SPECIAL PRODUCTS AND EXPANSIONS

14.1 REVIEW

1. Special Products

The multiplications of certain types of expressions can be obtained by direct or short cut method. Such multiplications are known as **special products**.

For example (The product of two binomials):

1.
$$(x + a) (x + b) = x (x + b) + a (x + b)$$

= $x^2 + bx + ax + ab$
= $x^2 + ax + bx + ab = x^2 + (a + b) x + ab$

2.
$$(x + a) (x - b) = x (x - b) + a(x - b)$$

= $x^2 - bx + ax - ab$
= $x^2 + ax - bx - ab = x^2 + (a - b) x - ab$

3.
$$(x - a) (x + b) = x (x + b) - a(x + b)$$

= $x^2 + bx - ax - ab$
= $x^2 - ax + bx - ab = x^2 - (a - b) x - ab$

4.
$$(x-a)(x-b) = x(x-b) - a(x-b)$$

= $x^2 - bx - ax + ab$
= $x^2 - ax - bx + ab = x^2 - (a + b)x + ab$

Examples (Using direct method):

1.
$$(x + 5) (x + 3) = x^2 + (5 + 3) x + 5 \times 3 = x^2 + 8x + 15$$

2.
$$(x + 5) (x - 3) = x^2 + (5 - 3) x - 5 \times 3 = x^2 + 2x - 15$$

3.
$$(x-5)(x+3) = x^2 - (5-3)x - 5 \times 3 = x^2 - 2x - 15$$

4.
$$(x-5)(x-3) = x^2 - (5+3)x + 5 \times 3 = x^2 - 8x + 15$$

TEST YOURSELF

1.
$$(x + 15) (x + 4) = \dots = \dots = \dots = \dots = \dots$$

2. $(x + 15) (x - 4) = \dots = \dots$

14.2 IMPORTANT

While using direct method, the product of two binomials gives three terms:

(i) The first term = Product of the first terms of the two binomials

(ii) The middle term = (First term of first binomial × second term of second binomial) + (second term of first binomial × first term of second binomial)

= Product of outer terms + Product of inner terms

(iii) The third term = Product of the second terms of the two binomials.

Example 1:

Evaluate:

(i)
$$(2x + 3y) (3x + 4y)$$

(ii)
$$(2a + 3) (5a - 7)$$

(iii)
$$(4a - 3b) (2a + 5b)$$

(iv)
$$(7x-3)(2x-9)$$
.

Solution:

(i)
$$(2x + 3y) (3x + 4y) = (2x \times 3x) + (2x \times 4y + 3y \times 3x) + (3y \times 4y)$$

= $6x^2 + (8xy + 9xy) + (12y^2)$
= $6x^2 + 17xy + 12y^2$ (Ans.)

(ii)
$$(2a + 3) (5a - 7) = (2a \times 5a) + (2a \times -7 + 3 \times 5a) + (3 \times -7)$$

= $10a^2 + (-14a + 15a) + (-21)$
= $10a^2 + a - 21$ (Ans.)

(iii)
$$(4a - 3b) (2a + 5b) = (4a \times 2a) + (4a \times 5b + -3b \times 2a) + (-3b \times 5b)$$

= $8a^2 + (20ab - 6ab) + (-15b^2)$
= $8a^2 + 14ab - 15b^2$ (Ans.)

(iv)
$$(7x - 3)(2x - 9) = (7x \times 2x) + (7x \times -9 + -3 \times 2x) + (-3 \times -9)$$

= $14x^2 + (-63x - 6x) + (27)$
= $14x^2 - 69x + 27$ (Ans.)

14.3 PRODUCT OF SUM AND DIFFERENCE OF TWO TERMS

Consider the two terms 5x and 4y.

the sum of these two terms = 5x + 4y and the difference of these terms = 5x - 4y.

And, the product of their sum and their difference

=
$$(5x + 4y) (5x - 4y)$$

= $5x (5x - 4y) + 4y (5x - 4y)$
= $25x^2 - 20xy + 20xy - 16y^2$
= $25x^2 - 16y^2$
= $(5x)^2 - (4y)^2 = (First Term)^2 - (Second Term)^2$

TEST YOURSELF

5.
$$(x+3)(x-3) = \dots = \dots = \dots$$

6.
$$(3x + 4y)(3x - 4y) = \dots = \dots = \dots$$

7.
$$(1.6x^2 - 5)(1.6x^2 + 5) = \dots = \dots = \dots$$

8.
$$(5a^2 + 8b) (5a^2 - 8b) = \dots = \dots = \dots$$

Example 2:

Evaluate:

(i)
$$(x-2)(x+2)(x^2+4)$$

(ii)
$$(2a - 5b) (2a + 5b) (4a^2 + 25b^2)$$

Solution:

(i)
$$(x-2)(x+2)(x^2+4) = [(x-2)(x+2)](x^2+4)$$

 $= (x^2-2^2)(x^2+4)$
 $= (x^2-4)(x^2+4)$
 $= (x^2)^2-(4)^2=x^4-16$ (Ans.)
(ii) $(2a-5b)(2a+5b)(4a^2+25b^2) = [(2a-5b)(2a+5b)](4a^2+25b^2)$
 $= [(2a)^2-(5b)^2](4a^2+25b^2)$
 $= (4a^2-25b^2)(4a^2+25b^2)$
 $= (4a^2)^2-(25b^2)^2=16a^4-625b^4$ (Ans.)

Example 3:

Use of the formula $(a + b) (a - b) = a^2 - b^2$ to find the value of:

(i)
$$107 \times 93$$

(ii)
$$30.8 \times 29.2$$

Solution:

(i)
$$107 \times 93 = (100 + 7) (100 - 7)$$

= $(100)^2 - (7)^2 = 10000 - 49 = 9951$ (Ans.)

(ii)
$$30.8 \times 29.2 = (30 + 0.8) (30 - 0.8)$$

= $(30)^2 - (0.8)^2 = 900 - 0.64 = 899.36$ (Ans.)

EXERCISE 14 (A) -

- 1. Use direct method to evaluate the following products:
 - (i) (x + 8) (x + 3) (ii) (y + 5) (y 3)
 - (iii) (a-8)(a+2) (iv) (b-3)(b-5)
 - (v) (3x 2y)(2x + y)(vi)(5a + 16)(3a 7)
 - (vii) (8 b) (3 + b)
- 2. Use direct method to evaluate:
 - (i) (x + 1) (x 1) (ii) (2 + a) (2 a)
- - (iii) (3b-1)(3b+1) (iv) (4+5x)(4-5x)
 - (v) (2a + 3)(2a 3) (vi) (xy + 4)(xy 4)
 - (vii) $(ab + x^2) (ab x^2)$
 - (viii) $(3x^2 + 5y^2)(3x^2 5y^2)$
 - (ix) $\left(z-\frac{2}{3}\right)\left(z+\frac{2}{3}\right)$
 - (x) $\left(\frac{3}{5}a + \frac{1}{2}\right)\left(\frac{3}{5}a \frac{1}{2}\right)$
 - (xi) (0.5 2a)(0.5 + 2a)
 - (xii) $\left(\frac{a}{2} \frac{b}{3}\right) \left(\frac{a}{2} + \frac{b}{3}\right)$
- Evaluate:
 - (i) $(a + 1) (a 1) (a^2 + 1)$
 - (ii) $(a + b) (a b) (a^2 + b^2)$

- (iii) $(2a b) (2a + b) (4a^2 + b^2)$
- (iv) $(3-2x)(3+2x)(9+4x^2)$
- (v) $(3x 4y)(3x + 4y)(9x^2 + 16y^2)$
- 4. Use the product $(a + b) (a b) = a^2 b^2$ to evaluate:
 - (i) 21 × 19 (ii) 33 × 27
- - (iii) 103×97 (iv) 9.8×10.2
 - (v) 7.7×8.3 (vi) 4.6×5.4
- 5. Evaluate:
 - (i) (6 xy) (6 + xy)
 - (ii) $\left(7x + \frac{2}{3}y\right)\left(7x \frac{2}{3}y\right)$
 - (iii) $\left(\frac{a}{2b} + \frac{2b}{a}\right) \left(\frac{a}{2b} \frac{2b}{a}\right)$
 - (iv) $\left(3x \frac{1}{2y}\right)\left(3x + \frac{1}{2y}\right)$
 - (v) $(2a + 3) (2a 3) (4a^2 + 9)$
 - (vi) $(a + bc) (a bc) (a^2 + b^2c^2)$
 - (vii) (5x + 8y) (3x + 5y)
 - (viii) (7x + 15y) (5x 4y)
 - (ix) (2a 3b) (3a + 4b)
 - (x) (9a 7b) (3a b)

EXPANSIONS 14.4

In expansion, we study the multiplication of an expression by itself to obtain its second, third or higher power.

1.
$$(a + b)^2 = (a + b) (a + b)$$

= $a^2 + ab + ab + b^2 = a^2 + 2ab + b^2$

 $(Sum of two terms)^2 = (Ist term)^2 + 2 \times 1st term \times 2nd term + (2nd term)^2$

2.
$$(a - b)^2 = (a - b) (a - b)$$

= $a^2 - ab - ab + b^2 = a^2 - 2ab + b^2$

(Difference of two terms)² = (Ist term)² - 2 × Ist term × 2nd term + (2nd term)²

1.
$$(3x + 4y)^2 = (1st term)^2 + 2 \times 1st term \times 2nd term + (2nd term)^2$$

= $(3x)^2 + 2 \times 3x \times 4y + (4y)^2$
= $9x^2 + 24xy + 16y^2$ (Ans.)

2.
$$\left(\frac{3x}{2y} - \frac{2y}{3x}\right)^2 = (\text{Ist term})^2 - 2 \times \text{Ist term} \times 2\text{nd term} + (2\text{nd term})^2$$

$$= \left(\frac{3x}{2y}\right)^2 - 2 \times \frac{3x}{2y} \times \frac{2y}{3x} + \left(\frac{2y}{3x}\right)^2 = \frac{9x^2}{4y^2} - 2 + \frac{4y^2}{9x^2}$$
 (Ans.)

3.
$$(208)^2 = (200 + 8)^2$$

$$= (200)^2 + 2 \times 200 \times 8 + (8)^2$$

$$= 40000 + 3200 + 64 = 43264$$
 (Ans.)

4.
$$(9.7)^2 = (10 - 0.3)^2$$

= $(10)^2 - 2 \times 10 \times 0.3 + (0.3)^2 = 100 - 6 + 0.09 = 94.09$ (Ans.)

TEST YOURSELF

Using expansions, evaluate:

9.
$$\left(2a-\frac{3}{2}\right)^2 = \dots = \dots$$

10.
$$\left(x + \frac{1}{2x}\right)^2 = \dots = \dots$$

11.
$$(2x^2 - 3y)^2 = \dots = \dots$$

14.5 IMPORTANT FORMULAE TO BE MEMORISED

1.
$$(a + b)^2 = a^2 + b^2 + 2ab$$

2.
$$(a-b)^2 = a^2 + b^2 - 2ab$$

3.
$$\left(a+\frac{1}{a}\right)^2 = a^2 + \frac{1}{a^2} + 2$$

4.
$$\left(a-\frac{1}{a}\right)^2 = a^2 + \frac{1}{a^2} - 2$$

5.
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

= $a^2 + b^2 + c^2 + 2(ab + bc + ca)$

6.
$$(a+b-c)^2 = a^2 + b^2 + (-c)^2 + 2(a \times b) + 2(b \times -c) + 2(-c \times a)$$

= $a^2 + b^2 + c^2 + 2ab - 2bc - 2ca$

Example 4:

Expand: (i)
$$\left(2x + \frac{1}{2x}\right)^2$$
 (ii) $\left(3a - \frac{1}{a}\right)^2$ (iv) $(a - 2b - 5c)^2$

Solution:

(i)
$$\left(2x + \frac{1}{2x}\right)^2 = (2x)^2 + \left(\frac{1}{2x}\right)^2 + 2 \times 2x \times \frac{1}{2x}$$

= $4x^2 + \frac{1}{4x^2} + 2$ (Ans.)

(ii)
$$\left(3a - \frac{1}{a}\right)^2 = (3a)^2 + \left(\frac{1}{a}\right)^2 - 2 \times 3a \times \frac{1}{a}$$

= $9a^2 + \frac{1}{a^2} - 6$ (Ans.)

(iii)
$$(a + 2b - 5c)^2 = (a)^2 + (2b)^2 + (-5c)^2 + 2(a \times 2b) + 2(2b \times -5c) + 2(-5c \times a)$$

= $a^2 + 4b^2 + 25c^2 + 4ab - 20bc - 10ca$ (Ans.)

(iv)
$$(a - 2b - 5c)^2 = (a)^2 + (-2b)^2 + (-5c)^2 + 2 (a \times -2b) + 2 (-2b \times -5c) + 2 (-5c \times a)$$

= $a^2 + 4b^2 + 25c^2 - 4ab + 20bc - 10ca$ (Ans.)

14.6 CUBES OF BINOMIALS

1.
$$(\mathbf{a} + \mathbf{b})^3 = (\mathbf{a} + \mathbf{b}) (\mathbf{a} + \mathbf{b})^2$$

= $(\mathbf{a} + \mathbf{b}) (\mathbf{a}^2 + 2\mathbf{a}\mathbf{b} + \mathbf{b}^2)$
= $\mathbf{a} (\mathbf{a}^2 + 2\mathbf{a}\mathbf{b} + \mathbf{b}^2) + \mathbf{b} (\mathbf{a}^2 + 2\mathbf{a}\mathbf{b} + \mathbf{b}^2)$
= $\mathbf{a}^3 + 2\mathbf{a}^2\mathbf{b} + \mathbf{a}\mathbf{b}^2 + \mathbf{a}^2\mathbf{b} + 2\mathbf{a}\mathbf{b}^2 + \mathbf{b}^3 = \mathbf{a}^3 + 3\mathbf{a}^2\mathbf{b} + 3\mathbf{a}\mathbf{b}^2 + \mathbf{b}^3$

2.
$$(\mathbf{a} - \mathbf{b})^3 = (\mathbf{a} - \mathbf{b}) (\mathbf{a} - \mathbf{b})^2$$

= $(\mathbf{a} - \mathbf{b}) (\mathbf{a}^2 - 2\mathbf{a}\mathbf{b} + \mathbf{b}^2)$
= $\mathbf{a} (\mathbf{a}^2 - 2\mathbf{a}\mathbf{b} + \mathbf{b}^2) - \mathbf{b} (\mathbf{a}^2 - 2\mathbf{a}\mathbf{b} + \mathbf{b}^2)$
= $\mathbf{a}^3 - 2\mathbf{a}^2\mathbf{b} + \mathbf{a}\mathbf{b}^2 - \mathbf{a}^2\mathbf{b} + 2\mathbf{a}\mathbf{b}^2 - \mathbf{b}^3 = \mathbf{a}^3 - 3\mathbf{a}^2\mathbf{b} + 3\mathbf{a}\mathbf{b}^2 - \mathbf{b}^3$

1.
$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

= $a^3 + b^3 + 3ab (a + b)$
2. $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$
= $a^3 - b^3 - 3ab (a - b)$

Example 5:

Expand: (i)
$$(3x + 2y)^3$$
 (ii) $(5y - 3x)^3$

Solution:

(i) Since,
$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$\therefore (3x + 2y)^3 = (3x)^3 + 3 \times (3x)^2 \times 2y + 3 \times 3x \times (2y)^2 + (2y)^3$$

$$= 27x^3 + 54x^2y + 36xy^2 + 8y^3$$
(Ans.)

(ii) Since,
$$(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$\therefore (5y - 3x)^3 = (5y)^3 - 3 \times (5y)^2 \times 3x + 3 \times 5y \times (3x)^2 - (3x)^3$$

$$= 125y^3 - 225y^2x + 135yx^2 - 27x^3$$
(Ans.)

EXERCISE 14 (B)

Expand:

(i)
$$(2a + b)^2$$
 (ii) $(a - 2b)^2$

(ii)
$$(a - 2b)^2$$

(iii)
$$\left(a + \frac{1}{2a}\right)^2$$
 (iv) $\left(2a - \frac{1}{a}\right)^2$

(iv)
$$\left(2a-\frac{1}{a}\right)^2$$

(v)
$$(a+b-c)^2$$
 (vi) $(a-b+c)^2$

(vi)
$$(a - b + c)^2$$

(vii)
$$\left(3x + \frac{1}{3x}\right)^2$$
 (viii) $\left(2x - \frac{1}{2x}\right)^2$

(viii)
$$\left(2x - \frac{1}{2x}\right)^2$$

Find the square of:

(i)
$$x + 3y$$

(ii)
$$2x - 5y$$

(iii)
$$a + \frac{1}{5a}$$

(iv)
$$2a - \frac{1}{a}$$

(v)
$$x - 2y + 1$$

(v)
$$x - 2y + 1$$
 (vi) $3a - 2b - 5c$

(vii)
$$2x + \frac{1}{x} + 1$$
 (viii) $5 - x + \frac{2}{x}$

(viii)
$$5 - x + \frac{2}{x}$$

(ix)
$$2x - 3y + z$$

$$(x) x + \frac{1}{x} - 1$$

- Evaluate using expansion of (a + b)2 or $(a - b)^2$:
 - (i) $(208)^2$
- (ii) $(92)^2$
- (iii) $(415)^2$
- (iv) $(188)^2$
- $(v) (9.4)^2$
- (vi) $(20.7)^2$

4. Expand:

(i)
$$(2a + b)^3$$

(ii)
$$(a - 2b)^3$$

(iii)
$$(3x - 2y)^3$$

(iv)
$$(x + 5y)^3$$

(v)
$$\left(a+\frac{1}{a}\right)^3$$

(vi)
$$\left(2a-\frac{1}{2a}\right)^3$$

Find the cube of:

(i)
$$a + 2$$

(iv)
$$3b - 2a$$

(v)
$$2x + \frac{1}{x}$$

(vi)
$$x - \frac{1}{2}$$

APPLICATION OF FORMULAE

Example 6:

- (i) If a + b = 8 and ab = 15, find $a^2 + b^2$.
- (ii) If a b = 3 and $a^2 + b^2 = 29$, find ab.

Solution:

(i)
$$(a + b)^2 = a^2 + b^2 + 2ab = a^2 + b^2 + 2ab$$

$$\Rightarrow$$

$$(8)^2 = a^2 + b^2 + 2 \times 15$$

$$64 - 30 = a^2 + b^2 : a^2 + b^2 = 34$$

(Ans.)

(ii)
$$(a - b)^2 = a^2 + b^2 - 2ab = a^2 + b^2 - 2ab$$

$$\Rightarrow$$

$$(3)^2 = 29 - 2ab$$

$$\Rightarrow$$

2ab =
$$29 - 9 = 20$$
 : $ab = \frac{20}{2} = 10$

(Ans.)

Example 7:

If
$$a^2 + b^2 = 73$$
 and $ab = 24$; find: (i) $a + b$

(ii)
$$a - b$$

Solution:

(i)
$$(a + b)^2 = a^2 + b^2 + 2ab \implies (a + b)^2 = 73 + 2 \times 24 = 73 + 48 = 121$$

:
$$a + b = \pm \sqrt{121} = \pm 11$$

(Ans.)

(ii)
$$(a - b)^2 = a^2 + b^2 - 2ab \implies (a - b)^2 = 73 - 2 \times 24 = 25$$

:
$$a - b = \pm \sqrt{25} = \pm 5$$

Example 8:

If
$$a^2 + \frac{1}{a^2} = 2$$
; find: (i) $a + \frac{1}{a}$ (ii) $a - \frac{1}{a}$

(ii)
$$a - \frac{1}{a}$$

Solution:

(i)
$$\left(a+\frac{1}{a}\right)^2=a^2+\frac{1}{a^2}+2 \Rightarrow \left(a+\frac{1}{a}\right)^2=2+2=4$$

$$\therefore a+\frac{1}{a}=\pm\sqrt{4}=\pm 2$$
 (Ans.)

(ii)
$$\left(a - \frac{1}{a}\right)^2 = a^2 + \frac{1}{a^2} - 2 \implies \left(a - \frac{1}{a}\right)^2 = 2 - 2 = 0$$

$$\therefore \qquad a - \frac{1}{a} = \sqrt{0} = 0 \qquad (Ans.)$$

Example 9:

If
$$a + b + c = 9$$
 and $a^2 + b^2 + c^2 = 29$, find $ab + bc + ca$.

Solution:

$$(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca$$

$$\Rightarrow \qquad 9^{2} = 29 + 2(ab + bc + ca)$$

$$\Rightarrow \qquad 81 - 29 = 2(ab + bc + ca)$$

$$\Rightarrow \qquad 52 = 2(ab + bc + ca)$$

$$\Rightarrow \qquad ab + bc + ca = \frac{52}{2} = 26$$
(Ans.)

Example 10:

If
$$a + b = 5$$
 and $ab = 6$, find $a^3 + b^3$.

Solution:

$$(a + b)^3 = a^3 + b^3 + 3ab(a + b)$$

 $\Rightarrow (5)^3 = a^3 + b^3 + 3 \times 6 \times 5$
 $\Rightarrow 125 - 90 = a^3 + b^3$ $\therefore a^3 + b^3 = 35$ (Ans.)

Example 11:

If
$$a - \frac{1}{a} = 3$$
; find $a^3 - \frac{1}{a^3}$

Solution:

Since,
$$(a - b)^3 = a^3 - b^3 - 3ab(a - b)$$

$$\Rightarrow \qquad \left(a - \frac{1}{a}\right)^3 = a^3 - \frac{1}{a^3} - 3a \times \frac{1}{a} \left(a - \frac{1}{a}\right)$$

$$\Rightarrow \qquad (3)^3 = a^3 - \frac{1}{a^3} - 3 \times 3$$

$$\Rightarrow \qquad 27 + 9 = a^3 - \frac{1}{a^3} \qquad \Rightarrow \qquad a^3 - \frac{1}{a^3} = 36$$

(Ans.)

Example 12:

The sum of two numbers is 4 and their product is 3. Find:

(i) the sum of their squares.

(ii) the sum of their cubes.

Solution:

Let the numbers be x and y.

$$\therefore$$
 x + y = 4 and xy = 3

To find (i) $x^2 + y^2$ (ii) $x^3 + y^3$.

(i)
$$(x + y)^2 = x^2 + y^2 + 2xy$$

$$\Rightarrow 4^2 = x^2 + y^2 + 2 \times 3 \Rightarrow x^2 + y^2 = 10$$
 (Ans.)

(ii)
$$(x + y)^3 = x^3 + y^3 + 3xy(x + y)$$

$$\Rightarrow 4^3 = x^3 + y^3 + 3 \times 3 \times 4 \Rightarrow x^3 + y^3 = 64 - 36 = 28$$
 (Ans.)

TEST YOURSELF

16. If
$$x^2 + y^2 = 25$$
 and $xy = 12$; $(x + y)^2 = \dots = \dots$ and $x + y = \dots$

17. If
$$x^2 + y^2 = 74$$
 and $xy = 35$; $(x - y)^2 = \dots = \dots = \dots$ and $x - y = \dots$

18. If
$$x + \frac{1}{x} = \frac{5}{2}$$
; $x^2 + \frac{1}{x^2} = \dots = \dots$

$$(x - \frac{1}{x})^2 = \dots = and x - \frac{1}{x} = \dots$$

19. If
$$a^2 + b^2 + c^2 = p$$
 and $ab + bc + ca = q$; $(a + b + c)^2 = \dots$ and $a + b + c = \dots$

EXERCISE 14 (C) -

1. If
$$a + b = 5$$
 and $ab = 6$, find $a^2 + b^2$

2. If
$$a - b = 6$$
 and $ab = 16$, find $a^2 + b^2$

3. If
$$a^2 + b^2 = 29$$
 and $ab = 10$, find:

(i)
$$a + b$$
 (ii) $a - b$

4. If
$$a^2 + b^2 = 10$$
 and $ab = 3$; find:

(i)
$$a - b$$
 (ii) $a + b$

5. If
$$a + \frac{1}{a} = 3$$
, find: $a^2 + \frac{1}{a^2}$

6. If
$$a - \frac{1}{a} = 4$$
, find : $a^2 + \frac{1}{a^2}$

7. If
$$a^2 + \frac{1}{a^2} = 23$$
, find: $a + \frac{1}{a}$

8. If
$$a^2 + \frac{1}{a^2} = 11$$
, find: $a - \frac{1}{a}$

9. If
$$a + b + c = 10$$
 and $a^2 + b^2 + c^2 = 38$, find : $ab + bc + ca$

10. Find:
$$a^2 + b^2 + c^2$$
, if $a + b + c = 9$ and $ab + bc + ca = 24$.

11. Find:
$$a + b + c$$
, if $a^2 + b^2 + c^2 = 83$ and $ab + bc + ca = 71$.

12. If
$$a + b = 6$$
 and $ab = 8$, find: $a^3 + b^3$.

13. If
$$a - b = 3$$
 and $ab = 10$, find: $a^3 - b^3$.

14. Find:
$$a^3 + \frac{1}{a^3}$$
, if $a + \frac{1}{a} = 5$.

15. Find:
$$a^3 - \frac{1}{a^3}$$
, if $a - \frac{1}{a} = 4$.

16. If
$$2x - \frac{1}{2x} = 4$$
, find:

(i)
$$4x^2 + \frac{1}{4x^2}$$
 (ii) $8x^3 - \frac{1}{8x^3}$

17. If
$$3x + \frac{1}{3x} = 3$$
, find :

(i)
$$9x^2 + \frac{1}{9x^2}$$
 (ii) $27x^3 + \frac{1}{27x^3}$

18. The sum of the squares of two numbers is 13 and their product is 6. Find:

- (i) the sum of the two numbers.
- (ii) the difference between them.

EXERCISE 14 (D)

Evaluate:

(i)
$$\left(3x + \frac{1}{2}\right)\left(2x + \frac{1}{3}\right)$$
 (iii) $(9 - y)(7 + y)$ (iv) $(2 - z)(15 - z)$

(ii)
$$(2a + 0.5)(7a - 0.3)$$

(iii)
$$(9 - y) (7 + y)$$

(iv)
$$(2-z)(15-z)$$

(v)
$$(a^2 + 5) (a^2 - 3)$$

(vi)
$$(4 - ab)(8 + ab)$$

(vii)
$$(5xy - 7)(7xy + 9)$$

(viii)
$$(3a^2 - 4b^2)(8a^2 - 3b^2)$$

Evaluate:

(i)
$$\left(2x - \frac{3}{5}\right) \left(2x + \frac{3}{5}\right)$$

(ii)
$$\left(\frac{4}{7}a + \frac{3}{4}b\right)\left(\frac{4}{7}a - \frac{3}{4}b\right)$$

(iii)
$$(6 - 5xy)(6 + 5xy)$$

(iv)
$$\left(2a+\frac{1}{2a}\right)\left(2a-\frac{1}{2a}\right)$$

(v)
$$(4x^2 - 5y^2)(4x^2 + 5y^2)$$

(vi)
$$(1.6x + 0.7y) (1.6x - 0.7y)$$

(vii)
$$(m + 3) (m - 3) (m^2 + 9)$$

(viii)
$$(3x + 4y)(3x - 4y)(9x^2 + 16y^2)$$

(ix)
$$(a + bc)(a - bc)(a^2 + b^2c^2)$$

(xi)
$$20.8 \times 19.2$$

Find the square of: 3.

(i)
$$3x + \frac{2}{y}$$

(i)
$$3x + \frac{2}{y}$$
 (ii) $\frac{5a}{6b} - \frac{6b}{5a}$

(iii)
$$2m^2 - \frac{2}{3}n^2$$
 (iv) $5x + \frac{1}{5x}$

(iv)
$$5x + \frac{1}{5x}$$

(v)
$$8x + \frac{3}{2}y$$

4. If
$$a + \frac{1}{a} = 2$$
, find:

(i)
$$a^2 + \frac{1}{a^2}$$

(ii)
$$a^4 + \frac{1}{a^4}$$

5. If
$$m - \frac{1}{m} = 5$$
, find:

(i)
$$m^2 + \frac{1}{m^2}$$
 (ii) $m^4 + \frac{1}{m^4}$

(ii)
$$m^4 + \frac{1}{m^4}$$

(iii)
$$m^2 - \frac{1}{m^2}$$

If $a^2 + b^2 = 41$ and ab = 4, find:

7. If
$$2a + \frac{1}{2a} = 8$$
, find:

(i)
$$4a^2 + \frac{1}{4a^2}$$

(i)
$$4a^2 + \frac{1}{4a^2}$$
 (ii) $16a^4 + \frac{1}{16a^4}$

8. If
$$3x - \frac{1}{3x} = 5$$
, find:

(i)
$$9x^2 + \frac{1}{9x^2}$$

(i)
$$9x^2 + \frac{1}{9x^2}$$
 (ii) $81x^4 + \frac{1}{81x^4}$

Expand:

(i)
$$(3x - 4y + 5z)^2$$
 (ii) $(2a - 5b - 4c)^2$

(ii)
$$(2a - 5b - 4c)^2$$

(iii)
$$(5x + 3y)^3$$

(iii)
$$(5x + 3y)^3$$
 (iv) $(6a - 7b)^3$

10. If
$$a + b + c = 9$$
 and $ab + bc + ca = 15$, find: $a^2 + b^2 + c^2$.

11. If
$$a + b + c = 11$$
 and $a^2 + b^2 + c^2 = 81$, find : $ab + bc + ca$.

12. If
$$3x - 4y = 5$$
 and $xy = 3$, find : $27x^3 - 64y^3$.

13. If
$$a + b = 8$$
 and $ab = 15$, find: $a^3 + b^3$.

14. If
$$3x + 2y = 9$$
 and $xy = 3$, find : $27x^3 + 8y^3$.

15. If
$$5x - 4y = 7$$
 and $xy = 8$, find: $125x^3 - 64y^3$.

16. The difference between two numbers is 5 and their product is 14. Find the difference between their cubes.

ANSWERS

TEST YOURSELF

1.
$$x^2 + (15 + 4)x + 15 \times 4$$
; $x^2 + 19x + 60$ 2. $x^2 + (15 - 4)x + 15 \times (-4)$; $x^2 + 11x - 60$

3.
$$x^2 + (-15 + 4)x + (-15) \times 4$$
; $x^2 - 11x - 60$ 4. $x^2 + (-15 - 4)x + (-15) \times (-4)$; $x^2 - 19x + 60$

5.
$$(x)^2 - (3)^2$$
; $x^2 - 9$ 6. $(3x)^2 - (4y)^2$; $9x^2 - 16y^2$ 7. $(1.6x^2)^2 - (5)^2$; $2.56x^4 - 25$

8.
$$(5a^2)^2 - (8b)^2$$
; $25a^4 - 64b^2$ **9.** $(2a)^2 - 2 \times 2a \times \frac{3}{2} + (\frac{3}{2})^2$; $4a^2 - 6a + \frac{9}{4}$

10.
$$(x)^2 + 2x \times \frac{1}{2x} + (\frac{1}{2x})^2$$
; $x^2 + 1 + \frac{1}{4x^2}$ **11.** $(2x^2)^2 - 2 \times 2x^2 \times 3y + (3y)^2 = 4x^4 - 12x^2y + 9y^2$

12.
$$(100 + 7)^2$$
; $(100)^2 + 2 \times 100 \times 7 + (7)^2$; $10000 + 1400 + 49 = 11449$

Downloaded from https://www.studiestoday.com

13.
$$(100 - 3)^2$$
; $(100)^2 - 2 \times 100 \times 3 + (3)^2$; $10000 - 600 + 9 = 9409$

14.
$$(10 + 0.6)^2$$
; $(10)^2 + 2 \times 10 \times 0.6 + (0.6)^2$; $100 + 12 + 0.36 = 112.36$

15.
$$(20 - 0.2)^2$$
; $(20)^2 - 2 \times 20 \times 0.2 + (0.2)^2$; $400 - 8 + 0.04 = 392.04$

16.
$$x^2 + y^2 + 2xy$$
; 49; ± 7 **17.** $x^2 + y^2 - 2xy$; 4; ± 2 **18.** $(x + \frac{1}{x})^2 - 2$; $\frac{17}{4}$; $x^2 + \frac{1}{x^2} - 2$; $\frac{9}{4}$; $\pm \frac{3}{2}$

19.
$$a^2 + b^2 + c^2 + 2(ab + bc + ca)$$
; $p + 2q$; $\pm \sqrt{p + 2q}$

EXERCISE 14(A)

1. (i)
$$x^2 + 11x + 24$$
 (ii) $y^2 + 2y - 15$ (iii) $a^2 - 6a - 16$ (iv) $b^2 - 8b + 15$ (v) $6x^2 - xy - 2y^2$ (vi) $15a^2 + 13a - 112$ (vii) $24 + 5b - b^2$ 2. (i) $x^2 - 1$ (ii) $4 - a^2$ (iii) $9b^2 - 1$ (iv) $16 - 25x^2$ (v) $4a^2 - 9$

(vi)
$$15a^2 + 16a^2 + 12 = (xi) - ($$

(xii)
$$\frac{a^2}{4} - \frac{b^2}{9}$$
 3. (i) $a^4 - 1$ (ii) $a^4 - b^4$ (iii) $16a^4 - b^4$ (iv) $81 - 16x^4$ (v) $81x^4 - 256y^4$ 4. (i) 399 (ii) 891

(iii) 9991 (iv) 99.96 (v) 63.91 (vi) 24.84 **5.** (i)
$$36 - x^2y^2$$
 (ii) $49x^2 - \frac{4}{9}y^2$ (iii) $\frac{a^2}{4b^2} - \frac{4b^2}{a^2}$

(iv)
$$9x^2 - \frac{1}{4y^2}$$
 (v) $16a^4 - 81$ (vi) $a^4 - b^4c^4$ (vii) $15x^2 + 49xy + 40y^2$ (viii) $35x^2 + 47xy - 60y^2$

(ix)
$$6a^2 - ab - 12b^2$$
 (x) $27a^2 - 30ab + 7b^2$

EXERCISE 14(B)

1. (i)
$$4a^2 + 4ab + b^2$$
 (ii) $a^2 - 4ab + 4b^2$ (iii) $a^2 + 1 + \frac{1}{4a^2}$ (iv) $4a^2 - 4 + \frac{1}{a^2}$ (v) $a^2 + b^2 + c^2 + 2ab - 2bc - 2ca$ (vi) $a^2 + b^2 + c^2 - 2ab - 2bc + 2ca$ (vii) $9x^2 + 2 + \frac{1}{9x^2}$ (viii) $4x^2 - 2 + \frac{1}{4x^2}$

2. (i) $x^2 + 6xy + 9y^2$ (ii) $4x^2 - 20xy + 25y^2$ (iii) $a^2 + \frac{2}{5} + \frac{1}{25a^2}$ (iv) $4a^2 - 4 + \frac{1}{a^2}$ (v) $x^2 + 4y^2 + 1 - 4xy - 4y + 2x$ (vi) $9a^2 + 4b^2 + 25c^2 - 12ab + 20bc - 30ca$ (vii) $4x^2 + \frac{1}{x^2} + 5 + \frac{2}{x} + 4x$ (viii) $21 + x^2 + \frac{4}{x^2} - 10x + \frac{20}{x}$ (ix) $4x^2 + 9y^2 + z^2 - 12xy - 6yz + 4zx$ (x) $x^2 + \frac{1}{x^2} + 3 - \frac{2}{x} - 2x$

3. (i) 43264 (ii) 8464 (iii) 172225 (iv) 35344 (v) $88\cdot36$ (vi) $428\cdot49$ 4. (i) $8a^3 + 12a^2b + 6ab^2 + b^3$ (ii) $a^3 - 6a^2b + 12ab^2 - 8b^3$ (iii) $27x^3 - 54x^2y + 36xy^2 - 8y^3$ (iv) $x^3 + 15x^2y + 75xy^2 + 125y^3$ (v) $a^3 + 3a + \frac{3}{a} + \frac{1}{a^3}$ (vi) $8a^3 - 6a + \frac{3}{2a} - \frac{1}{8a^3}$ 5. (i) $a^3 + 6a^2 + 12a + 8$ (ii) $8a^3 - 12a^2 + 6a - 1$ (iii) $8a^3 + 36a^2b + 54ab^2 + 27b^3$ (iv) $27b^3 - 54b^2a + 36ba^2 - 8a^3$ (v) $8x^3 + 12x + \frac{6}{x} + \frac{1}{x^3}$ (vi) $x^3 - \frac{3x^2}{2} + \frac{3x}{4} - \frac{1}{8}$

EXERCISE 14(C)

1. 13 2. 68 3. (i) ± 7 (ii) ± 7 4. (i) ± 2 (ii) ± 4 5. 7 6. 18 7. ± 5 8. ± 3 9. 31 10. 33 11. ± 15 12. 72 13. 117 14. 110 15. 76 16. (i) 18 (ii) 76 17. (i) 7 (ii) 18 18. (i) ± 5 (ii) ± 1

EXERCISE 14(D)

1. (i) $6x^2 + 2x + \frac{1}{6}$ (ii) $14a^2 + 2.9a - 0.15$ (iii) $63 + 2y - y^2$ (iv) $30 - 17z + z^2$ (v) $a^4 + 2a^2 - 15$ (vi) $32 - 4ab - a^2b^2$ (vii) $35x^2y^2 - 4xy - 63$ (viii) $24a^4 - 41a^2b^2 + 12b^4$ 2. (i) $4x^2 - \frac{9}{25}$ (ii) $\frac{16}{49}a^2 - \frac{9}{16}b^2$ (iii) $36 - 25x^2y^2$ (iv) $4a^2 - \frac{1}{4a^2}$ (v) $16x^4 - 25y^4$ (vi) $2.56x^2 - 0.49y^2$ (vii) $m^4 - 81$ (viii) $81x^4 - 256y^4$ (ix) $a^4 - b^4c^4$ (x) 39991 (xi) 399.36 3. (i) $9x^2 + \frac{12x}{y} + \frac{4}{y^2}$ (ii) $\frac{25a^2}{36b^2} - 2 + \frac{36b^2}{25a^2}$ (iii) $4m^4 - \frac{8}{3}m^2n^2 + \frac{4}{9}n^4$ (iv) $25x^2 + 2 + \frac{1}{25x^2}$ (v) $64x^2 + 24xy + \frac{9}{4}y^2$ (vi) 368449 (vii) 152881 (viii) 94.09 4. (i) 2 (ii) 2 5. (i) 27 (ii) 727 (iii) $5\sqrt{29}$ 6. (i) $\sqrt{33}$ (ii) 7 7. (i) 62 (ii) 3842 8. (i) 27 (ii) 727 9. (i) $9x^2 + 16y^2 + 25z^2 - 24xy - 40yz + 30zx$ (ii) $4a^2 + 25b^2 + 16c^2 - 20ab + 40bc - 16ca$ (iii) $125x^3 + 225x^2y + 135xy^2 + 27y^3$ (iv) $216a^3 - 756a^2b + 882ab^2 - 343b^3$ 10. 51 11. 20 12. 665 13. 152 14. 243 15. 3703 16. 335