CHAPTER 13

EXPONENTS

13.1 REVIEW	
Exponent	If x is a real number and n is a natural number, we know : $x \times x \times x \times x \times$ n times = x^n where x^n is called an exponential expression with base x and exponent (or index, or power) n . x^n is read as 'x raised to the power n' or simply 'x to the power n'.
Laws of Exponents	1. Product Law : $a^m \times a^n = a^{m+n}$ <i>e.g.</i> $3^7 \times 3^4 = 3^{7+4} = 3^{11}$, $x^8 \times x^5 = x^{8+5} = x^{13}$ and so on. 2. Quotient Law : $\frac{a^m}{a^n} = a^{m-n}$, if $m > n$ $= \frac{1}{a^{n-m}}$, if $n > m$
	<i>e.g.</i> $\frac{3^7}{3^4} = 3^{7-4} = 3^3$, $\frac{x^5}{x^8} = \frac{1}{x^{8-5}} = \frac{1}{x^3}$ and so on. 3. Power law : $(a^m)^n = a^{mn}$ <i>e.g.</i> $(3^7)^4 = 3^{7 \times 4} = 3^{28}$, $(x^8)^5 = x^{40}$ and so on.
TEST YOURSELF	La tata er
2. $-5 \times -5 \times -$ 3. $a^5 \times a^7 = \dots$	$\begin{array}{l} $

6.
$$3^{15} \times 3^{6} \times 3^{-10} = \dots, 5^{4} \times 5^{-7} \times 5^{6} = \dots$$
 and $7^{2} \times 7^{8} \times 7^{-6} = \dots$
7. $\frac{2^{6} \times 2^{4}}{2^{8}} = \dots, \frac{4^{6} \times 4^{-3}}{4^{2}} = \dots$ and $\frac{8^{5} \times 8^{4}}{8^{-3}} = \dots$

13.2 MORE ABOUT EXPONENTS

1. $(\mathbf{a} \times \mathbf{b})^{n} = \mathbf{a}^{n} \times \mathbf{b}^{n}$ *e.g.* $(\mathbf{a}^{5} \times \mathbf{b}^{-3})^{4} = (\mathbf{a}^{5})^{4} \times (\mathbf{b}^{-3})^{4} = \mathbf{a}^{20} \times \mathbf{b}^{-12} \text{ and } (3^{4} \times 5^{-3})^{-2} = 3^{-8} \times 5^{6}$ 2. $\left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{n} = \frac{\mathbf{a}^{n}}{\mathbf{b}^{n}}$ *e.g.* $\left(\frac{\mathbf{a}^{-3}}{\mathbf{b}^{4}}\right)^{6} = \frac{(\mathbf{a}^{-3})^{6}}{(\mathbf{b}^{4})^{6}} = \frac{\mathbf{a}^{-18}}{\mathbf{b}^{24}} \text{ and } \left(\frac{5^{7}}{3^{-4}}\right)^{-3} = \frac{5^{-21}}{3^{12}}$

127

Downloaded from https:// www.studiestoday.com

Downloaded from https:// www.studiestoday.com

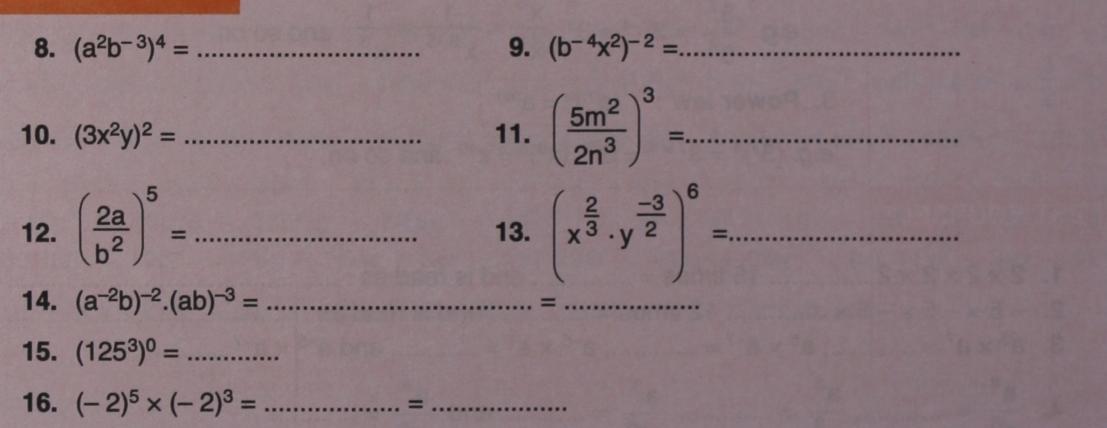
3. $a^0 = 1$; if $a \neq 0$

any non-zero number raised to the power zero is always equal to one (1). i.e.

e.g.
$$5^0 = 1, 7^0 = 1, (-8)^0 = 1, (2^{-5})^0 = 1$$
 and so on.

4.
$$a^{-m} = \frac{1}{a^m}$$
 and $\frac{1}{a^{-m}} = a^m$; if $a \neq 0$

e.g.
$$2^{-3} = \frac{1}{2^3}, \frac{1}{5^{-7}} = 5^7, \frac{2^{-3}}{3^{-5}} = \frac{3^5}{2^3}$$
 and so on


5.
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$
 and $\sqrt[n]{a^{m}} = a^{\frac{1}{n}}$

e.g.
$$\sqrt{5} = 5^{\frac{1}{2}}$$
 $\sqrt[6]{5^7} = 5^{\frac{7}{6}}$ $\sqrt[3]{a^2 \times b^4} = a^{\frac{2}{3}} \times b^{\frac{4}{3}}$, etc.

Also remember that :

(i)
$$(-a)^m = a^m$$
; if m is even
e.g. $(-5)^4 = -5 \times -5 \times -5 \times -5 = 5^4$ and $(-5)^3 = -5 \times -5 \times -5 = -5^3$

TEST YOURSELF

Example 1 :

Evaluate : (i) $4^{\frac{3}{2}} \times 125^{\frac{-2}{3}}$ (iii) $-2^4 - (\sqrt{3})^0 \times (-2)^6 \div 4$

(ii)
$$\left(\frac{8}{27}\right)^{\frac{2}{3}} \div (32)^{\frac{-2}{5}}$$

Solution :

(i)
$$4^{\frac{3}{2}} \times 125^{\frac{-2}{3}} = (2^2)^{\frac{3}{2}} \times (5^3)^{\frac{-2}{3}}$$

= $2^3 \times 5^{-2}$
= $\frac{8}{5^2}$
= $\frac{8}{25}$

$$4 = 2 \times 2 = 2^{2}, 125 = 5 \times 5 \times 5 = 5^{3}$$
$$\left[2 \times \frac{3}{2} = 3 \text{ and } 3 \times \frac{-2}{3} = -2\right]$$
$$\left[2^{3} = 2 \times 2 \times 2 = 8 \text{ and } 5^{-2} = \frac{1}{5^{2}}\right]$$
(Ans.)

128

Downloaded from https:// www.studiestoday.com

Downloaded from https:// www.studiestoday.com

g

(ii)
$$\left(\frac{8}{27}\right)^{\frac{2}{3}} \div (32)^{\frac{-2}{5}} = \left(\frac{2}{3}\right)^{3\times\frac{2}{3}} \div (2^5)^{\frac{-2}{5}}$$

$$= \left(\frac{2}{3}\right)^2 \div 2^{-2}$$
$$= \frac{2^2}{3^2} \times \frac{1}{2^{-2}}$$
$$= \frac{4}{9} \times 2^2$$
$$= \frac{4 \times 4}{9} = \frac{16}{9} = 1$$

(iii) Given expression

$$= -2^{4} - 1 \times 2^{6} \div 2^{2}$$
$$= -2^{4} - 2^{4}$$
$$= -16 - 16 = -32$$

Example 2 :

Simplify:
$$\frac{\mathbf{x}^{m+n} \times \mathbf{x}^{n+l} \times \mathbf{x}^{l+m}}{(\mathbf{x}^m \times \mathbf{x}^n \times \mathbf{x}^l)^2}$$

Solution :

Given expression
$$= \frac{x^{m+n+n+l+l+m}}{x^{2m} \times x^{2n} \times x^{2l}}$$
$$= \frac{x^{2m+2n+2l}}{x^{2m+2n+2l}} = 1$$

Example 3 :

Simplify:
$$\left(\frac{x^{a}}{x^{b}}\right)^{a+b} \times \left(\frac{x^{b}}{x^{c}}\right)^{b+c} \times \left(\frac{x^{c}}{x^{a}}\right)^{c+a}$$

Solution :

 $(\sqrt{a} - b)a + b = (\sqrt{b} - c)b + c = (\sqrt{c} - a)c + a$

$$\frac{8}{27} = \frac{2 \times 2 \times 2}{3 \times 3 \times 3} = \left(\frac{2}{3}\right)^3$$

and $32 = 2 \times 2 \times 2 \times 2 \times 2 = 2^5$
$$\left[3 \times \frac{2}{3} = 2 \text{ and } 5 \times \frac{-2}{3} = -2\right]$$

3

$$\left[\frac{1}{2^{-2}}=2^2\right]$$

5

(Ans.)

$$[(\sqrt{3})^0 = 1; (-2)^6 = 2^6 \text{ and } 4 = 2 \times 2 = 2^2]$$

 $[2^6 \div 2^2 = 2^{6-2} = 2^4]$
(Ans.)

(Ans.)

Given expression =
$$(x^{a} - y)^{-a} \times (x^{a} - y)^{-a} \times (x^{a} - y)^{-a} \times (x^{a} - y)^{-a} = x^{(a-b)(a+b)} \times x^{(b-c)(b+c)} \times x^{(c-a)(c+a)}$$

= $x^{a^{2}-b^{2}} \times x^{b^{2}} - c^{2} \times x^{c^{2}} - a^{2}$
= $x^{a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2}} = x^{0} = 1$ (Ans.)
EXERCISE 13
1. Compute :
(i) $1^{8} \times 3^{0} \times 5^{3} \times 2^{2}$
(ii) $(4^{7})^{2} \times (4^{-3})^{4}$
(iii) $(2^{-9} + 2^{-11})^{3}$
(iv) $\left(\frac{2}{3}\right)^{-4} \times \left(\frac{27}{8}\right)^{-2}$
(iv) $\left(\frac{2}{3}\right)^{-4} \times \left(\frac{27}{8}\right)^{-2}$
(iv) $9^{0} \times 4^{-1} + 2^{-4}$ (x) $(625)^{-\frac{3}{4}}$
(x) $9^{0} \times 4^{-1} + 2^{-4}$ (x) $\left(\frac{1}{32}\right)^{-\frac{2}{5}}$
(xi) $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$ (xii) $\left(\frac{1}{32}\right)^{-\frac{2}{5}}$

Downloaded from https:// www.studiestoday.com

Downloaded from https:// www.studiestoday.com

(xiii)
$$(125)^{-\frac{2}{3}} \div (8)^{\frac{2}{3}}$$

(xiv) $(243)^{\frac{2}{5}} \div (32)^{-\frac{2}{5}}$
(xv) $(-3)^4 - (\sqrt[4]{3})^0 \times (-2)^5 \div (64)^{\frac{2}{3}}$
(xvi) $(27)^{\frac{2}{3}} \div (\frac{81}{16})^{-\frac{1}{4}}$

Simplify : 2.

(i)
$$8^{\frac{4}{3}} + 25^{\frac{3}{2}} - (\frac{1}{27})^{-\frac{2}{3}}$$

(ii) $[(64)^{-2}]^{-3} \div [\{(-8)^2\}^3]^2$
(iii) $(2^{-3} - 2^{-4}) (2^{-3} + 2^{-4})$

- 3. Evaluate :
 - (ii) $8^0 + 4^0 + 2^0$ (i) (-5)⁰ (iii) $(8 + 4 + 2)^0$ (iv) $4x^0$ (v) $(4x)^0$ (vi) $[(10^3)^0]^5$ (vii) $(7x^0)^2$ (viii) $9^0 + 9^{-1} - 9^{-2} + 9^{\frac{1}{2}} - 9^{-\frac{1}{2}}$
- 4. Simplify :
- - (i) $\frac{a^5 b^2}{a^2 b^{-3}}$ (ii) $15y^8 \div 3y^3$ (iii) $x^{10}y^6 \div x^3y^{-2}$ (iv) $5z^{16} \div 15z^{-11}$ (v) $(36x^2)^{\frac{1}{2}}$ (vi) $(125x^{-3})^{\frac{1}{3}}$
 - (vii) $(2x^2y^{-3})^{-2}$ (viii) $(27x^{-3}y^6)^{\frac{2}{3}}$ (ix) $(-2x^{2/3} y^{-3/2})^6$

5. Simplify :
$$(x^{a+b})^{a-b} \cdot (x^{b+c})^{b-c} \cdot (x^{c+a})^{c-a}$$

6. Simplify : (i)
$$\sqrt[5]{x^{20}y^{-10}z^5} \div \frac{x^3}{y^3}$$

(ii) $\left(\frac{256a^{16}}{81b^4}\right)^{\frac{-3}{4}}$

Simplify and express as positive indices : 7.

(i)
$$(a^{-2}b)^{-2}.(ab)^{-3}$$
 (ii) $(x^{n}y^{-m})^{4} \times (x^{3}y^{-2})^{-n}$
(iii) $\left(\frac{125a^{-3}}{y^{6}}\right)^{\frac{-1}{3}}$ (iv) $\left(\frac{32x^{-5}}{243y^{-5}}\right)^{\frac{-1}{5}}$
(v) $(a^{-2}b)^{\frac{1}{2}} \times (ab^{-3})^{\frac{1}{3}}$
(vi) $(xy)^{m-n} \cdot (yz)^{n-l} \cdot (zx)^{l-m}$

(vi)
$$(xy)^{m-n} \cdot (yz)^{n-l} \cdot (zx)^{l-1}$$

12. Prove that :

$$\left(\frac{x^{a}}{x^{-b}}\right)^{a-b} \cdot \left(\frac{x^{b}}{x^{-c}}\right)^{b-c} \cdot \left(\frac{x^{c}}{x^{-a}}\right)^{c-a}$$

=1

9. Evaluate :
$$\frac{x^{5+n} \times (x^2)^{3n+1}}{x^{7n-2}}$$

10. Evaluate :
$$\frac{a^{2n+1} \times a^{(2n+1)(2n-1)}}{a^{n(4n-1)} \times (a^2)^{2n+3}}$$

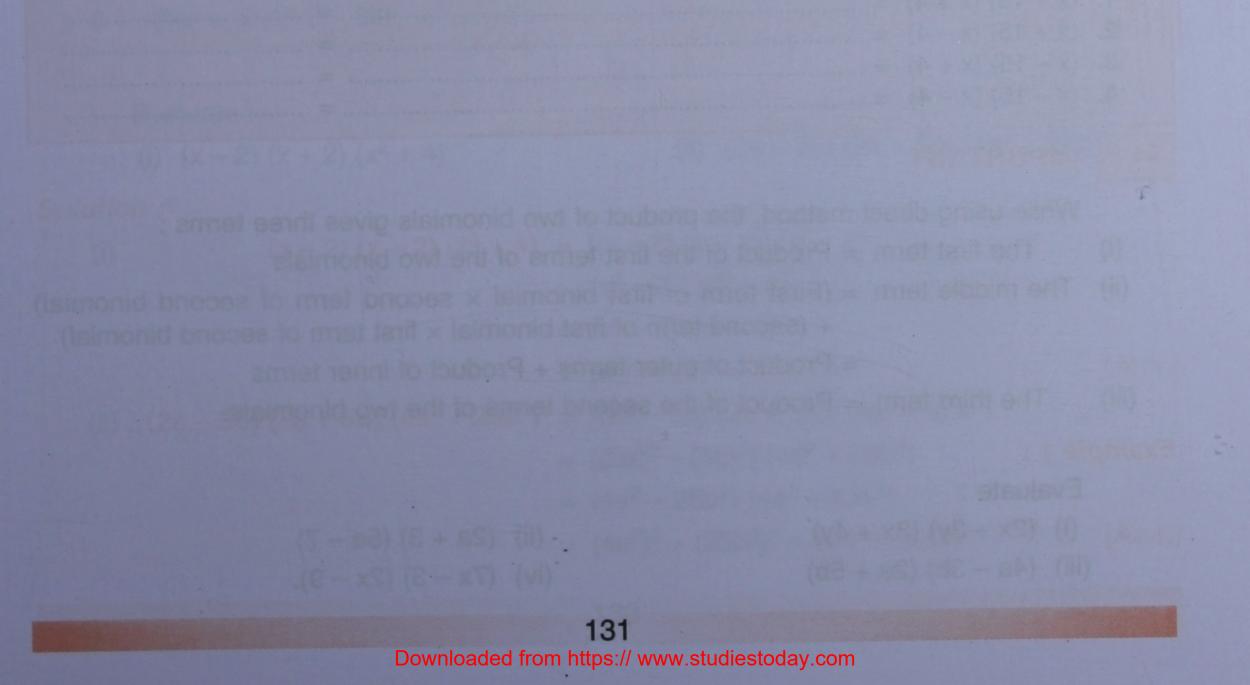
11. Prove that :
$$(m + n)^{-1} (m^{-1} + n^{-1}) = (mn)^{-1}$$

11. Prove that :
$$(m + n)^{-1} (m^{-1} + n^{-1}) = (mn)^{-1}$$

(i)
$$\left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}} \left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}} = 1$$

(ii) $\frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}} = 1$

TEST YOURSELF


1. 2¹⁵, 2 raised to the power 15 2. (-5)¹²; -5 raised to the power 12 3. a¹², a⁻², a², a⁻¹² **4.** a^3 , a^{-3} , a^{13} , a^{13} **5.** a^{40} , a^{40} , a^{40} , a^{40} **6.** 3^{11} , 5^3 , 7^4 **7.** 2^2 , 4, 8^{12} **8.** $a^{8}b^{-12}$ **9.** $b^{8}x^{-4}$ **10.** $9x^4y^2$ 11. $\frac{125m^6}{8n^9}$ 12. $\frac{32a^5}{b^{10}}$ 13. $x^4 \cdot y^{-9}$ 14. $a^4b^{-2} \cdot a^{-3}b^{-3}$; ab^{-5} 15. 1 16. $(-2)^8 = 256$ EXERCISE 13 **1.** (i) 500 (ii) 16 (iii) 64 (iv) $\frac{4}{9}$ (v) 10 (vi) $\frac{3}{16}$ (vii) -5 (viii) $-\frac{1}{3}$ (ix) 4 (x) $\frac{1}{125}$ (xi) $1\frac{7}{9}$ (xii) 4 (xiii) $\frac{1}{100}$ (xiv) 36 (xv) 83 (xvi) 13 $\frac{1}{2}$ 2. (i) 132 (ii) 1 (iii) $\frac{3}{256}$ 3. (i) 1 (ii) 3 (iii) 1 (iv) 4 (v) 1 (vi) 1

Downloaded from https:// www.studiestoday.com

130

Downloaded from https:// www.studiestoday.com

(vii) 49 (viii)
$$3\frac{62}{81}$$
 4. (i) $a^{3}b^{5}$ (ii) $5y^{5}$ (iii) $x^{7}y^{8}$ (iv) $\frac{1}{3}z^{27}$ (v) $6x$ (vi) $\frac{5}{x} = 5x^{-1}$
(vii) $\frac{y^{6}}{4x^{4}} = \frac{1}{4} \cdot y^{6} \cdot x^{-4}$ (viii) $\frac{9y^{4}}{x^{2}} = 9x^{-2}y^{4}$ (ix) $\frac{64x^{4}}{y^{9}} = 64x^{4} \cdot y^{-9}$ 5.1 6. (i) xyz (ii) $\frac{27b^{3}}{64a^{12}} = \frac{27}{64} \cdot a^{-12}b^{3}$
7. (i) $\frac{a}{b^{5}}$ (ii) $\frac{x^{n}y^{2n}}{y^{4m}} = x^{n} \cdot y^{2n-4m}$ (iii) $\frac{ay^{2}}{5}$ (iv) $\frac{3x}{2y}$ (v) $\frac{1}{a^{2/3} \cdot b^{1/2}}$ (vi) $\frac{x^{l}y^{m}z^{n}}{x^{n}y^{l}z^{m}} = x^{l-n} \cdot y^{m-l} \cdot z^{n-m}$
9. x^{9} 10. $\frac{1}{a^{n+6}}$

