CHAPTER 24

TRIANGLES

24.1 REVIEW

Triangle

1. Axioms

2. Theorem
3. Proof
4. Corollary

Types of triangles

(b) According to their angles :
(i) Right-angled Δ
(ii) Obtuse-angled Δ

One angle must be obtuse i.e. greater than 90° and less than 180°.

(iii) Acute-angled Δ

Each angle is acute i.e. less than 90°.

One angle must be 90°.

(a) According to their sides:
(i) Equilateral Triangle (ii) Isosceles Triangle (iii) Scalene Triangle

All the sides are equal.
Each angle is 60°.

Two sides are equal. Angles opposite to equal sides are equal.

No sides equal. No angles equal.

A triangle is a plane and closed figure, bounded by three straight line segments.
The figure alongside shows a triangle $A B C$. Symbolically triangle $A B C$ is written as $\triangle A B C$, where the symbol Δ is read as 'triangle'.

(i) The three straight line segments forming a triangle are called sides of the triangle.
Thus, $A B, B C$ and $C A$ are the three sides of $\triangle A B C$.
(ii) The point at which two sides of a triangle meet is called vertex of the triangle.
Thus, $\triangle A B C$ has three vertices A, B and C.
Vertices is the plural of vertex.

The self evident truths which are accepted without any proof are called axioms. e.g.
(i) If x is greater than y , then y is less than x .
(ii) If a and b both are equal to c, then $a=b$.

A proposition that requires proof is called a theorem.
The course of reasoning which establishes the truth or falsity of a statement is called a proof.
A proposition, whose truth can easily be deducted from a preceding theorem is called its corollary.

24.2 PROVING A THEOREM

Giving the general enunciation, set out the work in the following order :

1. Draw the figure.
2. Using the letters of your figure, state what is given.
3. State what is required to be proved.
4. State the construction, if necessary.
5. State the proof giving the statement and reasons separately, using suitable abbreviated references.

Theorem 1

The sum of the angles of a triangle is equal to two right angles. (i.e. 180°).
Given : $\quad A$ triangle $A B C$.
To Prove: $\quad \angle B A C+\angle A B C+\angle B C A=180^{\circ}$

$$
\text { i.e. } \angle A+\angle B+\angle C=180^{\circ}
$$

Construction: Produce the side $B C$ upto point D and draw CE parallel to BA.
Proof :

Statement :

Reason:

1. Since, $A B / / E C$ and $B C D$ is transversal,
$\therefore \angle A B C=\angle E C D$
2. Again, $A B / / E C$ and $A C$ is transversal,
$\therefore \angle \mathrm{BAC}=\angle \mathrm{ACE}$
3. $\angle \mathrm{ABC}+\angle \mathrm{BAC}=\angle \mathrm{ECD}+\angle \mathrm{ACE}$
4. $\angle \mathrm{ABC}+\angle \mathrm{BAC}+\angle \mathrm{BCA}$

$$
=\angle \mathrm{ECD}+\angle \mathrm{ACE}+\angle \mathrm{BCA}
$$

5. But, $\angle \mathrm{ECD}+\angle \mathrm{ACE}+\angle \mathrm{BCA}$
$=$ Straight line angle $B C D=180^{\circ}$
6. $\therefore \angle A B C+\angle B A C+\angle B C A=180^{\circ}$

Corresponding angles

Alternate angles.
Adding results of 1 and 2 .
Adding $\angle \mathrm{BCA}$ on both the sides.

Measure of straight line angle is 180°.
From the results of 4 and 5 .

Hence Proved.

Alternative method :

Construction : Through vertex A of the $\triangle A B C$, draw $D E$ parallel to base $B C$.
Proof:

Statement :

1. Since, $D E / / B C$ and $A B$ is transversal, $\therefore \angle A B C=\angle D A B$
2. Again, $D E / / B C$ and $A C$ is transversal, $\therefore \angle B C A=\angle C A E$
3. $\angle \mathrm{ABC}+\angle \mathrm{BCA}=\angle \mathrm{DAB}+\angle \mathrm{CAE}$
4. $\angle \mathrm{ABC}+\angle \mathrm{BCA}+\angle \mathrm{BAC}$
$=\angle \mathrm{DAB}+\angle \mathrm{CAE}+\angle \mathrm{BAC}$
Alternate angles.

Alternate angles.

Adding results of 1 and 2 .

Adding $\angle \mathrm{BAC}$ on both the sides.
5. But, $\angle \mathrm{DAB}+\angle \mathrm{CAE}+\angle \mathrm{BAC}$
$=$ Straight line $\angle D A E=180^{\circ}$
6. $\therefore \angle A B C+\angle B C A+\angle B A C=180^{\circ}$

Reason :

Hence Proved.

Example 1 :

In triangle $A B C ; 6 \angle A=4 \angle B=3 \angle C$. Find each angle of the triangle.

Solution :

Let $6 \angle A=4 \angle B=3 \angle C=x$
$\Rightarrow \quad \angle A=\frac{x}{6}, \angle B=\frac{x}{4}$ and $\angle C=\frac{x}{3}$
$\Rightarrow \quad \frac{x}{6}+\frac{x}{4}+\frac{x}{3}=180^{\circ}$

$$
\left[\because \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}\right]
$$

On solving, we get : $x=240^{\circ}$
$\therefore \quad \angle A=\frac{x}{6}=\frac{240^{\circ}}{6}=40^{\circ}, \angle B=\frac{x}{4}=\frac{240^{\circ}}{4}=60^{\circ}$
and,

$$
\begin{equation*}
\angle C=\frac{x}{3}=\frac{240^{\circ}}{3}=80^{\circ} \tag{Ans.}
\end{equation*}
$$

TEST YOURSELF

1. If two angles of a triangle are 52° and 88°, its third angle $=$ \qquad
2. Two angles of a triangle are 75° each, its third angle $=$
3. Two angles of a triangle are equal and its third angle is 80°, then each of the equal angles is \qquad
4. Angles of a triangle are in the ratio $4: 5: 3$.

The largest angle of the triangle = \qquad $=$ \qquad and its smallest angle is \qquad = \qquad
5. The angles of a triangle are in the ratio $3: 7: 5$; the largest angle $=$ =. ; the sum of its other two angles = \qquad and the special name of this triangles is \qquad

1. The angles of a triangle are $(3 x)^{\circ},(2 x-7)^{\circ}$ and $(4 x-11)^{\circ}$. Find the value of x and measure of each angle of the triangle.
2. One angle of a triangle is 78° and the other two angles are in the ratio $7: 10$. Calculate the two unknown angles of the triangle.
3. In a triangle $A B C, \angle A=2 \angle B=3 \angle C$. Find each angle of the triangle.
4. Use the informations given in the figure below to calculate the values of x and y.

5. (i) In $\triangle A B C, \angle A=2 x+15^{\circ}, \angle B=3 x-5^{\circ}$ and $\angle C=4 x+35^{\circ}$. Find each angle of the triangle.
(ii) In $\triangle A B C, \angle A=x+15^{\circ}, \angle B=x$ and $\angle C=2 x-35^{\circ}$. Find each angle of the triangle and then assign a special name to the triangle.
(iii) In $\triangle A B C, \angle A=x+20^{\circ}, \angle B=2\left(x-10^{\circ}\right)$ and $\angle C=\frac{3}{2} x$. Show that the triangle is equilateral.
6. From the figure, given below, find the value of $\angle \mathrm{ABC}+\angle \mathrm{BCD}+\angle \mathrm{CDE}$.

7. In triangle $A B C$, the bisectors of angles B and C meet at P. Prove that: $\angle B P C=90^{\circ}+\frac{1}{2} \angle A$.
8. The adjoining figure, shows a triangle $A B C$ in which $\angle A=58^{\circ}$, $\angle B=60^{\circ}$ and bisectors of angles B and C meet at O. Find the measure of the angle BOC.
9. In triangle $A B C, \angle B=3 \angle A-25^{\circ}$ and $\angle A=\angle C$. Find angles A and B.
10. From each of the following figures, find the value of x :
(i)

(ii)

24.3 INTERIOR AND EXTERIOR ANGLES OF A TRIANGLE

1. Interior angles of a triangle :

In triangle $\mathrm{ABC} ; \angle \mathrm{BAC}$ (i.e. $\angle \mathrm{A}), \angle \mathrm{ABC}$ (i.e. $\angle \mathrm{B}$) and $\angle \mathrm{BCA}$ (i.e. $\angle \mathrm{C}$) are called its interior angles as they lie inside the triangle.

2. Exterior angles of a triangle :

In $\triangle A B C$; if side $B C$ is produced upto any point D, then the angle $A C D$ is called the exterior angle of the triangle.

Since, the interior angles A and B of $\triangle A B C$ are opposite to the exterior angle $A C D$, they are called interior opposite angles of the angle $A C D$.

Theorem 2

If one side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.
Given : A triangle $A B C$ whose side $B C$ is produced upto point D.
 To Prove : Exterior $\angle A C D=\angle A+\angle B$ Construction : Draw CE parallel to BA.

Proof: Statement:

1. Since, $C E / / B A$ and $B C D$ is transversal,
$\therefore \angle \mathrm{ECD}=\angle \mathrm{B}$
2. Since, $C E / / B A$ and $A C$ is transversal, $\therefore \angle A C E=\angle A$
3. $\angle \mathrm{ECD}+\angle \mathrm{ACE}=\angle \mathrm{B}+\angle \mathrm{A}$
$\Rightarrow \quad \angle A C D=\angle A+\angle B$

Corresponding angles

Alternate angles
Adding the results of 1 and 2 .
$\angle E C D+\angle A C E=\angle A C D$.

Hence Proved.
Consider the following figures :
(i)

$$
[\angle B A E=\angle B+\angle C]
$$

(ii)

(iii)

$$
[\angle \mathrm{ABF}=\angle \mathrm{A}+\angle \mathrm{C}]
$$

Example 2 :

In the figure, given alongside, $\angle A=x+8^{\circ}$, $\angle B=2 x+3^{\circ}$ and $\angle B C D=5 x-11^{\circ}$, find the measure of the angle BCD.

Solution :

$$
\begin{align*}
& \therefore \quad \angle B C D=\angle A+\angle B \quad[\because \text { Exterior angle }=\text { sum of two interior opposite angles. }] \\
& \Rightarrow \quad 5 x-11^{\circ}=\left(x+8^{\circ}\right)+\left(2 x+3^{\circ}\right) \\
& \Rightarrow \quad 5 x-11^{\circ}=3 x+11^{\circ} \\
& \Rightarrow \quad 2 x=22^{\circ} \text { and, } x=\frac{22^{\circ}}{2}=11^{\circ} \\
& \therefore \quad \angle B C D=5 x-11^{\circ}=5 \times 11^{\circ}-11^{\circ}=44^{\circ} \tag{Ans.}
\end{align*}
$$

Example 3 :

If the exterior angles of a triangle are in the ratio $6: 7: 5$, find each exterior angle.
Solution :
Let the exterior angles be $6 \mathrm{x}, 7 \mathrm{x}$ and 5 x
\Rightarrow The corresponding interior angles are $180^{\circ}-6 \mathrm{x}, 180^{\circ}-7 \mathrm{x}$ and $180^{\circ}-5 \mathrm{x}$
$\therefore \quad\left(180^{\circ}-6 x\right)+\left(180^{\circ}-7 x\right)+\left(180^{\circ}-5 x\right)=180^{\circ}\left[\because\right.$ Sum of interior angles of a $\left.\Delta=180^{\circ}\right]$ On solving, we get : $x=20^{\circ}$
\therefore The exterior angles are : $6 \mathrm{x}, 7 \mathrm{x}$ and $5 \mathrm{x}=6 \times 20^{\circ}, 7 \times 20^{\circ}$ and $5 \times 20^{\circ}$

$$
\begin{equation*}
=120^{\circ}, 140^{\circ} \text { and } 100^{\circ} \tag{Ans.}
\end{equation*}
$$

Example 4 :

Can a triangle have :
(i) two right angles?
(ii) two obtuse angles?
(iii) two acute angles?
(iv) all angles more than 60° ?
(v) all angles less than 60° ?

Give reason in each case.

Solution :

(i) A triangle cannot have two right angles.
(Ans.)
Reason : If a triangle has two right angles, then the sum of its three angles will be more than two right angles i.e. more than 180°; which is impossible.
(ii) No, a triangle cannot have two obtuse angles.
(Ans.)
Reason : If a triangle has two obtuse angles, then the sum of its three angles will be more than two right angles; which is impossible.
(iii) Yes, a triangle can have two acute angles.
(Ans.)
Reason : If a triangle has two acute angles, then the sum of its three angles can be equal to two right angles.
(iv) No, a triangle cannot have all angles more than 60°.
(Ans.)
Reason : If a triangle has all angles more than 60°, then the sum of its three angles will be more than two right angles; which is impossible.
(v) No, a triangle cannot have all angles less than 60°.
(Ans.)
Reason : If a triangle has all angles less than 60°, then the sum of its three angles will be less than two right angles; which is impossible.

Example 5 :

In the adjoining figure, $A B$ is parallel to $C D$ and EF is parallel to BC .

If $\angle B A C=65^{\circ}$ and $\angle D H F=35^{\circ}$, find $\angle A G H$.
No proof is required but the essential steps of working must be shown.

Solution :

Since, lines CD and EF intersect each other at point H,

$$
\begin{array}{rlrl}
\therefore & \angle \mathrm{CHG} & =\angle \mathrm{DHF} \\
& =35^{\circ}
\end{array}
$$

[Vertically opposite angles]

Since, $A B$ is parallel to $C D$ and $A C$ is transversal,

$$
\begin{aligned}
\therefore \quad \angle H C G & =\angle B A C \\
& =65^{\circ}
\end{aligned}
$$

[Alternate angles]
Since, the exterior angle of a triangle is equal to the sum of its interior opposite angles, therefore in triangle CHG,

$$
\text { Ext. } \begin{align*}
\angle A G H & =\angle H C G+\angle C H G \\
& =65^{\circ}+35^{\circ}=100^{\circ} \tag{Ans.}
\end{align*}
$$

Example 6 :

In triangle $A B C$, the bisectors of angle B and angle C intersect each other at point O .

Prove that: $\angle B O C=90^{\circ}+\frac{1}{2} \angle A$

Solution :

In the figure, BO bisects $\angle \mathrm{B}, \therefore \angle \mathrm{OBC}=\frac{1}{2} \angle \mathrm{~B}$
and, CO bisects $\angle \mathrm{C}, \therefore \angle \mathrm{OCB}=\frac{1}{2} \angle \mathrm{C}$.
In $\triangle \mathrm{OBC}, \angle \mathrm{OBC}+\angle \mathrm{OCB}+\angle \mathrm{BOC}=180^{\circ}$
[Sum of angles of a $\Delta=180^{\circ}$]
$\Rightarrow \quad \frac{1}{2} \angle B+\frac{1}{2} \angle C+\angle B O C=180^{\circ}$
$\Rightarrow \quad \angle B O C=180^{\circ}-\left(\frac{1}{2} \angle B+\frac{1}{2} \angle C\right)$
In $\triangle A B C, \quad \angle A+\angle B+\angle C=180^{\circ}$

$$
\begin{array}{ll}
\Rightarrow & \frac{1}{2} \angle A+\frac{1}{2} \angle B+\frac{1}{2} \angle C=90^{\circ} \\
\Rightarrow & \frac{1}{2} \angle B+\frac{1}{2} \angle C=90^{\circ}-\frac{1}{2} A
\end{array}
$$

Substituting this value of $\frac{1}{2} \angle B+\frac{1}{2} \angle C$ in equation I, we get :

$$
\begin{aligned}
& \angle B O C=180^{\circ}-\left(90^{\circ}-\frac{1}{2} \angle A\right) \\
& \\
& =180^{\circ}-90^{\circ}+\frac{1}{2} \angle A=90^{\circ}+\frac{1}{2} \angle A
\end{aligned} \text { Hence Proved. }
$$

Example 7 :

In a triangle $A B C$, sides $A B$ and $A C$ are produced. The bisectors of exterior angles at B and C intersect each other at point O.

Prove that :
$\angle B O C=90^{\circ}-\frac{1}{2} \angle A$

Solution :

In the figure, sides $A B$ and $A C$ are produced upto points D and E respectively.
$B O$ bisects exterior angle $D B C \Rightarrow \angle O B C=\frac{1}{2} \angle D B C$
and, CO bisects exterior angle $\mathrm{ECB} \Rightarrow \angle \mathrm{OCB}=\frac{1}{2} \angle \mathrm{ECB}$
Since, the sum of the angles of a triangle $=180^{\circ}$
In $\triangle B O C, \angle O B C+\angle O C B+\angle B O C=180^{\circ}$
$\Rightarrow \quad \frac{1}{2} \angle \mathrm{DBC}+\frac{1}{2} \angle \mathrm{ECB}+\angle \mathrm{BOC}=180^{\circ}$
$\Rightarrow \quad \angle B O C=180^{\circ}-\frac{1}{2}(\angle D B C+\angle E C B)$
Since, the exterior angle of a triangle is equal to the sum of its two interior opposite angles, therefore, in triangle $A B C$,

$$
\begin{array}{rlrl}
\angle \mathrm{DBC} & =\angle \mathrm{A}+\angle \mathrm{C} \text { and } \angle \mathrm{ECB}=\angle \mathrm{A}+\angle \mathrm{B} \\
\Rightarrow & & \angle \mathrm{DBC}+\angle \mathrm{ECB} & =\angle \mathrm{A}+\angle \mathrm{C}+\angle \mathrm{A}+\angle \mathrm{B} \\
& =\angle \mathrm{A}+180^{\circ} \quad\left[\ln \triangle \mathrm{ABC}, \angle \mathrm{~A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}\right] \\
\Rightarrow \quad & & &
\end{array}
$$

Substituting in equation I, we get :

$$
\begin{aligned}
\angle B O C & =180^{\circ}-\left(\frac{1}{2} \angle A+90^{\circ}\right) \\
& =180^{\circ}-\frac{1}{2} \angle A-90^{\circ}=90^{\circ}-\frac{1}{2} \angle A
\end{aligned}
$$

Hence Proved.

Alternative method :

Since, ABD is a straight line,

$$
\angle \mathrm{B}+\angle \mathrm{DBC}=180^{\circ} \Rightarrow \angle \mathrm{DBC}=180^{\circ}-\angle \mathrm{B}
$$

Since, ACE is a straight line,

$$
\begin{aligned}
\angle \mathrm{C}+\angle \mathrm{ECB} & =180^{\circ} \Rightarrow \angle \mathrm{ECB}=180^{\circ}-\angle \mathrm{C} \\
\therefore \quad \angle \mathrm{DBC}+\angle \mathrm{CEB} & =180^{\circ}-\angle \mathrm{B}+180^{\circ}-\angle \mathrm{C} \\
& =360^{\circ}-(\angle \mathrm{B}+\angle \mathrm{C}) \\
& =360^{\circ}-\left(180^{\circ}-\angle \mathrm{A}\right) \quad\left[\because \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}\right] \\
& =360^{\circ}-180^{\circ}+\angle \mathrm{A} \\
& =180^{\circ}+\angle \mathrm{A}
\end{aligned}
$$

Substituting in equation I, we get :

$$
\begin{align*}
\angle B O C & =180^{\circ}-\frac{1}{2}\left(180^{\circ}+\angle A\right) \\
& =180^{\circ}-90^{\circ}-\frac{1}{2} \angle A=90^{\circ}-\frac{1}{2} \angle A \tag{Ans.}
\end{align*}
$$

TEST YOURSELF

6. The angles of a triangle $A B C$ are in the ratio $\angle A: \angle B: \angle C=5: 8: 7$; the angle $B=$
$=$ \qquad and the exterior angle at vertex A is \qquad =
\qquad
7. In case of a $\triangle A B C$, exterior angle at A is bigger than the exterior angle at B; then the interior angle at A is \qquad than the interior angle at B.
8. In $\triangle A B C$, the bisectors of exterior angles at vertices B and C intersect each other at point O. If $\angle A=70 ; \angle B O C=$ = \qquad
9. In $\triangle A B C, \angle B=80^{\circ}$. The bisectors of the interior angles s at A and at C, intersect each other at point I. $\angle \mathrm{CIA}=$ \qquad
\qquad

EXERCISE 24 (B)

1. Find, giving reasons, the unknown angles marked by letters a, b, etc.
(i)

(ii)

(iii)

2. (i)

If $\angle \mathrm{B}: \angle \mathrm{C}=3: 2$, find $\angle \mathrm{B}$ and $\angle \mathrm{C}$.

If $y=40$, calculate the value of x.
3. Given: $\angle 1=9 \mathrm{x}-15^{\circ} ; \angle 3=4 \mathrm{x}$ and $\angle 4=3 x+15^{\circ}$. Calculate $\angle 1$.

4. In the figure of question number 3 , if $\angle 1=8 x-6^{\circ}, \angle 3=3 x+4^{\circ}$ and $\angle 4=4 x+2^{\circ}$, calculate : $\angle 4$ and $\angle 2$.
5. Giving reasons, calculate :
(i) $\angle A B C$
(ii) $\angle A D E$

6. Giving reasons, calculate :
(i) $\angle D E A$
(ii) $\angle E D A$
(iii) $\angle A$

7. Find, giving reasons, the values of unknown angles marked by letter a.

(iii)

8. From the following diagram, find the values of x and y :

$4 x=y$ and $4 x+(x+y)+\left(y-15^{\circ}\right)=180^{\circ}$
9. Find the value of x from the adjoining diagram :

Ext. $\angle \mathrm{BCE}+$ ext. $\angle \mathrm{DCE}=40^{\circ}+48^{\circ}+30^{\circ}$ $\Rightarrow x=118^{\circ}$
10. Use the given figure to find x :

11. The figure, given alongside, shows a triangle $A B C$ whose sides $A B$ and $A C$ are produced upto points D and E respectively. The
 bisectors of exterior angles so formed, intersect each other at point I. If $\angle \mathrm{BAC}=80^{\circ}$ and $\angle A C B=50^{\circ}$, find :
(i) $\angle \mathrm{ECB}$
(ii) $\angle \mathrm{DBC}$
(iii) \angle ICB
(iv) $\angle \mathrm{IBC}$
(v) $\angle \mathrm{BIC}$
12. In the given figure, the bisectors of angles B and C meet at point I. Find:

(i) $\angle \mathrm{DBC}$ in terms of $\angle \mathrm{A}$ and $\angle \mathrm{C}$
(ii) $\angle \mathrm{ECB}$ in terms of $\angle \mathrm{A}$ and $\angle \mathrm{B}$
(iii) $\angle \mathrm{IBC}$ in terms of $\angle \mathrm{A}$ and $\angle \mathrm{C}$
(iv) $\angle \mathrm{ICB}$ in terms of $\angle \mathrm{A}$ and $\angle \mathrm{B}$.

Now show that : $\angle \mathrm{BIC}=90^{\circ}-\frac{1}{2} \angle \mathrm{~A}$
13. From each of the following figures, find the values of letters x, y and z.
(i)

(ii)

14. An angle of a triangle is 68° and the other two differ by 16°. Find the other two angles.
15. An angle of a triangle is 98° and the larger of the other two angles is 14° less than five times the smaller. Find the other two angles.

24.4 INEQUALITIES

Statement 1 :

If two sides of a triangle are unequal, the greater side has greater angle opposite to it.
e.g. if in triangle $A B C$, side $A C$ is greater than side $A B$ then, the angle opposite to side $A C$ is greater than the angle opposite to side $A B$.
$\therefore \angle \mathrm{B}$ is greater than $\angle \mathrm{C}$ i.e. $\angle \mathrm{B}>\angle \mathrm{C}$.

Statement 2 :

(Converse of statement 1) : If two angles of a triangle are unequal, the greater angle has greater side opposite to it.
e.g. if in $\triangle A B C$; angle A is greater than angle C then, side opposite to $\angle A$ is greater than the side opposite to $\angle C$.
$\therefore B C$ is greater than $A B$ i.e. $B C>A B$.

Statement 3 :

The sum of the lengths of any two sides of a triangle is always greater than the third side.
i.e. in $\triangle A B C$:
(i) $A B+B C>A C$
(ii) $B C+A C>A B$ and
(iii) $A B+A C>B C$.

Statement 4 :

The difference between the lengths of any two sides of a triangle is always less than the third side.
e.g. if in triangle $A B C, A C$ is greater than $A B$ then their difference $A C-A B<B C$

Similarly, $B C-A B<A C$ (if $B C>A B$) and so on.

TEST YOURSELF

10. In the adjoining figure, the greatest angle $=$ \qquad and the smallest angle = \qquad Therefore, the largest side $=$ \qquad and the shortest side = \qquad
11. In the adjoining figure, the largest side $=$ \qquad and the shortest side $=$ \qquad Therefore, the greatest angle = \qquad and the smallest angle = \qquad

12. Fill in the blanks with symbol $>$ or $<$:
(i) In the adjoining figure; $P Q+Q R$ \qquad PR.
(ii) If $P R>P Q$, then $P R-P Q$ \qquad QR.

Example 8 :

In the adjoining figure, the exterior $\angle \mathrm{CAD}=100^{\circ}$ and the exterior $\angle A B E=125^{\circ}$. Write the sides of triangle $A B C$, in ascending order of their lengths.

Solution :

$\angle \mathrm{CAD}=100^{\circ} \Rightarrow \angle \mathrm{CAB}=180^{\circ}-100^{\circ}=80^{\circ}$,
$\angle A B E=125^{\circ} \Rightarrow \angle A B C=180^{\circ}-125^{\circ}=55^{\circ}$
and, $\angle A C B=180^{\circ}-\left(80^{\circ}+55^{\circ}\right)=45^{\circ}$
Since, the largest angle of the triangle $A B C$ is $\angle A=80^{\circ}$
\therefore The largest side $=$ side $B C$
Since, the least angle of the $\triangle A B C$ is $\angle C=45^{\circ}$
\therefore The smallest side $=$ side $A B$
\therefore Sides of the given triangle in ascending order are $A B<A C<B C$

Example 9 :

Show that the hypotenuse is the greatest side in a right-angled triangle.

Solution :

Given, a triangle $A B C$ in which $\angle B=90^{\circ}$ i.e. $A C$ is the hypotenuse.

To show that :
Hypotenuse $A C$ is the greatest side of right triangle $A B C$.
Since,

$$
\angle B=90^{\circ} \text { and } \angle A+\angle B+\angle C=180^{\circ}
$$

\therefore

$$
\angle \mathrm{A}+\angle \mathrm{C}=90^{\circ}
$$

$\Rightarrow \quad \angle \mathrm{A}<90^{\circ}$ and $\angle \mathrm{C}<90^{\circ}$
i.e.
$\angle \mathrm{A}<\angle \mathrm{B}$ and $\angle \mathrm{C}<\angle \mathrm{B}$
or,
$\angle \mathrm{B}>\angle \mathrm{A}$ and $\angle \mathrm{B}>\angle \mathrm{C}$
$\Rightarrow \angle B$ is the greatest angle of $\triangle A B C$
\Rightarrow Side opposite to $\angle B$ is the greatest side of the triangle $A B C$
\Rightarrow Hypotenuse $A C$ is the greatest side of right triangle $A B C$.

Example 10 :

In isosceles triangle $\mathrm{PQR}, \mathrm{PQ}=\mathrm{PR}$ and S is a point on QR produced. Show that PS is greater than PR.

Solution :

According to the given statement, the figure will be as shown alongside :

Since, in a triangle, the angles opposite to equal
 sides are equal.
$\therefore \ln \angle \mathrm{PQR}, \mathrm{PQ}=\mathrm{PR} \Rightarrow \angle \mathrm{PQR}=\angle \mathrm{PRQ}$
Since, the exterior angle of a triangle is equal to the sum of its interior opposite angles.

```
\(\therefore \quad\) In \(\triangle \mathrm{PRS}, \angle \mathrm{PRQ}=\angle \mathrm{RPS}+\angle \mathrm{S}\)
\(\Rightarrow \quad \angle P R Q>\angle S\)
\(\Rightarrow \quad \angle \mathrm{PQR}>\angle \mathrm{S} \quad[\because \angle \mathrm{PQR}=\angle \mathrm{PRQ}]\)
```

Since, in a triangle, the side opposite to the greater angle is greater

```
\therefore\quad In }\trianglePQS,\anglePQR > \angleS
=> PS > PQ
=> PS > PR
```

$$
[\because P Q=P R]
$$

TEST YOURSELF

13. Two sides of a triangle are 8 cm and 5 cm , the third side can not be less than \qquad = \qquad and it can not be greater than \qquad = \qquad
14. In $\triangle A B C, \angle A: \angle B: \angle C=8: 15: 10$. The largest side of the triangle is \qquad
15. The largest side of a right angled triangle is called its \qquad
16. In $\triangle A B C$, side $B C>$ side $A C$, then $\angle B$ is \qquad $\angle A$.
17. In quadrilateral $A B C D, A B+B C$ is greater than and $A D+D C$ is greater than \qquad

EXERCISE 24 (C)

1. In $\triangle A B C, \angle A=40^{\circ}$ and $\angle B=80^{\circ}$. Name :
(i) its smallest side, (ii) its largest side.

Also, write the sides of the triangle in ascending order of their lengths.
2. (i) In triangle $\mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}=52^{\circ}$, write the name of its largest side.
(ii) In triangle $A B C, \angle C=120^{\circ}$, write the name of its largest side.
3. In triangle PQR, $\angle \mathrm{P}: \angle \mathrm{Q}: \angle \mathrm{R}=5: 6: 7$. Without finding the angles of the triangle, name its
(i) smallest side,
(ii) largest side.
4. State, giving reasons, whether it is possible to construct a triangle or not with its sides equal to:
(i) $5 \mathrm{~cm}, 7 \mathrm{~cm}$ and 4 cm
(ii) $3.6 \mathrm{~cm}, 6 \mathrm{~cm}$ and 2.4 cm
(iii) $8 \mathrm{~cm}, 15 \mathrm{~cm}$ and 19 cm

It is possible to construct a triangle, if the sum of lengths of every pair of two sides of the triangle is more than the third side and their difference is less than the third side.
5. Use the information given in the adjoining figure to prove that :

(i) $\mathrm{AB}>\mathrm{BC}$
(ii) $A D>A C$
6. Use the information given in the following figure to show that :
(i) $A B>B C$
(ii) $A D>A B$
(iii) $B D$ is the largest side of the triangle
 ABD.
7. In quadrilateral $A B C D$, given below, prove that :
(i) $A D+D C>A C$
(ii) $A B+B C>A C$

(iii) $\mathrm{AB}+\mathrm{BC}+\mathrm{DC}+\mathrm{AD}>2 \mathrm{AC}$
8. In triangle $A B C, D$ is any point in side $B C$, show that :

(i) $\mathrm{AB}+\mathrm{BD}>\mathrm{AD}$
(ii) $A C+C D>A D$
(iii) $A B+B C+A C>2 A D$
9. The given figure shows a triangle $A B C$, in which $\angle B=70^{\circ}, \angle C=60^{\circ}$ and $A D$ bisects $\angle B A D$. By finding all the angles of triangle $A B D$ and all the angles of triangle $A C D$, show that :
(i) $A B>A D$
(ii) $A C>A D$

10. The given figure shows a quadrilateral $A B C D$. Show that :
(i) $\mathrm{AB}+\mathrm{BC}>\mathrm{AC}$
(ii) $\mathrm{BC}+\mathrm{CD}>\mathrm{BD}$
(iii) $C D+D A>A C$ and
(iv) $\mathrm{DA}+\mathrm{AB}>\mathrm{BD}$

Now add the results of parts (i), (ii), (iii) and (iv)
 to show :
$A B+B C+C D+D A>A C+B D$.
11. Arrange the sides $B C, A C$ and $C D$ in ascending order of their lengths :

12. In triangle $A B C$, the bisector of $\angle A$ meets opposite side $B C$ at point D. Prove that : $A B>B D$.
13. In a right-angled triangle, the hypotenuse is the largest side, prove it.

24.5 IMPORTANT

Median

The median of a triangle, corresponding to any side of it, is the line segment joining the mid-point of that side with the opposite vertex.

[AD is median corresponding to side BC]
(ii)

[$B E$ is median corresponding to side $A C$]
(iii)

[CF is median corresponding to side $A B$]

Altitude

 An altitude of a triangle, corresponding to any side, is the length of perpendicular drawn from the opposite vertex to that side.
[AD is altitude corresponding to side BC]
(ii)

[$B E$ is altitude corresponding to side AC]
(iii)

[CF is altitude corresponding to side $A B$]

Remember : The three altitudes of a triangle always intersect each other at the same point. This point of intersection of the altitudes is called orthocentre.
In the given figure, O is the orthocentre of $\triangle A B C$.

Angle-bisector The line bisecting an interior angle of a triangle is called the angle-bisector of the triangle.
(i)

(ii)

[$B E$ is bisector of $\angle A B C$]
(iii)

[CF is bisector

$$
\text { of } \angle A C B]
$$

Remember : The three angle bisectors of a triangle always intersect each other at the same point. This point of intersection of the angle bisectors is called incentre.
In the given figure, I is the incentre of $\triangle A B C$

Perpendicular -bisector

The line bisecting a side of a triangle and perpendicular to this side is called perpendicular bisector of the side of the triangle.

[PQ is perpendicular bisector of side BC]
(ii)

[MN is perpendicular bisector of side AB]
Remember : The three perpendicular bisectors of the sides of a triangle always intersect each other at the same point. This point of intersection of the perpendicular bisectors is called circumcentre of the triangle.
In the given figure, O is the circumcentre of the triangle.
(iii)

[RS is perpendicular bisector of side AC]

1. Incentre (I) of a triangle is the centre of the circle which touches all the three sides of the triangle. The circle so drawn is called incircle of the triangle.
2. Circumcentre (O) of a triangle is the centre of the
3. circle which passes through all the three vertices of the triangle.
The circle so drawn is called circumcircle of the triangle.

ANSWERS

TEST YOURSELF

1. 40° 2. 30° 3. 50° 4. $\frac{5}{12} \times 180^{\circ}, 75^{\circ}, \frac{3}{12} \times 180^{\circ}, 45^{\circ} \quad$ 5. $\frac{7}{15} \times 180^{\circ}, 84^{\circ}, 96^{\circ}$; acute-angled triangle
2. $\frac{8}{20} \times 180^{\circ}=72^{\circ}, 180^{\circ}-\frac{5}{20} \times 180^{\circ}, 135^{\circ}$
$\begin{array}{ll}\text { 7. smaller } & \text { 8. } 90^{\circ}-\frac{1}{2} \times 70^{\circ}=55^{\circ}\end{array}$
3. $90^{\circ}+\frac{1}{2} \times 80^{\circ}=130^{\circ}$
4. $\angle B ; \angle A ; A C ; B C 11$
5. $A B ; A C ; \angle C ; \angle B$
6. (i) $>$ (ii) $<$
$13.8 \mathrm{~cm}-5 \mathrm{~cm}$; $3 \mathrm{~cm}, 8 \mathrm{~cm}+5 \mathrm{~cm} ; 13 \mathrm{~cm}$ 14. $A C$ 15. hypotenuse 16. less than 17. $A C$; $A C$

EXERCISE 24(A)

1. $x=22^{\circ} ; 66^{\circ}, 37^{\circ}$ and 77° 2. 42° and 60°
2. $\left(98 \frac{2}{11}\right)^{\circ},\left(49 \frac{1}{11}\right)^{\circ}$ and $\left(32 \frac{8}{11}\right)^{\circ}$
3. $x=24^{\circ}$ and $y=131^{\circ}$
4. (i) $45^{\circ}, 40^{\circ}$ and 95°
(ii) $65^{\circ}, 50^{\circ}$ and 65°. Isosceles triangle
5. 360°
6. 119°
7. $A=41^{\circ}, B=98^{\circ}$ 10. (i) 100° (ii) 70°

EXERCISE 24(B)

1. (i) $\mathrm{a}=65^{\circ}$ (ii) $\mathrm{a}=140^{\circ}$ and $\mathrm{b}=75^{\circ}$ (iii) $\mathrm{a}=55^{\circ}$ and $\mathrm{b}=125^{\circ}$
2. (i) 57° and 38° (ii) 25°
3. 120°
4. 50° and 90°
5. (i) 55°
(ii) 55°
6. (i) 55° (ii) 60° (iii) 65°
7. (i) 50° (ii) 22° (iii) 45°
8. $x=15$ and
$y=60$
9. 118°
10. 27°
11. (i)
(ii) 130° (iii) 65° (iv) 65°
(v) 50°
12. (i) $\angle D B C=\angle A+\angle C$
(ii) $\angle \mathrm{ECB}=\angle \mathrm{A}+\angle \mathrm{B}$ (iii) $\angle \mathrm{IBC}=\frac{1}{2}$ ($\angle \mathrm{A}+\angle \mathrm{C}$) (iv) $\angle \mathrm{ICB}=\frac{1}{2}$ ($\left.\angle \mathrm{A}+\angle \mathrm{B}\right) 13$. (i) $\mathrm{x}=40^{\circ}, \mathrm{y}=105^{\circ}$ and $z=40^{\circ}$ (ii) $x=20^{\circ}, y=20^{\circ}$ and $z=84^{\circ} \quad 14.64^{\circ}$ and $48^{\circ} \quad 15.66^{\circ}$ and 16°

EXERCISE 24(C)

1. (i) $B C$ (ii) $A C, B C<A B<A C$ 2. (i) $A B$
(ii) AB
2. (i) $Q R$ (ii) $P Q$
3. (i) Yes
(ii) No (iii) Yes 11. (i) $B C<A C<C D$ (ii) $B C<A C=C D$
