}]$	

$\left.\begin{array}{ll}\mathrm{Zn}+\mathrm{NaOH} & \rightarrow \square+\square \\ \mathrm{Zn}+\mathrm{KOH} & \rightarrow \square \mathrm{g}] \\ \mathrm{Pb}+\mathrm{NaOH} & \rightarrow \longrightarrow+\end{array}\right][\mathrm{g}]$

$$
\mathrm{Al}+\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \longrightarrow+\square[\mathrm{g}]
$$

$$
\mathrm{Al}+\mathrm{KOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \longrightarrow+\square[\mathrm{g}]
$$

$$
\mathrm{Zn}+\mathrm{HCl} \rightarrow \quad+\square[g]
$$

$$
\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{1000^{\circ} \mathrm{C}}[\square]-\Delta
$$

$$
\mathrm{CO}+\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\mathrm{Fe}_{2} \mathrm{O}_{3}]{45 \mathrm{C}^{\circ} \mathrm{C}}
$$

$$
-+
$$

c. Tests and uses of hydrogen

Conversion of hydrogen to -
19. Water
20. Hydrogen chloride
21. Ammonia
22. Hydrogen sulphide

Hydrogen in metallurgy - reduction of
23. Zinc oxide
24. Iron [III] oxide

$$
\begin{array}{ll}
\mathrm{H}_{2}+\mathrm{O}_{2} & \rightarrow \\
\mathrm{H}_{2}+\mathrm{Cl}_{2} & \rightarrow \\
\mathrm{~N}_{2}+\mathrm{H}_{2} & \rightleftharpoons \\
\mathrm{H}_{2}+\mathrm{S} & \rightarrow
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{ZnO}+\mathrm{H}_{2} & \rightarrow \\
\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} & \rightarrow
\end{array}
$$

For additional questions on Chp. 9 - Refer
'OBJECTIVE WORKBOOK FOR SIMPLIFIED I C S E CHEMISTRY' FOR STD. IX BY DR. VIRAF J. DALAL
[A Supplementary work book for "Simplified I. C. S. E. Chemistry for Std. IX"]

Questions

1984

1. Name an element which reacts violently with water at room temperature.
2. What do the following symbols [or formula] denote: $2 \mathrm{H} ; \mathrm{H}_{2} ; \mathrm{H}^{+}$. [two atoms, molecule, ion]
3. Write correctly balanced equation for the following "word equation" : calcium + water \rightarrow calcium hydroxide + hydrogen.
4. When steam is passed over red-hot iron, magnetic oxide of iron and hydrogen are obtained. "The reaction between steam and red-hot iron is a Reversible Reaction." What is meant by this statement.
5. How can you obtain hydrogen from sodium hydroxide [not by electrolysis].

1985

1. Write balanced equation for the following reaction : magnesium + dil. hydrochloric acid \rightarrow

1986

1. Name a gas which burns in air or oxygen forming water.
2. Write correctly balanced equation for the following : When steam is passed over red hot iron.
3. Explain the following : Two jars of H_{2} are collected - "one burns quietly and the other does not".

1987

1. Write correctly the balanced equation for the following: 'When zinc filings are added to a concentrated solution of sodium hydroxide'.
2. Describe one chemical test applied to the following gases, which would enable you to distinguish between them : 'carbon monoxide and hydrogen'.
3. Write down the "word equation" for the following reaction : sodium hydroxide solution + zinc \rightarrow
4. Explain briefly how hydrogen is manufactured on a large scale, from steam.

1989

1. State the products of the reaction "when steam is passed over red-hot iron".

1990

1. How can you obtain hydrogen from a mixture of hydrogen and carbon monoxide.
2. What do you observe when a piece of sodium is dropped into cold water?
3. Give reasons for the following : 'Though hydrogen is lighter than air, it is not collected by the downward displacement of air'.
4. Complete the following word equations:
i) Sodium hydroxide + zinc \rightarrow hydrogen + \qquad
ii) Calcium + water \rightarrow calcium hydroxide +

1991

1. How would you obtain 'hydrogen from sodium hydroxide' solution other than by electrolysis?

1992

1. Complete and balance the following equations : $\mathrm{Al}+\mathrm{NaOH}+$ \qquad
\qquad $+$ \qquad
2. What do the following symbols represent : 2 H and H_{2}.

1993

1. Write balanced equation of the reaction in the preparation of : hydrogen from a solution of potassium hydroxide [other than by electrolysis].
2. Describe briefly, with equations, the Bosch Process for the large scale production of hydrogen.
3. Account for the following facts:
i] Though lead is above hydrogen in the activity series, it does not react with dilute hydrochloric acid or dilute sulphuric acid.
[$\mathrm{PbCl}_{2}, \mathrm{PbSO}_{4}$ formed - insoluble]
ii] Potassium and sodium are not used to react with dilute hydrochloric acid or dilute sulphuric acid in the laboratory preparation of hydrogen.

1994

1. Place the metals calcium, iron, magnesium and sodium in order of their activity with water, placing the most active first. Write the equation for each of the above metals which react with water.
2. Why is copper not used to prepare hydrogen by the action of dilute hydrochloric acid or dilute sulphuric acid on the metal.

1995 [discontinued]

Additional Questions

1. State the electronic configuration of hydrogen [at. no. 1].

Give a reason why hydrogen can be placed in group 1 [IA] and group 17 [VIIA] of the periodic table.
2. Give the general group characteristics applied to hydrogen with respect to similarity in properties of hydrogen with -
a] alkali metals of group 1 [IA] \quad b] halogens of group 17 [VIIA].
with special reference to valency electrons \& ion formation.
3. How did the name 'hydrogen' originate. How does hydrogen occur in the combined state.
4. Give balanced equations for obtaining hydrogen from cold water using -
a] A monovalent active metal
b] A divalent active metal
5. Give balanced equations for obtaining hydrogen from -
a] Boiling water using a divalent metal
b] Steam using a trivalent metal
c] Steam using a metal - and the reaction is reversible.
6. State why hydrogen is not prepared in the laboratory by the action of -
a] Sodium with cold water
b] Calcium with dilute sulphuric acid
c] Lead with dilute hydrochloric acid.
7. Give balanced equations for the following conversions.
a] Sodium zincate from zinc
b] Sodium plumbite from lead
c] Sodium aluminate from aluminium.
8. In the laboratory preparation of hydrogen from zinc and dil. acid. Give reasons for the following :
a] The complete apparatus is air-tight.
b] Dilute nitric acid is not preferred as the reactant acid.
c] The lower end of the thistle funnel should dip below the level of the acid in the flask.'
d] Hydrogen is not collected over air.
9. 'Magnesium reacts with very dilute nitric acid at low temperatures liberating hydrogen.' Give reasons.
10. State the conditions and give balanced equations for the conversion of -
a] coke to water gas,
b] water gas to hydrogen
in the Bosch process.
11. How are the unreacted gases separated out in 'Bosch process' in the manufacture of hydrogen.
12. Compare the combustibility of - a] pure hydrogen b] hydrogen-air mixture.
13. State the reactant added to hydrogen to obtain the respective product in each case.
a] Ammonia
b] Hydrogen chloride
c] Water
d] Hydrogen sulphide
14. State the use of hydrogen -
a] As a fuel
b] In hydrogenation of oil \& coal
c] In extraction of metals
Q. 1 Select from A to G the reactant added, to give the products 1 to 5 , in the preparation of hydrogen gas. A : dilute acid, B : dilute alkali, C: cold water, D : conc. alkali, E:boiling water, F: conc. acid, G : steam

1. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
2. $\mathrm{MgO}+\mathrm{H}_{2}$
3. $\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$
4. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2}$
5. $\mathrm{NaAlO}_{2}+\mathrm{H}_{2}$
Q. 2 Give balanced equations for the following conversions, 1 to 5.
6. $\mathrm{MgCl}_{2} \leftarrow \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}$.
7. $\mathrm{KAlO}_{2} \leftarrow \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{ZnO}_{2}$.
8. $\mathrm{ZnO} \leftarrow \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}$
9. $\mathrm{CO}+\mathrm{H}_{2} \leftarrow \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}$
10. $\mathrm{NH}_{3} \leftarrow \mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{~S}$
Q. 3 Give reasons for the following.
11. Nitric acid in the dilute form is not used in the laboratory preparation of hydrogen from metals.
12. Granulated zinc is preferred to metallic zinc in the preparation of hydrogen using dilute acid.
13. Hydrogen and alkali metals of group 1 [IA] react with copper [II] oxide to give copper.
14. Hydrogen is collected by the downward displacement of water and not air even though it is lighter than air.
15. A mixture of hydrogen and chlorine can be separated by passage through a porous pot.
Q. 4 Name the following.
16. A metal below iron but above copper in the activity series of metals which has no reaction with water.
17. A metal which cannot be used for the preparation of hydrogen using dilute acids.
18. The salt formed when aluminium reacts with potassium hydroxide, during the preparation of hydrogen from alkalis.
19. A metal which reacts with very dilute nitric acid at low temperatures liberating hydrogen.
20. A compound formed between hydrogen and an elemient from group 17 [VIIA] - period 3.
Q. 5 Select the correct answer from the symbols in bracket.
21. The element placed below hydrogen in group 1 [IA]. [$\mathrm{Na}, \mathrm{Li}, \mathrm{K}, \mathrm{F}]$.
22. The element other than hydrogen, which forms a molecule containing a single covalent bond. [Cl, N, O]
23. The element, which like hydrogen has one valence electron. $[\mathrm{He}, \mathrm{Na}, \mathrm{F}, \mathrm{O}]$
24. The element, which like hydrogen is a strong reducing agent. [$\mathrm{Pb}, \mathrm{Na}, \mathrm{S}, \mathrm{Cl}]$
25. The element which forms a diatomic molecule. [C, Br, S, P]
Q. 6 The diagram represents the preparation \& collection of hydrogen by a standard laboratory method. [5]
26. State what is added through the thistle funnel ' Y '.

27. State what difference will be seen if pure zinc is added in the distillation flask ' X ' instead of granulated zinc.
28. Name a solution which absorbs the impurity $-\mathrm{H}_{2} \mathrm{~S}$.
29. State why hydrogen is collected after all the air in the apparatus is allowed to escape.
30. Name a gas other than hydrogen collected by the same method.
