CHAPTER 4

FRACTION

[INCLUDING PROBLEMS BASED ON FRACTIONS]

4.1 BASIC CONCEPT

If an apple is divided into five equal parts; each part is said to be one-fifth $\left(\frac{1}{5}\right)$ of the whole apple. And, if out of these five equal parts, 2 parts are eaten; we say two-fifth $\left(\frac{2}{5}\right)$ of the apple is eaten or three-fifth $\left(\frac{3}{5}\right)$ of the apple is left.

The numbers $\frac{1}{5}$, $\frac{2}{5}$ and $\frac{3}{5}$ used in the statement, given above, are called **fractions**. *Each* of these fractions *indicates a part of the whole*.

In fraction $\frac{a}{b}$, *a* is called the **numerator** and *b* is called the **denominator** of the fraction.

:. FRACTION = Numerator Denominator

Every fraction can be expressed as $\frac{a}{b}$, where *a* and *b* are integers and $b \neq 0$ *i.e.* denominator is not equal to zero.

4.2 CLASSIFICATION OF FRACTIONS

Types of fractions	Condition	Examples			
1. Decimal fraction	denominator is 10 or higher power of 10.	$\frac{1}{10}, \frac{3}{100}, \frac{15}{1000}, \frac{8}{10^5}, \dots$			
2. Vulgar fraction	denominator is other than 10, 100, 1000, etc.	$\frac{2}{5}, \frac{4}{7}, \frac{8}{19}, \frac{23}{107}, \dots$			
3. Proper fraction	denominator is greater than its numerator.	$\frac{4}{5}, \frac{3}{7}, \frac{101}{235}, \dots$			
4. Improper fraction	4. <i>Improper fraction</i> denominator is less than its numerator.				
5. Mixed fraction	consists of an integer and a proper fraction.	$2\frac{5}{7}, 1\frac{3}{5}, 10\frac{1}{9}, \dots$			
If the numerator is equal to the denominator, the fraction is equal to unity (one). e.g. $\frac{4}{4} = 1$, $\frac{-3}{-3} = 1$, $\frac{49}{49} = 1$ and so on.					
Important : (a) $\frac{7}{20} = \frac{7 \times 5}{20 \times 5} = \frac{35}{100}$, a decimal fraction.					
(b) $\frac{81}{500} = \frac{81 \times 2}{500 \times 2} = \frac{162}{1000}$, a decimal fraction.					
If the denominator of a fraction can be expressed as 10 or as some higher power of 10, it is a decimal fraction.					

Example 1 :

(a) Convert : (i) $3\frac{2}{7}$ (ii) $2\frac{5}{8}$ into improper fractions. (b) Convert : (i) $\frac{11}{4}$ (ii) $\frac{19}{5}$ into mixed fractions.

Solution :

(a) (i)
$$3\frac{2}{7} = \frac{3\times7+2}{7} = \frac{23}{7}$$
 (Ans.)
Given mixed fraction = Integral part × Denominator + Numerator
Denominator
(ii) $2\frac{5}{8} = \frac{2\times8+5}{8} = \frac{16+5}{8} = \frac{21}{8}$ (Ans.)
(b) (i) $\frac{11}{4} = \frac{2\times4+3}{4}$ \because $4\int 11/2$
 $= 2 + \frac{3}{4} = 2\frac{3}{4}$ \checkmark (Ans.)
(ii) $\frac{19}{5} = \frac{3\times5+4}{5}$ \because $5\int 19/3$
 $= 3 + \frac{4}{5} = 3\frac{4}{5}$ \checkmark (Ans.)

1. The value of a fraction remains the same if both its numerator and denominator are (i) multiplied or (ii) divided by the same non-zero number.

e.g. (i) $\frac{5}{8} = \frac{5 \times 2}{8 \times 2} = \frac{10}{16}$; $\frac{3}{7} = \frac{3 \times 5}{7 \times 5} = \frac{15}{35}$ and so on. (ii) $\frac{10}{16} = \frac{10 \div 2}{16 \div 2} = \frac{5}{8}$; $\frac{15}{35} = \frac{15 \div 5}{35 \div 5} = \frac{3}{7}$ and so on.

2. A fraction must always be expressed in its lowest term.

.3 REDUCING A GIVEN FRACTION TO ITS LOWEST TERM

Steps : First of all find H.C.F. of both the terms (numerator and denominator) of the given fraction. Then divide each term by this H.C.F.

Example 2 :

Reduce : (i)
$$\frac{48}{60}$$
 (ii) $\frac{18}{27}$ to their lowest terms.

Solution :

(i) Since, H.C.F. of terms 48 and 60 = 12.

$$\therefore \frac{48}{60} = \frac{48 \div 12}{60 \div 12}$$
[Dividing each term by 12]

$$= \frac{4}{5}$$

(Ans.)

$$\therefore \frac{18}{27} = \frac{18 \div 9}{27 \div 9} = \frac{2}{3}$$
 (Ans

Alternative Method :

Resolve both the numerator and the denominator into prime factors, then cancel out the common factors among both.

Since, $48 = 2 \times 2 \times 2 \times 2 \times 3$ and $60 = 2 \times 2 \times 3 \times 5$ $\therefore \quad \frac{48}{60} = \frac{\cancel{2} \times \cancel{2} \times 2 \times 2 \times \cancel{3}}{\cancel{2} \times \cancel{2} \times \cancel{3} \times 5}$ [Cancelling out the common factors] $= \frac{2 \times 2}{5} = \frac{4}{5}$ (Ans.)

4.4

EQUIVALENT (EQUAL) FRACTIONS

Fractions having the same value are called equivalent fractions.

e.g., Since, $\frac{20}{25} = \frac{20 \div 5}{25 \div 5} = \frac{4}{5}$ and $\frac{28}{35} = \frac{28 \div 7}{35 \div 7} = \frac{4}{5}$ \therefore Fractions $\frac{20}{25}$ and $\frac{28}{35}$ are equivalent, *i.e.*, $\frac{20}{25} = \frac{28}{35} = \frac{4}{5}$.

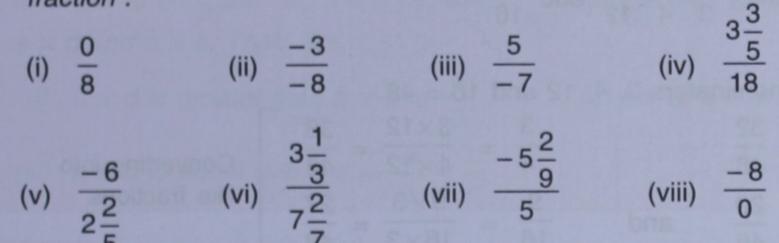
4.5

SIMPLE AND COMPLEX FRACTIONS

A fraction, whose numerator and denominator both are integers, is called a simple fraction; whereas a fraction, whose numerator or denominator or both are not integers, is called a *complex fraction*.

e.g. (i) Each of
$$\frac{3}{8}$$
, $\frac{-10}{17}$, $\frac{8}{-15}$, etc., is a simple fraction.
(ii) Each of $\frac{5}{2/3}$, $\frac{1\cdot 4}{8}$, $\frac{9/14}{2\frac{3}{7}}$, etc., is a complex fraction.

EXERCISE 4(A)


1. Classify, each fraction given below, as decimal or vulgar fraction, proper or improper fraction and mixed fraction :

(i)
$$\frac{3}{5}$$
 (ii) $\frac{11}{10}$ (iii) $\frac{13}{20}$ (iv) $\frac{18}{7}$ (v) $3\frac{2}{9}$

2. Express the following improper fractions as mixed fractions :

(i)
$$\frac{18}{5}$$
 (ii) $\frac{7}{4}$ (iii) $\frac{25}{6}$ (iv) $\frac{38}{5}$ (v) $\frac{22}{5}$
3. Express the following mixed fractions as improper fractions :
(i) $2\frac{4}{9}$ (ii) $7\frac{5}{13}$ (iii) $3\frac{1}{4}$ (iv) $2\frac{5}{48}$ (v) $12\frac{7}{11}$
4. Reduce the given fractions to lowest terms :
(i) $\frac{8}{18}$ (ii) $\frac{27}{36}$ (iii) $\frac{18}{42}$ (iv) $\frac{35}{75}$ (v) $\frac{18}{45}$

- 5. State true or false :
 - (i) $\frac{30}{40}$ and $\frac{12}{16}$ are equivalent fractions.
 - (ii) $\frac{10}{25}$ and $\frac{25}{10}$ are equivalent fractions.
 - (iii) $\frac{35}{49}$, $\frac{20}{28}$, $\frac{45}{63}$ and $\frac{100}{140}$ are equivalent fractions.
- 6. Distinguish each of the following fractions, given below, as a simple fraction or a complex fraction :

Remember : Each of the numbers of the form $\frac{5}{0}$, $\frac{-7}{0}$, $\frac{8}{0}$, etc., is neither a simple fraction nor a complex fraction; as the division by '0' is not defined.

4.6 LIKE AND UNLIKE FRACTIONS

Fractions having the same denominators are called like fractions; whereas the fractions with different denominators are called unlike fractions.

e.g. (i)
$$\frac{3}{8}, \frac{5}{8}, \frac{9}{8}$$
, etc., are *like fractions*.
(ii) $\frac{2}{7}, \frac{5}{9}, \frac{15}{23}, \frac{24}{37}$, etc., are *unlike fractions*.

.7 CONVERTING UNLIKE FRACTIONS INTO LIKE FRACTIONS

Steps: 1. Find the L.C.M of the denominators of all given fractions.

- For each given fraction, multiply its denominator by a suitable number so that the product obtained is equal to the L.C.M. obtained in Step 1.
- 3. Multiply the numerator also by the same number.

Example 3 :

Change
$$\frac{3}{4}$$
, $\frac{3}{5}$, $\frac{7}{8}$ and $\frac{9}{16}$ to like fractions.

Solution :

Since, L.C.M. of the denominators 4, 5, 8 and 16 is 80. $\therefore \quad \frac{3}{4} = \frac{3 \times 20}{4 \times 20} = \frac{60}{80}; \qquad \frac{3}{5} = \frac{3 \times 16}{5 \times 16} = \frac{48}{80}$

37

$$\frac{7}{8} = \frac{7 \times 10}{8 \times 10} = \frac{70}{80}; \qquad \frac{9}{16} = \frac{9 \times 5}{16 \times 5} = \frac{45}{80}$$

Required like fractions are : $\frac{60}{80}, \frac{48}{80}, \frac{70}{80}$ and $\frac{45}{80}$

COMPARING FRACTIONS

Steps : Convert all the given fractions into like fractions, then the fraction with the greater numerator is greater.

Example 4 :

...

4.8

Compare the fractions : $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{12}$ and $\frac{9}{16}$.

Solution :

 $\therefore \text{ L.C.M. of the denominators } 3, 4, 12 \text{ and } 16 = 48.$ $\therefore \frac{2}{3} = \frac{2 \times 16}{3 \times 16} = \frac{32}{48} ; \qquad \frac{3}{4} = \frac{3 \times 12}{4 \times 12} = \frac{36}{48}$ $\frac{5}{12} = \frac{5 \times 4}{12 \times 4} = \frac{20}{48} \text{ and } \frac{9}{16} = \frac{9 \times 3}{16 \times 3} = \frac{27}{48}$ Converting into like fractions
Since, the biggest numerator is 36, thus the biggest fraction is $\frac{36}{48}$ (*i.e.*, $\frac{3}{4}$).
Next one is $\frac{32}{48}$ (*i.e.*, $\frac{2}{3}$) and the smallest fraction is $\frac{20}{48}$ (*i.e.*, $\frac{5}{12}$) \therefore Fractions in ascending order of values are : $\frac{5}{12}$, $\frac{9}{16}$, $\frac{2}{3}$ and $\frac{3}{4}$. (Ans.) $i.e. \quad \frac{5}{12} < \frac{9}{16} < \frac{2}{3} < \frac{3}{4}$ And, fractions in descending order of values are : $\frac{3}{4}$, $\frac{2}{3}$, $\frac{9}{16}$ and $\frac{5}{12}$. (Ans.)

(Ans.)

i.e. $\frac{1}{4} > \frac{1}{3} > \frac{1}{16} > \frac{1}{12}$

Ascending means smaller to greater and descending means greater to smaller.

Alternate Method (By making numerators equal) :

Steps: 1. Convert all the given fractions into fractions of equal numerators.

2. The fraction which has a smaller denominator is greater.

Example 5 :

Compare :
$$\frac{2}{3}$$
, $\frac{3}{4}$, $\frac{5}{12}$ and $\frac{9}{16}$ by making their numerators equal.

Solution :

Step 1 : Since, L.C.M. of numerators 2, 3, 5 and 9 is 90

$$\frac{2}{3} = \frac{2 \times 45}{3 \times 45} = \frac{90}{135} \qquad ; \qquad \frac{3}{4} = \frac{3 \times 30}{4 \times 30} = \frac{90}{120}$$
$$\frac{5}{12} = \frac{5 \times 18}{12 \times 18} = \frac{90}{216} \qquad \text{and} \qquad \frac{9}{16} = \frac{9 \times 10}{16 \times 10} = \frac{90}{160}$$

38

Step 2: Since,
$$\frac{90}{120}$$
 has the smallest denominator, the biggest fraction is $\frac{90}{120}$ (*i.e.*, $\frac{3}{4}$).
As, $\frac{90}{216}$ has the biggest denominator, the smallest fraction is $\frac{90}{216}$ (*i.e.*, $\frac{5}{12}$).
 \therefore Fractions in ascending order are : $\frac{5}{12}$, $\frac{9}{16}$, $\frac{2}{3}$ and $\frac{3}{4}$. (Ans.)
And, in descending order they are : $\frac{3}{4}$, $\frac{2}{3}$, $\frac{9}{16}$ and $\frac{5}{12}$. (Ans.)
In order to compare two fractions, say : $\frac{a}{b}$ and $\frac{c}{d}$, find their cross-product, *i.e.*, find
 $a \times d$ and $b \times c$. Then, if :
(i) $a \times d$ is greater than $b \times c \Rightarrow \frac{a}{b} > \frac{c}{d}$, (ii) $a \times d$ is less than $b \times c \Rightarrow \frac{a}{b} < \frac{c}{d}$,
(iii) $a \times d$ is equal to $b \times c \Rightarrow \frac{a}{b} = \frac{c}{d}$.
Example 6 :
Taking the cross multiplication we get : $3 \times 18 = 54$ and $7 \times 13 = 91$
Since, 3×18 (*i.e.*, 54) is smaller than 7×13 (*i.e.*, 91) $\therefore \frac{3}{13} < \frac{7}{18}$ (Ans.)

4.9 TO INSERT A FRACTION BETWEEN TWO GIVEN FRACTIONS

Steps : Add numerators of the given fractions to get the numerator of required fraction. Similarly, add their denominators to get denominator of the required fraction. Then simplify, if required.

Example 7 :

Insert one fraction between :

1 2 1

(i)
$$\frac{1}{2}$$
 and $\frac{5}{5}$ (ii) 2 and $3\frac{1}{2}$

Solution :

(i) $\frac{1}{2}, \frac{3}{5} = \frac{1}{2}, \frac{1+3}{2+5}, \frac{3}{5}$ [Adding numerators and denominators] = $\frac{1}{2}, \frac{4}{7}, \frac{3}{5}$ (Ans.)

Thus, if
$$\frac{a}{b}$$
 and $\frac{c}{d}$ are two fractions then fraction $\frac{a+c}{b+d}$ lies between $\frac{a}{b}$ and $\frac{c}{d}$.
Also, 1. If $\frac{a}{b} > \frac{c}{d}$, then $\frac{a}{b} > \frac{a+c}{b+d} > \frac{c}{d}$.
(ii) 2, $3\frac{1}{2} = \frac{2}{1}, \frac{7}{2} = \frac{2}{1}, \frac{2+7}{1+2}, \frac{7}{2} = 2, \frac{9}{3}, \frac{7}{2} = 2, 3, 3\frac{1}{2}$
(Ans.)

39

Example 8 :

Insert three fractions between
$$\frac{1}{2}$$
 and $\frac{3}{5}$.
Solution :

$$\frac{1}{2}, \frac{3}{5} = \frac{1}{2}, \frac{1+3}{2+5}, \frac{3}{5}$$

$$= \frac{1}{2}, \frac{1+3}{2+5}, \frac{3}{5}$$

$$= \frac{1}{2}, \frac{1+3}{7}, \frac{3}{5}$$

$$= \frac{1}{2}, \frac{1+4}{7}, \frac{4}{7}, \frac{4+3}{7+5}, \frac{3}{5}$$
[Inserting one fraction between $\frac{1}{2}$ and $\frac{3}{5}$]

$$= \frac{1}{2}, \frac{5}{7}, \frac{4}{7}, \frac{7}{12}, \frac{3}{5}$$
[Inserting one fraction between $\frac{1}{2}$ and $\frac{4}{7}$;
and one between $\frac{4}{7}$ and $\frac{3}{5}$]

$$= \frac{1}{2}, \frac{5}{9}, \frac{4}{7}, \frac{7}{12}, \frac{3}{5}$$
[Ans.)
EXERCISE 4(B)
1. For each pair, given below, state whether it forms like fractions or unlike fractions :
(i) $\frac{5}{8}$ and $\frac{7}{8}$
(ii) $\frac{8}{15}$ and $\frac{8}{21}$
(iii) $\frac{4}{9}$ and $\frac{9}{4}$
2. Convert given fractions into fractions with equal denominators :
(i) $\frac{5}{6}$ and $\frac{7}{9}$
(ii) $\frac{2}{3}, \frac{5}{6}$ and $\frac{7}{12}$
(iii) $\frac{4}{5}, \frac{17}{20}, \frac{23}{40}$ and $\frac{11}{16}$
3. Convert given fractions into fractions with equal numerators :
(i) $\frac{8}{9}$ and $\frac{12}{17}$
(ii) $\frac{6}{13}, \frac{15}{23}$ and $\frac{12}{17}$
(iii) $\frac{15}{19}, \frac{25}{28}, \frac{9}{11}$ and $\frac{45}{47}$
4. Put the given fractions in ascending order by making denominators equal :

(i)
$$\frac{1}{3}$$
, $\frac{2}{5}$, $\frac{3}{4}$ and $\frac{1}{6}$
(ii) $\frac{5}{6}$, $\frac{7}{8}$, $\frac{11}{12}$ and $\frac{3}{10}$
(iii) $\frac{5}{7}$, $\frac{3}{8}$, $\frac{9}{14}$ and $\frac{20}{21}$
5. Arrange the given fractions in descending order by making numerators equal :
(i) $\frac{5}{6}$, $\frac{4}{15}$, $\frac{8}{9}$ and $\frac{1}{3}$
(ii) $\frac{3}{7}$, $\frac{4}{9}$, $\frac{5}{7}$ and $\frac{8}{11}$
(iii) $\frac{1}{10}$, $\frac{6}{11}$, $\frac{8}{11}$ and $\frac{3}{5}$
6. Find the greater fraction :
(i) $\frac{3}{5}$ and $\frac{11}{15}$
(ii) $\frac{4}{5}$ and $\frac{3}{10}$
(iii) $\frac{6}{7}$ and $\frac{5}{9}$
7. Insert one fraction between :
(i) $\frac{3}{7}$ and $\frac{4}{9}$
(ii) 2 and $\frac{8}{3}$
(iii) $\frac{9}{17}$ and $\frac{6}{13}$
8. Insert three fractions between :
(i) $\frac{2}{5}$ and $\frac{4}{9}$
(ii) $\frac{1}{2}$ and $\frac{5}{7}$
(iii) $\frac{3}{8}$ and $\frac{6}{11}$
9. Insert two fractions between :
(i) 1 and $\frac{3}{11}$
(ii) $\frac{5}{9}$ and $\frac{1}{4}$
(iii) $\frac{5}{9}$ and $\frac{1}{4}$
(iii) $\frac{5}{6}$ and $1\frac{1}{5}$

OPERATIONS ON FRACTIONS

Addition and Subtraction : 1.

For like fractions, add or subtract (as required) their numerators, keeping the (i) denominator same :

 $\therefore \frac{1}{8} + \frac{5}{8} = \frac{1+5}{8} = \frac{6}{8} = \frac{3}{4} \text{ and } \frac{9}{10} - \frac{3}{10} = \frac{9-3}{10} = \frac{6}{10} = \frac{3}{5}$

For unlike fractions, first of all change given fractions into like fractions and then (ii) do the addition or subtraction as above :

 $\therefore \quad \frac{5}{7} - \frac{1}{4} = \frac{5 \times 4}{7 \times 4} - \frac{1 \times 7}{4 \times 7}$ [L.C.M. of 7 and 4 is 28] $=\frac{20}{28}-\frac{7}{28}=\frac{20-7}{28}=\frac{13}{28}$ or, simply: $\frac{5}{7} - \frac{1}{4} = \frac{5 \times 4 - 1 \times 7}{28} = \frac{20 - 7}{28} = \frac{13}{28}$ And, $\frac{3}{4} + \frac{2}{5} - \frac{1}{3} = \frac{3 \times 15}{4 \times 15} + \frac{2 \times 12}{5 \times 12} - \frac{1 \times 20}{3 \times 20}$ [L.C.M. of 4, 5 and 3 = 60] $=\frac{45}{60}+\frac{24}{60}-\frac{20}{60}=\frac{45+24-20}{60}=\frac{49}{60}$ or, simply: $\frac{3}{4} + \frac{2}{5} - \frac{1}{3} = \frac{3 \times 15 + 2 \times 12 - 1 \times 20}{60}$ $=\frac{45+24-20}{60}=\frac{49}{60}.$

Multiplication : 2.

To multiply a fraction with an integer, multiply its numerator with the integer. (i)

$$5 \times \frac{3}{8} = \frac{5 \times 3}{8} = \frac{15}{8} = \frac{17}{8} \text{ and } \frac{4}{15} \times -7 = \frac{4 \times -7}{15} = \frac{-28}{15} = -1\frac{13}{15}.$$

To multiply two or more fractions, multiply their numerators together and their (ii) denominators separately together.

$$\therefore \quad \frac{3}{5} \times \frac{2}{7} = \frac{3 \times 2}{5 \times 7} = \frac{6}{35} \text{ and } \quad \frac{3}{8} \times \frac{4}{5} \times \frac{2}{3} = \frac{3 \times 4 \times 2}{8 \times 5 \times 3} = \frac{1}{5}.$$

Division: 3.

To divide one quantity (fraction or integer) by some other quantity (fraction or integer), multiply the first by the reciprocal of the second. 1

e.g. (i)
$$\frac{5}{8} \div 2 = \frac{5}{8} \times \frac{1}{2} = \frac{5}{16}$$
 [Reciprocal of 2 is $\frac{1}{2}$]
(ii) $2 \div \frac{5}{8} = 2 \times \frac{8}{5} = \frac{16}{5} = 3\frac{1}{5}$ [Reciprocal of $\frac{5}{8}$ is $\frac{8}{5}$]
(iii) $\frac{7}{10} \div \frac{3}{4} = \frac{7}{10} \times \frac{4}{3} = \frac{28}{30} = \frac{14}{15}$ and so on.
41

4.11 USING "OF"

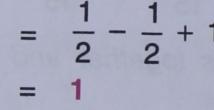
The word "of" between any two fractions, is to be used as multiplication.

e.g. (i)
$$\frac{3}{16}$$
 of $2 = \frac{3 \times 2}{16} = \frac{3}{8}$
(ii) $\frac{1}{3}$ of 18 kg = $\frac{1 \times 18}{3}$ kg = 6 kg
(iii) $\frac{3}{4}$ of ₹ 16 = ₹ $\frac{3 \times 16}{4}$ = ₹ 12 and so on.

4.12 USING "BODMAS" :

The word 'BODMAS' is the abbreviation formed by taking the initial letters of six operations; 'Bracket', 'Of', 'Division', 'Multiplication', 'Addition' and 'Subtraction'.

According to the rule of BODMAS, working must be done in the order corresponding to the letters appearing in the word, *i.e.*, first of all the terms inside Bracket must be simplified; then Of must be simplied and then Division, Multiplication, Addition and finally Subtraction.


e.g.
$$\left(\frac{1}{3} + \frac{2}{9}\right)$$
 of $\frac{8}{15} \div \frac{4}{9} \times \frac{3}{4} - \frac{1}{2} + 1$

$$= \left(\frac{3+2}{9}\right)$$
 of $\frac{8}{15} \div \frac{4}{9} \times \frac{3}{4} - \frac{1}{2} + 1$ First step (B) : Simplifying the Bracket.

$$= \frac{5}{9}$$
 of $\frac{8}{15} \div \frac{4}{9} \times \frac{3}{4} - \frac{1}{2} + 1$ Second step (O) : Removal of 'Of'

$$= \frac{8}{27} \times \frac{9}{4} \times \frac{3}{4} - \frac{1}{2} + 1$$
 Third step (D) : Division, *i.e.*, multiply by reciprocal.

$$= \frac{8 \times 9 \times 3}{27 \times 4 \times 4} - \frac{1}{2} + 1$$
 Fourth step (M) : Multiplication.

Fifth step : A and S

(Ans.)

Example 9 :

Evaluate :

(i)
$$2\frac{1}{4} \div \frac{5}{7} \times 1\frac{1}{3}$$

i)
$$\frac{1}{4}$$
 of $2\frac{2}{7} \div \frac{4}{15}$

Solution :

If required, convert the mixed fraction / fractions into improper fraction / fractions, then apply BODMAS and simplify.

(i)
$$2\frac{1}{4} \div \frac{5}{7} \times 1\frac{1}{3} = \frac{9}{4} \div \frac{5}{7} \times \frac{4}{3}$$

$$= \frac{9}{4} \times \frac{7}{5} \times \frac{4}{3} = \frac{9 \times 7 \times 4}{4 \times 5 \times 3} = \frac{21}{5} = 4\frac{1}{5}$$
 (Ans.)
42

(ii)
$$\frac{1}{4}$$
 of $2\frac{2}{7} \div \frac{4}{15} = \frac{1}{4}$ of $\frac{16}{7} \div \frac{4}{15}$
 $= \frac{4}{7} \div \frac{4}{15}$
 $= \frac{4}{7} \div \frac{15}{4} = \frac{15}{7} = 2\frac{1}{7}$
(Ans.)

Example 10 :

Evaluate :

(i)	$\frac{4}{5} \div \frac{7}{15}$	of $\frac{8}{9}$	(ii)	$\frac{4}{5} \div \frac{7}{15}$	$\times \frac{8}{9}$	(iii)	$\frac{5}{6}$ of	$\frac{5}{13}$ ÷	$\frac{15}{16} \times 1$	2
-----	---------------------------------	------------------	------	---------------------------------	----------------------	-------	------------------	------------------	--------------------------	---

Solution :

Remember : BODMAS

 (i)
$$\frac{4}{5} \div \frac{7}{15}$$
 of $\frac{8}{9} = \frac{4}{5} \div \frac{56}{135}$
 $\left[\frac{7}{15}$ of $\frac{8}{9} = \frac{56}{135}\right]$
 $= \frac{4}{5} \times \frac{135}{56} = \frac{27}{14} = 1\frac{13}{14}$
 (Ans.)

 (ii) $\frac{4}{5} \div \frac{7}{15} \times \frac{8}{9} = \frac{4}{5} \times \frac{15}{7} \times \frac{8}{9}$
 [Division (+) first]

 $= \frac{4 \times 15 \times 8}{5 \times 7 \times 9} = \frac{32}{21} = 1\frac{11}{21}$
 (Ans.)

 (iii) $\frac{5}{6}$ of $\frac{5}{13} \div \frac{15}{16} \times 1\frac{1}{2} = \frac{25}{78} \div \frac{15}{16} \times \frac{3}{2}$
 (Ans.)

 (iii) $\frac{5}{6}$ of $\frac{5}{13} \div \frac{15}{16} \times 1\frac{1}{2} = \frac{25}{78} \div \frac{15}{16} \times \frac{3}{2}$
 (Ans.)

 (iii) $\frac{5}{6}$ of $\frac{5}{13} \div \frac{15}{16} \times 1\frac{1}{2} = \frac{25}{78} \div \frac{15}{16} \times \frac{3}{2}$
 (Ans.)

- 1. Reduce to a single fraction :
- (iii) $\frac{2}{3} \frac{1}{6}$ (ii) $\frac{3}{5} - \frac{1}{10}$ (i) $\frac{1}{2} + \frac{2}{3}$ (vi) $\frac{2}{3} - \frac{3}{5} + 3 - \frac{1}{5}$ (v) $\frac{1}{4} + \frac{5}{6} - \frac{1}{12}$ (iv) $1\frac{1}{3} + 2\frac{1}{4}$ (ix) $2\frac{5}{8} - 2\frac{1}{6} + 4\frac{3}{4}$ (viii) $2\frac{1}{2} + 2\frac{1}{3} - 1\frac{1}{4}$ (vii) $\frac{2}{3} - \frac{1}{5} + \frac{1}{10}$ 2. Simplify : (iii) $\frac{3}{4} \times \frac{1}{2}$ (ii) $\frac{2}{3} \times 15$ (i) $\frac{3}{4} \times 6$ (vi) $36 \times 3\frac{1}{4}$ (v) $45 \times 2\frac{1}{3}$ (iv) $\frac{9}{12} \times \frac{4}{7}$ (ix) $1 \div \frac{3}{5}$ (viii) $3 \div \frac{2}{5}$ (vii) $2 \div \frac{1}{3}$

43

(x)
$$\frac{1}{3} \div \frac{1}{4}$$
 (xi) $-\frac{5}{8} \div \frac{3}{4}$ (xii) $3\frac{3}{7} \div 1\frac{1}{14}$
(xiii) $3\frac{3}{4} \times 1\frac{1}{5} \times \frac{20}{21}$
3. Subtract :
(i) 2 from $\frac{2}{3}$ (ii) $\frac{1}{8}$ from $\frac{5}{8}$ (iii) $-\frac{2}{5}$ from $\frac{2}{5}$
(iv) $-\frac{3}{7}$ from $\frac{3}{7}$ (v) 0 from $-\frac{4}{5}$ (vi) $\frac{2}{9}$ from $\frac{4}{5}$
(vii) $-\frac{4}{7}$ from $-\frac{6}{11}$
4. Find the value of :
(i) $\frac{1}{2}$ of 10 kg (ii) $\frac{3}{5}$ of 1 hour (iii) $\frac{4}{7}$ of $2\frac{1}{3}$ kg
(iv) $3\frac{1}{2}$ times of 2 metre (v) $\frac{1}{2}$ of $2\frac{2}{3}$ (vi) $\frac{5}{11}$ of $\frac{4}{5}$ of 22 kg
5. Simplify and reduce to a simple fraction :
(i) $\frac{3}{3\frac{3}{4}}$ (ii) $\frac{\frac{3}{5}}{7}$ (iii) $\frac{3}{\frac{5}{7}}$ (iv) $-\frac{2}{1\frac{1}{11}}$
(v) $\frac{2}{5}$ of $\frac{6}{11} \times 1\frac{1}{4}$ (vi) $2\frac{1}{4} \div \frac{1}{7} \times \frac{1}{3}$ (vii) $\frac{1}{3} \times 4\frac{2}{3} \div 3\frac{1}{2} \times \frac{1}{2}$
(viii) $\frac{2}{3} \times 1\frac{1}{4} \div \frac{3}{7}$ of $2\frac{5}{8}$ (ix) $0 \div \frac{8}{11}$ (x) $\frac{4}{5} \div \frac{7}{15}$ of $\frac{8}{9}$

(xi) $\frac{1}{5} \div \frac{1}{15} \times \frac{1}{9}$ (xii) $\frac{1}{5}$ of $\frac{1}{15} \div \frac{1}{9}$ (xiii) $\frac{1}{2}$ of $\frac{3}{4} \times \frac{1}{2} \div \frac{2}{3}$

4.13 USING BRACKETS

The types of brackets used, in general, are :

- (i) () is known as Circular bracket or Parenthesis or simply bracket.
- (ii) { } is known as Curly bracket.
- (iii) [] is known as Square bracket or Box bracket.

Sometimes a bar is drawn above some terms which we want to treat as a single quantity.

e.g., (i)
$$4 + 5$$
 means $(4 + 5) = 9$ (ii) $8 - \overline{3 + 2} = 8 - 5 = 3$

(iii) $3 + \overline{8 - 6} = 3 + 2 = 5$ and so on.

This "----" is known as Bar bracket or Veniculum.

Note : Multiplication sign is often omitted before a bracket and between the brackets. e.g., (i) $4(9-3) = 4 \times (9-3) = 4 \times 6 = 24$

(ii) $(2+8)(7-3) = (2+8) \times (7-3) = 10 \times 4 = 40$

REMOVAL OF BRACKETS

The brackets are removed in the order given below :

); parenthesis, ; bar or vinculum, (ii) (ii)]; square bracket. (iv) }; curly bracket, (iii) {

Example 11 :

Simplify:
$$10\frac{1}{2} - \left[8\frac{1}{2} + \{6 - (7 - \overline{6} - 4)\}\right]$$

Solution :

=	$10\frac{1}{2} - \left[8\frac{1}{2} + \{6 - (7 - 2)\}\right]$	$[\because \overline{6-4}=2]$	
=	$10\frac{1}{2} - \left[8\frac{1}{2} + \{6 - 5\}\right]$	[:: (7 - 2) = 5]	
=	$10\frac{1}{2} - \left[8\frac{1}{2} + 1\right]$	[∵ {6 – 5} = 1]	
=	$10\frac{1}{2} - 9\frac{1}{2}$	$\left[\because 8\frac{1}{2}+1=9\frac{1}{2}\right]$	
=	1	(Ans	.)

1. Whenever there is a positive (+) sign before a bracket, the bracket is removed without any change in the signs of its terms.

8 + (3 - 1 + 5) = 8 + 3 - 1 + 5 = 16 - 1 - 15e.g.,

2. Whenever there is a negative (-) sign before a bracket, the bracket is removed by changing the signs of all the terms inside the bracket (i.e., by changing every positive sign into negative and every negative sign into positive) 8 - (3 - 1 + 5) = 8 - 3 + 1 - 5 = 9 - 8 = 1e.g.,

EXERCISE 4(D)

Simplify :

1.
$$6 + \left\{\frac{4}{3} + \left(\frac{3}{4} - \frac{1}{3}\right)\right\}$$

2. $8 - \left\{\frac{3}{2} + \left(\frac{3}{5} - \frac{1}{2}\right)\right\}$
3. $\frac{1}{4}\left(\frac{1}{4} + \frac{1}{3}\right) - \frac{2}{5}$
4. $2\frac{3}{4} - \left[3\frac{1}{8} \div \left\{5 - \left(4\frac{2}{3} - \frac{11}{12}\right)\right\}\right]$
5. $12\frac{1}{2} - \left[8\frac{1}{2} + \left\{9 - \left(5 - \overline{3 - 2}\right)\right\}\right]$
6. $1\frac{1}{5} \div \left\{2\frac{1}{3} - \left(5 + \overline{2 - 3}\right)\right\} - 3\frac{1}{2}$
7. $\left(\frac{1}{2} + \frac{2}{3}\right) \div \left(\frac{3}{4} - \frac{2}{9}\right)$
8. $\frac{6}{5}$ of $\left(3\frac{1}{3} - 2\frac{1}{2}\right) \div \left(2\frac{5}{21} - 2\right)$
9. $10\frac{1}{8}$ of $\frac{4}{5} \div \frac{35}{36}$ of $\frac{20}{49}$
10. $5\frac{3}{4} - \frac{3}{7} \times 15\frac{3}{4} + 2\frac{2}{35} \div 1\frac{11}{25}$
11. $\frac{3}{4}$ of $7\frac{3}{7} - 5\frac{3}{5} \div 3\frac{4}{15}$

45

4.15 **PROBLEMS INVOLVING FRACTIONS**

Example 12 :

What fraction is 6 bananas of four dozen bananas ?

Solution :

Here 6 bananas are to be compared with 4 dozens *i.e.*, $4 \times 12 = 48$ bananas.

(Ans.)

(Ans.)

(Ans.)

(Ans.)

$$\therefore$$
 Required fraction = $\frac{6}{48} = \frac{1}{8}$

Example 13 :

Write all the natural numbers that lie between 5 and 15.

- How many of these natural numbers are odd ? (1)
- (ii) What fraction of these natural numbers are even ?

Solution :

Since, natural numbers between 5 and 15 are : 6, 7, 8, 9, 10, 11, 12, 13 and 14.

- .: There are 9 natural numbers between 5 and 15.
- (i) Out of these natural numbers, odd natural numbers are : 7, 9, 11 and 13.
 - There are 4 odd natural numbers between 5 and 15.
- (ii) Out of all the given 9 natural numbers, 4 are odd.
 - Remaining 9 4 = 5 numbers are even. ...

So, the required fraction = $\frac{3}{2}$

Example 14 :

The monthly income of a man is ₹ 18,000. He gives one-third of it to his wife and one-third of the remaining he spends on his children's education. Find :

- - (i) the money he gave to his wife.
 - (ii) the money he spends on his children's education.
 - (iii) the money still left with him.

Solution :

i) The man gives to his wife =
$$\frac{1}{3}$$
 of ₹ 18,000
= $\frac{1}{3} \times ₹ 18,000 = ₹ 6,000$ (Ans.)

- Since, remaining money = ₹ 18,000 - ₹ 6,000 = ₹ 12,000 (ii) He spends on his children's $=\frac{1}{3}$ × ₹ 12,000 $=\frac{1}{3}$ × ₹ 12,000 = ₹ 4,000 education (Ans.)
- The money still left with the man (iii)

Example 15 :

Subtract the sum of $\frac{1}{4}$ and $\frac{3}{8}$ from the sum of $\frac{2}{3}$, $\frac{3}{4}$ and $\frac{7}{12}$. Solution :

$$\therefore \text{ Sum of } \frac{1}{4} \text{ and } \frac{3}{8} = \frac{1}{4} + \frac{3}{8} = \frac{2+3}{8} = \frac{5}{8}$$
And, sum of $\frac{2}{3}$, $\frac{3}{4}$ and $\frac{7}{12} = \frac{2}{3} + \frac{3}{4} + \frac{7}{12} = \frac{8+9+7}{12} = \frac{24}{12} = 2$

$$\therefore \text{ Required number} = 2 - \frac{5}{8} = \frac{2}{1} - \frac{5}{8} = \frac{16-5}{8} = \frac{11}{8} = 1\frac{3}{8}$$
(Ans.)
or, directly, $\left(\frac{2}{3} + \frac{3}{4} + \frac{7}{12}\right) - \left(\frac{1}{4} + \frac{3}{8}\right) = \left(\frac{8+9+7}{12}\right) - \left(\frac{2+3}{8}\right)$

$$= \frac{24}{12} - \frac{5}{8}$$

$$= \frac{48 - 15}{24} = \frac{33}{24} = \frac{11}{8} = 1\frac{3}{8}$$
(Ans.)

Example 16 :

A man spent $\frac{2}{7}$ of his savings and still has ₹ 1,000 left with him. How much were his savings ?

Solution :

The man spent $\frac{2}{7}$ of his money. \therefore He still has $1 - \frac{2}{7} = \frac{5}{7}$ of his savings

Note : In fractions, the whole quantity is always taken as 1.

Since, $\frac{5}{7}$ of his savings = ₹ 1,000

His savings = ₹ 1,000 ÷
$$\frac{5}{7}$$
 = ₹ 1,000 × $\frac{7}{5}$ = ₹ 1,400 (Ans.)

Example 17 :

 $\frac{4}{7}$ of a pole is in the mud. When $\frac{1}{3}$ of it is pulled out, 250 cm of the pole is still in the mud. What is the full length of the pole ?

Solution :

$$\frac{4}{7} \text{ of the pole} - \frac{1}{3} \text{ of the pole} = 250 \text{ cm}$$

$$\Rightarrow \qquad \left(\frac{4}{7} - \frac{1}{3}\right) \text{ of the pole} = 250 \text{ cm}$$

$$\Rightarrow \qquad \frac{5}{21} \text{ of the pole} = 250 \text{ cm} \qquad \left[\frac{4}{7} - \frac{1}{3} = \frac{12 - 7}{21} = \frac{5}{21}\right]$$

$$\Rightarrow \qquad \text{Length of the pole} = 250 \times \frac{21}{5} \text{ cm} = 1050 \text{ cm} \qquad \text{(Ans.)}$$

EXERCISE 4(E)

- A line AB is of length 6 cm. Another line CD is of length 15 cm. What fraction is : 1. the length of AB to that of CD ? (i) (ii) $\frac{1}{2}$ the length of AB to that of $\frac{1}{3}$ of CD ? (iii) $\frac{1}{5}$ of CD to that of AB? 2. Subtract $\left(\frac{2}{7} - \frac{5}{21}\right)$ from the sum of $\frac{3}{4}$, $\frac{5}{7}$ and $\frac{7}{12}$. From a sack of potatoes weighing 120 kg, a merchant sells portions weighing 6 kg, 3. $5\frac{1}{4}$ kg, $9\frac{1}{2}$ kg and $9\frac{3}{4}$ kg respectively. How many kg are still left in the sack ? (ii) How many kg did he sell ? (\mathbf{I}) 4. If a boy works for six consecutive days for 8 hours, $7\frac{1}{2}$ hours, $8\frac{1}{4}$ hours, $6\frac{1}{4}$ hours, $6\frac{3}{4}$ hours and 7 hours respectively. How much money will he earn at the rate of ₹ 36 per hour ? 5. A student bought $4\frac{1}{3}$ m of yellow ribbon, $6\frac{1}{6}$ m of red ribbon and $3\frac{2}{9}$ m of blue ribbon for decorating a room. How many metres of ribbon did he buy ? 6. In a business, Ram and Deepak invest $\frac{3}{5}$ and $\frac{2}{5}$ of the total investment. If ₹ 40,000 is the total investment, calculate the amount invested by each.
 - 7. Geeta had 30 problems for home work. She worked out $\frac{2}{3}$ of them. How many
 - problems were still left to be worked out by her ?
- 8. A picture was marked at ₹ 90. It was sold at $\frac{3}{4}$ of its marked price. What was the sale price ?
- 9. Mani had sent fifteen parcels of oranges. What was the total weight of the parcels, if each weighed $10\frac{1}{2}$ kg?

10. A rope is $25\frac{1}{2}$ m long. How many pieces each of $1\frac{1}{2}$ m length can be cut out from it ?

- 11. The heights of two vertical poles, above the earth's surface, are $14\frac{1}{4}$ m and $22\frac{1}{3}$ m respectively. How much higher is the second pole as compared with the height of the first pole ?
- 12. Vijay weighed $65\frac{1}{2}$ kg. He gained $1\frac{2}{5}$ kg during the first week, $1\frac{1}{4}$ kg during the second week, but lost $\frac{5}{16}$ kg during the third week. What was his weight after the third week ?

- 13. A man spends $\frac{2}{5}$ of his salary on food and $\frac{3}{10}$ on house rent, electricity, etc. What fraction of his salary is still left with him ?
- 14. A man spends $\frac{2}{5}$ of his salary on food and $\frac{3}{10}$ of the remaining on house rent, electricity, etc. What fraction of his salary is still left with him ?
- 15. Shyam bought a refrigerator for ₹ 5,000. He paid 1/10 of the price in cash and the rest in 12 equal monthly instalments. How much had he to pay each month ?
- 16. A lamp post has half of its length in mud and $\frac{1}{3}$ of its length in water.
 - (i) What fraction of its length is above the water ?
 - (ii) If $3\frac{1}{3}$ m of the lamp post is above the water, find the whole length of the lamp post.

17. I spent $\frac{3}{5}$ of my savings and still have ₹ 2,000 left. What were my savings ?

- 18. In a school; $\frac{4}{5}$ of the children are boys. If the number of girls is 200, find the number of boys.
- 19. If $\frac{4}{5}$ of an estate is worth ₹ 42,000, find the worth of whole estate. Also, find the value of $\frac{3}{7}$ of it.
- 20. After going $\frac{3}{4}$ of my journey, I find that I have covered 16 km. How much journey is still left ?
- 21. When Krishna travelled 25 km, he found that $\frac{3}{5}$ of his journey was still left. What was

the length of the whole journey.

49