QUADRILATERAL

27.1 REVIEW

Quadrilateral
 A quadrilateral is a closed polygon with four sides.

The adjoining figure shows a quadrilateral $A B C D$ which has:
(i) four sides : $A B, B C, C D$ and $D A$
(ii) four vertices: A, B, C and D
(iii) four angles : $\angle \mathrm{ABC}, \angle \mathrm{BCD}, \angle \mathrm{CDA}$ and $\angle \mathrm{DAB}$
(iv) two diagonals : $A C$ and $B D$
The sum of angles of a quadrilateral $=4$ right angles $=360^{\circ}$.

Example 1 :

The angles of a quadrilateral are in the ratio $3: 4: 5: 6$. Find all its angles.

Solution :

Since, $\quad 3+4+5+6=18$ and sum of the angles of a quadrilateral is 360°.
\therefore First angle $=\frac{3}{18} \times 360^{\circ}=60^{\circ}, \quad$ second angle $=\frac{4}{18} \times 360^{\circ}=80^{\circ}$, third angle $=\frac{5}{18} \times 360^{\circ}=100^{\circ}$ and, fourth angle $=\frac{6}{18} \times 360^{\circ}=120^{\circ}$

Alternative method :

Let the angles of the quadrilateral be $3 x, 4 x, 5 x$ and $6 x$.

$$
\therefore 3 x+4 x+5 x+6 x=360^{\circ} \Rightarrow 18 x=360^{\circ} \text { and } x=20^{\circ}
$$

\therefore First angle $=3 x=3 \times 20^{\circ}=60^{\circ}, \quad$ second angle $=4 x=4 \times 20^{\circ}=80^{\circ}$,
third angle $=5 x=5 \times 20^{\circ}=100^{\circ}$ and fourth angle $=6 x=6 \times 20^{\circ}=120^{\circ}$ (Ans.)

Example 2 :

Three angles of a quadrilateral are in the ratio $4: 6: 3$. If the fourth angle is 100°; find the other three angles of the quadrilateral.

Solution :

Let the three angles be $4 x, 6 x$ and $3 x$

$$
\begin{array}{rlrl}
& \therefore & 4 x+6 x+3 x+100^{\circ} & =360^{\circ} \\
\Rightarrow & 13 x & =360^{\circ}-100^{\circ}=260^{\circ} \text { and, } x=\frac{260^{\circ}}{13}=20^{\circ}
\end{array}
$$

$\therefore \quad$ The other three angles are $4 x, 6 x$ and $3 x$

$$
=4 \times 20^{\circ}, 6 \times 20^{\circ} \text { and } 3 \times 20^{\circ}=80^{\circ}, 120^{\circ} \text { and } 60^{\circ} \quad \text { (Ans.) }
$$

TEST YOURSELF

1. In quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}: \angle \mathrm{B}: \angle \mathrm{C}: \angle \mathrm{D}=6: 4: 5: 3 . \angle \mathrm{A}=$ \qquad and $\angle D=$ \qquad $=$ \qquad The special name of this quadrilateral is \qquad
2. In quadrilateral $A B C D, \angle A=100^{\circ}, \angle B=70^{\circ}$ and $\angle C: \angle D=8: 11$; the angle $\angle \mathrm{D}=$ \qquad
3. If one exterior angle of a quadrilateral is 140° and the other three angles of the quadrilateral are in the ratio $8: 15: 9$, the largest angle of the quadrialteral \qquad
4. Two angles of a quadrialteral are equal and the two other angles are separately equal. Can any two sides of the given quadrialteral be parallel? \qquad

EXERCISE 27 (A)

1. Two angles of a quadrilateral are 89° and 113°. If the other two angles are equal, find the equal angles.
2. Two angles of a quadrilateral are 68° and 76°. If the other two angles are in the ratio $5: 7$, find the measure of each of them.
3. Angles of a quadrilateral are $(4 x)^{\circ}, 5(x+2)^{\circ}$, $(7 x-20)^{\circ}$ and $6(x+3)^{\circ}$. Find :
(i) the value of x.
(ii) each angle of the quadrilateral.
4. Use the information given in the following figure to find:
(i) x .
(ii) $\angle \mathrm{B}$ and $\angle \mathrm{C}$.

5. In quadrilateral $A B C D$, side $A B$ is parallel to side $D C$. If $\angle A: \angle D=1: 2$ and $\angle C: \angle B=4: 5$.
(i) Calculate each angle of the quadrilateral.
(ii) Assign a special name to quadrilateral $A B C D$.
6. From the following figure find,
(i) x
(ii) $\angle A B C$
(iii) $\angle A C D$

7. Given : In quadrilateral $\mathrm{ABCD}, \angle \mathrm{C}=64^{\circ}$, $\angle D=\angle C-8^{\circ} ; \angle A=5(a+2)^{\circ}$ and $\angle B=2(2 a+7)^{\circ}$. Calculate $\angle A$.
8. In the given figure :
$\angle \mathrm{b}=2 \mathrm{a}+15^{\circ}$ and
$\angle c=3 a+5^{\circ}$,
find the values of b and c.

9. Three angles of a quadrilateral are equal. If the fourth angle is 69°, find the measure of equal angles.
10. In quadrilateral $\mathrm{PQRS}, \angle \mathrm{P}: \angle \mathrm{Q}: \angle \mathrm{R}: \angle \mathrm{S}=$ $3: 4: 6: 7$. Calculate each angle of the quadrilateral and then prove that PQ and SR are parallel to each other.
(i) Is PS also parallel to QR ?
(ii) Assign a special name to quadrilateral PQRS.
11. Use the information given in the following figure to find the value of x.

12. The following figure shows a quadrilateral in which sides $A B$ and $D C$ are parallel.
If $\angle A: \angle D=4: 5, \angle B=(3 x-15)^{\circ}$
and $\angle C=(4 x+20)^{\circ}$, find each angle of the quadrilateral $A B C D$.

27.2 SPECIAL TYPES OF QUADRILATERALS

1. Trapezium :

A trapezium is a quadrilateral in which one pair of opposite sides are parallel but other two sides of it are non-parallel.

If the non-parallel sides of a trapezium are equal, it is called an isosceles trapezium.

In an isosceles trapezium $A B C D$, side $A B / /$ side $D C$ and non-parallel sides $A D$ and $B C$ are equal. Also,
(i) $\angle \mathrm{A}=\angle \mathrm{B}$ and $\angle \mathrm{C}=\angle \mathrm{D}$
 and, (ii) diagonal $\mathrm{AC}=$ diagonal BD .

2. Parallelogram :

A parallelogram is a quadrilateral in which both the pairs of opposite sides are parallel.

The given figure shows a parallelogram $A B C D$ as $A B$ is parallel to $D C$ and $A D$ is parallel to $B C$.

Theorem 5

If a pair of opposite sides of a quadrilateral are equal and parallel, it is a parallelogram.
Given : A quadrilateral $A B C D$ in which $A B=D C$ and $A B$ is parallel to $D C$.
To prove : $A B C D$ is a parallelogram.
Construction : Join B and D.

Proof:

Statement

Reason
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CDB}$;

1. $A B=D C$

Given
2. $B D=B D$
3. $\angle a=\angle d$
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$
$\Rightarrow \angle \mathrm{c}=\angle \mathrm{b}$
Common (identity).

Alternate angles, since $B D$ cuts parallel sides $A B$ and $D C$ S.A.S.

Corresponding parts of congruent triangles are congruent.
But these are alternate angles,
$\therefore A D$ is parallel to $B C$.
When alternate angles are equal, the lines are parallel.
Since, both the pairs of opposite sides of the quadrilateral $A B C D$ are parallel, it is a parallelogram.

Hence Proved.

Theorem 6

In a parallelogram :
(i) opposite sides are equal,
(ii) opposite angles are equal and
(iii) each diagonal bisects the parallelogram.

Given : A parallelogram ABCD.
To prove :
(i) $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC}$
(ii) $\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$
(iii) $A C$ bisects the parallelogram i.e. $\triangle A B C=\triangle A D C$ and also, $B D$ bisects the parallelogram i.e. $\triangle A B D=\triangle B C D$.
Construction : Draw diagonal AC

Proof:

Statement

In $\triangle A B C$ and $\triangle A D C$,

1. $\angle \mathrm{a}=\angle \mathrm{b}$
2. $\angle \mathrm{c}=\angle \mathrm{d}$
3. $A C=A C$
$\therefore \triangle A B C \cong \triangle A D C$
(i) Since, $\triangle A B C \cong \triangle A D C$
$A B=D C$ and $A D=B C$
(ii) Since, $\triangle A B C \cong \triangle A D C$
$\therefore \angle \mathrm{B}=\angle \mathrm{D}$
and $\angle A=\angle C$
(iii) Since, $\triangle A B C \cong \triangle A D C$
$\therefore \triangle A B C=\triangle A D C$

Reason

Alternate angles, as $A C$ cuts parallel sides $A B$ and $D C$ Alternate angles, as $A C$ cuts parallel sides $A D$ and $B C$. Common.
A.S.A.

Corresponding parts of congruent triangles are congruent.

Corresponding parts of congruent triangles are congruent.
From 1 and $2 ; \angle \mathrm{a}+\angle \mathrm{d}=\angle \mathrm{b}+\angle \mathrm{c}$ i.e. $\angle \mathrm{A}=\angle \mathrm{C}$

Diagonal $A C$ bisects parallelogram $A B C D$.
Similarly, by drawing the diagonal $B D$, it can be proved that $\triangle A B D=\triangle B C D$.
i.e. $B D$ bisects the parallelgoram $A B C D$.

Hence Proved.

Theorem 7

The diagonals of a parallelogram bisect each other.
Given : A parallelogram ABCD whose diagonals intersect each other at O .
To prove : Diagonals bisect each other. i.e. $O A=O C$ and $O B=O D$.

Proof:

Statement

In $\triangle A O B$ and $\triangle C O D$,

1. $\angle a=\angle b$
2. $\angle \mathrm{c}=\angle \mathrm{d}$

Reason

Alternate angles.
Alternate angles.

3. $\mathrm{AB}=\mathrm{DC}$
$\therefore \triangle \mathrm{AOB} \cong \triangle C O D$
$\therefore \mathrm{OA}=\mathrm{OC}$ and $\mathrm{OB}=\mathrm{OD}$

Opposite sides of a parallelogram are equal. A.S.A.

Corresponding parts of congruent triangles are congruent.

Hence Proved.

In order to prove that given quadrilateral is a parallelogram; show that :
(i) opposite sides are parallel or, (ii) opposite sides are equal or,
(iii) opposite angles are equal or, (iv) diagonals bisect each other or,
(iv) a pair of opposite sides are equal and parallel.

2. Rectangle :

A rectangle is a quadrilateral in which :
(i) opposite sides are equal i.e. $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC}$
(ii) opposite sides are parallel i.e. $\mathrm{AB} / / \mathrm{DC}$ and $\mathrm{AD} / / \mathrm{BC}$ and
(iii) each angle is 90° i.e. $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$.

1. A quadrilateral, with each angle 90° is called a rectangle. See Fig. (a)
2. A parallelogram, with any angle 90° is called a rectangle. See Fig. (b)
3. A parallelogram, with equal diagonals is called a rectangle. See Fig. (c)

Fig. (a)

Fig. (b)

Fig. (c)

1. In order to prove that given quadrilateral is a rectangle show that each of its angles is 90°
2. In order to prove that the given parallelogram is a rectangle; show that :
(i) any angle of it is 90° or
(ii) its diagonals are equal.

3. Rhombus :

A rhombus is a quadrilateral in which all the sides are equal.
The given figure shows a rhombus
$A B C D$, so : $A B=B C=C D=D A$

1. A quadrilateral, with all the sides equal is called a rhombus. See. Fig. (a)
2. A parallelogram, with any pair of adjacent sides equal, is called a rhombus. See Fig. (b)
3. A parallelogran whose diagonals interesect at 90°, is a rhombus. See Fig.(c).

Fig. (a)

Fig. (b)

Fig. (c)

1. In order to prove that given quadrilateral is a rhombus, show that:
(i) its all sides are equal or
(ii) its diagonals bisect each other at 90°.
2. In order to prove that given parallelogram is a rhombus, show that :
(i) diagonals intersect each other at 90°
(ii) any air of adjacent sides is equal.

Since, in parallelogram, opposite sides are already equal, so if the adjacent sides are also equal, it is a rhombus.

4. Square :

A square is a quadrilateral in which all the sides are equal and each angle is 90°.

The given figure shows a square $A B C D$, so,
(i) $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ and (ii) $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$.

1. A square is quadrilateral in when:
(i) all the sides are equal.
(iii) diagonals bisect each other at right angle.
(ii) each angle is 90°.
(iv) diagonals are equal.
2. A square is a parallelogram in which:
(i) all the sides are equal,
(ii) each angle is a right-angle,
(iii) diagonals are equal,
(iv) diagonals intersect at right-angle.
3. A square is a rectangle in which :

(i) adjacent sides are equal and
(ii) diagonals intersect at right-angle.
4. A square is a rhombus in which:
(i) each angle is 90°
(ii) diagonals are equal.

A square satisfies all the properties of a:
(i) quadrilateral,
(ii) trapezium,
(iii) parallelogram,
(iv) rectangle and
(v) rhombus.

TEST YOURSELF

5. Three angles of a quadrilateral are $73^{\circ}, 84^{\circ}$ and 102°.

Therefore, the fourth angle $=360^{\circ}-(\ldots \ldots \ldots+\ldots \ldots \ldots+\ldots \ldots \ldots)=360^{\circ}-$
$=$
6. State, true or false :
(i) A rhombus is a parallelogram
(ii) A rectangle is a rhombus
(iii) A rectangle is a parallelogram
(iv) Every square is a rectangle
(v) Every square is a rhombus
(vi) Every rhombus is a square
(vii) A square is a parallelogram
(viii) A rectangle is a square \qquad

Example 3 :

Prove that consecutive angles of a parallelogram are supplementary.

Solution :

Consider a parallelogram $A B C D$ in which $A B / / D C$ and $A D / / B C$.
To prove : $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$

Proof:
We know the opposite angles of a parallelogram are equal, therefore $\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle B=\angle D$.

Also, as the sum of interior angles of a quadrilateral $=360^{\circ}$
$\Rightarrow \angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\Rightarrow \angle A+\angle B+\angle A+\angle B=360^{\circ} \quad[\because \angle C=\angle A$ and $\angle D=\angle B]$
$\Rightarrow \quad 2 \angle A+2 \angle B=360^{\circ}$
i.e.

$$
\angle A+\angle B=\frac{360^{\circ}}{2}=180^{\circ}
$$

Hence proved.
Similary, we can prove that :
$\angle B+\angle C=180^{\circ}, \angle C+\angle D=180^{\circ}$ and $\angle D+\angle A=180^{\circ}$.

Example 4 :

In a parallelogram $A B C D, X$ and Y are points on diagonal $B D$ such that $D X=B Y$. Prove that $A X C Y$ is a parallelogram.

Solution :

According to the given statement, the figure will be as shown alongside.

In $\triangle A D X$ and $\triangle C B Y$

$$
\begin{aligned}
& A D=B C \quad \text { [Opposite sides of a parallelgram are equal] } \\
& D X=B Y \quad \text { [Given] } \\
& \angle A D X=\angle C B Y \\
& \therefore \quad \triangle A D X \cong \triangle C B Y \\
& \Rightarrow \quad A X=C Y \\
& \text { Similarly, } \quad \triangle C D X \cong \triangle A B Y \\
& \Rightarrow \quad C X=A Y \\
& \Rightarrow A X C Y \text { is a parallelogram. }
\end{aligned}
$$

Whenever the opposite sides of a quadrilateral are equal, the quadrilateral is a parallelogram.

Example 5 :

P and Q are the points of trisection of the diagonal $B D$ of a parallelogram $A B C D$. Prove that $C Q$ is parallel to $A P$.

Proof :

According to the given statement, the figure will be as shown alongside.
P and Q are the points of trisection of the diagonal BD.

$$
\Rightarrow \quad B P=P Q=Q D=\frac{1}{3} B D
$$

In $\triangle A P D$ and $\triangle B Q C: B Q=\frac{2}{3} B D$ and $P D=\frac{2}{3} B D \Rightarrow B Q=P D$

$$
\begin{aligned}
\therefore & & B Q & =P D \\
& & & \text { [Proved above] } \\
\text { and, } & & & \\
& & B C & \\
\therefore & & & \text { [Opposite sides of the parallelogram ABCD] }
\end{aligned}
$$

But these are alternate angles and whenever the alternate angles are equal, the lines are parallel.
$\therefore \mathrm{CQ}$ is parallel to AP.
Hence proved.

Example 6 :

In parallelogram $A B C D$, the bisectors of adjacent angles A and D intersect each other at point P. Prove that $\angle A P D=90^{\circ}$.

Solution :

According to the given statement, the figure will be as shown alongside :

Since, $A B$ is parallel to $D C$ and $A D$ is transversal,

$$
\therefore \quad \angle B A D+\angle A D C=180^{\circ}
$$

Since, AP bisects angle BAD

$$
\therefore \quad \angle P A D=\frac{1}{2} \angle B A D
$$

And, DP bisects angle ADC

$$
\begin{array}{rlrl}
\Rightarrow & \angle \mathrm{PDA} & =\frac{1}{2} \angle \mathrm{ADC} \\
\therefore & \angle \mathrm{PAD}+\angle \mathrm{PDA} & =\frac{1}{2} \angle \mathrm{BAD}+\frac{1}{2} \angle \mathrm{ADC} \\
& =\frac{1}{2}(\angle \mathrm{BAD}+\angle \mathrm{ADC}) \\
& =\frac{1}{2} \times 180^{\circ}=90^{\circ}
\end{array}
$$

In triangle APD,

$$
\begin{aligned}
& & \angle \mathrm{PAD}+\angle \mathrm{PDA}+\angle \mathrm{APD} & =180^{\circ} \\
\Rightarrow & & 90^{\circ}+\angle \mathrm{APD} & =180^{\circ} \\
\Rightarrow & \angle \mathrm{APD} & =180^{\circ}-90^{\circ}=90^{\circ} & \text { [Sum of angles of a } \Delta=180^{\circ} \text {] }
\end{aligned}
$$

7. When opposite angles of a quadrilateral are equal, it is a
8. When any angle of a parallelogram is 90°, it is a
9. When any pair of adjacent sides of a parallelogram are equal, it is a
10. When diagonals of a \qquad are equal, it is a square.
11. Adjacent sides of a rectangle are equal, if it is a \qquad
12. When each angle of a quadrilateral is 90°, it is a \qquad
13. If the diagonals of quadrilateral bisect each other at 90°; the quadrilateral is
14. $A B / / D C, C P$ bisects angle $B C D$ and $B P$ bisects angle ABC ; then
(i) $\angle \mathrm{PBC}+\angle \mathrm{PCB}=$
(ii) $\angle \mathrm{BPC}=$
15. In rhombus $A B C D$, angle $A B D=58^{\circ}$, then
$\mathrm{x}=$
$y=$
z =
\qquad
\qquad
\qquad

16. In parallelogram $A B C D, \angle A=3$ times $\angle B$. Find all the angles of the parallelogram. In the same parallelogram, if $A B=5 x-7$ and $C D=3 x+1$; find the length of $C D$.
17. In parallelogram $\mathrm{PQRS}, \angle \mathrm{Q}=(4 \mathrm{x}-5)^{\circ}$ and $\angle \mathrm{S}$ $=(3 x+10)^{\circ}$. Calculate : $\angle \mathrm{Q}$ and $\angle \mathrm{R}$.
18. In rhombus $A B C D$:
(i) if $\angle A=74^{\circ}$; find $\angle B$ and $\angle C$.
(ii) if $A D=7.5 \mathrm{~cm}$; find $B C$ and $C D$.
19. In square PQRS :
(i) if $\mathrm{PQ}=3 \mathrm{x}-7$ and $\mathrm{QR}=\mathrm{x}+3$; find PS .
(ii) if $P R=5 x$ and $Q S=9 x-8$. Find $Q S$.
20. $A B C D$ is a rectangle.

If $\angle B P C=124^{\circ}$.
Calculate :
(i) $\angle B A P$
(ii) $\angle A D P$.

6. $A B C D$ is a rhombus. If $\angle B A C=38^{\circ}$, find :
(i) $\angle A C B$
(ii) $\angle \mathrm{DAC}$
(iii) $\angle A D C$.

7. $A B C D$ is a rhombus. If $\angle B C A=35^{\circ}$, find $\angle A D C$.
8. PQRS is a parallelogram whose diagonals intersect at M .
If $\angle \mathrm{PMS}=54^{\circ}, \angle \mathrm{QSR}=25^{\circ}$ and $\angle \mathrm{SQR}=30^{\circ}$; find:
(i) $\angle \mathrm{RPS}$
(ii) $\angle \mathrm{PRS}$
(iii) $\angle \mathrm{PSR}$.
9. Given : Parallelogram $A B C D$ in which diagonals $A C$ and $B D$ intersect at M.
Prove : M is mid-point
 of LN .
10. In an isosceles-trapezium, show that the opposite angles are supplementary.
11. $A B C D$ is a parallelogram. What kind of quadrilateral is it if :
(i) $A C=B D$ and $A C$ is perpendicular to BD ?
(ii) $A C$ is perpendicular to $B D$ but is not equal to it ?
(iii) $\mathrm{AC}=\mathrm{BD}$ but AC is not perpendicular to BD ?
12. Prove that the diagonals of a parallelogram bisect each other.
13. If the diagonals of a parallelogram are of equal lengths, the parallelogram is a rectangle. Prove it.
14. In parallelogram $A B C D, E$ is the mid-point of $A D$ and F is the mid-point of $B C$. Prove that BFDE is a parallelogram.
15. In parallelogram $A B C D, E$ is the mid-point of side $A B$ and $C E$ bisects angle $B C D$. Prove that :
(i) $A E=A D$
(ii) DE bisects and $\angle \mathrm{ADC}$ and
(iii) Angle $D E C$ is a right angle.
16. In the alongside diagram, the bisectors of interior angles of the parallelogram PQRS enclose a
 quadrilateral $A B C D$.
Show that :
(i) $\angle \mathrm{PSB}+\angle \mathrm{SPB}=90^{\circ}$
(ii) $\angle \mathrm{PBS}=90^{\circ}$
(iii) $\angle \mathrm{ABC}=90^{\circ}$
(iv) $\angle \mathrm{ADC}=90^{\circ}$
(v) $\angle A=90^{\circ}$
(vi) $A B C D$ is a rectangle

Thus, the bisectors of the angles of a parallelogram enclose a rectangle.
17. In parallelogram $A B C D, X$ and Y are mid-points of opposite sides $A B$ and $D C$ respectively. Prove that :
(i) $A X=Y C$.
(ii) AX is parallel to YC
(iii) $A X C Y$ is a parallelogram.
18. The given figure shows parallelogram ABCD. Points M and N lie in diagonal BD such that $\mathrm{DM}=\mathrm{BN}$. Prove that:

(i) $\triangle \mathrm{DMC} \cong \triangle \mathrm{BNA}$ and so $\mathrm{CM}=\mathrm{AN}$.
(ii) $\triangle \mathrm{AMD} \cong \triangle C N B$ and so $\mathrm{AM}=\mathrm{CN}$.
(iii) ANCM is a parallelogram.
19. The given figure shows a rhombus $A B C D$ in which angle $B C D=80^{\circ}$. Find angles x and y .

20. Use the information given in the alongside diagram to find the values of x, y and z .

21. The following figure is a rectangle in which $x: y=3: 7$; find the values of x and y.

22. In the given figure, $A B / / E C, A B=A C$ and $A E$ bisects $\angle \mathrm{DAC}$. Prove that:
(i) $\angle E A C=\angle A C B$
(ii) $A B C E$ is a parallelogram.

ANSWERS

TEST YOURSELF

1. $\frac{6}{18} \times 360^{\circ} ; 120^{\circ}, \frac{3}{18} \times 360^{\circ}, 60^{\circ}$, trapezium \quad 2. $\frac{11}{19}\left(360^{\circ}-100^{\circ}-70^{\circ}\right)=110^{\circ}$ 3. $\frac{15}{32} \times\left(360^{\circ}-40^{\circ}\right)=150^{\circ} \quad$ 4. yes $5.73^{\circ}, 84^{\circ}, 102^{\circ}, 259^{\circ}, 101^{\circ} \quad$ 6. (i) true (ii) false (iii) true (iv) true (v) true (vi) fasle (vii) true (viii) false 7. parallelogram 8. rectangle 9. rhombus 10. rhombus 11. square 12. rectangle 13. rhombus 14. (i) $\frac{180^{\circ}}{2}=90^{\circ}$ (ii) $180^{\circ}-90^{\circ}=90^{\circ}$ 15. $x=58^{\circ}$, $y=180^{\circ}-2 \times 58^{\circ}=64^{\circ}, z=y=64^{\circ}$

EXERCISE 27(A)

1. 79° each 2. 90° and 126°
2. (i) $x=16^{\circ}$ (ii) $64^{\circ}, 90^{\circ}, 92^{\circ}$ and 114°
3. (i) $x=22^{\circ}$
(ii) $\angle B=48^{\circ}$
and $\angle \mathrm{C}=61^{\circ}$ 5. (i) $\angle \mathrm{A}=60^{\circ}, \angle \mathrm{B}=100^{\circ}, \angle \mathrm{C}=80^{\circ}$ and $\angle \mathrm{D}=120^{\circ}$
(ii) Trapezium
4. (i) $x=26^{\circ}$
(ii) $\angle A B C=104^{\circ}$ (iii) $\angle A C D=28^{\circ}$
5. 130°
6. $\angle b=105^{\circ}$ and $\angle c=140^{\circ}$
7. 97° each 10. $\angle \mathrm{P}=54^{\circ}$, $\angle \mathrm{Q}=72^{\circ}, \angle \mathrm{R}=108^{\circ}$ and $\angle \mathrm{S}=126^{\circ}$ (i) No (ii) Trapezium 11. 40° 12. $\angle \mathrm{A}=80^{\circ}, \angle \mathrm{B}=60^{\circ}$ $\angle \mathrm{C}=120^{\circ}$ and $\angle \mathrm{D}=100^{\circ}$

EXERCISE 27(B)

1. $135^{\circ}, 45^{\circ}, 135^{\circ}$ and $45^{\circ}, C D=13$ units 2. 55° and 125° 3. (i) 106° and 74° (ii) $\mathrm{BC}=\mathrm{CD}=7.5 \mathrm{~cm}$
2. (i) 8
(ii) 10
3. (i) 62°
(ii) 28°
4. (i) 38°
(ii) 38°
(iii) 104°
5. 110°
6. (i) 96°
(ii) 29° (iii) 55°
7. (i) Square
(ii) Rhombus (iii) Rectangle
8. $x=70^{\circ}, y=50^{\circ}$
9. $x=11, y=15^{\circ}$ and $z=106^{\circ}$
10. $x=27^{\circ}$ and $y=63^{\circ}$
