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CHAPTER 24
TRIANGLES

REVIEW

1. Definition of a triangle :

A closed figure, having 3 sides, is called a triangle and is usually denoted by the
Greek letter A (delta). '

The figure, given alongside, shows a triangle ABC (A ABC)
bounded by three sides AB, BC and CA.
2. Vertex :

The point, where any two sides of a triangle meet, is called g C
a vertex.

Clearly, the given triangle has three vertices, namely : A, B and C.
[Vertices is the plural of vertex]

A

3. Interior angles :

In A ABC (given above), the angles BAC, ABC and ACB are called its interior angles
as they lie inside the A ABC. [The sum of interior angles of a triangle is always 180°]

4. Exterior angles :

When any side of a triangle is produced the angle so formed, outside the triangle
and at its vertex, is called its exterior angle.

For a given triangle ABC, if side BC is produced to .
the point D, then ZACD is its exterior angle. And, if side
AC is produced to the point E, then the exterior angle would
be ZBCE. 5
Thus, at every vertex, two exterior angles can be S C\—\
formed and that these two angles being vertically opposite "
angles, are always equal.
Also, at each vertex of a triangle, the sum of
the exterior angle and its corresponding interior angle is
180°. E
In AABC, given alongside,
Exterior angle + Interior angle = 180°
= Atvertex A: ZBAE + ZA = 180°
At vertex B : ~ZCBF + «B = 180° and
At vertex C : ZACD + £C = 180° D
5. Interior opposite angles :
When any side of a triangle is produced, an exterior angle
is formed. The two interior angles of this triangle, that are A
opposite to the exterior angle formed, are called its interior
opposite angles.
In the given figure, side BC of A ABC is produced to the
point D, so that the exterior ZACD is formed. Then the two 2 S D
interior opposite angles are ZBAC and ZABC.
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6. Relation between exterior angle and interior opposite angles :
Exterior angle of a triangle is always equal to the sum of its two interior opposite
angles. -
Thus in the figure, given above, ZACD = ZBAC + ZABC.
Similarly; in the triangle ABC, drawn alongside, E
Exterior angle CAE = 4B + ZC
and  exterior angle ABF = ZA + ZC.

Example 1 : — c r
(i) Can a triangle have angles 60°, 70° and 70° ?

(i) Two angles of a triangle are 48° and 73°, find its third angle.
(iii) Three angles of a triangle are (2x + 20)°, (x + 30)° and (2x — 10). Find the angles.

Solution :
(i) Since, 60° + 70° + 70° = 200°
= A triangle can not have angles 60°, 70° and 70° (Ans.)
[Remember : Sum of the angles of a triangle is always 180°]
(i) Sum of two given angles = 48° + 73° = 121°
= The third angle = 180° — 121° = 59° (Ans.)

(ili) Since, the sum of the interior angles of a triangle = 180°
(2x + 20) + (x+ 30) + (2x—10) = 180°
= 5x + 40 = 180°

i.e. 5x = 180 — 40 = 140 and x = % = 28

(2x + 20)°, (x + 30)° and (2x — 10)°
(2 x 28 + 20)°, (28 + 30)° and (2 x 28 — 10)°

Required angles

= 76°, 58° and 46° (Ans.)
Example 2 :
Use the figure, given alongside, to find the value of : A
() % 7x
(i) £BAC, P,
130°
(i) ZACB. e X
Solution :
(i) Since, the exterior angle of a A = sum of its two interior opposite angles
X 130° = 7x + 6x
=5 18x = 180°
130° i
= XA Sapaeits 10 (Ans.)
(i) £ZBAC =7x=7 x 10° =70° (Ans.)
(iii) £ZACB = 6x =6 x 10° = 60° (Ans.)
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1. State, if the triangles are possible with the following angles :

(i) 20° 70° and 90° (i) 40°, 130° and 20°
(i) 60°, 60° and 50° (iv) 125° 40° and 15°
If the angles of a triangle are equal, find its angles.

In a triangle ABC, ZA = 45° and £B = 75°, find £C.

In a triangle PQR, ZP = 60° and £Q = £R, find ZR.

™

Calculate the unknown marked angles in each figure :

(1) (ii) (iii)

90°
g 30° 80° 290'

6. Find the value of each angle in the given figures :

(1) (ii)

7 Find the unknown marked angles in the given figures :

(i) (ii) (iif)

8. In the given figure, show that : Za = Zb + Z¢C.
(i) If zb=60° and Zc = 50°, find Za.
(i) f za = 100° and £b = 55°, find Zc.
(i) If za = 108° and Zc = 48°, find Zb.

9. Calculate the angles of a triangle, if they are in the ratio 4 : 5 : 6.

10. One angle of a triangle is 60°. The other two angles are in the ratio of 5 : g
Find the two angles.
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' 1 1

11. One angle of a triangle is 61° and the other two angles are in the ratio 1 B 1-5-.

Find these angles.
12. Find the unknown marked angles in the given figures.

i i : i

() (i) Jeo 2 (i) :

x* ’ 35°
110° y
ok 122°

(iv)

(vii) (viii) (ix)

4m 140°

2m

/ 120°

24.2 | CLASSIFICATION OF TRIANGLES
(a) With regard to their angles :

1. Acute angled triangle :

It is a triangle, whose each angle is acute, i.e., each angle is B
less than 90°. X

2. Right angled triangle :
It is a triangle, whose one angle is a right angle, i.e., equal to 90°.

The figure, given alongside, shows a right angled triangle XYZ
as ZXYZ = 90°. .40

0 One angle of a "th 3"""’!@; P

'ln A xyz gwen aho_

zX + Lz = Qﬂ"
(i) in a nght anglsd tnang_f“'" the sic
3. Obtuse angled triangle : R
If one angle of a triangle is more than 90°, it
is called an obtuse angled triangle. 130°
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(b) With regard to their sides : X
1. Scalene triangle : & -
If all the sides of a triangle are unequal, it is called a
scalene triangle. Y . 7
cm

In a scalene triangle, all its angles are also unequal.
2. Isosceles triangle :

A
If atleast two sides of a triangle are equal, it is called an

isosceles triangle.
In A ABC, shown alongside, side AB = side AC.

g7 ABC is an |sosceles triangle.
The angle “MgguumcmcauodnmmegMorme

o ' thgﬁu ml‘ ,_j | ddo) is called the base of the isosceles triangle.
?'l i) ﬁummmmmw angle of vertex) are called the base angles
dmm

IMPORTANT PROPERTIES OF AN ISOSCELES TRIANGLE A

The base angles, i.e., the angles opposite t0 equal sides of
an isosceles triangle are always equal.
In given triangle ABC,
B C

(i) if side AB = side BC, then angle opposite to AB = angle
opposite to BC, i.e.,, £ZC = ZA.

(i) if side BC = side AC, then angle opposite to BC = angle opposite to AC, ie.
ZA = ZB and so on.

Conversely : If any two angles of a triangle are equal, the sides opposite to these
angles are also equal, i.e., the triangle is isosceles.

Thus in A ABC,
(i) if zB=~£C = side opposite to /B = side opposite to ZC = side AC = side AB.
(i) if ZA = ZB = side BC = side AC and so on.

3. Equilateral triangle :
If all the three sides of a triangle are equal, it is called an
equilateral triangle.
t C

In the given figure, A ABC is equilateral, because AB = BC = CA
Also, all the angles of an equilateral triangle are equal to each other

and so each angle = 60° [--60° + 60° + 60° = 180°]
Since. all the angles of an equilateral triangle are equal, it is also known as
equiangular triangle.
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4. Isosceles right angled triangle :

If one angle of an isosceles triangle is 90° it is called an
Isosceles right angled triangle.

In the given figure, A ABC is an isosceles right angled triangle,
because : ZACB = 90° and AC = BC.

Here, the base is AB, the vertex is C and the base angles
are ZBAC and ZABC, which are equal.

Since, the sum of the angles of a triangle = 180°

- ZABC = ZBAC = 45° [45° + 45° + 90° = 180°]
Example 3 :

In the given isosceles triangle, find the base angles.
Solution : o

Let each of the base angles be x.

X+ X+40° = 180° [Sum of the angles of a A = 180°]
— 2x + 40° = 180°
= 2x = 180° - 40°
140° 3 :

= R = . Each base angle is 70° (Ans.)

Example 4 : A

One base angle of an isosceles triangle is 65°.
Find its angle of vertex.

Solution :
Since, the base angles of an isosceles triangle are equal. B it C
Other base angle is also 65°.
Let the angle of vertex be x.

X + 65° + 65° = 180° [Sum of the angles of a A = 180°]
— x + 130° = 180°
= x = 180° — 130° = 50° (Ans.)

Example 5 :

If one base angle of an isosceles triangle is double of the vertical angle, find all its
angles.

Solution :
Draw an isosceles triangle in which mark the vertical angle as x.
~. The two base angles will be 2x each.

Hence, x+ 2x + 2x = 180° 2
= bx = 180° and X = 180 =an
= 2% = B P =TT
Vertical angle = 36° and each base angle = 72° (Ans.)
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— e EXERCISE 24(8) —mm ——————————

1. Find the unknown angles in the given figures :

(i) (ii) (iii)

aﬁﬂ

2. Apply the properties of isosceles and equilateral triangles to find the unknown angles
in the given figures :

(1)

(ii)

(iv)

3. The angle of vertex of an isosceles triangle is 100°. Find its base angles.
4. One of the base angles of an isosceles triangle is 52°. Find its angle of vertex.

5. In an isosceles triangle, each base angle is four times of its vertical angle. Find all the
angles of the triangle.

6. The vertical angle of an isosceles triangle is 15° more than each of its base angles.
Find each angle of the triangle.

7. The base angle of an isosceles triangle is 15° more than its vertical angle. Find its

each angle.

8. The vertical angle of an isosceles triangle is three times the sum of its base angles.
Find each angle.

9. The ratio between a base angle and the vertical angle of an isosceles triangle is
1 : 4. Find each angle of the triangle.
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10. In the given figure, Bl is the bisector of ZABC A
and CI is the bisector of ZACB. Find £BIC.

. B C
11. In the given figure, express a in terms of b. .
b
e
12. (a) In Figure (i) BP bisects ZABC and AB = AC. Find x. /U
(b) Find x in Figure (ii). el
—p

Given : DA = DB = DC, BD bisects
ZABC and £ZADB = 70°.

13. In each figure, given below, ABCD is a square
and A BEC is an equilateral triangle.

() o dlgme o e

-
—-—
-
-
-

m
\
\
i
)
I
n
1]
)
e
|

Find, in each case : (i) ZABE (ii)) £ZBAE

14. In A ABC, BA and BC are produced.
Find the angles a and b, if AB = BC.

24.4 | CONSTRUCTION OF TRIANGLES

1. When the lengths of three sides are given :
Let us construct a A ABC, such that AB = 3 cm, BC = 4 cm and CA = 3-5 cm.
Steps : 1. Draw a line segment AB = 3 cm. -

2. With A as centre, draw an arc of radius
3.5 cm and with B as centre draw
another arc with radius 4 cm. Let these
arcs meet at C.

3. Join BC and AC.
Then, triangle ABC so obtained is the required triangle.
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2. When the lengths of two sides and the included angle are given :

Let us construct a A ABC, such that AB = 4 cm, BC = 5 cm and ZABC = 60°.

Steps : 1. Draw a line segment BC = 5 cm.
2. At B, draw an angle PBC = 60°.

3. With B as centre, draw an arc of 4 cm
radius, which cuts PB at A. Join AC.

Then, ABC is the required triangle.

3. When two angles and the included side are given :
Let us construct a A ABC, such that AB = 6 cm, ZA = 60° and £ZB = 45°.
Steps : 1. Draw a line segment AB = 6 cm. '
2. At A, draw an angle of 60°.
3. At B, draw an angle of 45°.
Let the lines of 60° and 45° meet at C.

Then, ABC is the required triangle.

- CONSTRUCTION OF AN ISOSCELES TRIANGLE

1. When base and one o! the base angles are given :

Let us construct an isosceles A ABC such that, base AB = 5 cm and each base
angle = 45°.

Steps : 1. Draw a line segment AB = 5 cm.
2. At A, draw an angle of 45°.

3. At B also, draw an angle of 45°. Let
these 45° lines meet at C.

Then, ABC is the required triangle.

2. When one of the equal sides and the vertex angle are given :

Let us construct an isosceles triangle ABC such that :
AB=AC=4cm and ZBAC =60°.

Steps : 1. Draw a line segment AB = 4 cm.
2. At A, draw AP so that angle BAP = 60°.

3. With A as centre draw an arc of 4 cm
radius, which cuts AP at C. Join C and B.

Then, ABC is the required isosceles triangle.
- CONSTRUCTION OF AN EQUILATERAL TRIANGLE

An equilateral triangle can be drawn when one of its sides is given.
Let to construct an equilateral A ABC with each side equal to 5 cm.
Steps : 1. Draw a line AB = 5 cm.
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Then, ABC is the required triangle.

24.7 | CONSTRUCTION OF A RIGHT ANGLED TRIANGLE
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With A as centre, draw an arc of radius 5 cm.
With B as centre, draw another arc of radius 5 cm.
Let, the two arcs meet at C. Join AC and BC.

5 cm

1. When the lengths of the sides, containing the right angle, are given :

Let us construct a right angled A ABC such that,

AB = 4.5 cm, AC = 3:5 cm and ZA = 90°.

Steps : 1.
2
3.

Draw a line segment AB = 4.5 cm.
At A, draw AP so that angle PAB = 90°.

With A as centre, draw an arc of radius 3:5 cm
which cuts AP at point C. Join BC.

" 4.5 cm

Then, ABC is the required triangle.

2. When the lengths of one side and the hypotenuse are given :

Let us construct a right angled A ABC such that AB = 4 cm, ZA = 90° and BC
(hypotenuse) = 5 cm.

Steps : 1.
2.
3.

Then, ABC is the required triangle.
24.8 | CIRCUMCIRCLE AND INCIRCLE

1 Circumcircle :

Draw a line segment AB = 4 cm.
At A, draw AP so that angle PAB = 90°.

With B as centre and radius = 5 cm, draw an arc
which cuts AP at point C. Join BC.

If a circle passes through all the three vertices of a triangle, it is

called the circumcircle of the triangle. Its centre is called circumcentre and its radius
is called circumradius.

To construct the circumcircle of a triangle :
Steps : 1.
2.

3.

Construct the AABC with the given measurements.

Draw the perpendicular bisectors of any two
sides of the triangle.

Here, the perpendicular bisectors of the sides AB -
and AC are drawn. These bisectors intersect i

each other at point O. :
Taking O as centre and OA or OB or OC as radius, draw a circle.

The circle so drawn passes through the vertices A, B and C.

[Here, the centre O is the circumcentre of A ABC, whereas OA = OB = OC = its

circumradius].

- 2. Incircle : If a circle is drawn, inside a triangle, such' that it touches all the three
sides of the triangle, it is called the incircle of that triangle.

The centre of this circle is called the incentre of the triangle.
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To construct the incircle of a triangle :

Steps : 1. Construct the A ABC according to the given
measurements.

2. Bisect any two of its angles. Let these two
bisectors meet at /.

3. From I, draw a perpendicular on BC. This
perpendicular meets BC at point P.

4. With I as centre and /P as radius, draw a circle.

The circle so drawn will touch the sides BC, AB and AC.
[Here, I is the incentre of the triangle].
—  EXERCISE 24(C)
1. Construct a A ABC such that :
() AB=6cm,BC=4cmandCA=55¢cm (i) CB=6-5cm,CA=4-2cmandBA=5-1cm
(i) BC=4cm,AC=5cmandAB=3-5cm
2. Construct a A ABC such that :
(i) AB=7cm, BC=5cmand ZABC = 60° (ii) BC =6 cm, AC = 5.7 cm and ZACB = 75°
(ili) AB=6-5cm, AC =58 cmand ZA =45°
3. Construct a A PQR such that :
(i) PQ =6 cm, ZQ = 60° and £ZP = 45°. Measure ZR.
(i) QR = 4.4 cm, ZR = 30° and £Q = 75°. Measure PQ and PR.
(i) PR =58 cm, ZP = 60° and ZR = 45°. Measure ZQ and verify it by calculations.
4. Construct an isosceles A ABC such that :
(i) base BC =4 cm and base angle = 30 (i) base AB = 6-2 cm and base angle = 45"
(i) base AC = 5 cm and base angle = 75°. Measure the other two sides of the triangle.

5. Construct an isosceles A ABC such that :
() AB = AC = 6-5 cm and ZA = 60°
(i) One of the equal sides = 6 cm and vertex angle = 45°. Measure the base angles.
(i) BC = AB = 58 cm and ZB = 30". Measure ZA and ZC.

6. Construct an equilateral A ABC such that :

(i) AB = 5 cm. Draw the perpendicular bisectors of BC and AC. Let P be the point of
intersection of these two bisectors. Measure PA, PB and PC.

(i) Each side is 6 cm.
7. (i) Construct a A ABC such that AB = 6 cm, BC = 4.5 cm and AC = 5-5 cm. Construct
a circumcircle of this triangle.
(i) Construct an isosceles A PQR such that PQ = PR = 6:5 cm and ZPQR = 75°.
Using ruler and compasses only construct a circumcircle to this triangle.
(iii) Construct an equilateral triangle ABC such that its one side = 5-5 cm.
Construct a circumcircle to this triangle.

8. (i) Construct a A ABC such that AB = 6 cm, BC = 5.6 cm and CA = 6:5 cm.

Inscribe a circle to this triangle and measure its radius.

(i) Construct an isosceles A MNP such that base MN = 5.8 cm, base angle MNP = 30°.
Construct an incircle to this triangle and measure its radius.

(iii) Construct an equilateral A DEF whose one side is 5-5 cm. Construct an incircle to
this triangle.

(iv) Construct a A PQR such that PQ = 6 cm, ZQPR = 45° and angle PQR = 60°.
Locate its incentre and then draw its incircle.

. .
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