CONSTRUCTIONS

(Using ruler and compasses only)

28.1 CONSTRUCTION OF AN ANGLE

1. To construct an angle equal to given angle.

Let the given angle be $\angle A B C$ as shown alongside and we have to construct another angle (say, $\angle D E F$) equal to $\angle A B C$.

Steps :

1. Draw a line segment $E F$ of any suitable size.
2. With B as centre, draw an arc of any suitable radius which cuts $A B$ at point P and $B C$ at point Q.
3. With E as centre and the same radius as taken in step 2, draw an arc which cuts EF at point R.
4. With R as centre and radius equal to $P Q$, draw an arc which cuts the previous arc at point S .
5. Join E and S , and produce upto point D . $\angle D E F$ so obtained is equal to $\angle A B C$.
6. To draw the bisector of a given angle.

Let the given angle be $\angle A B C$ whose bisector is to be drawn.

Steps :

1. With B as centre, draw an arc of any suitable radius which cuts $A B$ at point D and $B C$ at point E.
2. Taking D and E as centres, draw arcs of equal radii and let these arcs cut each other at point O .

The radii of these arcs must be more than half the distance between points D and E .
3. Join $B O$ and produce upto point P.
$\therefore B P$ is the required bisector of $\angle A B C$.
Thus, $\angle A B P=\angle P B C=\frac{1}{2} \angle A B C$.
3. Construction of angles of $60^{\circ}, 30^{\circ}, 90^{\circ}$ and 45°.

1. Construction of angle of 60° :

Steps :

1. Draw a line segment $B C$ of any suitable length.
2. With B as centre, draw an arc of any suitable radius which cuts BC at point D .

3. With D as centre and the same radius as taken in step 2, draw one more arc which cuts the previous arc at point E .
4. Join $B E$ and produce upto any point A.
$\therefore \angle A B C$ so obtained is of 60° i.e. $\angle A B C=60^{\circ}$.

2. Construction of angle of 30° :

Steps :

1. Draw angle $A B C=60^{\circ}$.
2. Draw $B P$, the bisector of $\angle A B C$.

$$
\therefore \angle \mathrm{PBC}=\frac{1}{2} \angle \mathrm{ABC}=\frac{1}{2} \times 60^{\circ}=30^{\circ}
$$

3. Construction of angle of 90° :

Steps :

1. Draw a line segment $B C$ of any suitable length.
2. Taking B as centre, draw an arc of any suitable radius, which cuts $B C$ at point D.
3. With D as centre and the same radius, as taken in step 2, draw an arc which cuts previous arc at point E.
4. With E as centre and the same radius, draw one
 more arc which cuts the first arc at point F.
5. With E and F as centres and radii equal to more than half the distance between E and F, draw arcs which cut each other at point P.
6. Join BP and produce upto any point A.
$\therefore \angle A B C$ so obtained is of 90° i.e. $\angle A B C=90^{\circ}$.
Since, $\angle A B C=90^{\circ} \Rightarrow A B$ and $B C$ are perpendicular to each other.

4. Construction of angle of 45° :

Steps :

1. Draw a line segment $B C$ of any suitable length.
2. Construct angle $O B C=90^{\circ}$.
3. Draw $B A$, the bisector of angle $O B C$.
$\therefore \angle A B C$ so obtained is the angle of 45°.

Since, $B A$ is bisector of angle $O B C, \angle A B C=\angle A B O=\frac{90^{\circ}}{2}=45^{\circ}$.

Example 1:

Given below are the two angles x and y. Construct an angle ABC such that :

(ii) $\angle A B C=2 x+y$

(i)

Steps :

As shown above :

1. Draw line segment $B C$ of any suitable length.
2. With B as centre, draw an arc of any suitable radius. With the same radius, draw arcs with the vertices of given angles as centres. Let these arcs cut arms of the angle x at points P and Q, and arms of the angle y at points R and S.
3. From the arc, with centre B, cut $D E=P Q=x$ and $E F=S R=y$.
4. Join $B F$ and produce upto point A.

Thus, $\angle A B C=x+y$
(ii)

Proceed in exactly the same way as in part (i) taking $D E=P Q=x, E F=P Q=x$ and $\mathrm{FG}=\mathrm{RS}=\mathrm{y}$.
Thus, $\angle A B C=x+x+y=2 x+y$

EXERCISE 28 (A)

1. Given below are the angles x and y.

Without measuring these angles, construct :
(i) $\angle A B C=x+y$
(ii) $\angle A B C=2 x+y$
(iii) $\angle A B C=x+2 y$
2. Given below are the angles x, y and z.

Without measuring these angles construct : (i) $\angle A B C=x+y+z$
(ii) $\angle A B C=2 x+y+z$
(iii) $\angle A B C=x+2 y+z$
3. Draw a line segment $B C=4 \mathrm{~cm}$. Construct angle $A B C=60^{\circ}$.
4. Construct angle $A B C=45^{\circ}$ in which $B C=5$ cm and $A B=4.6 \mathrm{~cm}$.
5. Construct angle $A B C=90^{\circ}$. Draw $B P$, the bisector of angle $A B C$. State, the measure of angle PBC.
6. Draw angle $A B C$ of any suitable measure.
(i) Draw BP , the bisector of angle ABC .
(ii) Draw BR, the bisector of angle PBC and draw $B Q$, the bisector of angle $A B P$.
(iii) Are the angles $A B Q, Q B P$, PBR and RBC equal ?
(iv) Are the angles ABR and QBC equal ?

4. Construction of bisector of a line segment.

Steps :

1. Draw the given line segment and represent it by BC.
2. At B, construct angle PBC of any suitable measure and at C, construct angle QCB equal to angle PBC.
i.e. $\angle \mathrm{PBC}=\angle \mathrm{QCB}$.
3. From $B P$, cut $B R$ of any suitable length and from $C Q$, cut $C S=B R$.
4. Join R and S.

5. Let $R S$ cut the given line segment $B C$ at point O.

Thus, $R S$ is a bisector of $B C$ such that $O B=O C=\frac{1}{2} B C$.

Alternative method :

Steps :

1. Draw BC.
2. With B as centre, and radius equal to more than half of $B C$, draw arcs on both the sides of $B C$.
3. With C as centre and with the same radius as taken in step 2, draw arcs on both the sides of BC.
4. Let the arcs intersect each other at points P and Q.
5. Join P and Q.

6. The line $P Q$ cuts the given line segment $B C$ at point O.

Thus, $P Q$ is a bisector of $B C$ such that $O B=O C=\frac{1}{2} B C$.
5. Construction of perpendicular bisector of a line segment.

Steps :

1. Draw the given line segment and represent it by BC.
2. Now proceed in exactly the same way as in alternative method of construction 4 , given above.
In this construction, the line PQ bisects the given line segment $B C$ and is perpendicular to it.
i.e. $\mathrm{OB}=\mathrm{OC}$ and $\angle \mathrm{POC}=90^{\circ}$.

Hence, $P Q$ is perpendicular bisector of $B C$.
6. Construction of perpendicular to a line.

1. To construct the perpendicular to a line at a given point in it :

Let P be the given point in the given line $A B$.

Steps :

1. With P as centre, draw an arc with a suitable radius which cuts $A B$ at points C and D.
2. Taking C and D as centres, draw arcs of equal radii which cut each other at point O.

The radius must be more than half the distance between C and D .
3. Join P and O

Then, $O P$ is the required perpendicular.
So, $\angle \mathrm{OPA}=\angle \mathrm{OPB}=90^{\circ}$
2. To construct the perpendicular to a line from an external point :

Let P be the given external point of line $A B$.

Steps :

1. With P as centre, draw an arc of a suitable radius which cuts $A B$ as points C and D.
2. With C and D as centres, draw arcs of equal radii and let these arcs intersect each other at point Q.

The radius of these arcs must be more than half of CD and both the arcs must be drawn on the other side.

3. Join P and Q.
4. Let $P Q$ cut $A B$ at point O.

Thus, OP is the required perpendicular.
Clearly, $\angle A O P=\angle B O P=90^{\circ}$
EXERCISE 28 (B)

1. Draw a line segment $A B$ of length 5.3 cm . Using two different methods bisect $A B$.
2. Draw a line segment $P Q=4.8 \mathrm{~cm}$.

Construct the perpendicular bisector of PQ .
3. In each of the following, draw a perpendicular through point P to the line segment $A B$:
(i)
. P

(ii)
(iii)

4. Draw a line segment $A B=5.5 \mathrm{~cm}$. Mark a point P, such that $P A=6 \mathrm{~cm}$ and $P B=4.8 \mathrm{~cm}$. From the point P, draw a perpendicular to $A B$.
5. Draw a line segment $A B=6.2 \mathrm{~cm}$. Mark a point P in $A B$ such that $B P=4 \mathrm{~cm}$. Through point P draw a perpendicular to $A B$.

7. Constructions of Parallel Lines.

1. To construct a line parallel to a given line and passing through a given point :

Let the given line be $A B$ and the given point be P.
First Method : (By drawing alternate angles)

Steps :

1. Take any point Q in line $A B$ and join it with the given point P.
2. At point P, construct $\angle \mathrm{CPQ}=\angle \mathrm{PQB}$.
3. Produce CP upto any point D.

Thus, CPD is the required parallel line.

Alternative method : (By drawing corresponding angles)

Steps:

1. Join QP and produce it to any point R.
2. At P, construct $\angle R P D=\angle P Q B$.
3. Produce DP upto any point C.

Thus, CPD is the required parallel line.

2. To construct a line parallel to a given line at a given distance from it :

Steps:

1. At any point P in line $A B$, draw $P Q$ perpendicular to $A B$.
2. With P as centre and radius equal to 3.6 cm , draw an arc which cuts PQ at point R.
3. At point R, draw RD perpendicular to $P Q$.
4. Produce DR upto any point C.

Then, $C D$ is the required parallel line.

EXERCISE 28 (C)

1. Draw a line $A B=6 \mathrm{~cm}$. Mark a point P any where outside the line $A B$. Through the point P, construct a line parallel to $A B$.
2. Draw a line $M N=5.8 \mathrm{~cm}$. Locate a point A which is 4.5 cm from M and 5 cm from N . Through A draw a line parallel to line MN.
3. Draw a straight line $A B=6.5 \mathrm{~cm}$. Draw another line which is parallel to $A B$ at a distance of 2.8 cm from it.
4. Construct an angle $\mathrm{PQR}=80^{\circ}$. Draw a line parallel to $P Q$ at a distane of 3 cm from it and
another line parallel to QR at a distance of 3.5 cm from it. Mark the point of intersection of these parallel lines as A.
5. Draw an angle $\mathrm{ABC}=60^{\circ}$. Draw the bisector of it. Also draw a line parallel to BC a distance of 2.5 cm from it.
Let this parallel line meet $A B$ at point P and angle bisectors at point Q. Measure the length of $B P$ and $P Q$. Is $B P=P Q$?
6. Construct an angle $A B C=90^{\circ}$. Locate a point P which is 2.5 cm from $A B$ and 3.2 cm from BC.

8. Construction of Scalene Triangles.

1. When lengths of its three sides are given :

Let the lengths of three sides be $4.5 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5.2 cm .

Steps :

1. Draw $A B=4.5 \mathrm{~cm}$.
2. With A as centre and radius $=4 \mathrm{~cm}$, draw an arc.
3. With B as centre and radius $=5.2 \mathrm{~cm}$, draw one more arc which cuts the former arc at point C .
4. Join $A C$ and $B C$.
 Thus, $A B C$ is the required triangle.
5. When lengths of two sides and the included angle are given :

Let the two sides be 5 cm and 4.2 cm , and the included angle be 75°.

Steps :

1. $\operatorname{Draw} A B=5 \mathrm{~cm}$.
2. At A, draw line $A P$, so that angle $\angle P A B=75^{\circ}$.
3. From $A P$, cut $A C=4.2 \mathrm{~cm}$ and then join B and C. Thus, $A B C$ is the required triangle.

3. When two angles and the included side are given :

Let the two angles be 60° and 45°, and the included side be 5.4 cm .

Steps :

1. Draw $A B=5.4 \mathrm{~cm}$.
2. At A, draw $A P$ so that $\angle P A B=60^{\circ}$.
3. At B, draw $B Q$ so that $\angle Q B A=45^{\circ}$.
4. Let $A P$ and $B Q$ intersect at point C.

Thus, $A B C$ is the required triangle.
4. When the base, one base angle and the sum of lengths of other two sides are given :
Let the base be 4.8 cm , one base angle be 60° and the sum of other two sides be 9.2 cm .

Steps :

1. Draw $A B=4.8 \mathrm{~cm}$.
2. At A, draw $\mathrm{AP}=9.2 \mathrm{~cm}$ such that $\angle \mathrm{PAB}=60^{\circ}$.
3. Join P and B.
4. Draw the perpendicular bisector of BP which meets AP at point C. Join C and B.
Thus, $A B C$ is the required triangle.

5. When the base, one base angle and the difference between the lengths of other two sides are given :
Let the base be 4.5 cm , one base angle be 30° and the difference between the lengths of other two sides be 1.2 cm .

Steps :

1. Draw $A B=4.5 \mathrm{~cm}$.
2. At A, draw $A P$ such that $\angle P A B=30^{\circ}$.
3. From $A P$, cut $A Q=1.2 \mathrm{~cm}$.
4. Join B and Q, and draw the perpendicular bisector of $B Q$ which meets AP at point C.
5. Join C and B

Thus, $A B C$ is the required triangle.
6. When the perimeter (the sum of lengths of all the three sides) and both the base angles are given :

Let the perimeter be 9.6 cm and both the base angles be 60° and 90°.
Steps :

1. Draw $A B=9.6 \mathrm{~cm}$.
2. At A, draw $A P$ so that $\angle P A B=60^{\circ}$.
3. At B, draw $B Q$ so that $\angle A B Q=90^{\circ}$.

4. Draw the bisectors of angles $P A B$ and $A B Q$. Let these bisectors meet at point C. Join $A C$ and BC.
5. Draw the perpendicular bisector of $A C$ which meets $A B$ at point D. Also, draw the perpendicular bisector of $B C$ which meets $A B$ at point E.
6. Join DC and EC.

Thus, CDE is the required triangle.

EXERCISE 28(D)

1. Construct a triangle, when :
(i) the lengths of its three sides be 6 cm , 5.2 cm and 4.6 cm .
(ii) the lengths of two sides be 6.3 cm and 4 cm , and the included angle be 45°.
(iii) two angles be 75° and 60°; and the included side be 5 cm .
(iv) the base be 4 cm , one base angle be 60° and the sum of other two sides be 8.4 cm .
(v) the base be 5.1 cm , one base angle be 45° and the difference between other two sides be 1.5 cm .
(vi) the perimeter of the triangle be 10.8 cm and both the base angles be 60° and 75°.
2. Construct a triangle $A B C$, when :
(i) $A B=6.3 \mathrm{~cm}, \mathrm{BC}=7.5 \mathrm{~cm}$ and $\mathrm{CA}=6 \mathrm{~cm}$.
(ii) $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{CA}=4.8 \mathrm{~cm}$ and $\angle \mathrm{C}=60^{\circ}$.
(iii) $\mathrm{CA}=5.5 \mathrm{~cm}, \angle \mathrm{C}=45^{\circ}$ and $\angle \mathrm{A}=75^{\circ}$.
(iv) $\mathrm{BC}=5.7 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\mathrm{AB}+\mathrm{AC}=8.2$ cm .
(v) $\mathrm{AB}=5.0 \mathrm{~cm}, \angle \mathrm{~A}=60^{\circ}$ and $\mathrm{AC}-\mathrm{BC}=$ 1.5 cm .
(vi) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=11.6 \mathrm{~cm}, \angle \mathrm{~A}=60^{\circ}$ and $\angle B=45^{\circ}$.
3. Construct a $\triangle A B C$ with $A B=6.3 \mathrm{~cm}, \angle B=60^{\circ}$ and $A C+B C=10.0 \mathrm{~cm}$. Measure the length of $A C$.
4. Construct a triangle $A B C$ with $A B=7 \mathrm{~cm}, B C$ $=6.5 \mathrm{~cm}$ and $\angle C A B=60^{\circ}$. Measure the length of AC.
5. Using ruler and compasses only, construct a triangle $A B C$, having $A B=4.7 \mathrm{~cm}, A C=$ 3.4 cm and $\angle \mathrm{BAC}=75^{\circ}$.

Draw the perpendicular bisector of $B C$ and the bisector of angle BAC. If the perpendicular bisector and the angle bisector meet at a point M, measure $\angle B M C$.
6. Using ruler and compasses only, construct a triangle $A B C$ having $\angle C=135^{\circ}$ and $\angle B=30^{\circ}$, $B C=5 \mathrm{~cm}$. Bisect angles B and C and measure the distance of A from the point where the bisectors meet.
7. Using ruler and compasses only, construct a triangle $A B C$ from the following data :
$A B+B C+A C=12 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=$ 60°. Measure BC.
8. Construct a triangle $A B C$, given : $B C=7 \mathrm{~cm}$, $A B-A C=1 \mathrm{~cm}$ and $\angle A B C=45^{\circ}$. Measure the lengths of $A B$ and $A C$.

9. Construction of Equilateral Triangles.

When altitude is given :

Let the altitude of the required triangle be 3.6 cm .

Steps:

1. Draw a line $P Q$ of any suitable length.
2. In $P Q$, mark a point O.
3. At O, draw a line $O R$ perpendicular to $P Q$ and from $O R$ cut $O A=3.6 \mathrm{~cm}$.
4. At A, draw $A B$ so that $\angle O A B=30^{\circ}$ and $A C$ so that $\angle O A C$
 $=30^{\circ}$. B and C being the points on $P Q$.
Thus, $A B C$ is the required triangle.

Alternative method :

Steps :

1. Draw a line $P Q$ of any suitable length.
2. Through point P, draw $P M$ perpendicular to $P Q$ and from PM cut PR $=3.6 \mathrm{~cm}$.
3. Through point R, draw $R S$ perpendicular to $P M$. Clearly, RS is parallel to PQ at a distance of 3.6 cm from it.

4. Mark a point A in $R S$.
5. At A, draw a line $A B$ so that $\angle R A B=60^{\circ}$ and a line $A C$ so that $\angle S A C=60^{\circ}$. B and C being the points on PQ.
Thus, $A B C$ is the required triangle.

10. Construction of Isosceles Triangles.

1. When base and one base angle are given :

Let the base be 5.2 cm and one base angle be 45°.
Students know that the two base angles of an isosceles triangle are equal.

Steps:

1. Draw $A B=5.2 \mathrm{~cm}$
2. At A and B both, construct angles $=45^{\circ}$ each.

Let the two lines making 45° angles meet at C. Thus, $A B C$ is the required triangle.

2. When base and altitude (height) are given :

Let the base be 5.4 cm and height be 3.0 cm .

Steps:

1. Draw $A B=5.4 \mathrm{~cm}$
2. Draw $O P$, the perpendicular bisector of $A B$, which meets $A B$ at point O.
3. From OP, cut $O C=3.0 \mathrm{~cm}$.
4. Join AC and BC.

Thus, $A B C$ is the required triangle.

11. Construction of right-angled triangles.

1. When lengths of one side and hypotenuse are given :

Let one side be 3.5 cm and hypotenuse be 5.5 cm .

Steps :

1. Draw $A B=3.5 \mathrm{~cm}$
2. At A, draw $A P$ so that $A P \perp A B$ i.e. $\angle P A B=90^{\circ}$.
3. With B as centre and radius $=5.5 \mathrm{~cm}$, draw an arc which cuts AP at point C. Join C and B.

Thus, $A B C$ is the required triangle.

2. When triangle is isosceles and its hypotenuse is given :

Let the hypotenuse of the required right-angled isoscele triangle be 5.8 cm .

Steps :

1. Draw $A B=5.8 \mathrm{~cm}$
2. At A and B, construct angles of 45° each.

Let these two lines, making 45° angles with $A B$, intersect each other at point C.
Thus, $A B C$ is the required triangle.

EXERCISE 28 (E)

1. Construct an equilateral triangle, whose :
(i) one side is 3.8 cm .
(ii) altitude is 3 cm .
2. Construct an isosceles triangle, if :
(i) its base $=4.3 \mathrm{~cm}$ and one base angle $=75^{\circ}$.
(ii) its base $=5.8 \mathrm{~cm}$ and altitude $=4 \mathrm{~cm}$.
3. Construct a right-angled triangle, whose one side is 3 cm and the length of hypotenuse is 5 cm . Measure the length of its other side.
4. Construct an isosceles right-angled triangle, whose :
(i) hypotenuse is $=6 \mathrm{~cm}$.
(ii) one side is 3.5 cm .
5. Construct a triangle ABC ; if :
(i) $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=4.2 \mathrm{~cm}$.
(ii) $\mathrm{AB}=\mathrm{BC}=4 \mathrm{~cm}$ and $\mathrm{AC}=4.5 \mathrm{~cm}$.
(iii) $\angle A=90^{\circ}, A B=4 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$.
(iv) $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$ and altitude $\mathrm{AD}=4.5 \mathrm{~cm}$
6. Construct an isosceles triangle PQR; if :
(i) base $\mathrm{QR}=5.6 \mathrm{~cm}$ and base $\angle \mathrm{PQR}=75^{\circ}$.
(ii) base $\mathrm{PQ}=6.4 \mathrm{~cm}$ and altitude $=4 \mathrm{~cm}$.
7. Construct a right-angled triangle XYZ , if :
(i) $\angle Z=90^{\circ}, Y Z=5 \mathrm{~cm}$ and $X Y=7.2 \mathrm{~cm}$.
(ii) $\angle X=90^{\circ}, X Y=3.8 \mathrm{~cm}$ and $Y Z=6 \mathrm{~cm}$.
(iii) $\angle Y=90^{\circ}, X Y=Y Z$ and $X Z=6.4 \mathrm{~cm}$.
8. Using ruler and compasses only, draw a triangle $A B C$, such that $A B=A C=4.8 \mathrm{~cm}$ and $\angle B=45^{\circ}$. Measure the length of $B C$.

12. Circumcircle and Incircle of a triangle.

1. Circumcircle of a triangle :

The circle, which passes through all the three vertices of a triangle, is called circumcircle of the triangle. Its centre is called circumcentre and radius is called circumradius.

To construct the circumcircle of a given triangle :

Steps :

1. Construct the triangle $A B C$ with given measures.
2. Draw perpendicular bisectors of any two sides of the triangle.
Here the perpendicular bisectors of sides $A B$ and $B C$ are drawn.

Let these bisectors intersect each other at point O .
3. With O as centre and OA or OB or OC as radius (since, $O A=O B=O C$), draw a circle. This circle will pass through all the three vertices of the triangle.

In this construction, O is the circumcentre and $\mathrm{OA}=\mathrm{OB}$ $=O C=$ circumradius.

2. Incircle of a triangle :

A circle, which touches all the three sides of a triangle, is called the incircle of the triangle. Its centre is called the incentre.

To construct the incircle of a given triangle :

Steps :

1. Construct the $\triangle A B C$ with given measurements.
2. Draw bisectors of any two angles of the triangle.

Here the bisectors of angles B and C are drawn which intersect each other at point I .
3. From I draw IP, the perpendicular to BC.
4. With I as centre and IP as radius, draw a circle which will touch all the three sides of the triangle.
In this construction, I is the incentre and IP is the radius
 of the incircle.

EXERCISE 28 (F)

1. Construct a triangle $A B C$, having given $A B=$ $6 \mathrm{~cm}, A C=7 \mathrm{~cm}$ and $\angle C=30^{\circ}$. Draw the circumcircle of the triangle. Measure its radius.
2. Using ruler and compasses only, draw a $\triangle A B C$ such that $A B=4.5 \mathrm{~cm}, A C=5.4 \mathrm{~cm}$ and $\angle A=90^{\circ}$. Draw the circumcircle of the triangle and measure its radius.
3. Construct a triangle $A B C$ in which base $B C=$ $6.0 \mathrm{~cm}, \angle B=60^{\circ}$ and altitude (height) is 4.5 cm .

In the same figure, construct a circle which
passes through A, B and C. Name the circle drawn and measure its radius.
4. Draw an equilateral triangle of side 5 cm . Draw its circumcircle.
5. Draw a triangle with sides $4.5 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm . Draw the incircle of this triangle.
6. Draw an equilateral triangle of side 4.5 cm . Draw a circle which touches all its sides.
7. Using ruler and compasses only, construct a triangle PQR such that $\angle \mathrm{P}=120^{\circ}, \mathrm{PQ}=5 \mathrm{~cm}$ and $\mathrm{PR}=6 \mathrm{~cm}$.

In the same figure, find a point which is equidistant from its sides. Name this point. With this point as centre draw a circle touching all the sides of the triangle.
8. Construct a triangle $A B C$ such that: $B C=$
$6 \mathrm{~cm}, \angle B=60^{\circ}$ and $\angle C=45^{\circ}$.
In the same figure, find a point which is equidistant from the vertices of the triangle. Name this point. Draw the circumcircle of the triangle.

13. Construction of quadrilateral $A B C D$.

1. When four sides and one angle are given :

Let $A B=4 \mathrm{~cm}, B C=3.6 \mathrm{~cm}, C D=3.5 \mathrm{~cm}, A D=3 \mathrm{~cm}$ and $Đ A=60^{\circ}$.

Steps :

1. Draw $A B=4 \mathrm{~cm}$.
2. At A, construct angle $P A B=60^{\circ}$ and from $A P$ cut $A D=3 \mathrm{~cm}$.
3. Taking D as centre, draw an arc of radius 3.5 cm (=CD) and taking B as centre draw one more arc of radius $3.6 \mathrm{~cm}(=B C)$ which cuts the previous arc at point C .
4. Join CD and CB.

Then, $A B C D$ is the required quadrilateral.

2. When three consecutive sides and two included angles are given :

Let $A B=3.8 \mathrm{~cm}, B C=4.2 \mathrm{~cm}, C D=4.0 \mathrm{~cm}, \angle B=60^{\circ}$ and $\angle C=75^{\circ}$.

Steps :

1. Draw $B C=4.2 \mathrm{~cm}$.
2. At B, construct angle $P B C=60^{\circ}$ and at C, construct angle $\mathrm{QCB}=75^{\circ}$.
3. From $B P$ cut $A B=3.8 \mathrm{~cm}$ and from $C Q$ cut $C D=4.0 \mathrm{~cm}$.
4. Join A and D.

Then, $A B C D$ is the required quadrilateral.

3. When four sides and one diagonal are given :

Let $A B=4 \mathrm{~cm}, B C=3.8 \mathrm{~cm}, C D=3.5 \mathrm{~cm}, A D=4.2 \mathrm{~cm}$ and diagonal $A C=5.5 \mathrm{~cm}$.

Steps :

1. Draw $A B=4 \mathrm{~cm}$.
2. Taking B as centre, draw an arc of radius 3.8 cm (= BC) and taking A as centre, draw one more arc of radius 5.5 cm (= diagonal AC). Let the two arcs intersect at point C .
3. Taking C as centre, draw an arc of radius 3.5 cm (= CD) and taking A as centre, draw one more arc of radius 4.2 cm (= AD). Let the two arcs intersect at point D.

Then, $A B C D$ is the required quadrilateral.

14. Construction of parallelogram ABCD.

1. When two consecutive sides and the included angles are given :

Let $B C=4.2 \mathrm{~cm}, C D=3.6 \mathrm{~cm}$ and $Đ C=60^{\circ}$.
Students know that the opposite sides of a parallelogram are always equal.
$\therefore B C=4.2 \mathrm{~cm}=A D$ and $C D=3.6 \mathrm{~cm}=A B$.

Steps :

1. Draw $B C=4.2 \mathrm{~cm}$.
2. At C, construct angle $P C B=60^{\circ}$ and from $C P$ cut $C D=$ 3.6 cm .
3. Taking D as centre, draw an arc of radius 4.2 cm (= AD) and taking B as centre draw one more arc of radius $3.6 \mathrm{~cm}(=A B)$. Let the two arcs intersect at point A.
4. Join $A B$ and $A D$.

Then, $A B C D$ is the required parallelogram.
2. When two consecutive sides and one diagonal are given :

Let $A B=4.5 \mathrm{~cm}, B C=3.7 \mathrm{~cm}$ and diagonal $A C=6.2$.

Steps :

1. Draw $A B=4.5 \mathrm{~cm}$.
2. Taking B as centre, draw an arc of radius 3.7 cm (= $B C$) and taking A as centre draw one more arc of radius 6.2 cm (= diagonal AC). Let the two arcs intersect at point C. Join B and C.
3. Taking C as centre, draw an arc of radius 4.5 cm (= $A B$) and taking A as centre draw one more arc of radius $3.7 \mathrm{~cm}(=B C)$. Let the two arcs intersect at point D.

4. Join AD and CD.

Then, $A B C D$ is the required parallelogram.
3. When both the diagonals and the angle between them are given :

Let the diagonal $A C=5.5 \mathrm{~cm}$, diagonal $\mathrm{BD}=6.0 \mathrm{~cm}$ and the angle between them $=60^{\circ}$.
Students know that the diagonals of a parallelogram bisect each other.

Steps:

1. Draw $A C=5.5 \mathrm{~cm}$.
2. Locate the mid-point O of $A C$ by drawing its perpendicular bisector.
3. Through O, construct a line POQ so that angle $P O C=60^{\circ}$.
4. From $P Q$, cut $O D=\frac{B D}{2}=\frac{6.0}{2}=3.0 \mathrm{~cm}$ and also $O B=\frac{6.0}{2}=3.0 \mathrm{~cm}$.
5. Join $A B, B C, C D$ and $D A$.

Then, $A B C D$ is the required parallelogram.

15. Construction of rectangle $A B C D$.

1. When two adjacent sides are given :

Let $A B=5.0 \mathrm{~cm}$ and $B C=3.5 \mathrm{~cm}$.
The opposite sides of a rectangle are equal and each angle of it is 90°.
$\therefore A B=5.0 \mathrm{~cm}=D C, B C=3.5 \mathrm{~cm}=A D$ and $\angle A=\angle B=\angle C=\angle D=90^{\circ}$.

Steps :

1. Draw $A B=5.0 \mathrm{~cm}$.
2. At B, construct angle $P B A=90^{\circ}$. From $B P$ cut $B C=3.5 \mathrm{~cm}$.
3. Taking C as centre, draw an arc of radius 5.0 cm (= $A B$) and taking A as centre, draw one more arc of radius 3.5 $\mathrm{cm}(=B C)$. Let these two arcs intersect at point D.
4. Join AD and CD.

Then, $A B C D$ is the required rectangle.

2. When one side and one diagonal are given :

Let $A B=4.8 \mathrm{~cm}$ and diagonal $A C=6.2 \mathrm{~cm}$.

Steps:

1. Draw $A B=4.8 \mathrm{~cm}$.
2. At B, construct angle $P B A=90^{\circ}$.
3. Taking A as centre, draw an arc of radius 6.2 cm (= AC) which cuts $B P$ at point C.
4. Taking C as centre, draw an arc of radius $4.8 \mathrm{~cm}(=A B)$ and taking A as centre draw another arc of radius equal to $B C$. Let these two arcs intersect at point D.

5. Join AD and CD.

Then, $A B C D$ is the required rectangle.
3. When one diagonal and the angle between the two diagonals are given :

Let diagonal $A C=6.4 \mathrm{~cm}$ and the angle between the two diagonals be 60°.
The diagonals of a rectangle are equal i.e. $\mathrm{AC}=\mathrm{BD}=6.4 \mathrm{~cm}$.

Steps :

1. Draw $A C=6.4 \mathrm{~cm}$.
2. Draw the perpendicular bisector of $A C$ to locate the mid-point of AC. Let the perpendicular bisector intersect $A C$ at point O.
Therefore, O is the mid-point of $A C$.
3. Through O , construct a line POQ so that angle $\mathrm{POC}=$ 60°.
4. From OP cut $O D$ equal to $O C$ (i.e. 3.2 cm) and from $O Q$ cut $O B$ equal to $O A$ (i.e. 3.2 cm).
5. Join $A B, B C, C D$ and $D A$.

Then, $A B C D$ is the required rectangle.

16. Construction of rhombus $A B C D$.

1. When one side and one angle are given :

Let the side $A B=4.5 \mathrm{~cm}$ and angle $A=60^{\circ}$.
Students know that the sides of a rhombus are equal i.e. $A B=B C=C D=A D=4.5 \mathrm{~cm}$

Steps :

1. Draw $A B=4.5 \mathrm{~cm}$.
2. At A, construct angle $P A B=60^{\circ}$
3. From $A P$, cut $A D=4.5 \mathrm{~m}$.
4. Taking D as centre, draw an arc of radius 4.5 cm (= $A B$) and taking B as centre draw one more arc of radius $4.5 \mathrm{~cm}(=A B)$. Let the two arcs intersect at point C.
5. Join $B C$ and $D C$.

Then, $A B C D$ is the required rhombus.
2. When one side and one diagonal are given :

Let the side $A B=5 \mathrm{~cm}$ and the diagonal $A C=7 \mathrm{~cm}$.

Steps :

1. Draw $A B=5 \mathrm{~cm}$.
2. Taking A as centre, draw an arc of radius 7 cm (= $A C$) and taking B as centre, draw one more arc of radius $5 \mathrm{~cm}(=A B)$. Let the two arcs intersect at point C.
3. Taking C as centre, draw an arc of radius 5 cm (= $A B$) and taking A as centre, draw one more arc of radius $5 \mathrm{~cm}(=A B)$. Let the two arcs intersect at point D.

4. Join $B C, C D$ and $D A$.

Then, $A B C D$ is the required rhombus.
3. When both the diagonals are given :

Let the diagonal $A C=4.8 \mathrm{~cm}$ and the diagonal $B D=5.4 \mathrm{~cm}$.
The diagonals of a rhombus bisect each other at 90°.

Steps :

1. Draw $A C=4.8 \mathrm{~cm}$.
2. Draw the perpendicular bisector of $A C$. Let $P Q$ be the perpendicular bisector of $A C$ which bisects $A C$ at point O.
3. From $O P$, cut $O D=\frac{B D}{2}=\frac{5.4 \mathrm{~cm}}{2}=2.7 \mathrm{~cm}$ and from $O Q$, cut $O B=\frac{B D}{2}=2.7 \mathrm{~cm}$.
4. Join $A B, B C, C D$ and $D A$.

Then, $A B C D$ is the required rhombus.
17. Construction of square $A B C D$.

1. When one side is given :

Let side $A B=4.5 \mathrm{~cm}$.
Students know that sides of a square are equal i.e. $A B=B C=C D=A D=4.5 \mathrm{~cm}$ and each angle of the square is 90°.

Steps :

1. Draw $A B=4.5 \mathrm{~cm}$.
2. At A, construct angle $P A B=90^{\circ}$
3. From $A P$, cut $A D=4.5 \mathrm{~cm}$.
4. Taking D as centre, draw an arc of radius 4.5 cm and taking B as centre, draw one more arc of radius 4.5 cm . Let the two arcs intersect at point C.
5. Join BC and DC.

Then, $A B C D$ is the required square.

2. When a diagonal is given :

Let diagonal $A C=6.4 \mathrm{~cm}$.
In a square, the diagonals bisect each other at 90°. Also, the diagonals of a square are equal i.e. diagonal $A C=$ diagonal $B D=6.4 \mathrm{~cm}$.

Steps :

1. Draw $A C=6.4 \mathrm{~cm}$.
2. Construct $P O Q$, the perpendicular bisector of $A C$ which intersects $A C$ at point O.
3. From OP , cut $\mathrm{OB}=\frac{6.4}{2} \mathrm{~cm}=3.2 \mathrm{~cm}$ and from OQ cut $O D=3.2 \mathrm{~cm}$.
4. Join $A B, B C, C D$ and $D A$.

Then, $A B C D$ is the required square.

EXERCISE 28 (G)

Students are advised to draw a rough free-hand sketch in each case, before starting the actual construction.

1. Construct a quadrilateral $A B C D$; if :
(i) $\mathrm{AB}=4.3 \mathrm{~cm}, \mathrm{BC}=5.4 \mathrm{~cm}, \mathrm{CD}=5 \mathrm{~cm}, \mathrm{DA}$ $=4.8 \mathrm{~cm}$ and angle $A B C=75^{\circ}$.
(ii) $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{CD}=4.5 \mathrm{~cm}, \mathrm{BC}=\mathrm{AD}=5 \mathrm{~cm}$ and $\angle B C D=60^{\circ}$.
(iii) $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=5.4 \mathrm{~cm}, \mathrm{AD}=6 \mathrm{~cm}$, $\angle A=60^{\circ}$ and $\angle B=75^{\circ}$.
(iv) $A B=5 \mathrm{~cm}, \mathrm{BC}=6.5 \mathrm{~cm}, C D=4.8 \mathrm{~cm}$, $\angle B=75^{\circ}$ and $\angle C=120^{\circ}$.
(v) $\mathrm{AB}=6 \mathrm{~cm}=\mathrm{AC}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=5 \mathrm{~cm}$ and $A D=4.5 \mathrm{~cm}$.
(vi) $\mathrm{AB}=\mathrm{AD}=5 \mathrm{~cm}, \mathrm{BD}=7 \mathrm{~cm}$ and $\mathrm{BC}=\mathrm{DC}$ $=5.5 \mathrm{~cm}$.
2. Construct a parallelogram $A B C D$, if :
(i) $\mathrm{AB}=3.6 \mathrm{~cm}, \mathrm{BC}=4.5 \mathrm{~cm}$ and $\angle \mathrm{ABC}=$ 120°.
(ii) $\mathrm{BC}=4.5 \mathrm{~cm}, \mathrm{CD}=5.2 \mathrm{~cm}$ and $\angle \mathrm{ADC}=$ 75°.
(iii) $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DC}=5 \mathrm{~cm}$ and diagonal $\mathrm{BD}=$ 7 cm .
(iv) $\mathrm{AB}=5.8 \mathrm{~cm}, \mathrm{AD}=4.6 \mathrm{~cm}$ and diagonal $A C=7.5 \mathrm{~cm}$.
(v) diagonal $\mathrm{AC}=6.4 \mathrm{~cm}$, diagonal $\mathrm{BD}=5.6$ cm and angle between the diagonals is 75°.
(vi) lengths of diagonals AC and BD are 6.3 cm and 7.0 cm respectively, and the angle between them is 45°.
(vii) lengths of diagonals $A C$ and $B D$ are 5.4 cm and 6.7 cm respectively, and the angle between them is 60°.
3. Construct a rectangle $A B C D$; if :
(i) $\mathrm{AB}=4.5 \mathrm{~cm}$ and $\mathrm{BC}=5.5 \mathrm{~cm}$.
(ii) $\mathrm{BC}=6.1 \mathrm{~cm}$ and $\mathrm{CD}=6.8 \mathrm{~cm}$.
(iii) $\mathrm{AB}=5.0 \mathrm{~cm}$ and diagonal $\mathrm{AC}=6.7 \mathrm{~cm}$.
(iv) $\mathrm{AD}=4.8 \mathrm{~cm}$ and diagonal $\mathrm{AC}=6.4 \mathrm{~cm}$.
(v) each diagonal is 6 cm and the angle between them is 45°.
(vi) each diagonal is 5.5 cm and the angle between them is 60°.
4. Construct a rhombus $A B C D$, if :
(i) $A B=4 \mathrm{~cm}$ and $\angle B=120^{\circ}$.
(ii) $\mathrm{BC}=4.7 \mathrm{~cm}$ and $\angle \mathrm{B}=75^{\circ}$.
(iii) $\mathrm{CD}=5 \mathrm{~cm}$ and diagonal $\mathrm{BD}=8.5 \mathrm{~cm}$.
(iv) $\mathrm{BC}=4.8 \mathrm{~cm}$ and diagonal $\mathrm{AC}=7 \mathrm{~cm}$.
(v) diagonal $A C=6 \mathrm{~cm}$ and diagonal $B D=5.8 \mathrm{~cm}$
(vi) diagonal $A C=4.9 \mathrm{~cm}$ and diagonal $B D=6 \mathrm{~cm}$.
(vii) diagonal $\mathrm{AC}=6.6 \mathrm{~cm}$ and diagonal $\mathrm{BD}=$ 5.3 cm .
5. Construct a square, if :
(i) its one side is 3.8 cm .
(ii) its each side is 4.3 cm .
(iii) one diagonal is 6.2 cm .
(iv) each diagonal is 5.7 cm .
6. Construct a quadrilateral $A B C D$ in which; $\angle A=120^{\circ}, \angle B=60^{\circ}, A B=4 \mathrm{~cm}, B C=4.5$ cm and $\mathrm{CD}=5 \mathrm{~cm}$.
7. Construct a quadrilateral $A B C D$, such that $A B$ $=B C=C D=4.4 \mathrm{~cm}, \angle B=90^{\circ}$ and $\angle C=$ 120°.
8. Using ruler and compasses only, construct a parellelogram $A B C D$, in which: $A B=6 \mathrm{~cm}$, $A D=3 \mathrm{~cm}$ and $\angle D A B=60^{\circ}$.
In the same figure draw the bisector of angle $D A B$ and let it meet DC at point P. Measure angle APB.
9. Draw a parallelogram $A B C D$, with $A B=6 \mathrm{~cm}$, $A D=4.8 \mathrm{~cm}$ and $\angle D A B=45^{\circ}$.
Draw the perpendicular bisector of side $A D$ and let it meet $A D$ at point P. Also, draw the diagonals $A C$ and $B D$, and let them intersect at point O . Join O and P . Measure OP.
10. Using ruler and compasses only, construct a rhombus whose diagonals are 8 cm and 6 cm . Measure the length of its one side.

ANSWERS

EXERCISE 28(A)
5. $\angle \mathrm{PBC}=45^{\circ}$ 6. (iii) Yes (iv) Yes

EXERCISE 28(C)
5. Yes

EXERCISE 28(D)
3. 5.6 cm
4. $5 \cdot 7 \mathrm{~cm}$
5. 106°
6. 9.4 cm
7.4 .6 cm

EXERCISE 28(E)

8. $A B=6.1 \mathrm{~cm} ; A C=5.1 \mathrm{~cm}$
9. $4 \mathrm{~cm} \quad 8.6 .8 \mathrm{~cm}$

EXERCISE 28(F)

1. $5.8 \mathrm{~cm} 2.3 .5 \mathrm{~cm} \quad$ 3. Circumcircle; $3.3 \mathrm{~cm} \quad$ 7. Incentre 8. Circumcentre

EXERCISE 28(G)
8. 90°
9. 3 cm
10.5 cm

