Study of the First Element - Hydrogen

LATEST SYLLABUS - SCOPE OF SYLLABUS - Study of the First Element - Hydrogen

Position of the non-metal [Hydrogen] in the periodic table and general group characteristics with reference to valency electrons, burning, ion formation applied to the above mentioned element.

i) Hydrogen from water (ii) hydrogen from dilute acids (iii) hydrogen from alkalies.

Hydrogen from water: Cold water and metals; hot water and metals; steam and metals; steam and non-metals.

Application of activity series for the above mentioned preparations.

Displacement of hydrogen from dil. sulphuric acid or hydrochloric acid by zinc or iron [no reaction with copper]. Displacement of hydrogen from alkalis [NaOH, KOH] by Zn, Al – unique nature of these elements.

ii) The preparation and collection of hydrogen by a standard laboratory method other than electrolysis. In the laboratory preparation, the reason for using zinc, the impurities in the gas, their removal and the precautions in the collection of the gas must be mentioned. Industrial manufacture of hydrogen by Bosch process with main reactions and conditions; separation of CO₂ and CO from it.

A. POSITION OF THE NON-METAL - Hydrogen in the periodic table

	Marie Contract				
I	GROUPS	1	2		
ı	\rightarrow	IA	IIA		
ı	PERIOD	1	KALT	PERIOD	ELEM
Ш	1	Н			
П			O.F	1	HYDROG
П	PERIOD	3	4		
П	2	Li	Be	2	LITHIUN
П	PERIOR				FAMILE STATE
Н	PERIOD 3	11	12	2	FLUORII
П	3	Na	Mg		
		The state of the state of	100000000000000000000000000000000000000	1 51666	

PERIOD	ELEMENT	ATOMIC NUMBER	ELECTRONIC CONFIGURATION
1	HYDROGEN [H]	1	1
2	LITHIUM [Li]	3	2, 1
2	FLUORINE [F]	9	2, 7

	13	14	15	16	17	18
Ì	IIIA	IVA	VA	VIA	VIIA	0
					1 H	2 He
	5 B	6 C	7 N	8	9 F	10 Ne
The second second	13 AI	14 Si	15 P	16 S	17 CI	18 Ar

ELEMENTS OF GROUP 1 [IA] - alkali metals

- Lithium [Li]
- Sodium [Na]
- Potassium [K]
- Rubidium [Rb].

ELEMENTS OF GROUP 17 [VIIA] - halogens

- Fluorine [F]
- Chlorine [Cl]
- Bromine [Br]
- Iodine [I].

POSITION OF HYDROGEN - IN THE PERIODIC TABLE

- Atomic number of hydrogen = one;
- *Number of valence electrons = one*
- 1st element of the periodic table placed in Group 1 [IA] [period 1] of the periodic table.

DUAL NATURE OF HYDROGEN

- Hydrogen has the simplest electronic configuration of 'one' and hence:
 - Either loses one electron behaving like electropositive alkali metals [group 1 (IA)] e.g. $H 1e^- \rightarrow H^{1+}$, $Li 1e^- \rightarrow Li^{1+}$, $Na 1e^- \rightarrow Na^{1+}$.
 - Gains one electron behaving like electronegative halogens [group 17 (VIIA)] e.g. $H + 1e^- \rightarrow H^{1-}$, $F + 1e \rightarrow F^{1-}$, $Cl + 1e^- \rightarrow Cl^{1-}$.

RESULTANT POSITION OF HYDROGEN

- Hydrogen thus show similarities with:
 - Alkali metals of group 1 [IA] & Halogens of group 17 [VIIA] & is placed above Lithium [Li] in group 1 [IA] or above Fluorine [F] in group 17 [VIIA]. [Thompson had assigned a separate position to hydrogen on top of the periodic table which does not disturb the periodic law or the symmetry of the table].

B. GENERAL GROUP CHARACTERISTICS - First element Hydrogen

SIMILARITY OF HYDROGEN WITH - Alkali Metals - [GROUP 1 (IA)]

- **ELECTRONIC** CONFIGURATION
- Valency electrons One valence electron H = (1); Li = 2, (1); Na = 2, 8, (1); K = 2, 8, 8, (1)
- **CHARACTER** [Ion formation]
- Electropositive character exhibited $H - 1e^- \rightarrow H^{1+}$; $Li - 1e^- \rightarrow Li^{1+}$; $Na - 1e^- \rightarrow Na^{1+}$

VALENCY

- Electrovalency of 'one' exhibited

 H¹⁺ , Li¹⁺ , Na¹⁺ , K¹⁺
- REACTIONS
- Strong affinity for non-metals [e.g. O, S, Cl]

Hydrogen - forms H2O; H2S, HCl

Sodium - forms Na₂O; Na₂S, NaCl

REDUCING AGENT

Act as reducing agents

Hydrogen - CuO + H₂ → Cu + H₂O

Sodium - CuO + 2Na -> Cu + Na₂O

SIMILARITY OF HYDROGEN WITH - Halogens - [GROUP 17 (VIIA)]

ELECTRONIC CONFIGURATION One electron less than the nearest noble gas

H=1 [He=2]; F=2, 7 [Ne=2, 8]; Cl=2, 8, 7 [Ar=2, 8, 8]

CHARACTER [Ion formation] Electronegative character exhibited

 $H + 1e^{-} \rightarrow H^{1-}$; $F + 1e^{-} \rightarrow F^{1-}$; $Cl + 1e^{-} \rightarrow Cl^{1-}$

VALENCY

Electrovalency and covalency exhibited

forms NaH [electrovalent]; CH₄ [covalent] Hydrogen

ATOMICITY

Diatomic molecules formed - [two atoms linked by a single bond]

forms NaCl [electrovalent]; CCl₄ [covalent]

Hydrogen

Chlorine

 $H: H \text{ or } H-H \rightarrow H_2$

Chlorine

Cl: Cl or Cl-Cl → Cl2

C. DISCOVERY AND OCCURRENCE - Of Hydrogen

DISCOVERY

Hydrogen was initially called 'inflammable gas'.

- Robert Boyle in 1672 established the elementary character of hydrogen.
- Henry Cavendish in 1776 first prepared hydrogen in the pure state and also described its properties and recognized it as an element.

 He found that the gas was inflammable and that it burnt in air to produce water.
- Lavoisier in 1783 established its name 'hydrogen' meaning 'water producer' [Greek word Hydro = water, gen = producer].

OCCURRENCE

In the free state

- Hydrogen stands ninth in abundance [by mass] –
 among the elements present in the earth's crust.
 It makes up approximately 1% of the earth's crust.
- Hydrogen is seldom found in the free state on the planet earth.
- It exists upto 0.01% in the earth's atmosphere.
- It is also found in minute traces, in volcanic gases and to a higher extent around the sun & the stars.

In the free state	a(OH),
Earth's crust	0.98%
Earth's atmosphere	0.01%
Volcanic gases	0.025%
Atmosphere – around the sun and the stars	01.1%

In the combined state

Hydrogen is distributed in combination with other elements in the combined state.

It occurs in the combined state:

- In plant and animal tissues –
 which are made of compounds of hydrogen along with carbon, oxygen & nitrogen.
- *In water* about one ninth by mass of water is hydrogen.
- As a constituent of different substances –
 i.e. acids, alkalis, petroleum products & organic substances.
 Combined with carbon, hydrogen is found in –
 a] natural gas, b] kerosene, c] gasoline, d] petroleum products
 It is a constituent of most organic substances including –
 a] proteins, b] carbohydrates, c] fats which are essential for all living matter.

Downloaded from https:// www.studiestoday.com D. PREPARATION OF HYDROGEN - General Methods

I. GENERAI	L METHOD	S FROM - C	old water,	Boiling water, Steam - with metals
Metal	Cold water	Metallic hy- droxide	Hydrogen	Reason why method is not preferred
• Potassium 2K + • Sodium	2H ₂ O → [cold water]	2KOH +	H ₂	 The reaction is – violent & exothermic. The liberated heat – ignites the hydrogen.
2Na +	2H ₂ O → [cold water]	2NaOH +	H ₂	 The reaction is violent – but comparatively – less than potassium. The sodium melts into a globule and darts about in the water - hence the collection of hydrogen is difficult.
• Calcium Ca +	2H ₂ O → [cold water]	Ca(OH) ₂ +	H ₂	The sodium is therefore wrapped - in a wire gauze and used in the above preparation. • The reaction is <i>slightly vigorous</i> -but calcium is comparatively more expensive.
Metal [heated]	Boiling water/Steam	Metallic oxide	Hydrogen	Observations
• Magnesium Mg +	H ₂ O → [boiling water]	MgO +	H ₂	• Mg, Al, Zn, Fe – do not react with cold water to liberate hydrogen.
• Aluminium 2Al +	3H ₂ O → [steam]	Al ₂ O ₃ +	3H ₂	Magnesium reacts with – boiling water liberating hydrogen but the reaction is slow.
• Zinc Zn +	H ₂ O → [steam]	ZnO +	H ₂	• Mg, Al, Zn and Fe react with - steam in the heated state and - form the corresponding - oxide and hydrogen.
• Iron 3Fe +	4H ₂ O ← ☐ [steam]	Fe ₃ O ₄ + [magnetic oxide of iron]	4H ₂	• Iron reacts with – steam & the reaction is reversible.

D. PREPARATION OF HYDROGEN - General Methods [Contd.]

II.	II. GENERAL METHODS FROM - Acids - with Magnesium, Aluminium, Zinc, Iron								
	Metal	Acid [dil.]	Salt	Hydrogen	Observations				
•	Mg +	2HCl →	MgCl ₂ +	H ₂	• K, Na & Ca – react with – dil. H ₂ SO ₄ or dil. HCl –				
	2Al +	$3H_2SO_4 \rightarrow$	Al ₂ (SO ₄) ₃ +	3H ₂	but the reaction is highly – explosive & practically not feasible.				
	Zn +	H ₂ SO ₄ →	ZnSO ₄ +	H ₂	• Mg, Al, Zn & Fe – react with – dil. H ₂ SO ₄ or dil. HCl –forming –				
•	Fe +		FeCl ₂ +		hydrogen & the respective salt.				

Nitric acid - [dilute] is not used in the preparation of hydrogen from metals.

• Nitric acid is a powerful *oxidizing agent* & the nascent oxygen formed on its decomposition – *oxidizes the hydrogen to water*. Magnesium & manganese however, react with *very dil*. HNO₃ – at *low temperatures* liberating H₂, since oxidizing action of the acid is much reduced due to dilution.

Lead - cannot be used in the preparation of hydrogen using dilute acids.

• Lead reacts with dil. HCl & dil. H₂SO₄ forming an insoluble coating of – lead chloride [PbCl₂] & lead sulphate [PbSO₄] respectively & hence further reaction comes to a stop.

III. GENERAL METHODS FROM - Alkalis - with Zinc, Lead, Aluminium

TIT.	II. OBITERLIZ III.							
	Metal		Alkali [conc. soln.]	Salt	Hydrogen	Observations		
•	Zn	+	2NaOH →	Na ₂ ZnO ₂ + [sodium zincate]	H ₂	• Zn, Pb or Al – react with – with hot conc. alkali i.e.		
cd	Zn	+	2KOH →	K ₂ ZnO ₂ + [potassium zincate]	H ₂	NaOH or KOH - forming- hydrogen & the respective salt.		
	Pb	+	2NaOH →	Na ₂ PbO ₂ + [sodium plumbite]	H ₂	Try try to got a series of		
	2A1	+	2NaOH+2H ₂ O→	2NaAlO ₂ + [sodium aluminate]	3H ₂	Fill Sgableq		
100000000	A COMPANY OF THE PARK OF THE P					:1 7 70 l-hydrovidese o		

Unique nature of Zn, Pb and Al – Zinc, lead and aluminium form oxides e.g. ZnO & hydroxides e.g. Zn(OH)₂ which are – *amphoteric* in nature i.e. react with base & acids to give salt & water.

Activity series of metals - Reaction with water Activity series of metals - Reaction with water Activity series of metals-Reaction with dilute acids						
Activity series of metals - Reaction with wa						
K Reacts vigorously - with cold with Carlo Reacts less vigorously - with cold with Carlo Reacts slowly - with cold with Carlo Reacts slowly - with boiling Al Heated metal reacts - with steam Red hot metal reacts - with steam Red hot metal reacts slowly - with steam Red hot metal reacts slowly - with steam Pb Metals below hydrogen - [H] [including lead] Cu - have no reaction with water. Ag	ter K Reacts highly explosively - with dil. acids ter Na Reacts less explosively - with dil. acids ter Ca water Mg Al Ca, Mg, Al, Zn, Fe react - with decreasing vigour - with dil. acids liberating H ₂ . Pb Metals below hydrogen - [including lead] Cu Hg Ag With dilute acids.					
Pt Au	Pt Au					

D. PREPARATION OF HYDROGEN - Laboratory Method

D. PREPARATION OF HYDROGEN - Laboratory Method [Contd.]

APPARATUS

In the above laboratory preparation of hydrogen an airtight apparatus is used.

- Hydrogen forms an explosive mixture with air –
 hence the complete apparatus is airtight preventing any leakage of the gas.
- A naked flame should not be brought near the apparatus since it may be the cause of an explosion which may take place if the gas leaks.
- The *lower end of the thistle funnel* should dip below the level of the dilute acid in the flask thereby minimizing the chance of any leakage of the hydrogen gas through the thistle funnel.

REACTANTS

Granulated zinc on reaction with dilute acid evolves hydrogen.

- Granulated zinc is commercial zinc obtained from molten zinc.
 It may contain traces of impurities which has a slight catalyzing effect on the reaction.
- Addition of traces of copper [II] sulphate to the reaction medium also enhances the speed of the reaction.
- The preferred acid is dilute hydrochloric or sulphuric acid.
 Nitric acid being a strong oxidizing agent oxidizes the hydrogen formed to water
 & is not used as the acid in the reaction with zinc.

COLLECTION OF HYDROGEN

Hydrogen is collected by the downward displacement of water.

- Hydrogen is almost insoluble in water –
 [100 vols. of water dissolve about 2 vols. of hydrogen at s.t.p.].
- Even though hydrogen is lighter than air [1 litre of H_2 weighs 0.09 g. at s.t.p.] it is not collected by downward displacement of air since it forms an explosive mixture with air.
- Pure dry hydrogen is collected over mercury –
 or in a flask previously evacuated thereby having absence of air.

PURIFICATION OF HYDROGEN

Hydrogen is purified by passage through different solutions.

- Granulated zinc on reaction with dilute acids imparts traces of –
 gaseous impurities which are removed by passage through different solutions.
- Arsine [AsH₃] & phosphine [PH₃] through silver nitrate solution,
 Hydrogen sulphide [H₂S] through lead nitrate solution,
 Nitrogen dioxide, carbon dioxide & sulphur dioxide through KOH solution
 Moisture using a drying agent i.e. fused calcium chloride.

D. PREPARATION OF HYDROGEN - Industrial Methods

INDUSTRIAL METHOD - Bosch Process

STEP I Reaction : Production of - water gas

C +
$$H_2O$$
 $\xrightarrow{1000^{\circ}C}$ CO + H_2 - Δ [coke] [steam] water gas

Reactants: White hot coke & steam

Temperature : Around 1000°C

Process: Passage of steam over white hot coke [carbon]

Chamber : Specially designed convertor

STEP II Reaction : Reduction of steam to hydrogen - by carbon monoxide.

Reactants: Water gas & excess steam

Temperature : Around 450°C

Catalysts: Iron [III] oxide [Fe₂O₃], promoter chromic oxide [Cr₂O₃]

Process: Excess steam is mixed with water gas & -

passed over a catalyst at elevated temperatures.

[CO is converted to CO₂ with a further yield of hydrogen].

STEP III Reaction : Separation of -

Carbon dioxide [CO₂] & unreacted Carbon monoxide [CO]

from - the above mixture.

Process :

Removal of	Method
• CO ₂	By dissolving mixture in – - water under pressure [30 atmospheres], or - caustic potash solution [2KOH + $CO_2 \rightarrow K_2CO_3 + H_2O$]
• CO	By dissolving mixture in – - ammoniacal cuprous chloride solution.
	$[CuCl + CO + 2H_2O \rightarrow CuCl.CO.2H_2O]$

INDUSTRIAL METHODS - By electrolysis of water or brine & from natural gas or CaH2

By electrolysis of - Water:

Acidified water on electrolysisliberates hydrogen at the cathode.

Electrolysis of brine [NaCl soln.] – Very pure hydrogen is obtained as a by-product during electrolysis of brine.

From natural gas & from calcium hydride - CaH2

Methane present in natural gas [obtained from petroleum] – reacts with steam to give hydrogen

$$CH_4$$
 + H_2O \xrightarrow{Ni} CO + $3H_2$ [methane] [steam]

UnreactedCO-removed similarly as in-Bosch process.

$$CaH_2$$
 + $2H_2O$ \rightarrow $Ca(OH)_2$ + $2H_2$ [calcium hydride]

E. SUMMARY OF PREPARATIONS OF - Hydrogen

SUMMARY OF PREPARATIONS - Of hydrogen - from

1. WATER

- · cold water
- Metals reacting with cold water K, Na, Ca.

 $2K + 2H_2O \rightarrow 2KOH + H_2$

 $2Na + 2H_2O \rightarrow 2NaOH + H_2$

 $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$

- Method not preferred –
 reaction is violent and exothermic in case of K & Na
 slightly vigorous in case of Ca but Ca is more expensive.
- boiling water/steam Metals reacting with boiling water/steam Mg, Al, Zn, Fe

 $Mg + H_2O \rightarrow MgO + H_2$

 $2A1 + 3H_2O \rightarrow Al_2O_3 + 3H_2$

 $Zn + H_2O \rightarrow ZnO + H_2$ $3Fe + 4H_2O \rightleftharpoons Fe_3O_4 + 4H_2$

- 2. DILUTE ACIDS
 - dil. HCl
 - dil. H₂SO₄
- 3. CONC. ALKALIS
 - conc. KOH soln.
 - conc. NaOH soln.
- LABORATORY
 - active metal/dil. acid •

• Metals reacting with - dilute acids - Mg, Al, Zn, Fe [active metals].

 $Mg + 2HCl [dil.] \rightarrow MgCl_2 + H_2$

 $Zn + 2HCl [dil.] \rightarrow ZnCl_2 + H_2$

2Al + $3H_2SO_4$ [dil.] \rightarrow Al₂(SO_4)₃ + $3H_2$

Fe + H_2SO_4 [dil.] \rightarrow FeSO₄ + H_2

[Copper which is below hydrogen in the activity series does not react]

Metals reacting with - conc. alkalis - Zn, Pb or Al.

 $Zn + 2KOH \rightarrow K_2ZnO_2 + H_2$

Pb + 2NaOH → Na₂PbO₂ + H₂

 $2A1 + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$

 $2A1 + 2KOH + 2H₂O \rightarrow 2KAlO₂ + 3H₂$

By action of dil. HCl on - granulated zinc

 $Zn + 2HCl [dil.] \rightarrow ZnCl_2 + H_2$

Removal of impurities – impurities obtained are removedby passage through washer bottles containing – AgNO₃, Pb(NO₃)₂ & KOH solns. to remove –

AgNO₃, Pb(NO₃)₂ & KOH solns. to remove – arsine, H₂S & NO₂, CO₂, SO₂ impurities – respectively.

Collection of gas - downward displacement of water.

The product - Hydrogen

- · Colourless, odourless, tasteless, non-poisonous gas.
- Lightest gas known [14.4 times less dense than air]; Very slightly soluble in water.
- Difficult to liquefy; Combustible [burns in air]; Non-supporter of combustion.
- Neutral to litmus [i.e. neither acidic nor alkaline]

Downloaded from https:// www.studiestoday.com F. TESTS AND USES OF HYDROGEN

TESTS - For Hydrogen	WHERE COME IN THE REPORT OF THE PROPERTY OF
 Colour, odour, density Combustibility of 	Observations Colourless, odourless, lighter than air.
i] Pure hydrogen	Burns quietly in air – with a pale blue flame forming water. $2H_2 + O_2 \rightarrow 2H_2O$
ii] Hydrogen-air mixture.	Burns with a characteristic 'pop sound'.
USES - Of Hydrogen	OHLO + SMET - CO2 + 2H2 + AT A
CENTED AT LICEC	Reasons/conditions for use
• As a fuel – in the form of	3gBA, interest and Allage
	2 DILLITE ACIDS
Coal gasWater gas	Combustion of hydrogen – is a highly exothermic reaction.
- Liquid hydrogen	Liquid hydrogen – is non-polluting and easy to store.
In meteorological balloons	doubly sound of
- To study weather conditions.	Hydrogen is – lighter than air. Being inflammable – it is now replaced by helium.
MANUFACTURE OF -	OANS OF THE PROPERTY OF THE PR
Ammonia	OBYLE SAN ASSESSMENT OF HOSPIC STOOL OF
$N_2 + 3H_2 \rightleftharpoons 2NH_3 + \Delta$	Temp.: 450–500°C Pressure: 200–900 atmos. Catalyst: Iron Promoter: Molybdenum
 Hydrogen chloride H₂ + Cl₂ → 2HCl 	Reaction slow in diffused sunlight – and explosive in direct sunlight.
IN THE CONVERSION OF HYDROGEN TO -	A STREET, AND THE STREET, AND
• Water $2H_2 + O_2 \rightarrow 2H_2O + \Delta$	Hydrogen burns quietly in air – forming water.
 Hydrogen sulphide H₂ + S → H₂S 	Hydrogen reacts with sulphur vapours – forming hydrogen sulphide.

F. TESTS AND USES OF HYDROGEN [Contd.]

USES OF HYDROGEN	Reasons/Conditions for use
IN HYDROGENATION REACTIONS	BYDROGEN
Hydrogenation of oil	a Preparation of hydrogen (General Methods)
Addition of hydrogen to organic compounds in presence of catalyst e.g. Pt or Ni under high pressure at about 200°C is called – hydrogenation.	readily adsorb – large volumes of hydrogen on their surface.
Vegetable oils [palm oil] turn to - semi solid fats by hydrogenation.	The phenomenon is called - occlusion a property useful for hydrogenation.
. Hydrogenation of coal	CHAMSTRY FOR SIDLEY BRITARIA
Passage of hydrogen under high pressure over powdered coal in presence of catalyst at a suitable temperature.	conversion of coal to a product similar to
IN EXTRACTION OF METALS	
 Hydrogen when passed over heated metal oxides of less active metals e.g. zinc, iron, lead & copper, reduces the oxides of the metals to free metals, a process useful in – metallurgy. 	Hydrogen acts as a - reducing agent $ZnO + H_2 \rightarrow Zn + H_2O$ $Fe_2O_3 + 3H_2 \rightarrow 2Fe + 3H_2O$ $CuO + H_2 \rightarrow Cu + H_2O$
IN WELDING AND CUTTING METALS	14. Aluminium A. P.
 Oxygen burns in an atmosphere of hydrogen to produce an – oxy-hydrogen flame. The flame is used for welding & cutting 	Hydrogen-oxygen mixture on burning produces an exothermic reaction and the temperature of the flame is around 2800°C, which makes it useful for welding or cutting.
OXIDATION - REDUCTION REACTIONS.	The special control of the second sec
Oxidation involves – removal of hydrogen from a substance	$H_2S + Cl_2 \rightarrow S [oxidised product] + 2HCl$
Reduction involves – addition of hydrogen to a compound.	Br ₂ +H ₂ S → 2HBr [reduced product] + S

EQUATION WORKSHEET

Complete and balance the equations

Kensons/Complementiness			VI.				
HYDROGEN			IONS	TOAHBUACT	GERME	YDRC	I V
a. Preparation of hydrogen [General Methods]							
Reactions of active metals - cold water	Certain						
1. Potassium	K	+	H ₂ O	>	u shaac	ogmo	[g]
2. Sodium	Na	+	H ₂ O	>	+	11 34	[g]
3. Calcium	Ca	+	H ₂ O	>	+ -	CHUCUL	[g]
Reactions of metals with steam	7 96					negely	
4. Magnesium	Mg	+	H ₂ O	>	+		[g]
5. Aluminium	Al	+	H ₂ O	>	+		. [g]
6. Zinc	Zn	+	H ₂ O	>	+_		[g]
7. Iron	Fe	+	H ₂ O	STOWN OF THE PERSON OF THE PER	+_	ASSA	[g]
Reactions of metals with dilute acids	1000						
8. Magnesium	Mg	+	HCI	>	-19¥0f67	tempe	[g]
9. Aluminium	Al	+	H ₂ SO ₄	>	+		[g]
10. Zinc	Zn	+	HCl	→ <u> </u>	MOLLO	XIRA	[g]
11. Iron	Fe	+	HCl	·	adv + mor	mbyH	[g]
Reactions of metals - alkali [conc. soln.]	Ons					Latern	
12. Zinc	Zn	+	NaOH	→	+	77.99	[g]
O.H + 10 6 .H +	Zn	+	КОН	>	+_		[g]
13. Lead	Pb	+	NaOH	>	+		[g]
14. Aluminium	Al	+	NaOH +	$H_2O \rightarrow -$	THE SHE	+	- [g
	Al	+	КОН +	$H_2O \rightarrow -$		+	- [g]
b. Preparation of hydrogen [Laboratory method]	nposu Linkin						
By action of dilute acid on zinc	GHID.						
15. Zinc	Zn	+	HCl →		+	[g]	
Preparation of hydrogen [Industrial method - Bosch process]	70-						
16. Step I - Production of water gas	C	+	H ₂ O 1000	°C	OYMI NOW	_]-Δ	
17. Step II - Reduction of steam to hydrogen by carbon monoxide	60	+	H ₂ + H	$I_2O \xrightarrow{450^{\circ}C} -$	ovatiand	Rolling	g]
18. Step III - Removal of unreacted carbon dioxide and carbon	KOI CuC		+ CO ₂ + CO	+ H ₂ O →.	+10-10-10-10-10-10-10-10-10-10-10-10-10-1	an ba	

monoxide from the above mixture

Downloaded t	rom https:// www.studiestoday.com
c. Tests and uses of hydrogen	Write down the "word equation" for the following reach
Conversion of hydrogen to -	Continue de la contin
19. Water	$H_2 + O_2 \rightarrow \underline{\hspace{1cm}}$
20. Hydrogen chloride	$H_2 + Cl_2 \rightarrow \underline{\hspace{1cm}}$
21. Ammonia	$N_2 + H_2 \Rightarrow \overline{}$
22. Hydrogen sulphide	$H_2 + S \rightarrow \underline{\hspace{1cm}}$
Hydrogen in metallurgy - reduction of	towed to the dropen of our last be combined with the world of the worl
23. Zinc oxide	$ZnO + H_2 \rightarrow+$
24. Iron [III] oxide	$Fe_2O_3 + H_2 \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$

For additional questions on Chp. 9 - Refer 'OBJECTIVE WORKBOOK FOR SIMPLIFIED I C S E CHEMISTRY' FOR STD. IX BY DR. VIRAF J. DALAL [A Supplementary work book for "Simplified I. C. S. E. Chemistry for Std. IX"]

Questions

1984

- 1. Name an element which reacts violently with water at room temperature.
- 2. What do the following symbols [or formula] denote: 2H; H₂; H⁺. [two atoms, molecule, ion]
- 3. Write correctly balanced equation for the following "word equation": calcium + water → calcium hydroxide + hydrogen.
- 4. When steam is passed over red-hot iron, magnetic oxide of iron and hydrogen are obtained. "The reaction between steam and red-hot iron is a *Reversible Reaction*." What is meant by this statement.
- 5. How can you obtain hydrogen from sodium hydroxide [not by electrolysis].

1985

1. Write balanced equation for the following reaction: magnesium + dil. hydrochloric acid →

1986

- 1. Name a gas which burns in air or oxygen forming water.
- 2. Write correctly balanced equation for the following: When steam is passed over red hot iron.
- 3. Explain the following: Two jars of H_2 are collected "one burns quietly and the other does not".

1987

- 1. Write correctly the balanced equation for the following: 'When zinc filings are added to a concentrated solution of sodium hydroxide'.
- 2. Describe one chemical test applied to the following gases, which would enable you to distinguish between them: 'carbon monoxide and hydrogen'.

- 1. Write down the "word equation" for the following reaction: sodium hydroxide solution + zinc →
- 2. Explain briefly how hydrogen is manufactured on a large scale, from steam.

1989

1. State the products of the reaction "when steam is passed over red-hot iron".

1990

- 1. How can you obtain hydrogen from a mixture of hydrogen and carbon monoxide.
- 2. What do you observe when a piece of sodium is dropped into cold water?
- 3. Give reasons for the following: 'Though hydrogen is lighter than air, it is not collected by the downward displacement of air'.
- 4. Complete the following word equations:
 - i) Sodium hydroxide + zinc → hydrogen +
 - ii) Calcium + water → calcium hydroxide +

1991

1. How would you obtain 'hydrogen from sodium hydroxide' solution other than by electrolysis?

1992

- 2. What do the following symbols represent : 2H and H₂. [two atoms, molecule]

1993

- 1. Write balanced equation of the reaction in the preparation of : hydrogen from a solution of potassium hydroxide [other than by electrolysis].
- 2. Describe briefly, with equations, the Bosch Process for the large scale production of hydrogen.
- 3. Account for the following facts:
 - i] Though lead is above hydrogen in the activity series, it does not react with dilute hydrochloric acid or dilute sulphuric acid.

 [PbCl₂, PbSO₄ formed insoluble]
 - ii] Potassium and sodium are not used to react with dilute hydrochloric acid or dilute sulphuric acid in the laboratory preparation of hydrogen.

1994

- 1. Place the metals *calcium*, *iron*, *magnesium* and *sodium* in order of their activity with water, placing the most active first. Write the equation for each of the above metals which react with water.
- 2. Why is copper not used to prepare hydrogen by the action of dilute hydrochloric acid or dilute sulphuric acid on the metal. [copper [Cu] below hydrogen no reaction]

1995 [discontinued]

Downloaded from https://www.studiestoday.com **Additional Questions** State the electronic configuration of hydrogen [at. no. 1]. Give a reason why hydrogen can be placed in group 1 [IA] and group 17 [VIIA] of the periodic table. Give the general group characteristics applied to hydrogen with respect to similarity in properties of hydrogen with halogens of group 17 [VIIA]. alkali metals of group 1 [IA] with special reference to valency electrons & ion formation. How did the name 'hydrogen' originate. How does hydrogen occur in the combined state. Give balanced equations for obtaining hydrogen from cold water using -A divalent active metal A monovalent active metal Give balanced equations for obtaining hydrogen from -Boiling water using a divalent metal b] Steam using a trivalent metal Steam using a metal - and the reaction is reversible. State why hydrogen is not prepared in the laboratory by the action of -Sodium with cold water Calcium with dilute sulphuric acid b] Lead with dilute hydrochloric acid. Give balanced equations for the following conversions. Sodium zincate from zinc Sodium plumbite from lead b Sodium aluminate from aluminium. In the laboratory preparation of hydrogen from zinc and dil. acid. Give reasons for the following: The complete apparatus is air-tight. a Dilute nitric acid is not preferred as the reactant acid. c] The lower end of the thistle funnel should dip below the level of the acid in the flask." Hydrogen is not collected over air. 'Magnesium reacts with very dilute nitric acid at low temperatures liberating hydrogen.' Give reasons. 10. State the conditions and give balanced equations for the conversion of b] water gas to hydrogen - in the Bosch process. a] coke to water gas, 11. How are the unreacted gases separated out in 'Bosch process' in the manufacture of hydrogen. b] hydrogen-air mixture. 12. Compare the combustibility of -a] pure hydrogen 13. State the reactant added to hydrogen to obtain the respective product in each case. Hydrogen sulphide Water bl Hydrogen chloride Ammonia 14. State the use of hydrogen -

c] In extraction of metals

b] In hydrogenation of oil & coal

a] As a fuel

Q.1 Select from A to G the reactant added, to give the products 1 to 5, in the preparation of hydrogen gas. A: dilute acid, B: dilute alkali, C: cold water, D: conc. alkali, E: boiling water, F: conc. acid,

G: steam

[5]

1. $Ca(OH)_2 + H_2$ 2. $MgO + H_2$ 3. $Fe_3O_4 + H_2$ 4. $Al_2(SO_4)_3 + H_2$ 5. $NaAlO_2 + H_2$

Q.2 Give balanced equations for the following conversions, 1 to 5.

[5]

- $MgCl_2 \leftarrow HCl \rightarrow FeCl_2$.
- $KAIO_2 \leftarrow |KOH| \rightarrow$ $K_2 ZnO_2$.
- ZnO $H_2O \rightarrow Fe_3O_4$
- $H_2O \rightarrow CO_2 + H_2$ $CO + H_2 \leftarrow$
- → H₂S 5. NH₃ H_2

Q.3 Give reasons for the following.

- Nitric acid in the dilute form is not used in the laboratory preparation of hydrogen from metals.
- Granulated zinc is preferred to metallic zinc in the preparation of hydrogen using dilute acid. 2.
- Hydrogen and alkali metals of group 1 [IA] react with copper [II] oxide to give copper.
- Hydrogen is collected by the downward displacement of water and not air even though it is lighter than air.
- A mixture of hydrogen and chlorine can be separated by passage through a porous pot.

Q.4 Name the following.

[5]

- A metal below iron but above copper in the activity series of metals which has no reaction with water.
- A metal which cannot be used for the preparation of hydrogen using dilute acids.
- The salt formed when aluminium reacts with potassium hydroxide, during the preparation of hydrogen from alkalis.
- A metal which reacts with very dilute nitric acid at low temperatures liberating hydrogen.
- A compound formed between hydrogen and an element from group 17 [VIIA] period 3.

Q.5 Select the correct answer from the symbols in bracket.

[5]

- The element placed below hydrogen in group 1 [IA]. [Na, Li, K, F].
- The element other than hydrogen, which forms a molecule containing a single covalent bond. [Cl, N, O]
- The element, which like hydrogen has one valence electron. [He, Na, F, O]
- The element, which like hydrogen is a strong reducing agent. [Pb, Na, S, Cl] 4.
- 5. The element which forms a diatomic molecule. [C, Br, S, P]

The diagram represents the preparation & collection of hydrogen by a standard laboratory method. [5]

- State what is added through the thistle funnel 'Y'.
- State what difference will be seen if pure zinc is added in the distillation flask 'X' instead of granulated zinc.
- Name a solution which absorbs the impurity $-H_2S$.
- State why hydrogen is collected after all the air in the apparatus is allowed to escape.
- 5. Name a gas other than hydrogen collected by the same method.