LINEAR INEQUATIONS: NUMBER LINE

21.1 INTRODUCTION

1. Equation

A statement, which says that one thing is equal to another, is called an equation. e.g. (i) x = 5 (ii) 3x = 7 (iii) 2x - 5 = 10, etc.

2. Inequation

A statement, which says that one thing is not equal to another (i.e., either it is greater or lesser), is called an inequation.

e.g.

(i) x < 7

(read as x is less than 7)

(ii) x > 5

(read as x is greater than 5)

3. Connecting-verbs

The symbols =, \neq , <, >, etc. are called *connecting verbs*.

(i) '<' means; 'is less than',

(ii) '>' means; 'is greater than',

(iii) '≤' means; 'is less than or equal to',

(iv) '≥' means; 'is greater than or equal to'.

21.2 REPLACEMENT SET AND SOLUTION SET

For any linear inequation in x, the set from which the value(s) of variable x is chosen, is called the **replacement set** or the **universal set**.

The set of elements of the replacement set (universal set), which satisfy the given inequation, is called the solution set or the truth set.

e.g. Consider the inequation (statement) x > 6;

(i) if replacement set = $\{2, 4, 6, 8, 10\}$ then, the solution set = $\{8, 10\}$

(ii) if replacement set = $\{1, 3, 5, 7, 9, 11\}$ then, the solution set = $\{7, 9, 11\}$

TEST YOURSELF

1. (i) If $x \in N$ (Natural numbers) and x < 5; then $x = \dots, \dots$ or

(ii) If $x \in W$ (Whole numbers) and x < 5; then $x = \dots, \dots$ or or

(iii) If x = Z (integers) and $-2 \le x < 3$; then x =, or

2. If the replacement set = $\{-4, -3, -2, -1, 0, 1, 2, 3\}$, write the solution set for each of the following :

(i) {x : x > 1} =

(ii) {x : x < 1} =

(iii) $\{x : -3 < x \le 2\} = \dots$

(iv) $\{x: -2 \le x < 2\} = \dots$

21.3 PROPERTIES

 Adding the same number to each side of an inequation, does not change the sign of inequality.

i.e. if a > b, then a + c > b + c

and, if a < b, then a + c < b + c.

2. Subtracting the same number from each side of an inequation, does not change the sign of inequality.

i.e. if a > b, then a - c > b - c and, if a < b, then a - c < b - c.

3. Multiplying each side of an inequation by a positive number, does not change the sign of inequality.

i.e. if a > b and c is positive (i.e. c > 0) then, a.c > b.c also, if a < b and c > 0; then a·c < b·c.

4. Multiplying each side of an inequation by a negative number, reverses the sign of inequality.

i.e. if a > b and c is negative (i.e. c < 0), then $a \cdot c < b \cdot c$; also, if a < b and c < 0; then $a \cdot c > b \cdot c$.

5. Dividing each side of an inequation by a positive number, does not change the sign of inequality.

i.e. if a > b and c > 0, then $\frac{a}{c} > \frac{b}{c}$ also, if a < b and c > 0, then $\frac{a}{c} < \frac{b}{c}$.

6. Dividing each side of an inequation by a negative number, reverses the sign of inequality.

i.e. if a > b and c < 0, then $\frac{a}{c} < \frac{b}{c}$ also, if a < b and c > 0, then $\frac{a}{c} > \frac{b}{c}$.

TEST YOURSELF

5.
$$3 < 4 \Rightarrow -5 \times 3$$
 $-5 \times 4 \Rightarrow$ >

6.
$$6 > -5 \Rightarrow 6 \times -4 \dots -5 \times -4 \Rightarrow \dots$$

8.
$$15 < 21 \Rightarrow \frac{15}{-3}$$
 \Rightarrow

Example 1:

Find the solution set of the inequation:

- (i) 12 + 6x > 0; where x is a negative integer.
- (ii) 30 4(2x 1) < 30; where x is a positive integer.

Solution:

(i)
$$12 + 6x > 0 \Rightarrow 6x > -12$$

 $\Rightarrow x > -2$

[Dividing by 6]

(Ans.)

 $\cdot \cdot \cdot \times x$ is a negative integer $\cdot \cdot \cdot \cdot \cdot \times x$ is a negative integer $\cdot \cdot \cdot \cdot \cdot \times x$ is a negative integer $\cdot \cdot \cdot \cdot \times x$

(ii)
$$30 - 4(2x - 1) < 30 \Rightarrow 30 - 8x + 4 < 30$$

 $\Rightarrow 34 - 8x < 30$
 $\Rightarrow -8x < 30 - 34$

$$\Rightarrow -8x < -4$$

$$\Rightarrow \frac{-8x}{-8} > \frac{-4}{-8}$$

$$\Rightarrow x > \frac{1}{2}$$
[Dividing by -8]

(Ans.) ∴ x is a positive integer ∴ Solution set = {1, 2, 3, 4, 5,}

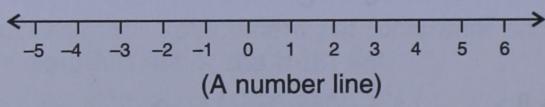
EXERCISE 21 (A)

- If the replacement set is the set of natural numbers, solve:
 - (i) x 5 < 0
- (ii) x + 1 ≤ 7
- (iii) 3x 4 > 6 (iv) $4x + 1 \ge 17$
- If the replacement set = $\{-6, -3, 0, 3, 6, 9\}$; find the truth set of the following:
 - (i) 2x 1 > 9
- (ii) $3x + 7 \le 1$
- Solve: 7 > 3x 8; $x \in N$. 3.
- Solve : -17 < 9y 8; $y \in Z$.

- 5. Solve: $9x 7 \le 28 + 4x$; $x \in W$.
- 6. Solve: $\frac{2}{3}x + 8 < 12$; $x \in W$.
- 7. Solve: -5(x + 4) > 30; $x \in Z$.
- 8. Solve the inequation $8 2x \ge x 5$; $x \in \mathbb{N}$.
- 9. Solve the inequality 18 3(2x 5) > 12; $x \in W$.
- 10. Solve: $\frac{2x+1}{3} + 15 \le 17$; $x \in W$.

NUMBER LINE 21.4

A number line is a graph (straight line) on which real numbers are marked as shown below:



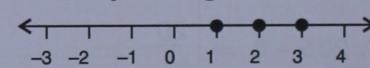
The solution of every inequation can be represented on a number line.

For example:

Solution set Inequation

Corresponding number line

- 1. x < 4 and $x \in N$
- $\{1, 2, 3\}$



Thick dots on the number line represent the solution.

- 2. x < 5; $x \in W$
- $\{0, 1, 2, 3, 4\}$

- 3. $x < 3; x \in Z$
- $\{\dots, -3, -2, -1, 0, 1, 2\}$

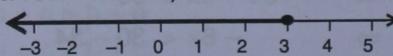
The dark arrow on the left side shows that the solution set continues towards left side.

- 4. $-3 \le x < 6$; $x \in W$
- {0, 1, 2, 3, 4, 5}

5. $-3 \le x < 6$; $x \in Z$ {-3, -2, -1, 0, 1, 2, 3, 4, 5}

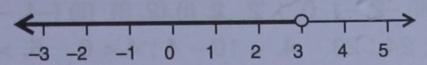
IMPORTANT

1. For $x \le 3$ where x is a real number; the number line will be as shown below:



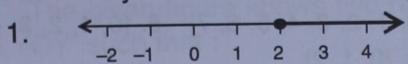
The dark circle around 3, shows 3 is included in the solution and the dark line with dark arrow on the left of number 3 shows that every number less than 3 is also included in the solution.

2. For x < 3 where $x \in R$; the number line will be as shown below:

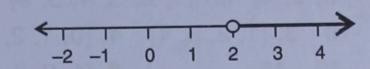


The hollow circle around 3, shows 3 is not included in the solution and the dark line with dark arrow on the left of number 3 shows that every number less than 3 is included in the solution.

Similarly consider the following number lines:

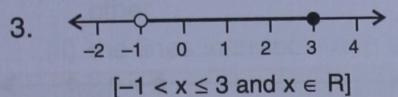


2



 $[x > 2 \text{ and } x \in R]$

 $[x \ge 2 \text{ and } x \in R]$



Example 2:

Graph the solution set on a number line if -2x + 14 < 6; where x is a real number.

Solution:

$$-2x + 14 < 6 \Rightarrow -2x < 6 - 14$$

$$\Rightarrow -2x < -8$$

$$\Rightarrow \frac{-2x}{-2} > \frac{-8}{-2}$$

$$\Rightarrow x > 4$$

 $\Rightarrow \frac{-2x}{-2} > \frac{-8}{-2}$ [Division by a negative number, reverses the sign of inequality]

-5 -4 -3 -2 -1 0 1 2 3 4 5

.. The required graph is:

- EXERCISE 21 (B)

Solve and graph the solution set on a number line:

1.
$$x-5 < -2$$
; $x \in N$

2.
$$3x - 1 > 5$$
; $x \in W$

3.
$$-3x + 12 < -15$$
; $x \in R$

4.
$$7 \ge 3x - 8$$
; $x \in W$

5.
$$8x - 8 \le -24$$
; $x \in Z$

6.
$$8x - 9 \ge 35 - 3x$$
; $x \in N$

7.
$$5x + 4 > 8x - 11$$
; $x \in Z$

8.
$$\frac{2x}{5} + 1 < -3; x \in \mathbb{R}$$

9.
$$\frac{x}{2} > -1 + \frac{3x}{4}$$
; $x \in \mathbb{N}$

10.
$$\frac{2}{3}x + 5 \le \frac{1}{2}x + 6$$
; $x \in W$

11. Solve the inequation
$$5(x - 2) > 4(x + 3) - 24$$

and represent its solution on a number line. Given the replacement set is $\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$.

(Ans.)

- 12. Solve $\frac{2}{3}(x-1) + 4 < 10$ and represent its solution on a number line. Given replacement set is $\{-8, -6, -4, 3, 6, 8, 12\}$.
- 13. For each inequation, given below, represent the solution on a number line :

(i)
$$\frac{5}{2} - 2x \ge \frac{1}{2}, x \in W$$

(ii)
$$3(2x-1) \ge 2(2x+3), x \in Z$$

(iii)
$$2(4-3x) \le 4(x-5), x \in W$$

(iv)
$$4(3x+1) > 2(4x-1)$$
, x is a negative integer

$$(v) \quad \frac{4-x}{2} < 3, \, x \in R$$

(vi)
$$-2(x+8) \le 8, x \in R$$

ANSWERS

TEST YOURSELF

1. (i) 1, 2, 3, 4 (ii) 0, 1, 2, 3, 4 (iii) -2, -1, 0, 1, 2 2. (i) $\{2, 3\}$ (ii) $\{-4, -3, -2, -1, 0\}$ (iii) $\{-2, -1, 0, 1, 2\}$ (iv) $\{-2, -1, 0, 1\}$ 3. 15 + 8; 24; 23 4. < 10 - 4; 4 < 6 5. >; -15 > -16 6. <; -24 < 20 7. $> \frac{-8}{4}$; 5 > -2 8. $> \frac{21}{-3}$; -5 > -7

EXERCISE 21(A)

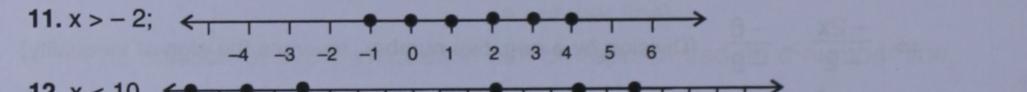
EXERCISE 21(B)

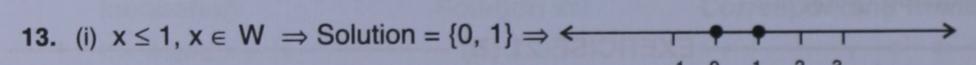
3.
$$x > 9$$
; \longleftrightarrow 4. $x \le 5$; \longleftrightarrow 7 8 9 10 11 \longleftrightarrow 4. $x \le 5$; \longleftrightarrow 6 7 8 9 10 11

5.
$$x \le -2$$
; \longleftrightarrow 6. $x \ge 4$; \longleftrightarrow 7

7.
$$x < 5$$
; $\leftarrow 9$ $\rightarrow 9$ 8. $x < -10$; $\leftarrow -13-12$ $\rightarrow -11$ $\rightarrow -10$

9.
$$x < 4$$
; $\leftarrow 1$ $\rightarrow 1$





(iii)
$$x \ge 2.8$$
, $x \in W \Rightarrow Solution = \{3, 4, 5,\} \Rightarrow \begin{array}{c} & \\ \hline -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \end{array}$

(iv)
$$x > -1.5$$
, $x \in \{\text{negative integers}\} \Rightarrow \text{Solution} = \{-1\} \Rightarrow \xrightarrow{-3} \xrightarrow{-2} \xrightarrow{-1} \xrightarrow{0}$

(v)
$$x > -2$$
, $x \in R \Rightarrow Solution = \{x > -2, x \in R\} \Rightarrow \begin{array}{c} + & + & + & + & + & + & + & + \\ & & & -3 & -2 & -1 & 0 & 1 & 2 & 3 \end{array}$

(vi) Solution :
$$\{x \ge -12, x \in R\} \Rightarrow \begin{array}{c} \leftarrow + \\ -13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 \end{array}$$