

SCOPE OF SYLLABUS

Water as a compound and as a universal solvent; its physical and chemical properties.
Why is water considered a compound ? Chief physical properties should include: density, boiling point, melting point. Experiment to show that the water we drink, contains dissolved solids and dissolved gases (air): their significance. Solution as 'mixtures' of solids in water; saturated solutions; qualitative effect of temperature on solubility (e.g., solutions of calcium sulphate, potassium nitrate, sodium chloride in water).
Chemical Properties: The action of cold water on sodium and calcium; the action of hot water on magnesium and steam on iron; reversibility of reaction between iron and steam.
Students can be shown the action of sodium and calcium on water in the laboratory; they must be asked to make observations (equations for the above reactions) and form reactivity series based on reactions.

IMPORTANT POINTS TO REMEMBER

1. Water is indispensible for the survival of life on the earth. Approximately 80% of the earth's surface is covered by water. Water is the main part of all the living matter.
2. Water exists in all the three states of matter. In all three states water occurs in free form.
(i) Solid : Large amount of water is found in the form of ice or snow.
(ii) Liquid : In liquid state most of the water is present in sea, rivers, lake, ocean, ponds, streams, spring, etc. Water also occurs under the surface of earth called as ground water.
(iii) Gas : Mist, fog are examples of water in its gaseous form. It is also present as water vapours in the atmosphere.
3. In combined state water is present in carbohydrates, proteins, etc. as well as in the salts in the form of water of crystallisation. It is the definite number of water molecules which enters into loose chemical combination when the salt crystallises out of its saturated solution.
For example,

$$
\begin{aligned}
& \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}-\text { Blue vitriol (Hydrated copper sulphate) } \\
& \mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O} \text { - Green vitriol (Hydrated ferrous sulphate) }
\end{aligned}
$$

4. The salts containing water of crystallisation are called hydrated salts.
5. Hydrated salts on heating lose their water of crystallisation and become anhydrous.
6. Hydrated salts on heating lose their crystalline shape and colour. For example, hydrated copper sulphate on heating changes from blue to white and its crystalline shape changes to amorphous.

$$
\underset{\text { Blue }}{\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} \underset{\text { White }}{\mathrm{CuSO}_{4}}+5 \mathrm{H}_{2} \mathrm{O}}
$$

7. On heating a hydrated salt, water of crystallisation are given out in the form of steam and they condense on the upper cooler portion of the test-tube.
8. If water is added to an anhydrous compound, the anhydrous compound regains its original colour. For example, if water is allowed to drop over the white anhydrous copper sulphate, then it changes to blue.
9. A glass filled with ice is kept in atmosphere, water droplets condense on the outer cooler surface of glass. This experiment shows that water is present in our atmosphere.

10. In a beaker of 100 c.c, add 50 c.c of water. Over the beaker place the watch glass containing tap water and set the experiment as shown in the figure. Heat the contents of the beaker, the water starts boiling, the steam produced evaporates the water in the watch glass slowly. Continue heating till all the water in the watch glass completely evaporates. The watch glass is removed from the beaker, the concentric rings of solid material are seen on the watch glass. The rings are of salts which are present in dissolved form in water.

Concentric rings on the watch glass
11. Water is a compound of hydrogen and oxygen. It can be produced
(i) By burning of hydrogen in air :

Pure hydrogen burns in pure oxygen with pale blue flame to form the droplets of colourless liquid (water).

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

(ii) By burning of hydrocarbon in air :

Hydrocarbons burn in free supply of air or oxygen to form carbon dioxide and water vapour.

$$
\begin{aligned}
& \mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(iii) By the reduction of metallic oxides by hydrogen :

During these reactions, hydrogen gets oxidized to form water.

$$
\begin{aligned}
& \mathrm{CuO}+\mathrm{H}_{2} \longrightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{PbO}+\mathrm{H}_{2} \longrightarrow \mathrm{~Pb}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(iv) During the process of respiration :

Carbohydrates burn in the presence of oxygen to form carbon dioxide and water vapour with the liberation of energy.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+\text { Heat }
$$

12. The physical properties of water are :
(i) Water is colourless liquid.
(ii) Pure water has flat taste. However, the drinking water has the characteristic taste because of the presence of dissolved salts.
(iii) Boiling point of pure water is $100^{\circ} \mathbf{C}$. The constant temperature at which the liquid gets converted into its vapour state is called boiling point. If the pressure increases, then the boiling point also increases. If the pressure decreases the boiling point of water decreases. With an addition of impurity to water the boiling point increases.
(iv) Pure water freezes at $0^{\circ} \mathbf{C}$. The constant temperature at which the liquid gets converted into solid is called freezing point. On increasing pressure the freezing point of water decreases. With an addition of impurity to pure water there is depression in its freezing point.
(v) Pure water does not conduct electricity.
(vi) Water shows the anomalous behaviour. All matter expand on heating and contract on cooling, but water behaves abnormally, when heated or cooled between $0^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$.
(a) When cooled upto $4^{\circ} \mathrm{C}$ it contracts.
(b) On cooling it further starts expanding instead of contracting and keeps on expanding till $0^{\circ} \mathrm{C}$.
(c) Thus at $0^{\circ} \mathrm{C}$ water has maximum volume but minimum density.
(d) At $4^{\circ} \mathrm{C}$ pure water has minimum volume and maximum density.

This anomalous behaviour of water is important for the existence of aquatic life in cold countries. As water freezes into ice at $0^{\circ} \mathrm{C}$, ice being lighter than water floats on the surface. Water is present below ice where fish and other aquatic animals can easily survive.
(e) Water is a universal solvent as it has the capacity to dissolve the number of solute particles in it. Water is a polar covalent compound. It has a unique property of weakening the electrostatic forces of attraction in ionic compounds thus they rapidly dissolve in water.
(vii) The specific heat capacity of water is $\mathbf{1}$ calorie / ($\mathbf{g r a m}^{\circ} \mathbf{C}$). It is the amount of heat (measured in calories) required to raise the temperature of one gram of a substance by one degree celsius.
(viii) The specific latent heat of fusion is the amount of heat needed to convert 1 kg of ice to water at its melting point without change in its temperature. The specific latent heat of fusion for ice is $\mathbf{8 0 ~ k c a l} / \mathrm{kg}$ or $\mathbf{3 3 3 . 5 5} \mathbf{~ J} / \mathrm{g}$.
(ix) The specific latent heat of vaporization of water is $540 \mathrm{cal} / \mathrm{g}$ or $2268 \mathrm{~J} / \mathrm{g}(1 \mathrm{cal}=4.2 \mathrm{~J})$. It is the amount of heat required to change 1 g of water to steam at its boiling point without change in its temperature.
13. The solubility of gases in a liquid decreases with rise in temperature and increases with the fall in temperature.
14. On increasing the pressure on the surface of liquid at any temperature, the solubility of gas increases which is in accordance with Henry's law. It states that "At any given temperature, the mass of gas dissolved in fixed volume of liquid is directly proportional to the pressure of the surface of the liquid".
15. The chemical properties of water are
(i) Action towards litmus : Pure water is neutral towards litmus, i.e., it neither turns red litmus to blue nor blue litmus to red.
(ii) Stability : Water is a stable compound. It does not break into its elements when heated in ordinary conditions. However if electric current is passed through acidified water, it
decomposes to give hydrogen at cathode and oxygen at anode in the ratio of $2: 1$ respectively by volume.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& \mathrm{HCl} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Cl}^{-}
\end{aligned}
$$

At Cathode

$$
\begin{aligned}
& \mathrm{H}^{+}+e^{-} \longrightarrow[\mathrm{H}] \\
& 2[\mathrm{H}] \longrightarrow \mathrm{H}_{2}
\end{aligned}
$$

At Anode

$$
\begin{aligned}
& \mathrm{OH}^{-}-e^{-} \longrightarrow \mathrm{OH} \\
& 4[\mathrm{OH}] \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
\end{aligned}
$$

(iii) In many chemical reactions, water acts as a catalyst like

$$
\begin{aligned}
& \mathrm{H}_{2}+\mathrm{Cl}_{2} \xrightarrow[\text { moisture }]{\text { sunlight }} 2 \mathrm{HCl} \\
& 4 \mathrm{P}+5 \mathrm{O}_{2} \xrightarrow[\text { moisture }]{\Delta} 2 \mathrm{P}_{2} \mathrm{O}_{5}
\end{aligned}
$$

(iv) Reaction with metals:

(a) Reaction of cold water with sodium and potassium. When sodium or potassium is dropped into a trough of cold water it reacts explosively and forms its respective hydroxide with the liberation of hydrogen gas.

$$
\begin{aligned}
& 2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \\
& 2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}
\end{aligned}
$$

When both of these metals are placed in water, they melt and form a silvery ball. As these metals are lighter than water therefore they float on the surface of water and starts moving in a zig-zag manner. Tiny bubbles of hydrogen gas are evolved and the metals catch fire. If it is sodium, then it burns with golden yellow flame and if it is potassium it burns with violet or lilac colouration. The solution left behind after the reaction is soapy to touch and turns red litmus to blue showing that it is alkaline in nature.
(b) Reaction with magnesium, zinc and aluminium.

$$
\begin{aligned}
& \mathrm{Mg}+\underset{\text { steam }}{\mathrm{H}_{2} \mathrm{O}} \longrightarrow \mathrm{MgO}+\mathrm{H}_{2} \\
& \mathrm{Zn}+\underset{\text { steam }}{\mathrm{H}_{2} \mathrm{O}} \longrightarrow \mathrm{ZnO}+\mathrm{H}_{2} \\
& 2 \mathrm{Al}+\underset{\text { steam }}{3 \mathrm{H}_{2} \mathrm{O}} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2}
\end{aligned}
$$

(c) Reaction with iron.

$$
\underset{\text { heated }}{3 \mathrm{Fe}}+\underset{\text { steam }}{4 \mathrm{H}_{2} \mathrm{O}} \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}
$$

(d) Metals present below hydrogen in the metal activity series do not displace hydrogen from water, e.g., copper, silver, gold, etc. Mercury does not react with water even under drastic conditions.
(v) Reaction with soluble basic oxides:

Soluble basic oxides dissolve in water to give respective soluble bases called alkalies which turn red litmus blue.

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH} \\
& \mathrm{~K}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{KOH} \\
& \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{\text { sparingly soluble in water }}{ } \text { Ca(OH) }
\end{aligned}
$$

(vi) Reaction with acidic oxides:

Acidic oxides are also called acid anhydrides. On dissolving in water they produce acids which turn blue litmus red.

$$
\begin{aligned}
& \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{\text { Carbonic acid }}{\mathrm{H}_{2} \mathrm{CO}_{3}} \\
& \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{\text { Sulphurous acid }}{\mathrm{H}_{2} \mathrm{SO}_{3}} \\
& \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{\text { Sulphuric acid }}{\mathrm{H}_{2} \mathrm{SO}_{4}} \\
& \mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{\text { Phosphoric aci }}{2 \mathrm{H}_{3} \mathrm{PO}_{4}} \\
& \underset{\substack{\text { Mixed } \\
\text { anhydride }}}{2 \mathrm{NO}_{2}}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{\begin{array}{c}
\text { Nitrous } \\
\text { acid }
\end{array}}{\mathrm{HNO}_{2}}+\underset{\substack{\text { Nitric } \\
\text { acid }}}{\mathrm{HNO}_{3}}
\end{aligned}
$$

(vii) Reaction with non-metals:

(a) Reaction with carbon.

When superheated steam is passed over white hot coke, an endothermic reaction takes place with the formation of equi-volume mixture of carbon monoxide and hydrogen called water gas is obtained.

$$
\underset{\begin{array}{l}
\text { White } \\
\text { hot coke }
\end{array}}{\mathrm{C}}+\underset{\begin{array}{c}
\text { Superheated } \\
\text { steam }
\end{array}}{\mathrm{H}_{2} \mathrm{O}} \longrightarrow \underbrace{\mathrm{CO}+\mathrm{H}_{2}}_{\text {Water gas }}
$$

(b) Reaction with chlorine.

When chlorine is passed through water in dark, it forms a greenish yellow solution called chlorine water. When chlorine water is exposed to sunlight, the following changes occur-
(i) Greenish yellow chlorine water decolourises.
(ii) A colourless and odourless gas evolves which relights the glowing splinter.

$$
\begin{aligned}
& \underset{\text { Chlorine }}{\mathrm{Cl}_{2}}+\mathrm{H}_{\text {Water }} \mathrm{O} \xrightarrow{\text { dark }} \underbrace{\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}}_{\begin{array}{c}
\text { Chlorine water } \\
\text { (Grenish yellow } \\
\text { solution) }
\end{array}} \\
& \underbrace{\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}}_{\begin{array}{c}
\text { Chlorine water } \\
\text { (Grenish yellow } \\
\text { solution) }
\end{array}} \xrightarrow[\text { sunlight }]{\text { siffused }} \mathrm{HCl}+\mathrm{HOCl} \\
& \mathrm{HOCl} \xrightarrow{h \nu} \mathrm{HCl}+[\mathrm{O}] \\
& 2[\mathrm{O}] \longrightarrow \mathrm{O}_{2} \\
& 2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { sunlight }]{\text { direct }} 4 \mathrm{HCl}+\mathrm{O}_{2}
\end{aligned}
$$

16. Water is a colourless liquid which can be tested as follows :
(i) It turns anhydrous copper sulphate from white to blue.

$$
\underset{\text { White }}{\mathrm{CuSO}_{4}}+5 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}
$$

(ii) It turns anhydrous cobalt chloride from blue to pink.

$$
\underset{\text { Blue }}{\mathrm{CoCl}_{2}}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}
$$

17. A solution is a homogeneous mixture of solute and solvent.
18. Homogeneous mixture has uniform composition and properties in its every part.
19. During the formation of the solution, the solute and solvent do not undergo any chemical reaction. Only a physical change takes place and the process of the disappearance of solute in a solvent is called dissolution.
20. Dissolution of sugar (solute) in water (solvent) leads to the formation of true solution. Its properties are
(i) A true solution is homogeneous in nature.
(ii) The particles of true solution can easily pass through the filter paper.
(iii) The particles of true solution does not settle down under the influence of gravity.
(iv) The components of true solution (i.e., solute and solvent) can be easily separated by simple physical means (evaporation, distillation, etc.)
(v) The particles of true solution cannot be seen with the help of microscope.
21. A liquid component which allows the solid to dissolve in it is called solvent.
22. A solid component which dissolves in liquid (solvent) is called solute.
23. In a solution, the quantity of solute and solvent can be changed and on the basis of this the solutions are divided in two categories.
(i) Dilute solution : If the proportion of solute is relatively very small as compared to the quantity of the solvent, then the solution is called dilute solution.
(ii) Concentrated solution: If the proportion of solute is relatively large as compared to the quantity of solvent, then it is called concentrated solution.
24. Solution can also be classified on the basis of their solubility, i.e., depending upon the amount of solute that dissolves in a given solvent.
(i) Unsaturated solution : If more solute can be dissolved in a solvent at a particular temperature, then the solution is called unsaturated solution.
(ii) Saturated solution : If no more solute can be dissolved in a solvent at a particular temperature, then the solution is called saturated solution.
(iii) Supersaturated solution : If the solution contains more of the solute, then the saturated solution at a particular temperature is called supersaturated solution.
25. The amount of solute that dissolves in 100 g of solvent to form saturated solution at a particular temperature is called solubility.
26. The solubility of a substance depends upon the following factors :
(i) Temperature : Generally the solubility of a substance increases with the increase in temperature.
(ii) Size of solute particle : Smaller the size of solute particle greater is the solubility.
(iii) Nature of solvent : Ionic compounds easily dissolve in water whereas organic compounds are insoluble in water but soluble in organic solvents like benzene, ether etc (like dissolves like).
27. A graph between solubility of a solid and temperature is called as solubility curve.

The uses of solubility curves are :
(i) Solubilities of different substances at a particular temperature can be recorded and compared.
(ii) To find the solubility of a given substance at a particular temperature.
28. The solubility curves of calcium sulphate, potassium nitrate and sodium chloride are given below in graph. The curves indicates

(i) Calcium sulphate: There is a decrease in solubility (after a certain temperature) with further rise in temperature.
(ii) Sodium chloride : There is a negligible increase in the solubility of sodium chloride with rise in temperature.
(iii) Potassium nitrate : Solubility increases with the rise in temperature.
29. Hydrated salts when left exposed to atmosphere lose their water of crystallisation and crumble down to form powder such salts are called efflorescent salts and the property as efflorescence, e.g.,

Washing soda $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O} \quad$ Glauber's salt $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$.
30. Certain salts when left exposed to atmosphere absorb moisture and get converted into their saturated solution. Such salts are called deliquescent salts and the property as deliquescence, e.g., ferric chloride, magnesium chloride.
31. Certain substances when left exposed to atmosphere absorb moisture from the air and become wet. Such substances are called hygroscopic substances and the property is known as hygroscopy. Hygroscopic substances are also called drying agents.
e.g., phosphorus pentaoxide, conc. sulphuric acid, anhydrous calcium chloride.
32. The solids bounded by the plane surfaces directed at definite angles and having definite geometrical shapes are called crystals.
33. The solids which are not essentially homogeneous and are not bounded by the plane surfaces at definite angles to one another and do not have definite geometrical shapes are called amorphous solids.
34. The process of separating out the crystals from the hot saturated solution on cooling it slowly is called crystallisation.
35. For the formation of crystals, the hot saturated solution must be cooled slowly. If rapid cooling is done then the amorphous solid settles at the base instead of crystals.
36. Water plays a vital role in different animals and plant processes.

IMPORTANT QUESTIONS

Q1. Give reasons why
(i) Common salt becomes wet during rainy season.
(ii) The level of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the jar increases when exposed to atmosphere.
(iii) Washing soda loses its weight when exposed to atmosphere.
(iv) Copper does not react with water even when strongly heated.
(v) Ferric chloride is stored in airtight bottles.
Ans. (i) Common salt which is chemically sodium chloride contains the impurities of magnesium chloride which is deliquescent (when exposed to atmosphere, absorbs moisture and gets converted to saturated solution). Therefore common salt becomes wet during rainy season. Sodium chloride is neither hygroscopic nor deliquescent.
(ii) Conc. sulphuric acid is highly hygroscopic in nature, therefore, when exposed to atmosphere it absorbs moisture thus the level of sulphuric acid in the jar increases.
(iii) Washing soda is an efflorescent salt (when exposed to atmosphere loses water of crystallisation and crumbles down to form powder) thus, it loses weight when exposed to atmosphere.
(iv) Copper is lying below hydrogen in the metal activity series therefore it does not displace hydrogen from water.
(v) Ferric chloride is highly deliquescent in nature, i.e., when exposed to atmosphere absorbs moisture and gets converted into its saturated solution therefore it should be stored in airtight bottles.
Q2. State which salts increase in weight, decrease in weight or remain same when exposed to atmosphere.
(i) Washing soda
(ii) Glauber's salt
(iii) Soda ash
(iv) Sodium chloride
(v) Magnesium chloride
(vi) Sodium hydroxide
(vii) Ferric chloride
(viii) Green vitriol
(ix) Conc. sulphuric acid
(x) Common salt

Ans.
(i) Decreases
(ii) Decreases
(iii) Remains same
(v) Increases
(vii) Increases
(ix) Increases
(iv) Remains same
(vi) Increases
(viii) Decreases
(x) Increases.

Q3. Name the following :
(i) Two metals which react vigorously with cold water.
(ii) A metal that reacts reversibly with steam.
(iii) A metal that does not react with water under any condition.
(iv) A compound made by the chemical combination of highly combustible gas and a gas which is supporter of combustion.
(v) The gas used during the process of photosynthesis.
(vi) The gas liberated during the process of photosynthesis.
(vii) Anhydride of sulphuric acid.
(viii) Two metals which react with water to form alkalies.
(ix) A metal which burns with golden yellow flame.
(x) A metal which burns with violet flame.
(xi) A metallic oxide which exists in liquid state at room temperature.
Ans. (i) Sodium and potassium
(ii) Iron
(iii) Copper or silver or gold
(iv) Water
(v) Carbon dioxide
(vi) Oxygen
(vii) Sulphur trioxide
(viii) Sodium and potassium
(ix) Sodium
(x) Potassium
(xi) Water.

Q4. Name the class of compounds formed when the following react with water.
(i) Non-metallic oxides
(ii) Metallic oxides.

Ans. (i) Acids
(ii) Bases or alkalies.

Q5. Gas ' A ' is a colourless gas which is produced by the reaction of active metals with dilute HCl . Gas ' B ' is produced by the action of heat on potassium chlorate. Gas ' A ' undergoes reaction with ' B ' and forms colourless liquid ' \mathbf{C} '.
(i) Identify A, B and C.
(ii) Give balanced chemical equation for the formation of liquid ' C ' from ' A ' and ' B '.
(iii) Give two tests to identify liquid ' C '.
(iv) Give balanced chemical equations for the reaction of ' C ' with
(a) Sulphur dioxide
(b) Sodium oxide
(c) Ammonia
(d) Carbon dioxide
(e) Potassium oxide.

Ans. (i) A - Hydrogen
B - Oxygen
C - Water
(ii) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
(iii) Liquid ' C ' can be tested by the following two ways :
(a) It turns anhydrous copper sulphate from white to blue.
(b) It turns anhydrous cobalt chloride from blue to pink.
(iv) (a) $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
Sulphurous acid
(b) $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
$\longrightarrow 2 \mathrm{NaOH}$
Sodium hydroxide
(c) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$

Ammonium hydroxide
(d) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(e) $\mathrm{K}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$

$\longrightarrow 2 \mathrm{KOH}$
Potassium hydroxide
Q6. How will you prepare the following from water?
(i) Water gas
(ii) Hydrogen
(iii) Acid
(iv) Alkali.

Ans. (i) $\underset{\begin{array}{c}\text { White } \\ \text { hot coke }\end{array}}{\mathrm{C}}+\underset{\begin{array}{c}\text { Superheated } \\ \text { steam }\end{array}}{\mathrm{H}_{2} \mathrm{O}} \longrightarrow \underbrace{\mathrm{CO}+\mathrm{H}_{2}}_{\text {Water gas }}$
(ii) $\mathrm{Mg}+\underset{\text { steam }}{\mathrm{H}_{2} \mathrm{O}} \longrightarrow \mathrm{MgO}+\mathrm{H}_{2}$

$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
heated steam
(iii) Non-metallic oxide + Water \longrightarrow Acid

$$
\begin{gathered}
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \\
\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3} \\
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \\
\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}
\end{gathered}
$$

(iv) Metallic oxide + Water \longrightarrow Alkali

$$
\begin{aligned}
\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} & \longrightarrow 2 \mathrm{NaOH} \\
\mathrm{~K}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} & \longrightarrow 2 \mathrm{KOH} \\
\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} & \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}
\end{aligned}
$$

Q7. What are drying agents? Name the drying agents for the following gases.
(i) Chlorine
(ii) Hydrogen chloride
(iii) Ammonia
(iv) Sulphur dioxide

Ans. The substances which easily absorb moisture from the other substances are called drying agents.

Name of the gas	Drying agent
(i) Chlorine	Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(ii) Hydrogen chloride	Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(iii) Ammonia	CaO
(iv) Sulphur dioxide	Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Q8. Give two differences between deliquescent substances and hygroscopic substances.
Ans. Differences :

Deliquescent substances	Hygroscopic substances
(i) These are solids, crystalline in nature. (ii) They absorb moisture from the atmosphere and dissolve in it to form saturated solution.	(i) They may be crystalline solids or liquids. (ii) They absorb moisture from the atmosphere and become wet (in case of solids) but do not form saturated solution.

Q9. Name the following salts.
(i) A decahydrated crystalline salt.
(ii) Anhydrous crystalline salt of potassium which is purple in colour.
(iii) A hydrated crystalline salt which is green in colour.
(iv) A pentahydrated crystalline salt which is blue in colour.
(v) Salt which is commonly called sal ammoniac.
(vi) Salt commonly called soda ash.

Ans.
(i) Washing soda
$\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
(ii) Potassium permanganate
KMnO_{4}
(iii) Hydrated ferrous sulphate or green vitriol $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(iv) Hydrated copper sulphate or blue vitriol
$\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
(v) Ammonium chloride
$\mathrm{NH}_{4} \mathrm{Cl}$
(vi) Sodium carbonate
$\mathrm{Na}_{2} \mathrm{CO}_{3}$

Q10. How can a saturated solution be converted into unsaturated solution?
Ans. A saturated solution is converted to unsaturated solution by the following two ways:
(i) By adding solvent.
(ii) By heating the solution or by increasing temperature.
Q11. What is the effect of increasing and decreasing temperature on the solubility of the gas in a liquid?
Ans. On increasing the temperature the solubility of gas in a liquid decreases whereas on decreasing temperature the solubility of a gas in liquid increases. This shows that the solubility of a gas in a liquid is inversely proportional to temperature.
Q12. What is the effect of increasing and decreasing pressure on the solubility of the gas in a liquid?
Ans. On increasing pressure the solubility of a gas in a liquid increases whereas on decreasing pressure the solubility of a gas in a liquid decreases. This shows the mass of a given volume of gas which dissolves in liquid at constant temperature is directly proportional
to the pressure on the surface of the liquid and thus in accordance with Henry's law.
Q13. Name the solvents for the following solutes:
(i) Potassium nitrate (ii) Rust
(iii) Iodine
(iv) Phosphorus
(v) Sulphur
(vi) Grease
(vii) Nail polish
(viii) Alcohol
(ix) Paint
(x) Chlorophyll.

Ans. (i) Water
(ii) Oxalic acid
(iii) Ethyl alcohol
(iv) Carbon disulphide
(v) Carbon disulphide
(vi) Petrol
(vii) Acetone
(viii) Water
(ix) Turpentine oil
(x) Methylated spirit.

Q14. Define the following :
(i) Solution
(ii) Melting point
(iii) Boiling point.

Ans. (i) Solution :
The homogeneous liquid mixture of solute and solvent is called solution.
(ii) Melting point :

The constant temperature at which solid gets converted into its liquid.
(iii) Boiling point :

The constant temperature at which liquid gets converted into its vapour state.
Q15. Name the products formed when hydrocarbons are burnt in sufficient quantity of oxygen.
Ans. Carbon dioxide and water vapour.
Q16. Why the salt content in the cooked vegetable remains the same, whether the cooked food is hot or cold?
Ans. The salt mainly used for cooking purpose is common salt (NaCl) and its solubility does not change with temperature.

LET'S RECALL

Fill Your Answer in the Space Given for Each Question.

Q1. Match the following :
Column I
(Acid)
(i) Sulphuric acid
(ii) Phosphoric acid
(iii) Carbonic acid
(iv) Sulphurous acid
(v) Formic acid

Column II

(Acid anhydride)
(a) Phosphorus pentaoxide
(b) Carbon monoxide
(c) Sulphur dioxide
(d) Sulphur trioxide
(e) Carbon dioxide

(iv)

(v)

Q2. Fill in the blanks.

(i) At $0^{\circ} \mathrm{C}$ water has \qquad volume but \qquad density.
(ii) At $4^{\circ} \mathrm{C}$ pure water has \qquad volume and \qquad density.
(iii) If electric current is passed through acidified water \qquad is obtained at cathode and
\qquad is obtained at anode in the ratio of \qquad by volume.
(iv) Water turns \qquad from white to \qquad .
(v) Water turns \qquad from \qquad to pink.
(vi) Pure water boils at \qquad and freezes at \qquad .
(vii) Water gas is equivolume mixture of \qquad and \qquad . (viii) \qquad solids lack definite geometrical shape.
(ix) On increasing temperature the solubility of a gas in a liquid \qquad .
(x) Acid anhydrides are also called \qquad .
Q3. State whether the following statements are True or False.
(i) The formation of solution is a physical change.
(ii) Sodium reacts moderately with cold water.
(iii) Copper displaces hydrogen from dilute acids.
(iv) Sodium chloride is a deliquescent salt.
(v) Sodium oxide dissolves in water.

Q4. Each question has four options out of which only one option is correct. Dark the bubble for correct answer.
(i) Chlorine reacts with water in the presence of sunlight to liberate
(a) hydrogen
(b) hydrogen chloride gas
(c) ammonia
(d) oxygen

Ans.

(ii) The homogeneous mixture of solute and solvent is called
(a) solution
(b) salt
(c) mixture
(d) compound

Ans.

(iii) The effect of temperature on the solubility of a gas in a liquid is governed by
(a) Boyle's law
(b) Charles' law
(c) Henry's law
(d) Avogadro's law

Ans.

(iv) The burning of hydrocarbon in air produces
(a) CO_{2} and H_{2}
(b) CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
(c) CO only
(d) CO_{2} only

Ans.

(v) Ferric chloride is a
(a) deliquescent salt
(b) efflorescent salt
(c) hygroscopic in nature
(d) None of these

Ans.

Q5. Complete and balance the following equations.

1. (i) d
(ii) a
(iii) e
(iv) c
(v) b
2. (i) maximum, minimum
(ii) minimum, maximum
(iii) hydrogen, oxygen, $2: 1$
(iv) anhydrous copper sulphate, blue
(v) anhydrous cobalt chloride, blue
(vi) $100^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$
(vii) $\mathrm{CO}, \mathrm{H}_{2}$ (viii) amorphous
(ix) decreases
(x) acidic oxides
3. (i) True
(ii) False
(iii) False
(iv) False
(v) True
4. (i) d
(ii) a
(iii) c
(iv) b
(v) a
5. (i)

$$
\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { sunlight }]{\text { diffused }} \mathrm{HCl}+\mathrm{HOCl},
$$

$$
\mathrm{HOCl} \longrightarrow \mathrm{HCl}+[\mathrm{O}],
$$

$$
2[\mathrm{O}] \longrightarrow \mathrm{O}_{2}
$$

(ii) $2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { sunlight }]{\text { direct }} 4 \mathrm{HCl}+\mathrm{O}_{2}$
(iii) $3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
(iv) $\mathrm{K}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{KOH}$
(v) $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{ZnO}+\mathrm{H}_{2}$
(vi) $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
(vii) $\quad 4 \mathrm{P}+5 \mathrm{O}_{2} \longrightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5}$
(viii) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(ix) $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
(x) $2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Self Evaluation Test

Q1. State Henry's law.
Q2. Define solubility.
Q3. Give equations for the reactions taking place at cathode and at anode during the electrolysis of acidulated water.
Q4. How boiling point and freezing point of pure water are affected on addition of impurity?
Q5. Name the products formed when the following are dissolved in water.
(a) Metallic oxide
(b) Non-metallic oxide

Q6. Give two equations for the formation of water from hydrogen other than by burning.
Q7. Define the following .
(i) Efflorescence
(ii) Deliquescence
(iii) Hygroscopy
(iv) Water of crystallization
(v) Anhydrous

Q8. What do you observe when
(i) neutral litmus solution is added to pure water?
(ii) crystals of copper sulphate are heated?
(iii) chlorine water is exposed to sunlight?
(iv) water droplets are added to anhydrous cobalt chloride ?
(v) sodium piece is added to cold water?
Q9. Name the following.
(i) A mixed anhydride.
(ii) A fuel having very high calorific value and is a mixture.
(iii) A greenish yellow coloured gas.
(iv) A blue crystalline salt which on heating changes to white.
(v) The process of separating crystals from its hot saturated solution.

Q10. Define with examples.
(a) Saturated solution.
(b) Unsaturated solution.
(c) Supersaturated solution.

